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Optimal operation of reservoir systemswith the symbiotic

organisms search (SOS) algorithm

Omid Bozorg-Haddad, Ali Azarnivand,

Seyed-Mohammad Hosseini-Moghari and Hugo A. Loáiciga
ABSTRACT
This work introduces the symbiotic organisms search (SOS) evolutionary algorithm to the

optimization of reservoir operation. Unlike the genetic algorithm (GA) and the water cycle algorithm

(WCA) the SOS does not require specification of algorithmic parameters. The solution effectiveness of

the GA, SOS, and WCA was assessed with a single-reservoir and a multi-reservoir optimization

problem. The SOS proved superior to the GA and the WCA in optimizing the objective functions of

the two reservoir systems. In the single reservoir problem, with global optimum value of 1.213,

the SOS, GA, and WCA determined 1.240, 1.535, and 1.262 as the optimal solutions, respectively.

The superiority of SOS was also verified in a hypothetical four-reservoir optimization problem. In this

case, the GA, WCA, and SOS in their best performance among 10 solution runs converged to 97.46%,

99.56%, and 99.86% of the global optimal solution. Besides its better performance in approximating

optima, the SOS avoided premature convergence and produced lower standard deviation

about optima.
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INTRODUCTION
The unwise operation of reservoirs is the main driving-force

of various water resources crises such as degrading native

aquatic ecosystems (Steinschneider et al. ), water pol-

lution (Yuan et al. ), shrinkage of lakes (Azarnivand &

Banihabib ), and other calamities in many regions of

the world. The countries within the arid regions of the

world are grappling with anthropogenic and climatic driving

forces which pose a burden to water, energy, and food secur-

ity. For this reason, it is vital to improve water resources

planning and management, which includes reservoir oper-

ation as a key component.

The techniques used for obtaining optimal operation of

reservoir systems can be divided into classical methods

and evolutionary algorithms (EAs). Schardong & Simonovic
() warned about the curse of dimensionality that plagues

classical methods such as dynamic programming (DP) and

stochastic dynamic programming (SDP). Linear program-

ming (LP) requires objective functions and constraints that

are linear on the decision variables, this being a common

limitation for practical modeling of real reservoir systems.

Nonlinear programming (NLP) is heavily influenced by

the choice of initial conditions, and most searches may

lead to local optimal solutions instead of the global

optima. On the other hand, EAs have amply demonstrated

their ability of finding near-global solutions of complex

optimization problems (Farhangi et al. ; Zufferey ;

Ashofteh et al. a, b, a, b, c; Bozorg-

Haddad et al. , , a, b; Fallah-Mehdipour
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a, b, c, ; Orouji et al. , a, b;

Shokri et al. ; ; Soltanjalili et al. ; Ahmadi

et al. , ; Beygi et al. ; Bolouri-Yazdeli et al.

; Jahandideh-Tehrani et al. ). There is a large

volume of published papers dealing with EAs applied to

reservoir operation problems (Ching et al. ; Kumphon

; Afshar et al. ; Bashiri-Atrabi et al. ; Li et al.

; Rampazzo et al. ; Amirkhani et al. ; Bozorg-

Haddad et al. a, b).

An EA such as the standard genetic algorithm (GA) can

be applied to solving many types of optimization problems.

The GA mimics natural selection mechanisms and works on

the basis of populations of solutions that are improved itera-

tively (i.e., population-by-population (Fogel )). In the

first computational step of the GA, an initial population is

created composed of randomly generated solutions. The

next population is produced to improve the objective func-

tion through an iterative process. The chromosomes (or

solutions) of the current population at each step are selected

to generate the next generation. The selection probability of

chromosomes with superior fitness is larger than those of

less fit chromosomes. Selected chromosomes generate the

next population with crossover and mutation operators.

Crossover generates two new chromosomes by exchanging

genes between them. The mutation alters the chromosomes’

genes to create diversity in their population. The process of

improving chromosomal populations continues iteratively

until fulfilling a termination criteria.

Based on the ‘no free-lunch’ theorem, it is impossible

for an EA to optimally solve all the optimizing problems

(Wolpert & Macready ). Thus, there are new EAs

being introduced continually. Yazdi et al. () compared

three EAs for the optimal design of buildings. Hosseini-

Moghari et al. () compared a recently developed EA

called imperialist competitive algorithm (ICA) against the

cuckoo optimization algorithm (COA) in two separated

optimization problems, in which ICA outperformed COA

in solving single reservoir and multi-reservoir operation pro-

blems. The ICA also outperformed ant colony optimization

(ACO) in deriving optimal operational policies of the Dez

reservoir in Iran (Afshar et al. ). Li et al. () compared

seven typical heuristic algorithms with an application to

a real-life multi-reservoir system in China. In that study,

particle swarm optimization proved superior to other
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algorithms. Bashiri-Atrabi et al. () developed an optimiz-

ation model based on the comparison of the harmony

search algorithm vs. the honey-bee mating optimization for

reservoir operation optimization with respect to flood con-

trol in northern Iran. Akbari-Alashti et al. () applied

NLP, GA, and fixed-length gene genetic programming

(FLGGP) to derive multi-reservoir real-time operation

rules for a multi-reservoir system. The results indicated the

superiority of FLGGP in reaching the global optimum

value of NLP.

The selection of an EA to solve a specific problem

remains non-trivial (Maier et al. ). EAs are targets of

criticism because of the need for specifying algorithmic par-

ameters. Parameter tuning (either implicitly or explicitly) of

EAs can be complex and time-consuming (Lobo et al. ;

Eiben & Smit ; Joan-Arinyo et al. ; Yeguas et al. ;

Veček et al. ). Parameter tuning using full factorial

design is computationally burdensome. Hence, practitioners

often apply already-available tuning approaches or develop

parameter specification methods (Joan-Arinyo et al. ;

Lee et al. ; Montero et al. ; Veček et al. ).

It appears practical to test an EA which does not involve

parameter tuning in water resources management. Cheng

& Prayogo () introduced the symbiotic organisms

search (SOS) algorithm to overcome the parameter-

specification disadvantage. The SOS algorithm requires

only the specification of the ‘maximum number of evalu-

ations’ and the ‘population size’. The SOS is a nature-

inspired optimization algorithm which simulates three

different symbiosis interactions between organisms that

dwell in an ecosystem.

This work focuses on the optimal hydropower pro-

duction optimization of the Karun4 reservoir system in

southwestern Iran. The novelty of this work consists in the

introduction of the SOS algorithm, a recently developed

EA which does not involve parameter tuning to water

resources systems analysis. This work assesses the perform-

ance of the SOS algorithm in optimizing a single reservoir

operation against the GA, the water cycle algorithm

(WCA), and NLP. Moreover, the optimal operation of a

hypothetical benchmark four-reservoir system is also

tackled with SOS, GA, WCA, and NLP to verify the used

EAs. The remainder of this paper first describes the SOS

algorithm and its theoretical underpinnings. The SOS, GA,
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WCA, and NLP are then verified with a hypothetical four-

reservoir system. Lastly, the EAs and NLP are applied to sol-

ving for the optimal optimization of the Karun4 reservoir of

Iran. The performances of the SOS, GA, WCA, and NLP are

compared using the solutions to the single-reservoir

problems.
MATERIAL AND METHODS

The principles of the SOS algorithm

The SOS algorithm does not reproduce or create children

(or offspring), a trait that differentiates it from GA-type

EAs (Cheng & Prayogo ). It does, however, akin to the

majority of population-based EAs, generate an initial popu-

lation (called ‘ecosystem’) plus specific operators through

an iterative process to search for a near-optimal solution

among a group of candidate solutions (called ‘organisms’)

within the promising area of the search space. The phases

of the SOS algorithm are as follows (see Figure 1 and

Cheng & Prayogo ). After specifying the number of

organisms and maximum number of iterations, the initial

ecosystem is defined by producing a uniform random

number between the lower and upper ecosystem size

values and a design variable (D) number. In the next step

the best current solution, Xbest is identified. Two randomly

selected organisms along with Xbest participate in a dialectic

relationship that is beneficial for both of them and is called

mutualism. The following equations generate new candidate

solutions:

xinew ¼ xi þ rand(0, 1) × (xbest �MV × BF1) (1)

x jnew ¼ xj þ rand(0, 1) × (xbest �MV × BF2) (2)

where the mutual vector (MV) is the average value of xi and

xj which allows the organisms to be updated simultaneously

rather than separately; rand (0,1) is a vector of random num-

bers. In a mutualistic symbiosis between two organisms in

nature, one organism might receive a great benefit while

the other receives no significant benefit. This is reflected

by BF1 and BF2, which are determined randomly as either

1 or 2 ([BFi¼Round (rand (0, 1) þ1]; i¼ 1 and 2) to reflect

the level of benefits received from the engagement.
://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
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At this juncture the entire population is updated. New

candidate solutions xi and xj are then compared to the old

ones. Fitter organisms are selected as solutions for the

next iteration. The comparisons and selections starts with

the counter 1 and ends with the counter equal to the popu-

lation size (npop). For each i, the solution j is selected

randomly within the current population. Then, fitter organ-

isms participate in the next phase of interaction which is

called commensalism. According to commensalism one

organism receives benefits while the other remains unaf-

fected. Similar to the previous section, xj is selected

randomly from the ecosystem to interact with xi; xi tries to

garner benefits from the relationship, yet xj remains neutral

or unaffected. In this phase, xi is updated as follows, if the

new fitness value outperforms the previous fitness values:

xinew ¼ xi þ rand(0, 1) × (xbest � xj) (3)

In the third phase, which entails the mutation operator

of the SOS and is called parasitism, xi and xj are the artificial

parasite and host, respectively. In this type of symbiosis

relationship, one organism benefits while another one is

harmed. The trademark of the parasite vector (PV) is that

it competes against other randomly selected dimensions

rather than its parent/creator with a range between given

lower and upper bounds. In this phase, an initial PV is gen-

erated by duplicating organism xj. Some of the decision

variables from the PV are modified randomly to distinguish

the PV from xj. A random number must be generated in the

range of [1, the number of decision variables] to represent

the total number of modified variables. A uniform random

number is generated for each dimension to obtain the

location of the modified variables. Lastly, a uniform distri-

bution within the search space is required to modify the

variables and provide a PV for the parasitism phase. In syn-

thesis the PV attempts to replace xj which is selected

randomly from the ecosystem. If the PV outperforms xj it

becomes part of the ecosystem, whereas if the PV does not

outperform xj it vanishes from the ecosystem. The PV is cre-

ated by modifying xj in random dimensions with random

numbers instead of making small changes in xj. If the cur-

rent PV and xj are not the last member of the ecosystem

the algorithm returns to the step that selected Xbest until

reaching a specified termination criterion.



Figure 1 | Flowchart of the SOS algorithm.
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Simulation model for reservoir operation

A multi-reservoir system is simulated with the continuity

equation which is written as follows:

S(i,tþ1) ¼ S(i,t) þQ(i,t) þM(i,j):R(j,t) þM(i,j):Sp(j,t) �Loss(i,t)

for j¼ 1, 2, . . . ,n; i¼ 1, 2, . . . ,n; t¼ 1, 2, . . . ,T
(4)

where t¼ the index for simulation periods; i¼ reservoir

index; S(i,t) and S(i,tþ1)¼ the storages of the ith reservoir,

respectively, at the beginning and end of period t (MCM);

Q(i,t)¼ inflow volume into the ith reservoir during period t

(MCM/s); M(i,t)¼ the matrix of input–output connectivity

between reservoirs; R(j,t)¼ release volume from the jth reser-

voir during period t (MCM); Sp(j,t)¼ overflow volume from

the jth reservoir during period t (MCM); Loss(i,t)¼ evapor-

ation loss from the ith reservoir surface during period t

(MCM); n¼ number of reservoirs; and T¼ total number of

operation periods (month).

The following formula approximates the relation

between reservoir storage and evaporative loss [Loss(i,t)]:

Loss(i,t) ¼ Ev(i,t):
A(i,t) þA(i,tþ1)

2

� �
for

i ¼ 1, 2, . . . ,n, t ¼ 1, 2, . . . ,T
(5)

where Ev(i,t)¼ net evaporation (evaporation minus precipi-

tation) from the ith reservoir surface during the period t

(Km); A(i,t) and A(i,tþ1) ¼ ith reservoir areas, respectively, at

the beginning and end of the period t (Km2). A(i,t) is evalu-

ated with the area–storage formula as follows:

A(i,t) ¼ a1S3(i,t) þ a2S2(i,t) þ a3S(i,t) þ a4 for

i ¼ 1, 2, . . . ,n, t ¼ 1, 2, . . . ,T
(6)

Equation (7) was used to calculate the overflow (or spil-

lage) from reservoirs:

SP(i,t) ¼ S(i,tþ1) � Smax (i,t) if S(i,tþ1) > Smax (i,t)
0 otherwise

�
for

i ¼ 1, 2, . . . ,n, t ¼ 1, 2, . . . ;T
(7)

where Smax(i,t)¼ the maximum storage in the ith reservoir

during period t.
://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
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Additional constraints respectively on release, reservoir

storage, and storage carryover are as follows:

Rmin (i,t) � R(i,t) � Rmax (i,t) for

i ¼ 1, 2, . . . ,n, t ¼ 1, 2, . . . ,T
(8)

Smin (i,t) � S(i,t) � Smax (i,t) for

i ¼ 1, 2, . . . ,n, t ¼ 1, 2, . . . ,T
(9)

S(i,1) � S(i,Tþ1) for i ¼ 1, 2, . . . ,n (10)

where Rmin(i,t) and Rmax(i,t)¼minimum and maximum allow-

able release from the ith reservoir during period t,

respectively; Smin(i,t)¼minimum storage value of the ith

reservoir at the beginning of period t; S(i,1)¼ the storage of

the ith reservoir in period 1; S(i,Tþ1)¼ the storage of the ith

reservoir at the end of period T.
Case study: optimal operation of the Karun4 reservoir

system

The Karun4 is an arch dam 222 m high. Located in Chahar

Mahal va Bakhtiari province, with coordinates 31W 350 north

latitude and 50W 240 east longitude, the Karun4 reservoir was

built on the upper reach of the Karun River for hydropower

generation (Figure 2). Its power plant capacity (PPC) equals

1,000 megawatts; the minimum and maximum reservoir

storages are 1,141 × 106 and 2,190 × 106 m3, respectively.

The simulation–optimization model for optimal operation

of the Karun4 reservoir was structured for a monthly time

step during the period 1996–1997 to 2000–2001. The aver-

age volume of inflow plus evaporation depth from the

surface of Karun4 reservoir during the study period is pre-

sented in Figure 3. Power production at the Karun4

reservoir is given by the following formula:

P(t) ¼Min:
g× η×Rp(t)
PF ×Mul(t)

� �
×

(H(t) þH(tþ1)=2)� Tw(t)

1000

� �
, PPC

� �

for t¼ 1, 2, . . . ,T

(11)

where P(t)¼ hydropower generation in period t (MW);

g¼ acceleration of gravity (m/s2); η¼ efficiency of the



Figure 2 | Map of the Karun4 reservoir.
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power plant; Rp(t)¼ release of water through the power

plant in period t (MCM); PF ¼ plant functional coeffi-

cient; Mul(t)¼ 106 times of the number of seconds in

period t; Ht and Htþ1¼ reservoir water level at the
om http://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
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beginning and end of period t (m), respectively; Tw(t)¼
reservoir tail-water level which is assumed constant for

all periods during period t (m); and PPC¼ power plant

capacity.



Figure 3 | Monthly average of inflow volume into Karun4 reservoir and monthly average

evaporation depth.
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The storage-elevation formulas were applied to evaluate

the reservoir water level with the following equations:

H(t) ¼ b1S3(t) þ b2S2(t) þ b3S(t) þ b4 for t ¼ 1, 2, . . . ,T (12)

where b1, b2, b3, and b4 are constant coefficients of the

storage-elevation equation.

The objective function (Z) of the reservoir operation

problem minimizes the total squared deviation of the

power generated from the installed capacity of the system

during the operation period. The decision variables are the

release of water through the power plant in period t (see

Equation (11)). The objective function is given by:

Minimize Z ¼
XT
t¼1

1� P(t)

PPC

� �2

for t ¼ 1, 2, . . . ,T (13)

The constraints on reservoir storage require penalty

functions that penalize deviations of storage outside the

feasible region. The penalty functions P1 and P2 on storage

deviations outside the feasible region are:

P1 ¼ K1[S(Tþ1) � S(1)]
2 if S(Tþ1) < S(1) (14)

P2(t) ¼ K2[Smin � S(t)]
2 if S(t) < Smin for

t ¼ 1, 2, . . . ,T
(15)

where P1 and P2(t) are penalty functions on storage not

meeting the carryover constraints, and being less than the
://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
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minimum storage, respectively; K1, and K2¼ constants of

the penalty functions.

The penalized objective function is as follows:

Minimize Z ¼
XT
t¼1

1� P(t)

PPC

� �2

þ (P1 þ P2(t))

" #
for

t ¼ 1, 2, . . . ,T

(16)

Further information is given in the Appendix (available

with the online version of this paper).
Verification of the algorithm with the benchmark

problem: optimal operation of a four-reservoir system

The benchmark problem was introduced and solved by

Chow & Cortes-Rivera (). The objective function for

this hypothetical four-reservoir system is maximizing the

revenue accruing from reservoir releases during the oper-

ational period. Without loss of generality, the objective

function is dimensionless in this instance. Chow & Cortes-

Rivera () determined the optimal solution of this pro-

blem using LP as being equal to 308.26. The required data

for this problem can be found in Murray & Yakowitz

(), who reported 308.23 as the optimal solution deter-

mined with differential dynamic programming (DDP). The

simulation model for this problem assumed no overflow

and losses. The water-balance connectivity matrix (M, see

Equation (4)) for this problem is (see Figure 4):

M ¼
�1 0 0 0
0� 1 0 0
0 1� 1 0
1 0 1� 1

2
664

3
775 (17)

M is a fourth-order matrix with �1 s along the

diagonal denoting releases from reservoirs, and off-diagonal

þ1 s denoting transfers of water fromone reservoir to another.

The objective function (B) for the four-reservoir

problem is:

Maximize B ¼
XT
t¼1

Xn
i¼1

b(i,t) � R(i,t) for

i ¼ 1, 2, . . . ,n, t ¼ 1, 2, . . . ,T

(18)



Figure 4 | The four-reservoir system.
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where (B) is the total revenue from water releases that

accrues during the operational period, and b(i,t) is a unit rev-

enue corresponding to releases from the ith reservoir in

period t.

Penalty functions are imposed on deviation of storage

outside the feasible region. Yet, owing to the existence

of spillway, three penalty functions were considered to

penalize the infeasible solution on deviation from the car-

ryover constraint (P3(i)), on minimum storage (P4(i)), and

penalty on maximum storage (P5(i)), which are defined

as follows:

P5ði;tÞ ¼ K5½Sði;tÞ � Smaxði;tÞ�2 if Sði;tÞ > Smaxði;tÞ

for i ¼ 1; 2; 3; 4; t ¼ 1;2; . . . ;T
(19)

The penalized objective function is as follows:

Maximize B ¼
XT
t¼1

XN
i¼1

[b(i,t):R(i,t) � (P4(i) þ P5(i,t))]

for i ¼ 1, 2, 3, 4; t ¼ 1, 2, . . . ,T

(20)

The EAs’ computations for the benchmark functions,

the operation of the Karun4 reservoir system, and the

operation of the four-reservoir system were programmed

with MATLAB (MATLAB .. software). The NLP sol-

ution was obtained with Lingo based on generalized

reduced gradient algorithm (Lingo . software). Multiple

solutions (runs) are required to assess statistically the per-

formance of the EAs due to their random nature. Hence,

the results were obtained based on 10 runs for each

applied EA.
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RESULTS AND DISCUSSION

The SOS algorithm’s results for the Karun4 reservoir oper-

ation were compared with those obtained with the GA,

WCA, and NLP. The NLP method was applied to evaluate

the global optimal solution whereas the EAs determined

the near-optimal solution. The crossover rate, mutation

rate, and number of populations for GA were determined

by trial and error identical to the approach by Bozorg-

Haddad et al. () and set equal to 0.60 (via two-point

crossover function), 0.05 (via uniform function), and

70,000 (including population size [ecosystem size in the

SOS]¼ 70 and number of generations ¼1,000), respectively.

Moreover, the selection process applied the roulette wheel.

Due to critique associated with the application of the roul-

ette wheel by Bozorg-Haddad et al. (), the authors also

tested other operators. The crossover rate and mutation

rate were set equal to 0.70 and 0.06, respectively. The par-

ameter values of the WCA were identical to those used by

Bozorg-Haddad et al. (c). The number of objective func-

tion evaluations (NFE) for the four-reservoir problem

equaled 500,000 with the EAs (the SOS algorithm, the

WCA, and the GA).
Verification of results with the benchmark problems

The four-reservoir system operation

Bozorg-Haddad et al. () calculated the global optimal

NLP solution to be 308.29. In this case, the constraints

and the objective function are linear-based, which means

that the NLP is truly a LP problem. Table 1 lists the results

for the 500,000 objective function evaluations, from which

it is deduced that the average objective-function values

calculated with the SOS algorithm, WCA, and the GA

equaled 306.50, 304.92, and 299.70, respectively. Thus,

optimization with the SOS algorithm outperformed the

WCA and the GA. (1) The superiority of SOS algorithm

to the optimization methods was also true for the best per-

formance of the three EAs. The best objective function

values calculated with the SOS algorithm, WCA, and the

GA were 307.85, 306.92, and 300.47, respectively. (2)

The best performances of the WCA and the GA converged



Table 1 | Summarized results of 10 runs of the SOS algorithm, the WCA, and the GA for

the four-reservoir system

Number of run GAa WCAa SOS NLPb

1 300.42 306.83 305.99 308.29

2 298.89 302.40 306.45

3 300.09 303.65 307.30

4 300.47 303.60 306.11

5 298.46 302.38 307.85

6 300.00 306.01 305.67

7 299.22 304.05 306.86

8 299.87 306.75 307.28

9 299.20 306.63 305.47

10 300.35 306.92 305.97

Best 300.47 306.92 307.85

Worst 298.46 302.38 305.47

Average 299.70 304.92 306.50

Standard deviation 0.7060 1.8863 0.7914

Coefficient of variation 0.0024 0.0062 0.0026

aBozorg-Haddad et al. (2015c).
bBozorg-Haddad et al. (2011).

515 O. Bozorg-Haddad et al. | Optimal operation of reservoir systems with the SOS algorithm Journal of Hydroinformatics | 19.4 | 2017

Downloaded from http
by University of Califor
on 29 September 2024
to 99.56% and 97.46% of the global optimum solution,

respectively, while the SOS algorithm in its highest per-

formance reached 99.86% of the global optimal solution.

The convergence history of the SOS algorithm and the

GA based on their average performance for the four-

reservoir system is illustrated in Figure 5. Figure 5 clearly

indicates the superiority of the SOS over the GA. More-

over, Figure 6(a) reveals monthly releases and storages
Figure 5 | The convergence of the SOS and the GA for the four-reservoir system’s

problem.

://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
nia, Santa Barbara (UCSB) user
in each reservoir, respectively, on the basis of the best

optimal values from the SOS algorithm and the GA.

Figure 6(a) depicts appropriate compatibility between the

SOS and the NLP results. The incompatibility of optimal

releases between the GA and NLP for all four reservoirs

is clear from Figure 6(a). Figure 6(b) shows that the incom-

patibility of the optimal storage calculated with the GA

and NLP for the third and fourth reservoirs is higher

than that between the first and second reservoirs. A

slight incompatibility is also observed between the SOS

algorithm and NLP’s results for the third and fourth

reservoirs.

The Karun4 reservoir system operation

The NLP solution was equal to 1.213 (Bozorg-Haddad

et al. c). The superiority of an EA over other ones

can be obtained based on the similarity of its near-optimal

solution to the global optimal solution. Each run of the

SOS algorithm lasted approximately 30 seconds. Table 2

demonstrates the performance of the SOS algorithm vs.

GA and WCA based on 10 runs. The main results to

emerge from Table 2 are as follows. (1) The GA in its

best performance converged to 1.535, while the SOS algor-

ithm reached the value 1.240 in its best performance. The

SOS also outdid the WCA, which converged to 1.260 in

its best run. (2) It is noteworthy that even the worst per-

formance of the SOS algorithm was better than the best

performance of the GA. (3) The coefficient of variation of

the GA’s solutions was almost five times greater than that

of the SOS algorithm. Yet, on the basis of standard devi-

ation and coefficient of variation, the WCAs’ runs

exhibited smaller variability than the SOS algorithm. The

coefficients of variation of the SOS algorithm and WCA

were close to zero.

Figure 7 portrays the convergence history of the SOS

algorithm, the WCA, and the GA in 70,000 objective

function evaluations. A glance at this figure reveals a

similar performance of these two EAs at the beginning

of the optimization. Yet, as the number of functional

evaluations grew, the GA exhibited premature

convergence while the SOS algorithm continued its

decreasing trend. The standard GA is prone to premature

convergence when an individual dominates the rest of



Figure 6 | Comparison of the SOS algorithm, and the GA in their best performance for benchmark problem in terms of (a) monthly release of the four-reservoir system and (b) variations in

storage volume.
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the population and loses selection pressure toward the

end of the run. Therefore, other selection techniques,

such as stochastic universal sampling or tournament

selection have been introduced. The best results of tour-

nament and stochastic noise were, respectively, 1.542

and 1.438. Thus, even changing the selection operator

could not help GA to outperform SOS. The specific

characteristics of the SOSs’ operators could improve

the efficiency of the optimization process according to

the analysis by the developers of the algorithm. The

search speed of the SOS algorithm is higher than those

of other EAs. This is so because in the commensalism

formula the SOS algorithm applies xbest as the reference
om http://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
f California, Santa Barbara (UCSB) user
er 2024
point to identify the promising areas near the best sol-

ution. The parasitism operator introduces further merit

to the computational process. Making changes in all

the dimensions rather than in a small number of dimen-

sions adds large perturbation to the ecosystem that

maintains diversity while preventing premature conver-

gence. Furthermore, due to the highly random nature

of parasitism its uniquely produced solutions might be

located in totally different areas. Hence, the operators’

characteristics play pivotal roles in the successful per-

formance of SOS. Figure 8 represents the volume of

water released from the reservoir, the generated power,

and the variation of reservoir storage during the



Table 2 | Summarized results of 10 runs of the SOS algorithm, the WCA, and the GA for

the Karun4 problem

Number of run GAa WCAa SOS NLPa

1 1.673 1.289 1.257 1.213

2 1.549 1.269 1.253

3 1.865 1.287 1.240

4 1.752 1.260 1.291

5 1.987 1.289 1.242

6 1.753 1.285 1.245

7 1.931 1.281 1.248

8 1.57 1.279 1.314

9 1.842 1.286 1.272

10 1.535 1.262 1.248

Best 1.535 1.260 1.240

Worst 1.987 1.289 1.314

Average 1.746 1.279 1.261

Standard deviation 0.162 0.010 0.024

Coefficient of variation 0.093 0.008 0.019

aBozorg-Haddad et al. (2015c).
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operational period, respectively. Unlike the GA-driven

results, the SOS algorithm’s results were remarkably

similar to the optimized values of NLP graphed in

Figure 8. For instance, in Figure 8 during the period of

the 30th to 42nd month, there was a low compatibility

between the GA and the NLP results. It is seen in

Figure 8 that the lowest compatibility between the GA

and NLP occurred between periods 40 through 60 and

between periods 1 through 10, respectively. As can be
Figure 7 | The SOS algorithm, WCA, and the GA convergence in their average perform-

ance for the Karun4 reservoir.

://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
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seen in Figure 8, the compatibility of WCA with NLP

results is better than the GA’s, yet it is not as efficient

as the SOS.
CONCLUDING REMARKS

This work introduced the SOS algorithm to the optimization

of reservoir system operation and applied it to the Karun4

reservoir system with hydropower purpose, and to the opti-

mal operation of a four-reservoir system. Our results from

these two optimization problems indicate that the SOS

algorithm outperformed the GA and a relatively new EA

called the WCA. In the single reservoir problem with

global optimal value equal to 1.213, the SOS algorithm,

the WCA, and the GA determined 1.240, 1.260, and 1.535

as the optimal solutions, respectively. The superiority of

the SOS algorithm over the other EAs was repeated in the

four-reservoir optimizing problem with global optimal

value equal to 308.29. In this regard, the GA, the WCA,

and the SOS algorithm in their best performance among

10 runs converged to 97.46%, 99.56%, and 99.86% of the

global optimal solution. Besides closeness of the best per-

formance result to the global optimal solution calculated

with the SOS algorithm, other practical merits are germane

to the SOS algorithm. In comparison with the GA the SOS

algorithm did not exhibit premature convergence, it had

lower standard deviation, and had lower and more stable

coefficient of variation. Moreover, unlike the WCA and

the GA, the SOS does not require calibration of algorithmic

parameters. The results showed that despite the simple prin-

ciples of the SOS algorithm, it is capable of dealing with

complexities and constraints associated with multi-reservoir

operation optimization problems. This renders the SOS

algorithm an attractive solution method of optimization pro-

blems in water resources management.

The superiority of the SOS algorithm over other EAs

established in this study should not be considered applicable

to all optimization problems. This paper’s results are in line

with the aforementioned ‘no free-lunch’ theorem, which

emphasizes that a particular EA cannot optimally solve all

well-posed optimizing problems. However, the SOS algor-

ithm has unquestionable advantages, such as the simplicity

of parameter specification, adding a perturbation to the



Figure 8 | Comparison of the SOS algorithm, WCA, and the GA in their best performance for Karun4 reservoir problem in terms of (a) monthly release of the four-reservoir system and

(b) power generated during the operational period, and (c) variations in storage volume.
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search domain, and substituting a solution by evaluating the

difference between other solutions that render it a very

attractive EA. Future applications of the SOS algorithm

could include solutions to conflicting objectives that

appear in water resources management. For this purpose,

multi-objective algorithm benchmarking can be accom-

plished with the NSGA-II, Borg, AMALGAM, and other

algorithms which have shown good performance in solving

multi-objective optimization problems.
om http://iwaponline.com/jh/article-pdf/19/4/507/391667/jh0190507.pdf
f California, Santa Barbara (UCSB) user
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