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Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government or any-ageney-thereof, or-the-Regents-of-the University-of
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reflect those of the United States Government or any agency thereof or the Regents of the
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LINEAR GEOMETRY

We consider first the electrostatic problem of a rectangular beam in a

straight rectangular box (cgs, esu).
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By integration over Xq from w - hX tow + hx; and by integration over

¥ from -hy to y using V> and from y to hy using V<, the potential

function within the (uniform) beam becomes

nre (h=h_)
Yy nny
voB4o wl L I Cosh ——m——Cosh 0 | pp . Noh
-2 5| 1- —r sin == sin —== sin
T n Cosh -—27 2

M

wherein it will be recognized that sin %} is equal to

+1 0 -1 0 +1 etc.
forns= 1 2 3 4 5 etc.
As a check, we note that
nwh :
‘ol ] . Ny . X _._ nwX
VeV = =16 » Z; u sin > sin 5w sin o

‘{—4ﬂp for w - hx <X <w+ hX

0 forO0<x<w- hX and for w + hX < X < 2W.

TIn particular, if h =w,
Vyo 160 sin™+leinz™elgins ™ o
= e 2w 3 2w 5 2w
= =16 p-% = ~4np (for 0 < x < 2w). [cf. B.0. Pierce, Eq. 808.]
L3
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3(-—87
If we form v .
Y | ye0
we obtain
ne(h - hy)
Cosh nrh
1 2w N (T S X . NwX
IGpZH o h s1n—2-s1n —u s1n§w— .
n COSh—Z\-N—

When self magnetic forces are also taken into account in this straight-pipe

NwxX
w

situation, correspondingly the gradient of effective field becomes multiplied

2

by the factor 1 - 8%, where 8 = v/c.



TOROIDAL GEOMETRY

We next consider the corresponding problem in toroidal geometry.

e 2w e
h* 1
y
\ * 2hC
- Ny —e l
b-a
a = 2=
4/ o w 3
—, R —> = _ b+a
. R:——
A ; —
n R‘ b+a
This toroidal case has been analysed by Dr. Lloyd Smith. For the
electrostatic problem we now employ, in our present notation, radial fuhctions
Fo(nsr) = a [Jo(knr) Y (kqa) - Y, (k1) Jo(kna)]
=a |Jd [z.(n)\Y [z (n)2 -v(z(n){— J (Z (n)%)]
o[o(o ﬁ) o(o R o{“o R olo R ,
- where the kn, or Zo(n) = kn‘ﬁ, are such as to make Fo(n;r) vanish for r = b and
.uo is an arbitrarily selected factor (e.g., ay = 1).
The Green's function then may be written:
y > ¥ v
: : - | | hc+ ¥y } hc— y
y R o Fo(n;r]) Fo(n;r) Sinh zo(n) R Sinh Zo(") R
.> = TI’OR b ; | 2 ' h
n zo(")f r [Fy(nsr )" dr Sinh 2z —S—
d 0 R
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Integration over the location ris ¥qs of the source involves first the
following A
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Followed by an integration over r (from R -'hx to R + hx)°
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For this latter integration we follow the suggestion of Dr. Smith in that we

take p(rl) =p

"1

L

, whereupon we obtain

1

a
[ ety
. Coshrzo(n)_ R
- _ ;
- Cosh z (n)-é?—
° R
.

Cosh z _(n) X
0 R
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Finally, then -- for this toroidal electrostatic problem —- if we form

a(-av/ay)

, we obtain
» -ly=0

that

(1)

(i1)

and

_ (2a)
Cosh zo(n) %Ev

Correspondingly, for the magnetic problem, we obtain a similar result — save

a function Fj is employed, in which the Bessel functions are of
order 1,

the zeros are the quantities zy(n) for which Fi(n;b) = 0,

(iii) a factor -g2 is to be appended for the contribution to the force
gradient:



a

Fl(n;r)

These terms [(2a) and‘(Zb)] combined give the expression proposed by

Dr. Smith, if we identify our bR with his eo R.

In the work that follows, we shall identify

R+h

x .
JZT Fo(n;rl)dr1

R-h,

TERMl:ﬁZ "b .
n J/. r'[Fo(n;r')]Zdr'

a

[R+hx _
Fl(n;r‘l)dr1

_ Rh,
TERM 2 =R 5

n ./f r.[Fl(n;r')]Zdrl

a

Following what we believe to have been the suggestion of Dr. Smith, we have

undertaken to evaluate the integrals (and the subsequent sums)that appear in

the above expressions numerically.*

Fo(nsr)

Fy(nsr)

Cosh z (n)
0

C

- h

L Y

R

Cosh zo(n)

he

Cosh zl(n)

he

R

- (3a)

. (3b)

*4Eb-order integration by use of the extended Simpson's Rule (Abramovitz and

Stegun, §25.4.6)
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We remark that TERM 1 and TERM 2 will be rather close to one another

numerically —- and indeed, when w/R << 1, will each be rather close* to the

quantity
ne(h - h )
4 1 Cosh- 2w-¥‘-'- nw nwh, nax
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n 2w

exhibited by expression (1) [p. 2] divided by 4rp.
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-- thus providing agreement, in this limit, with expression (4). Note that
terms for which n is even will be expected to be small {since the factor
sin n /2 in the above approximation vanishes for n even]. Also, moreover,

if hx = wand x = w(r = E), this approximation suggests that

[ a(h. - h) 3a(h - h.) 5 (h -
Cosh —e—JY" Cosh ——s Y° Cosh —S Y _
4 2w 1 2w 1 2w
TERM 1 =« TERM 2 = — R -3 Toh + 3 —
T e e e
Cosh v Cosh —5u Cosh——gw

e
Such approximate behavior has proven of use in checking some aspects of

operation of the Computer program CPRTS.

COMMENT:

We recall that for a straight beam pipe the electric and magnetic self
forces are expected virtually to cancel, through the action of the
factor J§-= 1-8%.

Y

In the toroidal geometry, on the other hand, the electric and magnetic
forces may differ slightly in magnitude even in the limit 32 > 1.

To compare the relative sizes of such effects, it may be helpful,

therefore, to think of a quantity analogous to .l?. that we form from the

Y
toroidal solutions as

TERM 1 - TERM 2
Avg. of TERM 1 and TERM 2

2
TERM 1 + TERM 2

. (TERM 1 - TERM 2).




THE PROGRAM A

Thé program CPRTS (Library LASLETT) first computes the first 100 “zeros"
[zo(n) and z](n) of Fo(n,b) and F](n,b)] by successive application
of Newton's method -- employing in this connection the Sub-routine
(Mrs. Barbara (Harold) Levine) LJBJY for Bessel functions and (optionally)
their 1§E-derivatives. (The chamber radii, a and b, are entered for this
purpose.) Optionally printed, in tabular form, are the zo(n) and then the
z](n), each accompanied by the value to which Fo or F] has thereby
been reduced to virtually zero.

Next, with hX entered, the program then computes (and prints)

R+h, R*h,
-ZT Fo(niryldry | —ZT. Fi(nsry)dr,
R-h R-h
RHOG = — b" RHOLl = — .
) ' | ) N ! 2 ! '
./- r [Fo(n;r )] 2dr ‘/f r [F](n,r )]7dr
a a

[Integration steps are taken to be inversely proportional to n.]

Actually the numerators and denominators of each of these quotients are
calculated in two ways: First, directly; second by subtracting some simple
form from the integrand and then supplementing the integral of the result by
the analytic integra] of the simp]e form‘that had been subtracted. The
ratios (RHO¢ and RHO1) computed by the “"direct and by the "difference"
procedure are each printed. One then has the option of selecting whether
one will retain for future use results (quotients) obtained by the difect o{
by the difference prOCedure and such values are then printed,'once again, as
a summary. [Fok a given number of integration steps the results obtained by

the difference procedhre are believed to be somewhat more accurate.]



By entering hc’ hy, and the field-point radius (rB), the program
is then in a position to compute the successive terms (n =1, 2, 3, ...) and
to print the successive cumulative sums of the expressions TERM 1 and TERM 2.
Upon the completion of such a tabulation, the program can be directed to

accept entries of new values of hc’ h , and r, -~ or alternatively to

y B
return to earlier stages of the program.

RESULTS

Results for several different parameters (inc]uding-rB) are summarized

in Tables that follow.

10



i =99.00 b = 1010.00 w = 10.00
h, = 9.90
h, = 5.00 hy = 1_4.50
TERM 1 - TERM 2
rg TERM T TERM 2 ERATE
1000. 00 0.89152 8556 0.89151 9000 1.0719 x 107

11
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5

a = 87.50 b = 112.50 W = 12.50

h, = 8.40

h, = 10.00 h, = 2.00
rg TERM 1 TERM 2 R e 2
92.80 0.65204 9938 0.65143 3302 9.46136 x 10~
95.20 0.82374 9845 0.82296 2369 9.56422 x 107"
97.60 0.86558 6391 0.86472 6339 9.94100 x 107
100.00 ©0.86185 8622 § 0.86100 3476 9.92704 x 107
102. 40 0.82865 0396 % 0.82786 4456 9.48908 x 1074
104.80 0.75552 2275 0.75486 2845 8.73183 x 1074
107. 20 0.57508 3712 0.57460 6194 8.30690 x 10~%

13
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a = 187.50 b = 212.50 W = 12.50
h, = 12.46
h, = 10.00 h = 2.00
rg | TERM 1 TERM 2 TR e 2
189. 32 0.49962 2554 0.49954 6695 1.51844 x 107
192.88 0.81219 1130 0.81201 3801 2.18358 x 10°%
196. 44 0.88358 9404 0.88336 2741 2.56558 x 107
200.00 0.88990 1674 0.88966 5564 2.65357 x 107%
203.56 ©0.85477 4512 0.85456 3070 2.47396 x 10°%
207.12 0.76014 5318 0.75999 0786 2.03313 x 107
210.68 0.45297 1393 0.45290 9272 1.37151 x 10°%
a = 187.50 b =212.50 =12.50 (as above)
- 8.40
h. = 10.00 = 2.00 (as above)
rg TERM 1 TERM 2 TERM ) 2
192.80 0.63065 1758 0.63050 8072 2.27863 x 1077
195.20 0.80521 8479 0.80503 1029 2.32821 x 1074
197..60 0.85568 1330 0.85547 1844 2.44848 x 1074
e —200.00— - }——0.86149 2848 - 0.86127 9728 2.47415 x 10~
202.40 0.83723 5836 0.83703 5575 2.39222 x 1074
204.80 0.77118 1650 0.77101 0104 2.22470 x 1074
207.20 0.59231 7299 0.59219 0831 1.13537 x 1074

15
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a=387.50 b = 412.50 W = 12.50
h = 8.40
he = 10.00 hy = 2.00

rg TERM 1 TERM 2 LS e L
392.80 0.62054 1001 0.6205 6263 5.5982 x 107>
395.20 0.79634 6686 0.79630 0904 ' 5.7492 x 1075
397.60 0.85090 4066 0.85085 2326 2.0808 x 107°
400. 00 0.86140 1722 ' 0.86134 8483 6.1807 x 107°
402. 40 0.84168 4122 0.84163 3534 6.0104 x 107°
404.80 0.77933 7854 0.77929 4057 5.6199 x 1072
407.20 0.60139 2252 0.60135 9661 -5

5.4194 x 10

17
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