Lawrence Berkeley National Laboratory Recent Work

Title

A nn PHASE SHIFT ANALYSIS FROM REACTIONS $n+p-\& g t ; n+n-A++$ AND $n+p-\& g t ; K+K-A++$ AT 7. $1 \mathrm{GeV} / \mathrm{c}$.

Permalink
https://escholarship.org/uc/item/0v92m7m9

Author

Protopopescu, S.D.
Publication Date
1972-04-01

S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatte, J. H. Friedman, T. A. Lasinski, G. R. Lynch, M. S. Rabin, and F. T. Solmitz

April 1972

AEC Contract No. W-7405-eng-48

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
 $\pi^{+} p \rightarrow \pi^{+} \pi^{-} \Delta^{++}$AND $\pi^{+} p \rightarrow K^{+} \mathrm{K}^{-} \Delta^{++}$AT $7.1 \mathrm{GeV} / \mathrm{C}^{*}+$
S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatté, J. H. Friedman, T. A. Lasinski, G. R. Lynch, M. S. Rabin, and F. T. Solmitz

Lawrence Berkeley Laboratory, University of California Berkeley, California 94720

April 1972

ABSTRACT

We present results of an energy-dependent $\pi \pi$ phase shift analysis for $\pi \pi$ energies between 550 and 1150 MeV . The I $=0 \mathrm{~s}$ wave is parametrized in term of a $2 \times 2 \mathrm{M}$-matrix coupling $\pi \pi$ and KK channels. A unique solution is obtained for this wave.

I. INTRODUCTION

Most of the information on $\pi \pi$ phase shifts so far has come from reactions of the form $\pi N \rightarrow \pi \pi N$. ${ }^{1}$ Extrapolations to the π pole using this reaction suffer from the fact that the amplitudes contain a kinematical zero somewhere between $t_{N N}=\mu^{2}$ ($\pi-$ mass squared) and $t_{N N}=0$. Because of absorption effects the position of this zero is not known with precision and mayoccur at different values of $t_{\text {NN }}$ for each partial wave amplitude. This makes results of extrapolations uncertain. Reactions of the form $\pi N \rightarrow \pi \pi \Delta$ do not have this problem, therefore one can extrapolate the normalized Y_{L}^{0} moments. In addition, one can check the validity of the extrapolation by comparing the extrapolated $Y_{L}{ }^{0}$ moments of the $\pi{ }^{+} p$ vertex with the moments for physical π p scattering. These advantages are partially offset by the fact that $\left|t_{N \Delta}\right|$ min (minimum momentum transferred squared) is larger, requiring an extrapolation over a larger interval of $t_{N \Delta}$. Because of the se problems a detailed analysis from a single experiment cannot be expected to give definitive value s for the phases and inelasticities. In the absence of physical $\pi \pi$ scattering one can only hope that a consistent set of solutions may emerge from various differentreactions at different energies.

We will present here results of a $\pi \pi$ phase shift analysis using the reactions:

[^0]1) $\pi^{+}{ }_{p} \rightarrow \pi^{+} \pi^{-} \Delta^{++}\left(32100\right.$ events, $\left.\left|t_{p \Delta}\right|<0.4 \mathrm{GeV}^{2}\right)$
(data extrapolated to π - pole),
2) $\pi^{+}{ }_{p} \rightarrow K^{+} K^{-} \Delta^{++}\left(682\right.$ events, $\left.\left|t_{p \Delta}^{\prime}\right|=\left|t-t_{\text {min }}\right| \leqslant 0.1 \mathrm{GeV}^{2}\right)$
at an incident beam momentum of $7.1 \mathrm{Ge} \mathrm{V} / \mathrm{c}^{2}$.
The $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$cross section was obtained by a Chew-Low linear extrapolation in $t_{p \Delta}$ modified by Dürr-Pilkuhn form factors. The $\mathrm{Y}_{\mathrm{L}}^{0}$ moments were obtained by a simple linear extrapolation in $\mathrm{t}_{\mathrm{p}} \Delta$. To extract phases and inelasticities, energy-dependent fits were done to the cross section and Y_{L}^{0} moments (up to $L=6$) between 550 and 1150 MeV . The I (isospin) $=2$ amplitudes were assumed to be elastic everywhere, the $L \neq 0(I \neq 2)$ were allowed to become inelastic at the $\omega \pi$ threshold ($\sim 900 \mathrm{MeV}$). The $\mathrm{I}=0 \mathrm{~s}$ wave was described by a 2×2 M-matrix which coupled $\pi \pi$ and $\overline{\mathrm{K}} \mathrm{K}$ channels. The phase (δ_{0}^{0}) obtained for the s wave rules out the "up" solution (narrow ϵ) and varies rapidly before the $\overline{\mathrm{K}} \mathrm{K}$ threshold ($\delta_{0}^{0}=90^{\circ}$ at ~ 900 $\mathrm{MeV}, \delta_{0}^{0}=180^{\circ}$ at $\sim 990 \mathrm{MeV}$).

All the fits with reasonable χ^{2} gave essentially the same phases and inelasticities within the computed errors. Using the Mmatrix parametrization, we looked for poles in the $I=0 \mathrm{~s}$-wave amplitude. We always found one pole (S^{*}) on the second Riemannsheet at $980 \pm 6-\mathrm{i}(37 \pm 8)$ which can be interpreted as a $K \bar{K}$ bound state. We believe the evidence for this pole to be conclusive. We also found another pole which could be either on the second Riemann sheet at $600 \pm 100-\mathrm{i}(250 \pm 70)$ or on the fourth Riemann sheet at $650 \pm 70-i(150 \pm 50)$. In either case this pole is very far from the physical region and considerably more data are probably needed to determine on which sheet it is. Also, the effect of the 4π cut (which we neglect) might have to be included.

The higher waves are less well determined above 900 MeV ; the data require some of these waves to be very inelastic, but without more information from other channels it is difficult to choose among the various possibilities. In addition, there are some indications that the simple linear extrapolation does not successfully remove non- π-exchange background. A smooth background will not affect the s-wave results very much since they depend on the very sharp structure in the data, but can severely distort results on those partial waves which are assumed to be slowly varying.

II. EXPERIMENTAL DATA

Our experiment is a 700000 -picture exposure (42 ± 1.2 events $/ \mu \mathrm{b}$) of the SLAC 82 -inch bubble chamber to an rf-separated π^{+}beam at 7.1 $\mathrm{GeV} / \mathrm{c}$. We observe 420000 four-prongs, of which 72700 fit the hypothesis $\pi^{+} p \rightarrow \pi^{+} \pi^{-} \pi^{+} p$ and 4600 fit $\pi^{+} p \rightarrow K^{+} K^{-} \pi^{+} p$. After correcting
for scanning and measuring efficiencies the effective path length for the above sample of events is 39 ± 1 events $/ \mu \mathrm{b}$. The error on the cross section is larger for $\mathrm{K}^{+} \mathrm{K}^{-}$events because about 10% of these are ambiguous with $\pi^{+} \pi^{-}$events.

For the extrapolation we use only events with $\left|t_{p \Delta}\right|<0.4 \mathrm{GeV}^{2}$, where the Δ^{++}is defined as the $\pi^{+} p$ combination with $1.13<M\left(\pi^{+} p\right)<$ 1.36 GeV . After the selection we are left with $32100 \pi^{+} \pi^{-} \Delta^{++}$ events. Of these about 5% are ambiguous, having two Δ^{++}by our definition; in case of ambiguity, the $\pi^{+} p$ combination with smaller It Δ^{l} was chosen as the $\Delta^{\dagger t}$. From the mass and t distributions for arfibiguous events we estimate that no more than 300 events may be misinterpreted (or may be double Δ^{++}events). Figure 1 shows the data before and after the selections. The mass resolution for $\pi^{+} \pi^{-}$ events varies somewhat as a function of mass, being $\pm 5 \mathrm{MeV}$ in the ρ region (760 MeV) and $\pm 8 \mathrm{MeV}$ in the f_{0} region; the dependence on $\pi \pi$ angles is generally small. For further details on the mass resolution see Ref. 2.

The mass distribution and spherical harmonic moments of the $\pi^{+} \pi^{-}$system are shown in Fig. 2. We present the extrapolated data and the data for $\left.\right|^{1}{ }_{p} \mid<0.1 \mathrm{GeV}^{2}$ in the same binning for comparison. To calculate the $K \bar{K}$ cross section we simply took the ratio of $\mathrm{K}^{+} \mathrm{K}^{-}$events to $\pi^{+} \pi^{-}$events for $\left|t^{\prime} \mathrm{p} \Delta\right|<0.1 \mathrm{GeV} \mathrm{V}^{2}$ and multiplied by twice the $\pi \pi$ extrapolated cross section (the first bin has a small correction to account for the mass difference between K^{+}and K^{0}). Note that, except for the magnitude, the general behavior of the extrapolated moments is not very different from the one observed in the physical region. The only noteworthy exception is Y_{3}^{0}, which stays close to zero below 1.1 GeV instead of being negative. The most striking feature of the data is the sharp structure in $Y_{1}{ }^{0}, \mathrm{Y}_{2}{ }^{0}$ and the $\pi^{+} \pi^{-}$cross section near 980 MeV . The Y_{1}^{0} moment drops from 0.16 to 0 between 980 and 990 MeV [the data for $\left|\mathrm{t}_{\mathrm{p} \Delta}\right|<0.1$ (GeV$)^{2}$ was published in $10-\mathrm{MeV}$ bins in Ref. 3]; Y_{2}^{0} has $\mathrm{p} \mathrm{S}_{\text {sharp rise before }}$ 980 MeV ; and the mass distribution has a shoulder between 910 and 950 MeV , a rapid drop between 950 and 980 MeV , and is flat after 980 MeV . The simplest explanation for the se effects is that we are observing a rapid change in the s wave associated with $K \bar{K}$ threshold. ${ }^{3}$ A qualitative conclusion one can $d r a w$ is that the s wave amplitude must be large around 930 MeV and both $\mathrm{I}=0$ and $\mathrm{I}=2 \mathrm{~s}$ wave amplitude must be close to zero near the $\mathrm{K} \overline{\mathrm{K}}$ threshold. 4 The K $\overline{\mathrm{K}}$ cross section rises sharply at threshold. As shown in Ref. 3, the charged 4π channel has essentially no events below 1.0 GeV and very few below 1:2 GeV. On the other hand, the $\pi^{+} \pi^{-}$MM (missing mass $\mathrm{MM} \geqslant 2 \pi^{\circ}$) channel has substantially more events below 1 GeV but less than the $K \bar{K}$ channel, and the rise is more gentle starting around 900 MeV . If we believe π exchange is the major contribution to theqse channels then the difference between the charged 4π and the $\pi^{+} \pi^{-}$MM mass distributions is easy to explain in terms of the $\omega \pi$ channel which can only contribute to the second distribution. Information from these inelastic channels is not used explicitly in the phase shift analysis (except the $K \bar{K}$ cross section), but they

XBL724-2722

Fig. 1.(a) $\pi^{+} p$ mass distribution in $20-\mathrm{MeV}$ bins, both combinations included. (b) $\pi^{+} \pi^{-}$mass distribution in $20-\mathrm{MeV}$ bins, both combinations included. (c) $\pi^{7} \pi^{-}$mass distribution in $20-\mathrm{MeV}$ bins, Δ^{++}selected.

Fig. 2. Cross section (a) and $\left\langle Y_{L}{ }^{0}\right\rangle(b ; c, d)$ for extrapolated data and $\left|t_{p \Delta}\right|<0.1 \mathrm{GeV}^{2}$. The curves on the extrapolated data, and on the $K \bar{K}$ cross section for $\left|t^{\prime} p \Delta\right|<0.1 \mathrm{GeV}^{2}$ (a), are those corresponding to case-1 fit (see Table II).

Fig. 2b

- $7-$

Extrapolated

XBL724-2728

Fig. 2c

Fig. 2d
provide useful guidelines as to where one can allow the various waves to become inelastic and put some constraints on the magnitude of the inelasticities. Note that the $\pi \pi s$ wave cannot contribute to the $\omega \pi$ channel so that the absence of events in the charged 4π channel suggests that a 2 -channel ($\pi \pi$ and $K \bar{K}$) M-matrix may be an adequate representation for this wave.

III. EXTRAPOLATION TO $\pi-$ POLE

$$
\begin{equation*}
A(s, t) \propto \frac{\left\langle\pi^{+} p\right| T\left|\pi^{+} p\right\rangle\left\langle\pi^{+} \pi^{-}\right| T\left|\pi^{+} \pi^{-}\right\rangle}{t-\mu^{2}}+X \tag{III.1}
\end{equation*}
$$

where X stands for pacesses not produced by π exchange, e.g., A_{2} exchange, $\pi^{+} p \rightarrow \mathrm{~A}_{2} \mathrm{p}, \pi{ }^{+} \mathrm{p} \rightarrow \pi^{+} \mathrm{N}^{*}+$, etc. When $t \rightarrow \mu^{2}$ the first term diverges while X remains finite. The hope then is that by extrapolating to $t=\mu^{2}$ one removes off-shell effects and non- π exchange contributions. After extrapolating the analysis becomes simpler in the sense that a standard phase shift analysis may be attempted. This simplicity is offset by the uncertainties in extrapolation procedures and the large increase in the statistical errors because of the need to divide the data in cells of t and $m_{\pi \pi}$. The uncertainty becomes larger the higher the mass because $\left|t_{\text {min }}\right|$ increases (at 1280 $\mathrm{MeV}, \mathrm{t}_{\text {min }}=-8 \mu^{2}$).
A. Evaluation of the $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$Cross Section

In the case of one - pion exchange, the differential cross section for the process $\pi^{+} p \rightarrow\left(\pi^{+} \pi^{-}\right)\left(\pi^{+} p\right)$ is given by:

$$
\begin{equation*}
\frac{d^{3} \sigma}{\operatorname{dtd} M d m}=\frac{1}{4 \pi^{3} P_{I}^{2} E^{2}}\left(m^{2} q_{t} \sigma \pi\right) \frac{G^{2}(t)}{\left(t-\mu^{2}\right)^{2}}\left(M^{2} Q_{t} \sigma p\right) \tag{III.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& P_{I}=c . m \text { momentum, } \quad \mathrm{m}=\pi^{+} \pi^{-} \text {invariant mass, } \\
& E=c . m \text {. energy, } \quad M=\pi^{+} p \text { invariant mass, } \\
& G(t)=\text { form factor }=1 \text { at } \pi \text { pole } \quad \sigma_{\pi \pi}=\pi^{+} \pi^{-} \text {cross section, } \\
& \mu=\pi \text { mass, } \quad \sigma_{\pi p}=\pi^{+} p \text { cross section, } \\
& q_{t} \ldots=\text { virtual } \pi \text { momentum in } \pi^{+} \pi^{-} \text {rest frame, } \\
& Q_{t}=\text { incoming } p \text { momentum in } \pi^{+} p \text { rest frame. }
\end{aligned}
$$

In addition we define for later use:

$$
\begin{aligned}
& \mathrm{q}=\text { outgoing } \pi^{+} \text {momentum in } \pi^{+} \pi^{-} \text {rest frame, } \\
& Q=\text { outgoing } \mathrm{p} \text { momentum in } \pi^{+} \mathrm{p} \text { rest frame. }
\end{aligned}
$$

We have then:

$$
\begin{aligned}
& q=\sqrt{\frac{m^{2}}{4}-\mu^{2}}, \quad Q=\frac{1}{2 M}\left\{\left[M^{2}-\left(m_{p}+\mu\right)^{2}\right]\left[M^{2}-\left(m_{p}-\mu\right)^{2}\right]\right\}^{1 / 2}, \\
& q_{t}=\sqrt{\frac{\left(m^{2}+\mu^{2}-t\right)^{2}}{4 m^{2}}-\mu^{2}}, \quad Q_{t}=\sqrt{\frac{\left(M^{2}+m_{p}^{2}-t\right)^{2}}{4 m^{2}}-m_{p}^{2}} .
\end{aligned}
$$

The standard method of extrapolating is to calculate first:

$$
\begin{equation*}
\sigma_{O P E} \equiv \frac{1}{4 \pi^{3} P_{I}^{2} E^{2}} \int_{m_{1}}^{m_{2}} d m \int_{t}^{t_{2}} d t \int_{M_{1}}^{M_{2}} d M m^{2} q_{t} \frac{G^{2}(t)}{\left(t-\mu^{2}\right)^{2}} M^{2} Q_{t} \sigma \pi p \tag{III.3}
\end{equation*}
$$

The above is the integral of $\mathrm{Eq}_{\mathcal{F}}$ (III.2), where we have set $\sigma_{\pi /}=1 \mathrm{mb}$ and $\sigma_{\pi p}$ is the physical $\pi^{+} p \rightarrow \pi^{+} p$ scattering cross section. Then one fits to a polynomial in t the function

$$
\begin{equation*}
F(m, t)=\left(\int_{m_{1}}^{m_{2}} d m^{\prime} \int_{t_{1}}^{t_{2}} d t^{\prime} \int_{M_{1}}^{M_{2}} d M \frac{d^{3} \sigma}{d t^{\prime} d M d m^{\prime}}\right) / \sigma_{O P E} \tag{III.4}
\end{equation*}
$$

where $m=\left(m_{1}+m_{2}\right) / 2$ and $t=\left(t_{1}+t_{2}\right) / 2$. The cross section for $\pi^{+} \pi^{-}$is then given by $\sigma_{\pi \pi^{\prime}}(m)=F\left(m, t=\mu^{2}\right)$.

With this procedure one usually needs high-order polynomials in t to obtain good results. A linear, or at most quadratic, extrapolation seems to be quite adequate for our data if we modify σ_{OPE} with Dürr-Pilkuhn form factors (DP). The disadvantage is that one must know in advance the amounts of each wave present. Fortunately the effect of DP form factors is not very drastic, so a rough estimate is quite adequate.

[^1]The DP method consists in replacing: ${ }^{5}$

$$
\begin{align*}
& q_{t} \rightarrow q \quad \text { for s-wave, } \\
& q_{t} \rightarrow\left(\frac{q_{t}}{q}\right)^{2}\left(\frac{1+R_{p}^{2} q^{2}}{1+R_{p}^{2} q_{t}^{2}}\right) q \quad \text { for } p \text { wave } \tag{III.5}\\
& q_{t} \rightarrow\left(\frac{q_{t}}{q}\right)^{4}\left(\frac{9+3 R_{d}^{2} q^{2}+R_{d}^{4} q^{4}}{9+3 R_{d}^{2} q_{t}^{2}+R_{d}^{4} q_{t}^{4}}\right) q \quad \text { for d wave. }
\end{align*}
$$

For the Δ^{++}vertex the modification is slightly different:

$$
\begin{equation*}
Q_{t} \rightarrow \frac{\left(M+m_{p}\right)^{2}-t}{\left(M+m_{p}\right)^{2}-\mu^{2}}\left(\frac{Q_{t}}{Q}\right) \frac{1+R_{\Delta}^{2} Q^{2}}{1+R_{\Delta}^{2} Q_{t}^{2}} Q \tag{III.6}
\end{equation*}
$$

Using the se form factors, Wolf ${ }^{6}$ could fit very well the t distributions in the ρ region (for $\pi^{+} p \rightarrow \pi^{+} \pi^{-} \Delta^{++}$) at various beam energies with $R_{p}=8.28 \pm 0.2 \mathrm{GeV}^{-1}$ and $\mathrm{R}_{\Delta}=3.97 \pm 0.11 \mathrm{GeV}^{-1}$. In addition he had to introduce a slowly varying function:

$$
G(t)=\frac{c-\mu^{2}}{c+t}, \quad \text { where } c=2.29 \pm 0.27(\mathrm{GeV})^{2}
$$

The se values have also given satisfactory fits to other reactions. ${ }^{7}$ We made least-squares fits to t distributions for different $\pi \pi$ mass regions assuming that p wave and d wave are given by a ρ and f_{0} mesons, and that the s wave is smooth and of the order of 13% of the cross section. We found that R_{p} and R_{Δ} are strongly correlated. If R_{Δ} is kept fixed at $4.0 \mathrm{GeV}^{-1}$ then the best value for R_{p} was found to be $8.2 \mathrm{GeV}^{-1}$, in good agreement with Wolf's value. In Fig. 3 we show the result of a fit to the t distribution for $0.76<\mathrm{M}_{\pi \pi}<0.78 \mathrm{GeV}$. A least-squares fit to the f_{0} region, keeping R_{p} and R_{Δ} fixed, showed that the value of R_{d} tends to be large and the fit is not very sensitive to it as long as $\mathrm{R}_{\mathrm{d}} \geqslant 14.0 \mathrm{GeV}^{-1}$.

For calculating $\sigma_{O P E}$ we used $R_{A}=4.0 \mathrm{GeV}^{-1}, \mathrm{R}_{\mathrm{p}}=8.2 \mathrm{GeV}^{-1}$, $\mathrm{R}_{\mathrm{d}}=14.0 \mathrm{GeV}^{-1}$ and took ${ }_{\sigma}{ }_{\pi^{+}} \mathrm{p}_{\mathrm{p}}$ from Carter et al. ${ }^{8} \mathrm{We}$ then did a least-squares fit to:

$$
\begin{equation*}
F(\mathrm{~m}, \mathrm{t})=a+b t \quad \text { (Note that } \sigma_{\pi \pi}=a+b \mu^{2} \text {) } \tag{III.7}
\end{equation*}
$$

Fig. 3. ${ }^{-t} \mathrm{p} \mathrm{P}_{\mathrm{d}}$ distribution for $0.76<\mathrm{m}_{\pi \pi}<0.78 \mathrm{GeV}$, for reaction $\pi^{+}{ }_{p \rightarrow \pi^{+}} \pi^{-} \Delta^{++}$. Curve corresponds to a fit with DürrPilkuhn form factors.
to determine a and b for various mass bins. In the range 0.6 to 1.4 GeV the X^{2} for a linear fit was good, varying between 3.0 and 6.0 for five degrees of freedom. A quadratic fit did not improve χ^{2} significantly in that energy range and the extrapolated values were compatible with the ones obtained by a linear extrapolation, but the errors on the extrapolated points were substantially larger. Below 600 MeV linear fits had poor $X^{2}(\geqslant 10.0)$, while quadratic fits were found to be much better.

Extrapolations were tried for many different t intervals and also using the x variable of Baton et al. 9 Results varied little. The cross section shown in Fig. 2 was obtained with a line ar extrapolation in $t\left(|t|<0.4 \mathrm{GeV}^{2}\right)$ for points above 600 MeV . Below 600 MeV the extrapolation was quadratic in t . We obtained at $760-\mathrm{MeV}$ $\sigma_{\pi \pi}=133.4 \pm 4.8 \mathrm{mb}$ and at $1280-\mathrm{MeV} \sigma_{\pi \pi}=31.2 \pm 2.0 \mathrm{mb}$. The quoted errors are statistical. The unitary limit at those masses are:

I $=1$	p wave	116 mb	at 760 MeV	$\left(12 \pi \lambda^{2}\right)$
$\mathrm{I}=0$	s wave	17 mb	at 760 MeV	$\left(\frac{16}{9} \pi \lambda^{2}\right)$
$\mathrm{I}=0$	d wave	27.9 mb	at 1280 MeV	$\left(\frac{80}{9} \pi \lambda^{2}\right)$
$\mathrm{I}=0$	s wave	5.6 mb	at 1280 MeV	$\left(\frac{16}{9} \pi \lambda^{2}\right)$.

B. Extrapolation of $\mathrm{Y}_{\mathrm{L}}^{0}$ Moments

To extrapolate the moments we simply calculate:

$$
\begin{equation*}
\left\langle Y_{L}^{0}\right\rangle(m, t)=\left(\sum_{i=1}^{N} Y_{L, i}^{0}\right) / N, \tag{III.8}
\end{equation*}
$$

where $N=$ number of events in (m, t) cell, and fit $\left\langle Y_{L}^{0}\right\rangle(m, t)$ for each m to a function $a+b t$. The $\pi \pi\left\langle Y_{L}^{0}\right\rangle$ is assumed to be equal to $\left\langle Y_{L}^{0}\right\rangle\left(m, \mu^{2}\right)$. Various intervals in t were tried, the results were always consistent with each other. The one shown on Fig. 2 is calculated for $|t| \leqslant 0.4 \mathrm{GeV}^{2}$. Quadratic extrapolations only increased errors substantially without improving x^{2} significantly. Extrapolations using the variable x of Baton et al. 9 were found to be unsatisfactory, often giving values that were too high and would violate unitarity for some of the partial waves.

Since the moments are normalized we can neglect kinematic factors. In principle no factors would be needed if off-shell effects were the same for each partial wave. We find that by including DP form factors we can change the results by at most 1%, while the errors on extrapolated points are usually of the order of 10%. Unknown phases in the form factors may introduce larger corrections, but we

Fig. 4. Extrapolated $\left\langle Y_{1}{ }^{0}\right\rangle$ moments for $\pi^{+}{ }_{p}$ vertex. Curves correspond to physical π^{+}p scattering.
know of no reliable way to estimate how important the se phases may be.

The validity of the extrapolation procedure can be checked by looking at $Y_{l}{ }^{0}$ for the $\pi^{+} p$ vertex as a function of $\pi^{+} p$ and $\pi \pi$ mass. They should show no dependence on $\pi^{+} \pi^{-}$mass. Linear extrapolations of Y_{1}^{0} show striking agreement with the values for $\pi^{+} p$ elastic scattering (Fig. 4), except for $\pi \pi$ mass below 600 MeV , which makes that region suspect. We have no adequate explanation as to why the extrapolation should fail at low $\pi \pi$ mass. It is worth emphasizing 2 that if the Δ^{++}was produced by some other process than π exchange there is no reason to expect Y_{1}^{0} to behave as observed in physical $\pi^{+} p$ scattering, since that moment is determined by the interference between S and P waves; a pure Δ state would give $Y_{1}{ }^{0}=0$. ${ }^{*}$ These results give us more confidence in the validity of the extrapolation, but they do not constitute a proof.
IV. METHOD OF ANALYSIS

The partial wave amplitudes for $\pi^{+} \pi^{-}$scattering may be written as:

$$
\begin{array}{ll}
\mathrm{S}=\frac{2}{3} \mathrm{~T}_{0}^{0}+\frac{1}{3} \mathrm{~T}_{0}^{2}, & \mathrm{P}=\mathrm{T}_{1}^{1} \\
\mathrm{D}=\frac{2}{3} \mathrm{~T}_{2}^{0}+\frac{1}{3} \mathrm{~T}_{2}^{2}, & \mathrm{~F}=\mathrm{T}_{3}^{1} \tag{IV.1}
\end{array}
$$

where

$$
\begin{equation*}
T_{L}^{I}=\frac{1}{2 i}\left(\eta_{L} e^{2 i \delta_{L}^{I}}-1\right) \tag{IV.2}
\end{equation*}
$$

Upper indices denote I-spin and lower indices angular momentum L. The cross section and the Y_{L}^{0} moments are, in term of the above amplitudes:

[^2]\[

$$
\begin{align*}
\sigma_{\pi \pi}= & 4 \pi \lambda^{2}\left(|S|^{2}+3|P|^{2}+5|D|^{2}+7|F|^{2}\right), \\
\left\langle Y_{1}^{0}\right\rangle= & \left(\sqrt{\frac{3}{\pi}} \operatorname{Re}\left(S^{*} P\right)+2 \sqrt{\frac{3}{\pi}} \operatorname{Re}\left(P^{*} D\right)+3 \sqrt{\frac{3}{\pi}} \operatorname{Re}\left(D^{*} F\right)\right) \frac{4 \pi \lambda^{2}}{\sigma_{\pi \pi}}, \\
\left\langle Y_{2}^{0}\right\rangle= & {\left[\frac{3}{\sqrt{5 \pi}}|P|^{2}+\sqrt{\frac{5}{\pi}} \operatorname{Re}\left(S^{*} D\right)+\frac{5}{7} \sqrt{\frac{5}{\pi}}|D|^{2}+\frac{9}{\sqrt{5 \pi}} \operatorname{Re}\left(P^{*} F\right)\right.} \\
& \left.\quad+\frac{14}{3 \sqrt{5 \pi}}|F|^{2}\right] \frac{4 \pi \lambda^{2}}{\sigma_{\pi \pi}}, \tag{IV.3}\\
\left\langle Y_{3}^{0}\right\rangle= & {\left[\frac{9}{\sqrt{7 \pi}} \operatorname{Re}\left(P^{*} D\right)+\frac{4}{3} \sqrt{\frac{7}{\pi}} \operatorname{Re}\left(D^{*} F\right)+\sqrt{\frac{7}{\pi}} \operatorname{Re}\left(S^{*} F\right)\right] \frac{4 \pi \lambda^{2}}{\sigma} } \\
\left\langle Y_{4}^{0}\right\rangle= & {\left[\frac{15}{7 \sqrt{\pi}}|D|^{2}+\frac{4}{\sqrt{\pi}} \operatorname{Re}\left(P^{*} F\right)+\frac{21}{11 \sqrt{\pi}}|F|^{2}\right] \frac{4 \pi \lambda^{2}}{\sigma \pi \pi}, } \\
\left\langle Y_{5}^{0}\right\rangle= & \frac{50}{3 \sqrt{11 \pi}} \operatorname{Re}\left(D^{*} F\right) \frac{4 \pi \lambda^{2}}{\sigma}, \\
\left\langle Y_{6}^{0}\right\rangle= & \frac{350}{33 \sqrt{13 \pi}}|F|^{2} \frac{4 \pi \lambda^{2}}{\sigma \pi \pi} .
\end{align*}
$$
\]

The total number of parameters to be determined at each value of $m_{\pi \pi}$ is 12 , assuming partial waves up to $L=3$ are important. It is not possible to determine them by an energy independent-analysis using the reaction $\pi^{+} p \rightarrow \pi^{+} \pi^{-} \Delta^{++}$alone, ${ }^{*}$ since we only have seven constraints-six moments and the cross section. In order to extract phases and inelasticities we parametrize them as functions of $\pi \pi$ mass (or momentum) and then do a least-squares fit to the moments and the cross section.

[^3]```
U औ औ क ठ it & & 4 0
```

The parametrization we use is the following:
A. p Wave, f Wave, and I = 0 d Wave

For the $I=1 p$ wave and $f$ wave, and the $I=0 d$ wave,

$$
\begin{equation*}
T_{L}^{I}=\frac{\eta_{B}^{(\ell)} e^{2 i \delta_{B}^{(l)}-1}}{2 i}+e^{2 i \phi^{(\ell)}} B W^{(\ell)}, \tag{IV.4}
\end{equation*}
$$

where

$$
\begin{align*}
& \eta_{B}^{(\ell)}=\left\{\begin{array}{l}
1 \text { below } \omega \pi \text { thre shold } \\
e^{-v} \text { above } \omega \pi \text { threshold, }
\end{array}\right. \\
& v=\left(q-q_{t h}\right)^{2 \ell+1}\left(\sum_{n=0}^{1} b_{n}^{(\ell)} q^{n}\right)^{2},  \tag{IV.5}\\
& \delta_{B}^{(\ell)}=q^{2 \ell+1} \sum_{n=0}^{N}\left(a_{n}^{(\ell)} q^{n}\right),  \tag{IV.6}\\
& q=\pi \pi \mathrm{c} . \mathrm{m} \text {. momentum, } \\
& q_{t h}=q \text { evaluated at } \omega \pi \text { threshold, } \\
& B W^{(\ell)}=\frac{\Gamma_{\pi \pi^{(\ell)} / 2}^{E_{R}^{(\ell)}-E-\left(i \Gamma^{(\ell)} / 2\right)},}{},  \tag{IV.7}\\
& \Gamma_{\pi \pi}^{(\ell)}=\Gamma_{R}^{(\ell)}\left(\frac{q^{(\ell)}}{q_{R}^{(\ell)}}\right)^{2 \ell+1} \frac{2 E_{R}^{(\ell)}}{E_{R}^{(\ell)}+E} \frac{D_{\ell}^{R}}{D_{\ell}},  \tag{IV.8}\\
& \mathrm{E}=\pi \pi \mathrm{c} . \mathrm{m} \text {. energy, } \\
& \mathrm{q}_{\mathrm{R}}{ }^{(\ell)}=\mathrm{q} \text { evaluated at } \mathrm{E}=\mathrm{E}_{\mathrm{R}} \text {, } \\
& D_{\ell}^{R}=D_{\ell} \text { evaluated at } E=E_{R} \text {. }
\end{align*}
$$

a) For the $p$ wave,

$$
\begin{align*}
& \Gamma^{(1)}=\Gamma_{\pi \pi}^{(1)}+\Gamma_{\omega \pi} \\
& D_{1}=\frac{q^{2} r_{\rho}^{2}}{1+q^{2} r_{\rho}^{2}}  \tag{IV.9}\\
& \Gamma_{\omega \pi}=\left\{\begin{array}{cc}
0 \text { below } \omega \pi \text { threshold } \\
g_{\omega \rho \pi}^{2} & q_{\omega \pi}^{3}
\end{array} \text { above } \omega \pi\right. \text { threshold. }
\end{align*}
$$

There are eight parameters describing this wave which must be obtaine from the fit, namely $a_{0}(1), a_{1}(1), b_{0}(1), b_{1}(1), \Gamma_{R}(1), E_{R}(1)$ $\mathrm{g}_{\rho \psi(1)}$, and $\mathrm{r}_{\rho}$. It turns out that $\mathrm{g}_{\rho \omega \pi}$ is strongly correlated with $b_{0}(1)$ and $\mathrm{b}^{(1)}$, so $\mathrm{g}_{\rho \omega \pi}^{2}$ was fixed ${ }^{(1)} 0.6 \mathrm{GeV}^{-2}$ and only seven parameters allowed to vary.
b) For the d wave,

$$
\begin{align*}
& \Gamma^{(2)}=\Gamma_{\pi \pi}^{(2)}+\Gamma_{K K}, \\
& D_{2}=\frac{q^{4} r_{f}^{4}}{g+3 q^{2} r_{f}^{2}+q^{4} R_{f}^{4}},  \tag{IV.10}\\
& \Gamma_{K K}=\left\{\begin{array}{c}
0 \text { below } K \bar{K} \text { threshold } \\
g_{K K}\left(\frac{q_{K K}}{q_{K K}}\right)^{5} \text { above } K \bar{K} \text { threshold, }
\end{array}\right. \\
& q_{K K}=c \cdot m . \text { momentum of } K \bar{K} \text { system, } \\
& q_{K K}^{R}=q_{K K} \text { at } E=E_{R}^{2} .
\end{align*}
$$

[^4]In this case, since the overall fit is only up to $1.15 \mathrm{GeV}, \Gamma_{\mathrm{R}}{ }^{(2)}$, $\mathrm{E}_{\mathrm{R}}(2)$, and $\mathrm{r}_{\mathrm{f}}$ are kept fixed at values obtained from a fit to the mass distribution alone $\left(\Gamma_{\mathrm{R}}(2)=0.18 \mathrm{GeV}, \mathrm{E}_{\mathrm{R}}(2)=1.28 \mathrm{GeV}, \mathrm{r}_{\mathrm{f}}=3.0\right.$ $G e V^{-1}$ ), and $g_{K \bar{K}}^{2}$ is set at 0.04 . This value was chosen by comparing the numper of events in the $K \bar{K}$ channel to the number of events in the $\pi^{+} \pi^{-}$channel in the $f_{0}$ region for $\left|t^{\prime}\right|<01 \mathrm{GeV}^{2}$. At such low $t$ the $A_{2}$ contribution to $K \bar{K}$ in that mass region should be quite small. The fits are not particularly sensitive to the value of $\mathrm{g}_{\mathrm{KK}}^{2}$ as long as $\mathrm{g}^{2} \mathrm{KK}<\mathrm{a}_{0}(2.1$. The parameters left free are five: $\mathrm{a}_{0}^{(2)}, \mathrm{a}_{1}{ }^{(2)}, \mathrm{a}_{2}(2), \mathrm{b}_{0}(2)$, and $\mathrm{b}_{1}{ }^{(2)}$. *

The parametrization for the $p$ wave, $f$ wave, and $I=0 d$ wave has the expected threshold behavior for $\delta$ and is a reasonable approximation for $\eta$. In addition it is a good approximation to the expected behavior of an inelastic resonance plus inelastic background in the elastic channel if the pole is not close to a threshold. ${ }^{17}$ For certain values of $\phi^{(\ell)}$ the parametrization may yiolate unitarity at some energies. We found that setting $\phi^{(\ell)}=\delta\left(\frac{l}{B}\right.$ unitarity was never violated in the fitted region. We emphasize that we are not attempting to separate the amplitude into background plus a resonance, we are simply using what we consider a reasonable approximation to the dependence of $\delta$ and $\eta$ on the energy in order to extract them from the data. No particular significance should be attached to the values obtained for the parameters themselves.

## B. $I=2 \mathrm{~s}$ and d waves

The fits are not very sensitive to the $I=2$ amplitudes $2_{2}$ which are known to be fairly small in the fitted region. We set $\eta_{0}^{2}=\eta_{2}=1$ throughout. For the I = 2 s wave we take:

$$
\delta_{0}^{2}=q \sum_{n=0}^{5} C_{n} q^{2 n}
$$

where the various coefficients we re obtained by fitting known data. ${ }^{12}$
The $\delta_{2}^{2}$ phase is poorly known at present but is believed to be negative. 13 For the $I=2 d$ wave we set

$$
\delta_{2}^{2}=a q^{5}
$$

where $a=-100 \mathrm{GeV}^{-5}$. This reproduces reasonably well the values given by Baton et al. 9

[^5]
## C. $I=0$ s wave

The $I=0$ s-wave amplitude is parametrized in terms of a $2 \times 2$ M-matrix; ${ }^{14}$ we assume that only the $\pi \pi$ and $K \bar{K}$ channels are important. As noted earlier data from other channels indicate that this is a reasonable assumption. ${ }^{3}$

Set

$$
\mathrm{T}_{0}^{0}=\left(\begin{array}{cc}
\mathrm{T}_{11} & \mathrm{~T}_{12} \\
\mathrm{~T}_{12} & \mathrm{~T}_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& \mathrm{T}_{11}=\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-} \text {s-wave amplitude }, \\
& \mathrm{T}_{12}=\pi^{+} \pi^{-} \rightarrow \mathrm{K} \overline{\mathrm{~K}} \quad \text { s-wave amplitude }, \\
& \mathrm{T}_{22}=\mathrm{K} \overline{\mathrm{~K}} \rightarrow \mathrm{~K} \overline{\mathrm{~K}} \quad \text { s-wave amplitude } .
\end{aligned}
$$

These amplitudes are normalized so that

$$
\sigma_{i j}=4 \pi \lambda^{2}\left|\mathrm{~T}_{\mathrm{ij}}\right|^{2}
$$

In terms of the M-matrix,

$$
\begin{aligned}
T & =k^{1 / 2}(M-i k)^{-1} k^{1 / 2} \\
k & =\text { diagonal matrix of momenta. }
\end{aligned}
$$

Explicitly, $T$ is given by

$$
T=\frac{1}{D}\left[\begin{array}{cc}
k_{1}\left(M_{22}-i k_{2}\right) & -\sqrt{k_{1} k_{2}} M_{12}  \tag{IV.11}\\
-\sqrt{k_{1} k_{2}} M_{12} & k_{2}\left(M_{11}-i k_{1}\right)
\end{array}\right]
$$

where

$$
\begin{aligned}
& D=\left(M_{11}-i k_{1}\right)\left(M_{22}-i k_{2}\right)-M_{12}^{2} \\
& k_{1}=\pi \text { momentum in } \pi \pi \text { c.m. system } \\
& k_{2}=K \text { momentum in } K \bar{K} \text { c.m. system. }
\end{aligned}
$$



Table I. Parametrization of partial waves.

| Partial wave | Parametrization fr | Number of free parameters |
| :---: | :---: | :---: |
| $\mathrm{I}=0 \mathrm{~s}$ wave | $2 \times 2$ M-matrix coupling $\pi \pi$ and $K \bar{K}$ channels | 7 |
| $\mathrm{I}=1 \mathrm{p}$ wave ${ }^{\text {a }}$. | $\rho$ resonance + background, both become inelastic at 900 MeV | 7. |
| $\mathrm{I}=0 \mathrm{~d}$ wave ${ }^{\text {a }}$ | $f_{0}$ resonance coupled to $\pi \pi$ and $K \bar{K}$ + background which becomes inelastic at 900 MeV | 5 |
| $\mathrm{I}=1 \mathrm{f}$ wave ${ }^{\text {a }}$ | Elastic g resonance + background which becomes inelastic at 900 MeV | $\mathrm{V} \quad 5$ |
| $\mathrm{I}=2 \mathrm{~s}$ wave | $\eta_{2}^{0}=1, \delta_{2}^{0}=q \sum_{n=0}^{5} c_{n} q^{2 n}$ | 0 |
| I=2 d wave | $\eta_{2}^{2}=1, \delta_{2}^{2}=a q^{5}$ | 0 |

${ }^{\text {a }}$ Parametrization for this wave is similar to one used by Roper, Wright, and Feld to calculate $\pi N$ phase shifts. 11

This representation-provided $M$ is real and symmetric-with the prescription $k_{2} \rightarrow i\left|k_{2}\right|$ below $K \bar{K}$ threshold satisfies the requirements of analyticity and unitarity under the assumption that we can neglect channels other than $\pi \pi$ and $K \bar{K}$. The $M$-matrix elements are taken of the form

$$
\begin{equation*}
M_{i j}=M_{i j}^{0}+M_{i j}^{1}\left(s-s_{0}\right) \tag{IV.12}
\end{equation*}
$$

where $s=m_{\pi \pi}^{2}$ and $s=s$ at $K \bar{K}$ threshold. It is evident that the results are independent of the choice of $s$. A reasonable fit can be obtained with a linear expansion of $M_{i}{ }^{0}$, but $\chi^{2}$ improves substantially if one more term is added to either $\mathrm{M}_{12}$ or $\mathrm{M}_{22}$. Adding more terms only increases the correlations between parameters without changing $\chi^{2}$ significantly. So we use a line ar expansion in $\mathrm{M}_{11}$ and $\mathrm{M}_{22}$ and a quadratic one in $\mathrm{M}_{12}$. This gives seven free parameters for the $I=0 \mathrm{~s}$-wave amplitude. From the data in the physical region (for which we have $\pm 8-\mathrm{MeV}$ resolution, FWHM), we can infer that the s-wave amplitude should be almost zero within 10 MeV of $\mathrm{K} \overline{\mathrm{K}}$ threshold, and one could force that constraint on the fit setting $\mathrm{M}_{22}^{0}=0$.

## V. SOLUTIONS

We have 24 parameters to be determined from the data. The parametrization is summarized in Table I. We fit the extrapolated moments up to $\mathrm{Y}_{6}^{0}$ and the cross sections ( $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \rightarrow \mathrm{K} \overline{\mathrm{K}}$ ) between 550 and 1150 MeV with a total of 171 points. * We did a large number of fits starting from different initial values and varying slightly the parametrization for each of the waves. We must emphasize that our parametrization is by no means unique and other parametrizations might serve equally well. The $\chi^{2}$ for the best fits range from 150 to 160 , which for 147 degrees of freedom corresponds to confidence levels between $40 \%$ and $20 \%$. In Table II we list some properties of the two fits with similar $\chi^{2}$ which differed the most. The curves shown on Fig. 2 are for case 1; the parameters and error matrix for this case are given in Tables III and IV.

Overall the fit seems reasonably good but there are some noticeable discrepancies. Between 550 and 650 MeV , predicted $\mathrm{Y}_{1}{ }^{0}$ is systematically high, $\mathrm{Y}_{2}{ }^{0}$ systematically low, and $\mathrm{Y}_{4}{ }^{0}$ is not as negative as the data. It might be possible to improve the fit if the $f$ wave is more negative in that region than the present parametrization permits. In the region 760 to 800 MeV the $\pi \pi$ cross section

[^6]Table II. Properties of two different fits.

| Case | Description | Degrees of freedom | $x^{2}$ | $S^{*}$ pole | $\epsilon$ pole |
| :---: | :---: | :---: | :---: | :---: | :---: |

Background phase for $\ell \neq 0$ waves

$$
\begin{array}{llrr}
\text { given by: } \delta_{B}^{(\ell)}=q^{2 \ell+1} \sum_{n=0}^{N} a_{n}^{(\ell)} q^{n} & & 980 \pm 6 & 600 \pm 100  \tag{147}\\
\\
\text { A-matrix elements: } & 147 & 152.2 & -i(37 \pm 8)
\end{array}-i(250 \pm 70)
$$

$$
M_{i j}=M_{i j}^{0}+M_{i j}^{1}\left(s-s_{0}\right)+M_{i j}^{2}\left(s-s_{0}\right)^{2}
$$

See text for complete description

| Background phase for $\ell \neq 0$ waves |  |  |  |
| :--- | :--- | :--- | ---: |
| given by: $\delta_{B}^{(\ell)}=q D_{\ell}(q) \sum_{n=0}^{N} a_{n}^{(\ell)} q^{n}$ | 147 | $975 \pm 6$ | $650 \pm 70$ |
| $M$-matrix elements: | 153.6 | $-i(39 \pm 8)$ | $-(150 \pm 50)$ |
| $M_{i j}=M_{i j}^{0}+M_{i j}^{1}\left(E-E_{0}\right)+M_{i j}^{2}\left(E-E_{0}\right)^{3}$ | II sheet | IV sheet |  |

Otherwise same as case 1.

Table III. Parameters obtained from fit (case 1). ${ }^{\text {a }}$

$$
\begin{aligned}
& M_{11}^{0}=-3.3 \pm 2.2 \quad M_{11}^{1}=-0.45 \pm 0.33 \\
& \mathrm{I}=0 \\
& \text { s wave } \\
& \mathrm{I}=1 \\
& \text { p wave } \\
& \mathrm{a}_{0}^{(1)}=0.48 \pm 0.25 \\
& a_{1}^{(1)}=-0.022 \pm 0.064 \\
& b_{0}^{(1)}=-0.142 \pm 3.0 \\
& b_{1}^{(1)}=-0.215 \pm 0.7 \\
& a_{0}^{(2)}=-0.14 \pm 0.09 \\
& a_{1}^{(2)}=0.078 \pm 0.05 \quad a_{2}^{(2)}=-0.01 .0 \pm 0.008 \\
& \mathrm{I}=0 \\
& \mathrm{E}_{\mathrm{R}}^{(1)}=0.78 \pm 0.004 \mathrm{GeV} \quad \Gamma_{\mathrm{R}}^{(1)}=0.17 \pm 0.01 \mathrm{GeV} \quad \mathrm{r}_{\mathrm{p}}=1.1 \pm 0.9 \mathrm{GeV}^{-1} \\
& \text { d wave } \\
& {\underset{0}{(2)}}_{0}^{(2)}=18.1 \pm 4.8 \\
& b_{1}^{(2)}=-4.5 \quad \pm 1.2 \\
& \mathrm{I}=1 \\
& a_{0}^{(3)}=-0.011 \pm 0.006 \\
& a_{2}^{(3)}=0.0057 \pm 0.003 \quad a_{3}^{(3)}=-0.0007 \pm 0.0004 \\
& \text { f wave } \\
& \mathrm{b}_{0}^{(3)}=2.45 \pm 0.27 \\
& \mathrm{~b}_{1}^{(2)}=-5.53 \pm 1.83 \\
& \mathrm{I}=2 \\
& a=-100 \mathrm{GeV}^{-5} \\
& \text { d wave } \\
& \text { (fixed) } \\
& \mathrm{I}=2 \quad \mathrm{c}_{0} \quad=-2.2 \times 10^{-2} \\
& c_{1}=-4.17 \pm 10^{-2} \\
& c_{2}=1.48 \times 10^{-2} \\
& c_{3}=-2.49 \times 10^{-3} \\
& \text { s wave } \\
& c_{4}=1.76 \times 10^{-4} \\
& c_{5}=-4.24 \times 10^{-6} \\
& \text { (fixed) }
\end{aligned}
$$

[^7]Table IV. Normalized error matrix $\left(E_{i j}=\frac{\left\langle\delta x_{i} \delta x_{j}\right\rangle}{\left.\sqrt{\left\langle\delta x_{i}\right.}{ }^{2}\right\rangle\left\langle\delta x_{j}{ }^{2}\right\rangle}\right)$

|  | $\mathrm{M}_{11}^{0}$ | $\mathrm{M}_{12}^{0}$ | $M_{11}^{1}$ | $M_{12}^{1}$ | $\mathrm{M}_{22}^{1}$ | $\mathrm{M}_{12}^{2}$ | $\mathrm{M}_{22}$ | $a_{0}^{(1)}$ | $a_{1}^{(1)}$ | $\mathrm{E}_{\mathrm{R}}^{(1)}$ | $\Gamma_{\mathrm{R}}{ }^{(1)}$ |  | ${ }^{\text {a }}$ (2) | $\mathrm{a}_{1}^{(2)}$ | $a_{2}^{(2)}$ | $a_{0}^{(3)}$ | $a_{1}^{(3)}$ | $\mathrm{b}_{0}^{(1)}$ | $b_{1}^{(1)}$ | $\mathrm{b}_{0}^{(2)}$ | $\mathrm{b}_{1}^{(2)}$ | $a_{2}^{(3)}$ | $b_{0}{ }^{(3)}$ | $\mathrm{b}_{1}^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{11}^{0}$ | 1.00 | -. 85 | . 1.00 | -. 99 | . 95 | . 93 | -. 19 | . 06 | -. 04 | . 06 | . 16 | -. 05 | -. 14 | . 13 | -. 12 | -. 04 | 03 | - -.04 | . 05 | -. 02 | . 10 | -. 09 | . 07 | $\therefore 15$ |
| $\mathrm{M}_{12}^{0}$ | -. 85 | 1:00 | -. 84 | . 87 | -. 91 | -. 81 | -. 06 | -. 08 | . 07 | -. 05 | -. 08 | .03 | . 16 | -. 17 | . 17 | -. 02 | . 04 | $\therefore .02$ | . 02 | -. 05 | -. 04 | . 04 | 04 | -. 00 |
| $M_{11}^{1}$ | 1.00 | -. 84 | 1.00 | -1.00* | . 95 | . 92 | -. 17 | . 07 | -. 04 | . 06 | . 16 | -. 05 | -. 14. | . 14 | -. 12 | -. 05 | . 03 | -. 03 | . 05 | -. 02 | . 10 | -. 10 | . 07 | -. 15 |
| $\mathrm{M}_{12}^{1}$ | -. 99 | . 87 | -1.00 | 1.00 | -. 97 | -. 92 | . 17 | -. 07 | . 05 | -. 05 | -. 15 | . 04 | . 15 | -. 15 | . 14 | . 04 | -. 03 | . 02 | -. 03 | 01 | -. 09 | . 09 | -. 06 | 13 |
| $\mathrm{M}^{1}{ }_{22}$ | . 95 | -. 91. | . 95 | -. 97 | 1.00 | . 89 | -. 17 | 07 | -. 06 | . 04 | .11 | -. 01 | -. 17 | . 17 | -. 17 | -. 02 | . 01 | . 01 | -. 01 | -. 01 | . 06 | -. 05 | . 01 | -. 06 |
| $\mathrm{M}_{12}^{2}$ | . 93 | -. 81 | . 92 | -. 92 | . 89 | 1.00 | -. 28 | . 05 | -. 04 | . 02 | . 05 | -. 02 | -. 09 | . 09 | -. 09 | -. 05 | . 04 | -. 01 | . 02 | -. 03 | . 08 | -. 08 | . 04 | -. 11 |
| $\mathrm{M}_{22}^{0}$ | -. 19 | -. 06 | -. 17 | . 17 | -. 17 | -. 28 | 1.00 | . 08 | -. 08 | . 03 | -. 03 | -. 07 | -. 07 | . 09 | -. 11 | - 03 | -. 04 | . 05 | -. 05 | . 05 | 07 | -. 07 | -. 02 | . 06 |
| ab ${ }^{(1)}$ | . 06 | -. 08 | . 07 | -. 07 | . 07 | . 05 | . 08 | 1.00 | -. 98 | . 75 | 11 | -. 66 | -. 26 | . 25 | -. 24 | 13 | -. 15 | . 33 | -. 24 | : 16 | 27 | -. 26 | -. 30 | . 28 |
| $a_{1}^{(1)}$ | -. 04 | . 07 | -. 04 | . 05 | -. 06 | -. 04 | -. 08 | -. 98 | 1.00 | -. 64 | . 06 | . 52 | . 27 | -. 27 | . 27 | -. 11 | . 13 | -. 39 | . 31 | -. 14 | -. 20 | . 19 | . 28 | -. 25 |
| $\mathrm{E}_{\mathrm{R}}^{(1)}$ | . 06 | $\bigcirc$ | . 06 | -. 05 | . 04 | . 02 | . 03 | . 75 | -. 64 | 1.00 | . 58 | -. 56 | -. 19 | . 17 | -. 15 | . 12 | -. 14 | . 03 | . 03 | . 14 | . 28 | -. 28 | -. 19 | . 19. |
| $\Gamma_{R}^{(1)}$ | . 16 | -. 08 | . 16 | -. 15 | . 11 | . 05 | -. 03 | . 11 | . 06 | . 58 | 1.00 | -. 34 | -. 15 | . 11 | -. 07 | . 06 | -. 07 | -. 19 | 20 | 07 | . 28 | -. 28 | -. 09 | . 10 |
| ${ }^{\mathbf{r}}{ }_{(2)}$ | -. 05 | . 03 | -. 05 | . 04 | -. 01 | -. 02 | -. 07 | -. 66 | . 52 | -. 56 | -. 34 | 1.00 | -. 01 | . 02 | -. 04 | -. 17 | . 19 | - 20 | . 11 | -. 20 | -. 44 | . 43 | . 41 | -. 39 |
| $\mathrm{a}_{0}{ }^{(2)}$ | -. 14 | . 16 | -. 14 | . 15 | -. 17 | -. 09 | -. 07 | -. 26 | 27 | -. 19 | -15 | -. 01 | 1.00 | -. 99 | . 98 | -. 16 | . 16 | -. 33 | . 33 | -. 17 | -. 19 | . 19 | . 10 | -. 14 |
| $a a_{1}^{(2)}$ | 13 | -. 17 | . 14 | -. 15 | .17 | . 09 | . 09 | . 25 | -. 27 | .17 | .11 | . 02 | -. 99 | 1.00 | -. 99 | . 15 | -. 16 | . 37 | -. 37 | . 16 | 19 | -. 19 | -. 11 | 17 |
| $a_{2}^{(2)}$ | -. 12 | ' 17 | -. 12 | 14 | -. 17 | -. 09 | -. 11 | -. 24 | . 27 | -. 15 | -. 07 | -. 04 | . 98 | -. 99 | 1.00 | -. 14 | 15 | -. 40 | . 41 | -. 16 | -. 18 | . 19 | .13. | -. 20 |
| $a_{0}^{(3)}$ | -. 04 | -. 02 | -. 05 | 04 | -. 02 | -. 05 | . 03 | . 13 | - 11 | . 12 | . 06 | -. 17 | -. 16 | . 15 | -. 14 | 1.00 | -1.00 | . 12 | - 11 | . 99 | . 08 | -. 07 | - 15 | . 13 |
| $a_{1}^{(3)}$ | . 03 | . 04 | . 03 | -. 03 | . 01 | . 04 | -. 04 | -. 15 | . 13 | -. 14 | -. 07 | . 19 | .16 | -:16 | 1.5 | -1.00 | 1.00 | -. 13 | . 11 | $-1.00$ | -. 09 | . 08 | . 19 | -. 16 |
| $b_{0}^{(1)}$ | -. 04 | -. 02 | -. 03 | . 02 | . 01 | -. 01 | . 05 | . 33 | -. $39^{\text { }}$ | . 03 | -:19 | -. 20 | -. 33 | . 37 | -. 40 | 12 | -. 13 | 1.00 | -. 99 | . 13 | . 07 | -. 07 | -. 17 | . 29 |
| $b_{1}^{(1)}$ | 05 | . 02 | . 05 | -. 03 | -. 01 | . 02 | -. 05 | -. 24 | . 31 | . 03 | . 20 | . 11 | . 33 | -. 37 | . 41 | -. 11 | 11 | -. 99 | 1.00 | -. 12 | -. 03 | . 03 | . 14 | -. 28 |
| $\mathrm{b}_{0}^{(2)}$ | -. 0 | . 05 | -. 02 | . 01 | . 01 | -. 03 | . 05 | . 16 | -: 14 | . 14 | . 07 | -. 20 | -. 17 | . 16 | -. 16 | . 99 | -1.00 | . 13 | -. 12 | 1.00 | 10 | -. 09 | -. 21 | . 18 |
| $b_{1}^{(2)}$ | . 10 | -. 04 | . 10 | -. 09 | . 06 | . 08 | . 07 | . 27 | -. 20 | 28 | . 28 | -. 44 | -. 19 | . 19 | -. 18 | . 09 | -. 09 | . 07 | -. 03 | . 10 | 1.00 | -1.00 | -. 27 | . 12 |
| $a_{2}^{(3)}$ | -. 09 | $\cdot .04$ | -. 10 | . 09 | -. 05 | -. 08 | -. 07 | -. 26 | . 19 | -. 28 | -. 28 | . 43 | . 19 | -. 19 | - . 19 | -. 07 | . 08 | -. 07 | . 03 | -. 09. | -1.00 | 1.00 | . 26 | -. 11 |
| $\mathrm{b}_{0}^{(3)}$ | . 07 | 04 | . 07 | -. 06 | 01 | . 04 | -. 02 | -. 30 | . 28 | -. 19 | -. 09 | 41 | . 10 | -. 11 | . 13 | -. 15 | . 19 | -. 17 | . 14 | -. 21 . | -:27 | 26 | 1.00 | -. 90 |
| $b_{1}^{(3)}$ | -. 15 | -. 00 | -. 15 | . 13 | -. 06 | -. 11 | . 06 | . 28 | -. 25 | . 19. | , 10 | -. 39 | -. 14 | . 17 | -. 20 | ${ }^{6} .13$ | -. 16 | . 29 | -. 28 | $\therefore 18$ | . 12 | -. 11 | $-.90$ | 1.00 |

and $Y_{1}{ }^{0}$ have a dip and $Y_{2}{ }^{0}$ a spike not predicted by the fit. If we believe that in that region only $s$ and $p$ waves are important, the $n$ the value for extrapolated $\mathrm{Y}_{2}{ }^{0}$ is unphysical. The contribution to $\chi^{2}$ of that region is 40 (for 9 points) so it was excluded from the final fits. Since this effect occurs very close to the $\omega$ mass ( 783 MeV ), it is certainly possible that it is associated with $p-\omega$ interference. If this is the case it is some what surprising that we observe the effect on the extrapolated data, since the $\omega$ cannot be produced by $\pi$ exchange (at least not strongly); thus, it is part of the background that should disappear when we extrapolate. On the contrary, the extrapolation enhances the effect. A similar phenomenon was observed in the extrapolation of $\pi \pi$ cross section by Coltonetal. 16 for the reaction $\pi^{+}{ }_{p \rightarrow \pi^{+}} \pi^{-} \Delta^{+7}$ at $8 \mathrm{GeV} / \mathrm{c}$. To see if this enhancement was due simply to the conditions of the extrapolation [i.e., linear and including events up to $\left|t_{p} \Delta\right|=0.4(\mathrm{GeV} / \mathrm{c})^{2}$ ] we performed quadratic and linear extrapolations using different cutoffs for $t$ in that region. The quadratic extrapolations tend to enhance the effect even more; choosing smaller cutoffs only increased errors without changing results significantly. An explanation for this effect, which is consistent with data for reaction $\pi{ }^{+} p \rightarrow \omega \Delta^{++}$at 7.1 $\mathrm{GeV} / \mathrm{c}$, is that at small $t$ the $\omega$ is produced mainly by $B$ exchange with zero helicity. In this case $\rho-\omega$ interference is most pronounced at small $t$, distorting results of extrapolation to the $\pi$ pole.

In order to fit the moments $\mathrm{Y}_{3}{ }^{0}$ to $\mathrm{Y}_{6}{ }^{0}$ above 900 MeV , we needed all waves (excluding $\ell=0$ and $I=2$ amplitudes) to be come inelastic at the $\omega \pi$ threshold. * If the $\omega$ had zero width this threshold would be at 920 MeV ; the fits improved some what if we allowed the threshold to startat 900 MeV instead. We also found that we could not fit very well the moments $\mathrm{Y}_{4}{ }^{0}$ to $\mathrm{Y}_{6}^{0}$ with the parametrization for $\eta_{3}{ }^{1}$ described earlier [Eq.IV.5)]. In addition, by $1.0 \mathrm{GeV}, \eta_{3}{ }^{1}$ was too small to be consistent with data in other channels (predicting an order-of-magnitude more events than observed). A better fit is obtained if we take instead:
$\eta_{B}{ }^{(3)}$

above $\omega \pi$ threshold,

B
We still obtain $\eta_{3}{ }^{1}$ inconsistent with other channels and in addition the above parametrization does not have the correct threshold behavior. This is an undesirable feature of our fit but cannot be avoided. A likely explanation is that the $f$ wave is being used to fit non- $\pi$ exchange background in that region and is not the true $\pi \pi f$ wave amplitude. If the extrapolation for some reason (either background or the effect of using linear instead of a higher-order polynomial extrapolation) gives values for the moments above 900 MeV

[^8]that are higher than the true physical moments, then the easiest way to correct for that failure is to introduce a purely imaginary f-wave amplitude, since such a term would give a positive contribution to all the moments. We must point out though that results obtained for the $p$ and $s$ wave are little affected by this complication. * As long as we believe that the rapidly varying features in our data are due to the behavior of the se waves ( $s$ and $p$ ), while the other waves are fairly smooth, the values obtained for $s$ and $p$ waves cannot change by much regardless of how the other waves are parametrized. This indeed was observed for the different fits attempted. We therefore feel confident that the general features of the $I=0 \mathrm{~s}$ wave and $I=1 \mathrm{p}$ wave between 550 and 1150 MeV have been well determined by our fit. $\dagger$

With the parameters obtained from our fit we can compute the phases and inelasticities. These are tabulated in Table V and shown in Figs. 5 and 6 for case 1 (see Table II). We point out that the given errors are computed by standard propagation of error and reflect only the statistical errors; they do not reflect the inherent uncertainties in performing an extrapolation. They should be considered only as an indication of the minimum error in our computed values. How accurate our results really are can only be ascertained by comparison with results of an experiment at different energy with comparable statistics.

For the p-wave phase shift $\left(\delta 1_{1}^{1}\right)$ we obtain the well-known Breit-Wigner shape (with $\delta_{1}{ }^{1}=90^{\circ}$ at $0.772 \mathrm{GeV}, \delta_{1}{ }^{1}=45^{\circ}$ at 0.703 GeV , and $\delta_{1}^{1}=135^{\circ}$ at 0.863 GeV ), the inelasticity ( $\eta_{1}{ }^{1}$ ) is close to unity within errors, although by 1.13 GeV it could be as small as 0.8 . The $I=0 \mathrm{~d}$-wave phase shift $\left(\delta_{2}\right)$ around 1 GeV is larger than what we would expect for the $f_{0}$ meson alone. This wave also seems to be quite inelastic ( $\eta_{2}{ }^{0} \approx 0.80$ at 1.070 GeV ). This result has to be viewed with caution because it depends strongly on what is assumed for the f-wave inelasticity, and non- $\pi$ exchange background may have a substantial effect on these waves. The effect of the $I=2$ d wave $\left(\delta_{2}^{2}\right)$ is small; we can obtain a good fit by setting $\delta_{2}^{2}=0$ throughout. The f-wave phase shift is small and negative under the $\rho$ and becomes positive past the $\omega \pi$ threshold. As indicated before, the obtained inelasticity is too small to be compatible with the data in the inelastic channels; we believe that it is simply acting as a parametrization of background (or a failure of the extrapolation).

[^9]Table V. Phases and inelasticities (case 1).

| Mass (GeV) | $\delta_{0}^{0}$ | $\eta_{0}^{0}$ | $\delta_{1}^{1}$ | $\eta_{1}^{1}$ | $\delta_{2}^{0}$ | $\eta_{2}^{0}$ | $\delta_{3}^{1}$ | $\eta_{3}^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.55 | $44 \pm 2$ |  | $9.4 \pm 0.7$ |  | $0 \pm 0.5$ |  | $0 \pm 0.1$ |  |
| 0.625 | $57 \pm 3$ |  | $19 \pm 0.8$ |  | $0 \pm 0.5$ |  | $-0.4 \pm 0.2$ |  |
| 0.665 | $64 \pm 4$ |  | $30 \pm 1$ |  | $0 \pm 0.5$ |  | $-0.5 \pm 0.2$ |  |
| 0.690 | $68 \pm 4$ |  | $39 \pm 1$ |  | $0 \pm 0.5$ |  | $-0.6 \pm 0.3$ |  |
| 0.71 | $71 \pm 4$ |  | $48 \pm 1$ |  | $0 \pm 0.5$ |  | $-0.8 \pm 0.4$ |  |
| 0.73 | $74 \pm 4$ |  | $60 \pm 1.5$ |  | $0 \pm 0.5$ |  | $-0.8 \pm 0.4$ |  |
| 0.745 | $76 \pm 4$ |  | $71 \pm 1.5$ |  | $0 \pm 0.5$ |  | $-0.9 \pm 0.4$ |  |
| 0.755 | $77 \pm 4$ |  | $78 \pm 1.6$ |  | $0 \pm 0.5$ |  | $-0.9 \pm 0.4$ |  |
| 0.765 | $78 \pm 4$ |  | $85 \pm 1.6$ |  | $0 \pm 0.5$ |  | $-0.9 \pm 0.4$ |  |
| 0.775 | $79 \pm 4$ |  | $92 \pm 1.6$ |  | $0 \pm 0.5$ |  | $-1.0 \pm 0.4$ |  |
| 0.785 | $80 \pm 4$ |  | $99 \pm 1.5$ |  | $0 \pm 0.5$ |  | $-1.0 \pm 0.4$ |  |
| 0.795 | $81 \pm 4$ |  | $105 \pm 1.5$ |  | $0 \pm 0.5$ |  | $-1.0 \pm 0.4$ |  |
| 0.810 | $82 \pm 4$ |  | $114 \pm 1.4$ |  | $1 \pm 1$ |  | $-1.1 \pm 0.5$ |  |
| 0.83 | $84 \pm 4$ |  | $123 \pm 1.2$ |  | $1.5 \pm 0.9$ |  | $-1.1 \pm 0.5$ |  |
| 0.85 | $86 \pm 3.5$ |  | $130 \pm 1.1$ |  | $2.0 \pm 1$ |  | $-1.1 \pm 0.5$ |  |
| 0.87 | $88 \pm 4$ |  | $136 \pm 1$ |  | $2.7 \pm 1$ |  | $-1.1 \pm 0.5$ |  |
| 0.89 | $91 \pm 4$ |  | $141 \pm 0.8$ |  | $3.5 \pm 1$ |  | $-1.1 \pm 0.5$ |  |
| 0.91 | $96 \pm 4$ |  | $145 \pm 0.8$ |  | $4.4 \pm 1$ |  | $-1.0 \pm 0.5$ | $0.96 \pm 0.02$ |
| 0.935 | $107 \pm 5$ |  | $149 \pm 0.9$ | $0.99 \pm 0.01$ | $5.8 \pm 1.2$ | $0.99 \pm 0.01$ | $-0.8 \pm 0.5$ | $0.85 \pm 0.05$ |
| 0.965 | $134 \pm 5.5$ |  | $153 \pm 1$ | $0.99 \pm 0.01$ | $7.8 \pm 1.4$ | $0.99 \pm 0.01$ | $-0.5 \pm 0.6$ | $0.78 \pm 0.05$ |

(cont.)

Table V. (cont.)

| Mass <br> $(\mathrm{GeV})$ | $\delta_{0}^{0}$ | $\eta_{0}^{0}$ | $\delta_{1}^{1}$ | $\eta_{1}^{1}$ | $\delta_{2}^{0}$ | $\eta_{2}^{0}$ | $\delta_{3}^{1}$ | $\eta_{3}^{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | $189 \pm 9$ | $0.62 \pm 0.08$ | $156 \pm 1.2$ | $0.98 \pm 0.01$ | $11 \pm 2$ | $0.95 \pm 0.03$ | $0.1 \pm 0.8$ | $0.74 \pm 0.05$ |
| 1.04 | $202 \pm 9$ | $0.54 \pm 0.04$ | $158 \pm 1.6$ | $0.96 \pm 0.03$ | $16 \pm 2.5$ | $0.88 \pm 0.06$ | $1.3 \pm 0.7$ | $0.72 \pm 0.05$ |
| 1.075 | $202 \pm 8$ | $0.58 \pm 0.04$ | $158 \pm 2.5$ | $0.94 \pm 0.05$ | $22 \pm 4$ | $0.85 \pm 0.08$ | $2.3 \pm 0.8$ | $0.72 \pm 0.05$ |
| 1.105 | $202 \pm 8$ | $0.63 \pm 0.04$ | $157 \pm 3.4$ | $0.92 \pm 0.06$ | $27 \pm 4$ | $0.89 \pm 0.06$ | $3.1 \pm 1.1$ | $0.74 \pm 0.06$ |
| 1.135 | $200 \pm 8$ | $0.69 \pm 0.04$ | $155 \pm 4$ | $0.92 \pm 0.06$ | $32 \pm 5$ | $0.96 \pm 0.04$ | $3.9 \pm 1.8$ | $0.76 \pm 0.07$ |
| 1.150 | $199 \pm 7$ | $0.70 \pm 0.04$ | $153 \pm 6$ | $0.92 \pm 0.07$ | $36 \pm 7$ | $0.96 \pm 0.04$ | $4.5 \pm 2.0$ | $0.78 \pm 0.1$ |



Fig. 5. Phases and inelasticities of $I=0 \mathrm{~s}$ wave and $\mathrm{I}=1 \mathrm{p}$ wave. The horizontal lines give size of bins used in fit. The vertical lines indicate the calculated errors at a given mass. These errors are purely statistical and do not reflect possible systematic effects introduced by the extrapolation procedure. The plotted points correspond to the elastic "down" and "up" solutions of Baton, Laurens, and Reignier. 23 The open circles correspond to the recent results of Baillon et al. 24


$\stackrel{\vdots}{\underset{\sim}{\omega}}$


$\ldots$
©
e
$\infty$
C.
\%.

The most interesting results are the phase shift and inelasticity of the $I=0 \mathrm{~s}$ wave. The phase rises from $45^{\circ}$ at 550 MeV to $75^{\circ}$ at 740 MeV , then increases slowly until 950 MeV , crossing $90^{\circ}$ around 900 MeV . The phase below 850 MeV is in very good agreement with the one favored by Morgan and Shaw ${ }^{17}$ (referred to as "between-down" solution). Above 900 MeV it increases rapidly, reaching $180^{\circ}$ close to the $K \bar{K}$ threshold. Past the $K \bar{K}$ threshold the inelasticity reaches a minimum very rapidly (within 20 MeV ), and then both phase and inelasticity vary rather slowly. At this point we should remark that the structure in the $\pi \pi$ data requires the maximum contribution of the $s$ wave to the $K \bar{K}$ cross section to occur within 30 MeV of the $\mathrm{K} \overline{\mathrm{K}}$ threshold. This is consistent with our $K^{+} K^{-}$cross section ( $\left|t_{p}^{1}\right|<0.1 \mathrm{Ge}^{2}$ ) and the extrapolated cross section obtained by Hyams et al. ${ }^{18}$ (in particular, the set " $\mathrm{t} \sigma^{\prime \prime}=\mathrm{bt}$ and " $\mathrm{t} \sigma^{\prime \prime}=\mathrm{bt}+\mathrm{ct}{ }^{2}$ ), butis not consistent with the $\mathrm{K}^{0} \mathrm{~K}^{0}$ cross section of Beuschet al., 19 which reaches the maximum at 1.07 GeV . Part of the discrepancy might be from the fact that the Beusch et al. data are for $|t|<0.5 \mathrm{GeV}$, from differences in background for $\mathrm{K}^{+} \mathrm{K}^{-}$and $\mathrm{K}^{0} \mathrm{~K}^{0}$, and from the mass difference between $K^{+}$and $K^{0}$. This question deserves more careful study.

We can draw some interesting conclusions using our parametrization of the $s$-wave amplitude. We find that the amplitude $T$ has two poles on the second Riemann sheet as a function of complex energy. One ( $\mathrm{S}^{*}$ ) is very close to $\mathrm{K} \overline{\mathrm{K}}$ threshold at $980 \pm 6$ - $\mathrm{i}(37 \pm 8)$. The existence of a pole in this region was suggested from a Kmatrix fit to the $K \bar{K}$ cross section by Hoang. ${ }^{20}$ The other $(\epsilon)$ is quite far from the physical region, at $600 \pm 100-\mathrm{i}(250 \pm 70)$. Strictly speaking, we should say that there are four poles, since each one has a corresponding complex conjugate pole. Additional poles are also present, but these are quite far from the fitted region and no particular significance should be attached to them.

To check how dependent the se results are on parametrization, we redid the fits with a somewhat different one (case 2 in Table II). In this case we added barrier factors to the $\ell \neq 0$ waves, i.e.:

$$
\delta_{B}^{(\ell)}=q D_{\ell}(q) \sum_{n=0}^{N} a_{n} q^{n},
$$

where the $\mathrm{D}_{\ell}(\mathrm{q})$ functions are defined in section IV [Eqs. (IV.9) and (IV.10)] and replaces $\mathrm{q}^{2 \ell}$ in Eq. (IV.6). For the M-matrix we took instead of Eq. (IV.12),

$$
M_{i j}=M_{i j}^{0}+M_{i j}^{1}\left(E-E_{0}\right)
$$

where $E=c . m$. energy, $E_{0}=E$ at $K \bar{K}$ threshhold. For $M_{12}$ we added an extra term $M_{1}^{2}\left(E-E_{0}\right)^{3}$. The best $\chi^{2}$ with this parametrization was essentially the same (153.6 as compared with 152.2
for 147 degrees of freedom). The phases and ine lasticities changed within the computed errors. We again obtain an $S^{*}$ pole on the second Riemann sheet, at $975 \pm 6-\mathrm{i}(39 \pm 8)$, but the $\epsilon$ pole is now on the fourth Riemann sheet at $650 \pm 70-\mathrm{i}(150 \pm 50) . \dagger$ Note that for both of the se poles a conventional Breit-Wigner parametrization will not be adequate: the $\epsilon$ is too far away from the real axis, and the $S^{*}$ is too close to the $K \bar{K}$ threshold. We also computed the residues for the se poles, which turn out to be complex. Finally, we can compute the $\pi \pi$ scattering length (case 1) for which we obtain $0.27 \pm 0.18 \mu^{-1}$. The computation of the $\pi \pi$ scattering length of course assumes that our fit is valid down to the $\pi \pi$ threshold. Since we only fit down to 550 MeV the error should be considered to be much larger than the quoted one (which is purely statistical). This value agrees with the one obtained by Maung. ${ }^{21}$ The $\pi \pi$ scattering length for case 2 turns out to be $-0.1 \pm 0.2 \mu^{-1}$, which is 1 to standard deviation away from Maung value and more than 2 standard deviation away from the more recent results of Zylberstein et al. ${ }^{22}$ These results are summarized on Table VI and Fig. 7.

Is our solution unique? We believe that the general features are unique-in particular, all the fits that we found with reasonable $x^{2}$ exhibited the two poles in the $s$-wave amplitude. The situation for the other waves is less clear. In order to fit the moments we need substantial inelasticity in the $d$ and $f$ waves, less so in the $p$. wave, although solutions with smaller $\eta_{1}{ }^{1}$ than given by the selected fit could be obtained. Without more detailed information on the other channels one cannot choose among the various possibilities. In addition the amount of inelasticity needed in the se waves is inconsistent with the number of events observed in the other channels. A possible explanation is that above 1 GeV the moments obtained by a linear extrapolation tend to be systematically higher than the true physical moments, maybe because of $\mathrm{N}^{*}$ background. Another possibility, although this seems less likely, is that the extrapolated $\omega \pi$ cross section is much larger than the one observed in $\pi^{+} p \rightarrow \omega \pi^{0} \Delta^{++}$ and the small ine lasticities actually reflect very strong couplings for the reaction $\pi^{+} \pi^{-} \rightarrow \omega \pi^{0}$. Because of this complication and the lack of clear structure in the moments beyond 1150 MeV , we don't feel that the extrapolated data is sufficiently sensitive to warrant extending the analysis beyond this point.

## VI. CONCLUSIONS

A coupled channel analysis ( $\pi \pi$ and $K \bar{K}$ ) with a $2 \times 2$ M-matrix has yielded fruitful results on the $I=0 \pi \pi \rightarrow \pi \pi s$-wave scattering amplitude. The very marked structure of our data puts sufficient constraints to eliminate the "up-down" ambiguity, leaving the "down" solution as the only viable one between 750 and 950 MeV . Searching for poles in the complex energy plane, we found two of interest.

[^10]Table VI. Pole parameters for cases 1 and 2.

${ }^{2}$ See Table II for an explanation of different cases.
$\mathrm{b}_{\text {Residues defined as }} \mathrm{R}_{\mathrm{ij}}=\frac{\left(\mathrm{s}-\mathrm{s}_{0}\right)}{\sqrt{\mathrm{q}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}}}} \mathrm{T}_{\mathrm{ij}}\left(\mathrm{s}_{0}\right)$, where $\mathrm{s}_{0}=\mathrm{s}$ at pole
position.


Fig. 7. Poles and cuts of the $\pi \pi$ s-wave amplitude in the complex energy plane. The dashes indicate region covered by our fit. Ellipses indicate (roughly) contours where $\chi^{2}$ changes by one unit.

One ( $S^{*}$ ), is very close to the $K \bar{K}$ threshold on the second Riemann sheet, at $980 \pm 7-\mathrm{i}(38 \pm 8)$. For the other $(\epsilon)$ we found two possible locations, depending on the exact parametrization used. It could be either at $600 \pm 100-i(250 \pm 70)$ on the second Riemann sheet, or at $650 \pm 70-\mathrm{i}(150 \pm 50)$ on the fourth Riemann sheet. Since for both cases the phases and inelasticities were not very different we conclude that considerably more data are needed to determine on which sheet it is. In addition, the effect of the $4 \pi$ cut, which we neglect, might have to be taken into account. We also computed the $\pi \pi$ scattering length (this calculation implicity as sumes that qur fit is valid down to $\pi \pi$ threshold); we obtained $0.27 \pm 0.18 \mu^{-1}$ (see Table VI).

Because of background problems the results for the higher waves may have systematic errors. We obtain for the $\rho$ mass (point at which $\delta_{1}^{1}=90^{\circ}$ ) 772 MeV and for its width (from points at which $\delta_{1}{ }^{1}=45^{\circ}$ and $\delta_{1}{ }^{1}=135^{\circ}$ ) 160 MeV . The width is somewhat larger than that found by other experiments. ${ }^{1}$ This might be due in part to the effect (possibly $\rho-\omega$ interference) between 760 and 800 MeV. Beyond 1 GeV the data seem to require substantial inelasticity being inconsistent with the number of events observed in other channels. We believe this indicates that beyond 1 GeV the linear extrapolation tends to give $Y_{L}{ }^{0}$ moments which are systematically higher than the true physical $\mathrm{Y}_{\mathrm{L}}{ }^{0}$ moments.

## ACKNOW LEDGMENT

We thank Prof. G. Chew, Dr. Gerard Smadja, and Dr. E. Colton for many useful discussions.

[^11]
## Addendum

At this conference several points were raised which could have some bearing on our results. P.K. Williams presented some model calculations on how absorption could affect the extrapolation of $\mathrm{Y}_{\mathrm{L}}^{0}$ moments. The main conclusion was that the effects are small ( $<10 \%$ ) for $L \leqslant 3$, but can be quite substantial for $L=4(25 \%$ or more) and are likely to be at least as large for $L>4$.

Another point (raised by K. W. Lai) was the background in our. $\mathrm{K}^{+} \mathrm{K}^{-}$events (e.g. $\phi$ production, or $\mathrm{C}=-1$ events). Some crude estimates can be made by looking at our $\pi^{+} p \rightarrow \Delta^{++} \mathrm{K}_{\mathbf{s}} \mathrm{K}_{\mathrm{s}}(\mathrm{C}=+1)$ and $\pi^{+} \mathrm{p} \rightarrow \Delta^{+{ }^{+}} \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\ell}(\mathrm{C}=-1)$ events. There is no clear evidence for $\phi$ production when a $\Delta^{++}$is selected with $\left|t^{i}\right|<.1 \mathrm{GeV}^{2}$. The $\mathrm{Y}_{\mathrm{L}}^{0}$. moments for $\mathrm{K}^{+} \mathrm{K}^{-}$events indicate that the amounts of $\mathrm{L} \neq \mathrm{O}$ waves must be quite small below 1100 MeV . On the basis of a very small number of events with $\mathrm{K}_{0} \mathrm{~K}_{0}$ mass $<1.1 \mathrm{GeV}$ and $\left|\mathrm{t}^{1}\right|<.1 \mathrm{GeV}^{2}$ :

1) $\pi^{+} p \rightarrow \Delta^{++} \mathrm{K}_{0} \overline{\mathrm{~K}}_{0} \quad$ both $\mathrm{K}_{0}$ decay in the chamber ( 18 events)
2) $\pi^{+} \mathrm{p} \rightarrow \Delta^{++} \mathrm{K}_{0} \overline{\mathrm{~K}}_{0}$
only one $\mathrm{K}_{0}$ decays in the chamber (19 events)

We can conclude that, after correcting for various scanning and measuring inefficiencies, the above number of $\mathrm{K}_{0} \overline{\mathrm{~K}}_{0}$ events is consistent with all $\mathrm{K}^{+} \mathrm{K}^{-}$events coming from $\mathrm{S}^{*}$ decay (within $15 \%$ ).

We redid our case 1 fit assuming that the $Y_{L}^{0}(L \geq 4)$ moments are $30 \%$ smaller than the value obtained by a linear extrapolation. These corrections only affect the phase shifts above 900 MeV . The $\chi^{2}$ for this fit is 118.0 for 147 degrees of freedom ( $C L=96 \%$ ). In Table VII we give the phase shifts obtained with the above corrections. We must emphasize that the corrections are quite uncertain and model dependent.

The main effect of this correction is to give more reasonable d and $f$ waves. In particular the $f$-wave is much less inelastic, although the inelasticity is still a bit too small to be consistent with other channels. The s-wave phase shift is now somewhat larger above 1.0 GeV . The $\epsilon$-pole is hardly affected, being at $604-\mathrm{i} 260 \mathrm{MeV}$ (II sheet), while the $\mathrm{S}^{*}$ has become narrower, 986 - i 32 MeV . Computed errors are of the same size as previously.
L. Gutay raised the point that if one looks at the isotropic term (IS) in the physical region it would seem to favor the up solution between 700 MeV and 880 MeV .* It is true that if one does an energy

[^12]independent analysis it is difficult to rule out either solution in that region, the problem is compounded in our data between 760 MeV and 800 MeV where we cannot find any solution with an energy independent analysis because of $p-\omega$ interference. However, it is extremely unlikely that the "up" solution can be correct since it must join the down solution at 900 MeV where the data gives an unambiguous answer. Note (Fig. 5) that the two branches are well separated, so, if they join at some point they must do so within 20 MeV . In order to join, the phase shift will have to decrease by $40^{\circ}$ or more within 20 MeV . From the Wigner condition of causali$\mathrm{ty}^{25}$, $\frac{\mathrm{d} \delta}{\mathrm{dq}}>-\mathrm{R}$, this would imply a radius of interaction of at least 15 fermi. The other possibility is that the phase shift goes through $180^{\circ}$ before 900 MeV , which would imply that $\left\langle\mathrm{Y}_{1}^{0}\right\rangle$ is zero somewhere in that region, certainly not the case within our resolution ( $\pm 5 \mathrm{MeV}$ in the $\rho$ - region). The errors on IS are too large to perform a meaningful extrapolation, however all information concerning this term is not lost since we extrapolate the normalized $Y_{L}^{0}$ moments and the cross section, from which one can calculate IS. Since our parametrization clearly fits all of them quite well, it cannot disagree with whatever term we chose to calculate from them. Using our phase shifts and the Chew-Low formula (III.2) we can compute IS in the physical region. In Fig. 8 we plot the isotropic term obtained from our data and the curves calculated with our solution alone and our solution plus $10 \%$ depolarization of the $\rho$. Although the fit is good, we have no other evidence that the $p$ is depolarized by exactly $10 \%$. The amount of depolarization depends sensitively on the detailed production mechanism. We see no compelling evidence for the claim that the "down" solution is in disagreement with the isotropic term.

A final comment concerns our case 2 solution. A more careful study of this particular parametrization reveals many undesirable properties which indicate that it should be rejected in favor of our case 1 solution. Although it reproduces the $s$-wave phase shifts in the fitted region, this solution has a pole on the I sheet at 680 i 300 and another on the II sheet at $387+$ i 40 . The behaviour of the phase shift below 450 MeV is clearly pathological; it goes counterclockwise, being $180^{\circ}$ at threshold instead of $0^{\circ}$.


Table VII．Phases and inelasticities after corrections．

| Mass | ¢0， | $\eta_{0}^{0}$ | ；$\delta_{1}^{1}$ | $\eta_{1}^{1}$ | $\delta_{2}^{0}$ | $\eta_{2}^{0}$ | $\delta_{3}^{1}$ | $\eta_{3}^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ． 91 | $94 \pm 4$ |  | $145 \pm .8$ |  | $3.5 \pm 1$ |  | －1．$\pm .5$ | ． $96 \pm .02$ |
| ． 935 | $104 \pm 5$ |  | $150 \pm .9$ | 99 $\pm .01$ | $4.6 \pm 1$ |  | $-.5 \pm .6$ | ． $89 \pm .05$ |
| ． 965 | $133 \pm 6$ |  | $153 \pm 1$ | ． $99 \pm .01$ | $6.0 \pm 1.2$ | ． $99 \pm .01$ | $-.3 \pm .7$ | ． $83 \pm .05$ |
| 1.0 | $192 \pm 9$ | ． $61 \pm .08$ | $155 \pm 1.2$ | ．97 $\pm .01$ | $8.8 \pm 1.4$ | ．96土．03 | ． $1 \pm .8$ | $.80 \pm .05$ |
| 1.0 .4 | 211才9 | $.54 \pm .04$ | $155 \pm 1.6$ | ． $93 \pm .03$ | 13．$\pm 2$ | ． $90 \pm .06$ | 1．$\pm .7$ | ．79． 05 |
| 1.075 | $212 \pm 8$ | ． $59 \pm .04$ | $154 \pm 2.5$ | ． $89 \pm .05$ | 18．$\pm 3$ | ． $86 \pm .08$ | 2．$\pm .8$ | $80 \pm .05$ |
| 1105 | $\cdots 210 \pm 8$ | ． $63 \pm .04$ | 152 +3.4 | ． $87 \pm .06$ | $23 \pm 4$ | ． $87 \pm .06$ | $3 . \pm 1.1$ | ． $81 \pm .06$ |
| 1.135 | $207 \pm 8$ | ． $68 \pm .04$ | $150 \pm 4$ | ． $86 \pm .06$ | 28．$\pm 5$ | $93 \pm .04$ | 4．$\pm 1.8$ | ．84＂ 07 |
| 1.150 | 205士 | ． $70 \pm .04$ | $150 \pm 6$ | ． $85 \pm .07$ | $33 . \pm 7$ | $\bigcirc .94 \pm .04$ | $4.5 \pm 2.0$ | $88 \pm .10$ |

Table VIII．M－matrix parameter after corrections

$$
\begin{array}{lll}
\mathrm{M}_{11}^{0}=-3.03 \pm 2.2 \\
\mathrm{M}_{11}^{1}=-.444 \pm .70
\end{array} \quad \begin{array}{ll}
\mathrm{M}_{12}^{0}=2.68 \pm .45 & \mathrm{M}_{12}^{1}=.622 \pm .67
\end{array} \quad \mathrm{M}_{22}^{1}=.028 \pm .410 . .62 \pm .50
$$



Fig. 8. Isotropic term for $\left|t^{\prime} p \Delta\right|<.1 \mathrm{GeV}^{2}$. The lower curve corresponds to the predicted s-wave contribution from our phase shift solution. The upper curve corresponds to s-wave plus $10 \%$ depolarization of the $\rho$-meson. Normalization is arbitrary, no attempt was made to optimize the fit.

## REFERENCES

1. For a complete review of $\pi \pi$ scattering see:

Particle Data Group, Rev. Mod. Physics 43, S61 (1971).
D. Morgan and J. Pisut, Springer Tracts in Modern Physics 55 (1970).
J. L. Petersen, Physics Reports 2C, 157 (1971).
2. M. Alston-Garnjost et al. , Phys. Letters 33B, 607 (1970).
3. M. Alston-Garnjost et al., Phys. Letters 36B, 152 (1971).
4. S. Flatté et al., Phys. Letters 38 B, 232 (1972).
5. H. P. Dürr and H. Pilkuhn, Nuovo Cimento 40A, 899 (1965).
6. G. Wolf, Phys. Rev. Letters 19, 925 (1967).
7. E. Colton, P. Schlein, and E. Gellert, Physic Rev. D3, 1063 (1971); T. G. Trippe, Ph.D. thesis, UCLA-1026 (1968).
8. A. A. Carter et al., Nucl. Phys. B26, 445 (1971).
9. J. P. Baton, G. Laurens, and J. Reignier, Phys. Letters 33B, 528 (1970).
10. M. Gell-Mann, P. Sharp, and W. G. Wagner, Phys. Rev. Letters 8, 261 (1962).
11. C.J. Goebel and K. W. McVoy, Phys. Rev. 164, B1932 (1967). L. Roper, R. Wright and B. T. Feld, Phys. Rev. 138, B190 (1965).
12. W. D. Walker et al., Phys. Rev. Letters 18, 630 (1967); J. P. Baton et al., ibid.; E. Colton et al., Phys. Rev. D3, 2028 (1967).
13. See for instance: J. P. Baton et al., ibid.; D. Morgan and J. Pisut, ibid.
14. For a description of M-matrix formalism and additional references see: A. Barbaro-Galtieri "Baryon Resonances," in Advances in Particle Physics, edited by R. L. Cool and R. E. Mashak (Wiley, N. Y., 1968). Vol. 2, 212.
15. P. H. Eberhard and W. O. Koellner, Lawrence Radiation Laboratory Report UCRL-20159 (1970).
16. E. Colton et al., Phys. Rev. D3, 2033 (1971).
17. D. Morgan and G. Shaw, Phys. Rev. D2, 520 (1970).
18. B. D. Hyams et al., in Experimental Meson Spectroscopy (Columbia University Press, N. Y., (1970), p. 41.
19. W. Beusch et al., ibid. p. 185.
20. F. T. Hoang, Nuovo Cimento 61A, 325 (1969).
21. T. Maung et al., Phys. Letters 33B, 521 (1970).
22. A. Zylberstein et al., Phys. Letters 38 B, 457 (1972).
23. G. Laurens, Ph.D. the sis, University of Paris, CEA-N1497, Table XI.
24. P. Baillon et al., Phys. Letters 38B, 555 (1972).

LEGAL NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720


[^0]:    *Work done under the auspices of the U.S. Atomic Energy Commission.
    ${ }^{\dagger}$ A more detailed version of this paper will be submitted to Phys. Rev.

[^1]:    *The function $F(m, t)$ is calculated taking the experimental cross section averaged over a bin in ( $t, m, M$ ) and divided by $\sigma_{\mathrm{OPE}}$.

[^2]:    *The extrapolated $\mathrm{Y}_{2}{ }^{0}$ moment also agrees quite well with the one observed in physical $\pi^{+}$p scattering; but this is a much weaker check since any reaction where the $\mathrm{P}_{33}, \mathrm{~m}=3 / 2$, wave dominates will give a similar $Y_{2}{ }^{0}$ moment.

[^3]:    *Even with an energy-dependent analysis, one cannot determine all 12, one needs data from other charged states to be able to separate $\mathrm{I}=2$ and $\mathrm{I}=0$ components.

[^4]:    *To compute this number we used the $\rho \omega \pi$ coupling constant calculated by Gell-Mann, Sharp, and Wagner ${ }^{10}$; the fits are rather insensitive to the value of $g_{\rho \omega \pi}$.

[^5]:    *The $I=0 d$-wave cannot couple to $\omega \pi$ channel, nevertheless we allowed the background to become inelastic around 900 MeV . Results change very little if we don't allow it to be come inelastic before 980 MeV .

[^6]:    *We used the computer program OPTIME ${ }^{15}$ for minimizing $\chi^{2}$.

[^7]:    ${ }^{\text {a }}$ Correlations between parameters are large; for any computation using these parameters the full error matrix should be used (Table IV). Unless otherwise indicated, units are in appropriate powers of $\mu$ ( $\pi$-mass).

[^8]:    *As noted earlier, one may let the $d$ wave become inelastic at somewhat higher mass ( $\sim 980 \mathrm{MeV}$ ) without altering results significantly.

[^9]:    *This statement should be qualified some what for the p-wave inelas ticity, which can change at high masses ( 1100 MeV ) by as much as one standard deviation.
    $\dagger$ Although computed errors are small on the p-wave phase, there might be a systematic error introduced by the effect (possible $\rho-\omega$ interference) between 760 and 800 MeV .

[^10]:    ${ }^{\dagger}$ On both sheets (II and IV), $\operatorname{Im} k_{\pi \pi}$ and $\operatorname{Im} k_{\bar{K}} K$ have opposite signs. On sheet II, $\operatorname{Im~}_{\pi \pi}<0$; on sheet IV, $\operatorname{Im} \mathrm{k}_{\overline{\mathrm{K}} \mathrm{K}}<\overline{\mathrm{O}} \mathrm{K}$.

[^11]:    *After completing this work, we received a preprint by Y. Fujii, and M. Kato (University of Tokyo): "Effects of the K $\bar{K}$ threshold in $\pi \pi_{3}$ scattering." Using our previously published experimental results, ${ }^{3}$ these authors reach conclusions rather similar to our own with quite a different method of analysis.

[^12]:    One can compute the isotropic term from the moments taking IS $=\mathrm{N}\left(1-\left\langle\mathrm{Y}_{2}{ }^{0}\right\rangle / .252\right)$.

