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Edgar Jaramillo Rodriguez, June 2022, Mathematics

Abstract

In this thesis we develop combinatorial methods for studying barcodes. A barcode is a collection

of closed intervals on the real line. Barcodes arise as key objects in topological data analysis, as

summaries of the persistent homology groups of a filtration, and in graph theory as interval graphs.

We first introduce a map from the space of barcodes to certain equivalence classes of double

occurrence words, i.e., permutations of a multiset in which every element occurs exactly twice. We

call the set of all such words the space of combinatorial barcodes. We then define an order relation

on this space, based on the weak-Bruhat order, and show that the resulting poset is a graded lattice.

We show that this lattice can also be defined using new notions of inversion multisets/ inversion

vectors of double occurrence words. We also use these objects to prove several properties of the

lattice. For example, we compute its rank generating function and introduce a natural bijections

between combinatorial barcodes, trapezoidal words, and Stirling permutations. In addition to being

of interest from a combinatorial perspective, we also show that the cover relations in this lattice

can be used to determine the set of barcode bases of persistence modules.

We then generalize this construction, producing an entire family of multipermutations associ-

ated to barcodes. We equip these new multipermutations with a similar order relation and show

that the resulting posets also form lattices, which we call the power-k barcode lattices. Unfortu-

nately, these lattices do not retain many of the other “nice” combinatorial properties found in our

original construction. However, we show that these multipermutations record increasingly detailed

information about the arrangement of the bars in a barcode. We prove that for a large class of bar-

codes these multipermutations can be used to bound two classic, continuous metrics on barcodes:

the Wasserstein and bottleneck distances. We also show that these lattices form the face lattices

of certain Bruhat-interval polytopes.

Finally, we study an original model for generating random interval graphs (or equivalently

random barcodes). This model is motivated by scientific sampling problems, where one receives a

sequence of time-stamped observations and wants to make conclusions about the start and end of

certain events. Although our general model is difficult to analyze, we prove many results about the
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expected behaviour of this model in a special case which we call the stationary case. For example,

we compute the expected number of edges, maximum degree, and maximum clique size. We also

study the limit behavior of this model as the number of samples/ observations goes to infinity. In

particular, we prove that the special case of this model converges to a complete graph and compute

a lower bound on the expected waiting time for this to occur.
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CHAPTER 1

Introduction

A barcode is a finite multiset of (closed) intervals on the real line, B “ trbi, dis
miuni“1. Recently,

barcodes have gained attention because of their role in topological data analysis, where they serve

as summaries of the persistent homology groups of a filtration [ZC05]. Barcodes also appear in

the context of interval orders and interval graphs [LB62]. In this thesis we develop combinatorial

methods for analyzing barcodes for applications in topological data analysis and random interval

graphs.

This thesis consists of two parts. The first part, Chapters 2 and 3, is based on a research

project where we developed new combinatorial invariants on the space of barcodes. In addition to

being of interest from a combinatorial perspective, these invariants are useful for studying barcodes

associated to persistence modules and have connections to classical continuous metrics on the space

of barcodes. These contributions are outlined in Sections 1.2.1 and 1.2.2. The second part, Chapter

4, is based on joint work with Jesús A. De Loera, Deborah Oliveros, and Antonio Torres Hernandez.

We introduced a new model for generating random interval graphs (equivalently, random barcodes)

and study its behavior. This model is motivated by what we call chronological sampling problems,

where researchers collect a series of time-stamped observations and wish to learn the shape of the

underlying distribution of the data. These contributions are outlined in Section 1.2.3.

1.1. Background

1.1.1. Topological Data Analysis and Persistent Homology. In this section we provide

some necessary background on persistent homology to contextualize our work. As our work is

motivated by topological data analysis (TDA), where persistent homology is applied to the study of

data, we introduce persistence from this viewpoint, following the approach in [Ghr08] and [Car09].

For a more general introduction to persistence we refer the reader to the survey by Edelsbrunner

and Harer [EH08] or the foundational paper by Zomorodian and Carlsson [ZC05]. We will assume
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some familiarity with modern algebra, particularly the theory of rings and modules, as can be found

in [DF04], for example.

In the context of this thesis, data refers to a collection of points X “ txαuαPA Ă Rn. Thanks

to advances in computing, data is currently being generated at an unprecedented rate in a variety

of disciplines. Much of this data is high-dimensional, that is to say X Ă Rn for some very large

n. For instance, medical data may represent each patient as a vector x where each component xi

indicates a different characteristic of the patient such as age, weight, blood pressure, or the presence

of certain genetic markers [BHH`21]. Often it is beneficial to understand the shape of a dataset;

for instance, in medicine one might ask how many components are present in a cohort because

patients from the same component might have similar health outcomes following some procedure.

Naturally, this is more difficult when the data is high dimensional since projections down to 2 or 3

dimensions may remove or distort important features. Persistent homology is a method to measure

the shape of data using tools from algebraic topology.

The first step in persistent homology is converting a data setX from a point cloud to a simplicial

complex. Recall, a simplicial complex, K, is a collection of simplices in R that satisfy the following

conditions: (1) Every face from a simplex in K is also in K, and (2) For all pairs of simplices

σ1, σ2 P K, σ1 X σ2 is either empty or else a face of σ1 and σ2 [Hat02, pg. 102]. The set of

k-simplices of a given simplicial complex K is referred to as the k-skeleton of K. Intuitively, a

simplicial complex is a topological space formed by gluing simplices (points, edges, triangles, etc.)

along their faces. A natural method for constructing a simplicial complex from data is the Čech

complex.

Definition 1.1.1 ( [Ghr08]). Given a finite collection of points X “ txiu
N
i“1 Ă Rn and a

constant ε ą 0, the Čech complex is the abstract simplicial complex CpX, εq whose k-simplices are

the unordered pk`1q-tuples of indices J Ă t1, . . . , Nu such that
Ş

jPJ B̄pxj , εq ‰ H, where B̄pxj , εq

denotes the closed ball with center xj and radius ε.

The Čech theorem, also called the nerve theorem, states that CpX, εq is homotopy equivalent

to the union,
Ťn
i“1 B̄pxi, εq [Bj6]. Hence, CpX, εq is a faithful representation for the topology of

X after “thickening” X with balls of radius ε. One issue with the Čech complex is that it is
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computationally expensive in the sense that it potentially requires the storage of simplices of all

dimensions, from k “ 0 to N ´ 1. Therefore, in practice, many researchers instead represent their

data using the Vietoris-Rips complex.

Definition 1.1.2 ( [Ghr08]). Given a finite collection of points X “ txiu
N
i“1 Ă Rn and a

constant ε ą 0, the Vietoris-Rips complex (sometimes called simply the Rips complex ) is the

abstract simplicial complex RpX, εq whose k-simplices are the unordered pk ` 1q-tuples of indices

J Ă t1, . . . , Nu such that for all i, j P J we have }xi ´ xj}2 ď ε, where } ¨ }2 denotes the ℓ2 norm.

(a) Čech Complex. (b) Rips Complex.

Figure 1.1. For a fixed set of points X Ă R2 and some ε ą 0, we draw circles of
radius ε centered at each point and superimpose the resulting Čech complex CpX, εq
(left) and Rips complex RpX, 2εq (right). Note the two complexes differ in the top-
left where CpX, εq has an open cycle which is a filled 2-simplex in RpX, 2εq.

Rips complexes belongs to a special class of simplicial complexes known as flag complexes or

clique complexes, which are maximal simplicial complexes (ordered by inclusion) over all simplicial

complexes with a given 1-skeleton [Ghr08]. Thus, RpX, εq is completely determined by its 1-

skeleton and, hence, can be stored as a graph and reconstituted as needed, unlike the Čech complex.

While Rips complexes are generally not homotopy equivalent to the thickened dataset
Ťn
i“1 B̄pxi, εq,

Rips complexes are “close” to Čech complexes in that we have the following inclusions:

(1.1) CpX, ε{2q Ď RpX, εq Ď CpX, εq,
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noting that the parameter ε refers to radii for Čech complexes and to distances for Rips complexes.

Rips complexes allow us to efficiently transform our data from a point cloud with an effectively

trivial topology to a much richer simplicial complex. We can study the topology of this complex

using homology. We tersely recall the key terms of simplicial homology, below; for a complete

introduction to homology see [Hat02, Chapter 2].

Let K be a simplicial complex and let Σk denote the set of k-simplices of K. The group of

k-chains in K is the free Abelian group on the set Σk, denoted ∆kpKq. By imposing a total order

(labeling) on the set of vertices, Σ0, we can define boundary maps, δk : ∆kpKq Ñ ∆k´1pKq, such

that for each k-simplex σα “ rv0, v1, . . . , vks we have,

(1.2) δkpσαq “

k
ÿ

i“0

p´1qirv0, . . . , v̂i, . . . , vks,

where v̂i indicates that this vertex is deleted from the sequence. Observe that δk ˝ δk`1 ” 0, hence

Impδk`1q Ď Kerpδkq. Thus, we may define the k-th (simplicial) homology group of K by

(1.3) HkpK,Zq “ Kerpδkq{ Impδk`1q.

Elements of Kerpδkq are called cycles and elements of Impδk`1q are boundaries. The collection of

chains and boundary maps, p∆‚, δ‚q, is known as a chain complex.

Instead of free Abelian groups, the chains ∆˚pKq can also be defined as free R-modules for an

arbitrary ring R, denoted ∆˚pK, Rq (throughout this thesis, we assume a ring R to be commutative

with unity). We denote the resulting homology groups by H˚pK, Rq. In practice, we often take R

to be a field for computational ease, see [EH10, Chapter 4]. For any field F, H˚pK,Fq will be a

vector space over F. If HkpK,Fq is finite dimensional, we let βkpK,Fq “ dimpHkpK,Fqq, and call

βkpK,Fq the k-th Betti number of K with coefficients in F. Informally, the k-th Betti number of

K tells us the number of k-dimensional “holes” in K, where 0-th dimensional holes correspond to

connected components. We sometimes omit writing the ring R when discussing chains, homology

groups, or Betti numbers if doing so does not create confusion.

Thus, we can describe the topology of the simplicial complex RpX, εq in terms of its homology

groups, HkpRpX, εqq and Betti numbers βkpRpX, εqq. However, the homology of RpX, εq depends

on the choice of parameter ε. For small values of ε, RpX, εq is a disjoint collection of N points.
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Meanwhile, when ε is large RpX, εq is simply the complete pN ´ 1q-simplex. In Figure 1.2 we see

how the Betti numbers of RpX, εq change for different values of ε between these extremes. This

begs the question, what is the correct choice of ε?

(a) β0 “ 17, β1 “ 0. (b) β0 “ 2, β1 “ 3. (c) β0 “ 2, β1 “ 1. (d) β0 “ 1, β1 “ 1.

Figure 1.2. We show the evolution of Betti 0 and Betti 1 of RpX, εq as ε increases
from left to right. Note βk “ 0 for all k ě 2.

The brilliance of persistence homology, as introduced by Edelsbrunner, Letscher, and Zomoro-

dian [ELZ02] and refined by Zomorodian and Carlsson [ZC05], is that one assumes no perfect

choice of ε exists and, instead, analyzes RpX, εq at every choice of ε. Concretely, let R “ pRiqmi“1

be a sequence of Rips complexes associated to a fixed dataset X and a strictly increasing sequence

of parameters ε1 ă ε2 ă ¨ ¨ ¨ ă εm (as in Figure 1.2, for example). Hence, we have natural inclusion

maps,

(1.4) R1 R2 . . . Rm´1 Rm.ι ι ι ι

Chaining these inclusion maps induces homomorphisms between homology groups, ι˚ : H˚pRiq Ñ

H˚pRjq, for each pair i ă j. These homomorphism reveal which topological features persist from

Ri to Rj ; they are exactly those features with non-zero image under the chained inclusion maps ι˚

from H˚pRiq to H˚pRjq. Morally, we say a feature is significant if it persists for a “long” range of

ε’s and say it noise if it only persists for a “short” range.

Remark 1. We note that one can evaluate every choice of ε with only a finite sequence of

Rips complexes, as above. Observe that as ε increases new simplices are only added to RpX, εq if

ε “ }xi ´ xj} for some xi, xj P X. As X is finite, this leaves only finitely many “critical points” at

which RpX, εq evolves. Therefore, ordering these pairwise distances gives a sequence of ε’s whose

corresponding Rips complexes include a copy of RpX, εq for every choice of ε.
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With this motivation in mind, we now present topological persistence in greater detail and

generality. Begin with a filtration, which is a sequence of nested simplicial complexes pKiqmi“0 such

that

(1.5) H “ K0 Ď K1 Ď ¨ ¨ ¨ Ď Km´1 Ď Km.

From a filtration, we can form a persistence complex.

Definition 1.1.3 ( [ZC05]). A persistence complex is a collection of chain complexes tp∆i
‚, δ

i
‚quiě0

over a ring R together with chain maps, f i : p∆i
‚, δ

i
‚q Ñ p∆i`1

‚ , δi`1
‚ q.

The persistence complex associated to a filtration is formed by taking the collection of chain

complexes for each Ki and the chain maps induced by the inclusions ιi : Ki Ñ Ki`1. Below, we

illustrate a persistence complex where the filtration index increases from left to right via the maps

f i and each chain complex is descending from top to bottom via the boundary maps δi˚.

(1.6)

...
...

...

∆0
2 ∆1

2 ∆2
2 . . .

∆0
1 ∆1

1 ∆2
1 . . .

∆0
0 ∆1

0 ∆2
0 . . .

δ02

δ01

f0 f1

f0

f0

f1

f1

δ12

δ12

δ22

δ22

f2

f2

f2

δ03 δ13 δ23

The maps f i induce homomorphisms f i˚ : H˚pKiq Ñ H˚pKi`1). For 0 ď i ă j we define

f iÑj
˚ : H˚pKiq Ñ H˚pKjq by,

(1.7) f iÑj
˚ “ f j´1

˚ ˝ f j´2
˚ ˝ ¨ ¨ ¨ ˝ f i˚.

Definition 1.1.4 ( [Ghr08]). Let C be a persistence complex with chain complexes tp∆i
‚, δ

i
‚quiě0

over a ring R and chain maps f i. For 0 ď i ă j, the pi, jq-persistent k-th homology (group) of C,

denoted H iÑj
k pCq, is given by

(1.8) H iÑj
k pCq “ Impf iÑj

k q.
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As an example, consider a filtration consisting of Rips complexes, R “ pRiqmi“1, where R
i “

RpX, εiq as in Equation 1.4. Let γ be a generator of some H˚pRiq that first appears when i “ i1.

This generator can be mapped to H˚pRjq via inclusion maps for all i ă j. Let j1 be the greatest j

for which f iÑj
˚ pγq ‰ 0. Then we say γ persists from i1 to j1 (equivalently from εi1 to εj1) and thus

γ is a generator of H iÑj
˚ pRq. In Figure 1.3, below, we display the persistent homology groups for

the Rips filtration of a sample dataset in a diagram known as a persistence barcode. Each generator

of the homology groups corresponds to an interval whose endpoints are the range of epsilon values

for which that generator persists. The intervals are stacked vertically in an arbitrary order and

colored according to which homology group they correspond to. For simplicity, we do not draw the

“essential” 0-th homology generator that persists from zero to infinity. Note that βkpRiq is given

by the number of order k intervals that contain εi (plus one in the case of β0 to account for the

missing essential generator). The reason for this is explained in the following sections.

Figure 1.3. Persistence barcode of the Rips filtration for the data in Figures 1.1
and 1.2. Above the barcode, we include a representation of the Rips complex at a
few values of ε.

1.1.2. Persistence Modules. In this thesis we study the combinatorial structure of the per-

sistent homology groups of filtrations. To do so, we must first develop a classification of these
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persistent homology groups. We do this via a classification of a more general class of objects

known as persistence modules.

Definition 1.1.5 ( [ZC05]). A persistence module M is a collection of R-modulesM i together

with homomorphisms φi :M i Ñ M i`1.

Definition 1.1.6. [ZC05] A persistence complex C “ tp∆i
‚, δ

i
‚q, f iuiě0 (respectively, a persis-

tence module M “ tM i, φiuiě0) over a ring R is said to be of finite type if each component complex

(module) is a finitely generated R-module and there exists some L P N such that the maps f i (φi)

are isomorphisms for all i ě L.

Note that if K is a finite simplicial complex, then any filtration of K generates a persistence

complex of finite type. Moreover, the homology of this complex forms a persistence module which

is also of finite type. Therefore, we would like to classify all persistence modules of finite type

over a ring R, as such a classification would allow to classify the persistent homology groups of all

filtrations of finite simplicial complexes. Unfortunately, this is an onerous task if we do not make

additional assumptions on the ring R.

To see this, consider a persistence module M “ tM i, φiuiě0 over a ring R. Equip Rrts with the

standard grading and define a graded module over Rrts by,

(1.9) αpMq “

8
à

i“0

M i,

where the R-module structure is the sum of the structures on each component, and where the

action by t is given by

(1.10) t ¨ pm0,m1,m2, . . . q “ p0, φ0pm0q, φ1pm1q, φ2pm2q, . . . q,

i.e., t shifts elements of the modules up in gradation via the homomorphism φi.

Theorem 1.1.1 ( [ZC05]). The correspondence α from Equation 1.9 defines an equivalence

of categories between the category of persistence modules of finite type over R and the category of

finitely generated non-negatively graded modules over Rrts.
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It is well known in commutative algebra that the classification of modules over Zrts is extremely

complicated. Hence, there is little hope for a classification of persistence modules over an arbitrary

ring R. However, if the ground ring is a field F, then the graded ring Frts forms a principal ideal

domain (PID) and its only graded ideals are of the form ptnq. Thus, by the structure theorem for

graded modules over PID’s (see [DF04, Chapter 12]) we have the following classification theorem,

due to Zomorodian and Carlsson.

Theorem 1.1.2 ( [ZC05]). Let M “ tM i, φiuiě0 be a persistence module of finite type over a

field F and let α denote the correspondence from Equation 1.9. Then,

(1.11) αpMq –

ˆ n
à

i“1

taiFrts

˙

‘

ˆ m
à

j“1

tbjFrts{ptℓj q

˙

,

for some integers ta1, . . . , anu, tb1, . . . , bmu, tℓ1, . . . , ℓmu.

1.1.3. Interval Decomposition of Persistence Modules. When M is the persistent ho-

mology of a filtration pKiqmi“1, Theorem 1.1.2 has a natural interpretation. The free portions of

Equation 1.11 are in bijective correspondence with the essential homology generators, i.e., those

generators that first appear in some H˚pKaiq and persist in H˚pKrq for all r ě ai. Meanwhile, the

torsion elements are in bijective correspondence with those homology generators which first appear

in H˚pKbiq but then disappear in H˚pKbi`ℓiq. Hence, M is characterized by the following collection

of intervals: trai,8suni“1Ytrbi, bj `ℓjs
m
j“1u. With this observation, we are finally ready to introduce

the main topic of this thesis: barcodes.

Definition 1.1.7 ( [Ghr08]). A barcode is a finite multiset of closed intervals on the real line,

B “ trbi, dis
miuni“1 (here the superscripts mi indicate multiplicities), where necessarily bi ă di for

all i P rns. Each interval is called a bar ; its left endpoint bi is called its birth (time) and its right

endpoint di is called its death (time). We denote the set of all barcodes with n distinct bars by Bn.

Now, let pV ‚, f‚q be a persistence module of finite type over a field F, so each module V i is a

finite-dimensional vector space over F, the homomorphisms f i are F-linear maps, and there exists

some L P N such that f i is the identity map for all i ě L. Hence, we have

V 0 V 1 . . . V L´1 V L.
f1 f2 fL´1 fL

9



The length of pV ‚, f‚q is the number L` 1.

Definition 1.1.8 ( [ZC05]). Let L P N and let 0 ď i ď j ď L. The interval module over F of

length L` 1 corresponding to i, j is the persistence module of finite type, Iri, js‚, given by,

0 . . . 0 F . . . F 0 . . . 0,

where V i “ F for all i P ri, js, maps between adjacent F’s are identities, and all other vector spaces

are trivial.

From Theorem 1.1.2 we have that if pV ‚, f‚q is a persistence module of finite type over a field

F and of length L` 1, then there exists a barcode B “ trbi, dis
miuni“1 with bi, di P t0, . . . , Lu for all

i P rns such that pV ‚, f‚q is isomorphic to the following direct sum of interval modules:

(1.12) pV ‚, f‚q »

n
à

i“1

Irbi, dis
mi
‚ ,

where Irbi, dis
mi
‚ denotes the direct sum of mi copies of the interval module Irbi, dis‚.

Now, let pV ‚, f‚q be a persistence module of finite type and of length L` 1. A basis family of

pV ‚, f‚q is a collection,

U “ tUi Ă V i : 0 ď i ď Lu,

where Ui is an ordered basis of V i for each i. Given a fixed basis family, each map f i can be

written as a dimpV i´1q ˆ dimpV iq matrix, Ai, with entries in F. In order to determine the interval

decomposition of pV ‚, f‚q, we seek basis families which produce matrices of a particularly nice form,

known as barcode form.

Definition 1.1.9 ( [JNT22]). An m ˆ n matrix A of rank r is said to be in barcode form if

there exists a strictly increasing function c : rrs Ñ rns such that

Aij “

$

’

&

’

%

1, if j “ cpiq

0, otherwise
.

Note, A is in barcode form if and only if it has at most a single 1 in each row and column, which

appear in the first r rows in strictly increasing column order, and the remaining entries are all 0.
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We say that a basis family U is a barcode basis for pV ‚, f‚q if the matrix Ai is in barcode form

for all i P rLs. Note that given a barcode basis U , one can recover the decomposition from Equation

1.12 and vice-versa; the positions of the 1’s in each Ai indicate which basis vectors have non-zero

image under f i. We denote the set of all ordered barcodes bases of pV ‚, f‚q by BpV ‚, f‚q.

1.1.4. Barcodes. In this section we introduce some additional definitions related to barcodes

and introduce some popular metrics used to define a topology on the space of barcodes.

Barcodes are often displayed as a stacked set of intervals above the real line as in Figure 1.3

and Figure 1.4a, below. In these diagrams the heights of the bars are arbitrary, though often

bars corresponding to persistent homology groups of the same dimension are grouped together and

distinguished from other groups using colors or line-styles. Barcodes are also commonly represented

as points pbi, diq P R2 in a figure known as a persistence diagram. Figure 1.4b shows the persistence

diagram for the barcode in Figure 1.4a. Note that the points in Figure 1.4b lie above the diagonal

since we require that bi ă di for all i P rns.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

H0
H1

(a) Persistence barcode.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Birth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
De

at
h

H0
H1

(b) Persistence diagram.

Figure 1.4. We compute the Rips filtration of the sample data set from the previ-
ous figures then display the order 0 and order 1 persistent homology groups as both
a barcode (1.4a) and a persistence diagram (1.4b).

Definition 1.1.10. A barcode B “ trbi, dis
miuni“1 is called strict if mi “ 1 for all i P rns and

di ‰ dj for all i ‰ j, i.e., if no bars are repeated and no pair of distinct bars share a death time.

We denote the set of strict barcodes with n bars by Bnst. When we refer to a strict barcode, we

often simply write B “ trbi, disu
n
i“1 with the multiplicities mi omitted.
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Definition 1.1.11. We say a persistence module pV ‚, f‚q is strict if the barcode B associated

to its interval decomposition is strict.

Similar definitions of strict barcodes were introduced in [KGH20,CDG`21]. However, these

definitions differs slightly from ours in the following aspects: (1) we do not require that there exists

an essential bar rb0, d0s that contains all the others, and (2) we only require that no death times

are repeated, whereas the definition in [CDG`21] requires that no birth times are repeated either,

i.e., bi ‰ bj for all i ‰ j. We note that our definition is well suited for barcodes arising from the

persistent homology groups of Rips/Čech complexes where many generators of the 0-th homology

groups may born at time 0, but it is unlikely that a pair of generators will die at the same time

(assuming the data is drawn from some continuous distribution).

One can define a topology on the space of all barcodes, regardless of strictness or the number

of bars, by way of a distance function. Two popular and well-studied choices are the bottleneck

distance and the q-Wasserstein distance.

Definition 1.1.12 ( [EH08]). Let B “ trbi, dis
miuni“1 and B

1 “ trb1
i, d

1
is
m1

iumi“1 be two barcodes.

The bottleneck distance between B and B1 is

d8pB,B1q “ inf
γ
max
xPB

}x´ γpxq}8,

where γ runs over all perfect matchings of the points (bars) xi “ rbi, dis in B and the points (bars)

in B1, allowing bars to be matched to the diagonal ∆ “ tpx, xq : x P Ru. Here } ¨ }8 denotes the

ℓ8-norm on R2.

Put simply, the bottleneck distance computes the maximum distance in ℓ8-norm between a pair

of matched points on the persistence diagrams of B and B1, taking the infimum over all perfect

matchings. The q-Wasserstein distance is similar; it can be thought of as the total distance between

all pairs of matched points, again taking the infimum over all perfect matchings.

Definition 1.1.13 ( [EH08]). Let B “ trbi, dis
miuni“1 and B

1 “ trb1
i, d

1
is
m1

iumi“1 be two barcodes.

The q-Wasserstein distance between B and B1 is

dqpB,B
1q “ inf

γ

`

ÿ

xPB

}x´ γpxq}q8

˘1{q
,

12



where γ runs over all perfect matchings of the points (bars) xi “ rbi, dis in B and the points (bars)

in B1, allowing bars to be matched to the diagonal ∆ “ tpx, xq : x P Ru. Here } ¨ }8 denotes the

ℓ8-norm on R2.

1.1.5. Barcode Permutations. We note that the space of barcodes does not form a Hilbert

space when equipped with either the bottleneck or Wasserstein metrics [TS20]. Moreover, the

space of barcodes does not even admit a coarse embedding into a Hilbert space when equipped

with the bottleneck distance [BW20]. Therefore, it is difficult to apply certain statistical methods,

such as standard kernel methods, to barcodes; we do note that some progress has been made

developing these methods for Banach spaces without an inner-product [DMW22]. In our work, we

address this issue by defining new combinatorial invariants for barcodes which record the overlapping

arrangements of the bars and can be used to bound the bottleneck and Wasserstein distances between

barcodes.

This work is inspired by a series of papers [KGH20,CDG`21,BG22] which developed similar

invariants associated to barcodes. In [KGH20,CDG`21] the authors introduced a mapping from

a special class of strict barcodes with n bars to the symmetric group Sn, defined as follows. Let

B P Bnst and assume that the bars in B have distinct endpoints, i.e., tbi, diu X tbj , dju “ H for

all i ‰ j. Begin by ordering the death times increasingly so that di1 ă di2 ă ¨ ¨ ¨ ă din . Then

the indexing set rns gives a permutation γB P Sn defined by γBpkq “ ik, i.e., γB is the unique

permutation such that dγBp1q ă dγBp2q ă . . . ă dγBpnq. In the same manner, ordering the birth

times gives another permutation τB. Finally, we set define the permutation type of B, πB, to be

the permutation πB “ τ´1
B ¨ γB, which tracks the ordering of the death values with respect to the

birth values.

For example, if B is the strict barcode with 3 bars given by b2 “ 1.0, d2 “ 2.0, b1 “ 1.5, d1 “

3.0, b3 “ 2.5, d3 “ 2.75, then the birth/death times in B1 are ordered: b2 ă b1 ă d2 ă b3 ă d3 ă d1.

So τB “ p2 1 3q, γB “ p2 3 1q and πB “ p1 3 2q.

One of the main contributions of [KGH20,CDG`21] was the discovery that these permuta-

tions can be used to describe the fibers of a very different map, known as the topological morphology

descriptor (TMD). The TMD, first introduced in [KDS`18], is a method for defining a filtration
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on metric trees, i.e., tree graphs with a length associated to each branch, for applications in neuro-

science. By computing the persistent homology groups of this filtration, one can encode the spatial

structure of a tree in a barcode.

In [KGH20,CDG`21] the authors demonstrated that the cardinality of the fibers of TMD,

when restricted to a certain class of trees known as merge trees, can be computed from πB alone.

Theorem 1.1.3 (Curry et al. [CDG`21]). Let TMD denote the topological morphology de-

scriptor from [KDS`18], and let B “ trbi, disu
n
i“0 be a strict barcode with n bars. If no birth times

in B are repeated, then

(1.13) |TMD´1pBq| “

n
ź

i“1

lipπBq,

where lpπBq denotes the left inversion vector of πB (see Section 1.1.6).

Theorem 1.1.3 follows from the observation that inversions in πB correspond to pairs of nested

bars in B, i.e., bars rbi, dis, rbj , djs satisfying bi ă bj ă dj ă di. These nested bars allow for choices

when attaching branches to tree a T , which in turn are responsible for the non-injectivity of TMD

(see [KGH20,CDG`21] for details).

We note that a pair of non-nested bars may be either disjoint or stepped, i.e., the bars intersect

but are not nested, as defined above. This distinction is important for the study of barcode bases

of persistence modules, as demonstrated by the following theorem of Jacquard et al.

Theorem 1.1.4 ( [JNT22]). Let pV ‚, f‚q be a persistence module of length ℓ ` 1. Let B “

trbi, dis
miuni“1 be the barcode associated to the interval decomposition of pV ‚, f‚q as in Equation

1.12. Then the set of barcode bases of pV ‚, f‚q, BpV ‚, f‚q, admits a bijection,

BpV‚, f‚q –

n
ź

i“1

GLpmi;Fq ˆ
ź

iăj:
biďbjďdiďdj

Matpmi ˆmj ;Fq,

where GLpm;Fq denotes the general linear group of mˆm matrices over F.

Note that if the death times in B are distinct, then condition, bi ď bj ď di ď dj , indicates

that a pair of bars are stepped. Although one can identify pairs of nested bars in B from their

permutation type, πB, one cannot distinguish non-nested bars as being either stepped or disjoint
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from πB alone. Our goal is to develop alternative combinatorial invariants for barcodes which are

capable of recording all possible arrangements of bars. We do this by introducing maps from the

space of barcodes to multipermutations in the multinomial Newman lattice. Before summarizing

these results, we first recall some necessary concepts regarding posets and permutations.

1.1.6. Partially Ordered Sets and Permutations. We will assume familiarity with the

basic definitions regarding partially ordered sets (posets), though we recall several terms below.

For a complete introduction to posets see [Sta11, Ch.3].

Let pP,ďq be a poset and let s, t P P . An upper bound of s and t is an element u P P such that

s ď u and t ď u. A least upper bound (also called a join) of s and t is an upper bound u of s and

t such that if v is any upper bound of s and t then u ď v. If a least upper bound of s and t exists,

then it is necessarily unique and we denote it by s _ t (read “s join t”). One can define a lower

bound and the greatest lower bound of s and t equivalently. The greatest lower bound, also called

a meet, is denoted s^ t (read “s meet t”) when it exists.

A lattice is a poset L for which every pair of elements has a least upper bound and greatest

lower bound. A principal ideal of a lattice L is a subposet of the form I “ ts P L : s ď αu for some

α P L; we say I is the principal ideal generated by α. It is a well known result that a principal

ideal I of a lattice L is a sublattice of L. A congruence on a lattice L is an equivalence relation R

on L such that if a R b and c R d then pa^ cq R pb^ dq and pa_ cq R pb_ dq [Rea16b].

Lemma 1.1.1 ( [Rea16b]). An equivalence relation R on a finite lattice L is a lattice congruence

if and only if it satisfies the the following conditions:

(1) Each equivalence class is an interval in L.

(2) The map πÓ which maps each element to the least element of its equivalence class is order-

preserving.

(3) The map πÒ which maps each element to the greatest element of its equivalence class is

order-preserving.

Lattice congruences are of interest because they allow us to define the quotient of a lattice in

a natural way.
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Definition 1.1.14 ( [Rea16b]). If L is a lattice and R is a congruence on L then the quotient

lattice L{R is the poset on the R-classes where C1 ď C2 in L{R if and only if there exists a P C1

and b P C2 such that a ď b in L.

One can show that if R is an lattice congruence on a finite lattice L, then L{R is order-

isomorphic to the induced subposet of L whose elements are either the minima (or the maxima) of

each equivalence class [Rea16b].

A lattice of particular interest to us is the permutohedron [CSW16]. Recall that for π P Sn an

inversion in π is a pair pπi, πjq such that i ă j and πi ą πj , i.e., it is a pair of elements that appear

out of order. The inversion set of π, invpπq, is the set of all inversions in π. The inversion number

of π is the cardinality # invpπq of its inversion set. For example, if π “ p1 2 5 4 3 6q P S6,

written in one-line notation, then invpπq “ tp5, 4q, p5, 3q, p4, 3qu and # invpπq “ 3. Notice that

π ‰ σ ùñ invpπq ‰ invpσq, so we can think of inv as an injective map from the permutations in

Sn to subsets of rns2.

One can also encode the inversions of a permutation π P Sn in a vector known as the inversion

vector of π, denoted νpπq. In particular, νpπq is defined by νpπqi “ #tpa, bq P invpπq : b “ iu, i.e.,

the i-th coordinate of νpπq is the number of inversions of π in which i is the smaller (right) element.

Similarly, the left inversion vector of π, denoted lpπq, is defined lpπqi “ #tpa, bq P invpπq : a “ iu,

i.e., the i-th coordinate of νpπq is the number of inversions of π in which i is the larger (left)

element. For example, if π “ p1 2 5 4 3 6q, then νpπq “ p0, 0, 2, 1, 0, 0q and lpπq “ p0, 0, 0, 1, 2, 0q.

The weak Bruhat order (or weak order for short) is the relation ďW on Sn defined by π ďW σ

if and only if invpπq Ď invpσq. Note that π ďW σ ùñ # invpπq ď # invpσq, but the converse need

not hold. One can show that π ÌW σ if and only if # invpπq ` 1 “ # invpσq and σ “ pi i` 1qπ for

some i P rn´ 1s, which means that σ equals π after transposing a pair of its adjacent entries.

The weak order on Sn also forms the face lattice of a well-studied polytope known as the

permutohedron [Ber71,CSW16]. Hence, we refer to the poset pSn,ďW q as the permutohedron as

well. Figure 1.5 shows the Cayley graph of the permutohedron, S4; the Hasse diagram of pS4,ďW q

can be deduced from this figure since each edge corresponds to a cover relation. The weak Bruhat

order can also be defined similarly on arbitrary Coxeter systems (see [BB05]), but for this thesis

the definition on the symmetric group is sufficient.
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Figure 1.5. The permutohedron, S4 [Pie20]. Edges indicate cover relations. As
each cover relation corresponds to swapping a pair of adjacent entries, edges are
colored to indicate which entries are swapped.

One can generalize the construction of the permutohedron to multiset permutations. For m “

pm1, . . . ,mnq P Nn, let Lpmq denote the set of permutations of the multiset M “ t1m1 , . . . , nmnu,

here too the exponents mi indicate multiplicities. The elements of Lpmq are called multipermu-

tations. An order relation on Lpmq can be succinctly defined via the following cover relations.

For s, t P Lpmq, we say that s Ì t if and only if s and t differ only in swapping an adjacent pair

of entries, which are in numerical order in s but are reversed in t. For instance, we have that

p1 1 2 3 2q Ì p1 2 1 3 2q in Lp2, 2, 1q. We note that these cover relations are direct analogues of

the cover relations in the permutohedron. The poset pLpmq,ďq is called the multinomial Newman

lattice and was originally introduced by Bennett and Birkhoff in [BB94].

The multinomial Newman order can also be defined explicitly as follows. Consider the set,

S “ t11, . . . , 1m1 , . . . , n1, . . . , nmnu,

which we endow with the lexicographic total ordering 11 Ì 12 Ì ¨ ¨ ¨ Ì 1m1 Ì ¨ ¨ ¨ Ì nmn . We

identify a multipermutation s P Lpmq with the unique permutation π P SS which equals s after
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removing the labels and where copies of the same elements appear in lexicographic order, that is

to say ij appears before ik in π for all i P rns and all j ă k. For example, the multipermutation

p1 2 1 3 2q P Lp2, 2, 1q is identified with the permutation p11 21 12 31 22q. Let ι : Lpmq Ñ SS

denote this mapping.

One can show that ι is in fact an order-isomorphism from pLpm,ďq to a principal ideal of

the permuhatedron pSS ,ďW q; it follows that pLpmq,ďq is also a lattice [BB94,SW16,San07].

Specifically, the multinomial Newman lattice is isomorphic to the principal ideal generated by the

permutation pn1 . . . nmn . . . 11 . . . 1m1q. Thus Lpmq has (necessarily unique) minimal and maximal

elements, denoted 0̂ and 1̂ respectively. The minimum, 0̂, is the identity permutation while the

maximum, 1̂, is the “fully reversed” permutation pn n . . . n pn´ 1q pn´ 1q . . . 1q.

One can also define Lpmq as the set of equivalence classes of SS under the equivalence relation

where π1 „ π2 in SS if and only if π1 and π2 differ only in permuting the subscripts of each

number. For example, p11 21 12 31 22q „ p12 22 11 31 21q in St11,12,21,22,31u. However, we emphasize

that „ is not a lattice congruence on SS except in some trivial cases; note, for example, that

the equivalence class of p11 21 11q P St11,12,21u is tp11 21 11q, p12 21 11qu, which does not form an

interval in St11,12,21u. We note that quotient lattices of the permutohedron defined by a lattice

congruence are well-studied and include many “famous” posets such as the Tamari and Cambrian

lattices [Rea06,Rea12,Rea16a,HM21].

In Chapter 2, we will focus on a special multinomial Newman lattice, Lpn, 2q “ Lp2, 2, . . . , 2q,

whose elements are all permutations of the multiset t12, 22, . . . , n2u. The lattice Lpn, 2q is closely

related to a class of strings known as double occurrence words, defined as follows [Lot02]. Let

A “ taiuiPN be an ordered alphabet, i.e., a countable set of linearly-ordered symbols with a lower

bound. A word in A is a sequence of symbols w “ pa1 a2 . . . akq in A. A double occurrence

word, sometimes called a Gauss code, over A is a word, w in which every symbol in A occurs

either zero or two times in w. For example, p1 2 1 3 3 2q and p4 1 4 3 3 1q are double occurrence

words over N while p1 2 4 3 3 2q is not. Note that the multipermutations in Lpn, 2q are the

double occurrence words over rns where each integer occurs exactly twice. Double occurrence words

have been studied extensively the context of knot theory [BJS15,Gib11,Tur04], mathematical
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logic [Cou08], algebraic combinatorics [STZ09], enumerative combinatorics [CFJ`19,GKO20],

and genomics [BNN`18,BDJ`13,JNS17].

Often it is beneficial to identify two words w,w1 if they are equal after some permutation of

the symbols in A. We say w is combinatorially equivalent to w1, denoted w ” w1, if there exists a

bijection of symbols f : A Ñ A such that fpwq “ w1, where fpwq indicates that f acts element-wise

on w. For example, if w “ p1 2 1 3 2 3q and w1 “ p1 3 1 2 3 2q then w ” w1 because p2 3q˝pwq “ w1,

where p2 3q is the permutation map in S3, here written in cycle notation. One may verify that

” defines an equivalence relation on the set of double occurrence words over A. The equivalence

class of w under ” is denoted by rws. We emphasize that the equivalence relation ” is not a

lattice congruence on Lpn, 2q; note, for example, that the equivalence class of p1 1 2 2q in Lp2, 2q is

tp1 1 2 2q, p2 2 1 1qu, which does not form an interval in Lp2, 2q. However, quotients of multinomial

lattices given by a lattice congruence have been studied as well [San07].

A double occurrence word w is said to be in ascending order if 1, 2, . . . , i´ 1 appear before the

first instance of i in w, for all i P rns, i.e., if the first copy of 1 appears before the first copy of

2, which appears before the first copy of 3, and so on. For example, the word p1 2 1 3 2 3q is in

ascending order while the equivalent word p1 3 1 2 3 2q is not. If rws is an equivalence class of

double occurrence words, we let w denote the unique word in rws which is in ascending order.

1.1.7. Interval Graphs and Random Graphs. In this section we provide some necessary

background in graph theory to contextualize our work, particularly Chapter 4. We assume some

basic familiarity with graphs as in [Die17, Chapter 1], for example, and with elementary probability

as in [Pit93], for example.

So far, we have discussed how to produce a barcode from a simplicial complex. It is also possible

to do the reverse, that is to form a simplicial complex from a barcode, using the notion of a nerve

complex (see below).

Definition 1.1.15 ( [Mat02, pg. 197]). Let F “ tF1, . . . , Fmu be a family of convex sets in Rd.

The nerve complex N pFq is the abstract simplicial complex whose k-facets are the pk ` 1q-subsets

I Ă rms such that
Ş

iPI Fi ‰ H.
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Figure 1.6c shows the nerve complex constructed from the intervals in Figure 1.6a. Note the

presence of a 2-simplex (triangle) with vertices t1, 2, 3u because the corresponding intervals mutually

intersect. We note that a Čech complex in Definition 1.1.2 is an example of a nerve complex, in

particular CpX, εq “ N ptB̄px, εq : x P Xuq.

(a) Example barcode, B. (b) Interval graph, GpBq. (c) Nerve complex, N pBq.

Figure 1.6. A barcode together with its corresponding interval graph and nerve
complex.

Given a strict barcode B “ trbi, disu
n
i“1, the nerve N pBq records the k-wise intersections be-

tween the bars in B for all k P rns. However, because the intervals are subsets of the real line,

the k-wise intersections can actually be inferred from the pairwise intersections alone. To see this,

suppose we have a collection of intervals rb1, d1s, . . . , rbk, dks such that all intervals intersect pair-

wise, i.e., rbi, dis X rbj , djs ‰ H for all i ‰ j. It follows that di ě bj for all i, j P rks, and so

rmaxtb1, . . . , bku,mintd1, . . . , dkus Ď
Şk
i“1rbi, dis. Hence the whole collection has non-empty inter-

section. We note that this is a special case of Helly’s theorem, which states that if a family of

convex sets in Rd has the property that any d`1 of the sets have a non-empty mutual intersection,

then the entire collection has a non-empty intersection [Bar02].

Thus, we see that N pBq is a clique complex, i.e., the k simplices in N pBq are the pk`1q-cliques

in its 1-skeleton. Hence, when we refer to N pBq we may equivalently refer to its 1-skeleton which

forms the interval graph GpBq. Figure 1.6b shows the interval graph for the barcode in Figure 1.6a.

Definition 1.1.16. Given a strict barcode B “ trbi, disu
n
i“1, the interval graph of B is the

simple graph GpBq “ GpV,Eq, where V “ rns and ti, ju P E if and only if rbi, dis X rbj , djs ‰ H.

Interval graphs have been studied extensively due to their wide applicability to topics as diverse

as archaeology, genetics, job scheduling, and paleontology [Fis85,Gol04,HH07,Pip98]. These

graphs have the power to model the overlap of spacial or chronological events and allow for some
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inference of structure. Interval graphs also belong to a larger class of graphs known as intersection

graphs, which are formed analogously from a collection of arbitrary sets [EGP66].

There are a number of nice characterizations of interval graphs that have been obtained [FG65,

GH64,Han82,LB62]. For instance, a graph G is an interval graph if and only if the maximal

cliques of G can be linearly ordered in such a way that, for every vertex x of G, the maximal cliques

containing x occur consecutively in the list. Another remarkable property of interval graphs is that

they are perfect graphs and hence the weighted clique and coloring problems are polynomial time

solvable [Gol04]. Nevertheless, sometimes it is not always obvious whether or not a given graph is

an interval graph. For example, of the graphs in Figure 1.7 only 1.7a is an interval graph.

(a) (b) (c)

Figure 1.7. Of these three graphs, only 1.7a is an interval graph.

In this thesis we study a new model for generating random interval graphs. The most popular

model for generating random graphs is the Erdős-Renyi model [ER59]. In this model, we construct

a graph Gpn, pq with vertex set V “ rns by adding edges independently at random, where for all

vertices i ‰ j, P pij P Eq “ p for some constant p P p0, 1q. Put simply, for every edge ij in the

complete graphKn, we decide whether to add ij toGpn, pq by flipping a weighted coin independently

for each edge.

However, the Erdős-Renyi model is not efficient at generating interval graphs because the prob-

ability that Gpn, pq is an interval graph rapidly approaches 0 as the number of vertices, n, goes to

infinity [CKM79]. Therefore, several other authors have proposed their own models for generating

random interval graphs. The most famous of these models is due to Scheinerman. Scheinerman’s

model, introduced in [Sch88,Sch90] and further analyzed in [DHJ13,JSW90,Ili17], generates a
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random interval graphs with n vertices by generating a random barcode with n bars, B “ trbi, disu,

where each endpoint bi, di is independently chosen from some fixed, continuous probability dis-

tribution on the real line. For example, one could generate 2n-many points, x1, . . . , x2n where

each xi is an independent identically distributed (i.i.d.) uniform r0, 1s random variable, then take

B “ trx2k´1, x2ksunk“1. Note that barcodes generated in this way are almost certainly strict.

1.2. Outline of Our Contributions

1.2.1. The Combinatorial Barcode Lattice. We begin Chapter 2 by introducing a map-

ping from the space of strict barcodes with n bars, Bnst, to certain double occurrence words. This

map is defined as follows. Given a strict barcode B “ trbi, disu
n
i“1, linearly order the birth and death

times then record the sequence of labels. This produces a double occurrence word σB P Lpn, 2q.

To account for potential redundancy from different initial labelings, consider the equivalence class

of σB under combinatorial equivalence, which we denote by rσBs. We let Lpn, 2q{Sn denote the

set of all such equivalence classes and define the map g : Bnst Ñ Lpn, 2q{Sn so that gpBq “ rσBs.

The map g provides a new combinatorial invariant on the space of strict barcodes. Our goal in this

chapter is to study the combinatorial structure of this invariant and to uncover what connections

it has to persistence modules and topological data analysis more broadly.

To that end, recall that an equivalence class rws P Lpn, 2q{Sn has a unique representative w

which is in ascending order. Hence, there is a bijection of sets from Lpn, 2q{Sn to the set of all

words in Lpn, 2q that are in ascending order, which we denote by Lpn, 2q. We call the set Lpn, 2q the

space of combinatorial barcodes with n bars and the elements s P Lpn, 2q combinatorial barcodes.

For example, if B is the strict barcode with 3 bars given by b1 “ 1.5, d1 “ 3.0, b2 “ 1.0, d2 “

2.0, b3 “ 2.5, d3 “ 2.75, then the birth/death times are ordered, b2 ă b1 ă d2 ă b3 ă d3 ă b1, and

σB “ p2 1 2 3 3 1q P Lp3, 2q; we note that some care must be taken when the birth/death times are

not all distinct, see Chapter 2 for details). If the permutation p1 2q P S3, written in cycle notation,

acts on σB the resulting multipermutation is p1 2 1 3 3 2q. Hence, both permutations belong to

the same equivalence class, gpBq “ rσBs and σB “ p1 2 1 3 3 2q.

Although combinatorial equivalence is not a lattice congruence on Lpn, 2q, one can still define

a partial order on Lpn, 2q by simply taking the induced order from Lpn, 2q. In our first main result,
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Theorem 2.2.1, we show that pLpn, 2q,ďq is order-isomorphic to a principal ideal of Lpn, 2q and,

hence, is also a lattice. Figure 1.8, below, depicts a Hasse diagram of pLp3, 2q,ďq.

Theorem 2.2.1. The combinatorial barcode poset pLpn, 2q,ďq is order-isomorphic to the prin-

cipal ideal of the multinomial Newman lattice, Lpn, 2q generated by the “fully nested” permutation:

p1 2 . . . pn´ 1q n n pn´ 1q . . . 2 1q. Consequently, pLpn, 2q,ďq is a lattice.

Figure 1.8. Hasse diagram of pLp3, 2q,ďq. Below each element, w, a barcode is
depicted for which σB “ w, illustrating Theorem 2.3.2.

We then introduce a notion of inversion sets for combinatorial barcodes, which we call inversion

multisets. The inversion multiset of a combinatorial barcode s is the multiset of pairs invmpsq “

tpj, iqaij : 1 ď i ă j ď nu where aij is equal to the number of pairs of indices pk, ℓq such that

sk “ i, sℓ “ j and k ą ℓ.

In Proposition 2.3.1 we show that s ď t in Lpn, 2q if and only if invmpsq Ď invmptq. Hence, one

can define the order ď on Lpn, 2q in terms of the inversion multisets alone, in a manner analogous to

the classic permutohedron. Motivated by this, we further define the notion of the crossing number

of a combinatorial barcode. For s P Lpn, 2q and pj, iq P rns2 with j ą i, the crossing number of
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i and j in s as the multiplicity of pj, iq P invmpsq, which we denote by cross#ps, j, iq, or simply

cross#pj, iq when no confusion may occur. In our next major result, we show that the rank of

s P Lpn, 2q can be computed from the crossing numbers of s.

Theorem 2.3.2. If s P Lpn, 2q is a combinatorial barcode and ρpsq denotes the rank of s in

Lpn, 2q, then ρpsq “
ř

iăj cross#pj, iq.

From the inversion multisets/ crossing numbers, we also introduce a notion of inversion vectors

for combinatorial barcodes (see Definition 2.3.2). Our next major result, Theorem 2.3.1, shows

that the map which sends a combinatorial barcode to its inversion vector is a bijection of sets. As

a corollary, we are able to compute the rank generating function of Lpn, 2q.

Theorem 2.3.1. Let Tn “
śn
i“1r0, 2pn´ iqs. Then the map J : Lpn, 2q Ñ Tn which sends each

combinatorial barcode to its inversion vector is a bijection.

Corollary 2.3.1. For k P r0, 2ns, let ck “ #ts P Lpn, 2q : ρpsq “ ku, i.e., the number of

combinatorial barcodes in Lpn, 2q of rank k. Then,

2n
ÿ

k“0

ckq
k “

n
ź

i“1

`

1 ` q ` ¨ ¨ ¨ ` q2pn´iq
˘

.

We also show that the number of combinatorial barcodes with k distinct elements in their

inversion vectors is given by the second-order Eulerian numbers, which are also known to enumerate

trapezoidal words, Stirling permutations, and plane-recursive trees with certain statistics [Rio76,

GS78,Jan08].

Corollary 2.4.3. Let Cn,k denote the second-order Eulerian numbers defined recursively as

follows:

Cn,k “ kCn´1,k ` p2n´ kqCn´1,k´1.

Then, Cn,k is equal to the number of combinatorial barcodes with n bars, i.e., ascending-order double

occurrence words over rns, with k distinct elements in its inversion vector.

Finally, we show how the cover relations and crossing numbers in Lpn, 2q relate back to per-

sistence modules and topological data analysis. In Propositions 2.5.1 and 2.5.2 we show that the
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cardinality of the fibers of TMB´1 (Equation 1.13) and the set of barcode bases of a persistence

module (Theorem 1.1.4) can also be expressed in terms the crossing numbers of the barcode B.

We also prove the following connection between the cover relations in pLpn, 2q,ďq and the set of

barcode bases of strict persistence modules.

Theorem 2.5.1. Consider two strict persistence modules pV‚, f‚q, pW‚, h‚q. Let B “ trbi, disu
n
i“1,

B1 “ trb1
i, d

1
isu

n
i“1 be the barcodes associated to the interval decomposition of pV‚, f‚q and pW‚, h‚q,

respectively. Assume without loss of generality that B are labeled so that σB “ σB (and likewise for

B1). Suppose σB Ì σB1, so σB and σB1 differ only in swapping an adjacent pair of entries i ă j,

which are in ascending order in σB but inverted in σB1. Then,

BpV‚, f‚q – BpW‚, h‚q ˆ F, if cross#pσB, j, iq “ 0

BpW‚, h‚q – BpV‚, f‚q ˆ F, otherwise.

1.2.2. The Power-k Barcode Lattices. In Chapter 3, we generalize the construction of the

combinatorial barcode lattice by considering a family of maps gk from the space of strict barcodes

with n to equivalence classes of the multinomial Newman lattice Lpn, 2k ` 1q, whose elements are

the multipermutations of t12
k`1, 22

k`1, . . . , n2
k`1u, where k P Zě0. These maps are defined as

follows. Given a strict barcode B and a non-negative integer k, begin by bisecting each bar k-many

times so as to produce 2k sub-intervals. Ordering the endpoints of these sub-intervals produce a

multipermutation fkpBq P Lpn, 2k ` 1q, see Figure 1.9, below.

As before, consider the classes of equivalent words to account for redundancy in the initial

labelings. We denote the set of all such classes by Lpn, 2k ` 1q{Sn and let Lpn, 2k ` 1q denote

the set of ascending order representatives of each class. We let σkpBq denote the ascending order

representative of the equivalence class of fkpBq.

We note that some care must be taken to ensure that bisecting two distinct intervals does not

produce a repeated endpoint, for example, the bars r´2, 2s and r´1, 1s share no endpoints but

share a midpoint at zero. We handle such cases by splitting the bars into not quite equal halves,

as discussed in Chapter 3.
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Figure 1.9. An example barcode B with its associated multipermutations f0pBq “

p1 2 3 1 4 4 2 3q and f1pBq “ p1 2 1 3 1 2 4 4 4 3 2 3q displayed below.

Thus, we have an entire collection of invariants σkpBq associated to barcodes, where σ0pBq

is exactly the combinatorial barcode invariant discussed above. We can define an order relation

on Lpn, 2k ` 1q in the same manner, which we denote by ďk. In Theorem 3.2.1 we show that

pLpn, 2k ` 1q,ďkq retains the graded lattice structure found in the k “ 0 case, and so we call this

poset the power-k barcode lattice.

p1 2 2 2 1 1q

p1 2 2 1 2 1q

p1 2 2 1 1 2q p1 2 1 2 2 1q

p1 2 1 2 1 2q p1 1 2 2 2 1q

p1 2 1 1 2 2q p1 1 2 2 1 2q

p1 1 2 1 2 2q

p1 1 1 2 2 2q

Figure 1.10. Hasse diagram of pLpn, 21 ` 1q,ďkq.
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Theorem 3.2.1. The power k barcode poset pLpn, 2k`1q,ďkq is order-isomorphic to a principal

ideal of the multinomial Newman lattice, Lpn, 2k ` 1q. Consequently, pLpn, 2k ` 1q,ďkq is a lattice.

Note that the invariants σkpBq are nested, in the sense that σkpBq is a substring of σkpBq for

all j ď k. The reason for this is that increasing k adds new endpoints for consideration, but does

not change the relative positions of existing endpoints. Hence, we have the following lemma.

Lemma 3.3.1. Let B1, B2 be strict barcodes with n bars. If σkpB1q “ σkpB1q, then σkpB1q “

σkpB2q for all j ď k.

It follows that increasing k amounts to producing ever more sensitive invariants gkpBq that

capture increasingly nuanced information about the overlaps of pairs of bars. In fact, as k goes

to infinity, the invariants σkpBq completely determine a large class of barcodes up to an affine

transformation.

Theorem 3.3.1. Let B,B1 be strict barcodes with n bars, where B “ trbi, disu
n
i“1 and B1 “

trb1
i, d

1
isu

n
i“1 such that σkpBq “ σkpB1q for all k P N. If the interval graph GB (equivalently GB1) is

connected, then there exist constants α ą 0 and δ P R such that B “ αB1 ` δ, where αB1 ` δ :“

tpαb1
i ` δ, αd1

i ` δq : i P rnsu.

Even when σkpBq “ σkpB1q for only finitely many k, these invariants can still be used to bound

the bottleneck and q-Wasserstein distances between B and B1. Thus, our discrete invariants can

be used to approximate continuous metrics on the space of barcodes.

Theorem 3.3.2. Let B,B1 be strict barcodes with n bars such that σkpBq “ σkpB1q. Suppose

there exists a bar rb˚, d˚s P B (or equivalently in B1) which strictly contains all others, that is to

say b˚ ď bi and d˚ ě di for all i P rns. Then there exist constants α ą 0 and δ P R such that

d8pB,αB1 ` δq ď
|d˚ ´ b˚|

2k
, dqpB,αB

1 ` δq ď pn´ 1q
1
q
|d˚ ´ b˚|

2k
.

Now, recall that the permutohedron Sn is also the face lattice of the polytope

(1.14) PSn “ convtpπ1, . . . , πnq P Rn : π P Snu.
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We show that one may embed Lpn, 2k ` 1q into PS
np2k`1q

by identifying multipermutations in

Lpn, 2k `1q with permutations of the totally ordered set 11 ă 12 ă . . . n1 ă . . . ă n2k`1. This gives

us a new polytope, Pn,k “ convtpπ1, . . . , πnp2k`1qq P Rnp2k`1q : π P Impι ˝ gkqu. We call Pn,k the

power-k barcode polytope.

Because this embedding sends Lpn, 2k ` 1q to a prime-ideal, the polytope Pn,k is an example of

a Bruhat interval polytope.

Definition 1.2.1 ( [TW15]). Let u ď v be permutations in Sn. The Bruhat interval polytope

Qu,v is the convex hull of all permutation vectors pz1, z2, . . . , znq with u ď z ď v.

Note that Pn,k is equal to Qu,v for u “ e P Snp2k`1q and v the “fully nested” permutation

p11 21 . . . n1 n2 . . . n2k`1 pn´ 1q2 . . . 12k 12k`1q.

In [TW15], the authors prove, among other things, the following formula for computing the

dimension of a Bruhat interval polytope. Let u ď v be permutations in Sn, and let C : u “ x0 Ì

x1 Ì . . . Ì xℓ “ v be any maximal chain from u to v. Define a labeled graph GC on rns having

an edge between vertices a and b if and only if xipabq “ xi`1 for some 0 ď i ď ℓ ´ 1. Define

ΠC “ V1, V2, . . . , Vr to be the partition of rns whose blocks Vj are the connected components of

GC . One can show that the number of blocks does not depend on the choice of maximal chain C,

so we let #Πu,v denote the number of blocks, r. The authors then prove the following theorem.

Theorem 1.2.1 ( [TW15]). The dimension of the Bruhat interval polytope Qu,v is pn´#Πu,vq.

From this result, one can easily compute the dimension of the barcode polytopes Pn,k.

Corollary 3.4.1. The dimension of the power-k barcode polytope, Pn,k is np2k ` 1q ´ 2.

1.2.3. Random Interval Graphs for Chronological Sampling Problems. In Chapter

4 we study a new model for generating random interval graphs, or equivalently random barcodes.

The model is motivated by what we call “chronological sampling problems”, where scientists are

recording a series of time-stamped random observations and wish to deduce the support of different

events over a given time period (see Chapter 4 for details).

Our model can be tersely described as follows. Let Y “ tYt : t P r0, T su be a stochastic

process with state space rms and let P “ tt1, t2, ..., tnu be a set of n distinct points in r0, T s with

28



t1 ă t2 ă . . . ă tn. Then let Y “ pY1, Y2, . . . , Ynq be a random vector whose components Yi are

samples from Y where Yi “ Yti , so each Yi takes values rms. For each label i P rms we define the

(possibly empty) interval Inpiq as the convex hull of the points tj for which Yj “ i, i.e., the interval

defined by points colored i. Explicitly Inpiq “ Convpttj P P : Yj “ iuq, and we refer to Inpiq as the

empirical support of label i. Furthermore, because it comes from the n observations or samples, we

call the nerve complex, N ptInpiq : i “ 1, . . .muq, the empirical nerve of Y . As we have shown, the

empirical nerve of Y is fully determined by its 1-skeleton, which is a random interval graph, so we

denote it by GpY, nq.

In this thesis we mainly focus on a special case of this more general model, where we as-

sume that the observations Yt1 , Yt2 , . . . , Ytn are i.i.d. variables. In this case, there exist constants

p1, p2, . . . , pm ě 0 such that
řm
i“1 pi “ 1 and P pYtk “ 1q “ pi for all observations Ytk and all labels

i P rms. We refer to this special case as the stationary case and all other cases as non-stationary.

We prove many results regarding the behaviour of this model in the stationary case, such as

the probability of a particular edge being present and the expected number of edges.

Theorem 4.3.1. Let GpY, nq be the random interval graph generated by the stationary model

described above. Then, for any pair ti, ju, 1 ď i ă j ď m, the probability of event Aij “ tti, ju P

GpY, nqu, i.e., that the edge ti, ju is present in the graph GpY, nq, is given by

P pAijq “ 1 ´ qnij ´

n
ÿ

k“1

ˆ

n

k

˙„ˆ

2
k´1
ÿ

r“1

pri p
k´r
j

˙

` pki ` pkj

ȷ

qn´k
ij ,

where qij “ 1 ´ ppi ` pjq.

When pi “ 1
m for all i P rms, then P pAijq “ 1 ´

2npm´1qn´1`pm´2qn

mn .

Corollary 4.3.1. Let GpY, nq be the random interval graph generated by the stationary model

described above. Additionally, let X be the random variable equal to the number of edges in the

random interval graph GpY, nq. Then,

EX “
ÿ

1ďiăjďm

1 ´ qnij ´

n
ÿ

k“1

„ˆ

n

k

˙ˆ

2
k´1
ÿ

r“1

pri p
k´r
j

˙

` pki ` pkj

ȷ

qn´k
ij ,
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where qij “ 1 ´ ppi ` pjq. In the uniform case where pi “ 1
m for all i P rms, this expectation equals

ˆ

m

2

˙ˆ

1 ´
2npm´ 1qn´1 ` pm´ 2qn

mn

˙

.

The also prove the following lower bound on the probability of finding an interval intersecting

all others, i.e., that the maximum degree DegpGpY, nqq of GpY, nq is m´1. In the following theorem

we let X n
m,k denote the set of weak-compositions of n with length m containing exactly k-many non-

zero parts [Sta11, p. 25]. Formally, X n
m,k “ tpx1, ..., xmq P Změ0 :

řm
i“1 xi “ n, |txi : xi ‰ 0u| “ ku.

Also let Mpxq “
px1`x2`...`xmq!
x1!x2!...xm!

śm
i“1 p

xi
i denote the multinomial distribution applied to the vector

x P X n
m,k considering the associated probabilities p1, p2, ..., pm. Finally, let Skn denotes the Stirling

numbers of the second kind [Sta11, p. 81].

Theorem 4.3.2. Let GpY, nq be the random interval graph generated by the stationary model

described above. Then, maximum degree of GpY, nq satisfies

P pDegpGpY, nqq “ m´ 1q ě max
r

tr1 ´

m´1
ÿ

k“1

kr

mr

ˆ

m

k

˙

ÿ

xPX r
m,k

Mpxqpm´ kqrpr˚sr
ÿ

xPXn´2r
m,m

Mpxqsu.

Moreover, in the uniform case where pi “ 1
m for all i P rms, we have that

P pDegpNnq “ m´ 1q ě max
r

tr1 ´
m!

m2r

m´1
ÿ

k“1

pm´ kqr

pm´ kq!
Skr s, r

m!

mn´2r
Smn´2rsu.

We also derive the following lower bound on the expected clique number of Nn, i.e., the size of

the largest clique in the graph.

Theorem 4.3.3. Let GpY, nq be the random interval graph generated by the stationary model

described above. Additionally, let ω be the random variable equal to the clique number of GpY, nq.

Then,

E ω ě
m
ř

i“1
p1 ´ q

rn
2

s

i ´ q
n´rn

2
s`1

i ` qni q

where qi “ 1 ´ pi. Moreover, in the uniform case where pi “ 1
m for all i P rms, we have that

E ω ě m´
`

m´1
m

˘rn
2

s
´
`

m´1
m

˘n´rn
2

s`1
`
`

m´1
m

˘n
.

Note that as the number of samples n grows large, Theorem 4.3.3 implies that the expected

clique number E ω Ñ m. Since ω only takes values in t1, . . . ,mu it follows that the clique number
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also converges to m in probability. Thus, as n goes to infinity, the probability that the nerve of

the observations is the pm ´ 1q-simplex denoted by ∆m´1, i.e., a complete graph, goes to 1. The

following theorem provides a lower bound on this convergence.

Theorem 4.4.1. Let GpY, nq be the random interval graph generated by the stationary model

described above. Then, the probability that GpY, nq is isomorphic to the complete graph Km satisfies

P pGpY, nq – Km´1q ě p
ÿ

xPX
t n2 u

m

Mpxqq2

where X tn
2

u
m “ tpx1, x2, ..., xmq P Nm :

řm
i“1 xi “ tn2 uu.

In the uniform case where pi “ 1
m for every i P rms, this gives that

P pGpY, nq – Kmq ě

ˆ

m!

mtn
2

u
Smtn

2
u

˙2

where, again, Skn denotes the Stirling numbers of the second kind.

Theorem 4.4.1 tells us how likely it is for the empirical nerve of n samples to form the pm´ 1q-

simplex for fixed n. A related question asks what is the first observation n for which this occurs,

i.e., if we have a sequence of observations Y1, Y2, . . . what is the least n such that GpY, nq – Km?

We call this quantity the waiting time to form the pm ´ 1q-simplex and provide an upper bound

on its expectation, below.

Theorem 4.4.2. Let Y “ Y1, Y2, . . . be a sequence i.i.d. random variables such that P pYj “

iq “ pi ą 0 for all i P rms. For n P N, let GpY, nq denote the empirical nerve produced by the first

n variables, Y1, . . . , Yn, as in the stationary model described above. Let X be the random variable

for the waiting time until GpY, nq – Km, explicitly X “ inftn P N : GpY, nq – Kmu. Then,

EX ď 2

ż 8

0

´

1 ´

m
ź

i“1

p1 ´ e´pixq

¯

dx.

Moreover, in the uniform case, where pi “ 1
m for all i P rms, we have that

EX ď 2m
m
ÿ

i“1

1

i
.
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CHAPTER 2

The Combinatorial Barcode Lattice

Our goal in this chapter is to develop a new combinatorial invariant for barcodes which is capable

of recording all possible arrangements of bars. We accomplish this by defining a map from the space

of strict barcodes with n bars, Bnst, to a set of equivalence classes of certain multipermutations. We

note that chapter contains proofs of the main contributions outlined in Section 1.2.1, as well as

additional results.

2.1. The Space of Combinatorial Barcodes

Definition 2.1.1. Let B “ trbi, disu
n
i“1 be a strict barcode and let Tn be the set of symbols

tx1, y1, . . . , xn, ynu. Then, the relation ĲB on Tn is given by,

yi ĲB yj ðñ di ď dj ,(2.1)

yi ĲB xj ðñ di ă bj ,(2.2)

xi ĲB yj ðñ bi ď dj ,(2.3)

xi ĲB xj ðñ pbi ă bjq or pbi “ bj and di ď djq.(2.4)

Put simply, the relation ĲB orders a set of label Tn according to the ordering of the endpoints

in B, with some rules governing ties between birth and death times (2.3) or two birth times (2.4);

note that since B is assumed to be strict, it is not possible for two bars to share a death time. In

fact, this relation defines a total ordering of Tn.

Lemma 2.1.1. Let B “ trbi, disu
n
i“1 be a strict barcode with n bars and let Tn be the set of

symbols tx1, y1, . . . , xn, ynu. Then the poset pTn,ĲBq is totally ordered.
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Proof. One can easily verify that ĲB is reflexive and anti-symmetric. It is also clear that

pT,ĲBq is strongly-connected, i.e., any two elements are comparable. Thus, we only have left to

show that ĲB is transitive. Let a, b, c P T with a ĲB b and b ĲB c. Now, proceed by cases:

(1) If a “ yi, b “ yj , c “ yk, then di ď dj ď dk. Hence, yi ĲB yk and a ĲB c.

(2) If a “ yi, b “ yj , c “ xk, then bi ď dj ă bk. Hence, yi ĲB xk and a ĲB c. By the same

logic, if exactly one of a, b, c is of the form xi, then again a ĲB c.

(3) If a “ yi, b “ xj , c “ xk, then di ă bj ď bk. Hence, yi ĲB xk and a ĲB c. By the same

logic, if exactly one of a, b, c is of the form xi, then again a ĲB c.

(4) If a “ xi, b “ xj , c “ xk, then

i If bi ă bj or bj ă bk then bi ă bk. Hence, xi ĲB xk and a ĲB c.

ii Otherwise, bi “ bj “ bk and di ď dj ď dk. Hence, xi ĲB xk and a ĲB c.

□

Now, let B “ trbi, disu
n
i“1 be a strict barcode. If we linearly order the elements in Tn with respect

to ĲB, then the indices of the symbols produce a multipermutation (equivalently, a double occur-

rence word) σB P Lpn, 2q. Recall, Lpn, 2q denotes the the multinomial Newman lattice Lp2, . . . , 2q

whose elements are the multipermutations of the multiset t12, . . . , n2u, or equivalently, the set of

double occurrence words over rns where each symbol i P rns appears exactly twice. For example, if B

is the strict barcode with 3 bars given by b1 “ 1.0, d1 “ 2.0, b2 “ 1.0, d2 “ 3.0, b3 “ 2.5, d3 “ 2.75,

then T3 is ordered,

x1 ŸB x2 ŸB y1 ŸB x3 ŸB y3 ŸB y2,

and hence σB “ p1 2 1 3 3 2q P Lp3, 2q.

Now, let f : Bnst Ñ Lpn, 2q denote the map given by fpBq “ σB. The map f provides a

new combinatorial invariant on the space of strict barcodes with n bars by associating a double

occurrence word to each barcode. However, one issue with this invariant is that the map f is highly

dependent on the given labeling of the bars. For example, consider the strict barcode B2 given by:

b2 “ 1.0, d2 “ 2.0, b1 “ 1.0, d1 “ 3.0, b3 “ 2.5, d3 “ 2.75. Clearly, B2 is the same barcode as B1

from the prior example, except that the labels of bars 1 and 2 have been swapped. As a result,
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fpB1q “ p1 2 1 3 3 2q while fpB2q “ p2 1 2 3 3 1q. We would like our invariant to be the same for

any two barcodes that are equal up to some such relabeling.

To that end, consider the combinatorial equivalence class of σB, denoted rσBs. Recall, we say

two multipermutations σ1, σ2 P Lpn, 2q are combinatorially equivalent if there exists a permutation

τ P Sn such that τ ˝ σ1 “ σ2, where τ ˝ σ1 indicates that τ acts element-wise on σ1. When this

is the case we write σ1 ” σ2. For example, p1 2q ˝ σB1 “ σB2 , for B1, B2 as above and p1 2q the

permutation in S3 written in cycle notation. Hence, σB1 ” σB2 . We let rσs denote the equivalence

class of σ and let Lpn, 2q{Sn denote the set of equivalence classes, trσs : σ P Lpn, 2qu. These

equivalence classes allow us to define an equivalence relation on Bn
st which we call combinatorial

equivalence for barcodes. One can verify that the following relation is reflexive, symmetric, and

transitive.

Definition 2.1.2. Let B1, B2 P Bnst. Let g : Bnst Ñ Lpn, 2q{Sn denote the map given by

gpBq “ rσBs. We say B1, B2 are combinatorially equivalent if and only if gpB1q “ gpB2q.

The equivalence class gpBq “ rσBs defines a new combinatorial invariant on the space of strict

barcode with n bars. However, unlike the permutation invariant πB studied in [KGH20,CDG`21,

BG22], the set of equivalence classes Lpn, 2q{Sn does not have an easily interpretable algebraic

structure. Moreover, because the relation ” does not define a lattice congruence on Lpn, 2q, this

set is not a quotient lattice as defined in Definition 1.1.14. Therefore, we must ask the following

questions:

(1) What is the algebraic or combinatorial structure of Lpn, 2q{Sn?

(2) How does the structure of this space relate back to barcodes and/or persistence modules?

The remainder of this chapter is devoted to answering these questions.

2.2. Ordering Combinatorial Barcodes

Although combinatorial equivalence is not a lattice congruence, Lpn, 2q{Sn can still be endowed

with a partial order, which is inherited from Lpn, 2q, by selecting representatives of each equivalence

class in a suitable manner. Recall that a multipermutation σ P Lpn, 2q is in ascending order if

1, 2, . . . , i ´ 1 appear before the first instance of i in σ, for all i P rns, i.e., if the first copy of 1
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appears before the first copy of 2, which appears before the first copy of 3, and so on. For example,

the word p1 2 1 3 2 3q is in ascending order while the equivalent word p1 3 1 2 3 2q is not.

Now, let w P Lpn, 2q. One can find an ascending order word w P rws as follows. Let τw be the

substring of w given by the first occurrence of each element; when w “ σB for some barcode B, τw

this is the string of the labels of the birth times. Now consider τw as a permutation in Sn. Then,

the action of τ´1
w on w relabels w so that the birth times now appear in ascending order and we

may take w “ τ´1
w ˝w. For example, if w “ p2 1 4 1 3 3 2 4q P Lpn, 2q we have that τw “ p2 1 4 3q

and so τ´1
w ˝ w “ p1 2 3 2 4 4 1 3q.

Note that if s, t P rws, then τ´1
s ˝ s “ τ´1

t ˝ t. Hence, each equivalence class has a unique

member which is in ascending order. Therefore, the map ψ : Lpn, 2q{Sn Ñ Lpn, 2q given by

ψprssq “ s, which sends each equivalence class rss to its ascending order representative s, is well

defined. In particular, ψ is a bijection of sets between Lpn, 2q{Sn and Lpn, 2q, the set of all words in

Lpn, 2q which are in ascending order. Hence, two strict barcodes B1, B2 P Bn
st are combinatorially

equivalent if and only if σB1 “ σB2 . For that reason, we may treat the sets Lpn, 2q{Sn and Lpn, 2q

interchangeably.

Definition 2.2.1. The combinatorial barcode poset is the induced subposet pLpn, 2q,ďq of the

multinomial Newman lattice pLpn, 2q,ďq, where ď denotes the weak order. A double occurrence

word σ P Lpn, 2q is called a combinatorial barcode.

Now, recall that the relation ď on the multinomial Newman lattice is itself defined using the

embedding ι : Lpmq ãÑ SS . Hence, for all s, t P Lpn, 2q we have that ,

(2.5) s ď t ðñ invpιpsqq Ď invpιptqq.

The roles of f, g, ψ, ι and the equivalence relation ” are summarized in the diagram (2.6), below.

Here, we let Σ denote the quotient map that sends each word w P Lpn, 2q to its equivalence class

rws. By abuse of notation we also let ι denote both the inclusion map from Lpn, 2q to Lpn, 2q

and the inclusion map from Lpn, 2q to SS . We emphasize that this diagram is not commutative,
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although it is the case that Σ ˝ f “ g.

(2.6)

Bnst

Lpn, 2q{Sn Lpn, 2q SS

Lpn, 2q

ι

ι

ψ

Σ

fg

Our first main result is that the combinatorial barcode poset, Lpn, 2q, is order-isomorphic to a

principal ideal of the multinomial Newman lattice Lpn, 2q and, hence, is a lattice. Therefore, we

also refer to Lpn, 2q as the combinatorial barcode lattice.

Theorem 2.2.1. The combinatorial barcode poset pLpn, 2q ďq is order-isomorphic to the prin-

cipal ideal of the multinomial Newman lattice, Lpn, 2q generated by the “fully nested” permutation:

p1 2 . . . pn´ 1q n n pn´ 1q . . . 2 1q. Consequently, pLpn, 2q,ďq is a lattice.

Proof. Let α “ p1 2 . . . n n . . . 2 1q P Lpn, 2q and let Ipαq denote the principal ideal

generated by α in Lpn, 2q. We wish to show that Lpn, 2q “ Ipαq. To begin, note that α is in

ascending order so α P Lpn, 2q. We claim α is maximal in pLpn, 2q,ďq. Indeed, observe that every

pair of distinct integers in α are inverted with the exception of the first occurrences of each integer,

which are required to be appear in ascending order for all words Lpn, 2q. Since the relation ď is

induced by inversions in ιpαq, it follows that α is maximal. Thus, Lpn, 2q Ď Ipαq.

To prove the reverse inclusion, let s P Ipαq and let τs P Sn be the permutation given by

the string of the first occurrences of each integer in s. Recall that the map ψ : Lpn, 2q{Sn Ñ

Lpn, 2q which sends each equivalence class to its unique ascending order representative is defined

as ψprssq “ τ´1
s ˝ s. Assume for the sake of contradiction that τs is not the identity permutation,

then it follows that there exists a pair i ă j for which the first copy of j appears before the first

copy of i in s. Hence, pj1, i1q P invpιpsqq. However, s ď α implies that invpιpsqq Ď invpιpαqq and

pk1, ℓ1q R invpιpαqq for any k ą ℓ. Hence, we have a contradiction. Therefore it must be the case

that τs “ Idn and, hence, s is in ascending order and so s P Lpn, 2q. Thus, Ipαq Ď Lpn, 2q, as

desired. □
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Figure 2.1. Hasse diagram of pLp3, 2q,ďq. Below each element, s, a barcode is
depicted for which gpBq “ s, illustrating Proposition 2.3.2.

2.3. Inversion Multisets and Barcode Crossing Numbers

A remarkable property of the combinatorial barcode lattice Lpn, 2q is that it admits an elegant,

alternate construction based directly on inversions in the double occurrence words that does not

require first “translating” to the symmetric group via the embedding ι.

Definition 2.3.1. Let s P Lpn, 2q be a double occurrence word. Then, the inversion multiset

of s is the multiset of pairs invmpsq “ tpj, iqaij : 1 ď i ă j ď nu where aij is equal to the number

of pairs of indices pk, ℓq such that sk “ i, sℓ “ j and k ą ℓ.

Put simply, the inversion multiset has as elements the pairs pj, iq, i ă j, with multiplic-

ity equal to the number of pairs of i’s and j’s that appear out of order in s. For example,

invmpp1 2 3 2 4 4 1 3qq “ tp2, 1q2, p3, 1q1, p4, 1q2, p3, 2q1, p4, 3q2u.

Now, for s, t P Lpn, 2q, write s ĺ t if invmpsq Ď invmptq; recall, given multisetsA “ txa11 , . . . , x
an
n u,

B “ txb11 , . . . , x
bn
n u we say that A Ď B if and only if ai ď bi for all i P rns.

Proposition 2.3.1. For s, t P Lpn, 2q, we have that s ĺ t ðñ s ď t.
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Proof. Let s P Lpn, 2q{Sn and let pj, iq be an element in invmpsq with multiplicity k. Recall

that since s is in ascending order, the first copy of i appears before the first copy of j for all i ă j.

Therefore, the copies of i, j must appear according to one of three patterns:

p1q i . . . i . . . j . . . j, p2q i . . . j . . . i . . . j, p3q i . . . j . . . j . . . i .

It follows that k P t0, 1, 2u, specifically, k “ 0 when s contains pattern (1), k “ 1 when s contains

pattern (2), and k “ 2 when s contains pattern (3).

Now, let Aij “ tpj1, i1q, pj2, i1q, pj1, i2q, pj2, i2qu be the set of all possible inversions involving i

and j in ιpsq, which is a permutation of the set S “ t11, 12, 21, 22, . . . , n1, n2u. It follows that,

invpιpsqq XAij “

$

’

’

’

’

’

&

’

’

’

’

’

%

H , k “ 0

tpj1, i2qu , k “ 1

tpj1, i2q, pj2, i2qu , k “ 2

.

Now suppose s ĺ t, for some t P Lpn, 2q. Then, pj, iq P invmptq with multiplicity ℓ and necessarily

ℓ ě k. As a result, pinvpιpsqq XAijq Ď pinvpιptqq XAijq. Applying this argument to all elements in

invmpsq, it follows that invpιpsqq Ď invpιptqq. Thus, ιpsq ďW ιpsq and hence s ď t.

Moreover, this argument is reversible in the sense that we can deduce the multiplicity of pj, iq P

invmpsq from invpιpsqq XAij . Thus, we also have that if s ď t, then s ĺ t, as desired. □

Remark 2. We note that the key to Proposition 2.3.1, above, is the fact that the inversion

multisets of elements in Lpn, 2q are in one-to-one correspondence with the inversion sets of those

elements after embedding them in SS . This is not true for general multipermutations in Lpn, 2q.

For example, p1 2 2 1q and p2 1 1 2q both have the inversion multiset tp2, 1q2u but their inversion sets

are tp21, 12q, p22, 12qu and tp21, 11q, p21, 12qu, respectively. Hence, we cannot use inversion multisets

to define the ordering of Lpn, 2q; this construction is only valid on the ascending order words in

Lpn, 2q.

Now, let s P Lpn, 2q and let pj, iq P rns2 with j ą i. We define the crossing number of i and j

in s as the multiplicity of pj, iq P invmpsq and denote it cross#ps, j, iq, or simply cross#pj, iq when

no confusion may occur. The name come from the fact that if s “ σB for some strict barcode
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B “ trbi, disu
n
i“1, then the crossing numbers of s have a natural interpretation in terms of the bars

in B: cross#pσB, j, iq equals 0 if the bars rbi, dis and rbj , djs (labeled by ascending birth time) are

disjoint, 1 if they are stepped, or 2 if they are nested, i.e.,

(2.7) cross#pj, iq “

$

’

’

’

’

&

’

’

’

’

%

0, if di ă bj (disjoint)

1, if bi ď bj ď di ă dj (stepped)

2, if bi ă bj ă dj ă di (nested)

.

(a) Disjoint bars. (b) Nested bars.

(c) Two pairs of stepped bars.

Figure 2.2. A representation of all possible arrangements of a pair of bars in
a strict barcode. The arrangement type determines the crossing number of their
corresponding symbols in σB.

Proposition 2.3.2. Let s P Lpn, 2q be a combinatorial barcode and let ρpsq denote the rank of

s in Lpn, 2q. Then,

ρpsq “
ÿ

iăj

cross#pj, iq.

Proof. The result follows immediately from the observation that |invmpsq| “ | invpιpsqq| “

ρpsq, where elements are counted with multiplicity in the inversion multiset. □

Recall that the inversions in a permutation π P Sn can be recorded as a vector νpπq where

νpπqi “ #tpa, iq P invpπqu. We can generalize this construction to combinatorial barcodes by

defining the inversion vector of s P Lpn, 2q.

Definition 2.3.2. Let s P Lpn, 2q be a double occurrence word. The inversion vector of s is

the vector µpsq P Zn where µpsqi “
ř

jąi aij , where aij denotes the multiplicity of pj, iq in invmpsq.
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Put simply, the i-th component of µpsq is the number of inversions in s where i is the smaller

(right) element (counting multiplicity). It is a well-known result that the map which sends per-

mutations π P Sn to their inversion vectors νpπq P
śn
i“1r0, n ´ is, where r0, ks “ t0, 1, . . . , ku, is a

bijection of sets. Hence, a permutation π P Sn is completely determined by its inversion vector. In

the following theorem, we show this is also the case for combinatorial barcodes.

Theorem 2.3.1. Let Vn “
śn
i“1r0, 2pn´ iqs. Then the map J : Lpn, 2q Ñ Vn which sends each

combinatorial barcode to its inversion vector is a bijection.

Proof. Let x “ px1, . . . , xnq P Vn. The following algorithm describes how to construct J´1pxq

by building it “backwards” from n to 1. Step 0: Begin by writing the word with just two copies of

n. Step 1: Insert two copies of n´ 1 by placing the first copy to the left of the current word and

the second copy so that xn´1-many terms of the current word are to the left of it. For example, if

xn´1 “ 2, then the second copy of n ´ 1 would go on the far-right, so both copies of n are to the

left of it. Step k: Repeat the process above until termination. At each step insert one copy of k

to the left of the current word and insert the second copy so that xn´k terms of the current word

are to its left.

For example, if x “ p2, 0, 12, 5, 2, 3, 0, 1, 0q then we construct J´1pxq in the following manner:

9 9

8 9 8 9

7 7 8 9 8 9

6 7 7 8 6 9 8 9

5 6 7 7 5 8 6 9 8 9

4 5 6 7 4 7 5 8 6 9 8 9

3 4 5 6 7 4 7 3 5 8 6 9 8 9

2 3 4 5 6 7 4 7 3 5 8 6 9 2 8 9

1 2 3 1 4 5 6 7 4 7 3 5 8 6 9 2 8 9.
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Note that by construction the number of terms j ą i appearing between the two copies of i in

J´1pxq is exactly xi for each i P rns. Therefore, this process is the inverse of J and, hence, J is a

bijection. □

Corollary 2.3.1. Let ck “ #ts P Lpn, 2q : ρpsq “ ku, i.e., the number of combinatorial

barcodes in Lpn, 2q of rank k, where k is a non-negative integer. Then,

8
ÿ

k“0

ckq
k “

n
ź

i“1

`

1 ` q ` ¨ ¨ ¨ ` q2pn´iq
˘

.

Proof. Note that from Proposition 2.3.2 and Theorem 2.3.1 ρpsq “
řn
i“1 µpsqi. Therefore,

8
ÿ

k“0

ckq
k “

ÿ

sPLpn,2q

qρpsq “

2pn´1q
ÿ

a1“0

2pn´2q
ÿ

a1“0

. . .
0
ÿ

an“0

qa1`a2¨¨¨`an

“

ˆ 2pn´1q
ÿ

a1“0

qa1
˙ ˆ 2pn´2q

ÿ

a1“0

qa2
˙

. . .

ˆ 0
ÿ

an“0

qan
˙

“

n
ź

i“1

`

1 ` q ` ¨ ¨ ¨ ` q2pn´iq
˘

.

□

From Theorem 2.3.1, it is clear that we can identify combinatorial barcodes in Lpn, 2q with

the integer lattice points in the polytope An “ tx P Rn´1 : 0 ď xi ď 2pn ´ iq @i P rn ´ 1su by

associating each multipermutation with its corresponding inversion vector (see Figures 2.3 and 2.4,

below). Upon examination, we see that Lpn, 2q is a sublattice of the integer lattice in An formed

by removing a few edges.

2.4. Connections to Trapezoidal Words, Stirling Permutations,

& Second-Order Eulerian Numbers

In this section, we take a digression to discuss connections between the space of combinatorial

barcodes and several related objects in combinatorics.

Recall that the q-analogue of the non-negative integer n is the polynomial rnsq “
1´qn

1´q “

1 ` q ` ¨ ¨ ¨ ` qn´1. From this, one can form the q-analogues of other quantities; for example, the

q-analogue of n! is defined to be rn!sq “ r1sq ¨ r2sq ¨ ¨ ¨ ¨ ¨ rnsq. We note that the right hand side
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Figure 2.3. The graph of integer lattice points in P3 with edges corresponding to
cover relations in pLp3, 2qu,ďq and node colors corresponding the rank of their asso-
ciated multipermutation. Note that this graph is isomorphic to the Hasse diagram
of pLp3, 2qu,ďq in Figure 2.1.
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Figure 2.4. Hasse diagram of pLp4, 2qu,ďq. We note that this diagram is an “al-
most” isometric projection of the integer lattice points in A4.
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in Corollary 2.3.1 is the q-analogue of the product of the first n odd numbers, denoted p2n ´ 1q!!,

which is precisely the cardinality of Lpn, 2q (this follows from Theorem 2.3.1 by computing |Vn|).

It is a well known result that the quantity p2n´1q!! also counts the number of trapezoidal words

of length n [Rio76], the number of Stirling permutations over rns [GS78], and the number of plane

recursive trees with n` 1 vertices [Jan08].

Definition 2.4.1 ( [Rio76]). A trapezoidal word is an element of the Cartesian product Tn “

r1sˆr3sˆ¨ ¨ ¨ˆr2n´1s, or equivalently, a word w “ pw1 w2 . . . wnq over r2n´1s with the property

that 1 ď wi ď 2i´ 1 for all i P rns.

Definition 2.4.2 ( [GS78]). A Stirling permutation is a double occurrence word w P Lpn, 2q

with the property that if j appears between the two copies i in w, then j ą i, for all i P rns. We

denote the set of Stirling permutations over n by Qn.

Definition 2.4.3 ( [Jan08]). A plane recursive tree is a rooted, ordered tree obtained by

starting with the root and recursively adding leaves to the tree. The root is labeled 0 and the

vertices are labeled 1, 2, . . . in the order in which they are added. Thus, a plane recursive tree with

n`1 vertices is a labeled, rooted plane tree (with labels 0, 1, . . . , nq where the labels increase along

each branch as we travel from the root.

For example, T2 “ tp1, 1q, p1, 2q, p1, 3qu, Qn “ tp1 1 2 2q, p1 2 2 1q, p2 2 1 1qu. and the three

plane recursive trees with 3 vertices are depicted in Figure 2.5, below.

Figure 2.5. The three plane recursive trees with 3 vertices. We note that the
second and third trees are distinct because plane recursive trees are oriented, i.e.,
the left-to-right order of vertices matters.
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All three objects have connections to the second-order Eulerian numbers, Cn,k, defined recur-

sively as follows:

(2.8) Cn,k “ kCn´1,k ` p2n´ kqCn´1,k´1.

The numbers Cn,k count the number of words of length n with k distinct elements [Rio76], the

number of Stirling permutations over rns with k descents [GS78], and the number of plane recursive

trees with n`1 vertices and k leaves [Jan08]. Recently, there has been much interest in developing

bijections between these objects that preserve these and other statistics [Jan08,MQYY23,Liu23].

Theorem 2.3.1 provides a natural bijection between combinatorial barcodes (ascending order

double occurrence words) and trapezoidal words; note that each inversion vector µpsq corresponds

to a unique trapezoidal words after adding 1 to each entry. We can also link combinatorial barcodes

to Stirling permutations via a similar bijection. We first require the following definition.

Definition 2.4.4. Let s P Lpn, 2q be a double occurrence word. The left-inversion vector of s

is the vector µLpsq P Zně0 where µLpsqj “
ř

iăj aij , where aij denotes the multiplicity of pj, iq in

invmpsq.

Put simply, the j-th component of µpsq is the number of inversions in s where j is the larger

(left) element (counting multiplicity). The following theorem shows that there is a one-to-one

correspondence between Stirling permutations and their left-inversion vectors.

Theorem 2.4.1. Let Un “
śn
i“1t0, 2, 4, . . . , 4pi´1qu. Then the map H : Qn Ñ Un which sends

each Stirling permutation to its left-inversion vector is a bijection.

Proof. Let x “ px1, . . . , xnq P Un. The following algorithm describes how to construct H´1pxq

by building it “forwards” from 1 to n. Step 1: Begin by writing the word with just two copies of

1. Step k: Insert kk into the current word so that xk
2 elements of the current word are to its right.

Repeat this process until termination.
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For example, if x “ p0, 2, 4, 0, 12, 8, 2, 24, 6q then we construct H´1pxq in the following manner:

1 1

1 2 2 1

1 2 3 3 2 1

1 2 3 3 2 1 4 4

1 2 5 5 3 3 2 1 4 4

1 2 5 5 3 3 6 6 2 1 4 4

1 2 5 5 3 3 6 6 2 1 4 7 7 4

1 2 8 8 5 5 3 3 6 6 2 1 4 7 7 4

1 2 8 8 5 5 3 3 6 6 2 1 4 9 9 7 7 4

Note that by construction the number of inversions in H´1pxq where j is larger element is precisely

xj for all j P rns. Hence, this process is the inverse of H and thus H is a bijection. □

Remark 3. We note that the mapping H´1 described in Theorem 2.4.1 is similar but distinct

from the bijection between Stirling permutations and inversion sequences introduced in [Liu23].

The main advantage of Liu’s bijection is that it generalizes to k-Stirling permutations (Stirling

permutations with more than 2 copies of each integer) and it preserves some desired statistics that

ours does not. The main advantage of our bijection is that it allows us to define another bijection

between Stirling permutations and combinatorial barcodes which preserves the number of inversions

up to a factor of 2 (see Corollary 2.4.1, below).

Taking Theorems 2.3.1 and 2.4.1 together, we can produce a natural bijection between combi-

natorial barcodes in Lpn, 2q and the Stirling permutations Qn.
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Corollary 2.4.1. Let J,H be the bijections from Theorems 2.3.1 and 2.4.1, respectively. Then

the map φ : Lpn, 2q Ñ Qn given by,

φpsq “ H´1p2pJpsqqRq,

is a bijection, where if x “ px1, . . . , xnq is a vector then xR the reversal of x, pxn, xn´1, . . . , x1q.

Moreover, | invmpφpsqq| “ 2| invmpsq|.

Proof. Note that if x P
śn
i“1r0, 2pn´iqs then 2xR P

śn
i“1t0, 2, 4 . . . , 4pi´1qu and this mapping

is a bijection. Hence φ is a bijection. Finally, recall that the cardinality of the inversion multiset of

a double occurrence is equal to the sum of the components of its inversion vector, or equivalently,

its left-inversion vector. Thus, | invmpφpsqq| “ 2| invmpsq|. □

The map φ from Corollary 2.4.1 can be described in a simple manner as follows. For each

combinatorial barcode with rns bars, compute its inversion vector then scale it by 2 and reverse

it. This produces an inversion vector which corresponds uniquely to a Stirling permutation over

rns. Moreover, this map is particularly natural because it preserves the cardinality of the inversion

multisets up to a factor of 2.

We note that although φ preserves the cardinality of the inversion multisets up to a factor of 2,

it does not necessarily preserve which pairs are inverted. For example, if s “ p1 2 1 3 2 3q P Lpn, 2q,

then invmpsq “ tp2, 1q1, p3, 2q1u and µpsq “ p1, 1, 0q. Reversing this vector and scaling by 2 yields

p0, 2, 2q and then taking the inverse of this vector under H as in Theorem 2.4.1 produces the Stirling

permutation φpsq “ p1 2 2 3 3 1q. Although µLpφpsqq “ p0, 2, 2q, the pairs of inverted elements do

not match since invmpφpsqq “ tp2, 1q2, p3, 1q2u.

The map φ allows us to prove the following combinatorial identities involving the generating

function of the number of Stirling permutations over rns with k-many inversions.

Corollary 2.4.2. Let bk “ #tw P Qn : | invmpwq| “ ku, i.e., the number of Stirling permuta-

tions over rns with k inversions, where k is a non-negative integer. Then,

(2.9)
8
ÿ

k“0

bkq
k “

n
ź

i“1

`

1 ` q2 ` q4 ` ¨ ¨ ¨ ` q4pi´1q
˘

,
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and equivalently,

(2.10)
8
ÿ

k“0

b2kq
k “

n
ź

i“1

`

1 ` q1 ` q2 ` ¨ ¨ ¨ ` q2pn´iq
˘

.

Proof. Equation 2.9 follows from Theorem 2.4.1 by observing that | invmpwq| is equal to the

sum of the components of its left-inversion vector and following the approach in Corollary 2.3.1.

Equation 2.10 follows directly from Corollaries 2.3.1 and 2.4.1. □

From Corollary 2.4.1, we also have a new interpretation of Cn,k in terms of inversion vectors of

combinatorial barcodes.

Corollary 2.4.3. Let Cn,k denote the second-order Eulerian numbers defined recursively as

follows:

Cn,k “ kCn´1,k ` p2n´ kqCn´1,k´1.

Then, Cn,k is equal to the number of combinatorial barcodes with n bars, i.e., ascending-order double

occurrence words over rns, with k distinct elements in its inversion vector.

Proof. The result follows immediately from Theorem 2.3.1 after noting that the set
śn
i“1r0, 2pn´

iqs is in bijection with the set of trapezoidal words Tn after adding 1 to each component (note that

this mapping preserves the number of distinct elements). □

Now, recall that if w “ pw1 w2 . . . wlq is a word over rns, an index i P rls is called a descent if

wi ą wi`1, where we set wl`1 “ 0 so that wl is always a descent [GS78]. We let despwq denote the

set of descents of w. For example, if w “ p1 3 3 2 2 1q then the indices desw “ t3, 5, 6u are descents.

As we mentioned, the second-order Eulerian numbers Cn,k count the number of trapezoidal words

with k distinct elements and the number of Stirling permutations with k descents. Naturally, we

wonder whether the number of distinct elements in the left-inversion vector of a Stirling permutation

w is equal to the number of descents in w, i.e., if the relevant statistics for Stirling permutations

and trapezoidal words are preserved under the bijection H from Theorem 2.4.1. Unfortunately,

this is not the case. Consider w “ p2 2 1 3 4 4 3 1q P Q4. Then despwq “ t2, 6, 7, 8u while

µLpwq “ p0, 4, 2, 4q, which has only 3 distinct components.
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2.5. Connections to Barcode Bases and TMD

Recall our two motivating questions from earlier in the chapter:

(1) What is the algebraic or combinatorial structure of Lpn, 2q{Sn (equivalently, Lpn, 2q)?

(2) How does the structure of this space relate back to barcodes and/or persistence modules?

So far, we have mainly focused on the first question. In particular, we showed that Lpn, 2q{Sn

has a natural bijection to the set of combinatorial barcodes Lpn, 2q and then studied this space as

an induced subposet of Lpn, 2q. We found that Lpn, 2q is a principal ideal of Lpn, 2q and, hence,

is a lattice. We also developed an alternate construction for Lpn, 2q based on a new notion of

inversion multisets and used this construction to prove, among other things, a formula for the rank

generating function of Lpn, 2q.

We now turn our attention to the second question. We have already shown that the crossing

numbers of a combinatorial barcode σB have a natural interpretation in terms of the geometric

arrangements of the bars in B (see Equation 2.7 and Figure 2.2).

In fact, we can also use these crossing numbers to study the fibers of the TMD and the set of

barcodes bases of persistence modules. Observe that we can restate Theorem 1.1.3 and Theorem

1.1.4 in terms of the crossing numbers of a barcode.

Proposition 2.5.1. Let TMD denote the topological morphology descriptor from [KDS`18],

and let B “ trbi, disu
n
i“1 be a strict barcode with n bars. Suppose no birth times in B are repeated

and without loss of generality assume that the bars in B are labeled so that σB “ σB. Then,

(2.11) |TMD´1pBq| “

n
ź

j“1

#t0 ď i ă j : cross#pj, iq “ 2u.

Proposition 2.5.2. Let pV‚, f‚q be a persistence module of length ℓ`1. Let B “ trbi, dis
miuni“1

be the barcode associated to the interval decomposition of pV‚, f‚q as in Equation 1.12. Suppose

di ‰ dj for all i ‰ j and assume without loss of generality assume that B is labeled so that

σB “ σB. Then the set of barcode bases of pV‚, f‚q, BpV‚, f‚q, admits a bijection,

(2.12) BpV‚, f‚q –

n
ź

i“1

GLpmi;Fq ˆ
ź

iăj:
cross#pj,iq“1

Matpmi ˆmj ;Fq,
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where GLpm;Fq denotes the general linear group of mˆm matrices over F.

Now, consider a strict persistence module pV‚, f‚q with associated barcode B “ trbi, disu
n
i“1.

Note that the first term on right hand side of Equation (2.12) reduces to GLp1,Fqn – pF ´ t0uqn,

while the second reduces to,

ź

iăj:
cross#pj,iq“1

Matp1;Fq –
ź

iăj:
cross#pj,iq“1

F.

From this observation, we see how the cover relations in Lpn, 2q relate to the space of barcode bases

for strict persistence modules.

Theorem 2.5.1. Consider two strict persistence modules pV‚, f‚q, pW‚, h‚q. Let B “ trbi, disu
n
i“1,

B1 “ trb1
i, d

1
isu

n
i“1 be the barcodes associated to the interval decomposition of pV‚, f‚q and pW‚, h‚q,

respectively. Assume without loss of generality that B are labeled so that σB “ σB (and likewise for

B1). Suppose σB Ì σB1, so σB and σB1 differ only in swapping an adjacent pair of entries i ă j,

which are in ascending order in σB but inverted in σB1. Then,

BpV‚, f‚q – BpW‚, h‚q ˆ F, if cross#pσB, j, iq “ 0,

BpW‚, h‚q – BpV‚, f‚q ˆ F, otherwise.

Proof. Swapping i, j produces a new inversion. If the bars i and j were disjoint (had crossing

number 0 in B), this produces a new pair of stepped bars. Hence, the product in Equation (2.12)

gains an extra term, F. Otherwise, the bars i and j were already stepped, in which case swapping

i and j forms a pair of nested bars from the stepped bars. Hence, the product in Equation (2.12)

loses one copy of F. □

2.6. Conclusion and Further Questions

In this chapter we introduced a new combinatorial invariant on the space of barcodes by associ-

ating to each barcode an ascending-order double occurrence word σB. We then studied the set of all

such words, Lpn, 2q and studied the structure of this space as an induced subposet of the multino-

mial Newman lattice Lpn, 2q. In particular, we showed that Lpn, 2q is isomorphic to a principal ideal
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of Lpn, 2q and hence is a lattice (Theorem 2.2.1). We then developed an alternate construction of

Lpn, 2q using the notion of inversion multisets (Proposition 2.3.1). We also introduced the notion of

inversion vectors of multipermutations and used this construction to compute the rank generating

function of Lpn, 2q (Corollary 2.3.1) and establish bijections between Lpn, 2q and trapezoidal words,

Stirling words, and the second-order Eulerian numbers (Theorem 2.3.1, Theorem 2.4.1, Corollary

2.4.1, and Corollary 2.4.3). Finally, we showed how the cover relations of Lpn, 2q, which we define

via crossing numbers for barcodes, relate to the enumeration of barcode bases of strict persistence

modules and to the fibers of the topological morphology descriptor. These results have inspired

many new questions which still remain open. We outline a few of these, below.

Firstly, Corollary 2.4.1 establishes a bijection between Lpn, 2q and the Stirling permutations

Qn via a mapping between the inversion vectors of the former and the left-inversion vectors of the

latter. Moreover, this mapping preserves the cardinality of the respective inversion multisets up

to a factor of 2. Separately, it is known that the second-order Eulerian numbers Cn,k count the

number of trapezoidal words with k distinct components, the number of Stirling permutations with

k descents, and the number of plane recursive trees with n ` 1 vertices and k leaves. In Corollary

2.4.3 we deduce that Cn,k also enumerates the number of combinatorial barcodes whose inversion

vectors (which are trapezoidal words after shifting by 1) have k distinct parts. Thus, we ask the

following questions

(1) Is there another permutation statistic (such as descents, maj, etc.) on Lpn, 2q which is

enumerated by Cn,k? Is there a different bijection from Lpn, 2q to Stirling permutations,

trapezoidal words, or plane recursive trees that preserves this value and the relevant statistic

for each set?

(2) We have already seen that the rank of a combinatorial barcode w is related to the inversion

number of a Stirling permutation associated with w and the sum of the trapezoidal word

associated to w. Is the rank also related to some statistic on plane recursive trees? What

is the bijection that provides this relationship?

Secondly, Theorem 2.3.1 demonstrates that Lpn, 2q is a sublattice of the integer lattice in the

polytope An “ tx P Rn´1 : 0 ď xi ď 2pn´ iq, @i P rn´ 1su.
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(1) From inspecting the Hasse Diagram of Lp3, 2q and Lp4, 2q it seems as though Lpn, 2q can be

obtained from the integer lattice in An by removing a few edges, thus producing chord-less

cycles of length 6. Is this true in general, i.e., for arbitrary for n, are the longest chord-less

cycles in Lpn, 2q also of length 6?

(2) Can we say what proportion of the edges are removed as n grows? That is, if we regard

the Hasse diagram of Lpn, 2q as a graph, how does the cardinality of its edge set compare

to the number of edges in the integer lattice in An?

Thirdly, recall that Proposition 2.5.2 and Theorem 2.5.1 allows us to compute the space of

barcode bases of strict persistence modules based on the crossing in in their associated barcodes.

Therefore, we naturally ask,

(1) How many combinatorial barcodes correspond to isomorphic spaces of barcode bases? That

is to say, if pV‚, f‚q and pW‚, g‚q are strict persistence modules with associated barcodes

B,B1, what is the maximal set of combinatorial barcodes E Ă Lpn, 2q for which,

tσB, σB1u Ă E ùñ BpV‚, f‚q – BpW‚, g‚q?

We note that this is equivalent to asking how many combinatorial barcodes have k elements

of multiplicity 1 in their inversion multisets, where k P
`

n
2

˘

is arbitrary.
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CHAPTER 3

The Power-k Barcode Lattices

In the previous chapter we introduced a new combinatorial invariant on the space of barcodes

by associating to each barcode an ascending-order double occurrence word σB. In this chapter we

generalize the construction from Chapter 2, thus producing an entire family of multipermutations

associated to barcodes. We will show that these new multipermutations also form lattices, although

they do not retain many of the other “nice” combinatorial properties found in Lpn, 2q. However,

we will show that these multipermutations still provide value by recording increasingly detailed

information about the arrangement of the bars in a barcode. Ultimately, we prove that for a large

class of barcodes these multipermutations can be to used bound two classic, continuous metrics on

barcodes: the Wasserstein and bottleneck distances. A summary of these results can be found in

Section 1.2.2.

We first recall a mapping, introduced in [KGH20] and further studied in [CDG`21,BG22],

from the space of strict barcodes with n bars to the symmetric group Sn, defined as follow. Let

B P Bnst and suppose that bi ‰ b ´ j for all i ‰ j. Begin by ordering the death times in ascending

order so that, di1 ă di2 ă ¨ ¨ ¨ ă din . Then the indexing set rns gives a permutation γB P Sn defined

by γBpkq “ ik, i.e., γB is the unique permutation such that dγBp1q ă dγBp2q ă . . . ă dγBpnq. In the

same manner, ordering the birth times gives another permutation τB. Thus, to each strict barcode

with distinct birth times we can associate a permutation πB given by πB “ τ´1
B ¨ γB which tracks

the ordering of the death values with respect to the birth values.

For example, if B1 is the strict barcode with 3 bars given by b2 “ 1.0, d2 “ 2.0, b1 “ 1.5, d1 “

3.0, b3 “ 2.5, d3 “ 2.75, then the birth/death times in B1 are ordered: b2 ă b1 ă d2 ă b3 ă d3 ă d1.

So τB “ p2 1 3q, γB “ p2 3 1q and πB “ p1 3 2q, here all permutations are written in one-line

notation.

We note that the double occurrence word σB, defined in Chapter 2, actually contains πB as a

sub-word; πB is exactly the sub-word formed by deleting the first occurrence of each integer in σB.
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Proposition 3.0.1. Let B P Bnst with distinct birth times and let πB denote the barcode as-

sociated to B under the mapping defined in [KGH20]. Then πB is a sub-permutation of the

multipermutation σB.

It follows that the invariant σB is more sensitive than the invariant πB because it captures

the relative positions of the birth times along with the death times. This motivates the following

questions: (1) Is there a further generalization of this construction where we consider more points

in each bar rather than just the birth and death times? (2) What additional information could be

gleaned from such a construction?

To that end, we must first determine a sensible way of selecting more points from each bar. A

natural choice is to take the endpoints of all the intervals we get when splitting each bar into 2k sub-

intervals of equal length, where k is a non-negative integer. For instance, if k “ 0 we consider just the

endpoints of each bar as before, whereas if k “ 1 then we consider both the endpoints and midpoint

of each bar. For general k, we obtain the p2k ` 1q-many points
␣

bi ` ℓdi´bi
2k

: ℓ “ 0, . . . , 2k
(

for each

bar rbi, dis. We consider this choice natural because the points obtained by larger values of k contain

all points obtained by smaller values of k. One can then linearly order these points to produce a

multipermutation in Lpn, 2k ` 1q, the multinomial Newman lattice consisting of permutations of

the multiset t12
k`1, . . . , n2

k`1u. We let fk : Bnst Ñ Lpn, 2k ` 1q denote this mapping.

For example, let B be the strict barcode with two bars, b1 “ 0, d1 “ 2, b2 “ 1.5, d2 “ 3. When

k “ 1, we bisect each bar and obtain the collection of points two new points (the midpoints)

m1 “ 1,m2 “ 2.25 and we may order them, b1 ă m1 ă b2 ă d1 ă m2 ă d2. The sub-scripts

produce the multipermutation, f1pBq “ p1 1 2 1 2 2q P Lp2, 21 ` 1q. Figure 3.1, below, contains an

example where B has four bars.

One issue with this approach is that even strict barcodes might produce repeated points after

bisecting, which we call collisions, that complicate the linear ordering. For example, if B “

tr´1, 1s, r´2, 2su, then although all birth/death times are distinct, the two bars share the midpoint

0, i.e., the bars produce a collision at 0. It is also possible for bars to collide at an endpoint, for

example consider B “ tr´1, 1s, r0, 1su. One approach to resolving these collisions is to define a

new order relation, an analogue of ĲB, for each value of k with rules to determine the ordering

of collisions. However, because the number of points we add grows exponentially in k, this task
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Figure 3.1. An example barcode B with its associated multipermutations f0pBq “

p1 2 3 1 4 4 2 3q and f1pBq “ p1 2 1 3 1 2 4 4 4 3 2 3q displayed below.

quickly becomes cumbersome. Instead, we take a different approach: rather than bisecting each

bar into two equal pieces of length 1
2pdi ´ biq, we bisect them into pieces of almost equal length

in such a way that avoids collisions. In the following section we explain this approach in greater

details. The results therein are technical in nature and are not necessary for understanding the

remainder of this thesis.

3.1. Technical Results for Collision-Free Bisections

Let B “ trbi, disu
n
i“1 be a strict barcode. Then for each i P rns and 0 ă t ă 1, let EBpi, t, kq

be the set defined recursively as follows. When k “ 0, EBpi, t, 0q “ tbi, diu. For k ą 0, let

EBpi, t, k ´ 1q “ tx1, x2, . . . , x2k´1`1u be linearly ordered so x1 ă x2 ă ¨ ¨ ¨ ă x2k´1`1, and define

EBpi, t, kq “ tx1, x2k´1`1u Y ttxi ` p1 ´ tqxi`1 : i P rn ´ 1su. Note that EBpi, t, kq is the collection

of endpoints one obtains by splitting the bars in a fractal manner; for example, when t “ 1
2 ,

this process is exactly the bisection of bars discussed prior. We claim that for an arbitrary strict

barcode and non-negative integer k, we can find a t, arbitrarily close to 1
2 , such that these sets are

collision-free.

Lemma 3.1.1. Let B “ trbi, disu
n
i“1 be a strict barcode. For each i P rns and arbitrary t P r0, 1s,

let

miptq “ tbi ` p1 ´ tqdi.
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Then, for all ε ą 0 there exists a 0 ď δ ă ε such that mip
1
2 ´ δq R tbj ,mjp

1
2 ´ δq, dju for all i ‰ j.

Proof. Note that miptq P tbj ,mjp
1
2 ´δq, dju if and only if t is a solution to one of the following

linear equations:

tbi ` p1 ´ tqdi “ bj ,

tbi ` p1 ´ tqdi “ dj ,

tbi ` p1 ´ tqdi “ tbj ` p1 ´ tqdj .

One can verify that each of these equations is non-degenerate, i.e., it has at most a single solution.

Hence, the set,

ď

1ďiăjďn

tt P r0, 1s : miptq “ bj _miptq “ dj _miptq “ mjptqu

is finite. Therefore, we can always find a non-negative δ, arbitrarily close to zero, such that

mip
1
2 ´ δq R tbj ,mjp

1
2 ´ δq, dju for all i ‰ j. □

Theorem 3.1.1. Let B “ trbi, disu
n
i“1 be a strict barcode. Then, for all ε ą 0 and all non-

negative integers k, there exists a 0 ď δ ă ε such that EBpi, 12 ´ δ, kq ´ tbi, diu XEpj, 12 ´ δ, kq “ H

for all i ‰ j.

Proof. For simplicity let EcBpi, t, kq “ EBpi, t, kq ´ tbi, diu. Fix some ε ą 0 and proceed by

induction on k. The k “ 1 case is proved by Lemma 3.1.1, above. Now, suppose we have found some

0 ď δk ă ε such that EcBpi, 12´δk, kqXEpj, 12´δk, kq “ H for all i ‰ j. If EcBpi, 12´δk, k`1qXEpj, 12´

δk, k`1q “ H for all i ‰ j, then we are done. Otherwise, let z P EcBpi, 12´δk, k`1qXEpj, 12´δk, k`1q

for some i ‰ j. It follows that p12 ´ δq is a solution to one of the following linear equations:

txs ` p1 ´ tqxs`1 “ bj ,

txs ` p1 ´ tqxs`1 “ dj ,

txs ` p1 ´ tqxs`1 “ tyr ` p1 ´ tqyr`1,

for some xs, xs`1 P Epi, 12 ´ δk, kq and yr, yr ` 1 P Epj, 12 ´ δk, kq. As in the proof of Lemma 3.1.1,

one can verify that each of these equations is non-degenerate. Hence, the union of the solution sets
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of these equations, over all pairs i ă j and all indices s, r is finite. Let M denote the minimum

of this set. Finally, by the inductive hypothesis we can find a 0 ď δ˚ ă minpM, εq such that

EcBpi, 12 ´ δ˚, kq X Epj, 12 ´ δ˚, kq “ H for all i ‰ j, and by construction EcBpi, 12 ´ δ˚, k ` 1q X

Epj, 12 ´ δ˚, k ` 1q “ H for all i ‰ j as well. □

Let fkpB, tq denote the multipermutation obtained by linearly ordering the points in the set
Ť

iPrns EBpi, t, kq, where we assume t is chosen suitably to avoid collisions, and taking the sequence of

the subscripts, as described above. Observe that if tm is a sequence converging to 1
2 from below, then

there exists some N P N such that fkpB, tmq “ fkpB, tlq for all m, l ą N . Indeed, by construction

the points in EBpi, t, kq are continuous functions of t which intersect at only finitely many points.

Hence we may always find a sufficiently small δ ą 0 such such that fkpB, tmq “ fkpB, tlq for all

tm, tl P r12 ´ δ, 12q.

Thus, we formally define,

(3.1) fkpBq “ lim
m“Ñ8

fkpB, tmq,

where tm is an arbitrary sequence converging to 1
2 from below. However, in the remainder of this

thesis, we will ignore these technical details for simplicity and assume that taking t “ 1
2 does not

produce collisions so fkpBq “ fkpB, 12q. It is not hard to verify that the results that follow do not

depend on this assumption.

3.2. The Power-k Barcode Lattice

Now, for each non-negative integer k let fk P Bnst Ñ Lpn, 2k ` 1q described above. As in

the k “ 0, we find that these maps are highly dependent on the initial labeling of the bars in a

barcode B. Therefore, we consider the maps gk : Bnst Ñ Lpn, 2k ` 1q{Sn given by gkpBq “ rfkpBqs,

where Lpn, 2k ` 1q{Sn denotes the set of equivalence classes of Lpn, 2k ` 1q under combinatorial

equivalence and rσs denotes the equivalence class of σ. As before, there is a bijection of sets

ψk : Lpn, 2k ` 1q{Sn Ñ Lpn, 2k ` 1q, where Lpn, 2k ` 1q denotes the set of ascending order words

in Lpn, 2k ` 1q, which sends each class to its unique representative which is in ascending order.

If B P Bnst, we let σkpBq “ fkpBq. In the remainder of this chapter, we study Lpn, 2k ` 1q as an

induced subposet of Lpn, 2k ` 1q.
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Definition 3.2.1. Let k be a non-negative integer. The power-k barcode poset is the induced

subposet pLpn, 2k ` 1q,ďq of the multinomial Newman lattice pLpn, 2k ` 1q,ďq, where ď denotes

the weak order.

Recall that there exists a map ι which embeds Lpn, 2k`1q into Snp2k`1q by identifying Snp2k`1q

with permutations of the set S “ t11, 12, . . . , 12k`1, . . . , n2k`1u. As in the k “ 0 case from Chapter

2, we have that for all s, t P Lpn, 2k ` 1q,

(3.2) s ď t ðñ invpιpsqq Ď invpιptqq.

Our first main result in this chapter is that the power-k barcode poset is a lattice. We note that

the proof of Theorem 3.2.1, below, is a direct generalization of proof of Theorem 2.2.1.

Theorem 3.2.1. The power k barcode poset pLpn, 2k ` 1q,ďq is isomorphic to a principal ideal

of the multinomial Newman lattice, Lpn, 2k ` 1q. Consequently, pLpn, 2k ` 1q,ďq is a lattice.

Proof. Let α P Lpn, 2k ` 1q be the word given by writing the integers 1 to n, followed by the

remaining 2k copies of n, followed by the remaining 2k copies of pn´1q, and so on, terminating with

the remaining 2k copies of 1. For example, when k “ 1 and n “ 3, we have 3 copies of each integer

and α “ p1 2 3 3 3 2 2 1 1q. Let Ipαq denote the principal ideal generated by α in Lpn, 2k ` 1q. We

wish to show that Lpn, 2k ` 1q “ Ipαq.

To begin, note that α is in ascending order so α P Lpn, 2k ` 1q. We claim α is maximal in

pLpn, 2k ` 1q,ďq. Indeed, observe that every pair of distinct integers in α are inverted with the

exception of the first occurrences of each integer, which are required to be appear in ascending

order for all words Lpn, 2k ` 1q. Since the relation ď is induced by inversions in ιpαq, it follows

that α is maximal. Thus, Lpn, 2k ` 1q Ď Ipαq.

To prove the reverse inclusion, let s P Ipαq and let τs P Sn be the permutation given by the

string of the first occurrences of each integer in s. Assume for the sake of contradiction that τs

is not the identity permutation, then it follows that there exists a pair i ă j for which the first

copy of j appears before the first copy of i in s. Hence, pj1, i1q P invpιpsqq. However, s ď α implies

that invpιpsqq Ď invpιpαqq and pk1, ℓ1q R invpιpαqq for any k ą ℓ. Hence, we have a contradiction.
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Therefore it must be the case that τs “ Idn and, hence, s is in ascending order and so s P Lpn, 2q.

Thus, Ipαq Ď Lpn, 2q, as desired. □

p1 2 2 2 1 1q

p1 2 2 1 2 1q

p1 2 2 1 1 2q p1 2 1 2 2 1q

p1 2 1 2 1 2q p1 1 2 2 2 1q

p1 2 1 1 2 2q p1 1 2 2 1 2q

p1 1 2 1 2 2q

p1 1 1 2 2 2q

Figure 3.2. Hasse diagram of Lp2, 21 ` 1q.

Unfortunately, many of the combinatorial results we proved for Lpn, 2q in Chapter 2 do not

generalize to Lpn, 2k ` 1q when k ě 1. Notably, although we can define inversion multisets for the

multipermutations in Lpn, 2k ` 1q analogously, this correspondence is no longer one-to-one. For

instance, invmp1 2 1 2 1 2q “ invmp1 1 2 2 2 1q “ tp2, 1q3u. Therefore, although one could still use

inversion multisets to compute the rank of an element, it is not clear how to define inversion vectors

in a way that admits a bijection as in Theorem 2.3.1. Moreover, without this correspondence it is

not obvious how to compute the rank generating function of Lpn, 2k ` 1q as in Corollary 2.3.1.

3.3. Connections to Bottleneck and Wasserstein Distances

Note that σjpBq is a sub-word of σjpBq for all k ą j, just as the permutation πB from [KGH20]

is a sub-word of σ0pBq. Specifically, observe that if we delete every other occurrence (beginning

with the second) of i in σk`1pBq, for each i P rns, then the resulting word is precisely σkpBq. Hence,

we have a map δk : Lpn, 2k`1 ` 1q Ñ Lpn, 2k ` 1q such that δk ˝ σk`1pBq “ σkpBq. For instance,

consider the barcode B given by b1 “ 1.0, d1 “ 2.5, b2 “ 1.5, d2 “ 4.0, b3 “ 3.0, d3 “ 3.5. Taking

k “ 1, we add the points m1 “ 1.75, m2 “ 2.75, m3 “ 3.25 so σ1pBq “ p1 2 1 1 2 3 3 3 2q. The
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map δ0 deletes the points mi, which gives δ0pσ1pBq “ p1 2 1 3 3 2q “ σ0pBq. Hence, we have the

following lemma.

Lemma 3.3.1. Let B1, B2 P Bnst. If σkpB1q “ σkpB2q for some non-negative integer k, then

σjpB1qσjpB2q for all 0 ď j ă k.

Thus, we see that increasing k amounts to producing ever more sensitive discrete invariants

σkpBq. These higher order invariants capture more nuanced information about the overlaps of

pairs of bars. For instance, we have seen that if a barcode B contains two nested bars then σ0pBq

will contain the pattern p1 2 2 1q. Going up a level, σ1pBq confirms that the bars are nested but

also tells us whether bar 2 is contained in the left half of bar 1, in the right half of bar 1, or whether

it straddles the midpoint of 1 (see Figure 3.3). By the same logic, higher values of k provide even

more granular intersection data.

(a) Left-nested bars, σ1pBq “ p1 2 2 2 1 1q. (b) Right-nested bars, σ1pBq “ p1 1 2 2 2 1q.

Figure 3.3. Two barcodes with the same power 0 invariant, σ0pBq “ p1 2 2 1q,
but different power 1 invariants.

We will show that as k increases, these invariants provide enough information that they can

be used to bound both the bottleneck and Wasserstein distances between a large class of barcodes.

However, before proceeding we require the following lemma.

Lemma 3.3.2. Let B,B1 be strict barcodes and let GB, GB1 denote the interval graphs of B and

B1, respectively. If σkpBq “ σkpB1q for some k ě 0 then GB – GB1.

Proof. It is clear that the intersection of a pair of bars i ă j can be determined from

cross#pj, iq. Recall one can deduce cross#pj, iq from the power 0 invariant of a barcode. There-

fore, the power 0 invariant, and by Lemma 3.3.1 any power k invariant, completely determines the

interval graph of its associated barcode. □
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Theorem 3.3.1. Let B,B1 be strict barcodes with n bars, where B “ trbi, disu
n
i“1 and B1 “

trb1
i, d

1
isu

n
i“1, such that σkpBq “ σkpB1q for all k P N. If the bars in B and B1 have distinct

endpoints, i.e., tbi, diu X tbj , dju “ H for all i ‰ j (and likewise for B1), and the interval graph GB

(equivalently GB1) is connected, then there exist constants α ą 0 and δ P R such that B “ αB1 ` δ,

where αB1 ` δ :“ tpαb1
i ` δ, αd1

i ` δq : i P rnsu.

Proof. Without loss of generality assume that B,B1 are suitably labelled so that fkpBq “

σkpBq and b1 ă b2 ă ¨ ¨ ¨ ă bn, and likewise for B1. Now, let α “ d1´b1
d1
1´b1

1
, δ “ b1 ´ αb1

1, and define

the map T : R Ñ R such that T pxq “ αx` δ. Observe that T pb1
1q “ b1, and that

T pd1
1q “

d1
1pd1 ´ b1q

d1
1 ´ b1

1

` b1 ´
b1
1pd1 ´ b1q

d1
1 ´ b1

1

“
pd1

1 ´ b1
1qpd1 ´ b1q

d1
1 ´ b1

1

` b1 “ d1.

Now, let i be a neighbor of 1 in GB (and hence in GB1 , by Lemma 3.3.2). We know at least one

such i exists since GB is connected. Take k ą 0 to be arbitrary and let m denote the number of 1’s

that appear before the first i in σkpBq, or equivalently in σkpB1q. Note 0 ă m ă 2k since necessarily

b1 ă bi ă d1. Thus, we have that

b1 ` pm´ 1q
d1 ´ b1

2k
ă bi ă b1 `m

pd1 ´ b1q

2k
, and

b1
1 ` pm´ 1q

d1
1 ´ b1

1

2k
ă b1

i ă b1
1 `m

pd1
1 ´ b1

1q

2k
.

Since α ą 0, it follows that

α
´

b1
1 ` pm´ 1q

d1
1 ´ b1

1

2k

¯

` δ ă T pb1
iq ă α

´

b1
1 `m

pd1
1 ´ b1

1q

2k

¯

` δ

ùñ b1 `
pm´ 1qpd1 ´ b1q

2k
ă T pb1

iq ă b1 `
mpd1 ´ b1q

2k
.

Therefore, |bi ´ T pb1
iq| ă d1´b1

2k
. Sending k Ñ 8, it follows that T pb1

iq “ bi.

Now, if b1 ă di ă d1, then repeating the argument above gives T pd1
iq “ di. Otherwise, we have

that b1 ă bi ă d1 ă di. Let ℓ be the number of i’s that appear before the last 1 in σkpBq. Note
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that 0 ă ℓ ă 2k ` 1, then we have

ℓpdi ´ biq

2k
ă d1 ´ bi ă

pℓ` 1qpdi ´ biq

2k
, and

ℓpd1
i ´ b1

iq

2k
ă d1

1 ´ b1
i ă

pℓ` 1qpd1
i ´ b1

iq

2k
.

Again, as α ą 0, it follows that,

ℓpαd1
i ´ αb1

iq

2k
ă αd1

1 ´ αb1
i ă

pℓ` 1qpαd1
i ´ αb1

iq

2k
,

ùñ
ℓpT pd1

iq ´ T pb1
iqq

2k
ă T pd1

1q ´ T pb1
iq ă

pℓ` 1qpT pd1
iq ´ T pb1

iqq

2k
,

ùñ
ℓpT pd1

iq ´ biq

2k
ă d1 ´ bi ă

pℓ` 1qpT pd1
iq ´ biq

2k
.

Rearranging the inequalities above gives,

ℓ

2k
ă

d1 ´ bi
di ´ bi

ă
pℓ` 1q

2k
, and

ℓ

2k
ă

d1 ´ bi
T pd1

iq ´ bi
ă

pℓ` 1q

2k
.

Sending k Ñ 8 it follows that d1´bi
di´bi

“
d1´bi

T pd1
iq´bi

, from which we see that T pd1
iq “ di. Hence, if i is a

neighbor of 1, then pT pb1
iq, T pd1

iqq “ pbi, diq. Finally, note that we can repeat the arguments above,

now considering i and one of its neighbors j, to show that this holds for all vertices connected to 1

by some finite path. Since GB is connected and finite, this gives the desired result. □

We note that the assumption of distinct endpoints in Theorem 3.3.1 is not necessary if B

(equivalently B1) has an “essential” bar rb˚, d˚s which contains all others.

Corollary 3.3.1. Let B,B1 be strict barcodes with n bars such that σkpBq “ σkpB1q for all

k P N. Suppose there exists a bar rb˚, d˚s P B (or equivalently in B1) which strictly contains all

others, that is to say b˚ ă bi and d˚ ą di for all i ‰ ˚. Then there exist constants α ą 0 and δ P R

such that B “ αB1 ` δ, where αB1 ` δ :“ tpαb1
i ` δ, αd1

i ` δq : i P rnsu.

Proof. This follows from the proof of Theorem 3.3.1, since i is a neighbor of 1 in GB and

b1 ă bi for all i P t2, . . . , nu. □
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Thus, we see that the entire family of power k invariants completely determines a barcode B up

to an affine transformation. If the barcodes contain an essential bar strictly containing all others

as in Corollary 3.3.1, we can even bound continuous metrics on barcodes when only finitely many

of the invariants σkpBq agree.

Theorem 3.3.2. Let B,B1 be strict barcodes with n bars such that σkpBq “ σkpB1q for some

non-negative integer k. Suppose there exists a bar rb˚, d˚s P B (or equivalently in B1) which strictly

contains all others, that is to say b˚ ă bi and d˚ ą di for all i ‰ ˚. Then there exist constants

α ą 0 and δ P R such that

d8pB,αB1 ` δq ď
|d˚ ´ b˚|

2k
, and

dqpB,αB
1 ` δq ď pn´ 1q

1
q
|d˚ ´ b˚|

2k
.

Proof. Without loss of generality assume that B,B1 are labeled appropriately so that fkpBq “

σkpBq, and likewise for B1. Note that this implies that rb˚, d˚s “ rb1, d1s. Now, let α “ d1´b1
d1
1´b1

1
,

δ “ b1 ´ αb1
1, and define T : R Ñ R such that T pxq “ αx ` δ. Observe that T pb1

1q “ b1, and that

T pd1
1q “ d1. Now let pbi, diq be another bar and let m denote the number of 1’s that appear before

the first i in σkpBq, or equivalently in ψkpgkpB1qq. Note 0 ă m ă 2k since b1 ă bi ă d1. Then we

have that,

b1 ` pm´ 1q
d1 ´ b1

2k
ă bi ă b1 `m

pd1 ´ b1q

2k
, and

b1
1 ` pm´ 1q

d1
1 ´ b1

1

2k
ă b1

i ă b1
1 `m

pd1
1 ´ b1

1q

2k
,

and since α ą 0, it follows that

b1 `
pm´ 1qpd1 ´ b1q

2k
ă T pb1

iq ă b1 `
mpd1 ´ b1q

2k
.

Therefore, |bi ´ T pb1
iq| ď d1´b1

2k
. Recall that d1 ě di for all i P rns, so by repeating the argument we

get that |di ´T pd1
iq| ď d1´b1

2k
. Thus, d8pB,αB1 ` δq ď

|d˚´b˚|
2k

. For the bound on the q-Wasserstein
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distance, observe that:

´

n
ÿ

i“1

}pbi, diq ´ pT pb1
iq, T pd1

iqq}q8

¯
1
q

ď

´

n
ÿ

i“2

`d1 ´ b1
2k

˘q
¯

1
q

“

´

pn´ 1qp
d1 ´ b1

2k
˘q
¯

1
q

“ pn´ 1q
1
q
d1 ´ b1

2k
,

from which the result follows. □

We note that the assumption in Theorem 3.3.2 requiring the existence of an essential bar

containing all others is necessary. To see this, fix some non-negative integer and consider the

barcodes B “ tp0, 1q, p1 ´ ε, 32qu and B1 “ tp0, 1q, p1 ´ ε, 2qu, where ε ăă 1
2k
. Observe that

σkpBq “ σkpB1q. Let T pxq “ αx ` δ, with α “ d1´b1
d1
1´b1

1
and δ “ b1 ´ αb1

1 as in Theorems 3.3.1 and

3.3.2. Note T is simply the identity map, so |T p2q ´ 3
2 | “ 1

2 . Hence, d8pB,αB1 ` δq “ 1
2 . Thus, for

arbitrary k we can find a pair of barcodes B,B1 satisfying the following conditions:

(1) σkpBq “ σkpB1q,

(2) The length of the longest bar in B is bounded above by a fixed constant,

(3) d8pB,αB1 ` δq “ 1
2 .

Thus, the convergence from Theorem 3.3.2 is not possible in this case.

3.4. Barcode Polytopes

It is a well known result that the permutohedron Sn is also the face lattice of the polytope

PSn “ convtpπ1, . . . , πnq P Rn : π P Snu. Recall that one can embed Lpn, 2k ` 1q into Snp2k`1q,

the set of permutations of the totally ordered set 11 ă 12 ă . . . n1 ă . . . ă n2k`1, via the map ι

discussed earlier. Thus, we may view Lpn, 2k ` 1q as a subset of the vertices of its corresponding

permutohedron which gives rise to a new polytope, Pn,k “ convtpπ1, . . . , πnp2k`1qq P Rnp2k`1q : π P

ι ˝ Lpn, 2k ` 1qu. We call Pn,k the power-k barcode polytope.

Because the map ι sends Lpn, 2k ` 1q to a prime-ideal, the polytope Pn,k is an example of a

Bruhat interval polytope.

Definition 3.4.1 ( [TW15]). Let u ď v be permutations in Sn. The Bruhat interval polytope

Qu,v is the convex hull of all permutation vectors pz1, z2, . . . , znq with u ď z ď v.
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Note that Pn,k is equal to Qu,v for u “ e P Snp2k`1q and v the “fully nested” permutation

p11 21 . . . n1 n2 . . . n2k`1 pn´ 1q2 . . . 12k 12k`1q.

In [TW15], the authors prove, among other things, the following formula for computing the

dimension of a Bruhat interval polytope. Let u ď v be permutations in Sn, and let C : u “ x0 Ì

x1 Ì . . . Ì xℓ “ v be any maximal chain from u to v. Define a labeled graph GC on rns having

an edge between vertices a and b if and only if xipabq “ xi`1 for some 0 ď i ď ℓ ´ 1. Define

ΠC “ V1, V2, . . . , Vr to be the partition of rns whose blocks Vj are the connected components of

GC . The authors show that the number of blocks does not depend on the choice of maximal chain

C, so we let #Πu,v denote the number of blocks, r. The authors then prove the following theorem.

Theorem 3.4.1 ( [TW15]). The dimension of the Bruhat interval polytope Qu,v is pn´#Πu,vq.

From this result, it is easy to compute the dimension of the barcode polytopes Pn,k.

Corollary 3.4.1. The dimension of the power-k barcode polytope, Pn,k is np2k ` 1q ´ 2.

Proof. Recall, Pn,k “ Qu,v for u “ e P Snp2k`1q and v the “fully nested” permutation

p11 21 . . . n1 n2 . . . n2k`1 pn ´ 1q2 . . . 12k 12k`1q. Consider the maximal chain C from u to

v given by moving each element into position one by one, starting with the 1’s in descending lexico-

graphic order, then the 2’s is descending order, and so on. Note that traversing this chain requires

that we use all adjacent transpositions except for transposing the first and second elements, since

the 11 term does not move. Hence, ΠC “ tt11u, t12, . . . , 12k`1, 21, . . . , n2k`1u. Therefore Πu,v “ 2,

from which the result follows. □

There is reason to believe that these barcode posets may be useful in performing a stratification

of the space of barcodes. In [BG22] the authors adapted the mapping from [KGH20,CDG`21] in

order to stratify the space of barcodes with n bars. In essence, this stratification can be performed

as follows. For each strict barcode B, consider the permutation πB P Sn as defined in [KGH20].

Recall that the elements of Sn can be identified with vertices of the permutohedron PSn , which

is a dimension pn ´ 2q polytope in Rn. Let P ˚
Sn

denote the dual of PSn . P
˚
Sn

induces a simplicial

decomposition of the pn ´ 2q-sphere. Then each permutation πB can be associated to a top-

dimensional simplex of this decomposition. By construction, crossing from one top-dimensional
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simplex to another corresponds to changing the permutation type πB by swapping a pair of adjacent

entries. Therefore, the lower dimensional simplices correspond to non-strict barcodes where birth

and death times may be repeated. Thus, the simplices in this decomposition induce a stratification

on the space of barcodes. Finally, because P ˚
Sn

comes with an embedding in Rn, the two “extra”

coordinates of R can be used to encode additional metrics describing the lengths of the bars.

It is possible to mirror this construction by considering P ˚
n,k, the polar dual of Pn,k. Like the

permutohedron, P ˚
n,k induces a simplicial decomposition of the pn´ 2q-sphere whose simplices have

a natural interpretation in terms of the multipermutations in Lpn, 2k ` 1q. While we have not

performed an in-depth investigation of this approach, we believe it is a ripe area for further study.

3.5. Conclusion and Further Questions

In this chapter, we generalized the construction of combinatorial barcodes in Chapter 2 to

produce an entire family of discrete invariants associate to barcodes. These invariants are multi-

permutations in the power-k barcode lattices Lpn, p2k`1qn`1q, or equivalently, they are ascending

order words over rns with exactly k occurrences of each integer, where k ě 2. These invariants

retain the lattice structure of Lpn, 2q (Theorem 3.2.1) while recording increasingly granular infor-

mation about the arrangement of the bars (Lemma 3.3.1). In Theorems 3.3.1 and 3.3.2, we showed

that these multipermutations can provide bounds on the bottleneck and Wasserstein distances for

a large class for barcodes. Finally, we showed how the barcode lattices can be interpreted as poly-

topes and computed some basic statistics of these polytopes (Corollary 3.4.1). These results have

inspired many new questions which remain open. We outline a few of these below.

Firstly, one of the main limitations of our methods is that we are only ever comparing barcodes

with the same number of bars. We ask,

(1) Is there some way to extend these methods in order to compare barcodes with different

numbers of bars? We note one approach could be to add dummy bars of length 0 to the

smaller barcode, but it is unclear what consequences this might have.

Secondly, from Lemma 3.3.1, we have surjective maps δk : Lpn, p2k ` 1qn ` 1q Ñ Lpn, p2kqn ` 1q

such that δk ˝ σk`1pBq “ σkpBq (recall, this map deletes every other occurrence of each integer i).

We ask,
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(1) What are the fibers of δk? We note this is equivalent to asking: if we only know σkpBq,

how many different words could σk`1pBq be?

Thirdly, Theorem 3.3.2 allows us to bound the bottleneck and q-Wasserstein distances between

barcodes B,B1 based on their associated permutations σkpBq, σkpB1q. We ask,

(1) Can these bounds be improved by considering the distance between σkpBq and σkpB1q on

Lpn, 2k`1 ` 1q?

Fourthly, as we discussed in Section 3.4, there is reason to believe that the duals of the barcode

polytopes could be used to perform a stratification of the space of barcodes by following the

approach in [BG22]. We ask,

(1) Is such a stratification possible and, if so, what benefits might it provide? Does it allow us

to weaken our strictness assumption by allowing us to consider points on the boundaries

of regions?
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CHAPTER 4

Random Interval Graphs for Chronological Sampling Problems

This final chapter takes a departure from the previous two. Rather that studying the relation-

ship between barcodes and multipermutations, we will study the relationship between barcodes

and their interval graphs. In particular, we study the behaviour of a random interval graph model

of our own design. Though the complete model is quite generalizable, we will mainly focus on a

special case which is very combinatorial in nature. We begin with some motivation.

Suppose you are an avid birdwatcher and you are interested in the migratory patterns of

different birds passing through your area this winter. You know from prior knowledge that there

are m different species of birds that pass over your home every year. Each day you go out and

make a note whenever you see a bird, recording the species, day, and time you observed it. You

hope that after enough time you will have observed at least one representative of each species.

Naturally, you begin to wonder: after n observations, how likely is it that I have seen every type of

bird? If we make the assumption that each observation is an independent, identically-distributed

(i.i.d.) random variable , we recognize this situation as an example of the famous coupon collector’s

problem (for a comprehensive review of this problem see [FS14] and references therein). In this

old problem a person is trying to collect m types of objects, called coupons, which are labeled

1, 2, . . . ,m. The coupons arrive one by one as an ordered sequence X1, X2, . . . of i.i.d. random

variables taking values in rms “ t1, . . . ,mu. The collector is interested in the expected waiting

time, which is the random variable W “ inftn P N : tX1, . . . , Xnu “ rmsuu, i.e., the least value of

n for which the set tX1, . . . , Xnu forms a complete collection.

The coupon collector problem dates back to 1708 when it first appeared in De Moivre’s De

Mensura Sortis (On the Measurement of Chance) [FS14]. The answer for the coupon collector

problem depends on the assumptions we make about the distributions of the Xi. Euler and Laplace

proved that if the coupons are equally likely, that is if P pXi “ kq “ 1
m for every k P rms, then

EpW q “ 1
n

řn
k“1

1
k , so EpW q “ Opn log nq. The problem lay dormant until 1954 when H. Von
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Schelling obtained the expected waiting time when the coupons are not equally likely [Sch54].

More recently, Flajolet et. al. introduced a unified framework relating the coupon collector problem

to many other random allocation processes [FGT92].

Returning to our bird watcher, one might ask several other related questions about the arrival

of the birds or coupons. For example, the birdwatcher might also ask:

‚ What are the chances that the visits of k types of birds do not overlap at all?

‚ What are the chances that a pair of birds is present in my area at the same time?

‚ What are the chances of one bird type was in my area at the same time as k-many others?

‚ What are the chances that all the bird types were in my area at the same time?

We note that very similar situations, where scientists collect or sample time-stamped data that

comes in m types or classes and wish to predict overlaps, appear in applications as diverse as

archaeology, genetics, job scheduling, and paleontology [Gol04,Fis85,Pip98,HH07]. The goal of

this chapter is to present a random graph model to answer the four questions above.

4.1. Establishing a General Random Interval Graph Model

In order to answer any of the questions above we need to determine how to estimate the

time(s) each species of bird might be present from a finite number of observations. This requires

some modeling choices which we outline below.

The first modeling choice is that our observations are samples from a stochastic process indexed

by a real interval r0, T s and taking values in rms. We tersely recall the definition of a stochastic

process, see [Ros96] for a complete introduction. Let I be a set and let pΩ,F , P q be a probability

space. Suppose that for each α P I, there is a random variable Yα : Ω Ñ S Ă R defined on

pΩ,F , P q. Then the function Y : I ˆ Ω Ñ S defined by Y pα, ωq “ Yαpωq is called a stochastic

process with indexing set I and state space S, and is written Y “ tYα : α P Iu. When we conduct

an observation at some time t0 P r0, T s, we are taking a sample of the random variable Yt0 .

For each i P rms, the probabilities, P pYt “ iq determine a function from r0, T s Ñ r0, 1s, which we

call the rate function of Y corresponding to i; the name is inspired by the language of Poisson point

processes where the density of points in an interval is determined by a rate parameter (see [Ros96]).
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Definition 4.1.1 (Rate function). Let Y “ tYt : t P r0, T su be a stochastic process with

indexing set I “ r0, T s and state space S “ rms. The rate function corresponding to label i P S in

this process is the function fi : I Ñ r0, 1s given by

fiptq “ P pYt “ iq “ P ptω : Y pt, ωq “ iuq.

Figure 4.2 gives two examples of the rate functions of some hypothetical stochastic processes

(we will clarify the meaning of stationary and non-stationary in the next section). Note for each

time t0 P r0, T s, the values fipt0q sum to 1 and define the probability density function of Yt0 . Thus,

we see that the rate functions describe the evolution of the probability density functions of the

variables Yt with respect to the indexing (time) variable t.

Note that in our bird watcher story the support of the rate function fi corresponds to the

interval in r0, T s where species i might be present. Therefore, our key problem is to estimate the

support of the rate functions from finitely many samples.

0 2 4 6 8 10
t

0.0

0.5

1.0
f0
f1
f2
f3

(a) Stationary rate functions.

0 2 4 6 8 10
t

0.0

0.5

1.0

(b) Non-stationary rate functions.

Figure 4.1. Two examples of hypothetical rate functions.

The state space, rms, of Y is another, subtler modeling choice of ours. Note that one could

alternatively have Y take values in the power set 2rms, so as to allow for multiple species of birds to be

observed at the same time. However, choosing rms rather than 2rms simplifies some calculations and,

moreover, is quite reasonable. Rather than registering “three birds at 6 o’clock,” our birdwatcher

can instead register three sightings: one bird at 6:00:00, a second at 6:00:01, and a third a 6:00:02,

for example.

This brings us to our next modeling choice: we assume that the rate function fi has connected

support for all i P rms. This is reasonable for our motivation; after all, a bird species first seen
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on a Monday and last seen on a Friday is not likely to suddenly be out of town on Wednesday.

The main benefit of this assumption is that now the support of the rate function fi, supppfiq, is a

sub-interval of r0, T s. This fact provides a natural way of approximating the support of fi: given

a sequence of observations Yt1 , Yt2 , . . . , Ytn with 0 ď t1 ă t2 ă . . . ă tn ď T , let Inpiq denote the

sub-interval of r0, T s whose endpoints are the first and last times tk for which Ytk “ i (note that

it is possible for Inpiq to be empty or a singleton). It follows that Inpiq Ă supppfiq so we can

use it to approximate supppfiq. We call the interval Inpiq the empirical support of fi, as it is an

approximation of supppfiq taken from a random sample.

In summary, our model is actually quite simple: given a sequence of observations Yt1 , Yt2 , . . . , Ytn

from a stochastic process Y , we construct a random barcode B “ tInpiq : i P rmsu, where Inpiq is

the empirical support of fi, i.e., the interval whose endpoints are the least and greatest values tk for

which Ytk “ i. These empirical supports are approximations of the supports of the rate functions,

fi and satisfy Inpiq Ă supppfiq. With this model, we can now formulate our four bird watching

questions as follows:

‚ What is the probability that none of the empirical supports Inpiq intersect?

‚ What is the probability that a pair of empirical supports Inpiq and Inpjq intersect?

‚ What is the probability that one empirical support, Inpiq, intersects with k-many others?

‚ What is the probability that the empirical supports all mutually intersect?

Now, recall that given a family of convex sets F “ tF1, . . . , Fmu Ď Rd. The nerve complex

N pFq is the abstract simplicial complex whose k-facets are the pk ` 1q-subsets of indices I Ă rms

such that
Ş

iPI Fi ‰ H. Recall further that, as a consequence of Helly’s theorem, the nerve complex

of a barcode is a clique complex, so it is completely determined by its 1-skeleton (see Section 1.1.7

for details). Hence, given a barcode B, we will refer to the nerve complex N pBq and the graph GB

interchangeably depending on the context.

Figure 4.2, below, outlines how one can construct an interval graph from a set of observations

Yt1 , . . . , Ytn . Figure 4.2a shows a sequence of n “ 11 points on the real line, which corresponds to

some observation times t1, . . . tn. Above each point tk we have a label, representing the value of

Ytk . Displayed above the data are the empirical supports Inpiq for each i P rms “ r4s. Figure 4.2b

shows the interval graph constructed from these four intervals where each vertex is labeled with
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the interval it corresponds to. In this example there are no times shared by the species t1, 2u and

the species t4u, so there are no edges drawn between those nodes. We emphasize that the interval

graph constructed in this way will contain up to m-many vertices, but may contain fewer if some

of the intervals Inpiq are empty, i.e., if we never see species i in our observations.

(a) Observations and empirical supports. (b) Interval graph.

Figure 4.2. Example observations with their corresponding empirical supports and
interval graph.

Thus, we now have a model for generating an interval graph from a set of random observations

Yt1 , . . . , Ytn which records the overlaps of the empirical supports Inpiq in its edge sets. We summarize

this model below, then re-frame the four motivating questions in terms of our model.

Definition 4.1.2 (The Random Interval Graph Model). Let Y “ tYt : t P r0, T su be a stochastic

process with state space rms and let P “ tt1, t2, ..., tnu be a set of n points in the indexing set r0, T s,

satisfying t1 ă t2 ă . . . ă tn. Then, let Yt1 , . . . , Ytn be samples of from Y . For each state i define

the (possibly empty) interval Inpiq as the convex hull of the points tj for which Ytj “ i. We refer

to Inpiq as the empirical support of label i and let GpY, t1, . . . , tnq denote the interval graph of

tInpiq : i P rmsu.

Under this random interval graph model our four questions can be formulated as follow:

‚ What is the probability that GpY, t1, . . . , tnq has no edges?

‚ What is the probability that a particular edge pi, jq is present in GpY, t1, . . . , tnq?

‚ What is the probability that GpY, t1, . . . , tnq has a vertex of degree ě k?

‚ What is the probability that GpY, t1, . . . , tnq is isomorphic to the complete graph Km?
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4.2. The Stationary Case

The model we present above is quite general in order to capture the potential nuances of our

motivating problem. However, without some additional assumptions on the distribution of Y ,

the prevalence of pathological cases makes answering the motivating questions above very diffi-

cult. Therefore, our analysis here will focus on a special case of this problem where we make two

additional assumptions on Y so that our analysis only requires discrete probability.

Our first assumption is that our observations Yt1 , Yt2 , . . . , Ytn are mutually independent random

variables. Our second assumption is that the rate functions fi are constant throughout the interval

r0, T s. In this case, there exist constants p1, p2, . . . , pm ě 0 such that
řm
i“1 pi “ 1 and fiptq “ pi for

all t P r0, T s and all i P rms. We call the special case of our model where both of these assumptions

are satisfied the stationary case and all other cases as non-stationary. Figure 4.2 shows examples

of a stationary case, 4.1a, and a non-stationary case, 4.1b. We will also refer to the uniform case,

which is the extra-special situation where pi “ 1
m for all i P rms. Note Figure 4.1a is stationary but

not uniform.

The stationary case assumptions directly lead to two important consequences that greatly

simplify our analysis. The first is that now the random variables Yt1 , . . . , Ytn are independent and

identically distributed (i.i.d.) such that P pYtk “ iq “ pi ą 0. Note that this is true for any set of

distinct observation times P “ tt1, . . . , tnu. The second consequence simplifies things further still:

though the points P corresponding to our sampling times have thus far been treated as arbitrary,

one can assume without loss of generality that P “ rns “ t1, 2, . . . , nu since all sets of n points in

R are combinatorially equivalent, as explained in the following lemma.

Lemma 4.2.1. Let Y “ tYt : t P r0, T su be stationary a stochastic process with state space rms

and let P “ tt1, . . . , tnu and P 1 “ tt11, . . . , t
1
nu be two sets of n distinct points in the state space

r0, T s. Without loss of generality assume t1 ă . . . ă tn and t11 ă . . . ă t1n. Then for an arbitrary

graph G0, P pGpY, t1, . . . , tnq – G0q “ P pGpY, t11, . . . , t
1
nq – G0q.

Proof. Let w be an arbitrary word of length n over the alphaber rms. Because Yt, Ys are i.i.d.

for all t, s P r0, T s we have that P pYtk “ wk, k P rnsq “ P pYt1k “ wk, k P rnsq. Hence, the random
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words pYt1 . . . Ytnq and pYt11 . . . Yt1nq are i.i.d. Finally, note that the interval graph GpY, t1, . . . , tnq

is completely determined by the word pYt1 . . . Ytnq. □

Of course, the stationary case is less realistic and applicable in many situations. For example,

it is not unreasonable to suppose that the presence of a dove at 10 o’clock should influence the

presence of another at 10:01, or that the presence of doves might fluctuate according to the season

and time of day. However, the stationary case is still rich in content and connections. Note that

the stationary case of our model has the same assumptions as this famous problem: an observer

receives a sequence of i.i.d. random variables taking values in rms. In the language of our model, the

coupon collector problem could be posed as, How many samples does one need before they can expect

that the graph GpY, t1, . . . , tnq contains m vertices? Thus, we can consider the stationary model

a generalization of the coupon collector problem which seeks to answer more nuanced questions

about the arrival of different coupons. We summarize the key assumptions of the stationary case,

below; we will reference these assumptions throughout this chapter.

Summary of stationary case assumptions: In all results that follow let Y1, . . . , Yn be a

sequence of i.i.d. random variables such that P pYj “ iq “ pi ą 0 for all i P rms. When we refer

to the uniform case this means the special situation when pi “ 1
m for all i “ 1, . . . ,m. In some

problems it is useful to think of Y1, . . . , Yn as a random coloring of the points 1, 2, . . . , n using m-

many colors. Now, for each label/color i P rms, let Inpiq denote the empirical support of i, i.e., the

interval rbi, dis whose left and right endpoints are the first and last indices k for which Yk “ i (note

these intervals may be empty or singletons). Finally, let GpY, nq denote the interval graph of the

barcode tInpiq : i P rmsu.

4.3. Behavior with a Fixed Number of Samples

4.3.1. Elementary results. In this section we prove several results about the expected be-

haviour of the random interval graphGpY, nq. We begin with a few elementary results as a warm-up.

Proposition 4.3.1. Under the key assumptions in Section 4.2, the probability that the random

graph GpY, nq is isomorphic to the empty graph with 0 ď k ď m vertices but no edges, denoted Kc
k,
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satisfies

P pGpY, nq – Kc
kq ě pn˚k!

ˆ

m

k

˙ˆ

n´ 1

k ´ 1

˙

,

where p˚ “ mintp1, p2, ..., pmu. Moreover, in the uniform case where pi “ 1
m for all i P rms, we

have that

P pGpY, nq – Kc
kq “

k!

mn

ˆ

m

k

˙ˆ

n´ 1

k ´ 1

˙

.

Proof. Note that for GpY, nq to form a disjoint collection of k points, the intervals induced

by the Y1, . . . , Yn must also be disjoint. This occurs if and only if all points of the same color are

grouped together. Given k fixed colors it is well known that the disjoint groupings are counted by

the number of compositions of n into k parts,
`

n´1
k´1

˘

. Each composition occurs with probability at

least pn˚. Finally, considering the
`

m
k

˘

different ways to choose these k colors and the k! ways to

order the colors, we have that,

P pGpY, nq – Kc
kq ě pn˚k!

ˆ

m

k

˙ˆ

n´ 1

k ´ 1

˙

.

The uniform case follows from the fact that every k´coloring of the n points is equally likely and

occurs with probability 1
mn . □

In the next result we compute the probability that a particular edge is present in GpY, nq.

Theorem 4.3.1. Under the key assumptions in Section 4.2 and for any 1 ď i ă j ď m, the

probability of the event Aij “ tti, ju P GpY, nqu, i.e., that the edge ti, ju is present in the graph Nn,

is given by

P pAijq “ 1 ´ qnij ´

n
ÿ

k“1

ˆ

n

k

˙„ˆ

2
k´1
ÿ

r“1

pri p
k´r
j

˙

` pki ` pkj

ȷ

qn´k
ij ,

where qij “ 1´ ppi ` pjq. Moreover, in the uniform case where pi “ 1
m for all i P rms, we have that

P pAijq “ 1 ´
2npm´1qn´1`pm´2qn

mn .

Proof. We will find the probability of the complement, Acij , which is the event where the two

empirical supports do not intersect, i.e., Acij “ tInpiqXInpjqu “ H. Let Ci “ tℓ : Yℓ “ i, 1 ď ℓ ď nu

and define Cj analogously. Note that Acij can be expressed as the disjoint union of three events:

(1) tCi and Cj are both emptyu,

(2) tExactly one of Ci or Cj is emptyu,
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(3) tCi and Cj are both non-empty but Inpiq and Inpjq do not intersectu.

The probability of the first event is simply qnij . For the second event, assume for now that Ci will

be the non-empty set and let k P rns be the desired size of Ci. There are
`

n
k

˘

ways of choosing

the locations of the k points in Ci. Once these points are chosen, the probability that these points

receive label i and no others receive label i nor label j is exactly pki q
n´k
ij . Summing over all values

of k and noting that the argument where Cj is non-empty is analogous, we get that the probability

of the second event is exactly
řn
k“1

`

n
k

˘

ppki ` pkj qqn´k
ij .

Now, note that the third event only occurs if all the points in Ci are to the left of all points in

Cj or vice versa; for now assume Ci is to the left. Let k P rns be the desired size of Ci YCj and let

r P rk´ 1s be the desired size of Ci. As before there are
`

n
k

˘

ways of choosing the locations of the k

points in CiYCj . Once these points are fixed, we know Ci has to be the first r many points, Cj has

to be the remaining k ´ r points, and all other points cannot have label i nor label j. This occurs

with probability pri p
k´r
j qn´k

ij . Finally, summing over all values of k and r and adding a factor of 2

to account for flipping the sides of Ci and Cj we get that the third event occurs with probability

2
řn
k“1

`

n
k

˘
řk´1
r“1 p

r
i p
k´r
j qn´k

ij .

Since Acij is the disjoint union of these three events, P pAcijq is equal to the sum of these three

probabilities, which gives the desired result. For the uniform case, simply set pi “ pj “ 1{m in the

general formula and note,

P pAijq “1 ´ p
m´ 2

m
qn ´

n
ÿ

k“1

ˆ

n

k

˙„ˆ

2
k´1
ÿ

r“1

1

mk

˙

`
2

mk

ȷ

p
m´ 2

m
qn´k

“1 ´ p
m´ 2

m
qn ´

1

mn

n
ÿ

k“1

ˆ

n

k

˙

2kpm´ 2qn´k

“1 ´
2npm´ 1qn´1 ` pm´ 2qn

mn
.

□

Corollary 4.3.1. Let X be the random variable equal to the number of edges in GpY, nq.

Under the key assumptions in Section 4.2,

EX “
ÿ

1ďiăjďm

1 ´ qnij ´

n
ÿ

k“1

„ˆ

n

k

˙ˆ

2
k´1
ÿ

r“1

pri p
k´r
j

˙

` pki ` pkj

ȷ

qn´k
ij ,
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where qij “ 1 ´ ppi ` pjq. Moreover, in the uniform case where pi “ 1
m for all i P rms, we have

EX “

ˆ

m

2

˙ˆ

1 ´
2npm´ 1qn´1 ` pm´ 2qn

mn

˙

.

Proof. This follows immediately from Theorem 4.3.1 and the linearity of expectation. □

4.3.2. Connectivity. We now turn our attention to answering several questions regarding

the connectivity of the graph Gpy, nq. We begin by proving a lower bound on the probability of

finding an interval intersecting all others, i.e., that the maximum degree of GpY, nq is m´1. In our

bird watching story this can be interpreted as the probability of finding a species which overlaps in

time with all others.

In the following theorem we let X n
m,k denote the set of weak-compositions of n with length m

containing exactly k-many non-zero parts. Recall, a weak composition of n P N of length m is a

sequence of non-negative integers c1, . . . , cm such that
řm
i“1 ci “ n [Sta11, p. 25]. Formally,

(4.1) X n
m,k “ tpx1, ..., xmq P Změ0 :

m
ÿ

i“1

xi “ n, |txi : xi ‰ 0u| “ ku

Additionally, we let Mpxq “
px1`x2`...`xmq!
x1!x2!...xm!

śm
i“1 p

xi
i denote the multinomial distribution applied

to the vector x P X n
m,k, with associated probabilities p1, p2, ..., pm [Pit93, p. 155],

(4.2) Mpxq “
px1 ` x2 ` ...` xmq!

x1!x2!...xm!

m
ź

i“1

pxii .

Finally, we let Skn denote the Stirling numbers of the second kind, which count the number of

partitions of rns into k many parts [Sta11, p. 81]. Specifically,

(4.3) Skn “
1

k!

k
ÿ

i“0

p´1qk´i

ˆ

k

i

˙

in.

Theorem 4.3.2. Under the key assumptions in Section 4.2, the maximum degree of GpY, nq

satisfies
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P pDegpGpY, nq “ m´ 1q ě max
1ďrďn´m

2

taprq ¨ bprqu, where,

aprq “ 1 ´

m´1
ÿ

k“1

kr

mr

ˆ

m

k

˙

ÿ

xPX r
m,k

Mpxqpm´ kqrpr˚, and

bprq “
ÿ

xPXn´2r
m,m

Mpxq,

and p˚ “ maxtpi : i P rmsu. Moreover, in the uniform case where pi “ 1
m for all i P rms, we have

that,

aprq “ 1 ´
m!

m2r

m´1
ÿ

k“1

pm´ kqr

pm´ kq!
Skr , and

bprq “
m!

mn´2r
Smn´2r.

Proof. For each i P rms we let Spiq “ tj P rns : Yj “ iu. Fix some 1 ď r ď n´m
2 and consider

the sets L “ t1, 2, ..., ru, C “ tr, r` 1, ..., n´ pr` 1qu and R “ tn´ r, n´ pr´ 1q, ..., nu. Note that

DegpGpY, nqq “ m´ 1 if the following events occur,

Aprq “ tThere exists a label i˚ for which Spi˚q X L ‰ H and Spi˚q XR ‰ Hu,

Bprq “ tSpiq X C ‰ H for all i P rmsu.

In order to calculate P pAprqq, we will compute P pAprqcq. Recall we may think of the stationary

case as a random coloring of the points 1, . . . , n with m-many colors. Thus, Aprqc corresponds to

the event where no color appears in both L and R. First we calculate the probability of L being

colored with exactly k colors with 1 ď k ď m´ 1. Observe that there are
`

m
k

˘

ways to choose these

colors and kr
ř

xPX r
m,k

Mpxq ways to color L with them. As there exist mr different colorings with

all the m colors, we have that for a fixed k the probability that L is colored with exactly k colors

is given by
1

mr
kr
ˆ

m

k

˙

ÿ

xPX r
m,k

Mpxq.
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In order for Ac to occur, we need that R be colored with only the pm ´ kq remaining colors.

Note that this event is independent from the coloring of L as the two sets are disjoint. There

are pm ´ kqr different ways of coloring R, and each occurs with probability at most pr˚, where

p˚ “ maxtpi : 1 ď i ď mu. Thus, for a fixed k we have that the probability that no color appears

in both L and R is at most
»

–

1

mr
kr
ˆ

m

k

˙

ÿ

xPX r
m,k

Mpxq

fi

fl rpm´ kqrpr˚s .

Then, by summing over all k we have that

P pAcq ď

m´1
ÿ

k“1

»

–

1

mr
kr
ˆ

m

k

˙

ÿ

xPX r
m,k

Mpxq

fi

fl rpm´ kqrpr˚s ,

which implies that

P pAq ě 1 ´

m´1
ÿ

k“1

1

mr
kr
ˆ

m

k

˙

ÿ

xPX r
m,k

Mpxqpm´ kqrpr˚.

To compute P pBq, note that the probability of coloring C with m colors is exactly

ÿ

xPXn´2r
m,m

Mpxq.

Finally, as A and B are independent events, we have P pDegpGpY, nqq “ m´ 1q is greater than

„

1 ´

m´1
ÿ

k“1

1

mr
kr
ˆ

m

k

˙

ÿ

xPX r
m,k

Mpxqpm´ kqrpr˚

ȷ„

ÿ

xPXn´2r
m,m

Mpxq

ȷ

.

Maximizing over r gives the desired result. For the case uniform, we just apply p˚ “ 1{m and use

the former equality together with the fact that k!{knSkn “
ř

xPXn
m,k

Mpxq. □

Next, we compute a lower bound on the expected clique number of GpY, nq. This quantity is

of special interest to us since this corresponds to the maximal subset of birds whose time intervals

all intersect in our bird watching story.

Lemma 4.3.1. Under the key assumptions in Section 4.2, the probability that an arbitrary point

x P rns lies inside the interval Inpiq, is exactly 1 ´ qxi ´ qn´x`1
i ` qni , where qi “ 1 ´ pi.
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Proof. Fix an arbitrary x P rns and define the event A “ tx P Inpiqu. Note that in order for

A to occur either x lies between two points with label i or x itself is labeled i. Now consider the

complementary probability event, Ac “ tx R Inpiqu. Next define the events L,R where L “ tnone

of the points less than or equal to x have label iu and R “ tnone of the points greater than or

equal to x have label iu. Note Ac “ L Y R and P pLq “ qxi , P pRq “ qn´x`1
i and P pL X Rq “ pni .

Therefore, by the inclusion-exclusion principle we have,

P pAcq “ P pLq ` P pRq ´ P pLXRq “ qxi ` qn´x`1
i ´ qni ,

and hence P pAq “ 1 ´ qxi ´ qn´x`1
i ` qni . □

Theorem 4.3.3. Let ω be the random variable equal to the clique number of GpY, nq, i.e., the

size of the largest clique. Under the key assumptions in Section 4.2 we have that,

E ω ě
m
ř

i“1
p1 ´ q

rn
2

s

i ´ q
n´rn

2
s`1

i ` qni q

where qi “ 1 ´ pi. Moreover, in the uniform case where pi “ 1
m for all i P rms, we have that

E ω ě m´
`

m´1
m

˘rn
2

s
´
`

m´1
m

˘n´rn
2

s`1
`
`

m´1
m

˘n
.

Proof. By the preceding lemma we know that the probability that x P Inpiq for some x P rns

is exactly 1 ´ qxi ´ qn´x`1
i ` qni . To maximize this quantity over x P rns we will first minimize

fpxq “ qxi ` qn´x`1
i ´ qni over all x. Note f is convex so a simple calculus exercise shows that

f is minimized at x˚ “ n`1
2 . This can also be seen directly from the fact that f is convex and

symmetric about n`1
2 . When n is odd the minimizer x˚ is an integer and lies in rns. To handle the

case when n is even, note that f is symmetric about the minimizer x˚. Therefore, when n is even,

f is minimized over rns at the integers closest to x˚, which are n
2 and n

2 ` 1. We see then that f is

minimized over rns at the point x “ rn2 s, which holds whether n is even or odd.

Now, for i “ 1, . . . ,m let Xi be the indicator random variable which equals 1 if rn2 s P Inpiq and

is 0 otherwise and set X “
řm
i“1Xi, so X counts the number of intervals containing the point rn2 s.

Note that the clique number ω ě X, so

E ω ě EX “

m
ÿ

i“1

EXi “

m
ÿ

i“1

P pXiq “

m
ÿ

i“1

p1 ´ q
rn
2

s

i ´ q
n´rn

2
s`1

i ` qni q.

The result for the uniform case follows directly by setting pi “ 1
m for every i. □
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4.3.3. Occurrence of Tree/Caterpillar Graphs. In this subsection we study the probabil-

ity that the graph GpY, nq forms a tree (recall, a tree is a a simple graph with no cycles). In [Eck93]

Eckhoff showed that the the only interval graphs which are also trees are the so-called caterpillar

graphs.

Definition 4.3.1 ( [Eck93]). A caterpillar graph is a tree T in which the removal of all leaves

results in a path Pl on l vertices, called the central path. The vertices connecting the leaves with

the central path are called support vertices.

Note that a caterpillar with central path Pl “ tv1, v2, . . . , vlu can be defined uniquely with the

following code Catpk1, k2, ..., ksq, where ki is the number of leaf vertices adjacent to vi (see [HS73]);

figure 4.3 illustrates some examples. Hence, we will often refer to a caterpillar graph simply by its

corresponding code.

(a) Catp3, 2q (b) Catp3, 2, 3q

Figure 4.3. Two examples of caterpillar graphs.

Theorem 4.3.4. Let Catpk1, k2, ..., klq denote a caterpillar and let v “
řl
j“0pkj ` 1q denote the

number of vertices in Catpk1, k2, ..., klq. If v ě 3, then nder the key assumptions in Section 4.2 and

in the uniform case where pi “ 1
m for all i P rms, we have that,

P pGpY, nq – Catpk1, k2 . . . , klqq “
v!

mn

ˆ

m

v

˙

ÿ

xPX

2x1`x2`...`xv´1 ,

where X “ tpx1, x2, ..., xv`l`1q P Zv`l`1 : xi ě 0 and
řv`s`1
i“1 xi “ n´ pv ` lqu.

Proof. For each i P rms let Ci “ tj P rns : Yj “ iu. We will refer to Ci as the chromatic class

of i, since it is the set of points that are colored i when we view our model as a random coloring.

Without loss of generality, let C1, C2, ..., Cl denote the chromatic classes corresponding to the

vertices of the central path Pl, and let Ci,1, Ci,2, ..., Ci,ki denote the chromatic classes corresponding

to the leaves leaves adjacent to the support vertex Ci.
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Now, consider the empirical supports Inpiq “ rbi, dis and Inpi, jq “ rbi,j , di,js of the chromatic

classes Cpiq and Ci,j , respectively. Observe that,

(i) Inpiq X Inpjq ‰ H ðñ |i´ j| “ 1,

(ii) Inpiq X Inpj, kq ‰ H ðñ i “ j,

(iii) Inpi, rq X Inpj, sq ‰ H ðñ i “ j and r “ s.

These restrictions imply that the birth times and death times of Inpiq and Inpi, jq will appear in

the following pattern:

¨ ¨ ¨ ă bi ă di´1 ă bi,1 ď di,1 ă bi,2 ď di,2 ă ¨ ¨ ¨ ă bi,ki ď di,ki ă bi`1 ă di ă . . . .

Thus we see that the collection of pv ` l ` 1q-many intervals,

p´8, b1q, pb1, d1,1q, pd1,1, d1,2q, . . . , pd1,k1´1, d1,k1q, pd1,k1 , b2q, pb2, d1q, pd1, d2,1q, pd2,1, d2,2q, . . . ,

partition the n ´ pv ` lq points in rns which are not an endpoint of one of the intervals above.

Observe that the intervals p´8, b1q, pd1,k1 , b2q, pd2,k2 , b3q, . . . , pdl´1,kl´1
, blq, pdl,kl , dlq only intersect

a single empirical support while all other intervals intersect exactly two. Therefore, the number of

possible ways to place and color the remaining n´ pv ` lq points in the v ` l ` 1 intervals is

ÿ

xPX

p2x1`x2`...`xv´1qp1xv ,...xv`l`1q “
ÿ

xPX

2x1`x2`...`xv´1 ,

where X “ tpx1, x2, ..., xv`l`1q P Zv`l`1 : xi ě 0 and
řv`s`1
i“1 xi “ n´ pv ` lqu. □

Corollary 4.3.2. Under the key assumptions in Section 4.2 and in the uniform case where

pi “ 1
m for all i P rms, the probability that GpY, nq is a tree is given by,

1

mn

«

m`

ˆ

m

2

˙

p2n ´ 2nq `

m
ÿ

v“3

v´2
ÿ

s“1

ˆ

v ´ 3

s´ 1

˙ˆ

m

v

˙

pvq!
ÿ

xPX

2x1`x2`...`xv´1

ff

,

where X “ tpx1, x2, ..., xv`s`1q :
řv`s`1
i“1 xi “ n´ pv ` squ.
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Proof. By Theorem 4.3.4, the function fpn,m, v, lq counts all the possible m-colorings of the

set rns such that GpY, nq is isomorphic to the caterpillar Catpk1, k2, ..., klq,

fpn,m, v, lq “

ˆ

m

v

˙

pvq!
ÿ

xPX

2x1`x2`...`xv´1 ,

when v “
l
ř

i“1
pki ` 1q ě 3, and X “ tpx1, x2, ..., xv`s`1q :

v`s`1
ř

i“0
xi “ n´ pv ` squ.

As there exist
`

v´3
l´1

˘

different ways to assign the ki values so that k1 and kl are not zero , the

equation,
ˆ

v ´ 3

l ´ 1

˙

fpn,m, v, lq,

counts all the m-colorings that induce caterpillars whose central path length is l and with v ´ l

leaves. Summing over all possible values of v and l, we see that the number of ways to color rns so

so the GpY, nq is a caterpillar with 3 or more vertices is given by:

m
ÿ

v“3

v´2
ÿ

s“1

ˆ

v ´ 3

s´ 1

˙

fpn,m, v, sq.

Finally, note that there are m different m-colorings for which GpY, nq is contains a single vertex,

and
`

m
2

˘

p2n ´ 2nq different m-colorings such that GpY, nq contains exactly two vertices connected

by a single edge. Since these are all the possible interval trees, we may add all these quantities and

divide by all the possible m-colorings, which gives the desired result. □

4.4. Behavior as the Number of Samples goes to Infinity.

Note that Theorem 4.3.3 implies that the expected clique number E ω Ñ m as the number

of samples, n, goes to infinity. Since ω takes values in rms, it follows that the clique number also

converges to m in probability, i.e., the probability that GpY, nq is isomorphic to the complete graph,

Km, goes to 1 as n goes to infinity. In our bird watching story, this means that with sufficiently

many observations one is almost sure to find an interval where all m species can be observed. The

following theorem provides a lower bound on this convergence.

82



Theorem 4.4.1. Under the key assumptions in section 4.2, the probability that GpY, nq is the

complete graph Km satisfies

P pGpY, nq – Kmq ě

ˆ

ÿ

xPX
t n2 u

m

Mpxq

˙2

where X tn
2

u
m “ tpx1, x2, ..., xmq P Nm :

řm
i“1 xi “ tn2 uu. In the uniform case where pi “ 1

m for every

i P rms, this gives that

P pGpY, nq – Kmq ě

ˆ

m!

mtn
2

u
Smtn

2
u

˙2

where, Skn denotes the Stirling numbers of the second kind.

Proof. Consider the events L “ tthe first tn2 u points are colored with exactly m colorsu

and R “ tthe last tn2 u points are colored with exactly m colorsu. For each vector x P X tn
2

u
m the

multinomialMpxq computes the probability that there exist exactly xi points with color i for every

1 ď i ď m. Therefore, the sum over all the vectors of X tn
2

u
m gives us the probability of having at

least one point of each color. Thus, we have that,

P pLq “ P pRq “
ÿ

xPX
t n2 u

m

Mpxq.

Finally, since P pGpY, nq – Kmq ě P pLXRq and since L and R are independent events, we conclude

P pGpY, nq – Kmq ě P pLXRq “ P pLqP pRq “

ˆ

ÿ

xPX
t n2 u

m

Mpxq

˙2

.

The result for the uniform case follows from the fact that k!{knSkn “
ř

xPXn
m,k

Mpxq. □

Theorem 4.4.1 tells us how likely it is for the empirical nerve of n samples to form the pm´ 1q-

simplex for fixed n. A related question asks what is the first observation n for which this occurs,

i.e., if we have a sequence of observations Y1, Y2, . . . what is the least n such that GpY, nq – Km?

We call this quantity the waiting time to form the complete graph. The following theorem provides

a lower bound on its expectation below.

Theorem 4.4.2. Let X be the random variable for the waiting time until GpY, nq – Km, ex-

plicitly X “ inftn P N : GpY, nq – Kmu. Then, under the key assumptions in Section 4.2, we have
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that,

EX ď 2

ż 8

0

´

1 ´

m
ź

i“1

p1 ´ e´pixq

¯

dx.

Moreover, in the uniform case, where pi “ 1
m for all i P rms, we have that,

EX ď 2m
m
ÿ

i“1

1

i
.

Proof. The results follow directly from the expected waiting time of the classical coupon

collector problem. Let Z denote the waiting time until we have observed every label, i.e., Z is the

waiting time until we have completed a collection of coupons if each coupon is an i.i.d. random

variable that takes value i with probability pi. It is known that EZ “ 2
ş8

0

`

1´
śm
i“1p1´e´pixq

˘

dx,

and in the uniform case where pi “ 1
m for all i P rms, EZ “ m

řm
i“1

1
i (see [FS14] for several

detailed proofs). Now, note that GpY, nq – Km if we complete a collection, then complete a second

collection, disjoint from the first. Let Z1 denote the waiting time to complete the first collection,

and let Z2 be the additional waiting time to complete a second collection. Then X ď Z1 ` Z2 and

Z1, Z2 are equal in distribution to Z, so EX ď EpZ1 ` Z2q “ 2EZ. □

4.4.1. Non-Stationary Results. So far we have focused on a stationary case of our model

where the rate functions fi : r0, T s Ñ r0, 1s are constant and our samples are i.i.d. random variables.

In this section we study the convergence of our model in the non-stationary case. We begin with

the following definition.

Definition 4.4.1. Let Y “ tYt : t P r0, T su be a stochastic process with indexing set r0, T s,

state space rms, and rate functions tfi : i P rmsu. The support graph of Y is the interval graph of

the supports the rate functions, GspY q “ Gptsupppfiq
˝ : i P rmsuq.

We note that unlike the random interval graphs GpY, nq, GspY q is non-random, as it is com-

pletely determined by Y and not a random sample. The following theorem shows that if we densely

sample in r0, T s, then the empirical support graphs converge to the support graph of Y .

Theorem 4.4.3. Let tYt : t P r0, T su be a stochastic process with indexing set I “ r0, T s, state

space S “ t1, . . . ,mu, and rate functions tfi : i P rmsu. Let ptnqnPN be a dense sequence in r0, T s
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with the property that Ytj and Ytk are independent for all j ‰ k. Then,

lim
nÑ8

P pGpY, nq – GspY qq “ 1

.

Proof. Without loss of generality we may assume that T “ 1. Note that in order for GpY, nq

to be isomorphic to GspY q it is necessary and sufficient that for all edges ti, ju P GspY q we have

that ti, ju P GpY, nq. Let Es denote the edge set of GspY q, then we wish to show that

lim
nÑ8

P
`

č

ePEs

Aen
˘

“ 1,

where Aen denotes the even te P GpY, nqu. Since the sequence GpY, nq is a filtration, it follows that

Aen Ă Aen`1, so it is sufficient to prove that

P

ˆ

č

ePGpY,nq

`

8
ď

n“1

Aen
˘

˙

“ 1.

And, since GspY q is a finite graph, it is sufficient to show that P pY8
n“1A

e
nq “ 1 for each e P Es

because a finite intersection of almost sure events also occurs almost surely.

Thus let e P Es be arbitrary and without loss of generality say e “ ti, ju. It follows that

supppfiq
˝Xsupppfjq

˝ is non-empty and also open, being a finite intersection of open sets. Therefore,

there exists an x0 P r0, 1s and an ε ą 0 such that rx0 ´ε, x0 `εs Ă supppfiq
˝ X supppfjq

˝. Therefore

for all x P rx0 ´ ε, x0 ` εs we have that fipxq “ P pYx “ iq ą 0, and likewise for j. Since the

functions fi, fj are continuous we may apply the Extreme Value Theorem which gives us that

pi :“ minxPrx0´ε,x0`εs fipxq exists and is strictly greater than 0, and likewise for j. Thus we can

define p˚ :“ mintpi, pju ą 0.

By assumption of the density of ptnqnPN we also have that there exist subsequences ptknq and

ptlnq such that for all n P N we have that tkn P rx0, x0 ` εs and tln P rx0 ´ ε, x0s. Then by the

independence of the Yt we have that for all n P N,

P pYtkn ‰ iq ď p1 ´ p˚q ùñ P
`

8
č

n“1

pYtkn ‰ iq
˘

ď

8
ź

n“1

p1 ´ p˚q “ 0,
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and likewise for j. As a result,

P
`

8
ď

n“1

pYtkn “ iq
˘

“ 1 ùñ P

ˆ

`

8
ď

n“1

pYtkn “ iq
˘

č

8
ď

n“1

pYtkn “ iq
˘

˙

“ 1,

i.e., that as n Ñ 8 the probability that Ytn “ i at least once when tn P rx0, x0 ` εs goes to 1 as

n Ñ 8. Analogously, we get the same result for the interval rx0 ´ ε, x0s, and so we have that x0

lies in the intersection of the empirical supports of i and j with probability tending to 1 as n tends

to infinity. This event is contained in Aen so we have that limnÑ8 P pAenq “ 1, as desired. □

4.5. Experimental Results

In Theorems 4.3.2, 4.3.3, and 4.4.1 we provided bounds on the likelihood of various events

occurring in GpY, nq when we have a fixed number of points n and colorsm. To study the usefulness

of these bounds we ran simulations. For each pair pm,nq we randomly colored n points on the real

line using m colors with uniform probability (each color was equally likely) then constructed the

induced interval graph. We repeated this process 100 times for each pair pm,nq and plotted the

percentage of the simulations where the desired event occurred. We also plotted our lower bounds

from the theorems above and found that, in general, our bounds perform well for most values of m

and n.

Figure 4.4 compares the bound on P pDegpGpY, nq “ m´1q in Theorem 4.3.2 and the empirical

approximation generated by our simulations. Figure 4.5 compares the bound on the expected clique

number obtained in Theorem 4.3.3 and the empirical approximation generated by our simulations.

Figure 4.6 compares the bound on the probability of the nerve being the pm´ 1q simplex obtained

in Theorem 4.4.1 and the empirical approximation generated by our simulations.

4.6. Conclusion and Further Questions

In this chapter we introduced a random interval graphs model which is well suited for appli-

cations involving the overlap patterns of chronological observations. We then proved many results

about the expected behaviour of this model in a special case we call stationary. We proved how

this model behaves in the general case as our number of samples points goes to infinity. This work

has inspired many additional questions which remain open. We outline a few of these below.
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Firstly, it is clear that the non-stationary case is better for applications where many factors

may affect the distribution of our observations. We ask, which results from stationary case can

be extended to non-stationary examples? Although the general non-stationary model is intractably

general, can we say something if we assume the rate functions have some nice, non-constant dis-

tributions, such as Gaussian mixtures, Poisson, or similar?

Secondly, the story we told involving bird watching is about data samples indexed by a single

parameter, say time. But what happens when other variables such as geographical coordinates, tem-

perature, humidity, are considered? This would involve extending our model to higher dimensions

where our empirical supports are now convex sets in Rn. This poses many new challenges; for ex-

ample, the random interval graphs are no longer sufficient to capture all the information. Instead,

one needs to investigate random simplicial complexes (see [DLH20]).

Thirdly, Hanlon presented in [Han82] a characterization of all interval graphs using a unique

interval representation and used characterization to enumerate all interval graphs. The analysis we

presented in Theorem 4.4.1 indicates that when we use our stochastic process to generate random

intervals on the line, the probability of getting an interval graph other than the complete graph

goes to 0 as the number of samples n goes to infinity. A natural challenge is to understand the decay

of probabilities for different classes of graphs. For instance, Theorem 4.3.4 describes the decaying

likelihood of producing a tree.
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Figure 4.4. Probability that the maximum degree of GpY, nq “ m´ 1.
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Figure 4.5. Expected clique number of Gpy, nq in uniform case.

Figure 4.6. Probability that GpY, nq – Km.
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