
Original Article 

a UNESP - Univ Estadual Paulista, Faculdade de Engenharia de Ilha Solteira, 
Departamento de Engenharia Mecânica, Av. Brasil 56, 15385-000, SP, Brasil. 
b University of California, San Diego, Department of Structural Engineering, La Jolla, 
CA, 92093, USA. 
 
Corresponding author: 
Samuel da Silva, UNESP - Univ Estadual Paulista, Faculdade de Engenharia de Ilha 
Solteira, Departamento de Engenharia Mecânica, Av. Brasil 56, 15385-000, SP, Brasil. 
Email: samuel@dem.feis.unesp.br 
 

On the application of discrete-time Volterra series for the damage detection 
problem in initially nonlinear systems 

 
Sidney B Shikia, Samuel da Silvaa, Michael D Toddb 

 
Abstract 

Nonlinearities in the dynamical behavior of mechanical systems can degrade the 
performance of damage detection features based on a linearity assumption. In this paper 
a discrete Volterra model is used to monitor the prediction error of a reference model 
representing the healthy structure. This kind of model can separate the linear and 
nonlinear components of the response of a system. This property of the model is used to 
compare the consequences of assuming a nonlinear model during the nonlinear regime 
of a magneto-elastic system. Hypothesis tests are then employed to detect variations in 
the statistical properties of the damage features. After these analyses conclusions are 
made about the application of Volterra series in damage detection. 
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Introduction 

Nonlinear behavior is commonly present in mechanical systems such that linear 

tools can drastically fail to describe the complex dynamics of these structures1. A few 

typical sources of nonlinearity are geometric nonlinearities, gaps, bolted connections, 

clearance, gaps, impacts, cracks, materials with nonlinear constitutive relationship, etc2. 

As a consequence, even simple systems can exhibit complex nonlinear responses 

containing harmonic distortion, jumps, modal interactions, bifurcation and chaos3. 



These effects can be a great problem when monitoring a system during the nonlinear 

regime of operation4. 

The structural health monitoring (SHM) literature deals with nonlinear structures 

in basically two approaches. In the first one the system is considered to be linear and 

damage subsequently induces a nonlinearity in the structural response5. This is an 

appealing strategy since typical fault modes like cracks, impacts, delamination and 

rubbing of rotating machinery induce nonlinearity. In this kind of situation the 

identification of structural changes can be viewed as a procedure for detection of 

nonlinearities in the measured response of the system. Many well-established nonlinear 

tools such as coherence function, Hilbert transform, higher order spectra and phase-

space methods can be employed in this case6,7. Many recent papers still explore 

nonlinearity with features based on modal properties8, wave propagation9 and signal 

processing techniques10 usually taking advantage of the fact that the damage is in many 

cases a source of nonlinear behavior. 

In the second approach the system is considered to be nonlinear before the 

occurrence of the damage11. In this case it is necessary to appropriately model the 

baseline behavior of the structure in a way that the inherent nonlinear effects of the 

system are not mistakenly viewed as damage. In this case, techniques as the restoring 

force surface method, nonlinear autoregressive models, autoregressive support vector 



machines, Hilbert transform, principal component analysis, time-frequency analyses, 

among others may be applied to detect and quantify such nonlinearity2,7,11–13. However, 

there is still no general model to deal with nonlinear dynamics in a comprehensive way, 

and the application of mathematical tools in nonlinear problems tends to be case-

specific2. 

Among the existent tools for nonlinear system identification, Volterra series is a 

promising model class since it is a generalization of the linear convolution representing 

the linear and nonlinear responses of a dynamical system in a separable way14,15. The 

main challenges in the application of this model are in the calculation of the generalized 

impulse response functions, named Volterra kernels. The most popular approach in 

structural dynamics is called harmonic probing1. This estimation method consists in 

probing a nonlinear system with harmonic signals in order to calculate the kernels in the 

frequency domain, also called higher order frequency response functions (HOFRF). The 

main limitation of this formulation is that the motion equation or some discrete-time 

model of the system (e.g autoregressive models) should be known a priori in order to 

obtain the analytical HOFRFs16. Despite this limitation, the harmonic probing already 

has had successful applications in nonlinear system identification17 and damage 

detection18. 



Other possible way to deal with the identification of Volterra kernels is to use 

input and output information of the nonlinear system. This is a practical approach since 

it is easier to apply it together with data collected in an experimental test during the 

nonlinear regime of the structure. This kind of technique was already applied in the 

aeroelasticity literature in order to obtain reduced models instead of using traditional 

computational fluid dynamics models that are computationally intensive19. The authors 

of the present paper also have done applications of discrete-time Volterra series for 

system identification20,21, model updating22 and damage detection23 for simulated 

nonlinear structures. Alleged problems of convergence and overparameterization that 

can appear in the use of this model24 can be minimized by expanding Volterra kernels 

with orthonormal functions21 or wavelet bases25. 

A few papers already have explored the interesting properties of Volterra models 

in applications for damage detection. One of the first articles to utilize Volterra series 

expansion with damage identification problems was done by Ruotolo et al26 which 

simulated a cantilever beam with a closing crack using a nonlinear finite element model. 

The response of the model was used to estimate the main diagonals of the HOFRFs 

using a stepped sine testing. The authors demonstrated the usefulness of this 

representation to show the sensitivity of the nonlinear HOFRFs to the size and position 

of the crack. Peng et al27 used nonlinear output frequency response functions (NOFRF) 

which is a concept based on Volterra series to detect nonlinear components in a periodic 



structure. This approach can be used in damage detection for the cases when the damage 

is a source of nonlinearity. Surace et al28 shows the effects of cracks in the HOFRFs 

which are represented as a bilinear nonlinearity. The authors calculated the HOFRFs by 

the probing method and they showed that the nonlinear kernels are much more sensitive 

to the crack parameters. In a similar problem Chatterjee18 uses the HOFRFs to calculate 

the components of the response of a beam with breathing crack. Rébillat et al29 applies 

Hammerstein models using damage features based on nonlinear components of the 

response in order to detect damage. The method is applied in linear systems subjected to 

a bilinear nonlinearity that represents a crack in the system. The technique is also 

applied to detect impact damage in a composite plate. Tang et al30 use a damage metric 

based on the Volterra kernels identified with acceleration data from a rotor-bearing 

system. When considering a model with the first three kernels it was able to separate the 

healthy system to the unbalanced and rubbing conditions. 

In the present paper the Volterra representation is used to build a model 

representing a magneto-elastic system with a bolted connection. In this structure 

nonlinearity appears when large displacements are induced in the system intensifying 

the magnetic forces of the permanent magnet on the beam. Damage is simulated by 

removing small masses in the connection. The prediction error of the model is used 

together with statistical hypothesis testing in order to detect structural variations in the 

linear and nonlinear regime of operation of the system. This research contributes with 



the SHM literature by providing a method for damage detection that can be used to 

verify structural variations even during the nonlinear regime of motion. Also the paper 

aims to show the possible consequences of assuming linearity in a simple experimental 

setup by comparing the nonlinear model with its equivalent linear version. The discrete 

Volterra model is employed in this paper due to the stability for a bounded input31 

(BIBO stable) and because it is a nonparametric model that does not require a previous 

model or information about the system32. Also, it is an useful option for the problem of 

detection of structural variations in nonlinear systems because it can represent the linear 

and nonlinear responses as separable terms33. This allows one to propose equivalent 

linear and nonlinear indexes that are used in this paper to make clear the drawbacks of 

using linear damage features. 

The content of the paper is divided in 6 main sections. In the second section the 

basics of Volterra kernels identification are briefly presented. The third section shows 

the methodology of damage detection as well as the hypothesis test used in this work. 

The fourth section presents the nonlinearity detection, characterization and 

identification of the experimental Volterra kernels. The fifth section shows the 

application of the identified model to detect structural changes. Finally the final remarks 

are made in the sixth section. 



Discrete-time Volterra series 

In the discrete-time Volterra model the  sample of the response of the 

system is described by an infinite sum of a linear component  and the nonlinear 

components  14,15: 

  (1) 

In the Volterra series expansion each order term of the response may be expressed 

as a multidimensional convolution between the Volterra kernels  and the 

input signal 31: 

  (2) 

where  are the memory lengths of each th kernel through its different 

dimensions. By analyzing the first order term it is possible to observe that it corresponds 

to the linear convolution sum: 

                                         (3) 
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Meanwhile, the higher-order responses are generalizations of the linear portion 

of the response and have similar expressions to the linear equivalent. The second and 

third order terms are illustrated in equations (4) and (5) respectively: 

  (4) 

  (5) 

However, the main issue with this model is the very large number of terms that 

are needed to represent a nonlinear system response21. This is especially relevant in the 

case of the higher-order terms, which have additional dimensions. A way to overcome 

these limitations is to represent the Volterra kernels by using an approximation with 

orthonormal functions 25,34:  

  (6) 

where  are the orthonormal projections of the Volterra kernels and 

 are the number of samples in each orthonormal projection. This representation 

has the advantage of drastically reducing the number of samples in the orthonormal 

expression when an appropriate basis function is selected. This fact improves the speed 

( ) ( ) ( )
2

1 2

2 1

2 1 1 2

1

2 2
0 0

( ),
N

n n

N

n u k n u k ny k n
--

= =

- -= åå H

( ) ( ) ( ) ( )
33 3

1 2 3

1 1

3 3 2 3
0 0 0

1

1 1 2 3, ,( )
NN N

n n n
n u k n u k n u kk n ny n

-- -

= = =

- - -= å åå H

( )
ji jny

( ) ( )
1

1 1
1

( , , ) , ,
j

J J

i j
i i j

n n i i n
h h

h

h

h h h h y
=

… » …å å Õ!H B

( )1, ,i ih h…B

1, ,J Jh!



of the calculation of the multidimensional convolutions and in the computation of the 

Volterra kernels.  

By assuming the orthonormal representation of the kernels, it is possible to 

define the input signal as being filtered by the orthonormal functions: 

   (7) 

where  is the filtered input signal and . With this new variable 

the order response can be written as: 

   (8) 

Provided that an input and output signal were measured in an experimental test 

in the system it is possible to apply a simple least-squares approximation in order to 

estimate the Volterra kernels until the order  in which the model was truncated 31: 

   (9) 

where  is a vector containing the orthonormal versions of the kernels until the 

considered order ,  is a matrix with combinations of the convolved input signals 

 and  is a vector with the captured sampled outputs. However, in the application 
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of the equation (9) it is necessary that the input signal can really excite the nonlinear 

higher-order terms of the system. Commonly used signals in modal testing such as 

impact and sine excitations are not able to excite all the terms in the Volterra kernels31, 

while random excitation is not an effective way to activate nonlinearities1. In this paper, 

the Volterra kernels were calculated by using a chirp input signal that was able to show 

harmonics in the response and the hardening effect in the frequency domain. By 

calculating the vector  it is possible to retrieve the assumed orthonormal kernels 

 that can be used to calculated the components of the Volterra model 

response . The appendix A shows in more details the construction of the matrices 

 and . 

 However, in order to have a representative model of the nonlinear system, a 

properly chosen orthonormal function basis has to be applied in the expansion 

illustrated in the equation (6). In the case of oscillatory systems it is usual to use Kautz 

orthonormal functions which can be described in the discrete frequency domain as a 

pair of functions  and : 

  (10) 
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where  is the complex variable in the discrete domain,  is an index such that 

, and  and  can be obtained by: 

   (12) 

   (13) 

where  and  are the pair of conjugate poles that are the parameters of the Kautz 

functions. Note that the mentioned time-domain orthonormal functions  are the 

impulse response functions of the frequency-domain version of the Kautz functions 

 and . The poles of these functions have to be determined in order 

to represent the Volterra kernels. The discrete poles  can be related to the continuous 

poles  through the equation: 

   (14) 

where  is the sampling frequency used in the discretization of the time-domain 

signals. The continuous poles of the Kautz functions can be related to the  natural 

frequency  and damping ratio  through: 

   (15) 
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In the case of oscillatory systems the Kautz function representing the  Volterra 

kernel can be represented by the parameters  and  which are usually close to the 

parameters describing the linear dynamics of the system21. 

 The next section shows the application of this model as a reference of the 

nonlinear system in the healthy condition in order to detect structural variations. 

Damage detection methodology 

Using the methodology described in the previous section it is possible to identify 

a model of a nonlinear system by using input and output data to estimate the Volterra 

kernels. Assuming that the identified Volterra kernels can represent the response of the 

system in the reference structural condition, it is possible to use this model to detect 

discrepancies in the measured output of a nonlinear structure that might be caused by 

damage. One simple way to perform this task is to analyze the prediction error of the 

model. Since the Volterra model is a series expansion, it is possible to obtain prediction 

errors considering different numbers of terms in the expansion: 

   (16) 

where  is the order prediction error,  is the measured response and the sum 

represents the response of the model with order . It can be interesting to analyze a 
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purely linear error (for ) and compare with the error considering higher-order 

terms of the model. This can show the drawbacks of considering a linear model when 

monitoring a structure under the nonlinear regime of response.  

In order to have a lower dimension feature to analyze a damage index can be 

used based on the ratio between the standard deviation of the prediction errors in the 

unknown structural condition and in the reference state 

 ,  (17) 

where  is the order damage  index,  and  are respectively the order 

prediction errors in the unknown and reference states and  is the standard deviation 

operator. A similar index was already applied in the paper of Sohn and Farrar35 for the 

detection of nonlinear damage in an experimental system with 8 degrees of freedom. 

The expected statistical distribution of this variable can be determined by 

assuming a Gaussian distribution in the prediction errors. With this assumption, it is 

possible to relate equation (17) to an F distribution which describes the ratio between 

the variances of two variables36. This distribution can be modified by a simple change 

of variables which gives: 
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   (18) 

where  is the probability density function of the  index,  and  are the 

number of degrees of freedom for the prediction errors in the unknown and reference 

states respectively. In this case these degrees of freedom can be calculated by 

 and  where  and  are the number of samples in  and 

 respectively. The term  is a function: 

   (19) 

where  and  are the arguments of the  function. With the knowledge of the 

distribution of the index it is possible to apply a statistical hypothesis test in order to 

detect a significant increase in the prediction error under a significance level : 

   (20) 

where  the null hypothesis and  the alternative hypothesis. In this formulation, 

 is the condition where is likely that the system is still in the reference condition. 
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Meanwhile,  represents the case where a significant increase of the prediction error is 

detected. One must note here that the type of change in the system that causes the 

increase in the error is not specified in the equation (20). In practice this means that the 

proposed method is assuming that no other effects other than changes in the structure 

are affecting the response of the system. 

 In order to classify a certain system through between damaged or undamaged, 

the experimental input and output  and  are measured and the reference Volterra 

model is used to calculate the expected response of the system in the reference state. 

With the prediction errors in the unknown state  and in the reference state , 

the  index is calculated with equation (17). Using this value it is possible to calculate 

the probability of the observed  to happen in the case where  is true. This 

probability is usually named the p-value and can be calculated assuming a right-tailed 

test as37 

   (21) 

where the integral represents the area under the  curve, also called the cumulative 

density function (CDF). In this sense, the p-value for this right-tailed test is the 

probability of  or higher-values to be found in cases where the structure is in the 
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reference state. In this case the results of this statistical test can be divided in two 

possible conclusions: 

• : it means that one is likely to observe the calculated sample  when 

there is no structural variation. In other words, the null hypothesis  cannot be 

rejected (no damage) for the considered value of ; 

• : in this case one is not likely to thee the sample  when there is no 

structural variation. This means that  should be rejected (damage) for the 

considered value of the significance level . 

 This analysis is applied in an experimental example with a simple nonlinear 

system during the linear and nonlinear regime of operation of the structure. 

Nonlinearity detection and system identification 

In this section an experimental example is described and a reference Volterra 

model representing the healthy structure is identified using input and output data 

measured during a modal testing. This model is later used to detect structural variations 

in the system using the statistical test described previously. 

Nonlinear behavior of the system 

The experimental setup is composed by a cantilever aluminum beam with 

dimensions of 300×19×3.2 mm. This beam has a steel mass attached to the free end and 
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a neodymium magnet positioned 2 mm from the mass. A bolted connection is placed 

150 mm from the free end with 4 nuts with nearly 1 gram each in order to simulate 

structural variations for the damage detection investigation. An electrodynamic shaker 

is attached 50 mm away from the clamped end instrumented with a load cell. A laser 

vibrometer is used to measure the velocity on the free end of the beam. A schematic 

diagram and a picture of the experimental setup are illustrated in figures 1 and 2. 

 

Figure 1. Schematic diagram of the experimental setup. 

 

Figure 2. Picture of the experimental setup. 



The nonlinear behavior in this system comes from the magnetic interactions 

between the permanent magnet and the steel mass placed in the free end of the beam. 

The beam is positioned in a way that it is stretched in the axial direction and also 

attracts the tip of the beam during the bending movement causing a hardening effect in 

the system when large displacements occurs in the free end. 

In order to detect and visualize nonlinear effects in the system, a chirp and 

stepped sine input signals were used to excite the structure with the shaker under 

different amplitudes. The signals of force and velocity measured in the setup were 

captured using a 1024 Hz sampling rate. The chirp input was set to sweep up the range 

from 10 to 50 Hz around the first mode with 4096 samples using 3 different voltage 

levels applied in the shaker: 0.01, 0.10 and 0.15 V. With the input force measured by 

the load cell, and the velocity of the vibration of the beam, the frequency response 

function (FRF) was estimated using a H1 spectral estimator38. For this calculation a 

rectangular windows was used considering 10 averages of the FRFs. The stepped signal 

was set to sweep the range from 10 to 40 Hz with steps of 0.5 Hz during 4 seconds for 

each block to reach the steady state response. To calculate the frequency response curve  

with this dataset, the level of response was recorded for each block representing the 

steady state response of the system in a single frequency. Figure 3 shows the FRF and 

the frequency response curve to the chirp and stepped sine inputs respectively. 



In the FRF estimated with the input and output signals captured in the chirp test 

it is possible to observe the distortions in the FRF as the input level is increased which 

is an indicative of nonlinear response since the superposition principle is not being 

held1. A clearer visualization of the nonlinear effects is possible in the stepped sine 

testing due to the excitation of each frequency individually during 4 seconds. In the 

response to the stepped sine signal in the frequency domain it is possible to observe the 

hardening effect which bends the apparent natural frequency of the system to higher 

values. Also the jump down phenomenon is visible in this response corresponding to a 

sudden drop in the response amplitude as the frequency of excitation is increased. 

 

(a) FRF of the system excited with a 
chirp excitation. 

 

(b) Frequency response curve of the 
system excited by a stepped sine. 

Figure 3. Detection of nonlinearity in the experimental setup. The continuous line 
― is the 0.01 V input level data, -∆- is for 0.10 V and -□- is for 0.15 V. 



 The time-frequency representation of the output for a chirp input signal 

estimated with a short Fourier transform is depicted in figure 4. The black dashed lines 

show the harmonics of the excitation frequency. With this it is clearly possible to 

observe the presence of even and odd harmonics of second and third-order in the 

vibration of the magneto-elastic system. Higher-order harmonics are also visible, 

however with less significant contribution, a Volterra model is later used to represent 

the response of this system using the first three terms of the series expansion (  and 

). This was selected in this way because each order Volterra kernel is responsible 

of generating an  harmonic respectively15. Truncations of the model on low-orders 

(e.g.  or ) with the Volterra expansion are common in the system 

identification literature. A experimental example of this is given in the paper of Rosa et 

al39 where the authors represent a magnetic levitation system with a fourth-order 

polynomial nonlinearity as a second-order Volterra model. 
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Figure 4. Time-frequency representation of the respone of the system to a chirp 
input of 0.15 V. 

 The vibration behavior of the nonlinear system was also verified for higher 

frequencies of excitation. A chirp input was applied for input voltages of 0.01 and 0.15 

V with a frequency range from 10 to 500 Hz with 16384 samples. A stepped sine was 

also applied in the magneto-elastic system with the same input voltage levels from 10 to 

400 Hz. Figure 5 show the FRF for the chirp input from 10 to 500 Hz and the two input 

levels used to excite the system. The effects in the peaks of the FRFs are highlighted in 

this figure. It is possible to observe a hardening effect in the first mode of vibration and 

a softening effect due to the change of the peak to lower frequency values in the second 

model. Meanwhile the nonlinear effect in the third mode is not completely clear at least 

in these levels of excitation. Figure 6 shows the frequency response curve for the 



stepped sine excitation. Similar effects as the ones found in figure 5 can be observed 

with a clearer jump effect in the first natural frequency. 

 

Figure 5. FRF of the experimental setup to a chirp input from 10 to 500 Hz. The 
continuous line ― is the 0.01 V input level data and - - is for 0.15 V. 

 

 
Figure 6. Frequency response curve of the experimental setup to a stepped sine 

input from 10 to 400 Hz. The continuous line ― is the 0.01 V input level data and - 
- is for 0.15 V. 



In this study, the chirp input dataset, which mapped the response of the magneto-

elastic system around the first natural frequency, is applied to identify a Volterra model 

that represents the behavior of the experimental setup in the reference state. 

Identification of the Volterra model 

In order to represent the behavior of the nonlinear system around the first mode 

it was considered a model with the first three kernels. The chirp data in the low (0.01 V) 

and high levels (0.15 V) were used to calculate an approximation of the Volterra 

kernels. The Volterra kernels were applied together with Kautz orthonormal functions40 

in order to have a reduced representation of the nonlinear model.  

These Kautz functions should be selected in order to identify a proper Volterra 

model. For the linear kernel it is usual to select an order  functions since this 

value maintain the second order nature of linear vibrating systems. For the selection of 

the orders  and  for the second and third kernels respectively, a convergence 

analysis was performed based on the normalized root mean square error (NRMSE) 

between the experimental reference response  and the output of the candidate 

Volterra model calculated by the multiplication of the input matrix   and the vector 

with the Volterra kernels : 

   (22) 
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The calculation of the NRMSE was done by identifying the vector  with using 

different numbers of orthonormal functions to represent the first three Volterra kernels 

and calculating the output error with equation (22). This analysis is illustrated in figure 

7 for  and  with 2, 4, 6, 8 and 10 functions. 

 
Figure 7. Convergence analysis of the orthonormal functions. 

It is clear that the number of terms in the second kernel does not seem to modify 

significantly the performance of the model while the third kernel converges the error 

around 8 orthonormal functions. Therefore, a model with ,  and  

orthonormal functions was considered to represent the reference state of the structure. 

After the selection of the structure of the model, the parameters of the Kautz 

functions have to be defined. In the case of Kautz filters these parameters are 

represented as complex conjugate poles that can be related to the natural frequencies 

and damping ratios of the system. For this study an optimization procedure based on 

Φ

2J 3J

1 2J = 2 2J = 3 8J =



sequential quadratic programming (SQP) was used in order to minimize the prediction 

error of the model using the natural frequency and damping ratio observed in the FRF of 

the figure 3 as initial guesses. A more detailed description on the application of the 

Kautz functions for the calculation of Volterra kernels are not presented here for the 

sake of brevity but can be found in Shiki et al20 or da Silva et al21. Table 1 shows the 

frequencies ( ) and damping ratios ( ) for each of the order kernels. 

Table 1. Parameters of the Kautz functions 

 [Hz]  [%]  [Hz]  [%]  [Hz]  [%] 
20.65 0.65 19.03 0.27 19.91 1.38 

 

With the definition of the Kautz functions, it is then possible to estimate the 

kernels as depicted in equation (9). The orthonormal version of the model can be 

converted to the physical basis in order to have a visualization of this representation of 

the system and are illustrated in figure 8. While the first and second kernels are fully 

represented, the third kernel is only partially illustrated by its main diagonal due to the 

additional dimension.  

hw hz h -

1w 1z 2w 2z 3w 3z



 
(a) First Volterra kernel. 

 
(b) Surface of the second Volterra kernel. 

 
(c) Main diagonal of the third Volterra kernel. 

Figure 8. Representation of the Volterra kernels in the physical basis. 

With the identified model it is possible to evaluate the linear and nonlinear 

components of the response of the nonlinear structure. This feature is illustrated by the 

responses of the Volterra model with input levels corresponding to a nearly linear 

regime (0.01 V) and during the nonlinear regime of the system (0.15 V) as previously 

showed in the frequency domain in figure 3. A direct comparison between the model 

response and the velocity measured in the experimental setup as well as the linear and 



nonlinear components of the output are illustrated in the figures 9 and 10 for the input 

amplitudes of 0.01 and 0.15 V respectively. 

 
(a) Direct comparison between the 

measured response (●) and the 
model (―).  

 
(b) Linear (―) and nonlinear (- -) 

components of the response. 

Figure 9. Response of the Volterra model to a low level excitation (0.01 V). 

 
(a) Direct comparison between the 

measured response (●) and the 
model (―). 

 
(b) Linear (―) and nonlinear (- -) 

components of the response. 

Figure 10. Response of the Volterra model to a high level excitation (0.15 V). 



Comparing the figures 9 and 10 it is possible to observe a clear increase of the 

nonlinear components relative to the linear response. This representation shows the 

transition between the nearly-linear behavior to the nonlinear regime of motion when 

the displacement of the free end of the beam increases. In these figures the nonlinear 

components are represented together since  was not very relevant compared to . 

When the systems is excited by a single frequency sine input is possible to better 

observe the separation of the components of the response of the model. The nonlinear 

beam was excited in the linear natural frequency showing to respond with even and odd 

order harmonics. Figure 11 shows the power spectral density (PSD) of the response to 

the sine excitation as well as the components of the response of the model. 

 
(a) PSDs of the experimental (―) and 

model responses (-∆-). 

 
(b) PSDs of the first order (―), second 

order (-∆-) and third order (-○-) 
responses. 

Figure 11. PSD of the response of the Volterra model to a sine excitation in the 
linear natural frequency of the structure. 
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The PSDs clearly show that the linear component only respond in the 

fundamental harmonic which is expected as a response of a simple linear system to a 

sine input. The second and third order kernels respond respectively with the second and 

third order harmonics that are caused by the nonlinearities in this system.  

The next section shows the application of the identified model for the detection 

of structural variations during the linear and nonlinear regime of the setup. A 

comparison between a pure linear model and a third order model considering the first 

three terms of the Volterra expansion is done in order to illustrate the problems that may 

arise when monitoring nonlinear structures. 

Damage detection using Volterra series 

In order to create structural changes in the magneto-elastic system 8 states were 

defined by removing up to 3 masses and placing them back in the bolted connection. 

This was done in order to observe if the indexes showed the structure returning to the 

reference state by simulating a repair in the system. Each state was tested using a chirp 

input signal sweeping the frequencies from 10 to 50 Hz for a low (0.01 V) and a high 

level excitation (0.15 V) which represents the linear and nonlinear regime of the 

structure respectively. This test was repeated 40 times in each structural condition for a 

better statistical characterization of the proposed damage indexes. Table 2 shows a brief 



description with the structural states that are simulated in the nonlinear system. Figure 

12 illustrates the application of structural variation in the mass of the bolted connection. 

 Table 2. Structural states simulated in the nonlinear system. 

State Condition 
1 4 masses (reference) 
2 3 masses (damaged) 
3 2 masses (damaged) 
4 1 mass (damaged) 
5 1 mass (repair) 
6 2 masses (repair) 
7 3 masses (repair) 
8 4 masses (repair) 

 

 

Figure 12. Illustration of the damage simulation. 

 The structural change simulated in the nonlinear system represents 

fundamentally a modification in a linear parameter of the system that is a concentrated 

mass in the bolted connection. One can argue that this option does not represent a 

realistic damage scenario. However, even in this case of a linear change in the system, 

the nonlinearity can still impose a problem if a simple linear damage feature is applied 

to detect modifications in the dynamic behavior. The aim in these tests is to show the 



lack of sensitivity of a linear damage index in comparison to an equivalent nonlinear 

one. The consideration of a linear structural change in the experimental results does not 

impose a major restriction to the methodology, because even in a case where the 

damage causes a different kind of nonlinear behavior (e.g. breathing crack), it is 

expected that the prediction error-based methodology proposed in this paper would still 

be able to indicate changes with respect to the reference state. 

From the 40 repetitions of the tests, each first realization was rejected to avoid 

the transient response during the start of the shaker excitation resulting in 39 blocks to 

be analyzed. For the tested structure in this paper the most relevant response 

components of the Volterra series were the first and third order outputs  and  as 

already mentioned in the previous sections. Considering this fact the indexes  and  

were calculated in order to observe the differences between the performance of a linear 

and a nonlinear model in the monitoring of the test structure. Figures 13 and 14 shows 

the linear and nonlinear indexes respectively for the low (0.01 V) and high level input 

(0.15 V). While the blue continuous line represents the indexes through the progress of 

the damage from states 1 to 4, the red dashed line shows the simulation of the repair of 

the system to the reference condition from states 5 to 8 (see table 2). The vertical black 

dashed lines separates the indexes obtained from different numbers of masses placed in 

the bolted connection. 
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(a) Low level input (0.01 V). 

 
(b) High level input (0.15 V). 

Figure 13. Linear index under two different input levels. The continuous line ― is 
representing the indexes during the damage application (states 1 to 4) and - - 

represents the indexes during the repair (states 5 to 8). 

 
(a) Low level input (0.01 V). 

 
(b) High level input (0.15 V). 

Figure 14. Nonlinear index under two different input levels. The continuous line ― 
is representing the indexes during the damage application (states 1 to 4) and - - 

represents the indexes during the repair (states 5 to 8). 

In the linear damage index  showed in figure 13 it is possible to observe a 

clear separation between the calculated indexes for each structural state only when the 

1l



input level is low. For this situation the linear model represented by the first Volterra 

kernel is already enough for an accurate detection of the outliers that appear due to the 

damage since there is no significant nonlinear behavior at this level of excitation. When 

the input is increased to 0.15 V in the shaker  starts to have a poor performance and it 

is not possible to observe a clear difference between each state. At an excitation of 0.15 

V the nonlinear components starts to play an important role in the total response of the 

system. In this way the nonlinearity in the response of the system can mask dynamical 

effects that may come from damages in the system. 

However, observing the nonlinear index  that takes in account the first three 

Volterra kernels it is possible to observe a good separation between the states both in 

the low and high level input. These results clearly show the need of an appropriate 

nonlinear model to detect variations when nonlinearity is present before the damage. 

Instead of only rely on the inspection of the indexes illustrated in figures 13 and 

14 the statistical hypothesis test depicted in the equation (20) can be applied. Figures 15 

and 16 shows a comparison between the histogram of the calculated indexes against the 

theoretical distribution presented in equation (18). These distributions represent the 

reference state of the nonlinear system that is being studied. Since there is only 39 

samples of the index during the reference state these indexes were resampled to 312 by 

taking fractions of the whole prediction error.  
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(a) Low level input (0.01 V). 

 
(b) High level input (0.15 V). 

Figure 15. Distribution of the experimental linear damage index compared to the 
theoretical distribution for the reference case. The blue bar represents the 

experimental data and the continuous line ― represents the theoretical 
distribution. 

 
(a) Low level input (0.01 V). 

 
(b) High level input (0.15 V). 

Figure 16. Distribution of the experimental nonlinear damage index compared to 
the theoretical distribution for the reference case. The blue bar represents the 

experimental data and the continuous line ― represents the theoretical 
distribution. 



From these figures it is clear that most of the histograms tend to follow the 

theoretical distribution. The exception is in the case of the linear index for a high level 

input (figure 15 (b)) where the discrepancy between the data and the distribution is 

visible. This difference was already expected since the underlying linear model is 

inappropriate to represent the response of the structure during the nonlinear regime. 

Tables 3 and 4 shows the percentages of false alarms and true detections based 

on the results of the hypothesis tests for the datasets considering the excitation of 0.01 

and 0.15 V respectively. The results are illustrated for the linear and nonlinear indexes 

for significance levels  of 2, 1 and 0.5%. With these significance levels the thresholds 

in terms of the damage index are ,  and  

respectively. These values represent the limit values for which the system is still 

considered to be in the reference condition in a way that any higher values of the index 

 will be considered to represent a change in the structural state. The threshold values 

also illustrate the fact that  is the probability of false detection since for higher 

significance levels the likelihood of false alarms is increased. 

Table 3. Results of the hypothesis tests for different significance levels under low 
level input (0.01 V). 

 [%] Linear index ( ) Nonlinear index ( ) 
False alarm [%] True detection [%] False alarm [%] True detection [%] 

2 0 100 0 100 
1 0 100 0 100 

0.5 0 100 0 100 

a

2% 1.033l = 1% 1.037l = 0.5% 1.041l =

l

a

a 1l 3l



 

Table 4. Results of the hypothesis tests for different significance levels under high 
level input (0.15 V). 

 [%] Linear index ( ) Nonlinear index ( ) 
False alarm [%] True detection [%] False alarm [%] True detection [%] 

2 0 0 34.6 100 
1 0 0 17.9 100 

0.5 0 0 3.85 100 
 

In table 3 for a low input level both  and  perform in the same way since the 

nonlinear components are not strong for the 0.01 V input level. In this case there were 

no false alarms and all damaged outliers were correctly classified. This happened 

because at this level of excitation the damaged  indexes showed to be very well 

separated from the indexes in the reference state which were around one as it was 

possible to observe in figures 13(a) and 14(a). 

Table 4 depicts the results of the damage indexes during the nonlinear regime of 

motion. It is clear that the linear model  is not sensitive to structural variations when 

nonlinearity is present but also there is no register of false alarms in this index. The  

index successfully classifies all the damaged cases for the investigated significance 

levels. However a few false alarms are observed mainly because the indexes calculated 

in the state 1 and state 8 during the repair have some differences (see figure 14(b)). This 

problem can be minimized by decreasing the significance level of the hypothesis test. 

a 1l 3l

1l 3l
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From table 4 it was observed that it is possible to decrease the false alarms from 34.6% 

to 3.85% by changing  from 2% to 0.5%. Since the variable  is quite sensitive to 

structural variations and the values of the damaged states are relatively far from the 

reference (see figures 13 and 14) it is possible to select a very low value of  which 

minimizes the probability of false positives. 

In order to analyze how the classification index works under different values of 

 it is possible to map many values of this parameter in a receiver operating 

characteristic curve (ROC). This presents the false alarm rates against the true detection 

rates for many values of thresholds for the binary classification which in this paper is 

represented by the significance level  of the hypothesis test. Figure 17 shows the 

ROC curves for the results of the linear and nonlinear indexes under the excitation 

levels of 0.01 and 0.15 V. 

 
(a) Linear index. 

 
(b) Nonlinear index. 
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Figure 17. ROC curves of the damage indexes. -∆- is the curve for the low level 
input (0.01 V) and -□- is the curve for the high level input (0.15 V). 

The linear index  shows to have a good detection rate in the low level input 

but significantly lose performance when the excitation level is increased. During the 

high level input  can have a performance close to a random classifier. Meanwhile the 

nonlinear index  has a good detection rate during both input levels and the false 

alarms can be minimized by setting lower values for the significance level of the test. 

Final remarks 

In the present paper the discrete version of the Volterra model was applied to 

represent the behavior of a magneto-elastic nonlinear system in the reference condition. 

A damage index based on the prediction error of the model was used to detect structural 

variations in the system during the linear and nonlinear regime of motion. The nonlinear 

index was able to detect structural changes in both regimes of motion while the linear 

version of the damage indicator failed during the nonlinear regime. These results 

showed that nonlinear behavior can mask effects of damage when a proper model is not 

used. Although the simulated damage represented mostly a variation in a linear 

parameter (a concentrated mass), the nonlinear index was still necessary for an accurate 

detection. If the structural change were revealed some nonlinear feature of the system, it 

is likely that the method would still correctly classify the state of the system since it is 

based on a model representing the nonlinear behavior of the system in the reference 

1l
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condition. This means that any other unaccounted phenomenon will be seen as an 

outlier by the statistical classification. 

This conclusion was possible because of the fact that Volterra series is a 

generalization of the linear convolution model allowing one to directly compare a 

nonlinear index with its equivalent linear version. However, it is possible that for higher 

levels of excitation even the nonlinear index can fail since higher order nonlinearities 

can appear in a way that more terms in the Volterra expansion may be necessary. This is 

still a common problem in nonlinear systems since is difficult to have general models to 

represent the whole nonlinear behavior. Another possible drawback of the presented 

technique is the need of both input and output signals to apply the method as well as a 

test made during the reference condition of the system to define the baseline. 

Even though the results and conclusions were made with damage features based 

on Volterra series, it is possible to conclude that any linear model could have problems 

when trying to detect variations in the behavior of a nonlinear structure. Even in the 

case when it is considered that the damage is the source of nonlinear behavior some 

false positives are expected if the inherent nonlinearities of the system are not taken in 

account. This shows the importance of nonlinearity identification before using damage 

detection techniques since a prior knowledge about the behavior of the system can help 

in a decision about taking or not some efforts on nonlinear modeling. 
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Appendix A: Calculation of the matrix form of the Volterra series 

 As previously presented, considering the orthonormal expansion of the Volterra 

kernels the  order response   is given by: 

    (A.1) 

where  are the orthonormal projections of the Volterra kernels,  

are the number of samples in each orthonormal projection  is the filtered input 

signal. To demonstrate the formulation of the model in the matrix form, it was 

considered a model of order  without loss of generality since for higher orders the 
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procedure should follow the same idea. In this case the first three components of the 

Volterra series expansion are given by: 

   (A.2) 

   (A.3) 

   (A.4) 

where ,  and  are the first, second and third order components 

respectively, ,  and  are the first, second and third order 

kernels in the orthonormal domain, and ,  and  are the filtered input 

signals. Since the Volterra model is linear with respect to the parameters, it is possible 

to write the vector with the collection of the  order responses ( ) as: 

   (A.5) 

where  is a matrix with the input signal filtered by the orthonormal functions 

representing the  kernel and  is a vector with the collection of the unique 

terms in the  orthonormal kernel. The vector  can be written as a vector with 

the samples of the  output of the Volterra expansion: 
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   (A.6) 

 With the definition of the  order output vector, it is necessary to define the 

matrices  and . For the first-order term of the Volterra model, the  row of 

the matrix  can be given by: 

   (A.7) 

The vector  with the unique terms of the first order orthonormal kernel is: 

   (A.8) 

Note that in the case of the first order kernel all the terms are considered in the vector 

 since they are all unique. 

 In a similar way for the second order terms the  row of the matrix  can 

be given by: 

   (A.9) 

and the vector  is written as: 

  (A.10) 

Note that a few terms in the matrix  are multiplied by a constant integer number 

since they appear multiple times in the response. Also, only the terms in the main 
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diagonal and below are taken in account in  since it is considered that the kernels are 

symmetric. 

For the third order component the  row of the matrix  is written as: 

  (A.11) 

and the vector  with the unique terms in the third order kernel is: 

  (A.12) 

 Considering the Volterra expansion until the order , the resultant input 

matrix  is given by combining the  matrices: 

   (A.13) 

And the vector  with the unique terms of the Volterra kernels is written as: 

   (A.14) 

In the case where it is necessary to estimate the Volterra kernels with the knowledge of 

the input signal (i.e. the matrix ) and the measured output (i.e. the vector ) one 

should compute  and  and then estimate the Volterra kernels through the least-

squares approximation: 
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