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A THEORY OF SPATIAL STRUCTURE IN ECOLOGICAL COMMUNITIES AT
MULTIPLE SPATIAL SCALES

JOHN HARTE,1,3 ERIN CONLISK,1 ANNETTE OSTLING,1 JESSICA L. GREEN,2 AND ADAM B. SMITH1

1Energy and Resources Group, University of California, Berkeley, California 94720 USA
2School of Natural Sciences, University of California, Merced, California 95344 USA

Abstract. A theory of spatial structure in ecological communities is presented and
tested. At the core of the theory is a simple allocation rule for the assembly of species in
space. The theory leads, with no adjustable parameters, to nonrandom statistical predictions
for the spatial distribution of species at multiple spatial scales. The distributions are such
that the abundance of a species at the largest measured scale uniquely determines the spatial-
abundance distribution of the individuals of that species at smaller spatial scales. The shape
of the species–area relationship, the endemics–area relationship, a scale-dependent com-
munity-level spatial-abundance distribution, the species-abundance distribution at small
spatial scales, an index of intraspecific aggregation, the range–area relationship, and the
dependence of species turnover on interpatch distance and on patch size are also uniquely
predicted as a function solely of the list of abundances of the species at the largest spatial
scale. We show that the spatial structure of three spatially explicit vegetation census data
sets (i.e., a 64-m2 serpentine grassland plot, a 50-ha moist tropical forest plot, and a 9.68-
ha dry tropical forest plot) are generally consistent with the predictions of the theory,
despite the very simple statistical assumption upon which the theory is based, and the
absence of adjustable parameters. However, deviations between predicted and observed
distributions do arise for the species with the highest abundances; the pattern of those
deviations indicates that the theory, which currently contains no explicit description of
interaction mechanisms among individuals within species, could be improved with the
incorporation of intraspecific density dependence.

Key words: abundance distribution; Barro Colorado Island (BCI), Panama; endemics–area re-
lationship; range–area relationship; San Emilio, Costa Rica; scale dependence; serpentine grassland;
spatial distribution; species–area relationship; tropical forest.

INTRODUCTION

Understanding the abundance and spatial distribu-
tion of species at multiple spatial scales is a central
concern of ecology (Fisher et al. 1943, Preston 1948,
Krebs 1994, Rosenzweig 1995, Gaston and Blackburn
2000, He and Legendre 2002). Patterns in the distri-
butions of individuals and species across space provide
information critical to our ability to decipher the forces
that structure and maintain ecological diversity (Pielou
1969, Brown et al. 1995). Within biomes, knowledge
of the scale-dependent frequency of patch occupancy
can lead to improved estimates of extinction rates under
perturbations, more effective land protection policies,
the design of more efficient and accurate censusing
strategies, and improved estimates of species richness
from sparse census data (Whitmore and Sayer 1992,
May et al. 1995, Rosenzweig 1995).

Spatial models that explicitly assume knowledge of
processes such as birth, death, dispersal, speciation,
migration, extinction, and niche differentiation have

Manuscript received 7 September 2004; revised 3 November
2004; accepted 4 November 2004. Corresponding Editor: W. S.
C. Gurney.

3 E-mail: jharte@socrates.berkeley.edu

significantly advanced our understanding of patterns in
the abundance and distribution of species across space
and time (see reviews by Hubbell [2001], Chave
[2004], and Leibold et al. [2004]). Statistically based
models, while not derived from explicit biological
mechanisms, also have provided a tractable theoretical
framework for quantifying the spatial structure of eco-
logical communities. For example, in an early inves-
tigation of the distribution and abundance of species,
Preston (1962) and May (1975) argued that a particular
species-abundance distribution (SAD), the canonical
lognormal, was related to a power-law form of the
species–area relationship (SAR). Their approach was
based on randomly sampling individuals from an eco-
logical community with a lognormal SAD. Coleman
(1981) extended the reach of the random model,
developing a general framework for deriving the shape
of the species–area relationship under arbitrary
species-abundance distributions, while Green and
Ostling (2003) derived the form of an endemics–area
relationship under the random model. Although the
random distribution assumption does provide a general
model of spatial pattern in ecology, numerous studies
have shown that this assumption inadequately describes
spatial patterns of aggregation of individuals within
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species and of species across landscapes (Condit et al.
1996b, 2002, Plotkin et al. 2000, Green et al. 2003).

To model aggregated species distributions, and to
investigate the effect of aggregation on macroecolog-
ical properties such as the SAR or species turnover, a
number of authors (Wright 1991, He and Gaston 2000,
2003) have examined the following statistical model:

2k 2 2p 5 1 2 [(k 1 m)/k] k 5 m /(s 2 m) (1)

where p is the probability of a species occurrence in a
grid cell as a function of the mean occupancy m, the
variance s2, and a parameter k, that can take on values
k , 2m or k . 0 and that can be estimated from census
data (Bliss and Fisher 1953). In general, k will be spe-
cies and scale dependent (Plotkin and Muller-Landau
2002). For positive k values, the model derives from
the negative binomial distribution (NBD), which has
been used in the following ways: to describe SARs and
abundance–aggregation patterns (He and Gaston 2000,
2003, He and Hubbell 2003), to derive a formula for
the fraction of species in common to two separated cells
of a specified area (Plotkin and Muller-Landau 2002),
and to derive an ‘‘endemics–area relationship’’ (EAR)
between the number of species in a cell that are unique
to that cell and the area of the cell (Green and Ostling
2003). In applications of the NBD, values of the pa-
rameter k at every scale and for every species are de-
termined from data, rather than from first principles,
and thus the model contains a sizeable number of ad-
justable parameters when applied to a community of
species. Plotkin et al. (2000) assumed and explored
another spatial model based on the Poisson cluster dis-
tribution; with even more adjustable parameters than
the NBD, this model can generate a wide variety of
patterns that resemble those observed in nature.

Another statistically based approach to describing
species-level and community-level spatial patterns
across spatial scales has focused on the explicit scaling
properties of the SAR and, for individual species, the
range–area relationship (RAR). The RAR describes the
dependence of the range size of a species (defined by
a box-counting procedure as the total area of all oc-
cupied grid cells at a given scale) on cell area (Kunin
1998, Gaston and Blackburn 2000, Harte et al. 2001).
The scaling approach starts with the observation that
the shape of the SAR and the RAR can be expressed
in terms of certain fundamental probability parameters.
At the species level, these probabilities describe how
the number of occupied census cells depends on the
spatial scale of the cells (Harte et al. 2001), while at
community level, the probabilities describe how spe-
cies richness depends on spatial scale (Harte et al. 1999,
2001). The assumption of self-similarity, or fractality,
is equivalent to the assumption that the probability pa-
rameters are independent of scale (Ostling et al. 2003).
When the community-level probabilities are scale in-
dependent, a power-law SAR results; when the param-

eters for a particular species are scale independent, a
power-law RAR results for that species. Although the
theory presented here is substantially different from
this previous work, and we make no a priori assump-
tions about the scaling properties of these probability
parameters, it is convenient to express the theory with
those same parameters, and so formal definitions are
given (see Theoretical background; The probability pa-
rameters).

The statistical theory presented here departs in vary-
ing ways from previous approaches. In one respect, our
approach is similar to that of random placement models
in that all the macroecological predictions follow from
a single statistical assumption, along with knowledge
of the total abundances of the species (Coleman 1981).
In particular, our results derive from what we denote
as the ‘‘hypothesis of equal allocation probabilities’’
(HEAP). This fundamental statistical assumption is
akin to, but significantly different in detail from, the
‘‘hypothesis of equal a priori probabilities’’ that un-
derpins statistical mechanics (Ruhla 1992). The latter,
for classical molecules, results in a binomial abundance
distribution across space, as does the random placement
model in ecology. Instead, HEAP results in a nonran-
dom, more aggregated distribution of individuals.

In contrast to models based on the negative binomial
or the Poisson cluster model, which contain adjustable
parameters for each species, we introduce no adjustable
parameters nor, in contrast to McGill and Collins
(2003), do we require as input to our theory any em-
pirical information about the shape of species-abun-
dance distributions across the ranges of the species.
However, our work shares with those approaches the
objective of rigorously deriving testable predictions for
the relationships among different macroecological pat-
terns, such as the relationship between species-level
aggregation or RAR curves and community properties
such as the SAR or species turnover in space.

In contrast to our previous work on fractal scaling
properties of species distributions, we impose here a
top-down boundary condition on the recursion relations
that generate the probability distribution for each spe-
cies; the boundary condition at the ‘‘top’’ is simply the
total abundance of a species in some large area. Where-
as the bottom-up approach requires prior knowledge of
the species-level probability parameters describing the
RAR at all spatial scales being considered, our top-
down approach uniquely predicts the values of all those
parameters, along with the community-level probabil-
ity parameters describing the SAR at all scales as a
function solely of the list of total abundances of the
species (the SAD) within the large area.

Assuming a SAD at some largest scale, our theory
predicts scale-dependent probability distributions de-
scribing a wide range of ecological patterns at both
species and community levels at multiple spatial scales.
For each species, it predicts the distribution of patch
occupancy frequencies across multiple spatial scales,
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the RAR, an ‘‘O-ring’’ index of spatial clustering (Con-
dit et al. 2000), and the scaling behavior of the mean–
variance relationship for the species-level spatial dis-
tributions. At community level, it predicts the scale-
dependent patch occupancy distribution for total abun-
dances summed over all species, as well as the SAR,
the EAR, the SAD at all smaller spatial scales, and
species turnover as a function of census patch area and
interpatch distance. Knowledge of the SAD at some
largest spatial scale is all that is needed by the theory
to uniquely generate all these spatial properties of eco-
systems at smaller scales.

Although power-law SARs are not assumed here, and
in fact under HEAP can never hold over all scales,
HEAP can predict the SADs for which a power-law
SAR will arise over a limited scale range. On the other
hand, the theory predicts that the species-level prob-
ability parameters can never be scale independent, and
thus the RARs cannot have exact power-law behavior,
over any scale range. More specifically, it predicts that
on log–log plots, the RAR for each species will always
exhibit negative curvature, the strength of which at any
scale depends on the abundance of the species.

Our approach here is to create a theory of spatial
structure in macroecology that can be tested against a
wide array of empirical spatial patterns in ecosystems.
Because the theory contains no adjustable parameters
and no explicit biological mechanisms such as density
dependence, dispersal, birth, death, and interspecific
interactions, we expect the theory to perform poorly
under at least some circumstances. From knowledge of
the patterns of success and failure when we compare
the theoretical predictions with data from three sites
for which spatially explicit plant census data are avail-
able, we show that we can gain insight into which of
the many neglected biological mechanisms are likely
to most significantly influence spatial patterns in ecol-
ogy. Because our fundamental statistical assumption
leads to predictions that greatly outperform random
placement predictions, we argue that HEAP is a useful
‘‘null assumption’’ for macroecology. Although we
currently lack a mechanistic understanding of the origin
of HEAP, we suggest that an alternative formulation of
the theory in terms of a spatially explicit ‘‘assembly
function’’ may provide the basis for such an under-
standing.

THEORETICAL BACKGROUND

Types of abundance distributions

Consider a plot or landscape of area A0 populated by
S0 species, each containing a total of individuals,( j )n0

where ( j ) is a species label that ranges from j 5 1 . . .
S0. To introduce a scale parameter, let A0 be repeatedly
bisected into similar-shaped patches. Then we can de-
fine a scale parameter i such that patches of area Ai are
formed from the ith bisection (Harte et al. 1999). Note
that larger spatial scales correspond to smaller values

of i. A formal procedure for this bisection process ex-
ists (Harte et al. 1999, Plotkin et al. 2000, Ostling et
al. 2003) and a consistent procedure for avoiding po-
tentially unrealistic, artifactual consequences has been
described (Ostling et al. 2004).

We distinguish here two related types of, potentially
scale-dependent abundance distributions: the species-
abundance distribution and spatial-abundance distri-
butions. We denote the former by Fi(n); it is the dis-
tribution of abundances across all the species in a com-
munity at scale i. The meaning of Fi(n) is based on the
idea of a species occurrence or nonoccurrence at scale
i. At scale i 5 0, all S0 species occur and F0(n) is the
customarily defined species-abundance distribution
(Fisher et al. 1943, Preston 1948, Gaston and Black-
burn 2000): the fraction of all the S0 species in A0 with
n individuals. At finer scales, Fi(n) is a straightforward
generalization of this. For example, consider the two
A1 cells formed by the first bisection. There are 2S0

species occurrences or nonoccurrences in those two
cells. Suppose there are f3 occurrences in which a spe-
cies has 3 individuals in either one of the A1 cells; then
F1(3) 5 f3/(2S0). Note that F1(0) will be the fraction
of nonoccurrences in the Ai cells and is thus nonzero
if at least one of the species is absent from one of the
two A1 cells. In general, Fi(n) is the probability that
an Ai cell has a species occurrence with n individuals
(or a species nonoccurrence if n 5 0); equivalently it
is estimated by the fraction of all species occurrences
at scale i with n individuals (or nonoccurrences for n
5 0). Fig. 1 illustrates how Fi(n) and the other distri-
butions are calculated from a data set.

Spatial-abundance distributions can be defined at the
species level and the community level. Anticipating
that each species-level spatial distribution in our theory
will be entirely determined at all scales by the abun-
dance of that species, n0, we hereafter use the species
label (n0) to label the distributions. Thus we define a
spatial distribution, (n), to be the probability that(n )0Pi

a census cell Ai contains n individuals of a species with
abundance n0 in A0, where n can be any integer from
0 to n0. Equivalently, (n) is estimated by the fraction(n )0Pi

of all the 2iAi cells that contain n individuals. We note
that

(n )0P (n) 5 d(n, n )0 0 (2)

where d(n, n0) is the Kronecker delta function, equal
to 1 if n 5 n0 and 0 otherwise. This is our top-down
boundary condition.

At the community level, a spatial-abundance distri-
bution Fi(N) is defined here to be the probability that
an Ai cell contains a total of N individuals of all species
combined; equivalently, it is estimated by the fraction
of all the Ai cells that contain a total of N individuals.
The calculations of Fi, Pi, and Fi from census data are
illustrated in Fig. 1.
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FIG. 1. Illustration of how F, P, and F are computed from
a simple ‘‘data’’ set in which S0 5 5. The five species (A–
E) have total abundances of 9, 6, 2, 2, and 1 individuals,
respectively. Hence the species-abundance distribution at
scale i 5 0 is F0(9) 5 1/5, F0(6) 5 1/5, F0(2) 5 2/5, and
F0(1) 5 1/5. At scale i 5 2 (since the data are resolved to
quadrants) there are potentially 22S0 5 20 species occurrences
or nonoccurrences in the four quadrants. In fact, there are
eight nonoccurrences (0 individuals), eight occurrences with
1 individual, one with 2 individuals, two with 3 individuals,
and one with 4 individuals. Hence F2(0) 5 8/20, F2(1) 5 8/
20, F2(2) 5 1/20, F2(3) 5 2/20, F2(4) 5 1/20. Consider next
the species-level spatial distribution function for species A
at scale i 5 2 (since the data are resolved to quadrants). In
the four quadrants, there are 4, 3, 1, and 1 individuals; n0 5
9 for species A. Hence (4) 5 1/4, (3) 5 1/4, and(9) (9)P P2 2

(1) 5 1/2. The total numbers of individuals in the com-(9)P2

munity that lie in the four quadrants are 8, 6, 4, and 2, so
the community-level spatial distribution is given by F2(8) 5
F2(6) 5 F2(4) 5 F2(2) 5 1/4.

The probability parameters

We define a community-level parameter, ai, as fol-
lows. Consider a cell randomly selected from the set
of Ai21 cells, and a species occurrence (at i 2 1 scale)
randomly chosen from the set of species occurrences
in that cell. We define ai to be the probability that this
species occurrence is also present in at least a pre-
specified (say, the left-hand) one of the two cells of
area Ai that comprise the selected Ai21 cell. Equiva-
lently, we have shown (Ostling et al. 2003) that ai can
be reexpressed as

a 5 S /Si i i21 (3)

where Si is the mean number of species in the Ai cells.
Eq. 3 implies that

i

S 5 S a . (4)Pi 0 j
j51

If ai is scale independent, so that ai [ a for all i, then
the power-law form of the SAR,

zS 5 cAi i (5)

follows, with z 5 2log2(a) (Harte et al. 1999, Ostling
et al. 2003).

In parallel with this, at the species level we can define
a set of species-level parameters, , where i is a scale(n )0ai

label, and we have anticipated that the ai could depend

on n0 and spatial scale. Each is the conditional(n )0ai

probability that if a species with abundance n0 in A0 is
found in an Ai21 cell, then it is present in at least a pre-
specified one of the two Ai cells that comprise the Ai21

cell. Equivalently, the a’s can be reexpressed as

(n ) (n ) (n )0 0 0a 5 R /Ri i i21 (6)

where , the range size of the species at scale i, is(n )0Ri

equal to Ai , with equal to the number of grid(n ) (n )0 0W Wi i

cells of area Ai in which the species is found (Harte et
al. 2001).

Recalling the conditional nature of the definition of
the probability , and the fact that 1 2 (0) is(n ) (n )0 0a Pii

the probability that a specified cell Ai is occupied by
that species, then it is straightforward to show that

(n ) (n ) (n )0 0 0a 5 [1 2 P (0)]/[1 2 P (0)].i i i21 (7)

If an a for a particular species is scale independent,
then in analogy with Eq. 5 another kind of power-law
relation, the range–area relationship, is obtained. In
particular, for each species with scale-independent

(n )0a ,

(n ) y (n )0 09R 5 c9Ai i (8)

where, in analogy with the relationship between z and
a, y9(n0) for each species is related to the value of a
for that species by y9(n0) 5 2log2 (Harte et al.(n )0a
2001).

Because presence/absence data are easier to obtain
than complete abundance counts, Eq. 7 provides a po-
tential means of estimating the total abundance of a
species in some large area from more accessible data
(Kunin 1998). In particular, if for each species a the-
oretical relationship exists between n0 for that species
and the value of ai for that species, then estimation of
the right-hand side of Eq. 7 (from presence/absence
data at two successive scales) allows estimation of n0.
We shall see that HEAP does indeed lead to a unique
value of n0 for each specified value of ai and thus allows
us to predict the value of n0 from the measured value
of the right-hand side of Eq. 7 at arbitrary value of the
scale parameter i.

We also note the following exact relationship (Harte
et al. 2001) among the set of probabilities, , and(n )0ai

the ai

i i
(n )0a 5 a (9)P Pj j7 8j51 j51 species

where ^ · &species refers to the average over all species.
Eq. 9 implies the following important result: if the ai

are independent of scale over any scale interval (k, k
1 1), then either ak does not equal ak11 for at least one
of the species (that is, a is not scale independent for
that species over that scale interval), or all the are(n )0ai

equal to each other for both k 5 i and i 1 1. In other
words, unless the a’s are the same for all species, both
the a’s and all the a’s cannot be simultaneously scale
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independent. The implication of this is that Eqs. 5 and
8 cannot hold simultaneously; either the SAR, or the
RAR for at least one species, must be scale dependent
over every scale interval, unless all species have equal
ai values. Empirical evidence suggests that there is
generally scale dependence in the RARs for most spe-
cies, but that over at least some limited scale range the
SAR sometimes deviates insignificantly from scale in-
dependence (Kunin et al. 2000, Green et al. 2003).

Using Eq. 9, we can rewrite Eq. 4 in a form that will
be more convenient later:

(n )0S 5 ^l & Si i species 0 (10)

where

i
(n ) (n ) (n )0 0 0l 5 a 5 1 2 P (0). (11)Pi k i

k51

The RARs can also be expressed in terms of the .(n )0li

Using Eq. 6, and the fact that W0 5 1, we obtain, in
analogy with Eq. 10,

(n ) (n )0 0R 5 l A .i i 0 (12)

The HEAP assumption and the fundamental
recursion relationship

To proceed we make an assumption that will unique-
ly determine the functional dependence of the (n)(n )0Pi

on n0, n, and i. We call it the ‘‘hypothesis of equal
allocation probabilities’’ (HEAP). To illustrate HEAP,
consider a species with n0 5 3. What are the proba-
bilities that govern how those three individuals in A0

are distributed among the two A1 cells that comprise
it? Under HEAP, we assume that the four options (0,
3), (1, 2), (2, 1), and (3, 0) are equally likely. The
implication of this is clearly that

(3) (3) (3) (3)P (0) 5 P (1) 5 P (2) 5 P (3) 5 1/4.1 1 1 1 (13)

Hence, from Eqs. 2, 7, and 13,

(3) (3)a 5 1 2 P (0) 5 3/4.1 1 (14)

In general, for any value of n0, and for all n, HEAP
implies

(n ) 210P (n) 5 (n 1 1) (15)1 0

(n ) 210a 5 n (n 1 1) . (16)1 0 0

We assume that HEAP holds at smaller scales, as well.
Thus, for example, suppose it is known that of the three
individuals from a particular species in A0, there are
two individuals of that species in a particular A1 cell.
Then, regardless of the value of n0, the following dis-
tributions of those two individuals are equally likely
in the two A2 cells that comprise the A1 cell: (0, 2), (1,
1), (2, 0). So now, by multiplying conditional proba-
bilities, we can calculate . From Eq. 14, the prob-(3)a2

ability that the left-hand A1 cell is unoccupied is 1/4,
and if it is unoccupied, then the probability that the A2

cell that constitutes the upper half of that cell has no

individuals is 1. The probability that the left-hand A1

cell has one individual in it is 1/4 and if so, the prob-
ability is 1/2 that there are no individuals in the upper
A2 cell. The probability that the left-hand A1 cell has
two individuals in it is 1/4 and if so, the probability is
1/3 that there are no individuals in the upper A2 cell.
The probability that the left-hand A1 cell has three in-
dividuals in it is 1/4 and if so, the probability is 1/4
that there are no individuals in the upper A2 cell. Hence
the probability that A2 is unpopulated is given by

(3)P (0) 5 (1/4)(1) 1 (1/4)(1/2) 1 (1/4)(1/3)2

1 (1/4)(1/4) 5 25/48. (17)

It now follows from Eqs. 7 and 13 that

(3)a 5 (1 2 25/48)/(1 2 1/4) 5 23/36.2 (18)

Note that ± 5 27/36. We shall see that in(3) (3)a a2 1

general, is a decreasing function of i and thus the(n )0ai

theory predicts a specific scale dependence of the
.(n )0ai

Consider next the calculation of (1) under HEAP.(3)P2

The probability that there is 1 individual in the left-
hand A1 cell is 1/4 and if that is the case then the
probability that the upper A2 cell has one individual is
1/2. The probability that there are two individuals in
the A1 cell is 1/4 and if so the probability that there
will be just one individual in the A2 cell is 1/3. The
probability that there are three individuals in the A1 cell
is 1/4 and if so the probability that there will be just
one individual in the A2 cell is 1/4. If the A1 cell contains
no individuals, then the probability that the A2 cell
contains one individual is 0. Hence,

(3)P (1) 5 (1/4)(1/2) 1 (1/4)(1/3) 1 (1/4)(1/4)2

5 13/48. (19)

The same reasoning leads to

(3)P (2) 5 (1/4)(1/3) 1 (1/4)(1/4) 5 7/48 (20)2

(3)P (3) 5 (1/4)(1/4) 5 3/48. (21)2

The result of these calculations can be summarized by
writing

3 (3)P (q)1(3)P (n) 5 . (22)O2 (q 1 1)q5n

Eq. 22 readily generalizes to all values of n0 and i.
Thus, more generally, HEAP results in the following
recursion relationship for the species-level spatial-
abundance distributions:

n (n )0 0P (q)i21(n )0P (n) 5 . (23)Oi (q 1 1)q5n

At the species level, Eq. 23 is the fundamental result
of our theory; for a species with n0 individuals in A0,
it yields the probability distribution, over grid cells at
smaller scales, of the numbers of individuals per cell.
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FIG. 2. Shape of the predicted probability function
(n) plotted on ln–ln axes at two scales, i 5 8 and i 5 4.(617)Pi

For n0 5 617, the binomial distribution that results from the
random placement model (Coleman 1981) at the same two
scales is also shown for comparison.

The solutions to Eq. 23 at all scales are entirely de-
termined by the value of n0 and the boundary condition,
Eq. 2.

An alternative derivation of the fundamental
recursion relationship

Eq. 23 can also be derived starting from an alter-
native assumption to HEAP. To see this, we introduce
an assembly (or colonization) function, (1 z p, q 2(n )0bi

p), that can be used to describe the sequential assembly
of the n0 individuals of a species onto A0. Suppose that
q individuals of the species have been allocated to the
two Ai cells that make up an Ai21 cell. Of those q al-
located individuals, p are known to be in the left-hand
Ai cell and q 2 p are in the right-hand one. Then we
define

(n )0b (1 z p, q 2 p)i

5 the conditional probability that the q 1 1st

individual is on the left. (24)

(0 z p, q 2 p) is analogous, except that it is the(n )0bi

probability that the q 1 1st individual is on the right.
The functional form of the (1 z p, q 2 p) could de-(n )0bi

pend on the abundance of the species in A0 (i.e., n0,
but we will assume it does not and hereafter leave the
superscript off). From the definition of b, the following
constraints hold:

b (1 z p, q 2 p) 5 1 2 b (0 z p, q 2 p) (25a)i i

b (1 z p, q 2 p) 5 b (0 z q 2 p, p) (25b)i i

b (1 z p, p) 5 b (0 z p, p) 5 1/2. (25c)i i

The functions (n) can be expressed in terms of the(n )0Pi

bi(1 z p, q 2 p) functions and, as shown in Appendix
A, the following form for b then results in Eq. 23:

b (1 z p, q 2 p) 5 (p 1 1)/(q 1 2)i (26)

for all scales, i. Note that this function satisfies all the
constraints in Eqs. 25a–25c and that it implies the scale
independence of the b’s. Eq. 26 also has implications
for the degree of clustering in the distributions of in-
dividuals within a species. Recalling that p is the num-
ber of individuals on the left, q 2 p is the number on
the right, and bi(1 z p, q 2 p) is the probability that the
p 1 1st individual is allocated to the left, Eq. 26 implies
that ‘‘the richly populated half cell gets more richly
populated’’; in other words, it produces a level of ag-
gregation greater than expected under a random dis-
tribution.

Embedding HEAP within an infinite family of
distributions

Every assembly function bi(1 z p, q 2 p) that obeys
Eqs. 25a–25c will produce a set of spatial probability
distributions (n). The particular choice of Eq. 26(n )0Pi

produces species-level spatial-abundance distributions
that are identical to those resulting from the assumption

of HEAP. But other forms for b will yield other spatial
distributions. A very broad class of scale-independent
assembly functions is of the following form:

b (1 z p, q 2 p) 5 (pu 1 1)/(qu 1 2).i (27)

The parameter u in Eq. 27 is an aggregation index. The
choice u 5 0 yields the random placement model; the
choice u 5 1 yields the HEAP case of Eq. 26; and the
choice u 5 ` yields the maximally aggregated case, in
which at every scale all individuals are confined to one
Ai cell. Distributions that are more uniform than under
random placement (that is, repulsive distributions) are
obtained for certain negative values of u. In particular,
if n0 is even, then any integer value of u21 that satisfies
2n0/2 $ u21 $ 2n0 or any value of u21 , 2n0 yields
a repulsive distribution and u21 5 2n0 /2 is the limit
of perfect uniformity. If n0 is odd, then u21 5 2(n0 1
1)/2 results in the maximally uniform distribution and
n0 is replaced by n0 1 1 in the inequalities above. Using
likelihood tests, we can evaluate the comparative suc-
cess of the predictions of the entire family of distri-
butions defined by Eq. 27, of which HEAP is a special
case.

SPECIES-LEVEL PREDICTIONS

The species-level spatial-abundance distribution

Fig. 2 shows the typical shape of the (n) at two(n )0Pi

scales, i 5 4, 8. The selected value of n0 5 617 happens
to characterize one of the species in the serpentine plot
that we used to test the theory, but the monotonic de-
crease of shown in Fig. 2 is a feature of the solution(n )0Pi

to Eq. 23 for all i . 1 and all values of n0. In com-
parison, the random placement probability distributions
predictions for n0 5 617, i 5 4, 8, are hump shaped
and narrower than the HEAP prediction (Fig. 2). To
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FIG. 3. The predicted range–area relationships for three
abundances: n0 5 1000, n0 5 100, and n0 5 10. The range,
R, is the number of occupied grid cells of area A multiplied
by area A. Units of area are such that A0 5 1.

FIG. 4. Aggregation index (Eq. 29) plotted against
ln(abundance) for i 5 15, i 5 10, and i 5 5. For A0 5 50 ha,
i 5 15, 10, and 5 correspond to outer radii of ;2.2 m, 12.5
m, and 70.5 m, respectively.

our knowledge, despite its simplicity, the recursion re-
lation Eq. 23 describes a probability distribution that
has not been described in the mathematics literature
nor utilized in probability analysis.

Using Eqs. 7 and 23, a recursion relation that de-
termines the can be derived. It is most conveniently(n )0ai

expressed in terms of products of the l parameters,
using the definition of in Eq. 11:(n )0li

(n ) (n ) (n ) (n ) (n )0 0 0 0 0l 2 l 5 [l 2 l ][1 2 l ]i i11 i21 i 1

(n ) (n 21) (n 21)0 0 01 l [l 2 l ]. (28)1 i i11

This recursion relation for the products of a’s allows
straightforward numerical calculation of all the a’s at
any scale, i.

The range–area relationships

The theoretically predicted values determine the(n )0ai

shapes of the range–area relationship (RAR) curves
(Eq. 8) for each species. Using Eqs. 11, 12, and 23,
the RARs can be readily computed. The predicted RAR
curves for species with n0 5 10, 100, and 1000 are
shown in Fig. 3. We note the tendency for the RAR
curves, plotted on ln–ln axes, to be slightly curved at
small scales and then to curve over and level off at
larger scale. Because the slope of the RAR is equal to
2log2(a), the predicted curvature in the RARs is equiv-
alent to the prediction, for n0 . 1, that the a’s decrease
with increasing i (decreasing cell size).

The transition to greater curvature occurs at smaller
scale as n0 increases. Although the are strictly scale(n )0ai

dependent for all n0 . 1, we note that at small scales
(large i) the predicted RAR behaves sufficiently like a
power law (straight line on log–log plot) that it could
readily be mistaken for such.

An aggregation index

A useful index of clustering or aggregation in the
distribution of the individuals within a species was used
by Condit et al. (2000) to explore clustering of indi-

vidual trees within tropical forest species. The index,
, measures the average density of conspecific in-(n )0Vx ,x1 2

dividuals of a species (with n0 individuals in A0) in
neighborhoods around an average individual, relative
to the density expected for a random distribution. The
ring-shaped neighborhoods have inner radius x1 and
outer radius x2. We have shown elsewhere (Ostling et
al. 2000) that the uniquely determine . In par-(n ) (n )0 0a Vi x ,x1 2

ticular, letting x1 refer to the radius of a circle of area
Ai11 and x2 the radius of a circle of area Ai, and using
the simpler notation of in place of , then(n ) (n )0 0V Vi x ,x1 2

2 1
(n )0V 5 2 . (29)i (n ) (n )0 0l li i11

Plots of this index against abundance, n0, at three spa-
tial scales, using Eq. 28 to calculate the , are plotted(n )0li

in Fig. 4. The distinguishing features of these plots are
that aggregation is greatest at small scales (large i) and
that above a relatively small abundance threshold that
is weakly scale dependent, aggregation decreases with
increasing abundance. Both of these qualitative fea-
tures are observed in the BCI tropical forest data (Con-
dit et al. 2000).

The relationship between variance and mean

An exact solution to Eq. 23 takes the form

n0
(n ) n1q 2i0P (n) 5 (21) (q 1 1) C(n , q)C(q, n) (30)Oi 0

q5n

where C(x, y) denotes x!/[y!(x 2 y)!]. From this result,
an exact analytical expression for the variance of n, for
a species with total abundance n0, follows:

2 2 2i 2i 2i 2is 5 n (3 2 4 ) 1 n (2 2 3 ).i 0 0 (31)

Using the fact that the average occupancy across all
cells of area Ai, ^ni&, is given by

i^n & 5 n /2i 0 (32)
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we can write

2 i 2 is 5 [(4/3) 2 1]^n & 1 [1 2 (2/3) ]^n &.i i i (33)

Thus the variance contains terms that vary quadrati-
cally and linearly with the mean occupancy, indicating
behavior that is intermediate between the prediction
derived under the assumption of self-similarity (Ban-
avar et al. 1999), for which s2 ; (mean)2, and the
continuous (Poisson) version of the random placement
model, for which s2 ; mean. From Eqs. 32 and 33 we
can also calculate the scale dependence of the specific
combination of and ^ni& that comprises the parameter2si

k in the negative binomial distribution (NBD; Eq. 1):

2^n & 1i 5 . (34)
2 is 2 ^n &i i 4 1

1 2 2 11 2 1 23 n0

Using the fact that Ai 5 A0 /2i, this can be rewritten as

2^n & 1i 5 . (35)
2 log (4/3)2s 2 ^n &i i A 10 1 2 2 11 2 1 2A ni 0

For sufficiently large A0 /Ai and n0, this expression ap-
proaches (Ai /A0)0.42, where we have used log2(4/3) ù
0.42. In practice, for n0 . 10 and i . 8, this ought to
be a good approximation. This implies that the effective
value of the NBD parameter, k, in our theory scales as
A0.42 for large i.

COMMUNITY PROPERTIES

To derive theoretical expressions for community-level
patterns, including the species–area relationship (SAR),
endemics–area relationship (EAR), and the scale-depen-
dent species-abundance distribution, Fi(n), we need only
assume that HEAP applies to all species; no assumptions
are needed about spatial correlations between species
because these community-level properties depend only
on the collection of species-level spatial distributions
and are independent of interspecific correlations. To de-
rive the scale-dependent community-level spatial-abun-
dance distribution, Fi(N), we additionally assume that
the spatial distribution of the individuals in each species
is independent of the locations of individuals in the other
species; in other words, HEAP applies independently to
each of the species and thus interspecific spatial corre-
lations are absent.

The species–area and the endemics–area
relationships

The SAR can be expressed either in terms of the l’s,
as shown in Eq. 10, or equivalently in terms of the species-
level spatial distribution functions using the formula

(n )0S 5 [1 2 P (0)] (36)Oi i

where the sum is over all species. Eq. 36 states that
the expected number of species in an Ai cell equals the

sum over species of the probability of species occur-
rence in that cell, with the probability of occurrence
equal to 1 minus the probability of absence. Because
the Pi’s and the l’s depend only on n0, the shape of the
SAR is predicted uniquely in terms of the list of abun-
dances n0. Although we cannot write down a simple
analytical form for the SAR in terms of the list of
abundances (because neither Eq. 23 nor Eq. 28 has, to
our knowledge, a simple closed form analytical solu-
tion), we can solve for the SAR numerically from the
list of abundances using Eqs. 10 and 28, or equivalently
Eqs. 30 and 36.

A simple analytic expression for the EAR can be
derived from the theory. We define a species (from the
list in A0) to be endemic to an Ai cell if all its individuals
are found only in that Ai cell. Consider a single cell of
area Ai. We seek the mean number of species that are
found only in such a cell and not within the other 2i

2 1 Ai cells that comprise A0. The dependence of that
number on area Ai is what we mean by an EAR. De-
noting by Ei the expected number of endemic species
in Ai, we have, from the definition of endemicity,

(n )0E 5 P (n ) (37)Oi i 0

where the sum is over all species.
But from Eq. 23 it is straightforward to show that

1
(n )0P (n ) 5 (38)i 0 i(n 1 1)0

and hence the EAR takes the form

1
E 5 (39)Oi i(n 1 1)0

with the sum taken over all species. We note that Eq.
39 yields E0 5 S 1 5 S0, as it must because all the
species are endemic to A0 by our definition of ende-
micity.

Scale-dependent species-abundance distribution

As illustrated in Fig. 1, the scale-dependent species-
abundance distribution Fi(n) is given by

(n )0P (n)O i
(n )0F 5 . (40)i S0

The argument of the function Fi(n) can take on values
ranging from 0 to the largest value of n0 in the com-
munity and the summation in Eq. 40 is taken over all
species.

Community-level spatial-abundance distribution

The theory also yields expressions for the commu-
nity-level spatial-abundance distribution, F(N), provid-
ed that we assume HEAP applies independently to all
species. In particular, the distribution of the total num-
ber of individuals (that is, summed over species) over
the grid cells is given by the following:
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F (N ) 5 P (n )d N, n (41)O P Oi i j j1 2∀n j( j )

where P denotes a product over all species. Here n(j)

is an abundance variable for the jth species and the
equation simply states that the probability of a total of
N individuals in an Ai cell is given by the sum over
the joint probabilities for all the various combinations
of individual species abundances that add up to the
value N.

COMPARISONS WITH DATA

The primary data set against which we test the the-
oretical predictions is census data from serpentine
grassland habitat at Little Blue Ridge (Green et al.
2003) located at the University of California’s Ho-
mestake Mine/Donald and Sylvia McLaughlin Natural
Reserve (388519 N; 1228249 W). We counted all indi-
viduals of all plant species in all 256 1/4-m2 grid cells
comprising an 8 m 3 8 m plot. Our completed data set
consists of the locations at a resolution of 1/4-m2 cells
of 37 182 individuals, divided among 24 species. From
those data, aggregations at larger scale are readily com-
puted.

We also tested the HEAP predictions using spatially
explicit data on tree locations in the 500 m 3 1000 m
tropical forest plot at Barro Colorado Island (BCI) in
Panama (Hubbell and Foster 1983, Condit et al. 1996a,
Condit 1998) and in a 220 m 3 440 m dry forest plot
at San Emilio (SanEm) in Costa Rica (Enquist et al.
1999). The latter plot is the largest 1 3 2 shaped plot
contained within a larger, but irregularly shaped, plot
in which tree census data are available. For these plots,
the coordinates of every individual in every tree species
with dbh $1 cm is recorded. The BCI data set contains
235 308 individuals divided among 305 species and the
dry forest data set contains 12 851 individuals divided
among 138 species. For all three sites, the empirical
species-level and community-level distributions are
computed from data on all 2i Ai cells, and thus the SAR
and EAR are derived from a complete nested analysis.

Where appropriate, we calculate 95% confidence in-
tervals on linear regression slopes of predicted vs. ob-
served measures, and we use a likelihood-ratio test to
compare the HEAP model predictions to those from
distributions that fall along the continuum from random
to maximally aggregated as defined by Eq. 27. To sim-
ply express the explanatory power of HEAP we use R2

values to quantify the fraction of variance in the data
that is explained by HEAP. In our comparisons to a
random model, we use the random placement model of
Coleman (1981), in which individuals from a specified
species-abundance distribution are at every scale
placed on a gridded landscape according to a binomial
distribution. We emphasize that our goal is not the im-
possible task of establishing the superiority of HEAP
relative to all other theories; rather it is to show the
extent to which it captures the ecologically significant

features of numerous spatial patterns and to identify
the dominant trends in its failures to fit all the details
of empirical patterns.

The species-level spatial distributions
and the a parameters

A test of Eq. 23, the fundamental species-level pre-
diction of HEAP, consists of comparing the observed
and predicted spatial-abundance distributions. Quali-
tatively, the spatial-abundance distributions are mono-
tonically decreasing for nearly all species at the three
sites across the range of scales examined here; thus for
n0 . 2i they differ from the hump-shaped predictions
expected from the random (binomial distribution) mod-
el. To see if the HEAP prediction captures the quan-
titative features of the data, we compare the actual
shapes of the (n) to the data. These comparisons(n )0Pi

are carried out at scale i 5 6 and 8 for the serpentine
data and at i 5 8 and 15 for the BCI and San Emilio
data. The scale i 5 15 corresponds to 15-m2 quadrats,
with a mean of 7 individuals in each, at BCI, and 3-
m2 quadrats, with a mean of 0.4 individuals in each, at
San Emilio. The scale i 5 8 corresponds to 0.25-m2

quadrats, with a mean of 144 individuals in each, at
the serpentine site; this is the smallest scale censused
at that site.

Fig. 5 shows predicted and empirical values of the
spatial-abundance distributions for four serpentine spe-
cies with abundances ranging from n0 5 49 to 3095.
These species represent the range of abundances pres-
ent in the data set, but were otherwise randomly se-
lected. For the two most abundant species shown, the
random model prediction at i 5 6 is ;0 over the range
of abundances plotted and does not even show up in
the figure. We note three qualitative features of these
comparisons. (1) The HEAP predictions match the gen-
eral shape of the observed distributions and outperform
the random model predictions at both scales and for
all four species. (2) The differences between HEAP
and random predictions diminish, but do not become
negligible, with decreasing abundance. (3) As abun-
dance increases, the HEAP prediction increasingly ov-
erpredicts the fraction, (0), of unoccupied cells.(n )0Pi

Equivalently, it tends to overpredict the abundances of
occupied cells and thus the level of aggregation. Al-
though not shown in the figure, the spatial distribution
data are also well described by HEAP for the very
lowest-abundance species (n0 , 30).

Comparisons of theory and observation reveal the
same three features for the BCI tropical forest data set
(Fig. 6) and the San Emilio data set (Fig. 7) at scales
i 5 8 and 15, except that feature (3) is no longer true
at i 5 15. In particular, the HEAP prediction for (0)(n )0Pi

matches the data well for all abundances at that fine
scale. Accurate prediction of the values of (0) at(n )0Pi

fine scales implies accurate prediction of the values of
the a’s at those scales. For both these tropical sites,
the species tested in Figs. 6 and 7 were chosen to have
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FIG. 5. Observed and predicted species-level distributions (n), multiplied by 2i to yield the expected number of cells(n )0Pi

occupied with n individuals for the serpentine plot. The abundances of the species selected for comparison and the scales
of analysis are shown in the figures; the four species represent the range of abundances but were otherwise randomly selected.
Random model predictions are from the Coleman (1981) random placement model; random model predictions for n0 5 617
and 3095 are not shown at scale i 5 6 because they are ;0 over the range of n values plotted.

FIG. 6. Same as Fig. 5 for the BCI site, except that scales i 5 8 and 15 are plotted. The species were chosen to have
abundances closest to those in Fig. 5.

abundances closest to the four species selected from
the serpentine site, although at the San Emilio site there
are no species with n0 . 1000.

By focusing on the parameters, we can gain a(n )0ai

more detailed picture of the tendency for Eq. 23 to
overpredict the amount of aggregation in the distri-
butions of the higher-abundance species. A graph of
predicted vs. measured values, averaged over(n )0ai

scales i 5 4, 6, and 8, for all the species in the ser-
pentine plot, shows generally good agreement, but a
general tendency for HEAP to underpredict the a’s of
the species with the highest a values (Fig. 8a). Because
at any given scale, the predicted value of is a(n )0ai

monotonic increasing function of n0, this implies a
trend toward underprediction of a for the higher-abun-
dance species. This is consistent with the general trend
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FIG. 7. Same as Fig. 6 for the San Emilio site, except that no species at the San Emilio site had n0 . 1000.

FIG. 8. Comparison of observed and predicted values of for all plant species in (a) the serpentine plot, (b) the BCI(n )0ai

plot, and (c) the San Emilio site. Comparisons are averaged over scales i 5 4, 6, and 8. The dashed line is the one-to-one
line, and the solid line is the linear regression of predicted on measured values. Solid squares are the HEAP predictions, and
open triangles are predicted values of the from the random placement model (Coleman 1981), calculated from the(n )0ai

measured abundances, n0.

that we saw in Figs. 5–7 for HEAP to overpredict
(0) for the higher-abundance species. The slope of(n )0Pi

the linear regression (solid line in figure) is 0.91 with
95% confidence limits of (0.80, 1.02). For each species,
Fig. 8a also shows the predicted value of a, averaged
over the same scales, from the random model. We note
that compared to HEAP and to the data, the random
model underpredicts the a’s at small abundance and
overpredicts them at large abundance. To assess the
relative performance of HEAP and the random model,
we compare the ratio of sum of squared errors (RSSE)
of each model using the ratio

2ˆ(Y 2 Y )O random
RSSE 5 (42)

2ˆ(Y 2 Y )O HEAP

where the sums are over species, Y are the observed
variables, and Ŷ are the random or HEAP model pre-

dictions. RSSE . 1 implies that HEAP fits the observed
data better than the random model. The calculated
RSSE for the serpentine data in Fig. 8a is 2.9.

For each of the scales i 5 1, 2, 4, 6, 8, the fractions
of variance in the serpentine a data that are explained
by HEAP (the squared correlations between the HEAP-
predicted values and the measured values) are 0.70,
0.79, 0.74, 0.92, and 0.94, respectively. We note that
even at scale i 5 1, where the distribution of individuals
between the right and left halves of the 64-m2 plot are
examined, HEAP explains 70% of the variance in the
a’s, but that the explained variance increases at finer
scales.

The HEAP predictions for the a’s at the BCI and
San Emilio sites are not as accurate as at the serpentine
site (Fig. 8b,c). The slopes of the linear regressions of
predicted against measured a values are 0.75 and 0.73,
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FIG. 9. Comparison of observed and predicted values of
abundance for the serpentine species. The HEAP predictions
for abundance are derived by calculating the value of n0 that
yields, from Eq. 7, a value of a8 equal to the measured value
of a8 for each species. The HEAP prediction explains 88%
of the variance in the data shown in the figure, and the slope
of the linear regression is 1.16, with 95% confidence limits
of (0.92, 1.40).

respectively, with 95% confidence intervals of 60.03
and 60.05 for BCI and SanEm, respectively. HEAP
explains 93% of the variance in the a values, at each
of the forest sites. As at the serpentine site, the random
model underpredicts the a’s at low abundance (small
a) and overpredicts the a’s at high abundance in the
forest sites; the observed values of a for the high-
abundance species fall between the HEAP and random
model predictions, and with all species included, the
RSSE (Eq. 42) values are ;1 at both sites.

Another way to portray the relationship between the
predicted and measured a’s is to plot actual species
abundances, n0, against the abundances predicted from
the measured a’s (see Theoretical background: The
probability parameters for the discussion following Eq.
8). This comparison is of practical value because there
is interest in being able to estimate overall abundance
of a species within some large area based only on an
empirical estimate of cell occupancy (i.e., presence/
absence data) in small cells within that large area. Fig.
9 shows this comparison for the serpentine species.
HEAP explains 88% of the variance in the measured
values of ln(n0) and the slope of the regression line in
the figure is 1.16 6 0.24 (95% CI). Fig. 9 shows that
HEAP tends to overpredict abundance (equivalent to
underpredicting a) for the higher-abundance species,
consistent with Fig. 8a. We will return to this system-
atic pattern of discrepancy in the HEAP predictions
later when we discuss future directions.

The mean–variance relationship

For A0 5 50 ha, corresponding to the BCI data, and
expressing A in units of m2, HEAP predicts k 5 0.004

3 A0.42 at small scales and for all but the lowest-abun-
dance species (Eq. 34). This predicted scale depen-
dence for the quantity k is close to the empirical finding
of J. Plotkin (personal communication) that if k is writ-
ten as cAw, then for the BCI species, fitted values of c
and w cluster around values of ;0.003 and ;0.45,
respectively.

The SAR and the EAR

Starting with the list of abundances of the species
in A0, the can be calculated for all the species in(n )0li

a community from Eq. 28. Then, using Eq. 10, the
species–area relationship (SAR) is determined. Equiv-
alently, Eqs. 23 and 36 can be used to determine the
predicted SAR. Because of our top-down boundary
condition, in our tests of the SAR and the endemics–
area relationship (EAR) the total number of predicted
species is constrained empirically at the largest scale,
A0. The theoretical prediction captures the general fea-
tures of the serpentine SAR (Fig. 10a,b) but tends to
underpredict species richness at the forest sites. This
discrepancy is consistent with the pattern in which the
spatial distributions of the high-abundance species de-
viate from the theoretical predictions: the theory un-
derpredicts species richness because it overpredicts the
number of unoccupied cells for the high-abundance
species. Equivalently, HEAP underpredicts the a’s for
those species and thus by Eq. 9 and the relationship z
5 2log2(a), it overpredicts the slope of the SAR. We
note that the gross differences across sites in the slopes
of the empirical species richness vs. ln(area) plots
(slopeBCI . slopeSanEm . slopeSERP) are captured by the
theory (Fig. 10b) and that these gross differences in
predicted slopes result solely from the different lists of
species abundances at the three sites.

The theoretical EAR (Eq. 39) matches quite accu-
rately the empirical EAR at all three sites (Fig. 11),
again with no adjustable parameters. If the individuals
of each species are distributed randomly, then we
would expect the following (Green and Ostling 2003):

2in0E 5 2 (43)Oi

where the sum is over all species. Compared to Eq. 39,
this expression significantly underestimates the ob-
served data at scales i 5 1 and 2, but fits the data as
well as our theory at smaller spatial scales. The reason
is that at small spatial scales, only species with n0 5
1 contribute significantly to endemism, and for those
species a 5 1/2 in HEAP, which is the value that a
random model would predict for those species.

The scale-dependent species-abundance distribution

We also tested Eq. 40, the predicted expression for
the scale-dependent species-abundance distribution
Fi(n) for the serpentine data at i 5 6 and 8 scales (Fig.
12a). At both scales the empirical cumulative distri-
bution is very well described by the theoretical pre-
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FIG. 10. Observed and predicted values of species richness as a function of scale for the three sites. (a) Predicted vs.
observed species–area relationship (SAR); the straight line is a 1:1 line. (b) Predicted and observed species richness vs.
ln(area); area is measured in square meters. Error bars on the serpentine data in panel (a) are 61 SE; error bars on the BCI
and San Emilio forest data points are generally no larger than the symbols and are not shown.

FIG. 11. Observed and predicted values of endemic spe-
cies richness as a function of scale for the three sites. The
straight line is a 1:1 line.

diction. The random placement model underpredicts
Fi(n) at n 5 0 and overpredicts the distribution at larger
n, by approximately a factor of 2 relative to the data
and to HEAP (Fig. 12b). As with all our other tests of
theory here, the comparisons in Fig. 12 are not best
fits, for there are no adjustable parameters.

The community-level spatial-abundance distribution

Calculation of the full expression for the community-
level spatial-abundance distribution, Fi(N), directly
from Eq. 41 is a difficult numerical task for values of
N $ 5 because of the huge number of combinations of
abundance values that can add up to a selected value
of N, even for just the 24 species in the serpentine plot;
it becomes enormously difficult for the more species

rich forest plots. Hence we have simulated landscapes
using HEAP and then calculated the predicted Fi(N)
directly from those landscapes. To verify the accuracy
of the simulations, we compared simulated Fi(N) with
the exact theoretical Fi(N) calculated from Eq. 41 for
i 5 6 and 8, and for N 5 0 . . . 4, using a species-
abundance distribution identical to that of the serpen-
tine site. The simulated Fi(N) were in excellent agree-
ment with the exact theoretical results.

We carried out two types of comparison of theory
with observation; first with all the species at each site,
and second using just those species with n0 , 1000 at
the serpentine and BCI plots and with n0 , 200 at the
SanEm site. The second case, with restricted abun-
dance, was examined because we have seen that the
theoretical species-level spatial-abundance distribu-
tions do not describe well the empirical distributions
for those species with the very highest abundances; we
chose the abundance cutoff at SanEm to be 1/5 that at
the BCI plot because the area of the SanEm plot is ;1/
5 that of the BCI plot. These restrictions leave us with
17 out of 24 species in the serpentine community, 259
out of 305 BCI species, and 116 out of 138 SanEm
species. Although these restrictions exclude only a mi-
nority of the species, they exclude a majority of the
individuals in the entire study areas.

For each of the three sites, the theoretical prediction
for the cumulative community-level spatial-abundance
distribution, F8(k), agrees closely with the dataNOk50

when abundances are restricted; see the comparison of
solid squares (data) with solid line (HEAP prediction)
in Fig. 13. On the other hand, if all species are included,
then the theoretical prediction rises faster at small N
and reaches a plateau at lower N than the observed
cumulative distribution. We note that the predicted
community-level spatial-abundance distribution, Fi(N), is
a hump-shaped function that is right-skewed relative
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FIG. 12. Observed and predicted values of Fi(n) for the serpentine site. (a) Comparison of predicted and empirical species-
abundance distribution Fi(n) for i 5 6 (lower curve and data) and i 5 8 (upper curve and data). (b) Comparison of HEAP
and the random model predictions for the i 5 8 data, with ln(Fi(n)) plotted to better highlight the differences at small Fi(n).

FIG. 13. Comparisons of the predicted (solid line) and observed (solid squares) cumulative values of the community
spatial-abundance distribution F8(N); also shown are the results of a computed value for the cumulative distribution obtained
by resampling from the observed distribution under the assumption that the species are distributed independently of each
other (dashed line). (a) All serpentine species with n0 , 1000; (b) all BCI species with n0 , 1000; (c) all SanEm species
with n0 , 200.

to a normal distribution and left-skewed relative to a
lognormal distribution.

The prediction in Eq. 41 for the community-level
spatial-abundance distribution from HEAP relies on
two assumptions: that the species-level spatial-abun-
dance distributions are well described by the solution
to our recursion relation, Eq. 23, and that the species
distributions are independent of one another. Given that
the species-level spatial-abundance distributions of all
but the highest-abundance species are well described
by the solutions to the recursion relation, (n), Fig.(n )0Pi

13 thus lends support to the assumption of interspecific
independence for that subset of all but the highest-
abundance species.

To examine this more directly, we also carried out
two additional tests of the assumption of interspecific
independence. First, we generated a pairwise correla-
tion matrix of the abundances of species across grid
cells, as before restricting the analysis to those species
with n0 , 1000 in the BCI and serpentine data sets,
and n0 , 200 in the SanEm data set. Only a small
fraction of the pairwise comparisons are statistically

significant, with Bonferroni correction, at each of the
three sites (,8.2% at i 5 4, 6, and 8 at the serpentine
site, ,2.4% at i 5 5, 7, and 9 at the forest sites). A
majority of pairwise correlations were nonsignificant
and negative, but the small fraction of pairs of species
correlations that were statistically significant were all
positive at each site.

For a second test, we took the observed species-level
spatial distributions at scale i 5 8 and simulated a new
landscape in which the species-level spatial-abundance
distributions were maintained but the species were dis-
tributed independently of one another. For each cell of
size A8 on that landscape, the abundance of each species
was drawn without replacement from the list of ob-
served abundances for that species at the A8 scale, in-
dependent of the abundances chosen for all other spe-
cies in that cell. From that landscape, the cumulative
community spatial-abundance distribution was com-
puted, averaged over 1000 such simulations, and com-
pared to the actual observed distribution.

Here, a small but systematic deviation between the
observed (solid squares) and the ‘‘independent’’ dis-
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TABLE 1. Likelihood results for the serpentine data at scale
i 5 8.

n0 umax RHEAP,max Rran,max RHEAP,ran

6 1.82 0.5 6.6* 6.2
6 3.33 2.5 17.1* 14.6
7 2.50 1.2 8.5* 7.4

13 2.00 1.7 25.5* 23.8
30 2.86 8.9* 124.5* 115.5
49 0.87 0.1 42.8* 42.7
50 0.83 0.2 69.1* 68.9

112 0.54 5.3 123.2* 117.9
120 0.59 5.0 136.2* 131.2
139 0.05 64.8* 5.5 259.3
272 0.77 1.5 671.2* 669.6
617 0.29 45.3* 930.4* 885.2
885 0.65 9.0* 1917.0* 1908.0

1418 1.00 0.0 4517.9* 4517.9
1759 0.13 194.0* 817.5* 623.5
3095 0.33 74.7* 3877.3* 3802.6
4827 1.43 5.4 17 707.9* 17 702.5
5989 0.08 357.6* 917.4* 559.8
6990 0.22 153.9* 5341.1* 5187.2

10 792 0.31 117.2* 9481.2* 9363.9

Notes: Asterisks in the RHEAP,max column indicate species for
which HEAP is rejected, and asterisks in the Rran,max column
indicate species for which the random model is rejected, in
each case by the chi-square test at the 1% level. The 1%
cutoff is R 5 6.63. The 5% cutoff is R 5 3.84. The R’s are
log-likelihood ratios defined by Eqs. 44–46.

tributions (dashed line) did show up at all three sites
(Fig. 13). The observed cumulative Fi(N) is a little less
steep than the cumulative Fi(N) calculated from the
landscapes created assuming species are distributed in-
dependently of one another (the ‘‘independence land-
scape’’), indicating that the observed Fi(N) is broader
than would be expected under complete interspecific
independence. This implies that some fraction of spe-
cies exhibit positive interspecific correlations in abun-
dance, which is qualitatively consistent with the results
of analyzing the correlation matrix.

The HEAP-predicted Fi(N) are virtually indistin-
guishable from observed (Fig. 13). Because the HEAP
predictions ignore interspecific correlations, if HEAP
predicted the observed species-level spatial-abundance
distributions perfectly, then one would expect the
HEAP predictions for the low-abundance subcommu-
nities to fall on top of those from the ‘‘independence
landscapes.’’ The fact that they agree closely with the
observed distributions implies that the small diver-
gences between observed and predicted species-level
spatial distributions tend to correct for the discrepan-
cies that arise from ignoring the small, positive inter-
specific correlations.

Comparison of HEAP to a continuum of distributions

To compare HEAP at each site, and at various spatial
scales, to the continuum of species-level distributions
that result from application of Eq. 27, we carried out
likelihood-ratio tests. We first used Eq. 27 to derive the
likelihood of observing a particular distribution of in-
dividuals over cells at scale i. We denote that likelihood
function by P(N, u), where N is shorthand for a matrix
of 2i abundances that sum to n0. We denote by umax the
value of u that maximizes P(N, u). For convenience
we leave the scale index off of umax and P(N, u). We
then evaluated the P(N, u) and umax for each species in
the forest and serpentine sites.

Table 1 reports values of umax for each of the 20
serpentine species with n0 . 2. The mean value of umax

is 0.99 (SE 5 0.22), in good agreement with the HEAP
assumption of u 5 1. However, some of the individual
values of umax differ significantly from 1, particularly
for the species with highest abundances. To test the
HEAP hypothesis u 5 1, and also to test the random
hypothesis u 5 0, we used the standard likelihood-ratio
statistics:

P(N, u )maxR 5 2 log (44)HEAP,max [ ]P(N, 1)

P(N, u )maxR 5 2 log . (45)ran,max [ ]P(N, 0)

Both ratios are positive by definition. A sufficiently
large value of RHEAP,max allows statistical rejection of
the HEAP model, and a large value of Rran,max does the
same for the random model. In particular, when u 5
1, RHEAP,max has an approximate chi-square distribution

with one degree of freedom, which can be used to test
the null hypothesis u 5 1 against the alternative u ±
1 (Sokal and Rohlf 1995). Likewise, when u 5 0, Rran,max

has an approximate chi-square distribution with one
degree of freedom, which can be used to test the null
hypothesis u 5 0 against the alternative u . 0. We
verified by Monte Carlo simulation that the result
works well here even though the standard technical
conditions are not exactly satisfied in the u 5 1 case.
For a 1% level of significance, the critical chi-square
is 6.63. For the serpentine species, at scale i 5 8, HEAP
is rejected for eight of the 20 species (mostly the
higher-abundance species), and the random model is
rejected for 19 of the 20 species (Table 1). For a less
stringent test, the 5% critical value is 3.84.

The species for which HEAP is rejected are highly
skewed toward those with the highest abundances. For
those species, the value of umax is generally between 0
and 1, indicating spatial distributions more aggregated
than the random model predicts but less aggregated
than HEAP predicts, consistent with our previous ob-
servation that HEAP generally overpredicts the number
of empty cells for a high-abundance species.

To focus on comparisons between HEAP and the ran-
dom model (u 5 1 vs. u 5 0), Table 1 also reports

P (N, 0)iR 5 R 2 R 5 2 log . (46)HEAP,ran HEAP,max ran,max [ ]P (N, 1)i

This statistic can be positive or negative (and thus is
not another chi-square), with positive values favoring
HEAP over the random model and negative values fa-
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FIG. 14. Community likelihood estimates for a continuum
of models (Eq. 43) as a function of the aggregation parameter
f (Eq. 47). The log of the negative of the log-likelihood
function is plotted so that all comparisons can be shown on
one graph. Sites, scales, and subsets of species are designated
in the figure. Diamonds and squares mark the HEAP and
optimum values of f for each curve, respectively.

voring the opposite. Table 1 shows that RHEAP,ran is pos-
itive for 19 of the 20 serpentine species with n0 . 2.

Qualitatively similar results hold at the BCI and San
Emilio sites, with HEAP outperforming the random
model for ;3/4 of the species at both sites by the
likelihood-ratio criterion. For example, at scale i 5 13
at BCI, HEAP outperforms the random model for 215
out of the 283 species with n0 . 1. At these forest sites,
however, HEAP can be statistically rejected for a larger
fraction (;2/3) of species than at the serpentine site
(2/5). As at the serpentine site, species for which HEAP
and/or the random model are rejected by chi-square
tests are generally the ones with highest abundance.
And as at the serpentine site, those rejected species
nearly all have a umax between 0 and 1, indicating more
aggregation than under the random model but less than
under HEAP.

We note that statistically significant rejection of
HEAP does not imply ecologically significant failure
of specific HEAP predictions such as the spatial-abun-
dance distributions that result from Eq. 23. For ex-
ample, RHEAP, max 5 45.3 for the serpentine species with
n0 5 617, which implies a highly significant rejection
of the exact HEAP value u 5 1 at i 5 8. Yet Fig. 5
indicates that HEAP captures well the essential features
of the distribution (n). Moreover, for any given(617)Pi

species a test of the HEAP prediction for P(N, u) is a
more stringent test than that of Eq. 23 because it tests
the entire landscape pattern, including correlations
across cells, and not just the distribution of abundances
within a single cell.

A more comprehensive test of HEAP, and insight into
the implications of strict statistical rejection of the the-
ory, are obtained by looking at the community likeli-
hoods. Under the assumption that spatial distributions
are independent across species, the P(N, u) for a com-
munity is the product of the P(N, u) for the species
within the community and hence the community log
likelihood is the sum of the log-likelihood values of
the individual species. We compare the full community
log likelihoods at each site, as well as the log likeli-
hoods for the subset of each community that excludes
the most abundant species, in Fig. 14. Because u ranges
from 0 to `, we compare log likelihoods against the
transformed parameter

f(u) 5 u/(1 1 u) (47)

which ranges from 0 to 1, with HEAP as the midpoint
at f(1) 5 1/2. And because the total number of indi-
viduals and the accessible scales differ markedly at
each site, we have taken a second log to allow com-
parisons across extremely different log-likelihood val-
ues on a single graph. Thus we have plotted
log[2log{P(N, u)}]. The negative sign is necessary
because P(N, u) is less than 1, and thus log{P(N, u)}
is negative. Because the negative reverses the orien-
tation of the graph, the maximum likelihood now oc-
curs at the minimum of the graph.

The plots in Fig. 14 indicate that between the lowest
points on the curves (at a value of f that yields max-
imum likelihood) and the HEAP point at f 5 1/2, the
function is quite flat, whereas it rises rapidly at the
random extreme (f 5 0) or the completely aggregated
extreme (f 5 1). We note that for the subcommunity
of species in the serpentine and BCI communities with
n0 , 1000 (the majority of species), the optimum f is
closer to the value 1/2 than for the full community. For
that subset of the BCI community, f exceeds 1/2, in-
dicating that the less abundant species are somewhat
more aggregated than predicted by HEAP, whereas for
the entire community the optimal value is less than 1/
2, indicating a distribution somewhat more random
than HEAP. Overall, the community likelihoods indi-
cate that HEAP performs better than the random model
and nearly as well as the model with the u that max-
imizes the community likelihood at each site. The flat-
ness of the curves in Fig. 14 between f 5 1/2 and f
5 umax/(1 1 umax) indicates that the small divergence
from perfect prediction, while statistically significant,
may not be ecologically significant.

DISCUSSION

Our theory is based on the hypothesis of equal al-
location probabilities, which states that the allocation
of the individuals that are found in an Ai21 cell to the
two Ai cells that comprise it is governed by the simple
rule that all distinct combinations (without internal per-
mutations) of allocation are equally probable. Our ‘‘hy-
pothesis of equal allocation probabilities’’ (HEAP)
leads directly to Eq. 23, the master recursion relation
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that predicts the (n), and to predictions for the spe-(n )0Pi

cies–area relationship (SAR), the endemics–area rela-
tionship (EAR), and the community-level species-
abundance distribution Fi(n); these predictions depend
only on the species-abundance distribution at scale i
5 0, F0(n). The further assumption that HEAP applies
independently to all the species in a community results
in a prediction for the community-level spatial-abun-
dance distribution functions Fi(N).

There are no adjustable parameters in the theory and
thus none of our comparisons between theory and ob-
servation involve fitting procedures. These compari-
sons, carried out over a wide range of scales with data
from a serpentine meadow and two tropical forest sites,
point to a general pattern of consistency between pre-
dictions and data, although significant deviations be-
tween the theoretical and empirical (n) are evident(n )0Pi

for species with relatively high n0. The fact that for
those high-abundance species the theory tends to ov-
erpredict the number of empty cells suggests that some
degree of intraspecific density dependence needs to be
included in the theory. Density-dependent intraspecific
regulation would tend to spread species around on the
landscape more uniformly, and thus if the theory con-
tained a density correction to HEAP, the theory would
better describe the spatial distributions of the high-
abundance species.

Because the predicted species-level and community-
level spatial-abundance distributions appear to fit the
data best when the highest-abundance species are ex-
cluded, we also examined the predicted and observed
SAR for the subset of species that excludes the same
high-abundance species that were excluded in the com-
parisons in Fig. 13. For all three sites, the agreement
between predicted and observed SAR was improved
relative to the comparisons with all species included.

We emphasize that our theory is not based on any
assumptions of self-similarity or fractality in nature.
The species–area relationship predicted from HEAP
may or may not exhibit power-law behavior, depending
on the distribution of the species abundances. The pre-
dicted RARs cannot exhibit power-law behavior, how-
ever, because the derived a parameters must be scale
dependent in our theory. The predicted scale depen-
dence of the a’s is such that they decrease with in-
creasing i (decreasing spatial scale), which is both the
way observed a’s tend to behave and the way they must
behave if Eq. 9 is to allow even the possibility of scale-
independent values for the ai’s and thus a power-law
SAR.

Although the probability parameters, , cannot be(n )0ai

scale independent under HEAP, the conditional prob-
ability statement that defines the allocation rule is, in
fact, scale independent. This can be most easily seen
by observing that under HEAP the defined in Eq.(n )0bi

24 are independent of the scale index i (Eq. 26). We
note that they are independent of n0 as well. Numerical
evaluation of the , and thus of the occupancy prob-(n )0li

abilities, for large i, large n0, and n0 of order, or greater
than, 2i shows that occupancy probability exhibits a
power-law dependence on patch area. In contrast to the
assumption of species-level self-similarity in macroe-
cology (Banavar et al. 1999, Harte et al. 2001), in which
the RARs and thus the occupancy probabilities obey
exact power-law behavior, HEAP is only asymptoti-
cally scale invariant.

Rationale for the assumption of HEAP

Because HEAP makes no explicit assumptions about
biological mechanisms such as competition, dispersal,
and density dependence, it can be considered as a kind
of ‘‘null theory’’ of spatial structure. While such an
assumption cannot possibly predict correctly all details
of spatial pattern, to the extent that it leads to a wide
range of testable and reliable predictions, understand-
ing is advanced. Moreover, to the extent that there are
patterns in the discrepancies between observation and
prediction, a null theory provides an opportunity to
evaluate the role of those behaviors that are assumed
away at the outset.

We based our theory on HEAP in the same spirit
that the ‘‘hypothesis of equal a priori probabilities’’
(HEAPP) is made in statistical mechanics and ther-
modynamics. HEAPP is the assumption that a many
particle system such as a gas will ‘‘visit’’ all of the
accessible states available to it in phase space with
equal probability and, like HEAP, it fills the vacuum
of evidence created by the absence of reasons to assume
anything more complicated. Whereas HEAPP in clas-
sical statistical mechanics results in a binomial distri-
bution for the numbers of distinguishable gas mole-
cules in the two halves of a box, HEAP results in a flat
distribution. This difference arises because under
HEAP we effectively treat individuals as indistinguish-
able objects and therefore do not consider as indepen-
dent allocation options the many permutations over in-
dividuals within a species.

The possibility of an eventual mechanistic expla-
nation for the relative success of HEAP is suggested
by the fact that the entire theory can be recast math-
ematically in terms of a simple functional form of an
assembly (or colonization) function, bi(1 z p, q 2 p).
Direct tests of the derived functional form of the b’s
(Eq. 26) could help us understand the ecological in-
terpretation of the b’s and perhaps provide a more
mechanistic foundation for HEAP. It is not clear to us
whether the b’s should be interpreted literally as de-
scriptors of an assembly process, or whether they are
simply mathematical devices that provide an alterna-
tive way to derive the consequences of HEAP, such as
the form of the (n). This is an empirical question(n )0Pi

that can be answered with data from successional sites,
where the sequence of individual appearances over time
on a spatial grid can be determined.
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Further tasks

Because the shape of the SAR depends only on the
distribution of abundances, n0, over the species pool,
there could be one or more species-abundance distri-
butions that actually result in an exact power-law SAR
over a finite scale range. Determination of the analytic
form of such species-abundance distributions (SADs)
remains to be carried out.

The mismatch between our predicted (n) and the(n )0Pi

data is in the direction (see Figs. 5–7) that suggests
that the theory would yield improved predictions if it
incorporated some degree of density-dependent damp-
ing of high occupancy for the high-abundance species.
This is consistent with our observation that the theory
tends to underpredict species richness at intermediate
scales. Stated differently, HEAP imposes slightly too
much clustering, thus overpredicting the frequency of
empty cells. Formulation of the theory in terms of the
b functions (Appendix A) is a reasonable starting point
for modifying HEAP for the high-abundance species
by injecting intraspecific density dependence into the
theory. Although many modifications of Eq. 26 that
cause a dampening of the ‘‘rich get richer’’ effect at
high occupancy are possible, a simple Monod-kinetics
type approach would be a sensible first attempt.

The theory also leads to a recursion relationship for
the dependence of species turnover on interpatch dis-
tance and on patch size given only the list of abun-
dances of the species at the largest spatial scale (J.
Harte, unpublished manuscript). As with our test of the
community-level spatial distribution functions Fi(N),
in Fig. 13, tests of the predictions for species turnover
will provide insight into how well the theory predicts
entire landscape structure, as opposed to just single cell
distributions. A further task is to solve these recursion
relations and compare the HEAP prediction to obser-
vations.

Only plant data have been used for theory testing
here. Further tests of HEAP for taxonomic groups of
animals, such as census data on locations of breeding
bird nest sites, or spatially explicit butterfly or mammal
census data sets, would help us understand limitations
on the scope of the theory. The availability of spatially
explicit data sets in which all individuals are censused
within a large contiguous area is unfortunately limited.
Although we used three such data sets to test HEAP,
most data sets consist of censuses within small scat-
tered subplots or along sparsely located transects with-
in a larger region. Another task, then, is to use HEAP
to develop improved statistical techniques for extrap-
olating to landscape or biome scale the information
about species abundance and species richness that de-
rives from sparse censusing at local scale.

CONCLUSION

We have presented a theory of spatial structure in
the distribution of individuals within species and spe-

cies within ecological communities, and compared its
predictions to spatially explicit vegetation census data
from three sites. Assuming knowledge only of the spe-
cies-abundance distribution at some largest scale, the
theory predicts a diversity of measures of spatial struc-
ture in these data over a range of smaller spatial scales.
These measures include, at species level, the spatial-
abundance distributions and the range–area relation-
ships, and at community level, the species–area and
endemics–area relationships, a community-level spa-
tial-abundance distribution, and the smaller scale spe-
cies-abundance distributions. The spatial structure of
three spatially explicit census data sets are generally
consistent with the theory’s predictions for these mea-
sures, although a systematic pattern of failure for the
high-abundance species is apparent.

Because this theory is based on hugely simplified
assumptions and incorporates no explicit ecological
processes, it will be of interest to develop a deeper
understanding of why it makes successful predictions.
At the same time, from the patterns in the failures of
the predictions of this null theory, it appears possible
to identify which of the many ecological processes that
are neglected in its current formulation will need to be
incorporated to improve the theory. Our analysis iden-
tifies the particular need to explicitly incorporate in-
traspecific carrying capacity constraints at high pop-
ulation density in an improved modification of the the-
ory. A mathematically equivalent formulation of the
theory in terms of an assembly (or colonization) func-
tion may provide the means with which to incorporate
density dependence and develop a mechanistic foun-
dation for the theory.
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APPENDIX

Derivation of the hypothesis of equal allocation probabilities (HEAP) from an assembly function is available in ESA’s
Electronic Data Archive: Ecological Archives M075-007-A1.




