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ABSTRACT OF THE DISSERTATION

Realization-Based System Identification with Applications

by

Daniel N. Miller

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2012

Professor Raymond A. de Callafon, Chair

The identification of dynamic system behavior from experimentally mea-

sured or computationally simulated data is fundamental to the fields of control

system design, modal analysis, and defect detection. In this dissertation, methods

for system identification are developed based on classical linear system realiza-

tion theory. The common methods of state-space realization from a measured,

discrete-time impulse response are generalized to the following additional types

of experiments: measured step responses, arbitrary sets of input-output data, and

estimated cross-covariance functions of input-output data. The methods are partic-

ularly well suited to systems with large input and/or output dimension, for which

classical system identification methods based on maximum likelihood estimation

may fail due to their reliance on non-convex optimizations.

xviii



The realization-based methods by themselves require a finite number of lin-

ear algebraic operations. Because these methods implicitly optimize cost functions

that are linear in state-space parameters, they may be augmented with convex

constraints to form convex optimization problems. Several common behavioral

constraints are translated into eigenvalue constraints stated as linear matrix in-

equalities, and the realization-based methods are converted into semidefinite pro-

gramming problems. Some additional constraints on transient and steady-state

behavior are derived and incorporated into a quadratic program, which is solved

following the semidefinite program.

The newly developed realization-based methods are applied to two exper-

iments: the aeroelastic response of a fighter aircraft and the transient thermal

behavior of a light-emitting diode. The algorithms for each experiment are imple-

mented in two freely available software packages.
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1 Introduction

This first chapter introduces realization theory and its relationship to the

identification problem as a historical narrative, beginning with Kronecker’s work

on the construction of rational functions from infinite series, proceeding to Ho and

Kalman’s reinterpretation of the theorem in a state-space linear systems frame-

work, and concluding with Kung’s realization algorithm based on the singular-value

decomposition of a system Hankel matrix.

It is assumed that the reader is somewhat familiar with linear system real-

ization theory in places. Chapter 2 provides a contemporary introduction to the

subject. Readers uninterested in the historical development of the theory may skip

ahead to the preliminary definitions in Section 1.2; the rest of the dissertation is

self-contained.

1.1 Kronecker and Kalman: A Brief History of

Realization Theory

With the creation of analysis in the mid 1800s, mathematics progressed

beyond the traditional methods of algebraic construction that had defined the field

for centuries. Infinite series were gradually replacing polynomials of finite order

as the center of mathematical thought. The rigorous study of the convergence of

series could be used to prove the existence of transcendental numbers, such as e

and π, which were impossible to define as the roots of polynomials. At the same

time, the new discipline of set theory was changing mathematics from the study

of numbers into the study of abstract objects.

1
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As with any change, there were those who resisted. The idea of infinity was

something, literally, unnatural. No man personified the old school of construction-

ist mathematics better than Leopold Kronecker (1823 - 1891). Kronecker detested

this new math [43]. To him, a number existed if and only if it could be constructed

in a finite sequence of operations. Demonstrating that an infinite series converged

to something did not prove that something existed because, in his view, completing

the infinite was a paradox. Kronecker was also notoriously difficult to work with

[43]. This was likely due to his dogmatic mathematical philosophy, illustrated by

his famous quote regarding the divine origin of integers:

God created the integers, all else is the work of man.

Less often quoted is Karl Weierstrass’s response [16]:

Kronecker puts his authority behind the opinion that everything that
has been done up to now on the foundations of function theory are sins
before the Lord . . . Truly, it is sad and fills me with bitter pain . . .

Kronecker was hardly alone in his opinions regarding the inferiority of analysis.

Dirichlet also believed that all of mathematics could somehow be derived from the

natural numbers, and Gauss argued that completed infinite series be excluded from

mathematics entirely [18]. However Kronecker was perhaps the most vocal of these

critics. The following quote from Kronecker, as retold by Weierstrass, suggests

that Kronecker was hardly shy with his convictions [16]:

If enough years and strength remain to me, I will myself show the
mathematical world that arithmetic can lead the way not only for ge-
ometry but also for analysis, and surely the more rigorous way. If I can
no longer do it, then those who come after me will . . . and they will
also recognize the falsity of all the conclusions with which the so-called
analysis now works.

Kronecker was a man of his word, and much of his later work is on the

construction of the finite from the infinite. Though he died long before the publi-

cation of Voltera’s work on convolution integrals and likely never heard the term

“impulse response,” in his attempts to reformulate the foundation of analysis, he

instead formulated the foundation of linear system realization theory.
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Constructing the Finite from the Infinite

Kronecker was a pioneer of the use of determinants in linear algebra, and he

was able to prove many interesting theorems from the determinants of structured

matrices. In 1881, he published “Zur Theorie der Elimination Einer Variablen

aus Zwei Algebraischen Gleichungen” (The Theory of Elimination of Variables

from Two Algebraic Equations), a treatise on the elimination of common roots in

polynomials. The only well known theorem from this work states that the terms of

an infinite series are linearly dependent on each other if and only if the series is the

expansion of a rational function. Kronecker proposed testing for linear dependence

by examining the determinants of a structured matrix constructed from the terms

of the series. This can also be used to test the coprimeness of polynomials.

As determinants have faded from the mathematical spotlight, due in large

part to their numerical difficulties, so have many of Kronecker’s theorems faded

from textbooks.1 A full proof of Kronecker’s theorem appears in Appendix A. An

important quality of the proof is that it is done by construction. Given a series

with linearly dependent elements, formulas for computing the coefficients of the

numerator and denominator polynomials of a rational function in a finite number

of steps are provided in the proof itself. Kronecker considered this to be the only

true way of proving existence. He did not reject all other styles of proof outright,

he simply viewed them as being incomplete [16]. This does not mean he considered

irrational numbers to be “fake.” He argued that they instead be defined in an

algebraic fashion; for instance
√

2 is defined as a root of the polynomial x2 − 2

and not by somehow “completing the infinite,” which to him was a contradiction.

Being able to compute
√

2 to an arbitrary precision was very useful, but did not

constitute a definition.

It is tempting to dismiss Kronecker’s philosophy of finite constructionism

entirely, given its apparent mathematical deficiencies. After all, e is an important

number and needs a proper definition. But abstract existence is very different

1The only place the author was able to find even part of Kronecker’s results from this paper
in English was in [20], which is itself a translation of a Russian text. For those fluent in 19th-
century German mathematics, Kronecker’s original 79-page “Werk” is available online from the
University of Michigan Historical Math Collection.
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from physical existence. No computer calculates e with an infinite number of op-

erations, and most engineers do not design machines that cannot be built. To the

practicing engineer, Kronecker’s philosophy has an intuitive appeal. Though mod-

ern mathematicians may complete the infinite without a second thought, engineers

build things, and building things ultimately requires a constructionist philosophy

not unlike Kronecker’s. Engineers must agree with at least some of Kronecker’s

philosophy and, as he once wrote in a letter to Cantor, “take haven in the refuge

of actual mathematics.” [18] We do not have the luxury of completing the infinite

whenever we choose.

The Rise of State-Space System Theory

Kronecker argued that set theory was essentially an unnecessary develop-

ment, and that polynomials and the algebraic framework they inspire should be

the foundation of mathematical thought [17]. Of course by the early 20th century,

most mathematicians had rejected this idea, and today it seems almost heretical.

However, engineers working in control systems and filter design through the 1950s

continued to rely on the same polynomial methods for the analysis of differential

equations developed over a century earlier. Before the arrival of modern comput-

ers, the most effective means of analyzing linear dynamic systems was through the

Laplace transform. Ordinary differential equations could be expressed in terms of

an auxiliary variable s and treated as fractions of polynomials, or transfer func-

tions. This had the distinct advantage of allowing the behavior of dynamic sys-

tems to be analyzed by hand calculations. The restriction of transfer functions to

input-output behavior also allowed for simpler experimental validation of dynamic

models and readily extended to the frequency domain, which was often the primary

domain of concern for engineers working with early electronics.

As time and technology progressed, however, the advantages of transfer-

function methods became limitations. Transfer functions do not allow for the

analysis of transient system behavior due to arbitrary initial conditions, the order

of fractional polynomials that can be analyzed by hand is significantly restricted,

and multivariable systems analysis is extremely cumbersome. Furthermore, the
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restriction to input-output descriptions hides internal system dynamics, and many

results before 1960 concerning the stability of composite systems were either mis-

leading or incorrect [21].

State-space methods of system analysis were developed to address these

limitations. By representing linear systems as systems of first-order differential

equations, digital computers were able to provide optimal solutions to the prob-

lems of multivariable estimation and control. Many of the engineering problems

of the day were in the areas of electronics and aerospace engineering and were

naturally described in a state-space framework. State-space representations are

also inherently causal while transfer functions may not be. But perhaps most

importantly, by providing a more complete description of a system’s internal dy-

namics, researchers could begin to derive necessary and sufficient conditions for

system stability that did not suffer from the difficulties of pole-zero cancelations

one encountered with transfer functions.

Controllability, Observability, and the Emergence of the Realization

Problem

By 1960, the problem of optimal regulation based on quadratic criteria for

linear systems had been proposed and solved in a number of special cases. Unfor-

tunately, the lack of generality in the existing solutions meant that the problem of

determining when solutions were possible was still an open question. Controllabil-

ity and observability had yet to be rigorously defined and were often inadvertently

assumed satisfied in regulation and estimation problems. While researchers were

aware that open- and closed-loop control would fail in certain circumstances, tests

that were both sufficient and necessary to guarantee the existence of a stabilizing

controller/observer for a dynamic system had yet to be discovered.

It should surprise no one familiar with the field of control systems that

it was Rudolf Kalman who, in his one of many breakthrough papers “On the

General Theory of Control Systems [36],” presented the first conclusive tests for

linear controllability and observability, their implications for quadratic regulation

and estimation, and their relationship to classical Wiener filter design. Kalman’s
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results on controllability, observability, canonical forms, and optimal estimation

and control would create the foundation for modern linear systems theory and

become one of the most celebrated cannons in 20th-century research.

When Kalman published his first results in Kalman [36], the momentum

of control systems research was at the time — and perhaps always has been —

directed towards the pursuit of a “pure” theory of control akin to Shannon’s theory

of information. Kalman, however, was ultimately interested in application, and

argued that the creation of such a theory was impossible until questions of “physical

realizability” were answered. Though no one would suggest he shared Kronecker’s

devotion to constructionist algebra, Kalman conjures the spirit of Kronecker in

this early paper when declares

. . . only constructive2 methods are employed here, giving some hope
of being able to avoid the well-known difficulty of Shannon’s theory:
methods of proof which are impractical for actually constructing prac-
tical solutions.

Kalman’s constructionism, however, was not motivated by mathematical

dogma, but by an awareness of the needs of practicing engineers. Kalman imagined

what theory would be needed next to aid the progress of existing technology. If

the design of dynamic systems was rooted in causal, linear, Newtonian physics,

then these systems ought to be the focus of control systems research. Published

with this early paper are two critiques: one arguing that his theory does not

generalize sufficiently to the nonlinear case to be significant, and one arguing that

his theory should be expanded to address what is now called identifiability. Kalman

is sympathetic only to the latter in his response.

The familiar controllability and observability Grammians are absent in this

first paper, though rank tests for time-invariant systems are implied. It was later

that year, when Kalman published “Contributions to the Theory of Optimal Con-

trol [33],” that the controllability matrix was defined; it was shown that the rank

of this matrix must be equal to the order of the system if there exists a control

signal that can drive each state to 0 in an arbitrary finite time. This paper also

2 Emphasis appears in the original.
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introduces the Riccati differential equation as the means for solving the linear-

quadratic-regulator problem.

Also that year, the prolific Kalman published perhaps his most famous

work, “A New Approach to Linear Filtering and Prediction Problems [31],” which

presented the first formulation of the now ubiquitous Kalman Filter. Kalman

described the filter as a more practical approach to solving the Wiener filtering

problem, which is the problem of optimally detecting a random stationary signal.

While existing algorithms for the design of Wiener filters specified the optimal

filter in terms of its impulse response, Kalman’s filter was specified in terms of

state-space equations which could be directly implemented on a digital computer.

In “Canonical Structure of Linear Dynamical Systems [32],” Kalman pre-

sented his landmark results on canonical forms. Though mostly remembered for

proving that there exists a state basis for which the controllable/uncontrollable

and observable/unobservable components of a linear system may be separated,

included in this paper are the following observations: (i) at most, only the con-

trollable and observable parts of a linear system may be identified from known

input and output, and (ii) the impulse response function of a linear system may

be separated into the product of a mapping from the state to the output and a

mapping from the input to the state.

Over the next decade, Kalman and many others would repeat the sentiment

that control design be studied in a linear state-space framework, since, unlike the

differential operators of the Laplace domain, a state-space model was guaranteed

to be causal and not hide potential instability, while transfer functions had no such

guarantees. In [35], Kalman argued that

the difficulty is due to insufficient appreciation of the concept of a
dynamical system. Control theory is supposed to deal with physical
systems, and not merely with mathematical objects such as a differ-
ential equation or a transfer function. We must therefore pay careful
attention to the relationship between physical systems and their repre-
sentation via differential equations, transfer functions, etc.

Kalman and others did not entertain the notion, however, that new control

design methods would be adopted by practicing engineers on theoretical merit
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alone. Elmer Gilbert summarized the situation in [21]:

Since differential equations offer a safer basis for describing multivari-
able systems it is valid to ask why transfer-function matrices should
be used at all. The answer is that frequency domain design proce-
dures and the smaller size of [transfer-function martrices] often make
computations more manageable.

A divide was quickly forming between control systems theory and control sys-

tems practice, and tools to address the differences between transfer-function and

state-space descriptions of system were needed if state-space methods were to see

widespread adoption.

Notable early attempts to solve the problem of moving between state-space

and transfer-function representations include Gilbert [21] and Kalman [35]. In [35],

Kalman defined the following problem:

Given an (experimentally observed) impulse response matrix,3 how can
we identify the linear dynamical system which generated it? . . . We pro-
pose to call any such system a realization of the given impulse response.

Kalman’s use of the word “realization” was likely meant to connect these new ideas

with the “realizability theory” of McMillan [47], whose extensive research the fac-

torization of transfer function matrices in the previous decade laid the foundation

for the field today known as network synthesis. Over the next few years, Kalman

would modify his definition several times to more closely mirror McMillan’s work.

Solving the Realization Problem

Early results on merging the input-output and state-space descriptions of

systems focused primarily on the recently developed concept of canonical forms. In

[35], Kalman proved that transfer functions and impulse responses only completely

describe minimal4 systems — systems that are both controllable and observable,

which was central to the problem of moving between the two representations. For-

mulas for converting a minimal state-space system to a matrix of transfer functions

3 By “impulse response matrix”, Kalman was referring to convolution matrix as a function of
time, not a Hankel matrix of impulse-response coefficients.

4 He actually used the word “irreducible,” but the term “minimal” has since become more
common in this context.
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first appear in Gilbert [21], which shows that cancellation of unstable controllable

modes in cascade systems does not stabilize a system, something that is unclear

in the transfer function representation. Both Gilbert [21] and Kalman [35] pro-

vide methods for the construction of state-space representations: Gilbert’s requires

awkward partial-fraction expansion of matrix polynomials, and Kalman’s requires

an equally awkward factorization of polynomial matrices.

The previous decade, McMillan had shown that the minimum number of

energy storage elements necessary to construct a circuit from a given transfer func-

tion matrix was equal to the degree of the least common denominator polynomial

of the transfer function matrix [47]. This idea was clearly somehow linked to “min-

imal” dimension of state-space systems and was conjectured by Gilbert in [21], but

it was not until [34] that Kalman proved the two numbers were in fact equal. This

paper also contains a rather complex method for constructing minimal representa-

tions using partial fraction expansions to fill in the entries of a state-space system

in Jordan canonical form.

Interestingly, in [35], in which he first defines the realization problem,

Kalman cites Volume 1 of a two-volume translation of Gantmacher’s Theory of

Matrices5 [19]. Kronecker’s theorem for the reduction rational functions via Han-

kel matrices appears in Volume 2 [20]. It was left to Kalman’s graduate student,

B.Y. Ho,6 to finish reading the series and discover that Kronecker had solved the

realization problem 70 years earlier. The following year, Ho and Kalman presented

their eponymous algorithm for the construction of state-space systems from Han-

kel matrices of impulse response coefficients [27]. The proof of the method can

5 Gantmacher published his original Russian text in 1953. Two different translations of the
text were released by two separate publishers in the same year in 1959. Interscience released
a one-volume edition, while Chelsea released a two-volume edition. Though larger and more
expensive, the Chelsea version was far more popular, likely due to the translator’s correction of
a number of mistakes in the original work, while the Interscience version did not survive its first
run (reviews of both appear in [46]).

Gantmacher [20] may be the first, if not only, appearance of Kronecker’s theorem in English out-
side loosely translated lecture notes. References to “Kronecker’s theorem” or even “Kronecker’s
well-known theorem” are commonly made without citation in the literature. After thorough
research, [20] remains the only publication other than the original German that the author has
been able to find an actual proof. This compelled him to include it in a soon-to-appear textbook
(B1 in Publications).

6 Not to be confused with Yu-Chi “Larry” Ho, another colleague of Kalman’s.
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be found in Chapter 2 and is effectively a restatement of Kronecker’s theorem in

state-space form. This also appears to be the first instance of impulse response

coefficients being referred to as “Markov parameters,” which mirrors the usage of

the word in Gantmacher [20]. The introduction to [27] states “this is probably the

simplest method for computing a realization that will ever be found.” They were

almost right.

Hankel-Matrix Methods

The Ho-Kalman algorithm in its original form [27] bares only partial re-

semblance to what appears in textbooks today. Though it could be considered

constructive, it provides no explicit method to factor the Hankel matrix of Markov

parameters. That the system Hankel matrix is the product of the observability

matrix and controllability matrix appears to have been entirely overlooked. In-

stead, block-companion matrices are used to demonstrate what is now called the

“shift-invariance” of the matrix. Shortly later, in research apparently developed

independently of Ho and Kalman [27], Youla and Tissi [84] showed that any appro-

priately dimensioned factorization of the Hankel matrix results in a controllability

and observability matrix for some state basis, though it was in the context of net-

work synthesis problems and did not generalize well to arbitrary linear systems.

Silverman [64] extended some of the ideas in [27] to time-varying systems. Sil-

verman [63] gives a complete restatement of Kronecker’s theorem in a state-space

framework, which is sometimes referred to as “Silverman’s Algorithm.” Chen and

Mital [11] later reformulate the Ho-Kalman algorithm to be more computationally

friendly.

The almost trivial shift-invariant property of the Hankel matrix for discrete-

time systems most commonly seen today — and seen in (2.4) of the following

chapter — seems to have gone without discovery, or at least explicit statement,

for several years after Ho’s initial publication. This is likely due to the focus

on continuous-time systems by researchers of the era. Although digital computer

were become more common in control applications, most controllers were still

constructed from linear circuits. Ho’s original formulation is generic enough to
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apply to both continuous- and discrete-time systems. In the preceding works cited,

only Silverman [63] addresses the discrete-time case specifically. It is not until

Ackermann and Bucy [1], which modifies Ho’s method to produce a realization in

“Bucy canonical form7,” that the discrete time shift-invariant property appears

explicitly.

The first appearance of what today is most often referred to as either the

Ho-Kalman algorithm or Kung’s algorithm (discussed later) actually appears in a

1.5-column note in the “Technical Notes and Correspondence” section of a 1973

issue of the IEEE Transactions on Automatic Control. In Zeiger and McEwen

[85], it is suggested that the Ho-Kalman algorithm be solved with the singular-

value decomposition (SVD) from noisy discrete-time Markov parameters. This is

the first appearance of the SVD in this context, and it can possibly be considered

the first realization-based or subspace identification method, as well as the first

statement of what is now called the “Hankel norm” of a linear system.

Though Zeiger and McEwen [85] did first propose using the SVD, a thor-

ough analysis of the method did not appear until 1978 in Kung [38]8. In this paper,

Kung derives an algorithm that that is the common ancestor of subspace identi-

fication, the Eigensystem Realization Algorithm, and Hankel-opperator theoretic

approaches to model reduction. Kung’s work after [38] has focused almost en-

tirely on model-reduction, but the contribution of this paper to the field of system

identification should not be understated.

A history of the development of realization-based and subspace-based sys-

tem identification methods would require another chapter. The historical develop-

ment of these methods is better documented than that of realization theory and

can be found in several books on the subject, such as Juang [29], Van Overschee

7 If this term is unfamiliar, it may be because it seems to only appear in publications that
list Bucy as an author.

8 This is possibly the most cited yet least read paper in the field of control systems. As of
writing, Google Scholar lists it as having 374 citations, however it only appears in the proceedings
of an IEEE conference that IEEE has no record of, no digital copies exist, and according to
WorldCat, only 5 libraries in the world have copies of the proceedings: two in the US, two in
Canada, and one in Germany. There exist papers that present “new” results entirely contained
in [38] and yet also cite it as a reference. The author is indebted to the librarians of North
Carolina State University for scanning and emailing him a copy.
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and De Moor [76], and Verhaegen and Verdult [78]. Instead, we end with Kung.

The method Kung proposed is derived in the next chapter, and in each subsequent

chapter, we will generalize it to alternative forms of measured data beyond the

system impulse response.

1.2 Preliminaries

This section presents definitions and notations used throughout the rest of

the dissertation.

1.2.1 Notation

The set of all real numbers will be denoted by R and all complex numbers

by C. An n-dimensional vector x of real numbers will be defined as x ∈ Rn, and

an m-dimensional vector y of complex numbers as y ∈ Cm. The k-th element of a

vector x will be denoted xk. Matrices of real numbers with n rows and m columns

will be defined as X ∈ Rn×m and of complex numbers as Y ∈ Cn×m.

The submatrix of a matrix X taken from the i-th row to the k-th row

and the m-th column to the n-th column will be denoted using Matlab-style

subscripts as M(i:k,m:n). The matrix Ik is the identity matrix with k rows and

columns. An n-by-m matrix of entirely zeros will be denoted 0n×m and an n-by-m

matrix of entirely ones will be denoted 1n×m.

Signals will always be discrete-time and indexed with an integer index t

unless otherwise stated. The value of a signal x at time t will be denoted x(t). An n-

dimensional signal will be defined as x(t) ∈ Rn. Some signals will be matrix valued,

such as covariance function; an n-by-m-signal will be defined as X(t) ∈ Rn×m.

1.2.2 Linear, Time-Invariant Systems

The identification methods presented herein are restricted to discrete-time,

linear, time-invariant (LTI) systems. A discrete-time LTI system has several equiv-

alent representations. The most common are fractional representations and state-
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space representations. By defining a forward-time-shift operator q so that

qu(t) = u(t+ 1),

the relationship between the input u(t) ∈ R and the output y(t) ∈ R may be

defined in terms of a rational function of q as

y(t) = G(q)u(t),

where

G(q) =
b(q)

a(q)
=
bmq

m + bm−1q
m−1 + · · ·+ b1q + b0

qn + an−1qn−1 + · · ·+ a1q + a0
. (1.1)

G(q) must be proper , that is, m ≤ n, to ensure causality. If G(q) is strictly proper ,

that is, m < n, then the system has no feed-through term. If a(q) has all roots

inside the unit circle, the system is stable, and a bounded u(t) results in a bounded

y(t). If b(q) and a(q) have no common roots, then G(q) is coprime. Fractional

representations are not limited to single-input-single-output systems. Multi-input-

multi-output systems with vector-valued y(t) and u(t) can be defined as a matrix

of fractional operators.

The other common representation for LTI systems is the state-space repre-

sentation in which a set of matrices (A,B,C,D) defines the input-output relation-

ship

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1.2)

where u(t) ∈ Rnu is the input signal, y(t) ∈ Rny is the output signal, and x(t) ∈ Rn

is the system state. The system is stable if A has all eigenvalues inside the unit

circle.

The system (1.2) is controllable if the state x(t) may be achieve an arbitrary

value with a proper selection of u(t) in n time steps. This is true if and only if the

controllability matrix

Cn =
[
B AB · · · An−1B

]
has rank n. The system is observable if the initial state x(0) may be determined

from n observations of the output. This is true if and only if the observability
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matrix

On =


C

CA
...

CAn−1


has rank n. Systems that are both controllable and observable are minimal and

have the property that the state dimension n cannot be reduced [10]. This is closely

related to the idea of coprimeness for the fractional operator G(q). The state-space

representation is guaranteed to be causal, and thus proper, and so it is called a

realizable representation of a system since it can always be constructed in reality.

It is strictly proper if D = 0. In this dissertation, all systems will be assumed

minimal unless otherwise stated.

A discrete-time LTI system also has a representation of a convolution with

an infinite series

y(t) =
∞∑
k=0

G(k)u(t− k) + v(t) (1.3)

where G(k) ∈ Rny×nu are the system Markov parameters. To avoid confusion

with the representation (1.1), G(·) should be assumed to be indexing the Markov

parameter sequence if any argument other than q is given. Because the system

description (1.3) cannot be represented with a finite number of parameters, it is

referred to as a non-parametric description. This representation is also guaranteed

to be causal and thus proper since the summation starts at 0. It is strictly proper if

G(0) = 0. There are no tests for stability that explicitly use the Markov parameters

that do not require knowledge of some sort regarding the entire sequence.

Conversion between the fractional representation (1.1) and the state-space

representation (1.2) is straightforward by means of canonical forms [10]. Less clear

is the conversion from the Markov parameter sequence. It is easily found that the

Markov parameters may be constructed from the state-space parameters as

G(k) =

D k = 0,

CAk−1B k > 0.
(1.4)

The inverse problem of constructing a state-space representation from a sequence

of Markov parameters is more complicated. This is the problem of realization.
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Before addressing the realization problem more thoroughly, however, we include

some definitions concerning stochastic processes.

1.2.3 Stochastic Processes and Quasi-Stationary Signals

A stochastic process is a time series of random variables with an underlying

probability distribution. Related to the time-invariance of deterministic processes

is the idea of stationarity for stochastic processes. Because system identification

concerns both stochastic and deterministic signals, the traditional definition of

stationarity must be modified to apply to both.

A signal s(t) ∈ Rns , t ∈ Z is said to be quasi-stationary if it is subject to

the two conditions

Es(t) = ms(t), ||ms(t)||2 ≤ C ∀ t ∈ Z

and

Rs(τ) = lim
N→∞

1

N

N−τ−1∑
t=0

Es(t+ τ)s(t)T , ∀τ ∈ Z, ||Rs(τ)||2 ≤ C,

for some C <∞, where E denotes expectation, which is defined to have no effect

if s(t) is strictly deterministic. The function Rs(τ) : Z→ Rns×ns is called the au-

tocovariance function of s(t). Similarly, if w(t) ∈ Rnw is a second quasi-stationary

signal, then the function Rsw(τ) : Z→ Rns×nw ,

Rsw(τ) = lim
N→∞

1

N

N−τ−1∑
t=0

Es(t+ τ)w(t)T

is called the cross-covariance function of s(t) and w(t). It is zero everywhere if s(t)

and w(t) are orthogonal or statistically independent. If only N samples of data

are available, estimates of the autocovariance and cross-covariance functions may

be calculated as

R̂s(τ) =
1

N

N−τ−1∑
t=0

s(t+ τ)s(t)T

R̂sw(τ) =
1

N

N−τ−1∑
t=0

s(t+ τ)w(t)T ,
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and are assumed to converge to Rs(τ) and Rsw(τ), respectively, as N →∞. These

definitions may be applied to both stochastic and deterministic processes. The

preceding is adopted from [40] and extended to multivariable signals.

Consider again the state-space representation (1.2), and assume A is stable.

If u(t) is quasi-stationary, then y(t) will also be quasi-stationary [40]. If some quasi-

stationary signal ξ(t) ∈ Rnξ is correlated with the input, then the cross-covariance

signal Ryξ(τ) ∈ Rny×nξ is the cross-covariance signal Ruξ(τ) ∈ Rnu×nξ filtered

through the system dynamics. Thus the covariance functions may be expressed in

terms of the state-space matrices (A,B,C,D) as

Rxξ(τ + 1) = ARxξ(τ) +BRuξ(τ)

Ryξ(τ) = CRxξ(τ) +DRuξ(τ).
(1.5)

In this dissertation, it will always be assumed that signals are quasi-stationary

and zero-mean unless stated otherwise. Note that there is no distinction between

covariance functions and correlation functions for zero-mean signals.
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2 Realization from an Impulse

Response

For a linear system, a sequence of output data measured over some finite

period of time may be expressed as the linear combination of the past input and

the input measured over that same period. For a finite-dimensional system, the

mapping from past input to future output is a finite-rank linear operator, and the

effect of the past input may be stored in a finite-dimensional vector defined as the

system state.

The central idea of realization theory is to factor this mapping from past

input to future output into two parts: a map from the input to the state, and

another from the state to the output. This factorization provides a complete de-

scription of the system dynamics and guarantees the representation is both causal

and finite-dimensional; thus it can be physically constructed, or realized.

Realization-based identification refers to system identification methods that

construct system models by identifying the mapping from past input to future

output and constructing a state-space representation via a rank-reducing factor-

ization. The non-deterministic nature of identification requires that both these

steps be carefully considered to guarantee consistent estimates.

This chapter presents the central theory behind realization-based system

identification. The unifying quality of the various methods presented in this dis-

sertation is that the state dynamics of a discrete-time LTI system may by found

by examining single time-shifts in sequences of data. Some definitions from the

previous chapter may be repeated for convenience and clarity.

17
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2.1 Properties of the System Hankel Matrix

The realization problem begins with the construction of structured data

matrices. We first examine data matrices that define the relationship between

infinite-dimensional vectors of input and output data. These vectors are then con-

catenated to form finite-dimensional equations containing state-space parameters.

Suppose for now that the measured input and output data from a noise-

free system with minimal state dimension is known perfectly. From the Markov-

parameter convolution

y(t) =
∞∑
k=0

G(k)u(t− k), (2.1)

an infinite-dimensional column vector of all output data may be expressed as the

product of a block-Toeplitz convolution matrix and an infinite-dimensional column

vector of all input data,

...

y(t− 3)

y(t− 2)

y(t− 1)

y(t)

y(t+ 1)

y(t+ 2)
...


=



. . . · · · 0

· · · G(0)
...

· · · G(1) G(0)

· · · G(2) G(1) G(0)

· · · G(3) G(2) G(1) G(0)

· · · G(4) G(3) G(2) G(1) G(0)

· · · G(5) G(4) G(3) G(2) G(1) G(0)
...

...
...

...
...

...
. . .





...

u(t− 3)

u(t− 2)

u(t− 1)

u(t)

u(t+ 1)

u(t+ 2)
...


,

where the matrices are partitioned so that the past, that is, everything before

the current time t, has been separated from the present and future. The present

and future output, that is, y(t) for t ≥ 0, may be separated into past and future

components as

yf =


G(1) G(2) G(3) · · ·
G(2) G(3) G(4) · · ·
G(3) G(4) G(5) · · ·

...
...

...

up +


G(0)

G(1) G(0)

G(2) G(1) G(0)
...

...
...

. . .

uf ,
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where

yf =


y(t)

y(t+ 1)

y(t+ 2)
...

 , up =


u(t− 1)

u(t− 2)

u(t− 3)
...

 , and uf =


u(t)

u(t+ 1)

u(t+ 2)
...

 .

The matrix

H =


G(1) G(2) G(3) · · ·
G(2) G(3) G(4) · · ·
G(3) G(4) G(5) · · ·

...
...

...

 (2.2)

is the infinite-dimensional system Hankel matrix. It maps past input to future

output, and in some respects its 2-norm ||H||2 is well-suited for defining the “gain”

of an LTI system. (See, for instance, Zhou, Doyle, and Glover [86]). Substitution

of the state-space parameters from the relationship

G(k) =

D k = 0

CAk−1B k > 0

reveals that (2.2) is the product of the infinite-dimensional extended observability

matrix

O =


C

CA

CA2

...


and the infinite-dimensional extended controllability matrix 1

C =
[
B AB A2B · · ·

]
.

1Often Γ and Ω are used in the literature to denote the extended observability and extended
controllability matrices, respectively. This appears to date back to Rissanen [61] and related
papers that reinterpret Kalman’s results in an algebraic framework. In these papers, Ω is the set
of all homomorphisms mapping the nonpositive integers to the input vector space (the past and
present input) and Γ is the set of all homomorphisms mapping all positive integers to the output
vector space (the future output). Thus Ω defines the behavior of the past input and Γ defines
the behavior of the future output. The linear space Ω⊕ Γ is then a ring with convolution as the
product and the unit pulse as the identity.
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so that

H = OC.

Because rank(O) = rank(C) = n for a minimal system,

rank(H) = n.

Additionally, if the indices of H are shifted forward by 1 to form an infinite-

dimensional Hankel matrix

H ′ =


G(2) G(3) G(4) · · ·
G(3) G(4) G(5) · · ·
G(4) G(5) G(6) · · ·

...
...

...

 , (2.3)

then substitution of (1.4) reveals

H ′ = OAC. (2.4)

Generally, we will only consider a finite “slice” of H, denoted

Hk =


G(1) G(2) · · · G(l)

G(2) G(3) · · · G(l + 1)
...

...
...

G(k) G(k + 1) · · · G(k + l − 1)

 (2.5)

which is the product of

Ok =


C

CA
...

CAk−1

 and Cl =
[
B AB · · · Al−1B

]
.

A finite-dimensional H ′k is defined similarly:

H ′k =


G(2) G(3) · · · G(l + 1)

G(3) G(4) · · · G(l + 2)
...

...
...

G(k + 1) G(k + 2) · · · G(k + l)

 (2.6)
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The index l is omitted from the subscripts of Hk and H ′k because the column

dimension is less significant in the later identification procedures.

If Hk is known exactly, then any factorization

Hk = OkCl

with valid dimensions will result in an Ok and Cl for some arbitrary state basis. If

H ′k is also known exactly, the parameter A in the same basis as Ok and Cl may be

found from

A = O†kH
′
kC
†
l , (2.7)

where (·)† is the Moore-Penrose pseudoinverse. Then with C taken from the top

ny rows of Ok, B taken from the first nu columns of Cl, and D = G(0), a complete

and minimal state-space realization may be found from a deterministic sequence of

Markov parameters. Only 2n+ 1 Markov parameters are needed to realize a state-

space system: the first parameter G(0) for D, the next 2n for H, and G(2n + 1)

for H ′. The state-basis of the resulting realization will of course depend on the

factorization used to find Ok and Cl.
At times only an estimate of the extended observability matrix Ok is avail-

able. In these cases, A can be estimated from the shift-invariance of Ok alone

as follows: Let O2|k denote block rows 2 through k of the infinite-dimensional

extended observability matrix, so that

O2|k =


CA

CA2

...

CAk−1

 .

Because

O2|kA = Ok−1,

A may be found from

A = O†2|kOk−1. (2.8)

This relationship is the basis of the Eigensystem Realization Algorithm (ERA) [30]

and the Multivariable Output-Error State-sPace (MOESP) methods [78]. A similar
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method may be used to solve for A by shifting the columns of the controllability

matrix [38].

2.2 Estimation of the System Hankel Matrix

The earliest realization-based identification methods factor estimates of Hk

directly where Hk is assumed to have rank n. Several ways to estimate Hk exist.

The most obvious is to apply a unit impulse on u(t) at time t = 0. Then G(k) =

y(k), and Hk may be constructed directly from measured output data. In practice,

however, many systems cannot be sufficiently excited from an impulse without

exciting undesired nonlinearities in the response, and even small amounts of noise

may severely degrade the quality of the estimate. Another possibility is to de-

convolve the output with the input, but this will amplify noise beyond usable

levels in most cases.

Alternatively, the Markov parameter sequence is the inverse discrete Fourier

transform of the frequency-response function of the system [30], so that given the

Fourier transforms F [u(t)] = U(eiω) and F [y(t)] = Y (eiω),

G(k) = F−1
[
Y (eiω)

U(eiω)

]
.

If the frequency response measurement is accurate enough, it may be used to gen-

erate estimates of the Markov parameters which may be used to construct Hk

directly. A broadband input excitation signal, however, is required to estimate

and invert the frequency response function with sufficient accuracy. These and ad-

ditional difficulties associated with inverting the frequency response are discussed

in the introduction of McKelvey, Akçay, and Ljung [44].

We have not yet addressed the effects of noise on the estimate of Hk or on

the factorization OkCl. Let Ĥk be the estimate of Hk constructed from estimated

Markov parameters. If Ĥk has an error term

Ĥk = Hk + E,

where E is the result of a stochastic process, then Ĥk will have full rank instead

of rank n if k > n, and a factorization into valid-dimensioned Ok and Ck will only
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be possible if n = k. Generally either the order of the system is unknown, or

we would like to use more than the first 2n + 1 Markov parameters to estimate

the system so that we may have an estimate Ĥk with 2-norm closer to Hk. This

requires reducing the rank of Ĥk.

2.3 Factorization of the Estimated Hankel Ma-

trix

In this section we study the factorization of an estimated system Hankel

matrix Ĥk with k ≥ n, which has rank greater than the rank of the system n.

It is clear that no exact rank-n factorization exists, and so we must first solve a

rank-reduction problem prior to factorization.

2.3.1 Rank Reduction of the Estimate

The obvious tool for reducing the rank of matrices is the singular-value

decomposition (SVD). Estimating the system parameters this way is known as

Kung’s method [38]. Assume for now that n is known. The SVD of Ĥk is

Ĥk = UΣV T

where U and V T are orthogonal matrices and Σ is a diagonal matrix containing

the nonnegative singular values σi ordered from largest to smallest. The SVD for

a matrix is unique and guaranteed to exist, and the number of nonzero singular

values of a matrix is equal to its rank [22]. Because U and V T are orthogonal, it

also satisfies

Ĥk =
∣∣∣∣UΣV T

∣∣∣∣
2

= ||Σ||2 = σ1 (2.9)

where ||·||2 is the induced matrix 2-norm, and

Ĥk =
∣∣∣∣UΣV T

∣∣∣∣
F

= ||Σ||F =

(
l∑
i

σ2
i

)1/2

(2.10)
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where ||·||F is the Frobenius norm. From (2.9) and (2.10), we can directly see that

if the SVD of Hk is partitioned into

Ĥk =
[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]
,

where Un is the first n columns of U , Σn is the upper-left n × n block of Σ, and

V T
n is the first n rows of V T , the solution to the rank-reduction problem is [22]

Q = arg min
rank(Q)=n

∣∣∣∣∣∣Q− Ĥk

∣∣∣∣∣∣
2

= arg min
rank(Q)=n

∣∣∣∣∣∣Q− Ĥk

∣∣∣∣∣∣
F

= UnΣnV
T
n .

Additionally, ∣∣∣∣∣∣Q− Ĥk

∣∣∣∣∣∣
2

= σn+1,

which suggests that if the rank of Hk is not known beforehand, it can be deter-

mined from examining the nonzero singular values in the deterministic case and

from searching for a significant drop-off in singular values if only a noise-corrupted

estimate is available.

2.3.2 Choice of State Basis in Factorization

From the rank-n matrix Q, any factorization

Ĥk = ÔkĈl

can be used to estimate Ok and Cl. The error in the state-space realization, how-

ever, will depend on the chosen state basis. Generally we would like to have a

state variable with a norm ||xk||2 in between ||uk||2 and ||yk||2. As first proposed

in Zeiger and McEwen [85], choosing the factorization

Ôk = UnΣ1/2
n and Ĉl = Σ1/2

n V T
n (2.11)

results in ∣∣∣∣∣∣Ôk∣∣∣∣∣∣
2

=
∣∣∣∣∣∣Ĉl∣∣∣∣∣∣

2
=

√∣∣∣∣∣∣Ĥk

∣∣∣∣∣∣
2
, (2.12)

and thus, from a functional perspective, the mappings from input to state and

state to output will have equal magnitudes, and the scalar entries of the state
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vector xk will have similar magnitudes. State-space realizations that satisfy (2.12)

are sometimes called internally balanced realizations [10]. (Alternative definitions

of a “balanced” realization exist, however, and it is generally wise to verify the

definition in each context.)

With Ôk and Ĉl known, an estimate Â may be calculated by finding an

estimate of the shifted Hankel matrix H ′k. If Ĥ ′k is an estimate of H ′k, then choosing

the factorization (2.11) simplifies (2.7) to

Â =
(
Ôk
)†
Ĥ ′k

(
Ĉl
)†

= Σ−1/2n UT
n Ĥ

′
kVnΣ−1/2n .

By estimating B̂ as the first block column of Ĉl, Ĉ as the first block row of Ôk,
and D̂ as G(0), a complete state-space realization (Â, B̂, Ĉ, D̂) may be identified

from estimates of the system Markov parameters.

2.4 Pitfalls of Direct Realization Methods

Realization-based identification methods that generate a system estimate

from either a direct estimate of the system Hankel matrix or a Hankel matrix con-

structed of estimated Markov parameters have numerous difficulties when applied

to noisy measurements. Measuring an impulse response directly is often infeasible;

high-frequency damping may result in a measurement that has a very brief response

before the signal-to-noise ratio becomes prohibitively small, and a unit pulse will

often excite high-frequency nonlinearities that degrade the quality of the resulting

estimate. “Pre-loading” the system — applying an arbitrary initial condition, usu-

ally by bending a mechanical structure — and measuring the free-response when

released, can have similar difficulties.

Both these methods suffer from the fact that the input is not quasi-stationary,

and the only way to ensure that an estimate converges to its true value is repeat

experiments and average the results. This of course assumes that the experiments

are repeatable, which is often impractical.

Taking the inverse Fourier transform of the frequency response guarantees

that the estimates of the Markov parameters will converge as the dataset grows
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only so long as the input is broadband. Generally input signals decay at higher fre-

quencies, and calculation of the frequency response from the spectrum by inversion

of the input will amplify high-frequency noise.

We would prefer an identification method that is guaranteed to provide a

system estimate that converges to the true system as the amount of data measured

increases. This can only occur if the input is quasi-stationary. Unfortunately,

constraints on the input signal may make such experiments impossible, and so

methods that identify high-quality models without quasi-stationary input are still

quite valuable. In the following chapter, we present a realization-based identi-

fication procedure that constructs system estimates directly from step-response

measurements. The realization-based approach will later be extended to arbitrary

input-output data sequences.
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3 Realization from a Step

Response

Step-response measurements are perhaps the most common measurement

used for identification and model validation purposes. The experiments are simple

to conduct, and many common physical systems can be adequately approximated

by first or second order systems derived from graphical measurements of a step

response, so long as the measurement noise is low. When the system dynamics

cannot be approximated by low-order systems, however, or when measurement

noise is greater, common graphical methods often fail to identify system dynamics

with a sufficient degree of accuracy. Additionally, graphical methods are difficult

to automate and cannot be used to identify models with more than one output

signal.

Despite the popularity of step responses experiments in practice, identifica-

tion from step-response measurements is often overlooked in system identification

literature. It is generally assumed that more complex models require more complex

experiments in which convergence can be guaranteed as the length of the exper-

iment increases. While this is often the case, there are many systems for which

a step is the only feasible input. As an example, consider the cooking of food.

Repeated heating and cooling of food will fundamentally change the nature of the

response; once the food is cooked, then cooling will not un-cook it. A persistently

exciting input is clearly impossible in this case, yet the transient response to a

step-increase in temperature may still be adequately captured by a simple LTI

model.

Though modeling the thermal response of food might not be the most mo-

27
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tivational research problem, the difficulties in this example mirror many processes

in thermodynamics and manufacturing. Additionally, preliminary step-response

experiments conducted prior to a rigorous identification procedure are useful for

experimental design purposes, since even in situations with poor signal-to-noise ra-

tios, a step response is usually sufficient for determining the dominant fundamental

frequencies of the system [24].

For some processes, the primary target of identification is not the input-

output behavior, but the time constants that contribute to various lags in the

step response, sometimes referred to as the time-constant spectrum. Such methods

are often used for defect detection where the change in time-constants of a step-

response implies a manufacturing error. Time-constant spectrum methods are

mostly non-parametric. They are discussed further in Chapter 8.

This chapter presents a method for identifying models from a step response

based on an extension of the impulse-response realization procedure presented in

the previous chapter. It begins with an overview of existing methods. The step-

based realization procedure is then derived for single-input systems. The chapter

concludes by extending the method to multi-input systems with separate datasets

in which an experiment has been performed for each input.

3.1 Some Background for Step-Based Identifica-

tion Methods

Although most system identification methods identify discrete-time mod-

els, nearly all methods that are explicitly formulated to use step-response mea-

surements produce continuous-time models. Several likely reasons for this ex-

ist. Practicing engineers are often more comfortable with continuous-time models,

since continuous-time Newtonian physics is the foundation of most engineering

disciplines. Additionally, step-responses are most often used to identify simple,

low-order models for use with PID controllers, and most PID tuning rules require

continuous-time models.

Discrete-time models constructed using unconstrained least-squares meth-
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ods may have poles with negative real parts. Because the continuous-time poles

depend on the logarithm of the discrete-time poles for a zero-order hold discretiza-

tion, the discrete-time poles with negative real parts cannot be directly converted

to continuous-time poles. Thus, if a continuous-time model is desired as the final

result, direct continuous-time identification is often simpler than either constrained

discrete-time methods or more sophisticated continuous-time conversions.

As stated, most step-based identification methods are graphical; they are

typically based on either measuring tangent angles at various points in the step re-

sponse curves or measuring the rise time as well as the period and decay rate of any

oscillations. This limits the type of models that can be identified to first- or second-

order systems with a possible time delay. Other methods identify continuous-time

models by estimating the area of various regions in the step-response curve. Both

point-based and area-based methods tend to be sensitive to noise, though area-

based methods less so. Common graphical approaches may be found in the litera-

ture on PID control, notably Aström and Hägglund [4]. Rake [59] extends common

graphical methods to inputs beyond step-response measurements, such as pulses

or ramps.

Graphical methods typically require a complete response, which can be

problematic if the settling time of the system is particularly long. Often, the

steady-state value of a process to a step response is known beforehand, however,

and this additional knowledge can be used to construct a model from a partial

step response. Bi, Cai, Lee, Wang, Hang, and Zhang [7] develop a method for

estimation of a first-order system with a time delay by numerically measuring the

area between the curve of a step-response and its steady-state value which does

not require the system to settle to steady-state.

Non-graphical methods for identification from step-response measurements,

including non-parametric methods, are often based on numerically differentiating

the step response to estimate the system impulse response. A model may then

be identified from the impulse response using a method such as the realization-

based procedure previously presented. Although methods based on numerically

differentiating measured data are clearly limited in to cases in which noise levels
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are very low, they are still popular in some areas such as defect detection [69].

Another reason for a lack of step-based identification procedures is that if

the output of a linear system to a known input is solved for as a function of time, the

parameters of the system do not appear linearly in the analytical solution. Fitting

a parametric model of linear differential equations directly to a measured response

will require nonlinear optimization, which is prone to becoming stuck in non-

global minima. Although these problems are true of many system identification

methods, they are particularly troublesome when relatively small amounts of data

are available [40], which is often the case with step-response experiments.

One approach is to repeatedly integrate the response to construct a set of

auxiliary signals which have a linearly parameterized input-output relationship, of-

ten referred to as moment-based methods. This approach requires either explicitly

parameterizing any disturbances in the measurements or use of an instrumental-

variable technique to avoid integrating random variables. Details for this approach,

including parameterizations for initial conditions and distrubance models first ap-

pear in Whitfield and Messali [81], with asymptotic properties derived in Sagara

and Zhao [62]. Hwang and Lai [28] extend this method to include the identification

of time delays when using inputs with known integrals, such as step responses. A

very thorough survey of both graphical and numerical methods for identification

from step-responses can be found in Ahmed, Huang, and Shah [2].

Identification methods capable of generating models of higher than second-

order from noisy step-response measurements are rather rare. Even rarer are

methods which easily handle multiple-input-multiple-output (MIMO) systems and

initial conditions. In this chapter, we present method which overcomes these dif-

ficulties. It provides possibly high-order models from step-response measurements

of multivariable systems without nonlinear optimization or the requirement that

the response settle to steady-state. Additionally, separate step responses measured

from each input of a multi-input system may be used all at once in the identifi-

cation procedure to avoid estimating separate models for a MIMO system. In

Chapter 8, we add convex constraints to the method to guarantee that the models

may be converted to continuous time.
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3.2 Step-Based Realization

The method derived in the following is based on the realization-theoretic

framework presented earlier, which constructs system estimates from an impulse

response. The method was originally derived for single-input-multi-output systems

in van Helmont, van der Weiden, and Anneveld [74], which applied the technique

to control design for coal-fired water boilers. It appears to have been mostly

forgotten until de Callafon, Moaveni, Conte, He, and Udd [15], which used Markov

parameter estimates to generalize the method to arbitrary input-output signals.

An alternative generalization to input-output data will be presented in Chapter 4.

It was re-derived by the author in the context of subspace identification methods

in Miller and de Callafon [52]; this alternative interpretation easily extends to

multi-input systems and systems which have nonzero initial conditions.

3.2.1 Step-Response Data Matrix Equations

We first derive the method for single-input systems initially at steady-state.

Consider again the state-space system (1.2), and suppose for now that the system

is single-input with no noise. Let y(t) be the output to a unit step applied from

rest at t = 0. We wish to express y(t) in terms of the system Hankel matrix Hk in

a way that allows us to use the properties of Hk to identify the system. Let Y1|k

be a block-Hankel matrix of output data

Y1|k =


y(1) y(2) · · · y(l)

y(2) y(3) · · · y(l + 1)
...

...
...

y(k) y(k + 1) · · · y(k + l − 1)

 ∈ Rnyk×l. (3.1)

This matrix may be expressed in terms of an upper-triangular Toeplitz matrix of

past input data

Up =


u(0) u(1) · · · u(l − 1)

u(0) · · · u(l − 2)
. . .

...

u(0)

 =


1 1 · · · 1

1 · · · 1
. . .

...

1

 ∈ Rl×l,
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a Hankel matrix of input data, which in this case is entirely 1,

U1|k =


u(1) u(2) · · · u(l)

u(2) u(3) · · · u(l + 1)
...

...
...

u(k) u(k + 1) · · · u(k + l − 1)

 =


1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1

 ∈ Rk×l,

the finite system Hankel matrix Hk ∈ Rnyk×l from (2.5), and a block-Toeplitz

matrix of Markov parameters

T0|k−1 =


G(0)

G(1) G(0)
...

...
. . .

G(k − 1) G(k − 2) · · · G(0)

 ∈ Rnyk×k,

as

Y1|k = HkUp + T0|k−1U1|k. (3.2)

Because U1|k is a matrix entirely of 1, the effect of the left multiplication

by U1|k in (3.2) is to add all entries in each row of T0|k−1,

T0|k−1U1|k =


G(0) G(0) · · · G(0)

G(0) +G(1) G(0) +G(1) · · · G(0) +G(1)
...

...
...∑k−1

i=0 G(i)
∑k−1

i=0 G(i) · · ·
∑k−1

i=0 G(i)

 .
Because u(t) is 1,

y(t) =
t∑

k=0

G(t),

and the product T0|k−1U1|k can be expressed in terms of y(t) as

M =


y(0) y(0) · · · y(0)

y(1) y(1) · · · y(1)
...

...
...

y(k − 1) y(k − 1) · · · y(k − 1)

 = T0|k−1U1|k. (3.3)

M may then be used to solve for HkUp:

HkUp = Y1|k −M.
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If Y2|k+1 is Y1|k shifted forward by one time step to form

Y2|k+1 =


y(2) y(3) · · · y(l + 1)

y(3) y(4) · · · y(l + 2)
...

...
...

y(k + 1) y(k + 1) y(k + l)

 , (3.4)

this may be expressed in terms of the shifted Hankel matrix H ′k in (2.6) as

Y2|k+1 = H ′kUp + T1|kU1|k+1 (3.5)

where the block-Toeplitz matrix of Markov parameters now has an additional col-

umn on the left,

T1|k =


G(1) G(0)

G(2) G(1) G(0)
...

...
...

. . .

G(k) G(k − 1) G(k − 2) · · · G(0)


and the “future” input data matrix has an additional row so that

U1|k+1 =

 U1|k

u(k + 1) · · · u(k + l)

 .
Similarly,

M ′ = T1|kU1|k+1 =


y(1) y(1) · · · y(1)

y(2) y(2) · · · y(2)
...

...
...

y(k) y(k) · · · y(k)

 . (3.6)

Thus M ′ may be used to solve for H ′kUp via

H ′kUp = Y2|k+1 −M ′.

As with estimation directly from the system Hankel matrix, in the deter-

ministic case, any appropriately-dimensioned factorization

HkUp = (Ok)(ClUp) (3.7)
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results in a solution

A = O†k(H
′
kUp)(ClUp)† = O†kH

′
kC
†
l

when the matrices are constructed from noise-free data. Nondeterministic effects,

however, will result in the data matrix equations (3.2) and (3.5) having error terms

Y1|k = HkUp + T0|k−1U1|k + E (3.8)

Y2|k+1 = H ′kUp + T1|kU1|k+1 + E ′. (3.9)

The result is that Y1|i will have full rank, and a factorization (3.7) will not exist.

As before, we solve this problem by reducing the rank of the data matrices.

3.2.2 Rank Reduction and Factorization

If the output y(t) is corrupted by measurement noise, we have only the

approximations

M ≈ T0|k−1U1|k

M ′ ≈ T1|kU1|k+1

to remove the effects of the input after time t = 1. This will cause the estimates

HkUp ≈ Y1|k −M

H ′kUp ≈ Y2|k+1 −M ′

to have full rank. From the SVD

Y1|k −M =
[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]
(3.10)

a 2-norm and Frobenius-norm optimal rank-n estimate for HkUp is

HkUp ≈ ĤkUp = UnΣnV
T
n .

Since Up is known, at this point one could try to invert Up to solve for Ĥk.

Examining the inverse of Up, however, reveals

U−1p =


1 −1 0

1 −1
. . . . . .

0 1 −1

 ,
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and so multiplication on the right by U−1p is equivalent to numerically differen-

tiating the output data, which will amplify high-frequency noise. Fortunately,

removing the effects of Up is unnecessary. Similar to the factorization used with

direct estimates of Hk, we factor ĤkUp as

Ôk = UnΣ1/2
n and ĈlUp = Σ1/2

n V T
n .

A suitable estimate for the system dynamics is then

Â = Σ−1/2n UT
n (Y2|k+1 −M ′)VnΣ−1/2n

= (Ôk)†(Y2|k+1 −M ′)(ĈlUp)† (3.11)

≈ (Ôk)†H ′kUp(ĈlUp)†

≈ O†kH
′
kC
†
l ,

An estimate Ĉ may subsequently be taken as the first ny rows of Ôk.
An interesting property of (3.11) is that given estimates Ôk and ĈlUp, (3.11)

minimizes the cost function

Js(Â) =
∣∣∣∣∣∣ÔkÂ(ĈlUp)− Y2|k+1 +M ′

∣∣∣∣∣∣
F
. (3.12)

This will be used later to form a constrained step-based realization procedure.

Because the first column of Up is (1 0 · · · )T , the first column of ĈlUp will

provide a possible estimate B̂. Then with D̂ taken as y(0), a complete state-space

realization is found. Because B and D are linear in the output data, however,

optimal estimates may be calculated in a linear least-squares problem once Â and

Ĉ are known. Before formulating the least-squares problem, we first examine the

effects of initial conditions on the step-based realization procedure.

3.2.3 Nonzero Initial Conditions

For now, we return to the noise-free case. Nonzero initial conditions may

be represented as an additive past-input term Ui so that

Y1|k = HkUp +OkCUi + T0|k−1U1k
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where

Ui =



0 0 0 · · · 0

u(−1) 0 0 · · · 0

u(−2) u(−1) 0 · · · 0

u(−3) u(−2) u(−1) · · · 0
...

...
...

. . .
...


. (3.13)

Ui may potentially have infinite row dimension; Hk will have infinite column di-

mension, and the product Hk(Up + Ui) will still be finite. From the structure of

(3.13), we can see that (Up + Ui) will still have full column rank unless u(t) = 1

for all t < 0, that is, unless the system is at steady-state throughout the entire

experiment.

To examine what effect the extended past input has on the output data

matrix, we instead represent its effects in terms of the state vector x(t):

Hk(Up + Ui) = OkClUp +OkCUi

= Ok
[
x(1) x(2) · · · x(l)

]
= OkX.

The effect of shifting the Markov parameters in Hk is then

H ′k(Up + Ui) = OkAClUp +OkACUi

= OkAX,

and the data matrix equations become

Y1|k = OkX + T0|k−1U1|k

and

Y2|k+1 = OkAX + T ′1|kU1|k+1.

Because the output y(t) is now

y(t) =
t∑

k=0

G(t) + CAtx(0),
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M and M ′ have additive terms

M = T0|k−1U1|k +OkX0

M ′ = T ′0|k−1U1|k+1 +OkAX0,

where

X0 =
[
x(0) x(0) · · · x(0)

]
∈ Rn×l.

Subtracting M and M ′ as is done with zero initial conditions results in

Y1|k −M = OkX −OkX0 = Ok(X −X0)

Y2|k+1 −M ′ = OkAX −OkAX0 = OkA(X −X0).

Non-deterministic effects will result in error terms for both equations and

require a rank-reducing factorization as before. The SVD (3.10) may then be

instead used to factor estimates

Ôk = UnΣ1/2
n and X̂ − X̂0 = Σ1/2

n V T
n

and a suitable estimate for the system dynamics is

Â = Σ1/2
n UT

n (Y2|k+1 −M ′)VnΣ−1/2n (3.14)

= (Ôk)†(Y2|k+1 −M ′)(X̂ − X̂0)
†

≈ (Ôk)†(Ok)A(X −X0)(X̂ − X̂0)
†

≈ A.

Thus in the case of nonzero initial conditions, A may be estimated as before

without any changes in the algorithm. C may still be approximated as the first ny

rows of Ôk, but B can no longer be approximated by the first column of Σ
1/2
n V T

n ,

and D from y(0). We can, however, parameterize a linear-least-squares problem

to estimate B, D, and an initial condition x(0).

3.3 Estimation of Input Parameters

If A and C are known, then B, D and an initial condition x(0) are linear

in the input-output data and may be identified by solving a linear-least-squares
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problem. This may be seen from the convolution

y(t) =
∞∑
k=0

G(k)u(t− k) =
t−1∑

k=−∞

CAt−k−1Bu(k) +Du(t) + CAtx(0). (3.15)

For a step-response, this reduces to

y(t) =
t−1∑
k=0

CAt−k−1B +D + CAtx(0)

Thus estimates of B, D, and x(0) may be found by solving the linear-least squares

problem

θ̂ =


B̂

D̂

x(0)

 , θ̂ = min
θ

∣∣∣∣y − φT θ∣∣∣∣
2
, (3.16)

where

y =


y(0)

y(1)
...

y(N − 1)

 ∈ RnyN and φT =



0 1 C

C 1 CA

CA 1 CA2

CA2 1 CA3

...
...

...

CAN−2 1 CAN−1


. (3.17)

θ̂ has the unique solution

θ̂ = (φT )†y. (3.18)

Because θ̂ is the solution to a least-squares problem, it will provide more optimal

estimates of B and D than would be obtained from the first column of Ôl and

y(0), respectively. If it is assumed that the system has a known time-delay so that

D = 0, or that the system has zero initial conditions so that x(0) = 0, then the

relevant rows of θ and columns of φT can be removed.

3.4 Extension to Multi-Input Systems

The step-based realization procedure can be trivially extended to multi-

input systems if separate experiments are applied for each input; it turns out that,
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as with the case of nonzero initial conditions, the generalized realization procedure

requires virtually no modification.

If a system has multiple inputs, separate steps on each input are necessary to

identify the system from step-response measurements. The step-based realization

procedure, however, can be performed on all data at once. Suppose the input

u(t) has dimension nu. Let Y
(i)
1|k and Y

(i)
2|k+1 be the data matrices (3.1) and (3.4),

respectively, constructed from the response of the system to a unit step applied to

input i. If we extend the definition of Y1|k and Y2|k+1 to

Y1|k =
[
Y

(1)
1|k · · · Y

(nu)
1|k

]
and Y2|k =

[
Y

(1)
2|k+1 · · · Y

(nu)
2|k+1

]
, (3.19)

and similarly extend the definitions

U1|k =
[
U

(1)
1|k · · · U

(nu)
1|k

]
, U1|k+1 =

[
U

(1)
1|k+1 · · · U

(nu)
1|k+1

]
,

and

Up =
[
U

(1)
p · · · U

(nu)
p

]
,

then these extended matrices still satisfy (3.2) and (3.5). By similarly extending

the definitions of M and M ′ to be the composite matrices

M =
[
M (1) · · · M (nu)

]
and M ′ =

[
M ′(1) · · · M ′(nu)

]
, (3.20)

we see that

M ≈ T0|k−1

[
U

(1)
1|k · · · U

(nu)
1|k

]
and M ′ ≈ T1|k

[
U

(1)
1|k+1 · · · U

(nu)
1|k+1

]
,

and thus the step-based realization procedure may be performed on multiple step-

response data sets. As with the single-input case, nonzero initial conditions re-

quire no modifications to the algorithm. With A and C estimated, the individual

columns of B and D and an initial condition x(0) can be estimated via linear least

squares for each experiment.

3.5 Summary of the Step-Based Realization Pro-

cedure

The following steps completely describe the step-based realization algo-

rithm:
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1. Construct the block-Hankel data matrices Y1|k in (3.1) and Y2|k+1 in (3.4).

Concatenate blocks of Y
(i)
1|k and Y

(i)
2|k+1 as in (3.19) if multi-input data is used.

2. Construct the column-identical matrices M in (3.3) and M ′ in (3.6). Con-

catenate blocks of M (i) and M ′(i) as in (3.20) if multi-input data is used.

3. Take the SVD of Y1|k −M . Examine the singular values to determine the

system order if needed.

4. Partition the SVD as in (3.10). Solve for Â from (3.14) and Ĉ from the first

ny rows of UnΣ
1/2
n .

5. From Â and Ĉ, construct the regressor φT in (3.17) and solve for B̂, D̂, and

x̂(0) from (3.14), removing corresponding rows of θ and columns of φT if D

or x(0) is known to be 0.

The procedure is demonstrated in the following example, and in Chapter 8.

Example 3.1. Consider the 4th-order system with state-space parameters

 A B

C D

 =



0.95 0.1 0 0 −0.01209

−0.1 0.95 0 0 0.2429

0 0 0.93 0.3 0

0 0 −0.3 0.93 0.4246

0.4039 0.4039 −0.0955 −0.2196 0

0.2 0.3 −0.4 0.3 0


.

The deterministic step response of this system is seen in Figure 3.1. Suppose

independent white noise signals of variance σ2 = 0.003 are added to each output of

the measured data. A sample realization of the measured step response together

with the true response is shown in Figure 3.1.

The step-based realization procedure was applied to the measured noisy

data. The data matrices were given a block row dimension of k = 30. The singular

values of Y1|k−M are shown in Figure 3.2. The model order n = 4 is clearly visible

in the magnitude of the singular values. The response of the system estimate is
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Figure 3.1: Step response for Example 3.1.

shown with the measured and true responses in Figure 3.1. It was assumed that

D = 0 is known for the least-squares solution of B.

For comparison purposes, the raw numerical derivatives of the noisy and

noise-free step responses are shown in Figure 3.3. Methods that rely on numerical

differentiation will evidently require sophisticated smoothing techniques.
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4 Realization from Input-Output

Data

Although the step-based realization method provides very good estimates

even in the case of noise-corrupted measurements, convergence to the true system

can only be guaranteed if the step-response is repeatedly measured and the output

data averaged. In the following, we extend the realization-based identification

method to arbitrary sequences of input-output data. This method is guaranteed

to converge to the true system estimate as the length of the dataset increases. The

final method can be categorized as a subspace identification method. Differences

between the presented method and alternative subspace methods will be discussed

in the conclusion of the chapter.

4.1 Input-Output Data Matrix Equations

We begin by reformulating the previous data-matrix equations for the gen-

eral case. Some definitions from previous sections are repeated here to aid the

theoretical development. Let the input-output behavior of a discrete-time, LTI

system be described in state-space form with a noise signal v(t) ∈ Rny added to

the output:

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t).
(4.1)

The noise v(t) may be either white or colored, which includes the case of the

noise-generating process sharing eigenvalues with A.

44
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Consider a block-Hankel matrix of r block rows and l columns of measured

output data starting with the sample y(0),

Y0|r−1 =


y(0) y(1) · · · y(l − 1)

y(1) y(2) · · · y(l)
...

...
...

y(r − 1) y(r) · · · y(r + l − 2)

 ∈ Rnyr×l, (4.2)

and a block-Hankel matrix of r block rows and l columns of measured input data

starting with the sample u(0),

U0|r−1


u(0) u(1) · · · u(l − 1)

u(1) u(2) · · · u(l)
...

...
...

u(r − 1) u(r) · · · u(r + l − 2)

 ∈ Rnur×l. (4.3)

These data matrices satisfy

Y0|r−1 = HrUp + T0|r−1U0|r−1 + V0|r−1, (4.4)

where

Hr =


G(1) G(2) G(3) · · ·
G(2) G(3) G(4) · · ·

...
...

...

G(r) G(r + 1) G(r + 2) · · ·

 ∈ Rnyr×∞,

Up =


u(−1) u(0) · · · u(l − 2)

u(−2) u(−1) · · · u(l − 3)

u(−3) u(−2) · · · u(l − 4)
...

...
...

 ∈ R∞×l,

T0|r−1 =


G(0)

G(1) G(0)
...

...
. . .

G(r − 1) G(r) · · · G(0)

 ∈ Rnyr×nur,

and V0|r−1 is a matrix of noise v(t) with the same dimensions and indices as Y0|r−1.



46

Similarly, a forward-shifted block-Hankel output data matrix

Y1|r =


y(1) y(2) · · · y(l)

y(2) y(3) · · · y(l + 1)
...

...
...

y(r) y(r + 1) · · · y(r + l − 1)

 ∈ Rnyr×l (4.5)

may be expressed in terms of a forward-shifted system Hankel matrix

H ′r =


G(2) G(3) G(4) · · ·
G(3) G(4) G(5) · · ·

...
...

...

G(r + 1) G(r + 2) G(r + 3) · · ·

 ∈ Rnyr×∞

and a shifted block-Toeplitz matrix

T1|r =


G(1) G(0)

G(2) G(1) G(0)
...

...
...

. . .

G(r) G(r − 1) G(r − 2) · · · G(0)



=


G(1)

... T0|r−1

G(r)

 ∈ Rnyr×nu(r+1)

as

Y1|r = H ′rUp + T1|rU0|r + V1|r, (4.6)

in which

U0|r =

 U0|r−1

u(r) · · · u(r + l − 1)

 ∈ Rnu(r+1)×l (4.7)

and V1|r is a block-Hankel matrix of noise terms v(t) with the same indices as Y1|r.

An important quality of (4.4) and (4.6) is that the index r in U0|r−1 may be

replaced with any index r̄ ≥ r without invalidating the equations; causality and

dimensional consistency are retained by appending ‘0’s to the right-hand side of
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T0|r−1. Thus U0|r−1 may be replaced with U0|r and T0|r−1 with

T ′0|r−1 =


0

T0|r−1
...

0

 .
in (4.4) so that both equations contain the same input matrix:

Y0|r−1 = HrUp + T ′0|r−1U0|r︸ ︷︷ ︸
=T0|r−1U0|r−1

+V0|r−1

This will have important consequences when forming projection matrices to remove

U0|r in Section 4.2.

The column dimensions of Hr and H ′r and the row dimension of Up may be

infinite in the above equation, but their product is finite. To express (4.4) and (4.6)

with terms of finite dimensions, we note that a matrix of system states satisfies

X =
[
x(0) x(1) · · · x(l − 1)

]
= CUp ∈ Rn×l,

where C has infinite column dimension. Hence (4.4) and (4.6) may be alternatively

stated as

Y0|r−1 = OrX + T ′0|r−1U0|r + V0|r−1 (4.8)

and

Y1|r = OrAX + T1|rU0|r + V1|r. (4.9)

In this case the shift-invariance of Hr is seen explicitly. Readers familiar with

traditional subspace identification methods will recognize that (4.8) with U0|r−1

in place of U0|r is the fundamental “data equation” employed by most subspace

algorithms.

As with step-based realization, our goal is to remove the effects of T ′0|r−1

and T1|r from the row spaces of Y0|r−1 and Y1|r, respectively, and then perform

the realization-type procedure on the results. We could try a tactic similar to the

approximations used in the step-based method. Suppose we have measurements

of u(t) and y(t) for s samples prior to t = 0. Given the block reflector matrix

R =


Inu 0

. . .

0 Inu


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and some “past horizon” index s > l, we can find a relationship[
Y−s|−1

Y0|r−1

]
=

[
T0|r−1

HrR T0|r−1

][
U−s|−1

U0|r−1

]
+Or+sX−s, (4.10)

where

Y−s|−1 =


y(−s) y(−s+ 1) · · · y(−s+ l − 1)

y(−s+ 1) y(−s+ 2) · · · y(−s+ l)
...

...
...

y(−1) y(0) · · · y(r + l − 1)

 ,
U−s|−1 is defined similarly, and

X−s =
[
x(−s) · · · x(−s+ l − 1)

]
Assuming U−s|−1 has full row rank, from

Y−s|−1 = T0|r−1U−s|−1 +OsX−s,

we find

Y−s|−1U
†
−s|−1U0|r = T ′0|r−1U0|r +OsX−sU †−s|−1U0|r,

and thus, in the deterministic case, subtraction of (4.8) by Y−s|−1U
†
−s|−1U0|r−1 will

remove the effects of T0|r−1 from the row space of Y0|r−1. In fact, this does indeed

reduce to the step-based method when used with step-response data if s = r

and Y0|r−1 instead starts with sample y(1). Thus a potential candidate for the

realization-based procedure are the pair of matrices

HrUp ≈ Y0|r−1 − Y−s|−1U †−s|−1U0|r

H ′rUp ≈ Y1|r − Y−s+1|0U
†
−s+1|0U0|r.

While this will provide exact results in the deterministic case, the right-hand mul-

tiplication of U †−s|−1 will tend to amplify noise for arbitrary input sequences and

degrade the resulting estimate. Fortunately, when U0|r has full row rank, we can

incorporate the use of projection matrices to remove the row spaces of T0|r−1 and

T1|r in a least-squares sense.
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4.2 Null Space Projection of the Data Matrices

To remove the effects of future input on the row space of Y0|r−1 and Y1|r, we

construct null-space projectors of the input. This projection has some optimality

properties that make it well suited to experiments with input sequences that result

in a U0|r with full row rank. The projection can be interpreted in two ways: a

geometric projection and a Gram-Schmidt type orthogonalization of the data. We

first present the projection as a solution to a least-squares problem, then discuss

both interpretations.

4.2.1 Least-Squares Solution of the Extended Observabil-

ity Matrix Row-Space

For the step-based method, we used knowledge of U0|r−1 to estimate the

product T0|r−1U0|r−1. For the case of arbitrary input and output data, however,

we can find an optimal estimate of T0|r−1 when U0|r has full row rank. For the

unshifted data-matrix equation (4.8), we define optimality by solving the following

least-squares problem [79]:

min
T̂ ′
0|r−1

∣∣∣∣∣∣Y0|r−1 − T̂ ′0|r−1U0|r

∣∣∣∣∣∣
F
. (4.11)

If U0|r has full row rank, then this has the analytical solution

T̂ ′0|r−1 = Y0|r−1U
†
0|r.

Thus a suitable estimate for the row space of Or may be found from

Y0|r−1 − T̂ ′0|r−1U0|r = Y0|r−1 − Y0|r−1U †0|rU0|r

= Y0|r−1
(
Il − UT

0|r(U0|rU
T
0|r)
−1U0|r

)
= Y0|r−1ΠU⊥

= OrXΠU⊥ + V0|r−1ΠU⊥ .

The matrix

ΠU⊥ = Il − UT
0|r(U0|rU

T
0|r)
−1U0|r (4.12)
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is the projector for the null-space of U0|r and satisfies the property

U0|rΠU⊥ = 0.

For the shifted data-matrix equation (4.9), we solve the similar problem

min
T̂1|r

∣∣∣∣∣∣Y1|r − T̂1|rU0|r

∣∣∣∣∣∣
F
.

This has the solution

T̂1|r = Y1|rU
†
0|r,

and thus the estimate used to find OrA can be taken from

Y1|r − T̂1|rU0|r = Y1|r − Y1|rU †0|rU0|r

= Y1|r
(
Il − UT

0|r(U0|rU0|r)
−1U0|r

)
= Y1|rΠU⊥

= OrAXΠU⊥ + V1|rΠU⊥ .

It is very important that the same projector matrix is used for both equations so

that the product XΠU⊥ appears in both equations. An estimate of XΠU⊥ from

the unshifted equation will be used to estimate A from the shifted equation.

Before discussing various interpretations of the solution of (4.11), scruti-

nizing the equation more closely reveals that a “more optimal” estimate of T ′0|r−1

would account for the effects of OrX on the output data, so that by instead mini-

mizing

min
T̂ ′
0|r−1

∣∣∣∣∣∣Y0|r−1 −OrX − T̂ ′0|r−1U0|r

∣∣∣∣∣∣
F

= min
T̂ ′
0|r−1

∣∣∣∣∣∣T ′0|r−1U0|r − T̂ ′0|r−1U0|r + V0|r−1

∣∣∣∣∣∣
F
,

the residuals would be limited to the noise term only. The category of subspace

identification methods known as “Predictor-Based Subspace Identification” (PB-

SID) methods compute a preliminary estimate of OrX for just such a purpose

[13].

4.2.2 Geometric Interpretation

From now on we will always assume that the input data matrix U0|r has full

row rank. We have seen that the optimal-in-a-sense method to remove the effects
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of T ′0|r−1 and T1|r from the row spaces of Y0|r−1 and Y1|r, respectively is equivalent

to multiplication on the right by the projector matrix ΠU⊥ :

Y0|r−1ΠU⊥ = OrXΠU⊥ + V0|r−1ΠU⊥ (4.13)

Y1|rΠU⊥ = OrAXΠU⊥ + V1|rΠU⊥ . (4.14)

Geometrically, this a null-space projection onto the null space of U0|r. This projec-

tion is guaranteed to separate the output from the future input. This also has the

effect of projecting the states X onto the null space of U0|r as well, and thus we

see why it is necessary to use the same projection for both unshifted and shifted

equations. Projector matrices such as ΠU⊥ have many interesting properties, an

overview of which can be found in Appendix B.1.

Because U0|r has full row rank, the dimension of the null space of U0|r is the

difference between its columns and its rows [65]:

dim(null(U0|r)) = l − r,

and thus rank(ΠU⊥) = l − r. A necessary condition to preserve the rank of OrX
and OrAX when multiplying by ΠU⊥ is that ΠU⊥ have rank n. Hence

l ≥ n+ r

is a necessary condition to preserve the rank of OrX and OrAX. This provides a

necessary condition on the dimensions of the data matrices. We must also satisfy

rank(XΠU⊥) = n,

so that the state dimension is preserved under the projection. This may safely

be assumed true for nearly all input signals. For an extensive analysis of both

necessary and sufficient conditions to preserve the rank of OrX under a null space

projection and the relationship of the conditions to persistency of excitation see

Willems, Rapisarda, Markovsky, and De Moor [82].

4.2.3 LQ-Factorization Interpretation

Rather than implementing the projections of (4.13) and (4.14) by explicitly

forming projector matrices, the projected matrix products Y0|r−1ΠU⊥ and Y1|rΠU⊥
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may be found within LQ-decompositions. The LQ-decomposition of a matrix is

the transpose of the QR-decomposition of its transpose, that is,

P = LQT ⇔ P T = QLT = QR.

If we take the LQ decompositions[
U0|r

Y0|r−1

]
=

[
L11 0

L21 L22

][
QT

1

QT
2

]

and [
U0|r

Y1|r

]
=

[
L11 0

L′21 L′22

][
QT

1

Q′2
T

]
,

it can be seen from substitution that

Y0|r−1ΠU⊥ = L22Q
T
2 (4.15)

Y1|rΠU⊥ = L′22Q
′
2
T

(4.16)

The algorithm may then be performed with L22Q
T
2 in place of Y0|r−1ΠU⊥

and L′22Q
′
2
T in place of Y1|rΠU⊥ . This calculation, though less unintuitive, is far

more numerically efficient.

In addition to being more numerically efficient, the LQ-decomposition has

an interesting interpretation by itself. Because the individual columns of
[

U0|r
Y0|r−1

]
and

[
U0|r
Y1|r

]
are pairs of input-output sequences, the LQ-decomposition is equivalent

to a Gram-Schmidt process in which the principle of superposition is exploited to

form new pairs of input-output sequences. The columns of the blocks L22Q
T
2 and

L′22Q
′
2
T then correspond to free-response output data since the input for these

newly formed sequences is 0. This interpretation is primarily due to Katayama

[37].

4.3 Classical Subspace Identification Methods

Traditional subspace methods focus on (4.13) only, with the projector (4.12)

constructed instead from U0|r−1. The system dynamics are then estimated from
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some shift-invariant property of the factorization. Though some notable exceptions

exist, most subspace identification methods are identical up to this point.

As with the other realization-based methods, we will use the SVD of the

data matrices for rank reduction. In the following section, we briefly review the two

most common subspace methods and their relationship to the general realization

problem. We then present an alternative method that uses the shift invariance

found in (4.13) and (4.14) to estimate the system dynamics.

4.3.1 MOESP

If the noise v(t) is white and the output and input data matrices are sepa-

rated into two parts

Y0|r−1 =

[
Y0|k−1

Yk|r−1

]
and U0|r−1 =

[
U0|k−1

Uk|r−1

]
,

and the projector ΠU⊥ is defined with Uk|r−1 in (4.12), then the right-hand multi-

plication

1

N
Yk|r−1ΠU⊥Y

T
0|k−1 =

1

N
OrXΠU⊥Y

T
0|k−1 +

1

N
Vk|r−1ΠU⊥Y

T
0|k−1

will converge with increasing column dimension l to

1

N
Yk|r−1ΠU⊥Y

T
0|k−1 =

1

N
OrXΠU⊥Y

T
0|k−1.

From the SVD

1

N
Yk|r−1ΠU⊥Y

T
0|k−1 =

[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]
,

it can be shown that Un converges to the row space of Or, and thus

Ôr = Un

will converge to the extended observability matrix corresponding to some state

basis as l→∞. A can then be estimated from

Â =
(
Ôr
)†
(1:(r−1)ny , :)

(
Ôr
)
(ny+1:rny , :)

(4.17)
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where the subscripts denote Matlab-style indexing. This is known as Past-

Output-MOESP (PO-MOESP).

If v(t) is colored, then the right-hand multiplication

1

N
Yk|r−1ΠU⊥U

T
0|k−1 =

1

N
OrXΠU⊥U

T
0|k−1 +

1

N
Vk|r−1ΠU⊥U

T
0|k−1

will converge to
1

N
Yk|r−1ΠU⊥U

T
0|k−1 =

1

N
OrXΠU⊥U

T
0|k−1

under some additional assumptions placed on the input. In this case, the SVD

1

N
Yk|r−1ΠU⊥U

T
0|k−1 =

[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]
has the property that row space of Un converges to the row space of Or. This is

known as Past-Input-MOESP (PI-MOESP). For both cases, B, D, and a possible

initial condition x(0) are solved for in a linear least squares problem, which will

be discussed in detail at the end of the chapter. Overviews of the MOESP family

of subspace methods may be found in the book Verhaegen and Verdult [78].

4.3.2 N4SID

If the noise v(t) is the result of additive white noise on the state and the

output, then the SVD

Y0|r−1ΠU⊥ =
[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]
may be interpreted as the factorization

Ôr = UnS
1/2
n X̃ = S1/2

n V T
n

in which X̃ = XΠU⊥ is a bank of Kalman filter states for the free response of

the system. The state dynamics may then be estimated using the shift-invariant

structure of X̃. In fact, all parameters (A, B, C, D) as well as a noise parameter

K may be estimated via the least squares problem

min
[A B
C D ]

∣∣∣∣∣
∣∣∣∣∣
[
X̃ ′

Y

]
−

[
A B

C D

][
X̃

U

]
−

[
K

I

]
E

∣∣∣∣∣
∣∣∣∣∣
F
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where X̃ ′ is X̃ shifted forward by one index and E is a column-wise sequence of

noise in innovations form. This method is known as N4SID (somehow an acronym

for “Numerical Methods for Subspace System Identification.”)

Alternatively, (4.17) may be used to estimate the system dynamics and a

least-squares problem used to estimate B, D, and K only. This is known as Robust

N4SID and is implemented in the Matlab System Identification Toolbox’s “n4sid”

function. Details for these methods may be found in the book Van Overschee and

De Moor [76].

4.4 Subspace Identification by Shift-Invariance

in the Output Data

Both the MOESP and N4SID family of algorithms provide system estimates

through the shift-invariance of the factorizations which result from the SVD. In

this section, we instead proposed a method which uses the shift-invariance of the

output data itself to form a subspace identification method more closely related to

classical realization theory.

Let us first consider the noise-free case, beginning with the projected output

term

Y0|r−1ΠU⊥ = OrXΠU⊥ .

Assume rank(Y0|r−1ΠU⊥) = n. Given some factorization of OrXΠU⊥ into appro-

priately dimensioned terms Or and XΠU⊥ , we have

O†rY1|rΠU⊥(XΠU⊥)† = O†rOrAXΠU⊥(XΠU⊥)†

= O†rOrA(ClUpΠU⊥)(ClUpΠU⊥)†

= O†rH ′rUpΠU⊥(ClUpΠU⊥)†

= O†rH ′rC
†
l

= A

with A in the same state basis as Or. Our goal is to construct a similar method for

use in the non-deterministic case. Adding non-deterministic effects, however, will



56

again cause Y0|r−1ΠU⊥ to have full rank, and we must again produce a rank-reduced

estimate of Y0|r−1ΠU⊥ . From the SVD

Y0|r−1ΠU⊥ =
[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]
,

we choose as a factorization

Ŷ0|r−1ΠU⊥ = ÔrX̂ΠU⊥

with

Ôr = UnΣ1/2
n and X̂ΠU⊥ = Σ1/2

n V T
n . (4.18)

We now precisely define the identification problem. Given our estimate Ôr,
we wish to find an optimal solution for the one-step propagation of the state, that

is, we wish to solve

min
Â

∣∣∣∣∣∣OrÂXΠU⊥ −OrAXΠU⊥

∣∣∣∣∣∣
F
.

Since we do not know Or and XΠU⊥ exactly, we use the estimates from the SVD,

and since

OrAXΠU⊥ = Y1|rΠU⊥ − V1|rΠU⊥ ,

we replace OrAXΠU⊥ with Y1|rΠU⊥ . The estimate for A is then found by solving

min
Â

∣∣∣∣∣∣ÔrÂX̂ΠU⊥ − Y1|rΠU⊥

∣∣∣∣∣∣
F
, (4.19)

the solution of which is

Â = Ô†rY1|rΠU⊥(X̂ΠU⊥)†. (4.20)

Two questions arise for this factorization: do the estimates Ôr and X̂ΠU⊥

converge to true possible values ofOr andXΠU⊥ , and does the term Ô†rV1|r(X̂ΠU⊥)†

vanish?

We answer the second question first. Suppose Or and XΠU⊥ are known

exactly. Then

Â = Ô†rOrAXΠU⊥(X̂ΠU⊥)† + Ô†rV1|r(X̂ΠU⊥)†

= A+O†rV1|r(XΠU⊥)†. (4.21)
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Expanding the noise term, we find

O†rV1|r(XΠU⊥)† = O†rV1|r(XΠU⊥)T
(
(XΠU⊥)(XΠU⊥)T

)−1
= O†rV1|rΠU⊥X

T (· · · )−1

= O†r
(
V1|rX

T − V1|rUT
0|r
(
U0|rU

T
0|r
)−1

XT
)

(· · · )−1.

Because the noise and input are independent, the noise and state are also inde-

pendent; therefore

��
�
��*0

V1|rX
T −

�
��

��*0
V1|rU

T
0|r
(
U0|rU

T
0|r
)−1

XT

as the column dimension l increases. Hence the noise term in (4.21) vanishes.

To answer the first question, suppose v(t) is generated by the LTI system

xv(t+ 1) = Avxv(t) +Bvev(t)

v(t) = Cvxv(t) +Dvev(t),

where e(t) is multi-dimensional white noise of some constant variance. The original

state-space system (4.1) will then have an equivalent representation[
x(t+ 1)

xv(t+ 1)

]
=

[
A 0

0 Av

][
x(t)

xv(t)

]
+
[
B Bv

] [u(t)

ev(t)

]

y(t) =
[
C Cv

] [ x(t)

xv(t)

]
+
[
D Dv

] [u(t)

ev(t)

]
.

(4.22)

This will have a completely controllable and observable representation

x(t+ 1) = Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + Le(t)
(4.23)

with minimal order n if and only if A and Av have the same eigenvalues. Otherwise,

the row space of Ôr will contain elements of both CAk and CvA
k
v , but only the

states corresponding to CAk will be controllable. Hence the estimates Ôr and

X̂ΠU⊥ will only converge to true possible values of Or and XΠU⊥ if v(t) is ether

white or generated by a linear process with the same poles as the deterministic

system. If the noise process has different poles than the system, the uncontrollable

states from the noise process will be mistakenly identified as controllable in the

final model. This is demonstrated by the following example.
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n = 2 4 6 8 10 12

Figure 4.1: Example singular values with white process noise.

Example 4.1. Consider the system with state-space parameters

 A B

C D

 =


0.7 1 0

−0.16 0.7 1

−0.1247 1.2469 0


where e(t) ∈ R2 and w(t) ∈ R are independent zero-mean white noise signals with

cov(e(t)) = 0.1I2 and var(w(t)) = 1.

Let r = 12. The singular values of Y0|r−1ΠU⊥ are shown in Figure 4.1. It is clear

that there is a drop-off after the 2nd singular value, after which the values flatten

out, suggesting that the system is indeed 2nd-order.

Now consider an alternative noise process

xv(t+ 1) = Avxv(t) +Bvev(t)

v(t) = Cvxv(t) +Dvev(t)

 Av Bv

Cv Dv

 =


0.9 1 0

−0.04 0.9 0.25

0.2 0 0


The singular values of the new system are shown in Figure 4.2. There is now a

drop off after the 4th singular value, even though the order of the deterministic

subsystem has not changed.
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n = 2 4 6 8 10 12

Figure 4.2: Example singular values with colored output noise.

In fact, if a fourth-order A is estimated using (4.17), the eigenvalues from

A and Av will exist in the estimate. Thus all observable states of the combined

deterministic and non-deterministic systems are estimated. Unfortunately, there

is no way to distinguish between controllable and uncontrollable states, and so the

uncontrollable states of the noise-generating will be identified as controllable states

of the deterministic system.

From this example, we see that the factorization (4.18) will only result in

unbiased estimates of Or and XΠU⊥ if the system is limited to process noise, that

is, if all eigenvalues of Av are eigenvalues of A. Though it is likely that the estimate

of B will result in transmission zeros being placed close to the eigenvalues of Av,

it is impossible for them to cancel exactly.

To ensure that the factorization converges to a valid mapping from past

input to future output, we apply an instrumental-variable technique. In the next

chapter, we show that this difficulty may be overcome in a simpler, numerically

efficient way by instead applying the realization procedure to covariance function

estimates.

4.4.1 Obtaining Unbiased Estimates

To obtain an unbiased estimate of the row space of Or, we employ an

auxiliary signal z(t) ∈ Rnz that is uncorrelated with the noise signal v(t), but
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correlated with u(t); more specifically, z(t) satisfies

E
[
v(t)zT (t+ τ)

]
= 0 ∀ τ (4.24)

and

E
[
u(t)zT (t+ τ)

]
6= 0 for some |τ | < r. (4.25)

Potential candidates for z(t) include a reference signal if experiments are conducted

in closed-loop operation or the input signal shifted backward by a sufficient number

of samples if experiments are conducted in open-loop operation.

From this signal z(t), construct a block-Hankel data matrix of p rows,

Z0|p−1 =


z(0) z(1) · · · z(l − 1)

z(1) z(2) · · · z(l)
...

...
...

z(p− 1) z(p) · · · z(p+ l − 2)

 . (4.26)

From (4.24), Z0|p−1 has the property

1

l
V0|r−1Z

T
0|p−1 → 0rny×pnz ,

and therefore

1

l
V0|r−1ΠU⊥Z

T
0|p−1 =

1

l
V0|r−1Z

T
0|p−1 +

1

l
V0|r−1U

T
0|r
(
U0|rU

T
0|r
)−1

U0|rZ
T
0|p−1 → 0

as l→∞. From (4.25), Z0|p−1 also has the property

1

l
U0|rZ

T
0|p−1 6= 0(r+1)nu×pnz .

Thus multiplication of (4.13) on the right by 1
l
ZT

0|p−1 results in

1

l
Y0|r−1ΠU⊥Z

T
0|p−1 =

1

l
OrXΠU⊥Z

T
0|p−1 +

1

l
V0|r−1ΠU⊥Z

T
0|p−1

→ 1

l
OrXΠU⊥Z

T
0|p−1,

and the row space of 1
l
Y0|r−1ΠU⊥Z

T
0|p−1 asymptotically approaches Or. Though

we have established that this alone is sufficient to provide unbiased estimates,
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additional de-correlation of the noise may be performed by also multiplying (4.14)

on the right by 1
l
ZT

0|p−1 so that

1

l
Y1|rΠU⊥Z

T
0|p−1 =

1

l
OrAXΠU⊥Z

T
0|p−1 +

1

l
V1|rΠU⊥Z

T
0|p−1

→ 1

l
OrAXΠU⊥Z

T
0|p−1

as l→∞. By instead taking the SVD

Y0|r−1ΠU⊥Z
T
0|p−1 =

[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]

we solve for Â as

Â = Σ−1/2n UT
n Y1|rΠU⊥Z

T
0|p−1VnΣ−1/2n , (4.27)

which will converge to the strictly deterministic subsystem, so long as our assump-

tions on z(t) are valid. Thus by using an external weighting matrix Z0|p−1, we

can achieve unbiased estimates even when the poles of the noise model are not

contained in the deterministic subsystem.

4.5 Asymptotic Properties of the Estimate

In this section, asymptotic properties of the system estimate are derived

and analyzed. It is shown that variance the estimate of the row space of Or is a

function of a block-Toeplitz matrix of cross-covariance function data.

4.5.1 Asymptotic Properties of the Data Matrices

We first analyze properties of the projected and weighted data matrix equa-

tions, repeated here:

1

l
Y0|r−1ΠU⊥Z

T
0|p−1 =

1

l
OrXΠU⊥Z

T
0|p−1 +

1

l
V0|r−1ΠU⊥Z

T
0|p−1 (4.28)

1

l
Y1|rΠU⊥Z

T
1|p =

1

l
OrAXΠU⊥Z

T
1|p +

1

l
V1|rΠU⊥Z

T
1|p. (4.29)
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The left side of (4.28) expands to

1

l
Y0|r−1

(
Il − UT

0|r(U0|rU
T
0|r)
−1U0|r

)
ZT

0|r−1

=
1

l
Y0|r−1Z

T
0|r−1 −

(
1

l
Y0|r−1U

T
0|r

)(
1

l
U0|rU

T
0|r

)−1(
1

l
U0|rZ

T
0|r−1

)
.

From Lemma B.1, the first term on the right-hand side expands to

1

l
Y0|r−1Z

T
0|r−1 =



1

l

l−1∑
k=0

y(k)zT (k) · · · 1

l

l−1∑
k=0

y(k)zT (k + r − 1)

1

l

l∑
k=1

y(k)zT (k − 1) · · · 1

l

l∑
k=1

y(k)zT (k + r − 2)

...
...

1

l

l+r−1∑
k=r−1

y(k)zT (k − r + 1) · · · 1

l

l+r−1∑
k=r−1

y(k)zT (k)


,

and taking the expectation as l→∞ results in the block-Toeplitz matrix

E lim
l→∞

1

l
Y0|r−1Z

T
0|r−1 =


Ryz(0) Ryz(−1) · · · Ryz(−r + 1)

Ryz(1) Ryz(0) · · · Ryz(−r + 2)
...

...
...

Ryz(r − 1) Ryz(r − 2) · · · Ryz(0)

 .
Similarly,

E lim
l→∞

1

l
Y0|r−1U

T
0|r =


Ryu(0) Ryu(−1) · · · Ryu(−r)
Ryu(1) Ryu(0) · · · Ryu(−r + 1)

...
...

...

Ryu(r − 1) Ryu(r − 2) · · · Ryu(1)

 ,

E lim
l→∞

1

l
U0|rU

T
0|r =


Ru(0) Ru(−1) · · · Ru(−r)
Ru(1) Ru(0) · · · Ru(−r + 1)

...
...

...

Ru(r) Ru(r − 1) · · · Ru(0)

 , (4.30)

and

E lim
l→∞

1

l
U0|rZ

T
0|r−1 =


Ruz(0) Ruz(−1) · · · Ruz(−r + 1)

Ruz(1) Ruz(0) · · · Ruz(−r + 2)
...

...

Ruz(r) Ruz(r − 1) · · · Ruz(1)


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In Ljung [40], one test for persistency of excitation of an input signal is that (4.30)

be invertible. (This might not be true for some signals, such as a sinusoid.) This

is also clearly required for the data matrix equation to converge.

If we choose Z0|r−1 = U−r|−1, then

E lim
l→∞

1

l
Y0|r−1U

T
−r|−1 =


Ryu(r) Ryu(r − 1) · · · Ryu(1)

Ryu(r + 1) Ryu(r) · · · Ryu(2)
...

...
...

Ryu(2r − 1) Ryu(2r − 2) · · · Ryu(r)


and

E lim
l→∞

1

l
U0|rU

T
−r|−1 =


Ru(r) Ru(r − 1) · · · Ru(1)

Ru(r + 1) Ru(r) · · · Ru(2)
...

...
...

Ru(2r) Ru(2r − 1) · · · Ru(r + 1)

 .
In this case, the projected data matrix equation is the Schur complement of the

block-Toeplitz matrix

E lim
l→∞

1

l

[
Y0|r−1

U0|r

]
UT
−r|r =

Ryu(r) · · · Ryu(1) Ryu(0) · · · Ryu(−r)
...

...
...

...

Ryu(2r − 1) · · · Ryu(r) Ryu(r − 1) · · · Ryu(1)

Ru(r) · · · Ru(1) Ru(0) · · · Ru(−r)
...

...
...

...

Ru(2r) · · · Ru(r + 1) Ru(r) · · · Ru(0)


4.5.2 Asymptotic Properties of the Extended Observabil-

ity Matrix

Several results exist in the literature regarding asymptotic properties of the

extended observability matrix estimate Ôr for different subspace methods. The

most useful analyses, i.e. the ones that do not rely on computing decompositions
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of matrices that become asymptotically infinite-dimensional, are based on the idea

of projecting the estimate Ôr onto the null space of the true Or. Let

ΠO = Or
(
OTr Or

)−1OTr
be the orthogonal projector onto the row space of the true Or and

ΠO⊥ = Inyr − ΠO

be the projector onto its null space. The estimate Ôr may then be decomposed

into two parts as

Ôr = ΠOÔr + ΠO⊥Ôr.

The term ΠO⊥Ôr represents the estimation error. In the following derivations,

subscripts for the data matrices are omitted to conserve space; hence Y = Y0|r−1,

V = V0|r−1, and U = U0|r. From

1

l
YΠU⊥Z

T = UnΣ1/2
n︸ ︷︷ ︸

Ôr

Σ1/2
n V T

n + UsΣsV
T
s ,

multiplication on the right by VnΣ
−1/2
n produces

1

l
YΠU⊥Z

TVnΣ−1/2n = Ôr.

Hence

ΠO⊥Ôr =
1

l
ΠO⊥YΠU⊥Z

TVnΣ−1/2n

=
1

l
ΠO⊥

(
OrXΠU⊥Z

T + VΠU⊥Z
T
)
VnΣ−1/2n

=
1

l
ΠO⊥VΠU⊥Z

TVnΣ−1/2n (4.31)

Results for variance of ΠO⊥Ôr using an alternative definition Ôr = Un may be

found in Viberg, Wahlberg, and Ottersten [80]. This was extended by Gustafsson

[23] to find optimal right-hand column weightings when the system is constrained

to real eigenvalues.

Though results exist in the literature for the variance of (4.31), the variance

of the system estimate is, however, determined by the pseudoinverse Ô†r for both
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realization-based and MOESP-type algorithms. The only existing analysis for Ô†r
assumes that all system eigenvalues area real and that Ôr has been modified to

correspond to a state basis with diagonal A [80]. In the following, we present a

direct computation of the variance of Ô†r.
The pseudoinverse of Ôr may be found from

UnΣnV
T
n + UsΣsV

T
s =

1

l
OrXΠU⊥Z

T +
1

l
VΠU⊥Z

T

UnΣ1/2
n =

1

l
OrXΠU⊥Z

TVnΣ−1/2n +
1

l
VΠU⊥Z

TVnΣ−1/2n

Σ1/2
n UT

n =
1

l
Σ−1/2n V T

n ZΠU⊥X
TOTr +

1

l
Σ−1/2n V T

n ZΠU⊥V
T

Ô†r = Σ−1/2n UT
n =

1

l
Σ−3/2n V T

n ZΠU⊥X
TOTr +

1

l
Σ−3/2n V T

n ZΠU⊥V
T .

From this we see that the error in Ôr may be found by projecting it on the right

onto the null space of Or. Thus the asymptotic properties of Ô†r may be found by

analyzing the term

Ô†rΠO⊥ =
1

l
Σ−3/2n V T

n ZΠU⊥V
TΠO⊥ (4.32)

as l→∞.

Several conclusions may be drawn from (4.32). Clearly the state basis will

have an effect on the overall error of the estimate, since a change of basis T−1AT

in (4.32) is equivalent to multiplication on the left by Σ−1n TΣn.

The following theorem provides an expression for the variance of the error

in Ôr.

Theorem 4.1. Let the total error of the estimate be defined as

ε =
1

l
vec
(
Σ−3/2n V T

n ZΠU⊥V
TΠO⊥

)
.

Let

[
Z

U

]
= M =


m(0) m(1) · · · m(l − 1)

m(1) m(2) · · · m(l)
...

...
...

m(i− 1) m(i− 2) · · · m(i+ l − 2)

 .
Then

Var(ε) = lim
l→∞

1

l
E

[
1

l2
(
ΠO⊥ ⊗ VnΣ−3/2n

)
P
(
ΠO⊥ ⊗ Σ−3/2n V T

n

)]
,
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where

P =
l−1∑
j=0

l−1∑
k=0

Pm(j, k)⊗ Pv(j, k),

Pm(j, k) =
1

l


m(j)

m(j + 1)
...

m(j + i− 1)




m(k)

m(k + 1)

· · ·
m(k + i− 1)


T

Pv(j, k) =
1

l


v(j)

v(j + 1)
...

v(j + r − 1)




v(k)

v(k + 1)

· · ·
v(k + r − 1)


T

.

Proof. We know E[ε] = 0 since E liml→∞
1

l

[
VΠU⊥Z

T
]

= 0. Thus

Var(ε) = E lim
l→∞

1

l
[εεT ]

= E lim
l→∞

[
1

l2
vec
(
Σ−3/2n V T

n ZΠU⊥V
TΠO⊥

)
vec
(
Σ−3/2n V T

n ZΠU⊥V
TΠO⊥

)T]
.

From

vec
(
Σ−3/2n V T

n ZΠU⊥V
TΠO⊥

)
=
[
ΠO⊥ ⊗ VnΣ−3/2n

]
vec(ZΠU⊥V

T ),

we have

εεT =
1

l2
[
ΠO⊥ ⊗ VnΣ−3/2n

]
vec(ZΠU⊥V

T )vec(ZΠU⊥V
T )T

[
ΠO⊥ ⊗ Σ−3/2n V T

n

]
.

Also,

ZΠU⊥V
T = Z

[
Il − UT (UUT )−1

]
V T

= ZV T − ZUT (UU)−1V T

=
[
Ir −ZUT (UU)−1

] [ZV T

UV T

]
,

resulting in

vec
(
ZΠU⊥V

T
)

=
(
Ir ⊗

[
Ir −ZUT (UU)−1

])
vec

([
ZV T

UV T

])
.
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From Theorem B.1,

vec(MV T )vec(MV T )T =
l−1∑
j=0

l−1∑
k=0

Pm(j, k)⊗ Pv(j, k) = P

Thus

εεT =
1

l2
(
ΠO⊥ ⊗ VnΣ−3/2n

)
P
(
ΠO⊥ ⊗ Σ−3/2n V T

n

)
,

which is the required result.

From this, we can see that variance of the error has some asymptotic de-

pendence on the summation of block-Toeptliz matrices of auto-covariance function

data. This results is similar to the one achieved in Gustafsson [23]. Unfortunately,

statistical dependence between the noise signal v(t) and the right-hand singular

vectors V T
n prevent this expression from being simplified to a more useful result.

4.6 Least-Squares Estimation of Input Parame-

ters from Input-Output Data

If A and C are known, then B, D, and the initial state x(0) are linear in the

input-output data and may be identified by solving a linear-least-squares problem.

Writing the output as

y(t) = CAtx(0) +
t−1∑
k=0

CAt−k−1Bu(k) +Du(t) + v(t) (4.33)

and using the Kronecker-product identity

vec(AXB) = (BT ⊗ A)vec(X)

results in factoring out B and D on the right as

y(t) = CAtx(0) +

(
t−1∑
k=0

uT (k)⊗ CAt−k−1
)

vec(B) +
(
uT (t)⊗ Iny

)
vec(D) + v(t).

Thus, given estimates Â and Ĉ, the identification of B, D, and x(0) from a sequence

of N data points may be stated as a linear-least-squares problem(
B̂, D̂, x̂(0)

)
= arg min

B, D, x(0)

||y − ŷ||2 , (4.34)
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where

y =


y(0)

y(1)
...

y(N − 1)

 ∈ RnyN , ŷ =


ŷ(0)

ŷ(1)
...

ŷ(N − 1)

 ∈ RnyN ,

ŷ(t) =
[
φTx0(t) φTB(t) φTD(t)

]
x(0)

vec(B)

vec(D)

 = φT (t)θ,

and

φTx0(t) = ĈÂt ∈ Rny×n, (4.35)

φTB(t) =
t−1∑
k=0

uT (k)⊗ ĈÂt−k−1 ∈ Rny×nun, (4.36)

φTD(t) = uT (t)⊗ Iny ∈ Rny×nuny . (4.37)

In practice, a significant computational limitation is the calculation of the

regressor φTB(t). The Kronecker product in (4.36) results in calculation and summa-

tion of O(N3/2) matrices of size ny × nun. Memory limitations will dramatically

limit the maximum N that may be used for computing φT (t), particularly for

multivariable data of large dimension. As we will see in Chapter 5, this problem

is compounded when the method is extended to matrix-valued signals, such as

covariance functions.

We now present a numerically efficient method of computing (4.36) by

means of computing the state sequence of a dual system. This allows for a dramatic

reduction in the memory and computation time required to solve the linear-least-

squares problem. We begin by first reformulating the calculation of the regressor

for the raw data case and then extend to the method to covariance function es-

timates. To avoid calculating φB(t)T from (4.36) explicitly, we show that φB(t)T

may be calculated more efficiently as a set of state sequences of a dual system.

Theorem 4.2. Block element (i, j) of the transposed regressor φB(t) in (4.36) is

equivalent to the state sequence of the system

φ
(i,j)
B (t+ 1) = ÂTφ

(i,j)
B (t) + ĈT ũ(i, j, t) (4.38)
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computed with the initial condition φB(0) = 0n, in which

ũ(i, j, t) =


0j−1

ui(t)

0ny−j

 .
Proof. First, observe that the transpose of (4.36) may be expanded as

φB(t) =
t−1∑
k=0

(
uT (k)⊗ ĈÂt−k−1

)T
=

t−1∑
k=0

[(
uT (k)⊗ Iny

) (
Inu ⊗ ĈÂt−k−1

)]T
=

t−1∑
k=0

(
Inu ⊗ ĈÂt−k−1

)T (
uT (k)⊗ Iny

)T
=

t−1∑
k=0

(
Inu ⊗

(
ÂT
)t−k−1

ĈT

)(
u(k)⊗ Iny

)
.

The first Kronecker product within the summation expands to the block-diagonal

matrix 
(
ÂT
)t−k−1

ĈT 0 · · ·

0
(
ÂT
)t−k−1

ĈT · · ·
...

...
. . .

 ,
and multiplication on the right by u(k)⊗ Iny results in

(
ÂT
)t−k−1

ĈTu1(k)(
ÂT
)t−k−1

ĈTu2(k)
...

 , (4.39)

where ui(k) is the i-th component of the input signal u(t). Because ui(k) is scalar,
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ui(k)⊗ Iny = ui(k)Iny , and we may reincorporate the summation to find

φB(t) =



t−1∑
k=0

(
ÂT
)η
ĈT


u1(k)

0

0
...


t−1∑
k=0

(
ÂT
)η
ĈT


0

u1(k)

0
...

 · · ·

t−1∑
k=0

(
ÂT
)η
ĈT


u2(k)

0

0
...


t−1∑
k=0

(
ÂT
)η
ĈT


0

u2(k)

0
...

 · · ·

...
...


where η = t− k− 1. This is a convolution operation, similar to (4.33), with ÂT in

place of A, ĈT in place of B, and In in place of C. Hence, φTB(t) may be calculated

as separate convolutions of significantly smaller dimension.

Typically, the fastest way to compute φTB will be to form the nuny input

signals ũ(i, j, τ) and to compute state-sequences for each using (4.38). Efficient

routines for computing state-sequences of linear, time-invariant systems of this

type are commonly available in numerical software packages, such as Matlab.

The remaining regressors φTx0 and φTD are straightforward and far less expensive to

compute.

4.7 Summary of Input-Output Data Realization

Procedure

The following steps completely describe the input-output data realization

algorithm:

1. Construct the block-Hankel output data matrices Y0|r−1 in (4.2) and Y1|r in

(4.5) and the block-Hankel input data matrix U0|r in (4.7). Optionally form

the block-Hankel instrument matrix Z0|p−1 in (4.26) if the output noise is

believed to be strongly colored.
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2. Compute the projected matrices Y0|r−1ΠU⊥ and Y1|rΠU⊥ via the LQ-

decompositions in (4.15) and (4.16).

3. Take the SVD of Y0|r−1ΠU⊥ or Y0|r−1ΠU⊥Z
T
0|p−1 if weighting is used. If nec-

essary, examine the singular values to determine the system order.

4. Solve for Â from (4.20) or (4.27) if weighting is used. Take Ĉ from the first

ny rows of Un Σ
1/2
n .

5. Estimate B, D, and x(0) by solving (4.34).
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5 Realization from

Covariance-Function Estimates

The identification framework developed in the previous section may be di-

rectly extended to alternative forms of data, notably covariance functions. A

covariance-based framework allows for the estimation of unbiased state-space mod-

els, regardless of the noise spectrum. Furthermore, matrices filled with covariance

function data may remain bounded in size as the number of data samples increases,

whereas matrices with raw data would become infinite dimensional, making the

identification problem more computationally friendly for large data sets.

5.1 Covariance Functions and State-Space Sys-

tems

We begin by formulating covariance-function data matrices in which the

input is correlated with an external signal ξ(t). Suppose the discrete-time LTI

state-space system

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t)

is perturbed by a stationary noise signal v(t) and subjected to a quasi-stationary

input u(t). Let ξ(t) be a quasi-stationary signal correlated with u(t). Then the

cross-covariance function

Ruξ(τ) = lim
N→∞

1

N

N−τ−1∑
t=0

Eu(t+ τ)ξT (t)

72
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exists, and the cross-covariance function estimate

R̂uξ(τ) =
1

N

N−τ−1∑
t=0

u(t+ τ)ξT (t)

converges to Ruξ(τ) with increasing N [40]. If ξ(t) is uncorrelated with the noise

signal v(t), then

Rvξ(τ) = lim
N→∞

1

N

N−τ−1∑
t=0

Ev(t+ τ)ξT (t) = 0 ∀ τ

and

R̂vξ(τ) =
1

N

N−τ−1∑
t=0

v(t+ τ)ξT (t)→ 0

with increasing N . Because u(t) is quasi-stationary and v(t) is stationary, the

cross-covariance function Ryξ(τ) exists, and the various cross-covariance functions

satisfy the same dynamic relationship as the raw data [40]:

Rxξ(τ + 1) = ARxξ(τ) +BRuξ(τ)

Ryξ(τ) = CRxξ(τ) +DRuξ(τ) +���
�:0

Rvξ(τ).
(5.1)

Thus the cross-covariance functions exactly describe the strictly deterministic sub-

system when ξ(t) and v(t) are uncorrelated. We use this property to identify system

estimates that are guaranteed to converge with increasing data samples. Possible

candidates for ξ(t) include u(t) when experiments are performed in open-loop and

an external reference signal when experiments are performed in closed-loop.

5.2 Covariance-Based Realization

In this section, we directly extend the method of realization from input-

output data to covariance function estimates.

5.2.1 Covariance-Based Data Matrix Equations

Suppose the covariance functions Ruξ(τ) and Ryξ(τ) are known over the

domain of some integer sequence τ ∈ {τ0, τ1, . . . , τN} for which Ruξ(τ) is not 0
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everywhere. Let Ryξ
τ0|τr−1 be a block-Hankel matrix

Ryξ
τ0|τr−1 =


Ryξ(τ0) Ryξ(τ1) · · · Ryξ(τl − 1)

Ryξ(τ1) Ryξ(τ2) · · · Ryξ(τl − 2)
...

...
...

Ryξ(τr − 1) Ryξ(τr) · · · Ryξ(τr + τl − 1)

 ∈ Rnyr×nξl,

let Ruξ
τ0|τr−1 be a block-Hankel matrix

Ruξ
τ0|τr−1 =


Ruξ(τ0) Ruξ(τ1) · · · Ruξ(τl − 1)

Ruξ(τ1) Ruξ(τ2) · · · Ruξ(τl − 2)
...

...
...

Ruξ(τr − 1) Ruξ(τr) · · · Ruξ(τr + τl − 1)

 ∈ Rnur×nξl,

and let Rxξ
τ0

be

Rxξ
τ0

=
[
Rxξ(τ0) Rxξ(τ0 + 1) · · · Rxξ(τl)

]
∈ Rn×nξl.

From (5.1) these three matrices satisfy the relationship

Ryξ
τ0|τr−1 = OrRxξ

τ0
+ T0|r−1R

uξ
τ0|τr−1,

in which Or is the familiar extended observability matrix and T0|r−1 the block-

Toeplitz matrix of Markov parameters. As with the raw-data case, an extra block

row may be added to Ruξ
τ0|τr−1 to form

Ryξ
τ0|τr−1 = OrRxξ

τ0
+ T ′0|r−1R

uξ
τ0|τr . (5.2)

A shifted data matrix equation can also be formed using covariance function data

to result in

Ryξ
τ1|τr = OrARxξ

τ0
+ T1|rR

uξ
τ0|τr . (5.3)

Defining the projector matrix

ΠR⊥u
= Inul − (Ruξ

τ0|τr)
T
(
Ruξ
τ0|τr(R

uξ
τ0|τr)

T
)−1

Ruξ
τ0|τr ,

we may isolate the row space of Or in (5.2) and (5.3) as

Ryξ
τ0|τr−1ΠR⊥u

= OrRxξ
τ0

ΠR⊥u

Ryξ
τ1|τrΠR⊥u

= OrARxξ
τ0

ΠR⊥u
.



75

Although nondeterministic effects prevent the covariance functions from

being known exactly, the covariance function estimates R̂uξ(τ) and R̂yξ(τ) will

converge to the true values so long as u(t), y(t), and ξ(t) remain quasi-stationary.

Therefore we may replace Ryξ
τ0|τr−1 and Ruξ

τ0|τr with matrices of cross-covariance func-

tion estimates to form R̂yξ
τ0|τr−1 and R̂uξ

τ0|τr , respectively. Because only the estimates

R̂yξ
τ0|τr−1ΠR⊥u

≈ OrRxξ
τ0

ΠR⊥u

R̂yξ
τ1|τrΠR⊥u

≈ OrARxξ
τ0

ΠR⊥u
(5.4)

are available, the matrices will have full rank, and once again the SVD must be

employed to factor the mapping from past input to future output.

5.2.2 Factorization of the Estimate

From the SVD

R̂yξ
τ0|τr−1ΠR⊥u

=
[
Un Us

] [Σn 0

0 Σs

][
V T
n

V T
s

]

we may again choose

Ôr = UnΣ1/2
n

to estimate the extended observability matrix. The right singular vectors however

will not be the states, but the cross-covariance of the states and ξ(t) projected

onto the null space of Ruξ(τ):

R̂xξ
τ0

ΠR⊥u
= Σ1/2

n V T
n .

From (5.4), we may estimate A as

Â = Ô†rR̂
yξ
τ1|τrΠR⊥u

(
R̂xξ
τ0

ΠR⊥u

)†
= Σ−1/2n UT

n R̂
yξ
τ1|τrΠR⊥u

VnΣ−1/2n , (5.5)

which is the solution to the minimization problem

min
Â

∣∣∣∣∣∣ÔrÂR̂xξ
τ0

ΠR⊥u
− R̂yξ

τ1|τrΠR⊥u

∣∣∣∣∣∣
F
.
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5.2.3 Reinterpretation Through Data Matrices

The data matrix equations of covariance function estimates (5.2) and (5.3)

can alternatively be written as matrices of raw data. We will demonstrate this

for a block Hankel matrix of the estimated cross-covariance functions R̂yu(τ); the

interpretation for other data matrices is straightforward.

From

R̂yu
τ0|τr−1 =


1

N

N−τ0−1∑
t=0

y(t+ τ0)u
T (t) · · · 1

N

N−τl−2∑
t=0

y(t+ τl − 1)uT (t)

...
...

1

N

N−τr−1∑
t=0

y(t+ τr − 1)uT (t) · · · 1

N

N−τr−τl+2∑
t=0

y(t+ τr + τl − 2)uT (t)

,

this can be expanded into the product

R̂yu
τ0|τr−1 = Yτ0|τr−1Ω

T

where

R̂yu
τ0|τr−1 =


y(τ0) y(τ1) · · · y(N − τ0 − 1)

y(τ1) y(τ2) · · · y(N − τ0)
...

...
...

y(τr − 1) y(τr) · · ·


and Ω is the block-Toeplitz matrix

Ω =


u(0) u(1) u(2) u(3) · · · u(N − 1)

0 u(0) u(1) u(2) · · · u(N − 2)
...

. . . . . . . . .
...

0 · · · 0 u(0) · · · u(N − l)


and thus the covariance-function approach is similar to the weighting used in the

raw-data case, but with an additional permutation to transform the block-Hankel

structure of the weighting data matrix into a block-Toeplitz form. It is not equiva-

lent, however, since while the raw-data case relies on the projection to accomplish

some of the de-correlation, the projection is applied afterwards in the case of

covariance-function estimates.
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Of course, when constructing data matrices of covariance function esti-

mates, it is best to compute the covariance function estimates directly, then con-

struct the matrices, rather than use the product of the two matrices above.

5.3 Least-Squares Estimation of Input Parame-

ters from Covariance Functions

An important difference when using covariance-function estimates for iden-

tification is that the signals are matrix-valued. This can be problematic for the

least-squares estimation of the input parameters, which is often the most compu-

tationally expensive step in the identification procedure, since the regressors will

dramatically increase in size with increasing input dimension.

To extend the least-squares estimation of B, D, and x(0) to covariance

function estimates R̂uξ(τ) and R̂yξ(τ) calculated over τ ∈ [τ0, τN ], we instead solve

the least squares problem(
B̂, D̂, R̂xu(τ0)

)
= arg min

B,D,Rxu(τ0)

∣∣∣∣∣∣R̂yξ − β
∣∣∣∣∣∣
2

(5.6)

in which

R̂yξ =


R̂yξ(τ0)

R̂yξ(τ0 + 1)
...

R̂yξ(τ1)

 ∈ RPny×nξ β =


β(τ0)

β(τ0 + 1)
...

β(τ1)

 ∈ RPny×nξ ,

where P = τN − τ0 + 1, and

β(τ) = ĈÂτRxξ(τ0) +
τ−1∑
k=0

ĈÂτ−k−1BR̂uξ(k) +DR̂uξ(τ).

Vectorizing β(τ) and separating the unknown parameters B, D and Rxξ(τ0) via

the Kronecker product results in

vec (β(τ)) =
(
Inξ ⊗ ĈÂτ

)
vec(Rxξ(τ0))

+
(
R̂uξ(τ)T ⊗ Iny

)
vec(D) +

(
τ−1∑
k=0

R̂uξ(k)T ⊗ ĈÂτ−k−1
)

vec(B),
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and we obtain the new regressor

vec (β(τ)) =
[
φRxξ(τ)T φD(τ)T φB(τ)T

]
vec(Rxξ(τ0))

vec(D)

vec(B)


= φ(τ)T θ,

where

φRxξ(τ)T = Inξ ⊗ ĈÂτ ∈ Rnynξ×nnξ (5.7)

φD(τ)T = R̂uξ(τ)T ⊗ Iny ∈ Rnynξ×nynu (5.8)

φB(τ)T =
τ−1∑
k=0

R̂uξ(k)T ⊗ ĈÂτ−k−1 ∈ Rnynξ×nnu . (5.9)

Although the computation of covariance function estimates will reduce the

number of matrices needed to estimate B from O(N3/2) to O (P 3/2), the matrices

have grown to size nynξ×nnu. Estimating R̂xξ(τ0) now requires P matrices of the

same size, and the matrices needed to estimate D have grown to size nynξ ×nynu.
The consequence of the growth in size of the regression matrices is that the linear

regression problem becomes computationally intractable for multivariable systems

with a large number of inputs and outputs.

To alleviate the difficulties caused by the effective increase in dimensionality,

we extend Theorem 4.2 to covariance function estimates, which achieves similar

savings in memory efficiency.

Theorem 5.1. Block element (i, j) of the transposed regressor φB in (5.9) may be

calculated from state sequences of the system

φ
(i,j)
B (τ + 1) = ÂTφB(τ) + ĈT ũ(i, j, τ) (5.10)

with the initial condition φB(τ0) = 0n, in which

ũ(i, j, τ) =


0γ−1

R̂uα,ξβ(τ)

0ny−γ


α = floor((i− 1)/nu)

β = floor((j − 1)/ny)

γ = mod(j − 1, ny)

,

where mod(r, s) : Z × Z → Z is r modulo s, and floor(r) : R → Z is the nearest

integer ≤ r.
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Proof. Expand (5.9) in the same manner as in Theorem 4.2 to find

φB(τ) =
τ−1∑
k=0

(
Inu ⊗

(
ÂT
)τ−k−1

ĈT

)(
Ru(k)⊗ Iny

)
.

The term within the summation – similar to (4.39) – becomes
ÂT

η
ĈT
(
Ru1ξ1(k)Iny

)
ÂT

η
ĈT
(
Ru1ξ2(k)Iny

)
· · ·

ÂT
η
ĈT
(
Ru2ξ1(k)Iny

)
ÂT

η
ĈT
(
Ru2ξ2(k)Iny

)
· · ·

...
. . .


where η = t − k − 1. The above may then be interpreted as a convolution as in

Theorem 4.2.

5.4 Practical Aspects

In general, for experiments with large amounts of data, identification from

covariance-function estimates is highly advantageous due to the decrease int the

size of the data-matrices. For smaller data sets, however, the raw-data method

may be preferable, since the covariance function estimates are far from converging.

Though identification by means of covariance function estimates provides

many advantages, it also complicates the procedure somewhat due to the increase

in tunable parameters. In this section, we discuss some of these choices.

5.4.1 Domain of the Covariance Function Estimates

The domain of τ over which Ruξ(τ) is used must be chosen carefully, as

Ruξ(τ) will likely have a brief maximum at some τ then likely lose amplitude

quickly. This of course depends on the bandwidth of the excitation signal used.

Assume that ξ(t) = u(t). White noise input will cause Ru(τ) to converge to an

impulse at τ = 0 while colored noise input will have a symmetric Ru(τ) that rings

around τ = 0. As a result, beginning the data matrices with some index τ0 < 0

will sometimes provide a more accurate estimate.
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Figure 5.1: Covariance functions for Example 5.1.

Example 5.1. Consider the state-space system described by the parameters

 A B

C D

 =


0.7 0.3 0

−0.3 0.7 0.8333

0.72 0 0

 .
Suppose v(t) is generated by white noise with variance σ2

v = 10 filtered through a

system with parameters

 Av Bv

Cv Dv

 =


0.6 0.4 0

−0.4 0.6 1.25

0.64 0 0


and added to the output, and suppose u(t) is generated by white noise with variance

σ2
u = 1 filtered through the system

 Au Bu

Cu Du

 =


0.5 0.7 0

−0.7 0.5 1.429

1 0 0

 .
The input is highly-colored in this case, as shown in Figure 5.1. Note that the

input auto-covariance function has reached a significantly large magnitude well

before τ = 0.

The covariance-based realization algorithm was applied to 200 datasets of

2000 samples. The algorithm was applied to covariance functions estimated over
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Figure 5.2: Estimated pole locations for Example 5.1.

different domains of τ . In all cases the block-row dimension of the data matrices

was r = 18. The locations of the estimated poles for various domains of τ together

with system, noise, and input filter poles are shown in Figure 5.2.

Clearly, the domain of τ has a profound effect on the accuracy of the esti-

mated model when the input signal is highly colored. Very poor estimates result

when the domain of τ does not extend sufficiently backward before τ = 0.

5.4.2 Frequency-Domain Smoothing

An interesting property of cross-covariance functions is that they are equiv-

alent to the Fourier transform of the cross-power spectra; that is, if F [·] is the
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Fourier transform operator, then for two signals s(t) and w(t) with Fourier trans-

forms S(ejω) and W (ejω),

S(ejω)W (ejω)H = F [Rsw(τ)]

where H denotes the Hermitian (complex-conjugate transpose). As a result,

frequency-domain smoothing [58, for instance] may be trivially applied to covari-

ance function estimates. This will be used later in the example application.

5.5 Summary of Covariance-Function Estimate

Realization Procedure

The following steps completely describe the covariance-function estimate

realization algorithm:

1. Construct and examine the covariance-function estimates R̂uξ(τ) and R̂yξ(τ)

to determine an appropriate domain of τ .

2. Construct the block-Hankel data matrices R̂yξ
τ0|τr−1 from (5.2), R̂yξ

τ1|τr from

(5.3), and R̂uξ
τ0|τr .

3. Form the projections Ryξ
τ0|τr−1ΠR⊥u

and Ryξ
τ1|τrΠR⊥u

via the LQ-decomposition

as in the raw-data case.

4. Take the SVD of Ryξ
τ0|τr−1ΠR⊥u

, and examine the singular values to determine

the system order if necessary.

5. Estimate Â as (5.5) and Ĉ from the first ny rows of UnΣ
1/2
n .

6. Estimate B, D, and x(0) by solving (5.6).

5.6 Acknowledgements

This chapter contains material presented in the following publications:



83

D.N. Miller, R.A. de Callafon, and M.J. Brenner, “A Covariance-Based Realization

Algorithm for the Identification of Aeroelastic Dynamics from In-Flight Data,” to

appear in AIAA Journal of Guidance, Control and Dynamics, 2012.

D.N. Miller, R.A. de Callafon, and M.J. Brenner, “A Covariance-Based Realiza-

tion Algorithm for the Identification of Aeroelastic Dynamics from In-Flight Data,”

Proc. of the AIAA Atmospheric Flight Mechanics Conference, Portland, OR: Au-

gust 2011.

D.N. Miller and R.A. de Callafon, “Subspace Identification Using Dynamic In-

variance in Shifted Time-Domain Data,” Proc. of the 49th IEEE Conference on

Decision and Control, Atlanta, GA: December 2010.

D.N. Miller and R.A. de Callafon, “Subspace Identification from Classical Real-

ization Methods,” Proc. of the 15th IFAC Symposium on System Identification,

Saint-Malo, France: July 2009.



6 Application I: Identification of

Aeroelastic Dynamics

In the first of two application chapters, we apply the covariance-based real-

ization algorithm to the identification of aeroelastic dynamics from in-flight exper-

imental data. The algorithm is well-suited to such experiments, since it produces

unbiased estimates from very large data sets. A detailed background on the prob-

lem of aeroelasticity is omitted; a basic treatment of the subject is beyond the

scope of this dissertation. Good references for the topic include Clark, Cox, Cur-

tiss, Edwards, Hall, Peters, Scanlan, Simiu, Sisto, and Strganac [14] and Wright

and Cooper [83].

6.1 Introduction

Vibrations due to aeroelastic dynamics of aircraft structures, commonly

referred to as flutter, have the potential to damage and destroy aircraft in flight if

not properly analyzed and suppressed. The current trend in the analysis of ASE

dynamics is to derive finite-element and computational-fluid-dynamic models of

an airframe at various flight conditions, and to interpolate and extrapolate the

damping of flutter modes across the full flight envelope. These computational

models are then validated through ground testing and, finally, in-flight testing

before the aircraft can be considered operationally safe [9]. Of particular concern

to control systems engineers are aero-servo-elastic (ASE) dynamics, which is flutter

induced by the aircraft’s control surfaces. Unstable ASE dynamics may occur in

both closed- and open-loop operation.

84
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In-flight analysis of flutter is inherently difficult due not only to its danger-

ous nature, but also to the unsteady, turbulent phenomena that induce it. These

effects manifest themselves as essentially non-deterministic disturbances, or noise,

on acquired data. By nature this noise is colored and correlated across all mea-

sured signals; perturbations on control surface positions due to turbulent air flow

are inherently correlated with the perturbations measured in stress and acceler-

ation on the airframe. Attempts to analyze the dynamic behavior of the control

surfaces on the airframe from data generated from in-flight experiments must take

these facts into account to avoid inaccurate conclusions.

Most system identification methods assume that the noise on measured sig-

nals is either white, uncorrelated, or both, and are thus ill-suited for identifying

ASE dynamics. When dealing with experimental data that does not meet these

assumptions, techniques from the analysis of stochastic processes must be incor-

porated into the identification methods used. Additionally, many system iden-

tification methods are based on nonlinear optimizations over cost functions that

become extremely non-convex for large, high-dimensional data sets, making them

infeasible for ASE analysis, in which many sensors are employed to capture the

behavior of the airframe.

Traditional subspace methods [75] have been previously applied to the iden-

tification of aeroelastic dynamics using simulated data from an F-16 aircraft and

measured data from a V-22 rotocraft in Mehra, Mahmood, and Waissman [48].

Such methods assume strictly deterministic inputs in order to remove the effects

of subsequent input on the propagation of the state dynamics and in order to de-

correlate the deterministic and non-deterministic subsystems. A subspace-based

method for online monitoring of aeroelastic damping was developed and applied to

in-flight data by Mevel, Goursat, Benveniste, and Basseville [50]. This method uti-

lized output data only and relied on the auto-covariance of the data to determine

when statistically-significant damping of vibration modes dropped below a given

threshold but did not identify the input-output behavior of the aeroelastic phe-

nomena and assumed no deterministic control-surface excitation during data ac-

quisition. This method was later extended to include known, strictly-deterministic
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inputs in Mevel, Benveniste, Basseville, Goursat, Peeters, Van der Auweraer, and

Vecchio [49].

These previous studies all assume disturbances to be white, which in prac-

tice is often insufficient. Non-deterministic effects from turbulence, sensor noise,

and, in the closed-loop case, control-system feedback will inevitably produce col-

ored noise on the output data. In such cases, either the modes of the estimated

system will be biased by the disturbance spectrum [37], or, if the model-order is

chosen to be artificially high, the observable modes of the strictly non-deterministic

subsystem will be estimated along-side the modes of the deterministic subsystem

but be incorrectly identified as controllable [53]. This is particularly problematic

if the dynamic model is intended to be used for active flutter suppression, as the

control algorithm designed from the derived model will attempt to control the un-

controllable modes. Additionally, treatment of the input as strictly deterministic

is only possible if the input measured is actuator commands. In this case, the de-

rived model will include actuator dynamics (such as servomotor dynamics) as well

as aeroelastic dynamics. If actuator positions are measured instead, the position

measurements will include perturbations which are correlated with the noise on

the measured output data, and the effects of the input on state-dynamics cannot

be removed with the standard methods of orthogonal projections.

Alternative proposed methods of estimating ASE dynamics include apply-

ing frequency-domain total-least-squares by restricting the identification to error-

in-variables models in Verboven, Cauberghe, Guillaume, Vanlanduit, and Parloo

[77], which allows for the incorporation of colored noise. An approach based on

rational orthogonal basis functions incorporated static input and output nonlinear-

ities and addressed the issue of identifying parameter-varying models in Baldelli,

Zeng, Lind, and Harris [5]. Neither allows for the presence of correlated noise on

both the input and output measurements, and unlike subspace methods, these

methods all require a priori parameterization of the dynamic system.

In the following section, the COBRA method is applied to the analysis of

ASE dynamics of the NASA Active Aeroelastic Wing (AAW) F/A-18. The combi-

nation of correlated noise on the input and output measurements of the measured
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data and the very large dimensions of the signals makes the COBRA method an

appropriate choice for the analysis of ASE dynamics; the method requires no iter-

ative optimization, uses comparatively small matrices compared to other subspace

methods, and provides unbiased estimates when the input and output noise are

correlated with an external signal uncorrelated with the noise.

6.2 Identification of Aero-Servo-Elastic Dynam-

ics

The COBRA method was applied to in-flight data taken from accelerom-

eter and pressure measurements on-board the AAW F/A-18, located at NASA’s

Dryden Flight Research Center, which is a fighter aircraft that has been modified

for aeroelastic research. The algorithm requires careful selection of the instrument

signal ξ(t) to ensure that the system estimate is unbiased. If ξ(t) is chosen incor-

rectly, the result may be biased by either the noise process or unwanted system

dynamics. In the following two examples, the choice of an appropriate ξ(t) is

discussed in detail.

6.2.1 Collective Leading-Edge Flap Excitation

Consider the identification of the response from the LEF to the acceleration

and pressure sensors. Signal pathways for the system are shown in Figure 6.1, in

which Glef is the collective LEF actuator dynamics and G the ASE dynamics of

interest. The collective LEF position u(t) is perturbed by a noise signal vlef(t) that

must be assumed correlated with the noise v(t) on the acceleration and pressure

measurements y(t). The result is that identification directly from u(t) to y(t)

will be biased by the cross-spectrum of the two noise signals, regardless of the

identification algorithm used, unless steps are taken to de-correlate them from the

measured data.

The reference excitation r(t) was chosen to be a minimax crest factor multi-

sine [58] of bandwidth between 3 Hz and 35 Hz. The power-spectral density (PSD)
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Figure 6.1: Leading-edge flap experiment signal pathways.
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Figure 6.2: Power-spectral density of OBES signal for collective LEF excitation.

of r(t) is shown in Figure 6.2. It can be seen that r(t) closely resembles white noise

in the frequency range of interest. The signal r(t) is uncorrelated with either noise

signal, since it is deterministic; it may also be treated as quasi-stationary, since as

a sum of sinusoids, its autocovariance function exists. Hence the mapping between

the cross-covariance functions Ryr(τ) and Rur(τ) is limited to the dynamics G, and

we select ξ(t) = r(t) when analyzing the data.

The cross-covariance estimate R̂ur(τ) is shown in Figure 6.3. Only the data

in which the excitation signal r(t) is nonzero was used to calculate the PSD and

cross-covariance functions. The cross-covariance functions were further truncated

to τ ∈ [−20, 100] after calculation for identification purposes, since, as τ increases,

the signal-to-noise ratio of the cross-covariance estimates becomes prohibitively

small.

Because 94 signals were available for use in identification, an objective cri-

teria was created to determine which had a sufficiently high signal-to-noise ratio.

Only signals which had magnitude-square coherence with r(t) of at least 2/3 av-
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Figure 6.3: Cross-covariance function estimate between collective LEF position
(u) and reference (r) for LEF excitation.

eraged over the frequency range 3–35 Hz were selected from the available mea-

surements. The locations of used and unused accelerometers are shown in Figure

6.4. Only the top-front-left pressure sensor was used. Although only 8 total signals

were used for identification in this experiment, the collective LEF input is intended

to excite neither rigid-body moments nor bending moments on the wing, so the

low number of usable signals is expected. Excitation of other surfaces will natu-

rally produce different selections of signals for identification purposes. A sample

of signals measured for the experiment is shown in Figure 6.5.

A model was constructed using the method proposed in Chapter 5. The

singular values of the matrix are shown in Figure 6.6. The system order was chosen

to be n = 6, which is just before the magnitude of the singular values appears to

flatten out.

Time-domain simulations of the estimated model are shown with the data

in Figure 6.7. Cross-covariance estimates from the simulated data and measured

data are shown in Figure 6.8. Finally, Bode plots of the the estimated system are

compared with spectral estimates (computed from the cross-spectrum of y(t) with

r(t) and u(t) with r(t)) in Figure 6.9.
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Figure 6.4: Locations of used and unused accelerometers for the collective LEF
experiment.
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Figure 6.5: Sample of signals measured for the collective leading-edge flap
experiment.
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Figure 6.6: Singular values of the projected data matrix for the collective LEF
experiment (y-axis in log scale).
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6.2.2 Differential Aileron Excitation

Next consider the identification from the differential aileron input to the

acceleration and pressure sensors. Signal pathways are shown in Figure 6.10. As

before, the input u(t) is perturbed by a noise signal vail(t) and the output y(t)

by a noise signal v(t). Additionally, the system contains a feedback controller

C, which augments the excitation r(t) with a differential aileron command. The

feedback signals to the control system yC(t) are the result of both rigid-body and

ASE dynamics, represented in a combined system GC . The feedback yC(t) also

contains a noise signal vC(t), which must be assumed correlated with vail(t) and

v(t).

Because vC(t) appears in u(t) after being filtered through the dynamics

of GC , C and the aileron servo Gail, identification from u(t) to y(t) will provide

an estimate biased by the subsystems Gail, GC , and C in addition to the various

cross-spectra of v(t), vail(t), and vC(t). As before, however, the reference r(t) is

uncorrelated with the noise signals and may be used as an instrument ξ(t) = r(t)

to provide unbiased results.

Sample signals of the differential aileron experimental data are shown in Fig-

ure 6.11. The signals shown are (1) lateral acceleration at the nose, (2) acceleration

at the right forward wing-tip, (3) axial acceleration at the right outer-wing, (4)

acceleration at the right aft wing-tip, (5*) acceleration at the right-aft wing-root,

(6*) dynamic pressure at the right top front pressure tap, (7) dynamic pressure

at the right top rear pressure tap. The same coherence-based criteria of the LEF
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experiment was used to determine which signals were acceptable for identification

purposes; signals marked by ‘*’ were designated unacceptable and not used in the

identification algorithm. A total of 49 output signals were used for identification

purposes for this experiment.

Locations of all used and unused accelerometers are shown in Figure 6.12.

Observe that the usable accelerometers are distributed primarily over the wings as

one would expect from a differential aileron excitation. The selected accelerometer

in the nose measures lateral motion, explaining its high coherence with r(t).

A model was again constructed using the method proposed in Chapter 5.

The singular values of the projected data matrix are shown in Figure 6.13. The

system order was chosen to be n = 12, which is naturally larger than that of the

LEF experiment due to the large increase in the output dimension ny. Additionally,

the ailerons have much more inertial excitation than the LEF’s, being heavier and

a larger geometric proportion of the wings, so more responsiveness is expected

overall.

Samples of 5 estimated signal pathways for the 49 used output signals are

shown in Figures 6.14 through 6.16. Time-domain simulations are plotted with

measured data in Figure 6.14, and comparisons with cross-covariance function

estimates in Figure 6.15. The enumeration is the same as in Figure 6.11. Spectral

estimates and Bode plots of the estimated system are shown in Figure 6.16.

6.3 Conclusion

We have demonstrated that the COBRA method produces accurate, un-

biased, linear models from measured data of large signal dimension (ie. data

acquired from many sensors). The convergence of covariance function estimates is

used to handle large data sets in both open- and closed-loop experiments, making

it well-suited to ASE analysis. The algorithm has been successfully applied to

data measured in flight from the NASA Active Aeroelastic Wing F/A-18 for both

open-loop and closed-loop experiments.

As a final note, we mention that the algorithm is capable of analyzing data
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Figure 6.11: Sample of signals used for the differential aileron experiment.
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Figure 6.12: Locations of used and unused accelerometers for the differential
aileron experiment.
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Figure 6.13: Singular values of the projected data matrix for the differential
aileron experiment.

from multiple inputs and references and would, in theory, provide similar results

were the two experiments combined into a single experiment. Data for such an

experiment, however, is currently unavailable to the author.
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7 Incorporating Constraints into

the Realization Problem

In this chapter, we augment the realization problem with convex constraints

with the goal of producing models that meet a priori requirements. Although the

constrained solutions can no longer be formulated as a finite sequence of linear

algebra operations, they can be solved via convex optimization techniques, which

guarantee convergence to a solution. Two types of constraints are introduced: con-

straints on the location of the system poles in the complex plane, and constraints

on time-domain behavior.

7.1 Introduction

When identifying models of systems from measured data, it is often desir-

able that the identified model behave in agreement with prior knowledge of the

system. This is ordinarily limited to basic knowledge of system stability or an as-

sumed model order, but other times this knowledge is derived from first-principles

laws that govern the underlying system dynamics. The system identification liter-

ature, however, tends to focus on “black-box” modeling approaches that limit the

type of constraints that may be incorporated into the identification process.

One possible reason for the lack of constrained identification procedures is

that the classical prediction-error framework relies on the optimization of typically

non-convex cost functions. Such optimizations are already computationally chal-

lenging without adding possibly non-convex constraints. Realization-based iden-

tification methods (including subspace identification methods), by contrast, use a

103
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fixed number of linear algebra operations to achieve consistent estimates even in

the presence of colored noise. While generally non-optimal in a prediction-error

or maximum-likelihood sense, all realization-based methods nonetheless minimize

some Frobenius norm, the argument of which is affine in the identified parameters.

The inherent convexity of the minimization has so far been largely, though not

entirely, unexploited.

Unlike most classical prediction-error identification methods, realization-

based methods are capable of identifying unstable systems. While this can be an

advantage if the system is in fact unstable, it can become a problem when the

system is known to be stable yet the identified model is unstable. The under-

lying cause of instability in these methods is that the estimate of the extended

observability matrix

Or =



C

CA

CA2

...

CAr−1


does not sufficiently decay in magnitude at lower block rows, implying A has a

spectral radius (magnitude of largest eigenvalue) greater than 1. If the spectral ra-

dius of A is close to 1, or if non-deterministic effects cause the estimated magnitude

of Or to grow at lower block rows, then the resulting model will be unstable.

One option to guarantee stable models is to somehow modify the estimate

Ôr = UnΣ1/2
n

directly. As early as Kung [38], it was proven that an estimated Or with zeros in

its final block row will guarantee a stable estimate when used in realization-based

methods. Maciejowski [42] improves the original proof of Kung and proposes a

scheme to induce stability by replacing the block row “lost” when shifting Or
with a block row of zeros. Alternatively, Van Gestel, Suykens, Van Dooren, and

De Moor [73] proposes a method by which Σn is modified along a similar line of

reasoning to guarantee stable estimates.
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Examples of identification methods which incorporate convex-optimization

techniques include Lacy and Bernstein [39], in which a linear-matrix inequality

(LMI) framework is proposed to constrain the eigenvalues of both N4SID- and

MOESP-type subspace system estimates to be stable, and Hoagg, Lacy, Erwin,

and Bemstein [25] and McKelvey and Moheimani [45], which use similar LMI

frameworks to restrict estimates to positive real systems. In Hoagg, Lacy, Erwin,

and Bernstein [26], this framework is extended to provide a lower bound on the

natural frequencies of the poles of the identified model, creating a convex opti-

mization procedure which restricts the eigenvalues to lie outside a convex region of

the convex plane; the parameterization used, however eliminates the possibility of

also restricting the eigenvalues to lie within convex regions of the complex plane,

such as the unit circle.

Additional subspace-based methods that incorporate prior knowledge of

the system include Okada and Sugie [55], which develops a method for the case

in which some of the pole locations of the system are known beforehand. In

Trnka and Havlena [72], constraints were developed to fix the steady-state gain

of the system and minimize a form of numerical derivative of the system step

response. In Alenany, Shang, Soliman, and Ziedan [3], an equality-constrained

quadratic program is used to estimate the lower-block-triangular matrix of Markov

parameters seen in the data-matrix equations, which also enforces causality in

the Markov parameter estimates. The classical realization algorithm was then

applied to a block-Hankel matrix constructed from the system Markov parameters.

Constraints were also developed to fix the steady-state gain.

In this chapter, we propose a new framework to impose general eigenvalue

constraints for subspace identification problems. The eigenvalue constraints are

constructed using the concept of LMI regions, first introduced in Chilali and

Gahinet [12], which generalize Lyapunov stability to convex regions of the complex

plane. The generality of our method allows for the eigenvalues of the estimate to

be constrained to any convex region of the complex plane that can be expressed

as the intersection of ellipsoids, parabolas, or half-spaces symmetric about the real

axis.
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Our approach generalizes the methods proposed in Lacy and Bernstein [39]

and Hoagg, Lacy, Erwin, and Bemstein [25], which over-constrain the discrete-time

Lyapunov inequalities. We also present a stability criteria which over-constrains

the discrete-time Lyapunov inequalities, but it is a special case of a more general

method, and our constraint has an exact geometric interpretation in the complex

plane. In addition to a stability constraint, we also provide constraints that require

eigenvalues to have positive real parts and/or zero imaginary parts. We conclude

by proposing some additional time-domain constraints for use in identification.

7.2 LMI Regions

An LMI region is a convex region D of the complex plane, defined in terms

of a symmetric matrix α and a square matrix β, as

D = {z ∈ C : fD(z) ≥ 0} (7.1)

where

fD(z) = α + βz + βT z̄. (7.2)

We will call fD(z) for a given D the characteristic function of D. LMI

regions generalize Lyapunov notions of stability for continuous and discrete time

systems, and the describing-function parameters α and β may be used to form

Lyapunov-type inequalities.

LMI regions were first introduced in Chilali and Gahinet [12], and we repeat

the central theorem of the paper here for future reference.

Theorem 7.1. The eigenvalues of a matrix A lie within an LMI region with char-

acteristic function (7.2) if and only if there exists a matrix P ∈ Rn×n such that

P = P T > 0, MD(A, P ) ≥ 0 (7.3)

in which

MD(A, P ) = α⊗ P + β ⊗ (AP ) + βT ⊗ (AP )T . (7.4)
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The original definition of an LMI region has < in place of ≥ for (7.1) and

(7.3). We adopt the above definition instead so that our results are straightforward

to implement as a semi-definite program and because the real and imaginary axes

cannot be parameterized as LMI regions if (7.1) uses a strict inequality. This

change does not affect the proofs of Chilali and Gahinet [12], since they are based

on the relationship(
I ⊗ vH

)
MD(A, P ) (I ⊗ v) =

(
vHPv

)
fD(λ)

where λ is an eigenvalue and v is the corresponding left eigenvector of A. Because

P is positive definite, the signs ofMD and fD need only to be equal, not necessarily

negative.

The intersection of two LMI regions D1 and D2 is also an LMI region,

described by the matrix function

fD1∩D2(z) =

[
fD1(z) 0

0 fD2(z)

]
. (7.5)

Note that in general the (α, β) pair that describes an LMI region is not unique.

7.2.1 Some LMI Regions Useful for Identification

In the following we derive some LMI regions useful for identification pur-

poses. Of course the user need not be limited by these; LMI regions can be

constructed for any convex intersection of half-spaces, ellipsoids, and parabolas

symmetric about the real axis. The following regions are straightforward to verify

by algebraically solving for the eigenvalues of (7.2).

Discrete-Time Stable Eigenvalues

Stable system estimates are often desirable in the identification problem.

Standard subspace methods, however, do not guarantee stability of the identified

model. To provide some known degree of stability for the identified models, we

may constrain eigenvalues to the disc of radius 1− δs.
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Proposition 7.1. The set

S = {z ∈ C : |z| ≤ 1− δs, 0 ≤ δs ≤ 1}

is equivalent to the LMI region fS(z) ≥ 0,

fS(z) = (1− δs)I2 +

[
0 1

0 0

]
z +

[
0 0

1 0

]
z̄. (7.6)

Theorem 7.1 applied to this region with δs = 0 results in

P > 0, and

[
P AP

PAT P

]
> 0,

which, by means of Schur complements, is equivalent to the familiar discrete-time

Lyapunov condition

P > 0, and P − APAT > 0.

It is also similar, though not identical, to the LMI constraint proposed in Lacy

and Bernstein [39]. In (7.6), however, the relaxation parameter δs has a specific

interpretation in the complex plane.

Eigenvalues with Positive Real Parts

It is also generally desirable to avoid models with poles that have negative

real parts. Such systems cannot be transformed to continuous time, since the

matrix logarithm is undefined for A with negative real eigenvalues. Consequently,

we wish to construct an LMI region that describes the positive right-half plane.

This region should also be parameterized so that the region begins some distance

away from the imaginary axis.

Proposition 7.2. The set

P = {z ∈ C : Re(z) ≥ δp, δp ≥ 0}

is equivalent to the LMI region fP(z) ≥ 0,

fP(z) = δp

[
2 0

0 −2

]
+

[
0 0

0 1

]
z +

[
0 0

0 1

]
z̄. (7.7)
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Eigenvalues with Zero Imaginary Parts

If it is known that a process has strictly real eigenvalues (such as with RC

circuits, heat transfer, or many orther processes in thermodynamics), then it may

be desirable to constrain the eigenvalues of the estimate to the real number line.

Proposition 7.3. The real number line R is equivalent to the LMI region fR(z) ≥
0,

fR(z) =

[
0 1

−1 0

]
z +

[
0 −1

1 0

]
z̄.

This constraint, however, is computationally unfriendly for many numerical

optimization procedures, since it is effectively using two inequalities to define an

equality, which can create problems for interior-point-based solvers. Instead, we

include a parameter to describe an arbitrarily small band around the real axis in

the complex plane.

Proposition 7.4. The set

R = {z ∈ C : |Im(z)| ≤ δr, δr ≥ 0}

is equivalent to the LMI region fR(z) ≥ 0,

fR(z) = 2δrI2 +

[
0 1

−1 0

]
z +

[
0 −1

1 0

]
z̄. (7.8)

The parameter δr can be made small enough so that the complex parts of

the resulting identified eigenvalues are near machine precision.

Though many more types of LMI regions exist, these three are the most

useful for identification purposes. The geometric interpretation of each region in

the complex plane is shown in Figure 7.1.

7.3 Realization with Eigenvalue Constraints

In this section, we incorporate LMI regions to create a realization-based

identification procedure with eigenvalue constraints. We will develop the method
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Figure 7.1: Sample LMI Regions in the Complex Plane

for the raw-data case only; it is straightforward to extend the technique to the

covariance-based method, and a constrained step-based realization method will be

developed in Chapter 8.

The method is based on the observation that the realization procedure

minimizes the cost function

Jr(Â) =
∣∣∣∣∣∣ÔrÂX̂ΠU⊥ − Y1|rΠU⊥

∣∣∣∣∣∣
F
, (7.9)

which is affine in the parameter Â. Theorem 7.1 contains the product AP , however,

so we augment (7.9) to contain ÂP via a right-hand weighting Wr =
(
X̂ΠU⊥

)†
P ,

J ′r(Â, P ) =
∣∣∣∣∣∣(ÔrÂX̂ΠU⊥ − Y1|rΠU⊥

)
Wr

∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣(ÔrÂX̂ΠU⊥ − Y1|rΠU⊥

)(
X̂ΠU⊥

)†
P

∣∣∣∣∣∣∣∣
F

(7.10)

=
∣∣∣∣∣∣ÔrÂP − Y1|rΠU⊥(X̂ΠU⊥)†P

∣∣∣∣∣∣
F
. (7.11)

Though (7.11) has the same global minimum as (7.9), namely

Â = (Ôr)†Y1|rΠU⊥(X̂ΠU⊥)†, (7.12)

it does not necessarily have the same minimum over an arbitrary convex set. (This

may be seen by calculating the matrix differential in Â for both costs. See Section

B.3.) We must also ensure that P does not become arbitrarily small during the

minimization procedure, so we include the constraint

trace(P ) = 1
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to retain numerical stability.

Though (7.11) now contains ÂP , it is no longer affine in the parameters

Â and P . We thereby re-parameterize the cost function with an auxiliary term

Q = ÂP , to create the final convex optimization problem:

Given estimates Ôr and X̂ΠU⊥ , a data matrix Y1|rΠU⊥ , and an LMI region

parameterized by α and β,

minimize Jc(Q, P )

subject to M(Q, P ) ≥ 0,

P = P T > 0

trace(P ) = 1

(7.13)

in which

Jc(Q, P ) =
∣∣∣∣∣∣ÔrQ− Y1|rΠU⊥(X̂ΠU⊥)†P

∣∣∣∣∣∣
F
,

and

M(Q, P ) = α⊗ P + β ⊗Q+ βT ⊗QT .

Similar minimization problems may be formulated for all realization-based identi-

fication methods. A method for step-based realization procedures was developed

in Miller and de Callafon [51]. In Miller and de Callafon [54], a MOESP-type pro-

cedure was developed, in which it was also shown that methods for which the

weighting reduces to Wr = P will still modify the non-global minima.

At this point we should remark that although the global minimizer (7.12)

might be in the set of feasible points, numerical optimization tools may not be able

to find it exactly. Optimization routines based on primal-dual gap methods [8] may

deviate from (7.12) even when it is feasible and supplied as an initial value. This is

because, although the analytic solution to primal and dual problems is the same,

the numerical solution might not be. Such numerical difficulties become more

common as the row dimension of Ô becomes very large. In practice, it is best to

confirm that the eigenvalues of (7.12) do not satisfy the LMI region’s characteristic

equation before solving the convex optimization problem.
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7.4 Constrained Least-Squares Identification of

Input Parameters

In addition to constraining the estimation of A and C in the realization

procedure, B andD may be constrained to conform with a priori system knowledge

as well in the least-squares identification of the input parameters. In the following,

we give several useful constraints for identification.

7.4.1 Constrained Steady-State Gain

If A and C are known, then B and D are not only linear in the input-output

data, but linear in the steady-state system gain

Kss = C(I − A)−1B +D.

Thus if the steady gain Kss is known beforehand, then, given estimates Â and Ĉ,

we may express constraints on estimates B̂ and D̂ as

vec(Kss) = vec
(
Ĉ(I − Â)−1B̂ + D̂

)
=
[
Inu ⊗ Ĉ(I − Â)−1

]
vec(B̂) + vec(D̂)

=

[
Inu ⊗ Ĉ(I − Â)−1

Inuny

][
vec(B)

vec(D)

]

These may be included as equality constraints in the least-squares identification

procedure when solving (4.34).

7.4.2 Constrained Impulse-Response and Step-Response

Behavior

Many of the underlying physical laws that motivate the eigenvalue con-

straints result in similar constraints on the overall step-response behavior of a

system. When a system is constrained to have strictly real eigenvalues, then it

is often assumed that the step response should not undershoot its initial value or

overshoot its final value. The zeros that result when estimating B and D, however,
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may cause just such behavior, even when the eigenvalues of A are constrained to

be real.

Because the impulse response is the derivative of the step response, the

condition that a step-response have no undershoot and no overshoot is equivalent

to the condition that the impulse response coefficients are all positive. Thus the

constraint

ĈÂtB̂ > 0 ∀ t (7.14)

is necessary and sufficient to guarantee such behavior.

Unfortunately, this cannot be numerically enforced for all t, so select values

of t must be used to create a numeric constraint. In practice, this condition is

usually desired in situations where the eigenvalues of A are assumed to be strictly

real, so each eigenvalue of A corresponds to a “time-constant” that may be used

to selectively choose t. If a system has n time-constants τi, then applying the

constraint (7.14) at n + 1 points ti such that ti < τi and tn+1 > τn appears

sufficient to guarantee such behavior, though it has not yet been proven by the

author.
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8 Application II: Transient

Thermal Response of an LED

In the second application chapter, the step-based realization procedure is

combined with the proposed constraints to identify the thermal response of a high-

power LED.

8.1 Introduction

Heat-transfer in powered electronics typically requires very little feedback

control. Usually the only requirement is that the temperature stay below a crit-

ical threshold at which damage from heat becomes a concern, since changes in

temperature have a negligible impact on performance below this point. Feedback

is primarily used to engage additional cooling systems to ensure that the system

temperature stay within a safe operating range, such as activating additional fans

inside a computer case when the processor temperature exceeds a preset level.

Though applications for feedback control may be uncommon, experimental

analysis of thermal transients plays an important role in the model validation

and failure detection of integrated circuits. Manufacturing errors can result in an

increase in thermal impedance between circuit elements that dramatically shortens

the operating life of the system. This includes decreases in material conductance

and changes in heat capacitance due to faulty components, as well as increases

in contact resistance due to faulty connections. Measuring the transient thermal

response of a circuit is an effective means of failure detection in the manufacturing

process. The response is compared to a baseline response of a system that has

114
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Ts Tn

R1 R2 R3 Rn

C1 C2 C3 Cn

Figure 8.1: RC ladder circuit (Cauer network topology).

been confirmed to be operating within specifications, and the test system fails if

the two responses do not match.

Such thermal systems are typically modeled as resistor-capacitor ladder

circuits, with the various resistances and capacitances derived from known or mea-

sured thermal properties of the materials. These networks are most often created

from analytical models or numerical simulations. An example of such an RC-ladder

is shown in Figure 8.1. The resistors represent impedance to the flow of heat while

the capacitors represent the storage of thermal energy in each component. The

temperature Ts is the internal heat source, and Tn is the temperature at the point

of measurement. The ground represents the surrounding ambient temperature.

The Cauer network topology shown in Figure 8.1 is the most common, though

variations, such as Foster topologies, are used occasionally [70].

These RC ladders are often converted into a time-constant spectrum in

which each RC pair is converted into a pair of a time constant and the relative

contribution of the time constant. The spectrum is then plotted with the time

constants on the x-axis and the contributions on the y-axis.

Modeling heat transfer in such a circuit topology constrains the dynamic

behavior of the model to be consistent with the laws of thermodynamics. Energy-

storing elements, such as inductors, would allow for the measured temperature Tn

to temporarily exceed the source temperature Ts, which would violate the law of

entropy. To ensure that experimentally constructed models share these qualities,

identification methods are typically limited to “white-box” approaches that esti-

mate values for the resistances Ri and capacitances Ci separately. These methods
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are limited to the identification of models of very low order, often no more than

three RC pairs [67].

Although models such as the circuit in Figure 8.1 are commonly used in

the design process, few tools exist to produce experimental models of this form.

One popular framework for analyzing the thermal response of electronics is that of

Székely and Van Bien [70]. In this method, the finite-dimensioned resistor-capacitor

network in Figure 8.1 is replaced with an infinitely long network to form a con-

tinuum of time-constants as a function of a logarithmic time variable. The step

response is formulated in terms of the convolution of an analytic function with

a unit exponential rise. The original method consists of a transformation to a

logarithmic time variable, followed by a differentiation and a de-convolution to

generate a non-parametric estimate of the spectrum function. Relationships be-

tween the total impedance of a circuit and its time-constant spectrum were later

derived in Székely [68] and Székely and Rencz [69].

While an automatically generated graph of the time-constant spectrum pro-

vides an immediate and intuitive interpretation of the various transient artifacts

of the step response, an additional curve-fitting or discretization procedure is re-

quired in order to define the spectrum with a finite number of parameters. Hence

estimating the time-constant spectrum in this way is essentially a non-parametric

identification procedure, akin to measuring the frequency response function of a

linear system. Also, the calculation of the spectrum requires differentiation of the

measured step response followed by de-convolution with a low-pass filter, both of

which reduce the signal to noise ratio of the data.

In Székely [66], a weighted-discretization method was proposed which re-

duced the number of observed time-constants based on equidistant spacing along

the logarithmic time axis, but the number of time constants derived was between

60 and 120. In Székely [67], filtering techniques were developed to address loss of

resolution in the time-constant spectrum when two known constants are relatively

close to each other. In Rencz, Poppe, Kollár, Ress, and Székely [60], the introduc-

tion of materials properties was proposed to correct for model discrepancies due

to parasitic heat loss.
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Other approaches to modeling the thermal response from experimental data

include applying a constrained, non-linear, least-squares curve-fitting method to

minimize the root-mean-square (RMS) error for a continuous-time parameteriza-

tion of a step response, developed in Palaćın, Salleras, Samitier, and Marco [57].

The method was applied to multivariable data, in which the effects of a step on

each input were measured for multiple output signals, forming a step-response ma-

trix of transients. The method requires careful model selection beforehand and an

initial guess as to the value of the step-response time constants to avoid becoming

trapped in local minima. Genetic algorithms were applied to a similar problem in

Palaćın, Salleras, Puig, Samitier, and Marco [56].

In Bechtold, Rudnyi, and Korvink [6], automatic model reduction for deter-

ministic electro-thermal models of semiconductor devices was studied. A balanced-

truncation method for reducing the order of linear systems, which shares some

qualities with the identification method to be presented in this chapter, was shown

to be an effective way of reducing model order but was concluded to be computa-

tionally unattractive due to the extremely large order of the deterministic models.

The application of model reduction to systems identified from simulated or mea-

sured data was not studied.

The step-based realization procedure presented in this dissertation is a sig-

nificant departure from existing methods in the manufacturing and process con-

trol literature. This new method has a number of key advantages that separate

it from existing methods. (i) The model order is chosen during the identification

procedure, and no prior assumptions must be made regarding the number or loca-

tion of time constants. (ii) The relationship of the algorithm to model-reduction

procedures inherently produces low-order models. (iii) The step response can be

possibly vector valued. Multivariable measurements do not necessarily increase the

system order. (iv) No differentiation of the step-response is required, allowing for

application to measurements with low signal-to-noise ratios. (v) The steady-state

value of the step response may optionally be constrained during identification. (vi)

The method involves no non-convex optimization. The calculation of the model

parameters requires only standard operations of linear algebra, a linear program-
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ming problem, and a quadratic programming problem, for which robust numerical

tools are widely available.

The goal of this application is to produce models of a specific structure

to match existing industry standards. Until this point, all models presented in

this dissertation have been in discrete time; the industry standard, however, is in

continuous time, and so some of the discrete-time LTI equations are re-derived

from an initial continuous time model. The resulting algorithm, however, is no

different than the step-based realization procedure seen in Chapter 3, but with the

addition of convex constraints.

8.2 Problem Formulation

We begin with the assumption that the true noise-free step response has

the form

yc(tc) =
n∑
i=1

Ri(1− e−tc/τi) (8.1)

where tc ∈ R is a continuous time variable, yc(tc) ∈ Rny is a possibly vector-

valued signal, τi are the time constants of the response, and Ri ∈ Rny×1 are the

contribution of each time constant to the total response. The Ri in (8.1) are not

equivalent to the resistances in Figure 8.1, but (8.1) is the most common notation

and is used for the rest of chapter. The pairs (τi, Ri) form the time constant

spectrum. Henceforth, we will focus our efforts on identifying the parameters in

(8.1), ignoring the network topology interpretation.

We assume the system is stable so that the step response is bounded, and

thus

Re(τi) > 0. (8.2)

Additionally, allowing for complex τi could result in an oscillatory response. This

would imply a possible overshoot in temperature during dissipation, which would

violate the laws of thermodynamics. Hence we assume

Im(τi) = 0. (8.3)
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The alternative non-parametric step-response model proposed by Székely

defines the time-constant spectrum as an analytical function R(τ) derived from

the convergence of the (Ri, τi) pairs as τi+1 − τi → 0. The step response is then

given by the convolution integral

yc(tc) =

∫ ∞
−∞

R(ζ)(1− exp(−tc/eζ)dζ. (8.4)

The two definitions, though conceptually similar, are not interchangeable, since

the integral (8.4) is always 0 if R(τ) is bounded and nonzero for a finite number

of τ , which is the case for (8.1).

8.2.1 Discretization of the Step-Response Model

Because (8.1) is a finite-dimensional, linear, time-invariant system, it has

an alternative state-space representation

ẋc(tc) = Acxc(tc) +Bc

y(tc) = Ccx(tc)
(8.5)

in which xc(tc) ∈ Rn is the state of the system; and Ac ∈ Rn×n, Bc ∈ Rn×1, and

Cc ∈ Rny×n are the state-space parameters. The initial state is xc(0) = 0, and

the subscript c denotes that the parameters are from a continuous-time model.

We assume that (8.5) is controllable, observable, and minimal, so that the state

dimension n cannot be reduced. These assumptions are consistent with (8.1). The

step-response yc(tc) may be expressed in terms of (8.5) as

yc(tc) = Cc

∫ tc

0

eAc(tc−τ)Bcdτ = CcA
−1
c (eActc − I)Bc, (8.6)

where e(·) is the matrix exponential.

Suppose Ac has the eigenvalue decomposition

Ac = VcΛcV
−1
c .

If λ
(i)
c is an eigenvalue of Ac and v

(i)
c its associated eigenvector, then (8.1) may be

derived from (8.5) via the identities

τi = −1/λ(i)c , (8.7)
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Ri = τiCcM
(i)
c Bc. (8.8)

M
(i)
c is the rank-1 matrix

M (i)
c = v(i)c (V −1c )(k,:) ∈ Rn×n, (8.9)

in which “Matlab-style” indexing notation has been used in the subscript. Note

that M
(i)
c is strictly real because τi is real.

Suppose yc(tc) is measured in discrete-time with a sampling rate of Ts. Let

yd(t) , yc(Tst) be the discrete-time step-response measurement, assuming a zero-

order hold for each sample. Letting the subscript d denote discrete-time state-space

parameters, the discrete-time equivalent of (8.5) is then

xd(t+ 1) = Adxd(t) +Bd

yd(t) = Cdxd(t)
(8.10)

and the discretization of (8.6) results in the familiar Markov parameters

yd(t) =


0 t = 0,

t∑
l=0

CdA
l−1
d Bd t > 0,

(8.11)

where

Ad = eAcTs , Bd = A−1c (Ad − I)Bc, and Cd = Cc.

Because our data is measured in discrete time, we first identify the parameters

(Ad, Bd, Cd), convert them to continuous time to find (Ac, Bc, Cc), and finally

use the identities (8.7) and (8.8) to convert the model to the form of (8.1). The

state-space models (8.5) and (8.10) allow for a great deal more freedom than (8.1),

however, so we incorporate constraints to ensure that the model constructed from

the step-based realization can be transformed into the form (8.1).

8.3 Constraining the Estimate

In this section, we derive constraints needed to guarantee that the identified

model has an equivalent form (8.1). We then show how the step-based realization

procedure described previously may be combined with the constraints in Chapter

7 to produce two sequential convex optimization problems.
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8.3.1 Eigenvalue Constraints

If (8.10) is the discretization of (8.1), then the assumptions of τi require

constraints to be placed on the eigenvalues of Ad. These are stated in the following.

Proposition 8.1. The system (8.10) is a discretization of (8.1) if and only if all

eigenvalues λ
(i)
d of Ad satisfy the following constraints:

|λ(i)d | < 1, (8.12)

Re(λ
(i)
d ) > 0, (8.13)

Im(λ
(i)
d ) = 0. (8.14)

Proof. Noting that λ
(i)
d = e−Ts/τi , (8.12) and (8.14) follow directly from (8.2) and

(8.3), respectively. (8.13) is required so that the zero-order hold discretization

formulas are invertible.

Thus in order for (8.10) to be converted to (8.1), the constraints (8.12),

(8.14), and (8.13), must be satisfied. The LMI region corresponding to these

constraints is the intersection of the regions S, R, and P in Propositions 7.1, 7.2,

and 7.4, respectively, shown in Figure 8.2, with δs = δr = δp = 0. Combining

Theorem 7.1 with the identity (7.5), we formulate an LMI region to satisfy all

three constraints on λ
(i)
d and state the following Lyapunov-type condition for λ

(i)
d ,

which may be incorporated into a convex optimization program.

Corollary 8.1. The discrete-time state-space model (8.10) is the discretization of

a continuous-time model (8.1) if and only if there exists a matrix P ∈ Rn×n such

that

P = P T � 0, Md(Ad, P ) � 0

in which

Md(Ad, P ) = αd ⊗ P + βd ⊗ (AdP ) + βT ⊗ (AdP )T (8.15)

αd =


(1− δs)I2 0 0

0 2δrI 0

0 0 2δpI2


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Figure 8.2: LMI region used for identification.

βd =



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1


with δs = δr = δp = 0.

The corollary results in sufficient conditions for Ad for any δs, δp ∈ [0, 1),

and we may still use a nonzero δr, provided any remaining imaginary components

of λ
(i)
d are neglected. In practice δr can be very small so that the imaginary

components are near machine precision.
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8.3.2 Additional Constraints on the Discrete-Time State-

Space Parameters

Additional assumptions may be made regarding (8.1), such as the assump-

tion that steady-state value of the step-response is equal to some value determined

from prior knowledge. For example, if the ambient temperature or steady-state

behavior of the system is known with high precision, then the value of the sum of

Ri can be assumed beforehand.

Suppose yc(∞) is the steady-state value of (8.1). Because the continuous-

and discrete-time systems have the same steady-state value, we may form the

following constraint:

Proposition 8.2. If the system (8.1) satisfies

n∑
i=1

Ri = yc(∞), (8.16)

then (8.10) is a discretization of (8.1) if and only if

Cd (I − Ad)−1Bd = yc(∞). (8.17)

In thermal analysis, it is generally required that the transient thermal re-

sponse to a step change be monotonically increasing. It is therefor necessary that

its discretization also be monotonically increasing, and so the difference between

one time step ahead and the current time step must be positive. From the discrete-

time step response (8.11), this may be stated as the following inequality constraint.

Proposition 8.3. If y(t) in (8.1) is monotonically increasing, then (8.10) is a

discretization of (8.1) only if

CdA
k
dBd > 0 ∀ k (8.18)

At times it is possible to assume that all Ri in (8.1) are positive. This may

also be translated into a constraint on the discrete-time state-space model.

Proposition 8.4. If the system (8.1) satisfies

Ri > 0,
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then (8.10) is a discretization of (8.1) if and only if

(i) Ad satisfies (8.14) and (8.13)

(ii)

(Λ−1c ⊗ Cd)


M

(1)
c

M
(2)
c

...

M
(n)
c

 (I − Ad)−1AcBd > 0, (8.19)

where (using the matrix logarithm)

Ac =
1

Ts
log(Ad), (8.20)

Ac = VcΛcV
−1
c is the eigenvalue decomposition, M

(i)
c is given by (8.9), and ⊗ is

the Kronecker product.

Proof. From (8.8), we know that Ri are real if and only if Im(λ
(i)
d ) = 0. Also,

(8.20) exists if and only if Re(λ
(i)
i ) > 0. Then using (8.8), (8.19) reduces to

R1

R2

...

Rn

 > 0

which is the required constraint.

8.3.3 Incorporating Constraints into the SBR Method

The step-based realization procedure minimizes the cost function (3.12),

which is affine in Â. The LMI constraints, however, contain the product ÂP , so

we modify cost function with a right-hand weighting Wr = (ĈlUp)†P to obtain

J ′s(Â) =
∣∣∣∣∣∣(ÔkÂĈlUp − Y1|k +M ′

)
Wr

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣ÔkÂP − (Y1|k +M ′)(ĈlUp)†P

∣∣∣∣∣∣
F

(8.21)

Thus, we may formulate a convex optimization procedure similar to the case used

for raw data in Chapter 7. Note that the unconstrained minimizer of (8.21) is only
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the constrained minimizer if P = I. To reduce any errors this may cause, as well

as to increase the numerical stability of the problem, we provide as a constraint

trace(P ) = n,

which still allows for the possibility of P = I while not over-constraining the

problem.

We still must re-parameterize (8.21) to be affine in the parameters in order

to formulate the constrained optimization as a convex optimization. Letting Q =

ÂP , we form the following convex optimization problem with convex constraints:

Given estimates Ôk and ĈlUp,

minimize J(Q, P )

subject to M(Q, P ) � 0,

P = P T � 0

trace(P ) = n

(8.22)

in which

J(Q, P ) =
∣∣∣∣∣∣ÔkQ− (Y1|k +M ′)(ĈlUp)†P

∣∣∣∣∣∣
F
,

and

M(Q, P ) = αd ⊗ P + βd ⊗Q+ βTd ⊗QT .

Once Q and P are solved for, let Âd = QP−1.

With Ĉd taken from the first block-row of Ôk, the constraints (8.17), (8.18),

and (8.19) are linear in B̂d and can be incorporated into the linear-least squares

solution for B̂ and D̂ in the step-based realization method, forming a second convex

optimization problem with convex constraints:

Given

z =


yd(1)

...

yd(N − 1)

 ∈ RnyN and φT =



Ĉd

ĈdÂd

ĈdÂ
2
d

...

ĈdÂ
N−2
d


,
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Figure 8.3: Experimental setup for measuring the thermal response of the LED.

minimize
∣∣∣∣∣∣z − φB̂d

∣∣∣∣∣∣
2

(optionally) subject to (8.17), (8.18), and/or (8.19).
(8.23)

Thus by solving two convex optimization problems, an estimate of a discrete-time

state-space system (8.10) which is guaranteed to be a discretization of a model of

the form (8.1) is found.

8.4 Analysis of the Thermal Response of an LED

To demonstrate its effectiveness, the proposed algorithm was applied to the

measured thermal response of an LED. Experiments were performed at Vektrex in

San Diego, CA. A SpikeSafe 200 precision pulsed current source was used to step

the current from 0 to the drive current of the device. The voltage was measured

with an Agilent34411A 6 1/2 Digit DMM connected to a prototype Vektrex Ther-

mal Platform Controller. The temperature of the device was extrapolated from

voltage measurements using the Electronic Industries Association EIA/JEDEC

JESD51-1 specification. The LED was mounted to a thermal platform that kept

the case temperature constant at 25◦ C. The full test apparatus may be seen in

Figure 8.3.
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Figure 8.4: Singular values of Y1|k −M for fast and slow datasets.

8.4.1 Analysis of the Response

Because the system itself contains both fast and slow dynamics, the system

is “stiff” in the sense that the underlying differential equations are ill-conditioned.

Thus to keep the identification procedure computationally feasible, two models

were identified. The first was a “fast” model identified from 0 to 0.002 seconds

(the first 100 samples of data). The number of block-rows for the data matrices

was chosen to be 9. The second model was a “slow” model identified from a dataset

down-sampled by a factor of 1,000. Before down-sampling, the data filtered forward

and backward through a 4th-order Butterworth filter with a cutoff frequency of 0.1

rad/s. The number of block rows for these data matrices was chosen to be 11.

Singular values of Y1|k −M for each dataset are shown in Figure 8.4. For

each, there is a sharp drop off in magnitude within the first few singular values.

This implies the order of the underlying dynamics. It also suggests that increasing

the model order any higher would not significantly reduce the error between the

data and the model. Additionally, increasing the model order would result in

(Ri, τi) pairs that show signs of linear dependence on one another, so that the

number of time constants would not be minimal.

Estimates of Âd and Ĉd were found for fast and slow models by solving

(8.22) with YALMIP [41] using SDPT3 [71] as the selected solver. B̂d was solved

for each model using the unconstrained linear least-squares solution. Note that

these estimates of Bd are only used to simulate the fast and slow models and are
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not used to construct the final model. Simulations of both models together with

raw data are shown in Figure 8.5.

To combine the two models into one, the sampling time of the slow model

was adjusted to match the fast model, and the total model Ad and Cd were taken

to be

A
(total)
d =

A(fast)
d 0

0 A
(slow)
d

 , C
(total)
d =

C(fast)
d

C
(slow)
d

 .
B

(total)
d was found by solving (8.23) with constraints (8.17) and (8.18) using 150

data points space equidistantly along the logarithmic time axis. The steady-state

value yc(∞) was constrained to be the average of the last 400,000 samples. For

(8.18), 150 values of CdA
k
d were calculated corresponding to the 150 data points.

Values of CdA
k
d which had an entry of magnitude less than 0.01 were discarded to

prevent numerical issues, resulting in 49 total inequality constraints of the form

(8.18).

A simulation of the total model is shown in Figure 8.5. The time constant

spectrum of the model is shown underneath. Of note is that the entire model is

described by only 10 parameters and required no nonlinear optimization.
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9 Conclusions and Future Work

In this dissertation, a realization-theoretic framework was developed for

the identification of discrete-time, linear, time-invariant systems. Beginning with

the realization of a state-space system from a measured impulse response, the

algorithm was extended to step responses, arbitrary input-output data sequences,

and finally covariance function estimates. Convex constraints were developed to

transform the realization-based identification algorithms into convex optimization

problems to produce models that meet predefined behavioral specifications; the

eigenvalues of the models may be constrained to lie within various regions of the

complex plane, and the step-response behavior of the models may be constrained

to have no undershoot or overshoot.

The covariance-based realization algorithm (COBRA) was shown to be ef-

fective in identifying models from experimental data containing many samples with

large signal dimensions. Low-order models of aero-servo-elastic dynamics were con-

structed from noisy data taken from in-flight experiments. The step-based realiza-

tion procedure was also shown to be effective in analyzing the thermal response of

semiconductor devices.

Though convergence was shown to be guaranteed for the input-output data

and covariance-based methods, expressions for variance of the parameter estimates

were not established. Indeed, usable uncertainty bounds on parameter estimates

remains the great white whale for researchers in the field of subspace identifica-

tion. Although some extension and simplification of existing results were derived,

the realization-based methods presented in this dissertation faired no better than

existing methods in revealing statistical behavior of the estimates. It may be that

identification methods based on the decomposition of structured matrices of data
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will always lack useful estimates of parameter variance due to the large number

of tunable parameters in the algorithms themselves. There are simply too many

indices to analyze the asymptotic properties of them all at once.

The COBRA method works very well for applications with extremely large

datasets. In situations such as the AAW experiments, more theoretically robust

methods become numerically intractable. As the costs of sensors and data acqui-

sition systems decreases, we may expect the amount of data from an individual

experiment to increase. This is particularly true for the analysis of structural

dynamics and vibrations, such as the estimation of flutter dynamics.

From experience analyzing the AAW data with the COBRA method, it

appears that estimation of the input parameters in the subsequent linear-least-

squares step is perhaps the most difficult part of the identification problem. This

topic is usually overlooked in the subspace literature, but unjustifiably so. It

is intuitively more difficult to identify the zeros of a system than to identify its

poles, since the amplitude of the deterministic signal is at its highest at pole

frequencies, but at its lowest at zero frequencies. Use of the COBRA pole estimates

in a covariance-based orthogonal-basis-function approach is a potential area of

investigation, since these methods focus exclusively on the identification of zeros

once initial pole estimates are established.

Finally, the constrained step-based identification procedure may be the

most useful result of this dissertation. Identification from step-response measure-

ments cannot guarantee convergence regardless of the method used, so the lack

of estimates for parameter variance is irrelevant. The method appears to be a

very dramatic improvement to existing step-based identification methods, and it

is unfortunate that more in-field application data was unavailable to demonstrate

the potential of the algorithm.



A Kronecker’s Theorem

The following version of Kronecker’s theorem appears in [20].

Theorem A.1. Suppose G(z) : C → C is an infinite series of descending powers

of z, starting with z−1,

G(z) = g1z
−1 + g2z

−2 + g3z
−3 + · · · =

∞∑
k=1

gkz
−k. (A.1)

Assume G(z) is analytic (the series converges) for all |z| < 1. Let H be an infinitely

large matrix with of the form

H =


g1 g2 g3 · · ·
g2 g3 g4 · · ·
g3 g4 g5 · · ·
...

...
...

 (A.2)

Then H has finite rank n if and only if g(z) is a strictly proper coprime ratio-

nal function of degree n with poles inside the unit circle. That is, g(z) has an

alternative representation

g(z) =
b(z)

a(z)
=
bmz

m + bm−1z
m−1 + · · ·+ b1z + b0

zn + an−1zn−1 + · · ·+ a1z + a0
, (A.3)

in which m < n, all roots of a(z) satisfy |z| < 1, a(z) and b(z) have no common

roots, and we have assumed without loss of generality that a(z) is monic.

To prove Theorem A.1, we first prove the following:

Theorem A.2. The infinitely large matrix H is of finite rank n if and only if there

exists a finite sequence α1, α2, · · · , αn such that for k ≥ n,

gk+1 =
n∑
j=1

αjgk−j+1, (A.4)
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and n is the smallest number with this property.

Proof. Let Hk be the row of H beginning with gk. If H has rank n, then the first

n + 1 rows of H are linearly dependent. This implies that for some 1 ≤ p ≤ n,

Hp+1 is a linear combination of H1, . . . , Hp, and thus there exists some sequence

αk such that

Hp+1 =

p∑
j=1

αjHp−j+1. (A.5)

The structure and infinite size of H imply that such a relationship must

hold for all following rows of H below row p, so that for q ≥ 0

Hq+p+1 =

p∑
j=1

αjHq+p−j+1.

Hence for any row Hk, k > p, can be expressed as a linear combination of the

previous p rows. Since H has at least n linearly independent rows, p = n, and

since this applies element-wise, rank(H) = n implies (A.4).

Alternatively, (A.4) implies a relationship of the form (A.5) exists, and

hence rank(H) = p. Since n is the smallest possible p, this implies rank(H) =

n.

We now prove Theorem A.1.

Proof. Suppose g(z) is a coprime rational function of the form (A.3) with series

expansion (A.1), which we know exists, since g(z) is analytic for |z| < 1. Without

loss of generality, let m = n− 1, since we may always let bk = 0 for any k. Hence

bn−1z
n−1 + bn−2z

n−2 + · · ·+ b1z + b0
zn + an−1zn−1 + · · ·+ a1z + a0

= g1z
−1 + g2z

−2 + g3z
−3 + · · ·

Multiplying both sides by the denominator,

bn−1z
n−1 + bn−2z

n−2 + · · ·+ b1z + b0

= g1z
n−1 + (g2 + g1an−1)z

n−2 + (g3 + g2an−1 + g1an−2)z
n−3 + · · · ,
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and equating powers of z, we find

bn−1 = g1

bn−2 = g2 + g1an−1

bn−3 = g3 + g2an−1 + g1an−2

...

b1 = gn−1 + gn−2an−1 + · · ·+ g1a2

b0 = gn + gn−1an−1 + · · ·+ g1a1

0 = gk+1 + gkan−1 + · · ·+ gk−n+1a0 k ≥ n.

(A.6)

From this, we have, for k ≥ n,

gk+1 =
n∑
j=1

−ajgk−j+1,

which not only shows that (A.4) holds, but even provides αj = −aj. Hence by

Theorem A.2, H must have finite rank.

Conversely, suppose H has finite rank. Then (A.4) holds, and we may

construct a(z) from αk and b(z) from (A.6) to create a rational function. This

function must be coprime since its order n is the smallest possible.

Matrices with the structure of H are useful enough to have a special name.

A Hankel matrix is a matrix H constructed from a sequence {hk} so that each

element H(j,k) = hj+k. For the Hankel matrix in (A.2), hk = gk−1. Of course at

the time the rank of a matrix was tested analytically through determinants, and

Kronecker provided some formulas for calculating the cofactors of H which are

unnecessary with modern computers.



B Linear Algebra and Matrix

Identities

This appendix provides some background on orthogonal projectors, some

results on the asymptotic behavior of data-matrix products, and some results on

the differentials of Frobenius-norm cost functions.

B.1 Projectors and Orthogonal Subspaces

It is well known that for some subspace S, a vector v can be decomposed

into two components: one part in S and one part in the orthogonal complement

S⊥,

v = vS + vS⊥ .

A projector matrix Π projects a vector onto a subspace. All projector matrices

satisfy the property

Π = Π2. (B.1)

A number of interesting properties can be derived from (B.1). Π is clearly square;

additionally, its eigenvalues must all be either 0 or 1.

An orthogonal projector projects a vector onto a subspace and nullifies the

component of the vector in the orthogonal complement of the subspace. If ΠS is

the orthogonal projector onto S, then

ΠSv = ΠSvS +���
�:0

ΠSvS⊥ = vS

It straightforward that the projector onto the orthogonal complement of S is

ΠS⊥ = I − ΠS .
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All orthogonal projectors are symmetric, since

(ΠSv)T (I − ΠS)v = vT (ΠT
S − ΠT

SΠS)v = 0

⇒ΠS = ΠT
SΠS = Π2

S

⇒ΠS = ΠT
S .

ΠS then has singular values equal to its eigenvalues, and since its eigenvalues are

1 or 0,

||ΠS ||2 = 1 or 0.

This also proves that orthogonal projection cannot increase the 2-norm of a vector.

(This is not true for oblique projections, however.)

B.2 Data-Matrix Identities

Asymptotic Behavior of Data-Matrix Products

We first derive some basic results for block-Hankel matrices of arbitrary

signal data. Given signals s(t) ∈ Rns and w(t) ∈ Rnw . This implies the cross-

covariance function Rsw(τ) ∈ Rns×nw exists.

The following lemma is trivial to prove through cumbersome expansion but

useful enough to warrant a reference.

Lemma B.1. Given data matrices

Si0|i1 =


s(i0) s(i0 + 1) · · · s(i0 + l − 1)

s(i0 + 1) s(i0 + 2) · · · s(i0 + l)
...

...
...

s(i1) s(i1 + 1) · · · s(i1 + l − 1)

 ∈ R(i1−i0+1)ns×l

and

Wj0|j1 =


w(j0) w(j0 + 1) · · · w(j0 + l − 1)

w(j0 + 1) w(j0 + 2) · · · w(j0 + l)
...

...
...

w(j1) w(j1 + 1) · · · w(j1 + l − 1)

 ∈ R(j1−j0+1)nw×l,



137

then

Si0|i1W
T
j0|j1 =

i0+l−1∑
k=i0

s(k)wT (k − i0 + j0) · · ·
i0+l−1∑
k=i0

s(k)wT (k − i0 + j1)

i0+l∑
k=i0+1

s(k)wT (k − i0 + j0 − 1) · · ·
i0+l∑

k=i0+1

s(k)wT (k − i0 + j1 − 1)

...
...

i1+l−1∑
k=i1

s(k)wT (k − i1 + j0) · · ·
i1+l−1∑
k=i1

s(k)wT (k − i1 + j1)


Vectorized Data Matrix Products

The following useful identity is derived half-way in Viberg, Wahlberg, and

Ottersten [80], but the form presented here appears to be original. This greatly

simplifies the derivation of the results in Viberg, Wahlberg, and Ottersten [80] and

Gustafsson [23].

Theorem B.1. Given two sequences of vectors si ∈ Rn and wi ∈ Rm in which

n and m are not necessarily the same, suppose each sequence contains l vectors.

Define the block matrices

S =
[
s0 s1 s2 · · · sl−1

]
∈ Rn×l

and

W =
[
w0 w1 w2 · · · wl−1

]
∈ Rm×l.

Then

vec(SW T )vec(SW T )T =
l−1∑
j=0

l−1∑
k=0

(
wjw

T
k

)
⊗
(
sjs

T
k

)
Proof. First,

SW T = s0w
T
0 + s1w

T
1 + s2w

T
2 + · · ·+ sl−1w

T
l−1 =

l−1∑
k=0

skw
T
k ∈ Rn×m
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leads to

vec(SW T ) =



(
l−1∑
k=0

skw
T
k

)
(:, 1)(

l−1∑
k=0

skw
T
k

)
(:, 2)

...(
l−1∑
k=0

skw
T
k

)
(:, nwr)


=



l−1∑
k=0

(
skw

T
k

)
(:, 1)

l−1∑
k=0

(
skw

T
k

)
(:, 2)

...
l−1∑
k=0

(
skw

T
k

)
(:, nwr)



=
l−1∑
k=0


(
skw

T
k

)
(:, 1)(

skw
T
k

)
(:, 2)

...(
skw

T
k

)
(:, nwr)

 =
l−1∑
k=0


sk (wk)(1)

sk (wk)(2)
...

sk (wk)(nwr)

 ,

where the subscripts represent Matlab-style indexing (remembering that wk is a

vector). From this,

vec(SW T )vec(SW T )T =


l−1∑
j=0


sj (wj)(1)

sj (wj)(2)
...

sj (wj)(nwr)






l−1∑
k=0


sk (wk)(1)

sk (wk)(2)
...

sk (wk)(nwr)




T

=
l−1∑
j=0

l−1∑
k=0


sj (wj)(1)

sj (wj)(2)
...

sj (wj)(nwr)




sk (wk)(1)

sk (wk)(2)
...

sk (wk)(nwr)


T

=
l−1∑
j=0

l−1∑
k=0


sj (wj)(1)

sj (wj)(2)
...

sj (wj)(nwr)


[
sTk (wk)(1) sTk (wk)(2) · · · sTk (wk)(nwr)

]
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=
l−1∑
j=0

l−1∑
k=0


sj (wj)(1) s

T
k (wk)(1) · · · sj (wj)(1) s

T
k (wk)(nwr)

sj (wj)(2) s
T
k (wk)(1) · · · sj (wj)(2) s

T
k (wk)(nwr)

...
...

sj (wj)(nwr) s
T
k (wk)(1) · · · sj (wj)(nwr) s

T
k (wk)(nwr)



=
l−1∑
j=0

l−1∑
k=0


(wj)(1) (wk)(1) · · · (wj)(1) (wk)(nwr)

(wj)(2) (wk)(1) · · · (wj)(2) (wk)(nwr)
...

...

(wj)(nwr) (wk)(1) · · · (wj)(nwr) (wk)(nwr)

⊗
(
sjs

T
k

)

=
l−1∑
j=0

l−1∑
k=0

(
wjw

T
k

)
⊗
(
sjs

T
k

)
.

B.3 Gradients of Frobenius-Norm Cost

Functions

In this section, we demonstrate that although the global minimum of a

Frobenius-norm cost function does not change for left- and right- weightings, the

local minima may change. Suppose we have a cost function for some matrix X,

f0(X) =
1

2
||AXB − C||2F . (B.2)

This function has the global minimum

X = A†CB†

where (·)† is the pseudoinverse (left or right depending on context, assuming it

exists). The cost function

f1(X) =
1

2

∣∣∣∣X − A†CB†∣∣∣∣2
F

(B.3)

clearly has the same global minimum. We would like to know if these functions

also have the same minimum over a convex set. It turns out in the general case
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that they do not. To see this, we know that

f0(X) =
1

2
trace

[
(AXB − C)T (AXB − C)

]
=

1

2
trace

(
BBTXTATAX

)
− trace

(
BCTAX

)
+

1

2
trace

(
CTC

)
,

and

f1(X) =
1

2
trace

[
(X − A†CB†)T (X − A†CB†)

]
=

1

2
trace

(
XTX

)
− trace

[
(B†)TCT (A†)TX

]
+

1

2
trace

[
(B†)TCT (A†)TA†CB†

]
.

Let x = vec(X). Using the matrix differential,

df0(X) =
1

2
trace

[
BBT (dX)TATAX

]
+

1

2
trace

[
BBTXTATA(dX)

]
− trace

[
BCTA(dX)

]
= trace

[
(BBTXTATA−BCTA)(dX)

]
= vec

(
ATAXBBT − ATCBT

)T
vec(dX)

= vec
[
AT (AXB − C)BT

]T
dvec(X)

= vec
[
AT (AXB − C)BT

]T
dx,

hence
df0(x)

dx
= vec

[
AT (AXB − C)BT

]T
,

and

df1(X) =
1

2
trace

[
(dX)TX

]
+

1

2
trace

[
XT (dX)

]
− trace

[
(B†)TCT (A†)T (dX)

]
= trace

[(
XT − (B†)TCT (A†)T

)
(dX)

]
= vec

[
X − A†CB†

]T
vec(dX)

= vec
[
(ATA)−1AT (AXB − C)BT (BBT )−1

]T
dx

=
[(

(ATA)−1 ⊗ (BBT )−1
)

vec
(
AT (AXB − C)BT

)]T
dx

= vec
[
AT (AXB − C)BT

]T [
(ATA)−1 ⊗ (BBT )−1

]
dx,
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hence
df1(x)

dx
=
df0(x)

dx

[
(ATA)−1 ⊗ (BBT )−1

]
.

Thus the valid descent directions at any point might not be equivalent, depending

on the values of A and B.



C Software

Two Matlab software packages were written to implement the algorithms

contained in this dissertation. The COBRA package estimates system models using

the realization-based procedure either directly from input-output data or by first

calculating covariance function estimates. The Stepalize tool computes system

estimates form step-response data.

C.1 COBRA Toolbox

The COBRA Toolbox is a lightweight framework of functions that can

be used to generate system estimates using the realization-theoretic framework

presented in this dissertation. The functions are included in Matlab-package

format, so that they are accessed via the syntax

cobra.[function name]

Help information is included with each function, and may be accessed via the

syntax

help cobra.[function name]

A demo file cobra demo.m is included with the software.

X = blkhankel(C, R)

Generate block-Hankel matrix with the first block-column C and the last

block-row R.

X = datahankel(D, m)
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Construct a block-Hankel matrix of m block rows from the N × p signal D,

where is N is the number of samples in the signal and p is the dimension

of the signal.

X = datahankel(D, m, r, c)

Construct a block-Hankel matrix of m block rows from the N×r ·c signal D,

where N is the number of samples in the signal, r is the row dimension of

the signal, and c is the column dimension of the signal. The first c columns

of the ith row of D will be the first row of the ith block of Y.

If size(D, 3) > 1, then D is treated as an r× c×N signal.

[A, B, C] = hokalman(H, n, ny, nu)

Given a Hankel matrix H consisting of system Markov parameters (impulse-

response coefficients), return the system matrices A, B, and C. n is the order

of the system, ny is the dimension of the output, and nu is the dimension

of the input. H must have at least one block row greater than the system

dimension. Use “fat” matrices with more columns than rows to get better

results. The singular-value decomposition (SVD) is used to determine the

state-basis.

[L, Q] = lq(A)

Given an n ×m matrix A, returns an n × n lower triangular matrix L and

an m×m unitary matrix Q so that A = LQ.

M = nullprojection(Y, X)

Project Y onto the null-space of the row-space of X and return the result as

M. This is equivalent to

M = Y (I −XT (XXT )−1X),

though it is computed more efficiently.
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M = nullprojection(Y, X, fY, fX)

Obliquely project the bottom fY rows of Y onto the null-space of the bottom

fX rows of X along the row space of the top rows of X and Y. That is, given

Y =

[
Y0

Y1

]
X =

[
X0

X1

]

where Y1 has fY rows and X1 has fX rows, then M is a linear combination

of Y0 and X0 and in the null-space of X1.

If fX = fY then this is the “future horizon” of N4SID.

n = selectorder(s)

Plot the entries of s with a logarithmic y-axis. Each entry of s corresponds

to a circle on the x–y plane. When the user clicks on a circle, the circle is

highlighted. If the user then clicks “OK,” the index of the entry clicked is

returned in n. If the user exits without selecting an order, then n = −1.

[A, C] = solveAC(Y0Pi, Y1Pi, n, ny, args)

Estimate A and C using shift-invariance of the output data in Y0Pi and

Y1Pi. Y0Pi is a matrix of output data projected onto some matrix Π, and

Y1Pi is a matrix of time-shifted output data projected onto the same Π. n

is the desired system order.

The function is general enough to be used with matrices generated from

either raw data or covariance function estimates.

args is an optional sequence of arguments in (‘Property’,‘Value’) pairs to

be used when eigenvalue constraints are desired. The following properties

are valid:

’Eigenvalues’ — Constraints to place on eigenvalues. This has the fol-

lowing possible values:

• ’Stable’ — Force all eigenvalues to satisfy |z| < 1− δs where δs may

be set by the ’DeltaS’ property. By default, δs = 1× 10−4.
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• ’Real’ — Force all eigenvalues to satisfy |Im(z)| < δr, where δr may

be set by the ’DeltaR’ property. By default, δr = 1× 10−8.

• ’Positive’ — Force all eigenvalues to satisfy Re(z) > δp, where δp

may be set by the ’DeltaP’ property. By defaults, δp = 1× 10−4.

’DeltaS’ — δs to use for stability constraint

’DeltaR’ — δr to use for strictly real constraint

’DeltaP’ — δp to use for positive real constraint

’Verbose’ — verbosity argument passed to YALMIP

Note that YALMIP and a suitable solver are required for eigenvalue con-

straints.

[B, D, x0] = solveBDx0(y, u, A, C, nk)

Determine a least-squares estimate of the input matrices B and D and an

initial condition x0 given matrices A and C, input u, and output y of an LTI

system. u and y should be N × nu and N × ny, respectively.

nk is the number of time delays. This argument is optional. By default it

is 1, so that D = 0 if the argument is omitted. If nk > 1, it assumed that

A does not include the time delays already. Instead, u will be shifted by

nk− 1 places prior to estimating B and D.

[B, D, x0] = solveBDx0(y, u, A, C, nk, ’raw’)

Same as above.

[B, D, Rxz0] = solveBDx0(Ryz, Ruz, A, C, nk, ’cov’)

Determine a least-squares estimate of the input matrices B and D and the

initial value of the covariance function Rxz(0) given matrices A and C, input

cross-covariance function Ruz (z is some external instrument, possibly u),

and cross-covariance function Ryz.
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If size(Ryz, 3) = 1, then we assume the covariance functions are in the

form returned by the xcov function of the Signal Processing Toolbox, and

it is assumed that dim(z) = dim(u). If size(Ryz, 3) > 1, then they have the

form returned by the freqresp function of the Control Systems Toolbox.

[B, D, x0] = solveBDx0(y, u, A, C, nk, ’raw’, 0)

or

[B, D, Rxz0] = solveBDx0(Ryz, Ruz, A, C, nk, ’cov’, 0)

Same as above, but force a zero initial condition. By default, the initial

condition is always estimated.

The following two functions essentially replace the xcov function of the Signal

Processing Toolbox with a version that includes frequency-domain smoothing.

R = xcovsmooth(x)

Construct a smoothed auto-covariance function estimate of x. By default,

x is split into 8 segments with 50% overlap, and a Hamming window is

applied to each segment. (This is the default behavior of the cpsd function

of the signal processing toolbox.)

R = xcovsmooth(x, y)

Construct a smoothed cross-covariance function estimate of x and y. The

default smoothing behavior is the same as the auto-covariance.

R = xcovsmooth(x, y, window)

If window is a vector, x and y are divided into overlapping sections of length

equal to the length of window, and each section is weighted by the vector

window.

If window is an integer, x and y are divided into that number of segments

and a Hamming window of equal length is used.

If window is an empty matrix, the default is used.
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window = ones(length(x), 1) will return an un-smoothed estimate, re-

producing the functionality of xcov.

For large datasets, the number of windows can have a dramatic effect on

the speed at which the estimates are computed. Use window = N to apply

no window to the estimate.

R = xcovsmooth(x, y, window, overlap)

Uses overlap samples from section to section. If empty or not specified,

50% overlap is used.

R = xcovsmooth(x, y, window, overlap, lags)

Only returns lags from lags(1) to lags(2). lags(1) should likely be less

than 0.

[R, tau] = xcovsmooth(...)

A vector tau of time lags is returned in addition to R.

For all options, if x and y are vectors, R is also a vector. If either x or y are

matrices, then the cross-covariances of each column of x and each column of y are

computed, and R has dimensions size(x, 2) × size(y, 2) × size(x, 1). An error

occurs if x and y do not have the same number of rows. Also for all options, the

covariance function is scaled in the same manner as the ’unbiased’ option of the

xcov function.

xcovsmooth relies heavily on the function cpsd of the Signal Processing Toolbox.

See its documentation for more details.

[Ryz, Ruz, tau] = xcorrsignals(y, u, z, window, overlap, lags)

Given signals y, u, and z, compute cross-covariance function estimates of

Ryz and Ruz. y, u, and z should have each column contain a different signal

(in the case of multivariable signals) and each row contain a time sample.
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This function presents a simple way to avoid cluttering the code with calls

to xcovsmooth.

The remaining arguments are passed to xcovsmooth; see the help for that

function for their significance.

C.2 Stepalize

The Stepalize software tool is a single Matlab function stepalize.m that

generates discrete-time LTI models from measured step responses. If YALMIP and

SDPT3 are installed, it can also generate models with constrained eigenvalues and

constrained time-domain behavior. The package includes a file stepalize test.m

that performs a system check and verifies if the system is capable of solving semidef-

inite programs.

Usage:

[A, B, C, D] = stepalize(y, args)

in which ‘args’ is any of the (optional) following name-value pairs:

Order Order of the model. If not specified, the user will be pre-

sented with a singular-value plot on which they may select

the system order.

TimeDelay By default, 1 time delay is assumed, and D is always 0. Set

this to 0 to estimate a nonzero D. If this is greater than 1,

then the data is shifted so that there is 1 time delay, and D

is again estimated as 0.

Eigenvalues Constraints placed on the eigenvalues. For each of the follow-

ing options, all eigenvalues λ will satisfy the corresponding

inequality:

Stable: |λ| < 1− DeltaS

Real: |Im(λ) < DeltaR
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Positive: Re(λ) > DeltaP

For only one constraint, a single string works, i.e.

. . . ’Eigenvalues’, ’Stable’, . . .

For multiple choices, use a cell array, i.e.

. . . ’Eigenvalues’, {’Real’, ’Stable’}, . . .

Delta* δ-values for the eigenvalue constraints, where ∗ = S, R, or P.

Default values are DeltaS = 1 × 10−4, DeltaR = 1 × 10−8,

and DeltaP = 1× 10−4.

SteadyState Guarantee the model has a fixed stead-state value. The value

for this property should be a 1 × ny vector which will be

settling value for the model’s step response.

NoOvershoot Guarantee the model does not overshoot the steady-state

value of the data. WARNING: This is often infeasible, de-

pending on the eigenvalues. If a step-response with no over-

shoot is absolutely required, generally the eigenvalues should

be constrained to be real.

NoUndershoot Restrict resulting model to have no undershoot in its step

response. Undershoot is defined as when the step response

has the opposite sign of the steady-state value for a given

output channel. This allows for the step response to still

have values < 0, but only when the steady-state value at

that channel is < 0 as well. This generally eliminates non-

minimum-phase behavior from the model.

UseAC Use pre-calculated matrices A and C to estimate B and D

only. The value for this must be a 2-element cell array with

the first element equal to A and the second equal to C. Con-

straint options for calculating B and D are still available.
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Any options affecting the computation of A and C are ig-

nored.

WeightBD Weight the solution for B and D. This should be an N ×
1 vector for which element i corresponds to the weight of

the solution for sample i of a step of length N . This is not

available if constraints are used with B and D. In this case,

the weights will be ignored and a warning will be generated.

WARNING: Combinations of SteadyState, NoOvershoot, and NoUndershoot are

prone to over-constraining the model and will often result in an infeasibility error

or the solution B = 0. Only use them in combination when the estimate is close

to satisfying the constraints already. Feasibility issues are also reduced when the

system is parameterized with a feed-through (D-matrix) term.

Example:

% Generate an n-th order model with a feed-through term and real

% eigenvalues.

[A, B, C, D] = stepalize(y, ’Order’, n, ...

’TimeDelay’, 0, ...

’Eigenvalues’, ’Real’);
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