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Spatiotemporal changes 
in influenza A virus prevalence 
among wild waterfowl inhabiting 
the continental United States 
throughout the annual cycle
Cody M. Kent1,2*, Andrew M. Ramey3, Joshua T. Ackerman4, Justin Bahl5, Sarah N. Bevins6, 
Andrew S. Bowman7, Walter M. Boyce8, Carol J. Cardona9, Michael L. Casazza4, 
Troy D. Cline10, Susan E. De La Cruz11, Jeffrey S. Hall12, Nichola J. Hill13, Hon S. Ip12, 
Scott Krauss14, Jennifer M. Mullinax1, Jacqueline M. Nolting7, Magdalena Plancarte8, 
Rebecca L. Poulson15, Jonathan A. Runstadler16, Richard D. Slemons7, David E. Stallknecht15, 
Jeffery D. Sullivan2, John Y. Takekawa11, Richard J. Webby14, Robert G. Webster14 & 
Diann J. Prosser2*

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. 
An understanding of viruses in wild reservoir species across time and space is important to informing 
surveillance programs, risk models, and potential population impacts for vulnerable species. Although 
it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through 
autumn, temporal and spatial variation across species has not been fully characterized. We combined 
two large influenza databases for North America and applied spatiotemporal models to explore 
patterns in prevalence throughout the annual cycle and across the continental United States for 30 
waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling 
ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to 
be related to regional duck density, with highest predicted prevalence found across the upper Midwest 
during early fall, though further study is needed. We documented elevated prevalence in late winter 
and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal 
variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be 
considered in IAV ecology and associated risks.

Influenza A viruses (hereafter “IAV”), particularly highly pathogenic avian influenza viruses, pose a worldwide 
threat to the agricultural sector, public health, and some wild bird  populations1. Of particular concern are the 
financial impacts of IAV to domestic poultry production associated with direct losses, culling and response 
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efforts, and trade  restrictions2. There may also be health risks associated with exposure and subsequent spillover 
of IAV from poultry into humans by direct contact with infected birds and virus-contaminated  environments3. 
Finally, IAV can pose risks to some susceptible wild populations, when highly pathogenic viruses escape from 
poultry  facilities1. Wild waterfowl act as the primary reservoir host of precursor viruses spread to poultry farms 
and these viruses can ultimately lead to poultry  outbreaks4; the distribution and timing of which can be, at least 
partially, explained by wild duck  movements5. Therefore, understanding spatiotemporal as well as taxonomic 
variation in the prevalence of IAV in wild waterfowl is useful for assessing risk posed to wild birds, the poultry 
industry, and human  health1,6,7, developing effective response  strategies4, and better understanding the viral 
ecology of this agriculturally important pathogen.

Extensive research has sought to understand temporal fluctuations in IAV prevalence in wild birds; however, 
sampling strategies may be hampered by temporal biases in field-collected samples. Numerous studies have 
shown that prevalence is greatest during the autumn as immunologically naïve juveniles become  infected8. 
Comparatively less work exists outside of this season despite evidence that winter and spring may be important 
to the underlying viral  ecology9,10. Additionally, past work has documented the potential for strong spatial 
 variation11. Specifically, a broad seasonal latitudinal shift is well documented, with areas of comparatively high 
IAV prevalence shifting to northern latitudes as ducks migrate north during spring migration and occurring at 
more southern latitudes as ducks migrate back to the southern states during the  winter11,12. Less work has exam-
ined longitudinal trends, though it is well established that viruses move among both global and North American 
 flyways13,14. Although several studies have examined multiple waterfowl species, and it is generally supported both 
from field and host challenge studies that dabbling ducks are more susceptible to a wide diversity of IAV com-
pared to other waterfowl  taxa15,16, species-specific temporal variation in IAV prevalence remains understudied.

The primary objectives for this study were to better understand species-specific and spatiotemporal pat-
terns of IAV prevalence. Here, we combined the two largest North American surveillance datasets, the U.S. 
Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), National Wild Bird 
Avian Influenza Surveillance Program (hereafter “USDA”) and the National Institutes of Health (NIH), National 
Institute of Allergy and Infectious Diseases (NIAID) Influenza Research Database (hereafter “IRD”), to quantify 
taxonomic and spatiotemporal trends in IAV prevalence in wild waterfowl. In doing so, we seek to further our 
understanding of the broad risks posed by this virus, including to domestic poultry production and public health. 
Such information could be useful to managers seeking to optimize surveillance and improve biosecurity relative 
to the ecology of IAV in natural reservoir hosts.

Results
Overall, 11.8% of all birds included in the analysis tested positive for IAV (see Table 1 for species summaries). 
Predicted proportion of birds testing positive for IAV for each species at weekly intervals for each county centroid 
in the continental United States are available at the U.S. Geological Survey (USGS) ScienceBase  repository17 and 
are viewable in Supplementary Material 2. As an example, a subset of weekly spatiotemporal predictions for mal-
lard are shown (Fig. 1). The model explained much of the variance in the training dataset (Supplementary Fig. S1 
online,  R2 = 0.58) and made reasonable predictions for the testing data (Spearman’s rho = 0.57, AUC = 0.77). We 
found a consistent pattern of elevated IAV detection in the USDA data compared to IRD and some modest vari-
ation by biological year (Table 2, Supplementary Fig. S2 online).

We found the temporal effects among species to be significantly correlated (Table 2), though distinct pat-
terns were also identified (Fig. 2). Overall, most species show an increase in IAV positivity beginning in late 
June (~ week 25). For dabbling ducks in the genus Spatula (e.g., northern shoveler) and Anas (e.g., mallard), 
this peak reaches a maximum in late summer or early autumn (~ weeks 30–35) before declining into the winter. 
However, dabblers in the genus Mareca (gadwall and American wigeon) exhibited lower peaks in prevalence 
more comparable to other taxa (e.g., geese and diving ducks). In addition, we inferred a second, albeit gener-
ally lower, peak in prevalence during spring in many species (particularly evident in mallard and snow goose), 
generally occurring around February or March (~ weeks 5–10).

We also document clear spatial variation in IAV prevalence varying by month (Fig. 3, Supplementary Fig. S3 
online). Spatially, we found evidence for elevated levels of IAV prevalence across the north-central United 
States, especially around the Prairie Pothole Region, starting in August and continuing through October. Dur-
ing autumn, areas of elevated prevalence shifted southward as well as into the Great Lakes and Pacific Northwest. 
Our results also supported elevated prevalence among birds in the Mississippi Alluvial Valley in the spring, 
particularly in March. Regardless of time of year, we found evidence for the lowest levels of IAV prevalence 
among wild birds in the southeast, where prevalence appeared to reach a minimum during summer months.

Discussion
In this investigation, we provide a spatiotemporal model of IAV prevalence for 30 waterfowl species across the 
annual cycle and for the continental United States using two of the most comprehensive datasets available. These 
findings improve our understanding of variation in IAV prevalence, which may broadly be useful in assessing 
risks posed to wildlife, domestic poultry, and public health. This information is also useful in helping to inform 
management practices aiming to mitigate IAV outbreaks in the United States. Specifically, we confirmed the 
highest IAV prevalence in many dabbling duck species in the autumn, consistent with prior  research15,18–20. We 
also elucidate broad temporal trends in prevalence. Moreover, we found evidence for additional time periods 
(e.g., spring) and geographic areas (e.g., the Mississippi Alluvial Valley) with increased IAV prevalence, which 
although lower than the autumn levels, may nevertheless play an important role in maintaining endemic circula-
tion outside the major post-breeding pulse in North America.
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We found greater IAV prevalence in the USDA dataset compared to IRD, presumably driven by methodologi-
cal variation. This difference may be caused by the type of laboratory screening method that is used to determine 
an IAV positive result or possibly by field methods used when capturing waterfowl. Of these possibilities, the 
most likely may be the difference in detection for real-time reverse transcriptase PCR (rRT-PCR) as compared 
to virus isolation (VI) in embryonated chicken eggs, which reflects methodological differences influenced by 
the sampling objectives for agencies and institutions contributing to the  USDA21,22 and  IRD23 datasets. While 
all positive cases in the USDA dataset represent samples that tested positive with rRT-PCR11, positive cases in 
the IRD dataset may be the result of various methods depending on individual laboratories, sometimes first 
applying rRT-PCR and sometimes only applying VI, for which the number of positive detections may be lower 
as this method targets only viable  viruses24. Unfortunately, while the type of test used to assess positivity may 
be submitted to the system, the final publicly available IRD dataset does not allow access to this information, 
preventing inclusion in our model. It is also possible that some other methodological differences are at play, 
such as trapping techniques (e.g., hunter harvest vs. baited live captures). That is, sampling of hunter-harvested 
birds or the capture of individuals via night-lighting may result in lower and less biased prevalence estimates as 
compared to birds congregating at bait, which can facilitate transmission among birds with increased contact 
 rates25. However, data on sampling technique are generally missing from both datasets and would be useful to 
include in future efforts.

Regardless of the cause of these differences, the IRD and USDA datasets show similar spatial, temporal, and 
taxonomic trends, with analysis of model residuals showing little evidence of an interaction between dataset and 
any other explanatory variable (Supplementary Figs. S4, S5 and S6 online). As such, any difference between the 
two datasets may be one of detection probabilities rather than one that would shape our understanding of the 
underlying dynamics and thus we have merged these two datasets into one model. That is, both datasets show 
the same underlying trends, just with prevalence estimates from the USDA dataset being consistently higher 
than IRD. As differences may be primarily methodological, and the consistency of the USDA dataset leads to 
greater reproducibility, the predicted values provided in the main manuscript include the coefficient for the 

Table 1.  Sample sizes for species included in the analysis from the IRD and USDA datasets and raw positivity 
rates not accounting for seasonal or spatial biases in sampling effort addressed in the provided predictions. 
*Mute Swan is non-native and non-migratory.

Common name Scientific name IRD USDA Total % Positive

Snow Goose Anser caerulescens 1518 5963 7481 6.17

Ross’s Goose Anser rossii 138 869 1007 2.98

Greater White-fronted Goose Anser albifrons 821 674 1495 3.99

Brant Branta bernicla 25 1843 1868 1.94

Cackling Goose Branta hutchinsii 144 1507 1651 6.89

Canada Goose Branta canadensis 630 20,279 20,909 2.37

*Mute Swan Cygnus buccinator 1 2046 2047 3.57

Tundra Swan Cygnus columbianus 12 1045 1057 4.82

Wood Duck Aix sponsa 2958 26,213 29,171 3.21

Blue-winged Teal Spatula discors 20,957 20,475 41,432 12.31

Cinnamon Teal Spatula cyanoptera 334 1692 2026 19.30

Northern Shoveler Spatula clypeata 6121 13,770 19,891 13.19

Gadwall Mareca strepera 4306 18,565 22,871 4.35

American Wigeon Mareca americana 4354 13,086 17,440 6.24

Mallard Anas platyrhynchos 38,215 86,676 124,891 19.12

American Black Duck Anas rubripes 727 4979 5706 15.98

Mottled Duck Anas fulvigula 442 1717 2159 5.42

Northern Pintail Anas acuta 12,290 18,165 30,455 13.04

Green-winged Teal Anas carolinensis 10,787 35,530 46,317 11.60

Canvasback Aythya valisineria 750 882 1632 3.19

Redhead Aythya americana 664 2625 3289 4.59

Ring-necked Duck Aythya collaris 1330 4085 5415 4.62

Greater Scaup Aythya marila 324 795 1119 6.21

Lesser Scaup Aythya affinis 2506 2678 5184 3.62

Common Eider Somateria mollissima 1249 616 1865 1.23

Long-tailed Duck Clangula hyemalis 1039 274 1313 2.58

Bufflehead Bucephala albeola 869 2840 3709 5.55

Common Goldeneye Bucephala clangula 681 778 1459 7.53

Hooded Merganser Lophodytes cucullatus 167 866 1033 2.13

Ruddy Duck Oxyura jamaicensis 210 697 907 5.73
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USDA dataset. We have also included predicted values using (a) the coefficient for the IRD dataset and (b) using 
the averaged coefficients for the IRD and USDA datasets in the data  release17.

We found seasonal variation both among and within species. Overall, most species showed an increase in 
IAV prevalence in the autumn, a pattern that is well established and consistent with past  work15,18–20. This pat-
tern is presumably caused by high infection rates among recently fledged, immune-naïve juvenile birds entering 
the population in late summer and  fall8,26. We then see decreased IAV prevalence through the winter as birds, 
especially juveniles, gain  immunity8. This pattern is most pronounced in two genera of dabbling ducks (subfam-
ily Anatinae), Anas and Spatula, where the peak in IAV prevalence is higher and lasts over a longer period than 
other species. Past work has shown elevated risk and prevalence of IAV in dabbling ducks, and this pattern has 
been linked to differences in foraging  behavior15,27,28 but could also be caused by other differences in exposure 
or immune  response16,29,30. Notably, and potentially evidence against the foraging behavior hypothesis, this pat-
tern was not observed in both Mareca species, which are imbedded between Anas and Spatula within the larger 
dabbling-duck  phylogeny31,32, and is consistent with past findings of lower prevalence in  gadwall33,34. As such, 
we recommend additional research of IAV prevalence, exposure, and immune response among birds of different 
genera within Anatinae to uncover drivers of infection patterns.

Our results also provide evidence for a smaller peak of increased IAV prevalence for many species in late win-
ter and early spring, typically between January and April, although the exact timing varies by species. Most past 
work notes only an autumn increase in  prevalence11, with low levels of infection persisting year-round10,20. How-
ever, surveillance during February in a single Texas county in 2001–2002 did document an elevated prevalence of 

Figure 1.  Example of spatiotemporal predictions of IAV prevalence in mallards. The listed weeks roughly 
correspond to the first week of March and September, highlighting the low levels of IAV prevalence in Spring 
outside of a relative hot-spot in the Mississippi Alluvial Valley, as well as the wide-spread elevated prevalence 
in fall across the northern latitudes. Maps were produced in  ggplot268. Full predictions for all species and week 
combinations are available in Supplementary Material 2.

Table 2.  Untransformed model effects giving the mean, standard deviation (Sd) and lower and upper 95% 
credible intervals of the posterior.

Effect Mean Sd Lower 95% Upper 95%

Intercept  − 4.686 0.326  − 5.326  − 4.047

Dataset 1.057 0.032 0.996 1.119

Precision for year 13.133 1.776 9.941 16.911

Precision for week 1.100 0.127 0.863 1.394

Correlation between weeks 0.840 0.013 0.813 0.865

Among-species correlation 0.247 0.060 0.136 0.383

Precision for phylogenetic effect 50.140 11.891 30.196 79.131

Precision for county 1.234 0.055 1.127 1.345

Correlation between months for counties 0.247 0.025 0.199 0.296

Range for spatial field 0.214 0.016 0.183 0.249

Sd for spatial field 0.970 0.052 0.872 1.078

Correlation between months for spatial field 0.773 0.015 0.743 0.802
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 IAV35 consistent with our findings. There are several potential causes for this spring increase, including changes 
in circulating  subtypes9,12 to which ducks may lack  immunity36 or a decline in the strength of immune response 
after the autumn  peak37. Alternatively, this pattern may be linked to spring migration either due to physical stress 
depressing the immune response or large congregations of ducks at staging areas increasing transmission; an 
explanation further bolstered by recent findings of modestly elevated prevalence rates in migrating teal along 
the Gulf  Coast38.

Though we did not find clear differences in IAV prevalence among flyways, with areas of high and low 
prevalence within each, we did find spatiotemporal variation. Although not tested here, these spatiotemporal 
trends may be related to regional duck densities and distributions. From August through October, during the 

Figure 2.  Percentage of individuals predicted to test positive for IAV (± 95% CI) for each species for each week. 
Predictions are based on the overall prevalence values in the USDA dataset, which had a higher detection rate, 
and ignore the spatial component. Circles running along the x-axis indicate the number of samples for each 
species taken during that week. Estimates for time periods without samples for a given species should be taken 
with caution as predictions are primarily based on the among-species correlation. Detailed images for each 
species can be found in Supplementary Material 3.

Figure 3.  Monthly realizations of the spatial random field for the continental United States. Brighter colors 
indicate locations within a month with relatively greater IAV prevalence. Maps were produced in  ggplot268. 
Maps of the standard deviation can be found in Supplementary Fig. S3 online.
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period of the highest IAV prevalence, we see increased infections across the north-central United States. This is 
generally consistent with the areas of the greatest duck population densities within the United States during early 
 autumn39. As autumn progresses, we see these areas of highest prevalence shift to the south, presumably with 
duck migration, as well as into the Pacific Northwest and Great Lakes regions where large populations of ducks 
 congregate40. As such, it appears that patterns in IAV prevalence, at least at large spatial scales, may be related 
to duck density, which presumably increases viral transmission  rates41. However, testing this specifically will 
require further work, especially to elucidate if the distributions of specific species drive this overall spatial trend.

Interestingly, though reported sampling efforts and overall IAV infections are generally low during the spring, 
we also see recurring elevated prevalence in the Mississippi Alluvial Valley in Arkansas during this period. The 
exact cause of this is unclear, however we offer several potential hypotheses that may explain this observation. 
First, this is a region of particularly high densities of wintering ducks, especially  mallards42, though this peak 
occurs in March after many of these birds have departed for spring  migration43. It is possible that viruses shed into 
the water from the previous season  persist44,45, causing infections in the remaining birds and/or spring migrants 
arriving from farther south, especially as IAV presence in sediment is closely related to waterfowl  density46. The 
arrival of spring migrants may also be associated with the dispersal of virus strains northward from wintering 
grounds in the Neotropics, potentially exposing birds in this region to strains for which they lack  immunity5,12,47. 
Regardless of the ultimate cause, this peak in viral prevalence within the Mississippi Alluvial Valley may play 
some role in maintaining viral diversity in the United  States10,26,48. Moreover, as the geographic coverage of 
sampling during this period is limited (Fig. 4), increased geographic coverage may shed light on other potential 
areas of elevated prevalence in spring.

Large amounts of the data in both datasets were not designed to assess prevalence. The USDA data were 
originally collected for early detection of potentially highly pathogenic viruses of the H5 and H7  subtypes21,22. 
In contrast, though the overarching goal of the IRD dataset is to forecast pandemic potential and effort was 
spent on all 16 HA subtypes, the specific goals behind data collection varied by research  group23. In general, 
large sections of both datasets were collected to maximize the number of detections, creating biases related to 
when and where samples were collected and generating temporal and spatial autocorrelation that if ignored 
would lead to an over estimation of IAV prevalence. We dealt with these biases within the model by including 
two spatiotemporal components. To handle biases at large spatial scales as well as to assess how prevalence var-
ies across time and space, we included a spatiotemporal stochastic partial differential equation (SPDE) model 
based on a continuous Gaussian random field. To handle smaller scale spatial variation, such as specific choices 
of locations to sample, we included an effect of county, accounting for a lack of independence for birds sampled 
from the same locations. The inclusion of county prevented the SPDE component from overfitting the data and 
greatly improved overall model fit. Temporal biases in data collection are also confounded with potential species 
differences, with some species lacking sampling data from certain time periods. As species are likely not fully 
independent from each other, we included both a phylogenetic random effect and a correlated temporal species 
 effect49, which is able to pull statistical power and information for a species that is poorly sampled at a given time 
from other species with more samples. In short, this method both improved model fit and allowed for justifiable 
predictions during periods of low sampling. There was also the potential for an interaction between bird species 
and the spatial components; however, this appears to not be the case as during model validation we found no 
evidence of significant residual spatial autocorrelation by species and thus excluded this from the model.

Despite our handling of spatiotemporal autocorrelations, it should be noted that there was generally less data, 
especially for some species, during the late winter and spring (Fig. 4). Consequently, spatial predictions are less 
informative during this time of year. Moreover, though our model assumes some correlation among species, it is 
possible that some of the under-sampled species may experience unique patterns during periods when data are 
missing (Fig. 2). As such, we would recommend caution when making inferences for species during times that 

Figure 4.  Sampling effort by month for both the USDA national surveillance program and the NIAID Influenza 
Research Database (IRD) datasets and map of the waterfowl flyways. USDA provides greater coverage across 
the continental United States as sampling was stratified by flyway and watershed. The majority of IRD sampling 
events are located either in the Mississippi (M) and Central (C) Migratory Flyways, California and Alaska in the 
Pacific (P) Migratory Flyway, and Maine and Delaware in the Atlantic (A) Flyway. However, IRD adds greatly to 
the total sample coverage during the spring lull in sampling effort. Maps were produced in  ggplot268.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13083  | https://doi.org/10.1038/s41598-022-17396-5

www.nature.com/scientificreports/

they were not sampled. Moreover, as we document both a spring resurgence in several species and relatively high 
IAV rates in the Mississippi Alluvial Valley during this time, our results provide rationale for increased winter 
and spring sampling, especially in areas of high duck density, to both monitor outbreaks and better understand 
viral ecology.

Additionally, several weaknesses exist from potentially important missing variables that we were unable to 
include in the model. First, though we know susceptibility to IAV varies by age, with immuno-naïve juveniles 
being more  susceptible8, we lacked data on the age as well as sex for most birds. Secondly, we lack detailed data 
on trapping and collection methods. Many birds in both datasets were sampled from hunter harvest, while others 
were collected through techniques using baited sites, such as swim-in traps or rocket  netting11,23. The elevated 
local duck densities caused by congregations of birds around bait stations may have artificially increased rates of 
IAV transmission when birds were collected with these  methods25. As such, it is possible that we overestimated 
IAV prevalence in some places, particularly outside of hunting seasons. Notably, this does not appear to be the 
case for the samples from the Mississippi Alluvial Valley in spring. Though some birds may have been baited, the 
reported numbers captured at a given time were small, indicating that densities were not artificially increased 
from this method, and we also see an increased prevalence in some known hunter-harvested birds in this time 
and place.

In conclusion, our modelling efforts confirmed previous reports of waterfowl species, times of year, and 
geographic areas with elevated IAV prevalence that may be useful in future efforts aiming to identify areas of 
probable viral spillover from wild birds to poultry and to ultimately mitigate the risks of IAV outbreaks among 
domestic birds and human populations. In addition to supporting a peak in IAV infections during the late sum-
mer and early autumn in many dabbling duck species, we also found evidence for a secondary, smaller peak in 
IAV infections during the spring. Furthermore, we identified potentially important geographic areas of increased 
prevalence during the annual cycle. As such, future research on IAV in waterfowl would benefit from including 
sampling throughout the full annual cycle to confirm the inferences derived from this study, as time periods 
outside the well-established autumn peak may be important for understanding overall viral ecology. Moreover, 
the underlying drivers of many of the patterns we identify remain unresolved, and future research may be helpful 
for clarifying their behavioral, physiological, and evolutionary origins.

Methods
Datasets. Data on IAV prevalence came from two national-scale surveillance datasets. The first of these 
is from the U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), 
National Wild Bird Surveillance  Program11,21, and sought to maximize detections of positive birds for early 
detection of pathogenic strains. Sampling, stratified by administrative flyways and species, was conducted from 
2007–2011 and 2015–2019. Birds were tested with both an oropharyngeal and a cloacal swab, which were added 
to a single cryovial containing brain–heart infusion media. Samples were tested at National Animal Health 
Laboratory Network facilities for IAV by rRT-PCR50,51.

The second dataset is the National Institutes of Health (NIH), National Institute of Allergy and Infectious 
Diseases (NIAID) Influenza Research  Database23,52 (IRD; www. flubd. org), which is a publicly available database 
containing IAV surveillance data from many different academic labs. We downloaded all waterfowl surveillance 
data on June 15, 2021 that was collected from 2007 to 2019. Labs that contributed data to IRD use a variety of 
screening methods to detect IAV in samples, including rRT-PCR and VI. Protocols for collecting swabs also 
varied among labs that deposited data. Most birds were sampled with either cloacal and/or oropharyngeal swabs, 
though other sample types were also collected (e.g., fecal or tissue), with some birds sampled using multiple 
methods. We attempted to account for methodological variation by including the number of swabs taken from 
each bird as a variable in the model. However, we found that the effect was both negligible and insignificant, and 
it was removed from the final model.

After observing similar trends in the raw data for both the IRD and USDA datasets (Supplementary Figs. S7, 
S8 and S9 online), we combined data from both databases for the continental United States. While developing 
models to include Canada was desired, the long-term data set did not have spatial and temporal coverage suf-
ficient for creating robust predictions at our current model scale and thus were not included. Taxonomically, 
we included all Anseriformes species with more than 550 individuals sampled – excluding hybrids, captives, or 
domestics – leaving 30 species. In total, this included 292,230 and 114,569 samples from the USDA and IRD 
datasets respectively. Due to variation in spatial precision within the two datasets, we aggregated all data to 
county using latitude and longitude coordinates and TIGER/Line files from the U.S. Census (www. census. gov/ 
geogr aphies/ mappi ng- files/ time- series/ geo/ tiger- line- file. html), reassigning geographic coordinates based on 
county centroids (Fig. 1, Supplementary Figs. S10, S11 and S12 online).

To better reflect the annual cycle, we replaced calendar year with “biological year” commencing each June 
1. Previous studies have used a cutoff date of April 1 to align with the start of mallard breeding in the Prairie 
Pothole  Region11,18,53. However, our study considered a larger geographic area encompassing the continental 
United States. Moreover, in examining the raw data, we found that this date falls during a period of elevated 
prevalence in some species, including mallard. Instead, we chose to use a cutoff of June 1, which is near the center 
of an extended period each year with low IAV prevalence, to prevent the year variable breaking in the middle of 
a period experiencing increased prevalence.

Statistical analysis. To quantify the probability of a bird testing positive for IAV, we fit a Bayesian hier-
archical spatiotemporal model with a correlated species-specific temporal latent effect using integrated nested 
Laplace  approximation54 (INLA) with R-INLA version 20.10.12–1. This is a Bayesian approximation method for 
estimating latent Gaussian models that is computationally efficient, making it ideal for the analysis of large, spa-

http://www.flubd.org
http://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
http://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
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tiotemporal datasets. We pooled data by all prediction variables (dataset, biological year, month, week, county, 
species) to set up a binned-binomial regression model, with 25% of the binned data randomly withheld from 
model training as a testing dataset. This model estimates the probability of a bird testing positive for IAV (y) with 
a binomial likelihood and logit  link55 that can be expressed as,

where β0 is the intercept, β1 is a fixed effect for which dataset the data came from, and β2∙fyYear is an independ-
ent and identically distributed (iid) latent effect accounting for variation in IAV prevalence by biological year.

The model contained two spatiotemporal components designed to handle spatiotemporal autocorrelation at 
different spatial scales. The first, β3∙fc,mCounty, is an iid effect of county (c) that varies across months (m) based off 
of a cyclic first-order autoregressive (ar1)  model56 to account for the cyclic nature of the annual cycle and to allow 
for a correlation between adjacent months. This effect is intended to handle small-scale spatial autocorrelation, 
such as that derived from differences in methods between labs or choices of specific sampling sites. Secondly, ωl,m 
is a spatially structured latent effect of the correlation between location (l) and month (m) modeled as a cyclic 
ar1 model with the same temporal realizations using an SPDE  approach57 and is intended to quantify large-scale 
spatial variation. The SPDE method allows for efficiently computing large spatial models and quantifies continu-
ous spatial autocorrelations. It uses a continuous Gaussian random field constructed with a three-dimensional 
triangular mesh which had 8202 nodes, comparable to studies at similar spatial  scales39,58, and was projected 
onto a three-dimensional sphere scaled to one Earth radius. The temporal effect of these spatial models is at the 
level of month instead of week to maintain sufficient data in each temporal realization to inform the spatial field.

The model also contained a correlated species-specific latent effect (ψw,s) quantifying weekly (w) variation 
among species (s). The effect of week was included as a cyclic ar1 model, and was set up to generate a separate, 
but correlated, trend for each species. This was done as there were strong temporal biases in the data with many 
species missing data for certain parts of the year, leading to poor model predictions when we considered species 
as completely independent. However, due to similar physiology and phenology, as well as the ability to transmit 
IAV among each  other48, we expected some level of correlation among species. To account for this, we used cor-
related stratum-specific smoothing  priors49, which allow for better predictions when data is missing by pulling 
statistical power from other species based on the among-species correlation.

Additionally, as more closely related species may have more similar immune responses and physiology, we 
included a random phylogenetic effect ( ϕs ) as a precision matrix. We downloaded 10,000 samples from the pos-
terior distribution of the phylogenetic hypothesis available at  BirdTree59 (www. birdt ree. org) for all Anseriformes 
to generate an ultrametric consensus  tree60. This tree was then used to generate a variance–covariance matrix 
using the package  ape61 using a Brownian motion model, where the diagonal represents the root-to-tip distance 
and the off-diagonal elements represent the shared branch length between two species. This variance–covariance 
matrix was subset to only include the species considered here. The matrix was then standardized by dividing it by 
the determinant raised to the power of 1/Nspecies

62 and inverted into a precision  matrix63. We also tested a model 
that allowed for an interaction between the phylogenetic effect and week of year; however, this model received 
less support (Δlog(Σ CPO) = 144), and was removed from further consideration.

We used penalized complexity (pc) priors for all correlation terms, which are robust priors designed to 
penalize the model for any deviations from a simpler base model in support of Occam’s razor. Pc priors for the 
spatial  effect64 were specified so that the spatial range had a 0.5 probability of falling within one half the radius 
of the earth (ρ0 = 1, pρ = 0.5) and reasonable standard deviation (σ0 = 1, ασ = 0.01), which was intended to be 
non-informative. All temporal autocorrelation terms as well as the among-species correlation used the same 
pc priors (μ = 0, α = 0.9) where the base model for the correlation is ρ =  156,65. All other components used INLA’s 
default  priors54.

Model checking. Statistical inference was based on means and 95% credible intervals of the posterior dis-
tributions. We measured goodness of fit using a coefficient of determination  (R2) based on a regression of the 
posterior predictive distribution against the observed values, weighted by the number of samples in the binned 
data (n)58. We performed out-of-sample cross validation by computing Spearman’s correlation, again weighted 
by n, between the training and test datasets using the package  wCorr66 and used the package  PresenceAbsence67 
to calculate the area under the receiver operating characteristic (AUC) curve. Finally, we generated model pre-
dictions of the probability of a bird testing positive for IAV for each species at the county level in weekly inter-
vals. These predictions were generated by averaging the year effect across all years, and we scaled the results to 
the overall prevalence in the USDA dataset because of the consistency of its methods, though values for IRD and 
the two datasets averaged together are provided in the data release. It should be noted that as all species shared 
a common spatial field, we did not choose to mask the geographic regions outside of species’ ranges, and thus 
predictions do exist for locations beyond a species’ natural range.

Data availability
The datasets analyzed during the current study come from three sources. Phylogenetic data came from BirdTree 
and are publicly available at www. birdt ree. org. Surveillance data from IRD are publicly available at the NIAID 
Influenza Research Database www. fludb. org. Surveillance data from the USDA are not publicly available as they 
are the property of the U.S. Department of Agriculture and are available from the corresponding author on 
reasonable request. All model predictions are available  online17.

(1)y ∼ binomial (n,π)

(2)logit(π) = β0 + β1 · Dataset + β2 · fyYear + β3 · fc,mCounty + ωl,m + ψw,s + ϕs

http://www.birdtree.org
http://www.birdtree.org
http://www.fludb.org
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