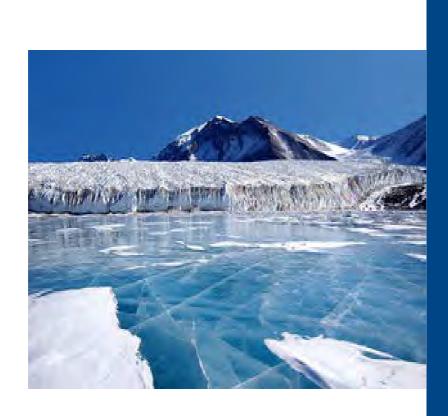
UC San Diego

Capstone Papers

Title

Radiometer Exhibit - Birch Aquarium


Permalink

https://escholarship.org/uc/item/0v9655xj

Author Scarci, Kris

Publication Date 2016-05-31

Radiometer Exhibit – Birch Aquarium

05/30/2016

Capstone Executive Summary

Climate Science & Policy MAS Program Scripps Institution of Oceanography May 31, 2016

Kris Scarci

Introduction

As a leading science educator in Southern California, Birch Aquarium of La Jolla, CA, has approved plans to modernize a portion of its exhibit space. The goal of this new space is to create an immersive environment focused on real-world, scientific expeditions – specifically "Polar" and "At-Sea" research stations. New exhibits will cater towards "creative interactivity", vice the old standard of hard-science presentations of data.

We live in an age of exponential technological advancement. Mountains of information lie in waiting at the beck and call of nimble fingertips. This luxury has morphed into a modern necessity, as children are immersed and indoctrinated to advanced technology at younger ages. As scientific researchers and educators, our role has never been more important, and has never had more opportunity to take advantage of the communication capabilities of modern technology. Inventions such as computers, cell phones, and the Internet, are the future of scientific public outreach and can be used as a seamless conduit for public awareness by way of innovative scientific communication.

Institutions like Birch Aquarium provide a means to take this technology a step further, by providing the platform designed to fully engage a broad audience with the most recent discoveries in modern science. The vision of the new exhibit space at Birch is to harmoniously entwine science, art, and interactivity into one cohesive educational experience. Modern technology and software play on the instant gratification mechanisms of an individual's psychological reward system. We experience short bursts of joy through the release of the reward neurotransmitter "dopamine"; by varying means such as conquering the final boss of a video game or googling the correct answer during a heated debate with a friend.

The current wave of technology shows that captivation by instantaneous feedback and information is happening at increasingly – or rather decreasingly – younger ages. Most children are now perpetually engrossed in technology of all kinds. This provides a unique reactionary stimulus that can be used to deliver effective science communication. This same mechanism can be similarly tapped into with an interactive science exhibit; one that communicates science in a fun and digestible way, as well as possessing a controllable element that provides tactile feedback along with visually appealing responses to user-input. "Game-culture" is growing increasingly in popularity, and parallels the rise of what many call the "technological singularity".

These methods of scientific communication are not limited to children and young adults, but can also be used to educate those in the corporate sector. The new exhibit spaces have potential to spur interest in the design and construction of more energy efficient and environmentally-friendly buildings. Interested enthusiasts in the corporate world can use the science-based information in the exhibits at Birch aquarium to make decisions regarding sustainable engineering and building material types – e.g. what materials best reflect light or absorb heat – in order to achieve optimal passive energy efficiency for a building. By means of effective science communication of concepts such as "albedo", economic and financial efficiency can be achieved through more sustainable approaches of doing business and solving large-scale problems.

The renovation will consist of four exhibit spaces total:

- **1.** Expedition Staging Area
- **2.** Polar Research Expedition
- **3.** At-Sea Research Expedition
- 4. Ocean Acidification

Each space will be designed to simulate the real-world counterpart with the goal of being as immersive as possible, allowing visitors to step into the shoes of scientists on research expeditions. Each exhibit will be designed in an intuitive way to effectively communicate information rooted in science, while remaining comprehensible to all. Of the four exhibit spaces, the radiometer exhibit will be included in the Polar Research Expedition space. A commonly used instrument of research in polar regions – in particular, Antarctica – is the radiometer.

Radiometer Exhibit – Birch Aquarium

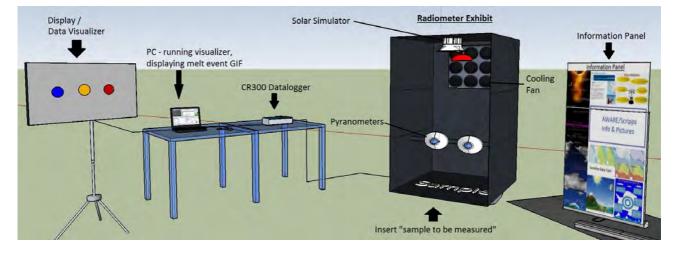
As an affiliate of Birch Aquarium, Scripps Institution of Oceanography acts as a key scientific resource with a rich history in the many disciplines of Earth Science, as well as being a hub for numerous scientific expeditions around the world. As new director of Birch Aquarium, Harry Helling's vision is one that seeks to capture the imagination of visitors through inquisitive, tangible engagement coupled with cutting-edge scientific research provided by Scripps. The overall effort is in pursuit to better communicate science to the public.

The goal of my capstone project is to design an interactive exhibit centered on radiometry techniques applied in Antarctica. The mission of the exhibit is to educate visitors on subjects that affect the energy balance of our planet, specifically topics such as:

- Earth Energy Balance & the Solar Forcing
- Explanation of Albedo
- Importance of Cryosphere
- Electromagnetic Spectrum Basics
- Importance of projects such as AWARE

A radiometer is an instrument used to measure the radiant flux of incoming electromagnetic radiation. Radiometers come in all shapes and sizes, with varying mechanistic purposes and designs. A basic Crookes radiometer consists of a glass bulb harboring a stem connected to a pinwheel, granting a rotational axis for four suspended vanes. Each vane is dark on one side, and light on the other, providing an absorptivity differential for incoming photons. This thermodynamic property, in combination with the low pressure / near vacuum inside the bulb, causes the vanes to spin along the low-friction rotational axis, effectively providing a measurement of incident radiant energy (radiance in w/m^2).

Exhibit Overview


The radiometers to be used in the exhibit are a more complex variant of the Crookes radiometer. The exhibit will use two "pyranometers" – one to detect near-infrared radiation and the other to detect shortwave radiation. A pyranometer is a type of radiometer that is designed to be sensitive to visible, near-infrared, and near-ultraviolet wavelengths of light. Providing a complete hemispheric range to incoming irradiance, a pyranometer is typically disc-shaped and can be attached to a planar surface. The pyranometer also exhibits a directional response to the angle of incoming light, which is ideal when modeling daily solar irradiance.

The next essential component for the exhibit is the "solar simulator". Sometimes referred to as an "artificial sun", a solar simulator is a man-made light-source designed to output a spectral irradiance curve to approximate sunlight. This curve includes electromagnetic radiation in the forms of visible light, near-infrared, and near-ultraviolet. Since solar simulators are a relatively new scientific tool, those available on the market are quite robust and expensive, and mainly used for the testing of solar panels. However, with the right combination of halogen and LED light bulbs, it is possible to achieve an approximate spectral match of the sun.

The exhibit design will take the shape of an enclosed rectangular booth with an opening near the bottom. The bottom opening will allow visitors to insert a sample object to be measured. The measurement of radiant energy will be conducted by two pyranometers, situated near the opening. A combination of LED and halogen light bulbs will be used to simulate the sun's spectral output. The energy radiance level captured by the pyranometers will be recorded by a datalogger. Hidden from the exhibit in an inaccessible location to the public, the datalogger will connect to a laptop where the radiance levels will be accumulated and processed. The datalogger will be connected to a computer, which will run data visualization software to the main exhibit display monitor. Using Epic Games Unreal Engine game design environment, I was able to create a trial version that parses and visualizes inputdata in real-time. My current plan is to design the scripting language of the visualizer to display colored spheres of magnitude to correlate objects with higher albedos to blue-toned spheres, and objects with lower albedos to red-toned spheres. The goal of the software is to provide a visually appealing yet informative representation of the physical mechanisms occurring as the light shines on materials of varying reflectance and absorptivity. An information panel will be placed alongside the exhibit, to provide supplemental information related to exhibit concepts.

Mockup

Target Audience

Birch Aquarium receives visitors of all ages from young children to adults. Harry Helling desires to capture the imagination of this broad audience. Field trips to Birch Aquarium from local schools are a common occurrence, with the highest percentage of ages hovering around the "middle school" years. These formative years of educational development provide an excellent opportunity to imprint a realistic interpretation of the natural world to children. However, it must be done in a way that is both engaging as well as educational. Children today are well integrated with technology at early ages, and have become accustomed to the gratification of near instantaneous information/feedback. The radiometer exhibit will cater towards these mechanisms, and use the appeal demonstrated by gameculture to capture attention and catalyze curiosity.

Learning Objectives for Audience

- **1.** Convey the importance of *Albedo* as a major regulator in Earth's energy balance. Educate visitors on subjects that affect the energy balance of our planet, as well as modern research methods in the field. Topics will include, but are not limited to:
 - Solar Radiation
 - Radiometry
 - Reflectivity (Explanation of Albedo)
 - Absorptivity (Correlate to colors in the visible light spectrum)
 - Emissivity (Black Body Radiation)
 - Shortwave / Longwave Difference
 - Earth Energy Balance
 - Forcings / Feedbacks
 - Electromagnetic Spectrum
- **2.** Use infographs to distill complicated scientific subjects into digestible formats, and provide foundational knowledge for concepts demonstrated by exhibit.
 - Energy Balance & the Solar Forcing
 - What is a Radiometer?
 - The Importance of Ice
 - Demystifying the Electromagnetic Spectrum
 - Albedo in the Real-World
- 3. The scientific importance of Scripps/AWARE research
 - Use satellite data (PMW & MODIS) to demonstrate how satellites can directly show the change in surface albedo caused by surface moisture (16 years of melt events in Antarctica)
 - Better inform the public
 - Environmental protection
 - Scripps/AWARE/Birch brand awareness

Data Analysis: 16 Years of Melt Events in the Antarctic

How microwave emissivity can be used as an indicator of melt events

Using passive microwave data provided by the National Snow & Ice Data Center, Scripps graduate student Ryan Scott created GIFs displaying the daily deviation of Antarctic brightness temperature from the annual mean in the summer months of December and January for a span of 16 years. Due to regional warming events over temporal scales, these anomalies show shifts in the amount of microwave radiation emitted by the Antarctic surface from 1990 to 2016. The colors orange and red on the map demonstrate an increase in daily brightness temperature from the annual mean, with melting occurring once the threshold of 40°K is surpassed.

The increase in microwave emission is due to the change in phase from ice to liquid. Liquid water has a microwave emissivity coefficient close to 1, whereas the coefficient for ice is much lower. In the microwave range, the exponential in the denominator of the Planck function can be expanded in a Taylor series to derive what is known as the Rayleigh Jeans approximation, which ultimately yields the relationship Tb = epsilon*Tp, where Tb is brightness temperature, epsilon is emissivity, and Tp is the physical temperature in units of K. Liquid water alters the dielectric properties of surface firn, reducing its reflective properties while increasing microwave emission., resulting in a greater microwave signature when liquid water is present at the surface.

The occurrence of melt is marked by an increase in microwave brightness temperature caused by the presence of moisture in the Antarctic surface firn. Surface melt events are caused by a variety of factors, including warm air masses moving in from the Southern Ocean (which occurs frequently over the WAIS), as well as katabatic winds that descend from higher elevations and warm the air near the surface through their rapidly increasing pressure – known as adiabatic warming.

In addition to detecting a melt event by changes in satellite microwave brightness temperature, satellites that image in the visible and near-infared can directly show the change in surface albedo caused by the moisture on the surface. Instruments such as MODIS (moderate-resolution imaging spectroradiometer) are attached to satellites and provide imagery in the visible spectrum which optically shows a direct change in the Antarctic surface albedo due to melt.

Appendix:

1. Deliverable Checklist

Finished:

- Capstone Documents
 - Memo, Proposal, Approved Budget List, Final Presentation, Executive Summary
- Exhibit Mockup via Sketchup
- Exhibit Label
- Curator's Notes & Definitions
 - Background knowledge for Birch Aquarium facilitators
- Antarctica 20 Year Melt Event GIF Template
- Infographs
 - Energy Balance & the Solar Forcing
 - What is a Radiometer?
 - The Importance of Ice
 - Demystifying the Electromagnetic Spectrum
 - Albedo in the Real-World

Still to Come:

- Radiometer Exhibit (beta)
 - Surveys
 - Evaluation Period Data public impressions, wear-and-tear issues, safety concerns
- Finalized GIF showing correlation between PMW & MODIS data
 - Requires the manual combination of 16 years of satellite imagery with GIF template
 - $\circ~$ Roughly ~1000 images: 16 years of data containing daily images during the Antarctic summer months of December & January
- Data Visualizer
 - Visually appealing display of exhibit/datalogger output
- Provide experiential data for 2016 CSP media class
- · Finalized Radiometer Exhibit at Birch Aquarium

2. Capstone Advisors

Dan Lubin - Research Physicist

- Lead Scientist AWARE Project
- Satellite remote sensing of Earth's
- polar regions
- Application of global climate model simulation to the polar regions

Cheryl Peach - Director, Scripps Educational Alliances

- Incorporating satellite remote sensing data in high school curricula
- Workshop coordinator for high school science teachers
- Coordinator for new Polar Exploration exhibit at Birch Aquarium

A	B	C	D	1	F
Total Budget List					
Component	Cost per Unit	Quantity	Price	Notes	Link
CR300 Datalogger Power Supply	\$552.00 \$28.80	1	\$552.00 \$28.80	See Campbell Scientific sales quote See Campbell Scientific sales quote	
Solar Simulator		_	_	Standard screw size (E26/E27).	
LC LED 200W \$700K	\$48.95	6	\$293.70	converts to mogul size using E26/27 to E39/E40 adapter	http://www.anuson.com/LG-LED-Commercial-Residential-Non-Dimmable/dp/8017XC2LQ8/ref=11_17ie=UTFR&qid=1461884793&sr=8-1&ke
Halogen Bulls Bullsche 150 Wart, 120 Volt Tě Clear Halogen Bulls	\$8.99		\$35.96	Golor Temperature 3000K, Base- Medium (E26)	http://www.kulls.com/product/Q15061,ED77Rsfid:22
Bully Fixtures: 2 One Light Adjustable Wall or Ceiling Heat Lamp Fixture with Black Baffle, White Finish	\$50,58	4	\$202.32	Dres One BR40 Medium Base Lamp, 259W Maximum, Base, Medium (E26)	http://www.buibis.com/product/86397.307ReBd~572
3 4 5 7 TEDCO Radiometer 8 9					
7 TEDCO Radiometer	\$11.99	1	\$11.99	Display Radiometer	http://www.amazon.com/TEQC0-01800-Radiometer/dp/E0002YF02
g Total			\$1,124.77		

3. Total Budget List using Capstone Funds

4. Exhibit Label

RADIOMETER INTERACTIVE

Secrets of the Cryosphere

FROM THE FIELD: AWARE (ARM West Antarctic Radiation Experiment)
Location: West Antarctica

Lead Scientist: Dan Lubin - Scripps Institution of Oceanography Purpose: Polar Energy Balance & Cloud Microphysics Start Date: November 2015 - Ongoing

On November 5th 2015 the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility launched the ARM West Antarctic Radiation Experiment (AWARE), with equipment deployed to the West Antarctic Ice Sheet (WAIS) and McMurdo Station. As a collaborative project between DOE and the National Science Foundation (NSF), which manages the U.S. Antarctic Program, AWARE scientists will collect and analyze data covering the atmospheric energy balance, cloud microphysics, precipitation, and aerosol chemistry. AWARE is deploying the Second ARM Mobile Facility (AMF2), which is the most advanced and complete set of equipment for atmospheric and climate science ever sent to Antarctica. Dan Lubin, a research physicist at Scripps, leads the AWARE campaign in conducting unprecedented research on polar air masses, cloud radiative forcing, and surface energy balance.

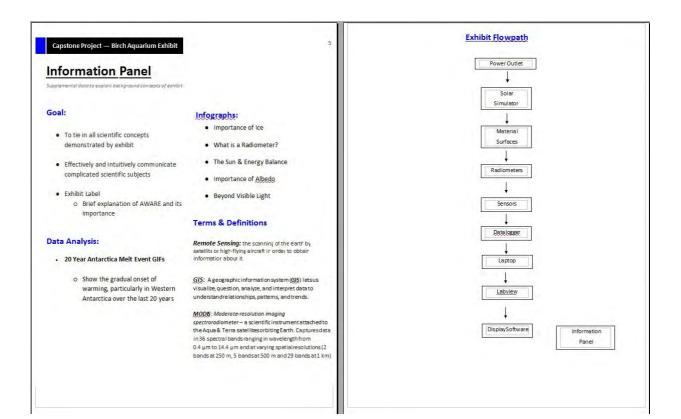
5. Curator's Notes

Radiometers	Notes &	Definitions	"Artificial Sun"	Notes & Definitions Topics related to Solar Simulators	
Pyranometers — 1 Total Solar & 1 Near IR	Topics related to	Radiometers			
Overview: Copure irradiance emitted by solal simulator within exhibit Two <u>pyranometers</u> provided by Dan <u>Lubin</u> (on ioan) With thin pail of <u>pyranometers</u> , demonstrate differential selfsetance between total solal (large visible maximum) are nea-IR	Radiometer: Actinometer: Pyranometer:	Device for measuring the <u>radiant flux</u> (power) of <u>sectomagnetic radiation</u> Device that is used to measure the intensity of solar radiation. It is a chemical system that determines the number of photon by measuring the rate of change of <u>hotoninduced</u> responses in a chemical system. Type of <u>anionmeter</u> used for measuring the radiation of phaser surface and it	Overview: • Light source with in exhibit that provides light to radiometers • Provide: [Ilumination approximating natural sunligh. • <u>*600W</u> requirement Options:	Solar Radiation: Photon:	The Sun ra distes light across a broad range of the EM spectrum. The present intensity is found in the vibble range. However, the Sun emits what we call a continuum, is alroad band of electromagnetic radiation running through the uitraviolet to the infrand. <u>Massings</u> force carrier of electromagnetic force. Particle that travels in wave-kies pattern as speed of light. Energy is dependent on frequency/wavelength.
 Serve as example: of actua research-grade equipment that can be on public display Require~600W light source 	Short wave:	is designed to measure the solar radiation flux density (Wug2) from the hemisphere above within a wavelength range 0.3 µm to 3 µm, Sadiant energy with wavelengths in the withite (UU2), near-ultraviolit (UV), and <u>max-infraved IWB</u>) spectra. Downward Abottwave radiation is sensitive to solar zenth mage, cloud cover and surface <u>abods</u>	Halogen Bulks - emits radiation in visible and near/R O Color Temperature "3000K * 5000K in total Led Bulb - emits radiation in visible O Color Temperature:*5200K	<u>Electro</u> - Magnetic Spectrum:	Collective term for all possible frequencie of EM radiation. See figure in Appendix.
Require visible and near IR light source				Radiance:	Flux of radiation emitted per unit solid angle in a given direction by a unit area of source. Measured in <u>Wusr</u> ⁻¹ m ⁻² .
	<u>Longwave</u> :	Term comesily referring to infrared. Origing Journauer Realistin (J2B) is the response of the second second second second second relation a flow energy to Space. Emitted from Earth and its atmosphere out to space in the form of thermal relation. The flux of energy transported by outsight glogmaus realiston is measured in <u>W/m</u> ² .	Issues/Concerns: Builbs o Heat buildup-Fansifgets too hot? o Need replaced periodically	Irradiance: Near UV: Visible: Near IR:	Radiant flux (power) received by a surface per unit area. Measured o W/m ² . 3 - 4 micron 4 - 7 micron .75 - 1.45 micron
	Albedo:	fraction of shortwave radiation reflected from Earth back into space			
	Reflectance:	effectiveness in reflecting radiant energy			
	Transmittance:	A REAL PROPERTY AND A REAL			
	Black Body:	idealized object that absorbs all incident electromagnetic radiation			
	Emissivity:	an object a ability to emit infrared energy			

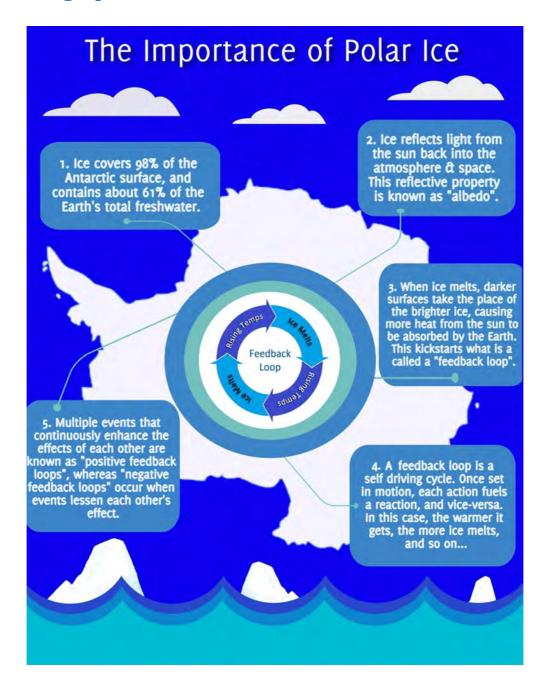
PAR:

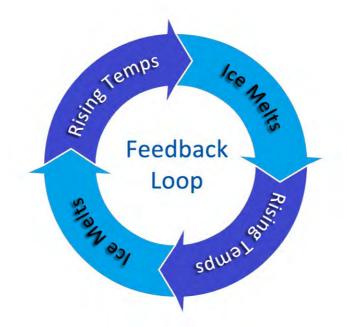
Capstone Project — Birch Aquarium Exhibit

Datalogger


pbell Scientific <u>Datalogger</u>

Overview:


- Collects data from <u>pyranometers</u>, making it available over variec networks and deliver it using your preferrec protocol Volt:
- Needec to measure millivolts from pyranometers
- Records reading: from sensor: ir my
- CampbellScientificusesCRBasic programming
- Model Used: Campbell Scientific CR300


3 Capstone Project — Birch Aquarium Exhibit Notes & Definitions Software ics related to Datalogge Outputs data in a comprehensible & intuitive format Photosynthetically Active Radiation (PAR) represents the fraction of sunlight with a spectral range from 400 to 700 nm, usually expressed in <u>umol</u> (photons) m⁺ s². Overview: Using mV reading, software will convert and display values corresponding to irradiance, transmittance, and reflectance Terms & Definitions Derived unit for electric potential, potential_difference (voltage), and electromotive force. $\label{eq:solar} \begin{array}{l} \textit{Solar Constant:} \ \mbox{the average rate at which radian} \\ \textit{energy is received from the sur by the earth's} \\ \textit{atmosphere per unit are;} (S = 1367 \ \mbox{W/m}^2 \ \mbox{tota, or 342} \\ \mbox{W/m}^2 \ \mbox{wher average at top of atmosphere}) \end{array}$ Use software "fudge factors" as necessary to transform the actual output of the lamp into the balance between total solar and <u>NIF</u> that exists in the actual solar spectrum Fudge Factor: a figure includec in a calculation to account for error or unanticipatec circumstances, or to ensure a desirec result Converting the lamp'sirradiance, probably<600 W/m², to the solar constant Watts: amount of energy per second Luminosity: total amount of energy emitted by an astronomical object per unit time. Measured in joules per second or watts. Values for luminosity are often given in the terms of the luminosity of the Sur, which Help: visitors make comparisons and draw conclusion: about cause and effect/impacts of different color/texture surfaces or albeds, hasa total power output of 3.846×10^{ac} W. The symbol for solar luminosity is L, Wire-based coding (Labview & Epic Unreal Engine Epic Unreal Engine – game design environment which will allow for real-time data visualization Epic Games Unrea Engine O <u>https://www.youtube.com/watch?</u> <u>v=RtEGsdHy55U</u>

A

6. Infographs

What is a Radiometer?

A *radiometer* is a bulb-shaped sensor with 4 metal vanes connected to a central rotor

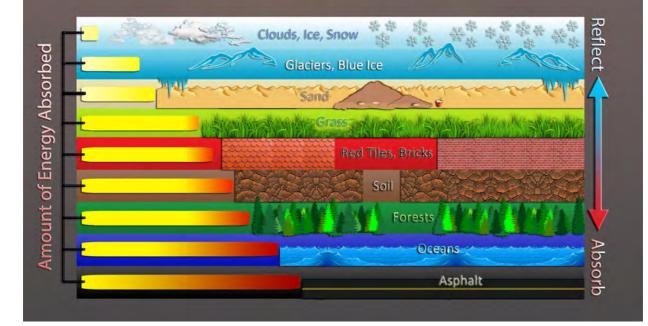
The metal vanes are dark on one side and light on the other The purpose of a *radiometer* is to measure forms of light that make up the electromagnetic spectrum

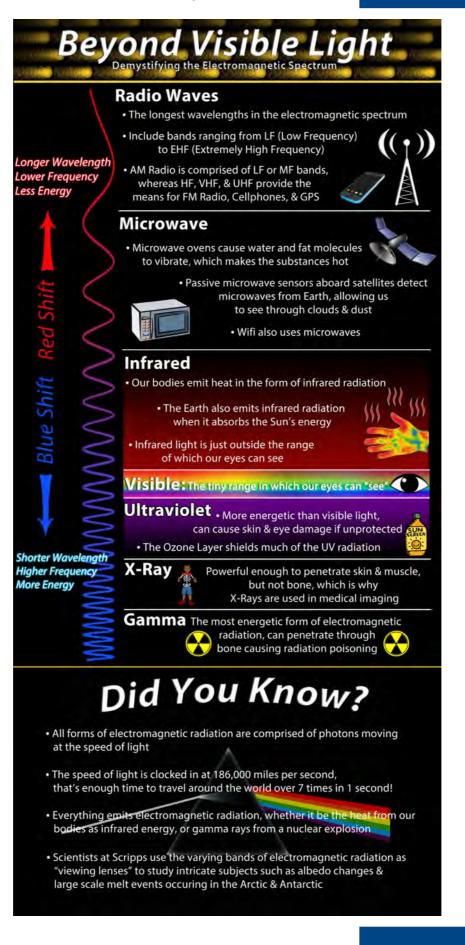
The vanes spin faster and faster as the light source gets brighter

The dark side of the vanes absorb incoming *photons*, which are released as *heat*

The *heat* released from the vanes causes the rotor to spin, propelling it faster as more light energy flows into the bulb

Albedo in the Real-World

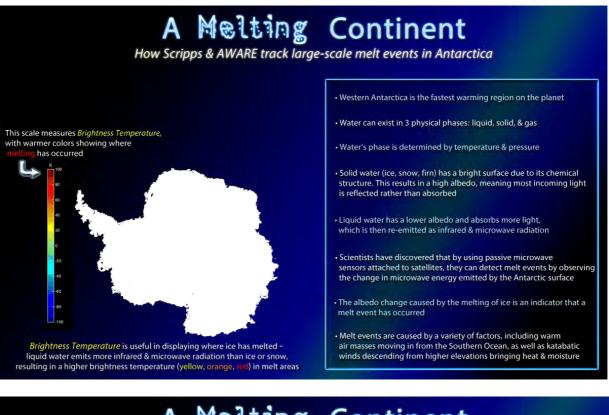

What happens when light from the sun reaches Earth?

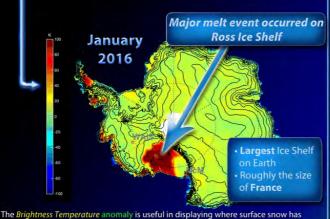

Some objects *reflect* more light, while others *absorb* more

The amount of *sunlight* an object reflects is known as *albedo*

The *albedo* is determined by the chemical makeup of an object, as well as the angle of incoming light

Materials that appear *darker* absorb more energy, and release more *heat*




7. Satellite Data Analysis GIF Template & Example

A Melting Continent

How Scripps & AWARE track large-scale melt events in Antarctica

This scale shows the daily average *Brightness Temperature* of Antarctica, as it differs from the yearly average. Increases or decreases in brightness temperature from the annual average are what scientists refer to as *anomalies*. The heaviest period of melting occurs during the Southern Hemisphere's **summer** months of December & January.

melted – wet snow emits more infrared and microwave radiation than dry snow at the same temperature, resulting in a higher brightness temperature than average. Anomalies exceeding 40° K (orange & reg) on the above map signify areas of surface melt The West Antarctic Ice Sheet (WAIS) is one of the fastest warming regions on the planet

 Water can exist in three physical phases – liquid, solid, gas. The phase in a given environment is determined by temperature and pressure

 The albedo change caused by the melting of ice is an indicator that a melt event has occurred

 Solid water (ice, snow, firn) has a bright surface due to its chemical structure. This results in a high albedo, meaning most incoming light is reflected rather than absorbed

 Liquid water has a much lower albedo and absorbs nearly all the light incident upon it. The water surface then effectively emits infrared and microwave radiation as a function of its temperature

 In addition to detecting surface melting events by changes in satellite microwave brightness temperature, satellites that image in the visible and near-infared can directly show the change in surface albedo caused by the moisture on the surface

 Surface melt events are caused by a variety of factors, including warm air masses moving in from the Southern Ocean (which occurs frequently over the WAIS), as well as katabatic winds that descend from higher elevations and warm the air near the surface through their rapidly increasing pressure (called adiabatic warming)

References:

Lubin, Dan, and Lynn Russell. "Campaign : ARM West Antarctic Radiation Experiment – AWARE." *ARM*. Atmospheric Radiation Measurement Project, 23 Nov. 2015. Web. 28 May 2016. http://www.arm.gov/campaigns/amf2015aware.

Lubin, Dan, and Ryan Scott. "Science Plan." *AWARE*. Scripps Institution of Oceanography, Nov. 2015. Web. 28 May 2016. https://scripps.ucsd.edu/expeditions/aware/mission-2/science-plan/.

NSIDC. "National Snow and Ice Data Center." *Remote Sensing*. N.p., 2016. Web. 28 May 2016. https://nsidc.org/cryosphere/seaice/study/passive_remote_sensing.html.

Schmunk, Robert B. "Panoply NetCDF, HDF and GRIB Data Viewer." *National Aeronautics and Space Administration - Goddard Institute for Space Studies*. Goddard Space Flight Center - Earth Sciences Division, 20 Apr. 2016. Web. 28 May 2016. http://www.giss.nasa.gov/2Ftools/2Fpanoply/2F>.

Ederer, Greg, and Ed Masuoka. "Level 1 and Atmosphere Archive and Distribution System." *LAADS Web*. NASA Goddard Space Flight Center, 2016. Web. 28 May 2016. https://ladsweb.nascom.nasa.gov/.

Epic Games, Inc. "Get Started with UE4." *Unreal Engine 4 Documentation*. Epic Games, 2014-2016. Web. 28 May 2016. https://docs.unrealengine.com/latest/INT/GettingStarted/index.html.

Easelly. "Easel.ly | Create and Share Visual Ideas Online." *Easel.ly | Create and Share Visual Ideas Online*. N.p., 2016. Web. 28 May 2016. http://www.easel.ly/.

Zwally, H. Jay, and Stephen Fiegles. *Extent and Duration of Antarctic Surface LIlelting*. Cambridge: Journal of Glaciology, Vol. 40, No. 136, Pg. 463-476, 1994. PDF.