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Abstract 
Fair-division problems are ubiquitous. They range from the 
day-to-day chore assignments to the Israeli-Palestinian 
conflict and include the division of an inheritance to the heirs 
(Brams & Taylor, 1999; Massoud, 2000). Many intuitive and 
self-implementable algorithms guaranteeing “fairness” have 
been devised in the past 50 years (Brams & Taylor, 1996). So 
far, very few empirical studies have put them to the test 
(Daniel & Parco, 2005; Schneider & Krämer, 2004). In fact, it 
is not even known to what extent the solutions derived from 
these algorithms are satisfactory to human players. Here, we 
present an experiment that investigated the satisfaction of two 
pairs of players who divided 10 indivisible goods between 
themselves. A genetic algorithm was used to search for the 
best division candidates. Results show that some of the best 
divisions found by the genetic algorithm were rated as more 
mutually satisfactory than the ones derived from six typical 
fair-division algorithms. Analyses on temporal fluctuation and 
non-additivity of preferences could partially explain this 
result. Ideas for the future implementation of a more flexible 
and unconstrained approach are discussed. 

Keywords: Fair-division, cake-cutting algorithms, fairness, 
justice, ethics, genetic algorithms. 

Introduction 
Inspired by the age-old I divide the cake and you choose 

the piece procedure, Steinhaus, Banach, and Knaster 
developed, in the 1940’s, the first mathematical algorithms 
aiming at fairly dividing a cake between more than two 
players. This started what has been recently phrased « the 
quest for a “magic formula” to resolve conflicts » 
(Schneider & Kramer, 2004, p.507). The goal is to design a 
division procedure guaranteeing one or several fairness 
criteria such as proportionality1, envy-freeness2, 
equitability3, or efficiency4—even against the greediest 
opponent. Additional desirable properties include 
simplicity, self-implementation, and applicability to any 
number of participants in real-life conflicts. 

                                                 
1 A solution is proportional when each of the n players receives 

a share that is worth at least 1/n of their individual utility. 
2 A solution is envy-free when each of the n players receives a 

share that is worth more (or the same) for him than any other share, 
in terms of his individual utility. 

3 A solution is equitable when all of the n players receive a share 
that is worth the same proportion of their individual utility.  

4 A solution is efficient if no other division solution can increase 
a player’s utility without decreasing the other player’s utility. 

Since the seminal work of Steinhaus and colleagues, 
dozens of fair-division algorithms have been designed (for a 
review, see Barbanel, 2004; Brams, 2008; Brams & Taylor, 
1996; Moulin, 2003; Robertson & Webb, 1998; Young, 
1994). One famous example is the Adjusted Winner (see 
Brams & Taylor, 1996 for complete details). Suppose m 
inherited goods are to be split between two heirs. Briefly 
stated, this procedure first requires that both heirs privately 
express their true material preferences for the disputed 
goods by distributing a total of 100 points over them (more 
points means higher preference). Then, each object is given 
to the player who allocated more points to it. If the players’ 
total points are unequal after this initial distribution, then the 
procedure makes an additional adjustment: the most 
disputed object (i.e. the one for which the ratio of both 
players’ points is closest to one) is split in such a proportion 
that both players end up with the same total amount of 
points. If the heirs express their true preferences—and 
Brams & Taylor (1996) demonstrated it is optimal for a 
rational and self-regarded agent to do so—they will be 
assured a proportional, envy-free, equitable, and efficient 
solution.  

So far, very few empirical studies have put these fair-
division algorithms to the test (Daniel & Parco, 2005; Pratt 
& Zeckhauser, 1990; Schneider & Krämer, 2004). In fact, it 
is not even known to what extent the solutions derived from 
these algorithms are satisfactory to human players. In the 
next paragraphs, we argue that it is not likely to be the case 
because most fair-division algorithms dealing with 
indivisible goods rest on invalid assumptions regarding 
human preferences. More specifically, they assume stable 
and additive material preferences.  

Recall that in the Adjusted Winner, the players are instructed 
to make a single and overt appraisal of their material 
preferences. Likewise, most algorithms dealing with indivisible 
objects require that a fixed or unlimited amount of points or 
monies be distributed over the disputed goods. This is at odd 
with behavioral evidence that shows systematic fluctuation of 
individual utility over time (Rabin, 1998). A change occurring 
between preferences’ appraisal and implementation of the 
solution derived from the fair-division algorithm could hamper 
its fairness and leave the group with a feeling of injustice. So, 
are preferences stable in time? And, if not, what is the impact 
on the fairness of the algorithms? 

Most fair-division algorithms dealing with indivisible 
goods assume the additivity of material preferences. For 
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example, in the case of the Adjusted Winner, this means that 
the points given to two disjoint bundles of goods is equal to 
the sum of the points of its constituents. However, non-
additive preferences are likely to be observed when goods 
have closely related functions: for example, a bayan and a 
dayan (the two drums of an Indian tabla set) might be worth 
more together than separated. Most fair-division algorithms 
do not tolerate non-additivity, which can prevent them from 
reaching the desired solution. Well aware of this potential 
problem, Brams and Taylor (1996, 1999) have suggested 
that goods be carefully organized, prior to the application of 
the algorithm, in separable bundles (e.g., bayan and dayan 
in the same bundle). This solution seems reasonable but 
non-additivity might be difficult to predict considering 
individual variability: for example, a non-musician might 
consider a bayan and a dayan as two exotic pieces that 
could be displayed either together or separately. Hence, can 
we really control for the additivity of preferences? 

Taking into account these two issues, we hypothesize that 
the solutions derived from these algorithms are not likely to 
be satisfactory for human players. We tested this hypothesis 
and pinpoint two of its underlying causes by measuring the 
satisfaction of two pairs of players who divided 10 
indivisible goods between themselves. More precisely, 
participants rated their satisfaction over a subset of all 1,024 
possible divisions, and then estimated their material 
preferences by distributing a total of 100 points over the 10 
objects. The division space was explored using a genetic 
algorithm (GA; Holland, 1975) that searched for best 
division candidates. More precisely, it was designed to 
converge toward divisions maximizing the satisfaction of 
both players (details are provided in the Algorithm section). 
The rational behind the use of this GA was manifold. First, 
GAs can perform even when, as we hypothesized, non-
additive (non-linear) and dynamic preferences are involved. 
Second, its natural tendency to duplicate solutions allows us 
to evaluate the temporal fluctuation of preferences. Finally, 
this GA is also a fair-division algorithm of its own that 
could be tested against standard fair-division algorithms. 

Methods 

Participants 
Four co-workers (including the authors of this paper) that 

had known each other for at least three years were grouped 
in pairs. Players 2 and 3 were naïve to the purpose of this 
experiment. Each pair was informed that the goal of the 
experiment was to divide ten items between them, and that 
they would have to express their satisfaction individually 
about at least 300 candidate divisions. Prior to the 
experiment, subjects were given one minute to familiarize 
themselves with the items. Informed consent was obtained 
and no monetary compensation was provided. 

Indivisible goods 
Ten food items were designated as the indivisible disputed 

goods: asparagus, a six-pack of beer, a jar of almond butter, 

a bag of chips, fresh dills, a can of concentrated orange 
juice, mushrooms, a pizza, a salmon filet, and half a pound 
of shrimps. They were chosen as possible ingredients of 
meals and we purposely selected potentially non-separable 
items (e.g., a salmon filet and fresh dills). Color pictures of 
these items were taken on the Internet and resized to span 
about 4 to 5 cm on the screen at full resolution. Viewing 
distance was about 60 cm. 

Apparatus 
Our Matlab (MathWorks) experimental programs used 

functions from the Psychophysics toolbox (Brainard, 1997; 
Pelli, 1997) and ran on two Macintosh G5 computers linked 
via the intranet. All stimuli were presented on two Sony 
Trinitron monitors. 

Procedure 
Paired participants were tested on two linked computers. 

They were each submitted to a minimum of 15 runs. During 
each run, they were shown a population of 20 candidate 
divisions (not necessarily the same ones). On the computer 
monitor, one row contained the goods given to one 
participant and another row contained the goods given to the 
other participant. Participants were told they had unlimited 
time to express, on a scroll bar, her/his satisfaction about the 
candidate division on a scale ranging from 0 (not satisfied at 
all) to 1 (fully satisfied). Each run lasted approximately 2.5 
minutes. After the testing session, participants were asked to 
distribute 100 points over the ten items to reflect their 
preferences for these objects (material preferences). Finally, 
they were debriefed. The entire experiment lasted 
approximately one hour.  

Genetic algorithm 
The genetic algorithm (GA) started with two populations 

of 20 randomly generated candidate divisions. A vector of 
ten binary elements represented a candidate division; each 
binary element coded an object and its value specified the 
owner of this object. Each paired participant rated the 
candidate divisions from her/his population. The GA 
maximized each subject’s rating independently. The fitness 
of a candidate division was computed independently for 
each population as follows: the satisfaction rating of a 
participant divided by the sum of all of her/his satisfaction 
ratings. This normalization per subject compensated for 
discrepancies between paired participants. Two new 
populations of candidate divisions were generated 
independently for each participant following the so-called 
roulette-wheel selection. Next, the two resulting populations 
were mixed through a single-point crossover (50%) and 
randomly split in two distinct populations. Finally, 1% of 
the candidate divisions were randomly mutated (for an 
overview of genetic algorithms, see Mitchell, 1996). This 
GA implementation ensured that the ratings of each 
participant equally contributed to the next populations of 
candidate allocations thus avoiding the adoption of any 
particular definition of fairness. The testing session was 
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stopped after a minimum of 15 runs and after having 
reached a minimum clone (duplicate candidate divisions) 
rate of 0.75 or a mean satisfaction level above 0.9. 

Results and Discussion 
The average satisfaction rating increased rapidly from 

0.49 (SD = 0.0003) at the first run to 0.85 (SD = 0.001) after 
13 runs. The clone rate also jumped from 0 to 0.78 over the 
first 13 runs, indicating a rapid convergence toward “fair” 
candidate divisions.  

Do fair-division algorithms maximize satisfaction? 
As pointed out in the introduction, most fair-division 

algorithms dealing with indivisible goods derive their 
solutions from a single appraisal of material preferences. In 
our case, participants were asked to express their material 
preferences by distributing a total of 100 points over the 10 
objects. By contrasting the satisfaction ratings with the total 
number of points they would have obtained for each 
solution candidate (henceforth called material utility), we 
can test the extent to which solutions prescribed by fair-
division algorithms on the basis of material preferences are 
satisfactory. 

Figure 3 consists of two scatter plots, one for each pair of 
participants. Each plot summarizes the relationship between 
the participants’ satisfaction ratings and the material utility 
of the solutions. More specifically, material utility is the 
proportion of the 100 points a participant would have won 
for a given solution candidate. This measure could be seen 
as a variable that predicts the participant’s satisfaction 
rating. And, for fair-division algorithms to work correctly, 
satisfaction should closely map onto material utility.  

The scatter plots depict four dimensions on a flat surface: 
the x-y axes represent each participant’s material utility (e.g. 
1 means all objects are assigned to that participant) and the 
gray level of each joint squares (or rectangle formed of two 
squares) indicates the satisfaction rating (black means “not 
satisfied” and white “fully satisfied”). More precisely, each 
joint squares represents one candidate division rated by the 
two participants of a pair. The left ones show player’s 1 (or 
3) satisfaction ratings and the right ones show player’s 2 (or 
4) satisfaction ratings. This side-by-side arrangement was 
chosen to visually enhance the contrast between the 
participants’ satisfaction. Homogeneous gray rectangles 
show satisfaction agreement whereas highly contrasted joint 
squares mean satisfaction disagreement. All solution 
candidates located in the upper right portion (delimited by 
dotted lines) of the scatter plots are envy-free and 
proportional because both participants won at least 0.5 of 
their total material utility. The solutions located on the 
dotted diagonal are equitable. Black crosses indicate the 
divisions derived from six fair-division algorithms (based 
on material preferences): the Sealed Bid Knaster (Knaster, 
1946), the Adjusted Winner (Brams & Taylor, 1996), the 
Adjusted Knaster (Raith, 2000), the Division by Lottery 
(Pratt, 2007), the Descending Demand (Herreiner & Puppe, 
2002) and the Balanced Alternation algorithm (Brams & 

Taylor, 1999). All of these algorithms except the 
Descending Demand and the Balanced Alternation proceed 
in a similar fashion: first, the players evaluate their material 
preferences by distributing a fixed (or unlimited) amount of 
points (or monies) over the disputed goods; second, each object 
is allocated to the highest “bidder”; and third, the procedure 
adjusts this first distribution by either splitting one of the 
objects, asking monetary compensation or randomly assigning 
one of the objects. Details about the algorithms are available 
in the cited papers.   
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Figure 1. Each rectangle (composed of two joint squares) 

represents one candidate division rated by the two 
participants of a pair. The x-y coordinates of each rectangle 
represent the material utility of each paired participants for 
the corresponding division. The right (players 2 and 4) and 

left (players 1 and 3) gray levels of a disc indicate the 
respective satisfaction of paired participants (black= “not 

satisfied” and white=“fully satisfied”). Red circles represent 
the divisions prescribed by the five fair-division algorithms.  
 

In the upper scatter plot, material preferences explain 
48% and 1% of the variance of satisfaction ratings of player 
1 and 2 respectively. It can be appreciated at a glance: most 
light and relatively homogeneous rectangles are clustered on 
the left side of the scatter plot. This suggests that the most 
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satisfactory solutions have very low material utility. Also, 
this could mean that some players had difficulty estimating 
their material preferences. All of this is bad news for most 
fair-division algorithms, which mostly rely on these material 
preferences.  

In the bottom scatter plot, material preferences explain 
28.79% and 47.06% of the variance of the satisfaction 
ratings of player 3 and 4 respectively. Light and 
homogeneous rectangles are concentrated in the envy-free 
and proportionality region. There is also a clear overlap 
between the divisions prescribed by the fair-division 
algorithms (black crosses) and the candidate divisions 
selected by the GA (joint squares). Some of the divisions 
prescribed by the fair-division algorithms were highly 
satisfying (especially those of the Descending Demand and 
the Balanced Alternation algorithms) but other candidate 
divisions sampled by our GA were even more satisfying. In 
fact, some of the most satisfying candidate divisions were 
outside the envy-free and proportionality region. These 
results strongly advise against using only material 
preferences to derive fair divisions. Next, we consider two 
possible explanations for this result. 

Satisfaction fluctuates 
As mentioned in the introduction, one explanation for 

the small correlation between satisfaction and material 
utility is the fluctuation of the preference measure. 
Accordingly, a single and overt appraisal of material 
preferences might not be precise enough. To verify this 
possibility, we first analyzed the overall fluctuation of 
satisfaction ratings of the clones. All participants exhibited a 
fairly high level of fluctuation (SD = 0.15, 0.24, 0.12 and 
0.06 respectively), especially for mid-rated clones (between 
0.25 and 0.75 satisfaction units). Two questions logically 
follow this observation: Are these fluctuations caused by 
some random factors? And what could be the effect of these 
fluctuations on fair-division algorithms? 

To address the first question, we looked at the slope of the 
line fitted on satisfaction ratings and time (or trial). We 
focused on variations occurring in the mid-range—between 
25% and 75%—to stay at bay from floor and ceiling. Out of 
14 sets of clones, five (57%) had a significant slope 
(p<0.05, Bonferroni corrected). Linear variations of 
satisfaction ranged from -0.036/trial to 0.0002/trial. This 
suggests that at least part of the temporal fluctuations were 
systematic and linear. Verbal reports of the players offer one 
possible explanation: they all interpreted the selection 
process of the genetic algorithm (GA) as an indication of 
“who was winning” and, as a consequence, adapted their 
strategies. Other possible explanations concern all time-
dependent behaviors (e.g. fatigue, habituation, etc) and 
order effects such that a given trial influences the next one. 
Unfortunately, pursuing these specific hypotheses goes 
beyond the scope of this paper.  

To address the second question, we first needed to find an 
estimate of the group random fluctuation level that would be 
free of systematic (or strategic) fluctuations. We opted for 

the standard deviation of the residuals of the line fitted on 
the clone ratings (see previous analysis). It turned out to be 
0.15 in satisfaction units—this is the variation that cannot be 
predicted by the linear model. We did not look for any non-
linear trend because we had no specific expectations about 
what type of non-linearity it should be. Nevertheless, this 
allowed us to control minimally for the possibility of a 
linear interaction between the GA and the players. 
Moreover, we think the standard deviation of the residuals is 
a conservative estimate of the random fluctuations because 
it takes into account all clones, including the highly- and 
lowly-rated ones, which do not fluctuate much (because of 
the floor and ceiling effects). To assess the possible impact 
of such fluctuations on fair-division algorithms, we ran a 
simulation on five of them: the Sealed Bid Knaster, the 
Adjusted Winner, the Adjusted Knaster, the Division by 
Lottery and the Descending Demand. We did not use the 
Balanced Alternation because it does not guarantee any 
criterion of justice. We compared the division obtained 
following the application of each algorithm with 
deterministic and stochastic (uniform noise with a SD = 
0.15) agents. By repeating this process 100 times, we 
estimated the probability that an algorithm will meet its 
(promised) fairness criteria in a situation with a realistic 
noise level (Table 1). 

 
Table 1: Percentage of the 100 simulated solutions that 

satisfied envy-free, equitability, maximin and efficiency. 
Added uniform noise had either a SD = 0.15 (the estimated 

noise level; bottom numbers) or a SD = 0.075 (a more 
conservative noise level; top numbers). 

 
Procedures S.B.K. A.W. A.K. D.L. D.D. 
Efficiency 76% 

41% 
70% 
39% 

76% 
41% 

66% 
36% 

47% 
32% 

Equitability – 17% 
8% 

14% 
1% 

– – 

Envy-
freeness 

100% 
92% 

100% 
95% 

100% 
92% 

100% 
94% 

– 

Maximin – – – – 57% 
33% 

 
Results indicate that the observed random fluctuations 

have a decisive impact on the fairness of all procedures. 
Equitability seems to be the least robust criterion whereas 
envy-freeness (proportionality is equivalent to envy-freeness 
with only two players) seems to be the most robust. This 
was expected because equitability is a very restrictive 
criterion: both subjects need to win the same total utility. In 
comparison, envy-freeness is generally more inclusive: it 
fills up to 25% of the solution space. The least robust 
algorithm seems to be the Descending Demand (Herreiner 
& Puppe, 2002). In sum, we observed fluctuations of 
satisfaction that could not be predicted by the linear model, 
and showed that even a very conservative estimate of these 
random fluctuations was sufficient to affect the justice of 
fair-division algorithms.  
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Preferences are (non-predictably) non-additive 
Another explanation for the small correlations observed 

between satisfaction and material utility is the presence of 
non-additivity in the material preferences. Additivity 
implies the independence of object preferences; we thus 
needed to search for dependencies in conjunctions of 
objects. This was tested by performing a multiple linear 
regression on the satisfaction ratings and the outer-products 
of the candidate division vectors. We estimated the 
statistical thresholds of regression coefficients using a 
Monte-Carlo simulation (p<0.05; two-tailed). Significant 
(black cells) positive (white ‘+’) and negative (white ‘-’) 
regression coefficients are shown in figure 2. This figure 
displays two conjunction matrixes that indicate which 
combination of objects are strongly non-additive. Note that 
the upper and lower triangles in each matrix correspond to 
different paired participants.  

 
Figure 2. Two conjunction matrices: Significant (black 

cells) positive (white ‘+’) and negative (white ‘-’) regression 
coefficients indicate strong non-additive preferences.  

 
Results show a total of 26 significant preference 

conjunctions. This is not all that surprising because, as we 
explained in the Methods section, we did not choose the 
objects with the intent of separability—on the contrary. 

More interestingly, inter-rater reliability, measured by the 
Fleiss’ kappa index (0.04), indicates little agreement 
between raters. This means a consensus would be hard to 
obtain in real-life when allotting goods in separable bundles 
prior to the application of a fair-division algorithm–as 
proposed by Brams and Taylor (1996, 1999). Overall, the 
presence of non-additive preferences can partially explain 
why satisfaction ratings do not map onto material utility. 

General discussion 
We explored the satisfaction over a large subset of the 

1,024 possible divisions of 10 indivisible goods between 
two pairs of participants using a genetic algorithm (GA). 
The data from two pairs of participants suggests that fair 
divisions derived from a single and overt appraisal of 
material preferences are not necessarily the most 
satisfactory solutions. Furthermore, we discovered that fair-
division algorithms fared rather poorly in comparison to the 
most satisfactory division candidates selected by our GA. 
Subsequent statistical analyses suggested two possible 
explanations for this result: two assumptions of typical 
point-allocation fair-division algorithms, i.e. stability and 
additivity of preferences, were violated. More specifically, 
we observed fairly large fluctuations of the satisfaction 
ratings over time and further analysis showed that part of 
this fluctuation was linearly systematic. This means part of 
the fluctuations were predictable (probably due to order 
effects, strategic or time-dependent behaviors) and part were 
mere noise. Computer simulations of deterministic and 
stochastic players allowed us to evaluate the impact of the 
residual random fluctuations (the noise) on the fairness of 
five fair-division algorithms. All algorithms were affected. 
Unsurprisingly, the most inclusive criterion of justice, envy-
freeness (and proportionality), was also the most noise-
resistant. The conjunction analysis on pairs of objects 
revealed that the combinations of objects that were treated 
non-additively varied considerably from one participant to 
another. This suggests that the solution consisting in 
allotting these non-separable objects in bundles (see Brams 
and Taylor, 1996) would be hard to implement in real-life.  

There is at least another possible explanation for the 
discrepancies between the solutions derived from fair-
division algorithms and the one found by our GA: 
individual attitudes toward justice (e.g. inequity aversion, 
self-interest, reciprocity, etc) and knowledge about the other 
players’ attitude could have injected additional non-linearity 
into the satisfaction ratings. For example, a participant 
averse to inequity would have probably been unsatisfied 
with a division assigning all objects to him and none to his 
partner–i.e. a division with maximum material utility. Such 
attitude could involve a non-linear and possibility non-
monotonic relationship between material utility and 
satisfaction. Hence, non-additivity and temporal fluctuations 
were not necessarily the only sources of non-linearity in the 
data. This represents a possible confounding variable in both 
analyses. From a broader perspective, the diversity of 
attitudes toward justice (Fehr & Schmidt, 1999; Colman, 
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2003) could be a real threat to fair-division algorithms 
because they impose a limited set of justice criteria. 
Therefore, the choice of a fair-division algorithm could 
depend on which criteria are preferred. We thus wonder if a 
consensus can be reached on a set of justice criteria, 
considering possible discrepancies between individual 
attitudes toward justice? 

There are caveats about our experiment: We did not 
control for possible non-linear interactions between the 
selection process of the GA and the participants’ strategies. 
To prevent this from happening, we could have sampled a 
(much) larger subset of randomly selected candidate 
divisions. Also, this would have allowed a better evaluation 
of existing fair-division algorithms. Furthermore, additional 
naïve subjects would need to be tested to gain a better 
understanding of the interplay between satisfaction and 
material utility. 

We used a GA to search the division space for the most 
satisfying divisions. Interestingly, our GA also constitutes a 
fair-division algorithm in itself: it converges toward 
maximum mutual satisfaction. Perhaps our GA-based fair-
division converged toward more satisfactory divisions than 
typical fair-division algorithms because—unlike typical fair-
division algorithms—GA-based faire-division does not 
assume a shared set of justice criteria and can promptly 
adapt to fluctuating and non-additive preferences. In any 
case, we believe that such a flexible and non-normative 
approach to justice is worth exploring, especially in the 
context of real-life fair-division problems. Many questions 
remain unanswered at this point: Can GA-based fair 
divisions elicit trust in players even though no guarantee of 
justice is promised in the face of greed? And will the 
inherent complexity of the GAs evoke suspicion in players? 
Or, rather, will it diminish the likelihood of manipulation?  

Conclusion 
As promising as fair-division algorithms might be, their 

implementation in realistic setting presents great challenges 
(e.g. Pratt & Zeckhauser, 1990), some of which can be 
addressed by experimental investigations. Future studies 
should consider the possible impact of different attitudes 
toward justice and focus on more detailed comparison 
between standard fair-division algorithms and alternative 
algorithms such as our GA.   
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