UC Irvine

UC Irvine Previously Published Works

Title

Isometries of $L p L^{\wedge} p$-spaces associated with finite von Neumann algebras

Permalink

https://escholarship.org/uc/item/0v83h5cr

Journal

Bulletin of the American Mathematical Society, 74(2)

ISSN

0273-0979

Author

Russo, Bernard

Publication Date

1968

DOI

10.1090/s0002-9904-1968-11898-1

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

ISOMETRIES OF L^{p}-SPACES ASSOCIATED WITH FINITE VON NEUMANN ALGEBRAS

BY BERNARD RUSSO ${ }^{1}$
Communicated by Bertram Yood, October 19, 1967

1. Introduction. The object of this paper is to study the isometries of the $L^{p^{p} \text {-spaces, }} 1 \leqq p<\infty$, associated with a faithful normal semifinite trace on a von Neumann algebra M, and their connections with *-automorphisms of M (see [2], [8] for L^{p}-spaces, [3] for von Neumann algebras). As is well known, every *-automorphism (or *-antiautomorphism) of a finite factor M induces an L^{2}-isometry on M. The problem we consider is the converse: under what conditions does an L^{p}-isometry induce a ${ }^{*}$-automorphism? Our purpose is to provide a method for constructing *-automorphisms of von Neumann algebras.

The author wishes to acknowledge many helpful discussions with Noboru Suzuki concerning this paper.
2. Preliminaries. Let M be a von Neumann algebra with a faithful normal semifinite trace ϕ. Let m_{ϕ} be the ideal of trace operators relative to ϕ (see [3, p. 80]). If $0<\alpha<+\infty, m_{\phi}^{\alpha}$ denotes the ideal in M whose positive elements are the operators x^{α} for x a positive operator in m_{ϕ}. We have $m_{\phi}^{\alpha} \subset m_{\phi}^{\beta}$ if $\alpha \geqq \beta>0$. If ϕ is finite then $M=m_{\phi}=m_{\phi}^{1}$ [2, p. 10]. For $1 \leqq p<\infty$ the set $m_{\phi}^{1 / p}$ equipped with the norm $\|x\|_{p}$ $=\phi\left(|x|^{p}\right)^{1 / p}\left(|x|=\left(x^{*} x\right)^{1 / 2}\right)$ is a complex normed linear space, whose completion is called the L^{p}-space associated with ϕ and M (see [2, pp. 23-27]). We denote this space by $L^{p}(\phi) . L^{\infty}(\phi)$ denotes the space M with the operator norm. It is known that $L^{\infty}(\phi)$ is the Banach space dual of $L^{1}(\phi)[3, \mathrm{p} .105]$, and that $L^{p}(\phi)$ is the Banach space dual of $L^{q}(\phi)$ where $1<p<\infty$ and $1 / p+1 / q=1,[2, p .27]$. We use the symbol \langle,$\rangle to denote these dualities and remark that if x \in m_{\phi}^{1 / p}$ and $y \in m_{\phi}^{1 / q}$, then $\langle x, y\rangle=\phi(x y)$ (here, if $p=1, m_{\phi}^{1 / a}$ denotes the strong closure of m_{ϕ}) [2, p. 27]. The space $m_{\phi}^{1 / 2}$, with the inner product $(x \mid y)=\phi\left(y^{*} x\right)$, is a pre-Hilbert space whose completion is none other than $L^{2}(\phi)$.

If M acts on a Hilbert space H, a closed dense linear transformation z in H is affiliated with M if $u z u^{-1}=z$ for all unitary operators u in the commutant of M (see remark following Theorem 1).

[^0]3. The isometries. The isometries of $L^{\infty}(\phi)$ have been completely determined in [5]. The result, which will be used below, is that a linear operator norm isometry ($=L^{\infty}$-isometry) T of any von Neumann algebra M onto M has the form $x \rightarrow u \rho(x)$ where u is a unitary operator in M and ρ is a C^{*}-automorphism ($=$ Jordan ${ }^{*}$-automorphism) of M, that is, $\rho\left(x^{2}\right)=\rho(x)^{2}$ and $\rho(x)^{*}=\rho\left(x^{*}\right)$, [5, Theorem 7]. Each C^{*}-automorphism ρ of M is the direct sum of a ${ }^{*}$-isomorphism and a *-anti-isomorphism in the following sense: there is a central projection e in M such that $x \rightarrow \rho(x) e$ is a ${ }^{*}$-isomorphism and $x \rightarrow \rho(x)(1-e)$ is a ${ }^{*}$-anti-isomorphism, [5, Theorem 10]. Thus each C^{*}-automorphism of a factor is either a ${ }^{*}$-automorphism or a ${ }^{*}$-antiautomorphism.

Theorem 1. Let M be a von Neumann algebra with a faithful finite normal trace ϕ, and let T be a linear isometry of $L^{1}(\phi)$ onto $L^{1}(\phi)$. Then there is a C^{*}-automorphism α of M, a positive operator $z \in L^{2}(\phi)$ affiliated with the center Z of M, and a unitary operator u in M such that

$$
T(x)=\alpha(x) z^{2} u, \quad x \in M
$$

Remark. Since z may be unbounded, all products or sums of operators involving z are "strong products" and "strong sums," as defined in [8, p. 414].

Corollary. If in Theorem $1, M$ is a factor and $T(I)=I$, then T (restricted to M) is a *-automorphism or a ${ }^{*}$-anti-automorphism of M.

Proof of Theorem 1. The Banach space dual $T^{-1 *}$ of T^{-1} is an isometry of $L^{\infty}(\phi)$. Thus $T^{-1 *}(x)=w \alpha(x), x \in M$, where w is unitary in M and α is a C^{*}-automorphism of M. There is an isometry S of $L^{1}(\phi)$ such that $S^{*}=\alpha$. Thus if $x \in M, y \in M$, then $\left\langle T^{-1}(x), y\right\rangle$ $=\left\langle x, T^{-1 *}(y)\right\rangle=\langle x, w \alpha(y)\rangle=\langle x w, \alpha(y)\rangle=\langle S(x w), y\rangle$. Hence

$$
\begin{equation*}
T^{-1}(x)=S(x w), \quad x \in M \tag{1}
\end{equation*}
$$

Using [1, Theorème 2] there is a positive operator z affiliated with the center of M such that $x \rightarrow z \alpha(x)$ acts as an L^{2}-isometry on M. Thus if $x \in M$, then z and $\alpha(x) z$ belong to $L^{2}(\phi)$, so by Hölder's inequality [8, Corollary 12.9], $\alpha(x) z^{2}$ belongs to $L^{1}(\phi)$. We assert that for $x, y \in M,\left\langle\alpha(x) z^{2}, \alpha(y)\right\rangle=\left(z \alpha(y) \mid z \alpha\left(x^{*}\right)\right)$. Indeed, this is trivial if z belongs to M. Otherwise, write $z=\int_{0}^{\infty} \lambda d e_{\lambda}$ where $e_{\lambda} \in Z[3, \mathrm{p} .17]$. Then $z_{n} \equiv \int_{0}^{n} \lambda d e_{\lambda} \in Z$ and it is easy to check that $z_{n} z=z z_{n}$ and $\left\|z_{n}-z\right\|_{2} \rightarrow 0$ (cf. [8, Corollary 12.13]). Hence

$$
\left\|z^{2}-z_{m}^{2}\right\|_{1}=\left\|\left(z+z_{m}\right)\left(z-z_{m}\right)\right\|_{1} \leqq\left\|z+z_{m}\right\|_{2}\left\|z-z_{m}\right\|_{2} \rightarrow 0
$$

Thus

$$
\begin{aligned}
\left\langle\alpha(x) z^{2}, \alpha(y)\right\rangle & =\lim _{n}\left\langle\alpha(x) z_{n}^{2}, \alpha(y)\right\rangle \\
& =\lim _{n}\left(z_{n} \alpha(y) \mid z_{n} \alpha\left(x^{*}\right)\right)=\left(z \alpha(y) \mid z \alpha\left(x^{*}\right)\right)
\end{aligned}
$$

proving the assertion. Now if $x, y \in M$,

$$
\left\langle S\left(\alpha(x) z^{2}\right), y\right\rangle=\left\langle\alpha(x) z^{2}, \alpha(y)\right\rangle=\left(z \alpha(y) \mid z \alpha\left(x^{*}\right)\right)=\left(y \mid x^{*}\right)=\langle x, y\rangle
$$

so that $S\left(\alpha(x) z^{2}\right)=x, x \in M$. Combining this with (1) yields $T(x)$ $=\alpha(x) z^{2} w^{-1}, x \in M$, which proves the theorem.

If M is a von Neumann algebra we denote by M_{h} the real Banach space of selfadjoint operators in M, by M^{+}the cone of positive operators in M, by M_{P} the lattice of projections in M, and by S_{h} the convex set of all selfadjoint operators in M of operator norm at most one.

Theorem 2. Let M be a von Neumann algebra with a faithful normal finite trace ϕ, and let T be a linear L^{p}-isometry of M onto M for some p, $1 \leqq p<\infty$. Then (i) T is a C^{*}-automorphism of M if, and only if, one of the following conditions is satisfied:
(ii) $T\left(M^{+}\right) \subset M^{+}$and $T(I)=I$;
(iii) $T\left(M_{P}\right) \subset M_{P}$;
(iv) $T\left(S_{h}\right) \subset S_{h}$ and $T(I)=I$.

Corollary 1. In Theorem 2, if M is a factor then T is either a *-automorphism of M or a^{*}-anti-automorphism of M.

Corollary 2. In Theorem 2, if M is a factor and $p=1$ or $p=2$ the assumption $T(I)=I$ may be dropped in condition (ii).

Proof of Theorem 2. (i) \Rightarrow (iv). This is known [5, Theorem 5]. (iv) \Rightarrow (iii). We may assume that $\phi(I)=1$. If u is selfadjoint and unitary in M, then $t=T(u)$ is selfadjoint, $\|t\| \leqq 1$ and $\phi\left(|t|^{p}\right)^{1 / p}=\|t\|_{p}$ $=\|u\|_{p}=1$. Thus $\phi\left(I-|t|^{p}\right)=0$ so that t is unitary. Now if $e \in M_{P}$, then $I-2 e$ is selfadjoint and unitary, $I-2 T(e)$ is selfadjoint and unitary, so that $T(e) \in M_{P}$.
(iii) \Rightarrow (ii). Note first that T is bounded in the L^{∞}-norm. This follows from the closed graph theorem and the identity $\|x\|_{p} \leqq\|x\|$, $x \in M$. Next $T(I) \in M_{P}$, say $T(I)=e$, and $1=\|I\|_{p}=\|e\|_{p}=\phi\left(e^{p}\right)^{1 / p}$ $=\phi(e)^{1 / p}$. Hence $\phi(I-e)=0$ which implies that $e=I$. Now let $a \in M^{+}$. By the spectral theorem a is the limit in L^{∞}-norm of operators b_{j} of the form $b_{j}=\sum_{t=1}^{n_{j}} \lambda_{i} e_{i}$ where $\lambda_{i} \geqq 0$ and $e_{1}, \cdots, e_{n_{j}}$ are orthogonal projections in M. Since $T\left(b_{j}\right)$ belongs to M^{+}, so does $T(a)$.
(ii) \Rightarrow (i). By [7, Corollary 1], T has L^{∞}-norm 1 . Thus if u is unitary in M and $t=T(u)$, then $\|t\| \leqq 1,\|t\|_{p}=1$, so that $\phi\left(I-|t|^{p}\right)=0$ which implies that t is unitary. The result now follows from [7, Corollary 2].

The proof of Corollary 2 rests on the following
Lemma. Let M be a von Neumann algebra with a faithful normal semifinite trace ϕ, and let T be an L^{p}-isometry of M onto M for $p=1$ or $p=2$. If $a, b \in M^{+} \cap m_{\phi}$, and $a b=0$, then $T(a) T(b)=0$.

Proof. The case $p=2$ can be found in [1, Lemma 2]. Since $a b=0$ we have $\|a \pm b\|_{1}=\phi(|a \pm b|)=\phi\left(\left(a^{2}+b^{2}\right)^{1 / 2}\right)$. Thus $\|a-b\|_{1}=\|a+b\|_{1}$ $=\phi(a+b)=\phi(a)+\phi(b)=\|a\|_{1}+\|b\|_{1}$. The map $x \rightarrow f_{x}, x \in m_{\phi}$, where f_{x} is the linear functional $y \rightarrow \phi(x y)$ on M, is linear, selfadjoint, positive and norm preserving in the sense that $\|x\|_{1}=\left\|f_{x}\right\|[3, \mathrm{p} .105]$. Thus

$$
\begin{aligned}
\left\|f_{T(a)}-f_{T(b)}\right\| & =\left\|f_{T(a-b)}\right\|=\|T(a-b)\|_{1}=\|a-b\|_{1}=\|a\|_{1}+\|b\|_{1} \\
& =\|T(a)\|_{1}+\|T(b)\|_{1}=\left\|f_{T(a)}\right\|+\left\|f_{T(b)}\right\| .
\end{aligned}
$$

By [4, p. 243], $f_{T(a)}$ and $f_{T(b)}$ have disjoint supports [3, p. 61]. It follows that $T(a) T(b)=0$.

Proof of Corollary 2. Since M is a factor it suffices to show that $T(I)$ commutes with $T(x)$ for all $x \in M$. We may assume x is a projection p. By the Lemma, $T(p)$ and $T(I)-T(p)$ have zero product which implies that $T(I)$ commutes with $T(p)$.

It is interesting to note that in the case $p=2$ of Theorem 2, condition (ii) cannot be weakened. The trivial example $T(x)=-x$ shows that we must assume $T(I)=I$. Furthermore, we can show the theorem to be false if (ii) is replaced by the weaker condition (ii') $T\left(M_{h}\right) \subset M_{h}$ and $T(I)=I$. To see this suppose that an L^{2}-isometry of a finite factor M satisfying (ii') is always a *-automorphism or a *-anti-automorphism. Let N be a subfactor of M. Using [2, Théorème 8] each element x in M has a unique decomposition $x=x_{1}+x_{2}$ where $x_{1} \in N$ and x_{2} is an element of M of trace 0 . If α is a ${ }^{*}$-automorphism of N, the mapping $\tilde{\alpha}(x)=\alpha\left(x_{1}\right)+x_{2}$ is a linear L^{2}-isometry of M satisfying (ii'), so according to our supposition is a *-automorphism of M. If for example we let N be the hyperfinite factor and we let M be the crossed product of N by a group G of order 2 of outer *-automorphisms of N (see [9]), then the above discussion implies that an arbitrary *-automorphism of N commutes with each *-automorphism of N of order 2, which is absurd.
4. Remarks. 1. The extension of Theorems 1 and 2 to the semifinite case is open. For $p=2$ this has been done by M. Broise [1] for conditions (i) and (ii) of Theorem 2.
2. The extension of Theorem 1 to the case $1<p<\infty, p \neq 2$, is open. If M is commutative and semifinite, this extension is known [6, Theorem 3.1].
3. The results of this paper should prove to be useful for attacking the extension problems of ${ }^{*}$-isomorphisms between subalgebras of von Neumann algebras and therefore for constructing outer *-automorphisms on factors of type II_{1}. We propose to investigate this in a subsequent paper.

References

1. M. Broise, Sur les isomorphismes de certaines algèbres de von Neumann, Ann. Sci. Ecole Norm. Sup. 83 (1966), 91-111.
2. J. Dixmier, Formes lineaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
3. —_, Les Algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
4. ——, Les C*-algèbres et leurs representations, Gauthier-Villars, Paris, 1964.
5. R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338.
6. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.
7. B. Russo and H. A. Dye, A note on unitary operators in C^{*}-algebras, Duke Math. J. 33 (1966), 413-416.
8. I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401-457.
9. N. Suzuki, Crossed products of rings of operators, Tôhoku Math. J. 11 (1959), 113-124.

University of California, Irvine

[^0]: ${ }^{1}$ This work was supported by the National Science Foundation, under grant number GP-5436.

