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Combined Effects of Short Term Rainfall Patterns and Soil Texture on 

Soil Nitrogen Cycling ------- A Modeling Analysis 

Chuanhui Gu1 and William J.Riley2 
1Berkeley Water Center, University of California, Berkeley, CA 

2Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 

 

Abstract 

 Precipitation variability and magnitude are expected to change in many parts of 

the world over the 21st century. We examined the potential effects of intra-annual rainfall 

patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone 

using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), 

which has been tested and applied in several experimental and observational systems, 

mechanistically accounts for microbial activity, soil-moisture dynamics that respond to 

precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we 

further tested and calibrated the model against data from a precipitation variability 

experiment in a tropical system in Costa Rica. The model was then used to simulate 

responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous 

species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect 

of soil texture was also examined. The temporal variability of nitrate leaching and NO, 

N2, and N2O effluxes were significantly influenced by rainfall dynamics. Soil texture 

combined with rainfall dynamics altered soil moisture dynamics, and consequently 

regulated soil N responses to precipitation changes. The clay loam soil more effectively 

buffered water stress during relatively long intervals between precipitation events, 

particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses 

showed either increases or decreases in response to increasing precipitation variability 

due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation 

variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH3, NO, N2O 

and NO3
- fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and 

N2O fluxes decreased by 15% and 28%, respectively, in response to high precipitation 

variability. Our results demonstrate that soil N cycling responses to increasing 
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precipitation variability depends on precipitation amount and soil texture, and that 

accurate prediction of future N cycling and gas effluxes requires models with relatively 

sophisticated representation of the relevant processes. 

 

1 Introduction 
Anthropogenic inputs of reactive nitrogen (N) to ecosystems have led to 

significant environmental consequences (Aber et al., 2003; Galloway et al., 2008). 

Alteration of the natural N cycle has a direct impact on water (NO3
-) and atmospheric 

pollution (N2O, NO, NH3) (Galloway et al., 2003). Groundwater NO3
- concentrations 

exceed drinking-water standards in many areas as a result of inputs from fertilized 

agriculture, resulting in potential human health effects (Power and Schepers, 1989; 

Spalding and Exner, 1993; Squillace et al., 2002).  Elevated NO3
- concentrations in 

leachate and surface water can also lead to eutrophication of lakes and estuaries 

(Lowrance et al., 1997). Nitrous oxide (N2O) is an important greenhouse gas and is 

involved in the destruction of stratospheric ozone (IPCC, 2001). Nitric oxide (NO) 

emissions contribute to tropospheric ozone formation and acid deposition (McTaggart et 

al., 2002). NH3 emissions affect the environment in the form of wet and dry deposition of 

NH4NO3 and (NH4
+)2SO4 salts, causing acidification of poorly buffered soils and 

eutrophication (vanderWeerden and Jarvis, 1997). These concerns have stimulated 

studies to identify potential future climate change effects on N leaching and emissions 

from ecosystems (Skiba et al., 1997). 

Precipitation and the resulting soil water dynamics strongly regulate N cycling in 

terrestrial ecosystems (Aranibar et al., 2004) via effects on physical transport (Brooks et 

al., 1999) and soil microbial N transformations (Corre et al., 2002). Nitrification and 

denitrification are thermodynamically favorable redox reactions mediated by soil microbe 

communities (Hedin et al., 1998). Redox status is, therefore, a primary controlling factor 

of these processes in soils (Bollmann and Conrad, 1998). Further, N losses in soils are 

episodic in nature. Pulses of N gas production associated with transient changes in soil 

microsite environments have been shown to account for significant surges of N emissions 

to the atmosphere in relatively short time spans (Gu et al., 2009; Li et al., 1992; Maggi et 

al., 2008; Riley & Matson, 2000). Consequently, the magnitude and extent of N 
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biogeochemical processes vary widely with changes in soil water dynamics, which are 

largely determined by soil (e.g., clay and soil organic matter content) and rainfall 

characteristics.  

 Many general circulation models forecast a higher frequency of extreme rainfall 

events, a lower frequency of rainfall days, and longer intervals of dry periods (Easterling 

et al, 2000; IPCC, 2007). It is well known that changes in precipitation directly alter soil 

water content and element cycles. An experimental study has demonstrated that increased 

temporal variability in precipitation and soil moisture increased plant water stress and 

reduced plant productivity (Knapp et al., 2002). Several modeling studies have also been 

conducted to address the ecosystem response to precipitation patterns (Gerten et al., 2008; 

Weng and Luo, 2008). However, the effect of altered precipitation variability on the soil 

N cycle, to the best of our knowledge, has not been examined in detail. 

 The goals of this study were to evaluate the independent and interactive effects of 

rainfall amount and variability on soil N losses via leaching and gas effluxes by using a 

mechanistic, process-based model (TOUGHREACT-N). TOUGHREACT-N simulates 

the biogeochemical cycling of nitrogen coupled with N aqueous and gaseous transport 

and losses (Maggi et al., 2008). The model has been tested against several experimental 

and observational datasets, and several sensitivity analyses have been performed (Gu et 

al., 2009; Maggi et al., 2008). For this study, we modified TOUGHREACT-N by 

implementing soil carbon cycle.  After calibrating and testing the model further using 

data from a field experiment in the Costa Rican Cordillera Central region (Nobre et al., 

2001) that focused on the effects of short term precipitation variability on N gas and 

aqueous losses, we apply the model to explore soil water and nitrogen dynamics in 

response to projected changes in rainfall variability. 

 

2 Methods 
2.1 TOUGHREACT-N model 

 TOUGHREACT-N evolved from its precursor model TOUGHREACT (Xu et al, 

2006), and is a process-based subsurface hydrology and biogeochemistry model designed 

to simulated soil water, heat, and chemical dynamics. We briefly describe the model here; 

more details are given in the appendix, Gu et al. (2009), and Maggi, et al. (2008).  
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TOUGHREACT-N predicts three-dimensional multi-phase and multi-component 

reactive flow and transport in soils, biogeochemical processes, multiple microbial 

biomass dynamics, heat and water flows, and an arbitrary number of chemical reactions 

subject to local equilibrium and kinetic control(Gu et al., 2009; Maggi et al., 2008; 

Pruess, 2005; Xu et al., 2006). The soil hydraulic properties are described by a water 

tension-saturation model. Water flow and solute transport in liquid and gaseous phases 

are modeled with the Darcy-Richards’ equation, bulk advective mass transport, and Fick’s 

law. Biotic and abiotic reactions follow Michaelis-Menten kinetics, while an arbitrary 

number of micro-organisms can be modeled using multiple Monod growth kinetics to 

account for electron donor, acceptor, and inhibitor concentrations.  

The reactions responsible for N transformations are numerous and primarily 

mediated by several functional groups of microorganisms that extensively inhabit near-

surface soils. These microorganisms can potentially transform N via multiple pathways 

(Wrage et al, 2001), and under various conditions of temperature, pH, water content, 

substrate, and electron acceptor and inhibitor concentrations (Knowles, 1982). The 

reaction network simulated in TOUGHREACT-N includes N mineralization and 

immobilization, biological nitrification (i.e., NH4
+  NO2

-  NO3
-), biological 

denitrification (i.e., NO3
- NO2

-  NO  N2O  N2), dissolved organic C transport, 

and chemical N decomposition (i.e., HNO2
-   NO) (Figure 1). 

 
2.2 Model Calibration and Testing 

 In the current study, the model was tested against previous observations from a 

field experiment conducted in La Selva, a biological station of the Organization for 

Tropical Studies, located in the province of Heredia (10o26' N; 83o58' W, 40 m approx. 

elevation above sea level), in the transition zone from the coastal plain to the steep 

foothills of the Costa Rican Cordillera Central (Nobre et al., 2001). The area was cleared 

to bare soil for the establishment of the experimental plots. The sandy loam soil is an 

Andic Fluventic Eutropet and is rich in exchangeable bases. The stainless steel soil-gas-

phase probes and tensiometers were used for sampling at depths of 2, 5, 10, 20, and 40 

cm. Three water pulses of 10 mm, 10 mm, and 30 mm were added at day 0, day 9, and 
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day 16, respectively, of the experiment. The water was sprayed evenly onto the soil over 

a period of 30 min. For each simulated rain event, measurements were made preceding 

the additions and then 30 min, 2, 4, 8, and 24 h, and daily thereafter, until the next rain 

event or completion of the experiment. The data we used to calibrate TOUGHREACT-N 

were soil moisture andsoil N2O concentration profiles during the 22-day experimental 

period.  

 The simulated 1 m deep one dimensional soil column was discretized with a 

spatial resolution of 1.0 cm (Table 2). The soil profile was divided into six soil layers: 0-

2.5, 2.5-7.5, 7.5-15, 15-30, 30-50, 50-100 cm. The Rosetta module (Schaap et al., 2001) 

was applied using the data listed in Table 1. The averaged soil hydraulic parameters (van 

Genuchten, 1980) are presented in Table 2. 

 The initial carbon pool fractions and specific decomposition rates for each pool 

were taken from Li et al. (1992) and were assumed to be constant with depth (see Table 

3). The initial organic carbon content and inorganic nitrogen (i.e.NH4
+ and NO3

-) 

concentrations were taken from the field measurement (Table 1). 

 The upper boundary for the water flow was defined by time dependent water flow 

conditions.  The evaporation flux at the soil surface was assumed to be constant and set to 

2 mm day-1 (Nobre, et al. 2001). At the bottom of the domain (1 m depth), a Dirchlet 

boundary (constant water saturation) was imposed (Table 2).  Therefore the bottom of the 

soil profile allowed gravitational drainage of water and chemicals in the water. The 

atmospheric gaseous partial pressure (p_atm, bar) was imposed as a Dirichlet boundary 

condition at the top of the soil profile, while zero gaseous concentration was imposed as a 

Dirichlet boundary at the domain bottom. Surface diffusive fluxes of gases were 

computed from concentration gradients between the atmosphere and 1.25 cm soil depth. 

The N leaching flux was estimated as the product of aqueous concentrations at 50 cm soil 

depth and the simulated water flux. 

 The biochemical parameters were taken from the literature and calibration (Table 

3). Calibration was assisted by trial and error to minimize the difference between 

observed and simulated N2O concentrations. Comparison between model simulations and 

observations was evaluated by a linear regression approach with determinant coefficients. 
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2.3 Scenario analysis 

 To quantify the effect of increased intra-annual rainfall variability on soil N losses, 

we imposed variations in precipitation amount, precipitation variability, and soil texture 

(Table 5). We explored precipitation variability by altering the temporal distribution and 

size of rainfall events, with two different total precipitation amounts (1.5 and 15 cm 

month-1). The modeling exercise based upon high and low precipitation amounts 

corresponded to humid and arid ecosystems, respectively. In this study, we did not 

initialize with the different N levels expected in these two types of ecosystems because 

trends of N gas fluxes were relatively insensitive to the initial N levels (data not shown) 

 For each of the two total precipitation amounts, the model was run for six 

different rainfall patterns spread over a 30-day period. For example, for the 15 cm month-

1 case the forced precipitations were: (1) 1 cm of rain in 5 hours every 2 days, (2) 1.5 cm 

of rain in 5 hours every 3 days, (3) 2.5 cm of rain in 5 hours every 5 days, (4) 3.75 cm of 

rain in 5 hours every 7.5 days, (5) 5 cm of rain in 5 hours every 10 days, and (6) 7.5 cm 

of rain in 5 hours every 15 days. The most frequent rainfall regime (2-day interval) was 

chosen as the baseline rainfall variability scenario for comparison. The scenario was 

chosen based on an analysis of precipitation data recorded at the Heredia site during the 

past 10 years. During the wet season (May - November), the mean monthly precipitation 

was 30.3 cm with mean precipitation amount of 2.2 cm per event and mean interval 

between precipitation events of 2.2 days. During the dry season (December - March), the 

mean monthly precipitation was 3.6 cm with a mean precipitation amount per event of 

0.24 cm.  

3 Results 
3.1 Experimental Data vs. Model Predictions Comparison 

 TOUGHREACT-N predicted the time series of soil water saturation profiles well 

(Figure 2). The water saturation dynamics reflect the effects of each simulated rain event 

and subsequent drying on soil water saturation. Simulated soil moisture was well 

correlated with observations (R2=0.60). Simulated soil N2O concentration predictions 

also agreed well with measurements (R2=0.56) (Figure 3).  

 

3.2 Soil Moisture Response in the Model Experiments 
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 In the model experiments with imposed variations in precipitation intensity and 

frequency, temporal patterns of soil water content (water filled pore space, WFPS) were 

influenced by increased rainfall variability (Figure 4). The responses varied widely 

depending on soil type, total water added, and rainfall variability.  The clay loam soil had 

higher WFPS than the sandy loam soil. The 30-day mean soil WFPS for the 15 cm 

month-1 precipitation scenario was higher in both soil types than that for the 1.5 cm 

month-1 precipitation scenario. The factor of ten increase in added water resulted in an 

increase of mean 10 cm depth WFPS of 21% and 34% in the sandy loam and clay loam 

soils, respectively.   

Precipitation variability influenced soil WFPS differently at the two precipitation 

levels. For the 1.5 cm month-1 scenario, the monthly-mean soil WFPS increased with 

increased precipitation variability. For the 15 cm month-1 scenario, high precipitation 

variability led to lower mean soil WFPS in sandy loam soil, especially at the shallower 

soil depths. Over the 30-day simulation period, average WFPS at 10 cm depth in the 

sandy loam soil was reduced by 12% in the highest precipitation variability versus the 

baseline rainfall simulation. In the clay loam soil, higher precipitation variability resulted 

in lower soil WFPS in the surface soil layer but higher soil WFPS in the deep layer 

compared to the baseline variability scenario. We note that the long-term mean (as 

opposed to the monthly mean) WFPS at depth may be different than the results reported 

here, since establishment of a steady-cycle WFPS at depth could require much longer 

simulations. 

 
3.3 Soil Nitrogen Gas Efflux Response 

 Temporal soil N gaseous dynamics were also strongly affected by increased 

rainfall variability (Table 5). The sensitivity of N effluxes to precipitation variability is 

low at the low precipitation amount (1.5 cm month-1). For example, cumulative 30-day 

N2O emissions for the 15 day rainfall interval increased only by 11% and 1% in the sandy 

loam and clay loam soils, respectively, compared with the baseline precipitation 

variability. In contrast, N loss is sensitive to precipitation variability in the higher 

precipitation scenario (15 cm month-1). For the clay loam soil case, cumulative NO and 

N2O emissions increased with increased precipitation variability. Cumulative NH3 
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emissions also increased significantly with increased precipitation variability for the 15 

cm month-1 precipitation scenarios. In contrast, NH3 emissions decreased with increased 

precipitation variability for the 1.5 cm month-1 precipitation scenario. For example, NH3 

emission increased by 94% and 139% in the sand loam and clay loam soils, respectively, 

compared with the baseline scenario. NO and N2O gaseous fluxes decreased with 

increased precipitation variability in sandy loam soil (Table 5).  

 

3.4 Soil Nitrate Leaching Response 

Soil nitrate leachate fluxes were very sensitive to rainfall variability, especially 

under the high rainfall amount scenario (Table 5). For the 1.5 cm month-1 scenario, 

nitrate leaching at 50 cm soil depth increased by 10% and 141% compared with baseline 

rainfall variability in the sandy loam and clay loam soils, respectively. For the 15 cm 

month-1 scenario, N leachate fluxes in both soils increased with precipitation variability 

(Table 5). High precipitation variability generally led to significantly higher (up to 12-

fold) nitrate leaching than under baseline variability.  

 

3.5 Soil depth-integrated N turnover rates 

 Figures 5 and 6 show oxygen partial pressure and the depth integrated net NO, 

N2O, and NO3
- production rate (gross production - gross consumption) for the 5- and 15-

day precipitation intervals in sandy loam and clay loam soils, respectively. In the sandy 

loam soil, the 5-day precipitation interval treatment induced lower oxygen partial 

pressure at 10 cm soil depth than did the 15-day interval precipitation (Figure 5(a)). 

There were enhanced NO and N2O net production rates associated with the oxygen 

partial pressure dips caused by precipitation events. Consequently, the 5-day precipitation 

interval had overall higher soil denitrifier biomass (Figure 5(e)), and higher net 

production rates of NO and N2O (Figure 5 (b) & (c)).  The net NO3
- production rates of 

the 5-day precipitation interval were also slightly higher than those of the 15-day 

precipitation interval (Figure 5 (d)). 

 The transient N turnover pattern responded differently to precipitation variability 

in the clay loam soil.  The oxygen partial pressures at 10 cm depth for both precipitation 

treatments were very low (<0.02) (Figure 6 (a)). The oxygen partial pressure of the 15-
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day precipitation interval periodically increased during the prolonged period between 

precipitation events, while the low oxygen persisted for the 5-day precipitation interval. 

The net NO, N2O, and NO3
- production rates for 5-day interval treatment dropped below 

zero for each precipitation event. In contrast, the N turnover rates for the 15-day interval 

were always above zero (Figure (b),(c), and (d)).. Consequently, the soil denitrifier 

biomass (Figure (e)) and overall N production rates for the 15-day interval were larger 

than those of the 5-day precipitation interval.  

 

4 Discussion 

4.1 Soil moisture response to precipitation variability  

 Increases in precipitation intensity with decreased frequency have been projected 

as a likely scenario under expected future climate change (Easterling et al., 2000). Field 

experiments have demonstrated that extreme rainfall events, without concurrrent changes 

in water amounts, could lead to decreases in mean soil water content and increases in soil 

moisture temporal variability (Knapp et al., 2002).  

 Consistent with (Knapp et al., 2002), our modeling results showed that high 

precipitation variability led to lower mean soil water content than the baseline variability 

for high rainfall amount scenario. However, when the total precipitation amount was low, 

the high precipitation variability could lead to higher mean soil moisture than the baseline 

intensity (Figure 4), which was consistent with a previous modeling study (Weng and 

Luo, 2008).  At the high precipitation amount (i.e., 15 cm month-1), the high precipitation 

variability also increased mean WFPS at 40 cm depth in the clay loam soil (Figure 4B). 

The fine textured, high field capacity soil stored rainwater from large precipitation events 

more effectively. Additionally, more water was stored in deep soil layers under high 

precipitation variability than that under the baseline condition.  

 

4.2 Effect of precipitation variability on N losses 

 Our results suggest increased precipitation intensity with reduced frequency will 

lead to changes in soil N losses (i.e. NO3
- leaching, NH3, NO and N2O emissions). 

Because atmospheric N2O contributes significantly to the greenhouse effect and climate 
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change, the net effect of changes in precipitation on radiative properties of the 

atmosphere are likely even larger than when just considering the effects of ecosystem C 

exchanges. 

Increases in soil moisture resulted in predicted increases in anaerobic N cycling. 

As shown by the simulations from the clay loam soil, when the precipitation amount was 

high (15 cm month-1), NO and N2O gas efflux at high precipitation variability was higher 

than at baseline variability (Table 5). However, with the high precipitation amount in the 

sandy loam soil, high precipitation variability led to lower NO and N2O gas emissions 

than the baseline variability because of the lower mean soil WFPS.  While NH3 efflux 

always increased with precipitation variability. These results indicated that soil texture 

strongly regulates effects of precipitation variability on soil moisture content and the N 

cycle. 

A number of studies have reported dramatic shifts in NO and N2O emissions from 

soils with changes in soil moisture (Davidson 1992), with NO emissions typically highest 

under relatively dry conditions and N2O emissions increasing with increasing soil 

moisture content. Our modeling study showed a consistent pattern of NO gas flux 

increases within a range of approximately 35-60% WFPS because water stress release 

stimulated microbial activity (Figure 7A). For soils above field capacity, however, 

denitrification dominated as the source of N gases, with N2O being the dominant flux 

between 60% and 85% WFPS (Figure 7A). NO gas emissions showed a negative 

relationship (R2=0.57) with soil WFPS variance at 10 cm depth (Figure 7B), suggesting 

that the effects of precipitation variability on soil water content may be a more important 

regulator of NO flux than is mean soil water content. Unlike NO emissions, N2O 

emissions were poorly correlated (R2=0.22) with variance of soil WFPS at 10 cm depth. 

Instead, N2O emission showed a better correlation (R2=0.42) with mean soil WFPS at 10 

cm depth, suggesting mean soil water content was a better indicator of N2O flux than was 

rainfall variability. 

We can gain more insight on the contrasting patterns of N losses in sandy loam 

and clay loam soil by examining the depth integrated N turnover rates for the high 

precipitation amount scenario presented in Figure 5 and 6.  Under more aerobic 

conditions, such as in the sandy loam soil, soil oxygen content acted as the primary 
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controller on soil N turnover rates. Frequent precipitation (e.g. 5-day interval) facilitated 

soil denitrifier growth and accelerated NO and N2O production because more frequent 

precipitation caused more consistent anaerobic conditions than less frequent precipitation 

(Figure 5). Consequently, the 15-day precipitation interval produced less N gases than the 

5-day precipitation interval.  However, much larger NO3
- leaching occurred for the 15-

day precipitation interval due to the lower nitrate reduction rate than in the 5-day 

precipitation interval in sandy loam soil.   

In contrast, under bulk anaerobic conditions, such as in the clay loam soil, soil 

NO3
-, the substrate for denitrification, is most limited because the soil anaerobicity is not 

favorable to nitrification. As a result, soil nitrate content, rather than soil oxygen content, 

controlled soil N turnover rates. The 15-day precipitation interval produced higher soil 

NO3
- concentration than did the 5-day precipitation interval because the prolonged dry 

period between rainfall events facilitated soil nitrification. Subsequently, high soil NO3
- 

induced enhanced NO3
- leaching, and the increased growth of soil denitrifier that 

enhanced NO and N2O production in the 15-day precipitation interval Scenario (Figure 6). 

Transport processes also affect the response of N losses to rainfall variability. For 

example, for the 5-day precipitation interval, there were significantly higher NO and N2O 

soil gas concentrations at depth as well as NO and N2O net production rates in the sandy 

loam subsoil, compared to those of the 15-day precipitation interval (Figures 8 and 9). 

The high NO and N2O concentrations at depth for the 5-day precipitation interval resulted 

primarily from NO and N2O production in the topsoil and subsequent transport to depth 

(Figure 9). The potential storage of NO and N2O in the lower soil profile and gradual 

diffusion to the surface is important with respect to overall NO and N2O fluxes from soil. 

Li et al (2002) also observed N2O accumulation in the subsoil and suggested the 

important role of soil structure in barring the redistribution of gases from lower in the soil 

profile to the surface. In our study, the subsoil N gas accumulation is a remnant of short, 

strong peaks in gas production in the topsoil, and subsequent gaseous diffusion and 

aqueous advection of gases into the soil column. The lower diffusion rates in the subsoil 

due to increased water saturation would block further movement of N gases. The high 

NO and N2O concentrations in the subsoil may lead to indirect losses of dissolved NO 

and N2O through drainage water and further denitrification to N2 (for N2O). In this sense, 
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the soil water becomes a temporary storage body entrapping N gases or causing 

movement of dissolved N gases (Clough, et al. 2005).  

The reduced soil water saturation caused by precipitation also decreases oxygen 

diffusion down into the soil column, which can facilitate N reduction processes. Overall, 

the net effect of precipitation on N fluxes will depend on the inter-related process of N-

gas production, N and O2 gaseous and aqueous transport in the soil, and the influence of 

oxygen on N turnover rates. Our results suggest that the net effect of precipitation will 

most likely increase NO and N2O production in aerobic soils (often associated with 

coarse texture), and decrease NO and N2O production in anaerobic soils (often associated 

with finer texture soils). 

 

4.3 Implications for ecosystem responses 

 The results in this study indicate that ecosystem N exchanges are expected to have 

both common and unique responses to more variable rainfall patterns. An important 

distinction in the response between humid and arid ecosystems to potential climate 

change is in their soil water content sensitivity to rainfall variability. In arid ecosystems 

characterized by small rainfall amounts, soils are typically already dry between events, 

and evaporation from upper soil layers rapidly leads to low soil water availability. We 

anticipate that this loss would be substantially reduced if a greater amount of rain fell in 

fewer events, allowing water to move to deeper soil layers less affected by evaporation. 

Thus, soil water availability to soil biota may be increased with fewer, larger events in 

arid ecosystems, particularly in more clayey soils. In humid ecosystems with soils that 

are more often moist, larger events (with constant total amount) would most likely 

decrease soil water content in coarse-textured soils because longer periods between 

rainfall events would lead to greater drying of the soil than is currently experienced. 

While fine-textured soils, especially at depths, would be expected to increase soil water 

content and dampen the soil moisture variability induced by less frequent large 

precipitation events due to its increased water-hold capacity.  

 This study enriched recent modeling studies that have addressed climate change 

controls on ecosystem responses (Weng and Luo, 2008; Zhou et al., 2008), and 

confirmed the conceptual model proposed by Knapp et al (2008) in that precipitation 
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variability can influence soil biogeochemical processes either positively or negatively 

depending on soil and ecosystem types.  In fine-textured soils, higher precipitation 

variability may lead to reduced period of soil anaerobic state and therefore increase the 

rate of aerobic biogeochemical processes (e.g. decomposition, nitrification). Extended 

soil drying has been found to increase soil respiration (Jensen et al. 2003) and N 

mineralization (Emmett et al. 2004). In this study, prolonged dry condition may 

accelerate denitrification by releasing the soil substrate (i.e. nitrate) stress. In contrast, 

increased precipitation variability will result in coarse textured soils experiencing longer 

period of soil water stress. Microbial-mediated anaerobic transformation (e.g. 

denitrification) would decrease concurrently. In deed, responses of soil N cycle to 

precipitation are especially complex because of its multiple stress states (i.e. aerobic and 

anaerobic) that regulate N transformation pathways. This highlights the need of process-

based mechanistic understanding to access the effects of various ecosystem attributes in 

determining the ecosystem responses to rainfall regimes. 

 

4.4 Implication for Response Sensitivity 

 TOUGHREACT-N simulated the largest sensitivity of N losses to precipitation 

variability at high precipitation amounts. It appears, therefore, that more studies are 

needed in humid regimes in terms of understanding sensitivity of the soil  N cycle to 

precipitation changes. In our study, nitrate leaching was the most sensitive (with respect 

to precipitation variability) pathway for N loss.  Given that the sandy loam soil had much 

higher baseline leaching rate (an order of magnitude higher, data not shown), we expect 

larger absolute increases of N aqueous losses in coarse textured soils in humid regions.  

 

5 Summary  
Our intent in this article has been to analyze how the soil N cycle may be affected 

by future increased precipitation variability. Despite the importance of the N cycle to 

terrestrial ecosystems, the potential consequences of precipitation variability have 

received minor attention compared with, e.g., the C cycle. The key finding of our 

assessment is that soil N cycling responses to more variable precipitation depend on 

baseline precipitation amounts and variability and soil texture, so that different 
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ecosystems  can be expected to respond uniquely to climate change. Since the N and C 

cycles are tightly linked, these responses may lead to unique, and perhaps surprising, 

interactions with the soil carbon cycle (Austin et al., 2004).  

 A deeper understanding of the ecological consequences of more extreme intra-

annual precipitation patterns will also strengthen our knowledge of N cycle and climate 

relationships and feedbacks, and will inform emerging Earth system models so that they 

can more effectively assess this component of climate change effects. The importance of 

more extreme precipitation patterns relative to, and in combination with, other global 

change drivers, such as elevated atmosphere CO2 and warming, needs further study. 

Alterations in rainfall patterns will be accompanied by elevated atmospheric CO2 and 

other elements of climate change. Elevated CO2 is expected to increase soil moisture 

availability in many ecosystems through improved plant water use efficiency (Bazzaz, 

1996). Only by thorough analysis of soil N responses with these drivers independently 

and interactively, can we improve predictions of soil N cycling in response to climate 

change. 

 

 

Appendix A: Model Description 

Soil Moisture Dynamics 

The model numerically simulates variably saturated water flow using Richards’ 

equation;  
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where θ is soil moisture [m3 m-3] and ψ(θ ) [Pa] and K(θ )  [m s-1] are the water potential 

and hydraulic conductivity, respectively, computed as functions of soil type according to 

van Genuchten (1980). 

Multiphase Transport 

TOUGHREACT-N simulates chemical transport using a multiphase form of the 

advection-dispersion-reaction equation to describe chemical advection in the aqueous 

phase and diffusive transport in the gas and aqueous phases. The gaseous advection 

resulting from pressure gradient in the soil is unlikely to be important for cumulative 
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gaseous efflux and is ignored here. The model conceptualizes the transient mass balance 

of chemical species in aqueous, gaseous, and solid phases as: 
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where Ca,  Cg, and Cs are the species concentrations (mol m-3) in the aqueous,  gaseous 

and solid phases, respectively, θa and θg are the volumetric fractions (m3 m-3) of the 

aqueous and gaseous phase, respectively, ρb is the dry bulk density of the solid phase (kg 

m-3), νa is the volumetric flux of the aqueous phase (m s-1), S is the source/sink term (kg 

m-3 s-1) as described in Eq.(A5), t is time (s), and z is the spatial coordinate (m). A linear 

isotherm is used to relate species concentrations in the aqueous and solid phases, while 

Henry’s law is used to relate species concentrations in the aqueous and gaseous phases.Da 

and Dg are the effective diffusion coefficient in the liquid and gaseous phase, respectively 

(m2 s-1), computed according to (Millington & Quirk, 1961): 

 0

2

3/7

)( 


 


DD           (A3) 

where β is the phase index, θ is porosity, and is free solution or gas diffusion 

coefficient (m2 s-1). 

0
D

 Free gas diffusion coefficients are computed as a function of temperature, 

pressure, molecular weight, and molecular diameter. Assuming ideal gas behavior, the 

tracer diffusion coefficient of a gaseous species can be expressed as [Lasag, 1998]: 

M

RT

dPN

RT
D

mA

g 
8

23 2

0      (A4) 

Where Dg
0 is the free gaseous diffusion coefficient (m2 s-1), R is molar gas constant, T is 

temperature (K), P is pressure (kg m-1 s-2), NA is Avogadro’s number, dm is molecular 

diameter (m), and M is molecular weight (kg mol-1) 

Chemical and Biological Reactions 

 To represent the geochemical system in TOUGHREACT-N, we selected a set of 

aqueous primary species (Table 3); these species produce secondary species by chemical 

reactions of aqueous complexation, gas dissolution and exsolution, and solute adsorption 

and desorption occurring at local equilibrium. 
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 The concentrations of aqueous complexes can be expressed as functions of the 

concentrations of basis species: 

ii

j

vij
j

vij
j

i K

c

c



                                                         (A5) 

Where ci is molal concentration of the i-th aqueous complex, and cj is molal 

concentration of the j-th primary species, γi and γj are thermodynamic activity coefficients 

which can be calculated from the extended Debye-Huckel equation, and Ki is the 

equilibrium constant. The proton H+ exists as a dissolved species, so acid-base reactions 

can be treated in a manner similar to aqueous complexation reaction. In this way, H+ is 

explicitly modeled by tracing its production, consumption, and transport.  

 Gas dissolution and exsolution rates are calculated by relating the aqueous 

concentration of a primary or secondary species Cwi to its partial pressure as: 


j

v

j

v

jfff
jfjfCKp                                                    (A6) 

Where subscript f is gas index, p is the partial pressure (bar),   is the gas fugacity 

coefficient, which equals to one for atmospheric pressure.  Vfj is the stoichiometric 

coefficient of the jth primary species in the fth gaseous species, C is molal concentration 

of the j-th species, γ  is the thermodynamic activity coefficients. K is the equilibrium 

constant.  

 Adsorption and desorption of solute species to the solid phase are computed 

according to linear equilibrium as: 

ii

j

vij
j

vij
j

i K

c

c



                                                             (A7) 

Where Ki is the equilibrium constant. 

 

The Nitrogen Cycle 

 A full description of inorganic N biogeochemical processes in TOUGHREACT-N can be 

found in Maggi et al., [2008].  Briefly, four main N-cycle pathways (nitrification, nitrifier 

denitrification, denitrification, and chemo-denitrification) were implemented to model N-
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losses and their partitioning between gaseous and aqueous phases. The reaction network 

and transport mechanism used in TOUGHREACT-N is depicted in Figure 1.  

Nitrification, Denitrification and Aerobic Respiration 

 Multiple-Monod microbial growth and substrate utilization kinetics are used to 

describe each step of nitrification, denitrification and aerobic respiration:  
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Here, Si is the reaction rate of the ith aqueous species  [mol m-3s-1], Bi is biomass [molm-3], 

i̂  is maximum specific growth constant [s-1], Ci,k is the concentration of the kth species  

[mol m-3], Ii is the concentration of the ith inhibitor [mol m-3] (e.g. O2), KMi,k is the kth 

Monod half-saturation constant of the ith species, Nm is the number of Monod terms, KIi is 

ith inhibition constant, Ii is ith inhibitor concentration, and f(Sθ) and g(pH) are two 

piecewise linear functions accounting for microbial water and acidity stress. Finally, 

stoichiometric production or consumption is simulated by multiplying Si by the 

corresponding stoichiometric coefficients based on reaction equations. Note that 

dissolved oxygen concentration is explicitly simulated based on the balance between 

diffusion and consumption from stoichiometric relationships shown in Table 4. Oxygen 

inhibition effects on denitrification are simulated by introducing an inhibition term: 

iiIK

K iI

I
. 

 We assumed microbial water and acidity stress following the piecewise linear 

functions as below (Maggi, et al. 2008): 

 1,2min)(  SSf   (A9) 
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Microbial  Dynamics   
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 The dynamics of each microbial biomass (Bi) is assumed to satisfy the Monod 

equation: 

i
c

iicic
i BYS

t

B  



      (A11) 

with Yic the yield coefficients for Bi to grow upon the substrate c [mg mol-1], Sic as in Eq. 

(A5) for each substrate c, and δi the biomass death rate [s-1]. 

The Carbon Cycle 

TOUGHREACT-N's prediction of soil carbon cycling is based on DNDC's 

decomposition module (Li et al. 1992). Briefly, TOUGHREACT-N models 

decomposition by dividing the soil carbon into three organic matter pools: residues, 

microbial biomass, and humus. These pools are further divided into labile and resistant 

fractions. Decomposition is modeled as a 1st order decay from each of these pools, where 

the rate constant is a function of the pool's potential decomposition rate, soil temperature, 

and soil moisture. Soil N cycling is connected to carbon cycles because each transfer of C 

requires a concurrent transfer of N. The varying C:N ratios of the soil pools cause the 

balance of soil N mineralization and immobilization. We estimate additions to the soluble 

C (DOC) pool from fluxes out of the microbial and humads pools. DOC is later subject to 

transport processes (e.g., advection and dispersion). Based on the DOC adsorption studies 

of  Jardine et al-(1992), a kinetic dissolution model is used to simulate the adsorption of 

DOC. In TOUGHREACT-N, DOC is competitively consumed by Ammonium Oxidizer 

Bacteria (AOB) and Denitrifier (DEN) during denitrification, and by other heterotrophic 

and aerobic microbes (AER) during respiration, resulting in CO2 production (Figure 1). 
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Figures 

Figure 1. Schematic representation of the chain of biochemical nitrification and denitrification 
reactions (left side), microbial respiration (right side), and soil N mineralization and 
immobilization (bottom). Mineral, liquid, and gaseous domains are separated by dashed lines. 
AOB, NOB, DEN, and AER stand for ammonia oxidizing bacteria, nitrite oxidizing bacteria, 
denitrifying bacteria, and aerobic bacteria, respectively. DOC represents dissolved organic carbon 
(modified from Maggi, et.al., (2008)). 
 

Figure 2. Observed and simulated soil water saturation (Sθ) profiles at the Costa Rican 

Cordillera Central site in response to three water additions at days 0, 9, and.  

 

Figure 3. Observed and simulated soil N2O partial pressure (bar) profiles at the Costa 

Rican Cordillera Central site in response to three water additions on days 0, 9, and 16.  

 

Figure 4. 30-day mean water filled pore space (WFPS) at 10 and 40 cm depth for A) 
sandy loam and B) clay loam soils as a function of rainfall intervals. WFPS1 and WFPS2 
represent WFPS from 1.5 cm month-1 scenario and 15 cm month-1 scenario, respectively.  
 

Figure 5. Time series of (a) soil oxygen partial pressure at 10 cm depth and depth 
integrated (b) net N2O, (c) NO, (d) NO3

- production rates, and (e) denitrifier (DEN) 
concentration from sandy loam soil for 5 d and 15 d precipitation intervals. 
 

Figure 6. Time series of (a) soil oxygen partial pressure at 10 cm depth and depth 
integrated net (b) N2O, (c) NO,  (d) NO3

- production rates, and (e) denitrifier (DEN) 
concentrationfrom clay loam soil for 5 d and 15 d precipitation intervals. 
 
Figure 7. Relationships between NO and N2O fluxes and (A) mean soil WFPS at 10 cm 
depth  and (B) variance of soil WFPS at 10 cm depth. These relationships are based on all 
simulation results combining three treatment variables. 
 
Figure 8. Spatiotemporal dynamics of NO and N2O partial pressure in the sandy loam soil 
with 15-day vs. 5-day at 15 cm month-1 precipitation scenario. 
 
Figure 9. Spatiotemporal dynamics of net production rates of NO and N2O in the sandy 
loam soil with 15-day vs. 5-day at 15 cm month-1 precipitation scenario. 



1 

2 

Table 1.  Some physical and chemical properties of the studied soils (Nobre et al. 2001)  

 
Depth(cm) Bulk Density(gcm-3) Sand (%) Silt (%) Clay (%) pH NO3

-(mgNkg-1) NH4
+(mgNkg-1) Total N (%) Total C(%)

0-2.5 0.7 66.5 26.5 7.0 6.4 19.6 12.6 0.4 3.9 

2.5-7.5 0.8 66.5 21.5 12.0 6.5 20.8 7.8 0.2 2.4 

7.5-15 0.9 69.5 18.5 12.0 6.6 5.8 1.4 0.2 2.0 

15-30 1.0 70.0 15.0 15.0 6.5 1.7 0.9 0.2 2.0 

30-50 1.0 66.5 23.5 10.0 6.4 0.5 0.2 0.1 0.7 

50-100* 1.0 66.5 23.5 10.0 6.4 0.5 0.2 0.1 0.7 

3 

4 

5 
6 
7 
8 
9 

10 
11 
12 

*The values were taken from the 30-50 cm depth due to the lack of measurement below 50 cm depth 
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1 

2 

Table 2. Physical parameters used for the unsaturated-saturated flow system. 

 
Parameter Value 

Depth (cm) 100 

Grid size (cm) 1.0 

O2, CO2, NH3, NO, N2O, and N2 partial 

pressure in atmosphere (bar) 

0.2, 4×10-4, 0,  0,  0, 0 

Permeability (m2) 2.83×10-12 

Aqueous diffusion coefficient (m2s-1) 1.0×10-9 

Porosity 0.3 

Relative permeability and capillary 

pressure (van Genuchten curves, 1980) 

 

λ 0.42 

Slr 0.1 

Sls 1.0 

P0(Pa) 2.43×103 

3  
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1 Table 3 Equilibrium Reactions involved in soil N cycle (Maggi, et al., 2008)  
Aqueous Complexation Log(K) 

OH-↔H2O-H+ 13.99 

NH3(aq)↔NH4
+-H+ 9.24 

HNO2↔H++NO2
- -3,22 

HNO3↔ H++NO3
- 1,3 

CO3
-2↔HCO3

—H+ 10,32 

CO2(aq)↔H++HCO3
--H2O -6.34 

Gas Dissolution/Exsolution Log(k) 

CO2(g)↔H++HCO3
--H2O -7.81 

NO(g)↔NO(aq) -2.76 

N2O(g)↔N2O(aq) -1.6 

N2(g)↔N2(aq) -3.24 

O2(g)↔O2(aq) -2.89 

NH3(g)↔NH3 (aq) 11.04 

Adsorption/Desorption Kd 

NH4
+(aq)↔NH4

+(s) 3 

 2 



1 Table 4 Kinetic reactions and parameters of soil N cycle 

Microbial Reaction Microbe
i̂ (s-1) Kc(molL-1) Ke(molL-1) Kl(molL-1) Y(kgC/kgN) 

NH4
++3/2O2(aq)→NO2

-+H2O+2H+ AOB 5.22×10-5 1.48×10-3 2.41×10-5 - 0.56 

NO2
-+1/2O2(aq)→NO3

- NOB 5.23×10-5 1.48×10-3 2.41×10-5 - 0.52 

2NO3
-+CH2O→2NO2

-+CO2(aq)+H2O DEN 1.80×10-4 8.33×10-4 1.13×10-3 2.52×10-5 0.401 

DEN 1.80×10-4 8.33×10-4 1.13×10-3 2.52×10-5 0.428 4NO2
-+CH2O+4H+→4NO(aq)+CO2(aq)+3H2O 

AOB 1.82×10-4 8.33×10-4 1.13×10-3 6.15×10-5 0.428 

DEN 9.07×10-5 8.33×10-4 1.13×10-3 2.52×10-5 0.4 8NO(aq)+2CH2O→4N2O(aq)+2CO2(aq)+2H2O

AOB 1.76×10-4 8.33×10-4 1.13×10-3 6.15×10-5 0.4 

DEN 9.02×10-5 8.33×10-4 1.13×10-3 2.52×10-5 0.151 4N2O(aq)+2CH2O→4N2(aq)+2CO2(aq)+2H2O 

AOB 9.28×10-5 8.33×10-4 1.13×10-3 2.52×10-5 0.151 

CH2O+O2(aq)→CO2(aq)+H2O DEN 2.06×10-4 8.33×10-4 1.13×10-3 - 0.503(kgC/kgC)

Non-microbial Reaction   1st order reaction rate (s-1) 

3NO2
-+H+→H2O+NO3

-+2NO(aq) -4.08×10-4 
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Table 5 Sensitivity of NO, N2O, NH3, and NO3
- fluxes to varying precipitation variability 

and amount 
1 
2 

 Precipitation 
amount 

1.5 cm month-1 15 cm month-1 

Soil 
type 

Precipitation 
Interval 

15 
d 

10d 7.5d 5 3d 2d 15 d 10d 7.5d 5 3d 2d 

FN2O 0.89 0.92 0.96 0.99 1.00 1.00 0.72 0.82 0.86 1.01 1.08 1.00
FNO 1.01 1.02 1.02 1.01 1.00 1.00 0.85 0.91 0.94 1.01 1.04 1.00
FNH3 1.07 1.05 1.04 1.02 1.00 1.00 1.94 1.42 1.34 1.21 1.08 1.00

Sandy 
loam 

FNO3- 1.10 1.15 1.16 1.12 1.04 1.00 12.37 7.33 8.26 6.65 2.73 1.00
FN2O 1.00 1.01 1.00 0.99 0.99 1.00 1.23 1.28 1.21 1.19 1.13 1.00
FNO 1.01 1.06 1.05 1.03 1.01 1.00 2.35 2.07 1.70 1.43 1.18 1.00
FNH3 0.73 0.82 0.87 0.91 0.97 1.00 2.39 2.01 1.76 1.30 1.09 1.00

Clay 
loam 

FNO3- 2.41 2.06 1.67 1.34 1.11 1.00 12.57 7.38 4.56 2.23 1.00 1.00
3  
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were assumed to be constant with depth (see Table 3). The
initial organic carbon content and inorganic nitrogen (i.e.
NH4

+ and NO3
−) concentrations were taken from the field

measurement (Table 1).
The upper boundary for thewater flowwas defined by time

dependent water flow conditions. The evaporation flux at the
soil surfacewas assumed to be constant and set to 2 mm day−1

(Nobre et al., 2001). At the bottomof the domain (1 mdepth), a
Dirichlet boundary (constant water saturation) was imposed
(Table 2). Therefore the bottom of the soil profile allowed
gravitational drainage of water and chemicals in thewater. The
atmospheric gaseous partial pressure (patm, bar) was imposed
as a Dirichlet boundary condition at the top of the soil profile,
while zero gaseous concentration was imposed as a Dirichlet
boundary at the domain bottom. Surface diffusive fluxes of
gases were computed from concentration gradients between
the atmosphere and 0.5 cm soil depth. The N leaching flux was
estimated as the product of aqueous concentrations at 50 cm
soil depth and the simulated water flux.

The biochemical parameters were taken from the litera-
ture and calibration (Table 3). Calibrationwas assisted by trial
and error to minimize the difference between observed and
simulated N2O concentrations. Comparison between model
simulations and observations was evaluated by a linear
regression approach with determinant coefficients.

Fig. 1. Schematic representation of the chain of biochemical nitrification and deni
mineralization and immobilization (bottom). Mineral, liquid, and gaseous domains
oxidizing bacteria, nitrite oxidizing bacteria, denitrifying bacteria, and aerobic bact
Maggi et al. (2008)).

Table 1
Some physical and chemical properties of the studied soils (Nobre et al., 2001).

Depth (cm) Bulk density (g cm−3) Sand (%) Silt (%) Clay (%) pH

0–2.5 0.7 66.5 26.5 7.0 6.4
2.5–7.5 0.8 66.5 21.5 12.0 6.5
7.5–15 0.9 69.5 18.5 12.0 6.6
15–30 1.0 70.0 15.0 15.0 6.5
30–50 1.0 66.5 23.5 10.0 6.4
50–100 a 1.0 66.5 23.5 10.0 6.4

a The values were taken from the 30 to 50 cm depth due to the lack of measurem
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2.3. Scenario analysis

To quantify the effect of increased intra-annual rainfall
variability on soil N losses,we imposedvariations inprecipitation
amount, precipitation variability, and soil texture (Table 4).
We explored precipitation variability by altering the temporal
distribution and size of rainfall events, with two different total
precipitation amounts (1.5 and 15 cmmonth−1). The model-
ing exercise based upon high and low precipitation amounts
corresponded to humid and arid ecosystems, respectively.
In this study, we did not initialize with the different N levels
expected in these two types of ecosystems because trends of
N gas fluxes were relatively insensitive to the initial N levels
(data not shown).

For each of the two total precipitation amounts, the model
was run for six different rainfall patterns spread over a 30-day
period. For example, for the 15 cm month−1 case the forced
precipitations were: (1) 1 cm of rain in 5 h every 2 days, (2)
1.5 cm of rain in 5 h every 3 days, (3) 2.5 cm of rain in 5 h
every 5 days, (4) 3.75 cm of rain in 5 h every 7.5 days, (5)
5 cm of rain in 5 h every 10 days, and (6) 7.5 cm of rain in 5 h
every 15 days. The most frequent rainfall regime (2-day
interval) was chosen as the baseline rainfall variability
scenario for comparison. The scenario was chosen based on
an analysis of precipitation data recorded at the Heredia site

trification reactions (left side), microbial respiration (right side), and soil N
are separated by dashed lines. AOB, NOB, DEN, and AER stand for ammonia
eria, respectively. DOC represents dissolved organic carbon (modified from

NO3
− (mg N kg−1) NH4

+ (mg N kg−1) Total N (%) Total C (%)

19.6 12.6 0.4 3.9
20.8 7.8 0.2 2.4
5.8 1.4 0.2 2.0
1.7 0.9 0.2 2.0
0.5 0.2 0.1 0.7
0.5 0.2 0.1 0.7

ent below 50 cm depth.



3.5. Soil depth integrated N turnover rates

Figs. 5 and 6 show oxygen partial pressure and the depth
integrated net NO, N2O, and NO3

− production rate (gross
production−gross consumption) for the 5- and 15-day
precipitation intervals in sandy loam and clay loam soils,
respectively. In the sandy loam soil, the 5-day precipitation
interval treatment induced lower oxygen partial pressure at
10 cm soil depth than did the 15-day interval precipitation
(Fig. 5(A)). There were enhanced NO and N2O net production
rates associated with the oxygen partial pressure dips caused
by precipitation events. Consequently, the 5-day precipitation
interval had overall higher soil denitrifier biomass (Fig. 5(E)),
and higher net production rates of NO and N2O (Fig. 5(B)
and (C)). The net NO3

− production rates of the 5-day pre-
cipitation interval were also slightly higher than those of the
15-day precipitation interval (Fig. 5(D)).

The transient N turnover pattern responded differently to
precipitation variability in the clay loam soil. The oxygen
partial pressures at 10 cm depth for both precipitation

treatments were very low (<0.02) (Fig. 6(A)). The oxygen
partial pressure of the 15-day precipitation interval period-
ically increased during the prolonged period between
precipitation events, while the low oxygen persisted for the
5-day precipitation interval. The net NO, N2O, and NO3

−

production rates for 5-day interval treatment dropped below
zero for each precipitation event. In contrast, the N turnover
rates for the 15-day interval were always above zero Fig. 6
((B), (C), and (D)). Consequently, the soil denitrifier biomass
Fig. 6 (E) and overall N production rates for the 15-day inter-
val were larger than those of the 5-day precipitation interval.

4. Discussion

4.1. Soil moisture response to precipitation variability

Increases in precipitation intensity with decreased fre-
quency have been projected as a likely scenario under expected
future climate change (Easterling et al., 2000). Field experi-
ments havedemonstrated that extreme rainfall events,without

Table 4
Sensitivity of NO, N2O, NH3, and NO3

−
fluxes to varying precipitation variability and amount.

Soil type Precipitation amount 1.5 cm month−1 15 cm month−1

Precipitation interval 15 days 10 days 7.5 days 5 days 3 days 2 days 15 days 10 days 7.5 days 5 days 3 days 2 days

Sandy loam FN2O 0.89 0.92 0.96 0.99 1.00 1.00 0.72 0.82 0.86 1.01 1.08 1.00
FNO 1.01 1.02 1.02 1.01 1.00 1.00 0.85 0.91 0.94 1.01 1.04 1.00
FNH3 1.07 1.05 1.04 1.02 1.00 1.00 1.94 1.42 1.34 1.21 1.08 1.00
FNO3− 1.10 1.15 1.16 1.12 1.04 1.00 12.37 7.33 8.26 6.65 2.73 1.00

Clay loam FN2O 1.00 1.01 1.00 0.99 0.99 1.00 1.23 1.28 1.21 1.19 1.13 1.00
FNO 1.01 1.06 1.05 1.03 1.01 1.00 2.35 2.07 1.70 1.43 1.18 1.00
FNH3 0.73 0.82 0.87 0.91 0.97 1.00 2.39 2.01 1.76 1.30 1.09 1.00
FNO3− 2.41 2.06 1.67 1.34 1.11 1.00 12.57 7.38 4.56 2.23 1.00 1.00
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Fig. 2. Observed and simulated soil water saturation (Sθ) profiles at the Costa R
 ordillera Central site in response to three water additions at days 0, 9, and 16.



concurrent changes in water amounts, could lead to decreases
in mean soil water content and increases in soil moisture
temporal variability (Knapp et al., 2002).

Consistent with Knapp et al. (2002), our modeling results

soil water content than the baseline variability for high
rainfall amount scenario. However, when the total precipita-
tion amount was low, the high precipitation variability could
lead to higher mean soil moisture than the baseline intensity

Fig. 3. Observed and simulated soil N2O partial pressure (bar) profiles at the Costa Rican Cordillera Central site in response to threewater additions on days 0, 9, and 16
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showed that high precipitation variability led to lower mean
Fig. 4. 30-day mean water filled pore space (WFPS) at 10 and 40 cm depth for (a) sandy loam and (b) clay loam soils as a function of rainfall intervals. WFPS1 and
WFPS2 represent WFPS from 1.5 cm month−1 scenario and 15 cm month−1 scenario, respectively.
.

(Fig. 4), whichwas consistent with a previousmodeling study
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als.
Fig. 5. Time series of (A) soil oxygen partial pressure at 10 cm depth and depth
concentration from sandy loam soil for 5-day and 15-day precipitation interv
(Weng and Luo, 2008). At the high precipitation amount (i.e.,
15 cm month−1), the high precipitation variability also
increased mean WFPS at 40 cm depth in the clay loam soil
(Fig. 4(b)). The fine textured, high field capacity soil stored
rainwater from large precipitation events more effectively.
Additionally, more water was stored in deep soil layers under
high precipitation variability than that under the baseline
condition.

4.2. Effect of precipitation variability on N losses

Our results suggest increased precipitation intensity with
reduced frequency will lead to changes in soil N losses (i.e.
NO3

− leaching, NH3, NO and N2O emissions). Because
atmospheric N2O contributes significantly to the greenhouse
effect and climate change, the net effect of changes in
precipitation on radiative properties of the atmosphere are
likely even larger than when just considering the effects of
ecosystem C exchanges.
ated (B) net N2O, (C) NO, (D) NO3
− production rates, and (E) denitrifier (DEN)
Increases in soil moisture resulted in predicted increases in
anaerobic N cycling. As shown by the simulations from the clay
loam soil, when the precipitation amount was high
(15 cmmonth−1), NO and N2O gas efflux at high precipitation
variability was higher than at baseline variability (Table 4).
However,with thehighprecipitation amount in the sandy loam
soil, high precipitation variability led to lower NO and N2O gas
emissions than the baseline variability because of the lower
mean soil WFPS. While NH3 efflux always increased with
precipitation variability. These results indicated that soil
texture strongly regulates effects of precipitation variability
on soil moisture content and the N cycle.

Anumberof studieshave reporteddramatic shifts inNOand
N2O emissions from soils with changes in soil moisture
(Davidson, 1992), with NO emissions typically highest under
relatively dry conditions and N2O emissions increasing with
increasing soil moisture content. Ourmodeling study showed a
consistent pattern of NO gas flux increases within a range of
approximately 35–60% WFPS because water stress release
stimulated microbial activity (Fig. 7(a)). For soils above field
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Fig. 6. Time series of (A) soil oxygen partial pressure at 10 cm depth and depth
concentration from clay loam soil for 5-day and 15-day precipitation interva
capacity, however, denitrification dominated as the source of N
gases, with N2O being the dominant flux between 60% and 85%
WFPS (Fig. 7(a)). NO gas emissions showed a negative
relationship (R2=0.57) with soil WFPS variance at 10 cm
depth (Fig. 7(b)), suggesting that the effects of precipitation
variability on soil water content may be a more important
regulator of NO flux than ismean soil water content. Unlike NO
emissions, N2O emissions were poorly correlated (R2=0.22)
with variance of soil WFPS at 10 cm depth. Instead, N2O
emission showed a better correlation (R2=0.42) with mean
soil WFPS at 10 cm depth, suggesting mean soil water content
was a better indicator of N2O flux than was rainfall variability.

We can gain more insight on the contrasting patterns of N
losses in sandy loam and clay loam soil by examining the
depth integrated N turnover rates for the high precipitation
amount scenario presented in Figs. 5 and 6. Under more
aerobic conditions, such as in the sandy loam soil, soil oxygen
content acted as the primary controller on soil N turnover
ated net (B) N2O, (C) NO, (D) NO3
− production rates, and (E) denitrifier (DEN)
rates. Frequent precipitation (e.g. 5-day interval) facilitated
soil denitrifier growth and accelerated NO and N2O produc-
tion because more frequent precipitation caused more
consistent anaerobic conditions than less frequent precipita-
tion (Fig. 5). Consequently, the 15-day precipitation interval
produced less N gases than the 5-day precipitation interval.
However, much larger NO3

− leaching occurred for the 15-day
precipitation interval due to the lower nitrate reduction rate
than in the 5-day precipitation interval in sandy loam soil.

In contrast, under bulk anaerobic conditions, such as in the
clay loam soil, soil NO3

−, the substrate for denitrification, is
most limited because the soil anaerobicity is not favorable to
nitrification. As a result, soil nitrate content, rather than soil
oxygen content, controlled soil N turnover rates. The 15-day
precipitation interval produced higher soil NO3

− concentra-
tion than did the 5-day precipitation interval because the
prolonged dry period between rainfall events facilitated soil
nitrification. Subsequently, high soil NO3

− induced enhanced
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NO3
− leaching, and the increased growth of soil denitrifier

that enhanced NO and N2O production in the 15-day pre-
cipitation interval Scenario (Fig. 6).

Transport processes also affect the response of N losses to
rainfall variability. For example, for the 5-day precipitation
interval, there were significantly higher NO and N2O soil
gas concentrations at depth as well as NO and N2O net pro-
duction rates in the sandy loam subsoil, compared to those
of the 15-day precipitation interval (Figs. 8 and 9). The high
NO and N2O concentrations at depth for the 5-day precipi-
tation interval resulted primarily from NO and N2O produc-

Fig. 7. Relationships between NO and N2O fluxes and (a) mean soil WFPS at 10 cm
based on all simulation results combining three treatment variables.
tion in the topsoil and subsequent transport to depth (Fig. 9).
The potential storage of NO and N2O in the lower soil profile
and gradual diffusion to the surface is important with respect
to overall NO and N2O fluxes from soil. Li et al. (2002) also
observed N2O accumulation in the subsoil and suggested the
important role of soil structure in barring the redistribution of
gases from lower in the soil profile to the surface. In our study,
the subsoil N gas accumulation is a remnant of short, strong
peaks in gas production in the topsoil, and subsequent
gaseous diffusion and aqueous advection of gases into the
soil column. The lower diffusion rates in the subsoil due to

depth and (b) variance of soil WFPS at 10 cm depth. These relationships are
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increased water saturation would block further movement of
N gases. The high NO and N2O concentrations in the subsoil
may lead to indirect losses of dissolved NO and N2O through
drainage water and further denitrification to N2 (for N2O). In
this sense, the soil water becomes a temporary storage body
entrapping N gases or causingmovement of dissolved N gases
(Clough et al., 2005).

The reduced soil water saturation caused by precipitation
also decreases oxygen diffusion down into the soil column,
which can facilitate N reduction processes. Overall, the net
effect of precipitation on N fluxes will depend on the inter-
related process of N gas production, N and O2 gaseous and
aqueous transport in the soil, and the influence of oxygen on
N turnover rates. Our results suggest that the net effect of
precipitationwill most likely increase NO and N2O production
in aerobic soils (often associated with coarse texture), and
decrease NO and N2O production in anaerobic soils (often
associated with finer texture soils).

4.3. Implications for ecosystem responses

The results in this study indicate that ecosystem N
exchanges are expected to have both common and unique
responses to more variable rainfall patterns. An important

distinction in the response between humid and arid ecosys-
tems to potential climate change is in their N efflux sensitivity
to rainfall variability. In arid ecosystems characterized by
small rainfall amounts, soils are typically already dry between
events, and evaporation from upper soil layers rapidly leads
to low soil water availability. We anticipate that this loss
would be substantially reduced if a greater amount of rain fel
in fewer events, allowing water to move to deeper soil layers
less affected by evaporation. Thus, soil water availability to
soil biota may be increased with fewer, larger events in arid
ecosystems, particularly in more clayey soils. In humid
ecosystems with soils that are more often moist, larger
events (with constant total amount) would most likely
decrease soil water content in coarse-textured soils because
longer periods between rainfall events would lead to greater
drying of the soil than is currently experienced. While fine-
textured soils, especially at depths, would be expected to
increase soil water content and dampen the soil moisture
variability induced by less frequent large precipitation events
due to its increased water-hold capacity.

This study enriched recent modeling studies that have
addressed climate change controls on ecosystem responses
(Weng and Luo, 2008; Zhou et al., 2008), and confirmed the
conceptual model proposed by Knapp et al. (2008) in that
precipitation variability can influence soil biogeochemica

Fig. 8. Spatiotemporal dynamics of NO and N2O partial pressure in the sandy loam soil with 15-day vs. 5-day at 15 cm month−1 precipitation scenario.
l

l
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Fig. 9. Spatiotemporal dynamics of net production rates of NO and N2O in th
processes either positively or negatively depending on soil and
ecosystem types. In fine-textured soils, higher precipitation
variability may lead to reduced period of soil anaerobic state
and therefore increase the rate of aerobic biogeochemical
processes (e.g. decomposition, nitrification). Extended soil
drying has been found to increase soil respiration (Jensen et
al., 2003) and N mineralization (Emmett et al., 2004). In this
study, prolonged dry condition may accelerate denitrification
by releasing the soil substrate (i.e. nitrate) stress. In contrast,
increased precipitation variability will result in coarse textured
soils experiencing longer period of soil water stress. Microbial-
mediated anaerobic transformation (e.g. denitrification)would
decrease concurrently. In deed, responses of soil N cycle to
precipitation are especially complex because of its multiple
stress states (i.e. aerobic and anaerobic) that regulate N
transformation pathways. This highlights the need of process-
based mechanistic understanding to access the effects of
various ecosystem attributes in determining the ecosystem
responses to rainfall regimes.

4.4. Implication for response sensitivity

TOUGHREACT-N simulated the largest sensitivity of N
losses to precipitation variability at high precipitation
amounts. It appears, therefore, that more studies are needed
in humid regimes in terms of understanding sensitivity of the
soil N cycle to precipitation changes. In our study, nitrate
y loam soil with 15-day vs. 5-day at 15 cm month−1 precipitation scenario.
leaching was the most sensitive (with respect to precipitation
variability) pathway for N loss. Given that the sandy loam soil
had much higher baseline leaching rate (an order of
magnitude higher, data not shown), we expect larger
absolute increases of N aqueous losses in coarse textured
soils in humid regions.

5. Summary

Our intent in this article has been to analyze how the soil N
cycle may be affected by future increased precipitation
variability. Despite the importance of the N cycle to terrestrial
ecosystems, the potential consequences of precipitation vari-
ability have received minor attention compared with, e.g., the
C cycle. The key finding of our assessment is that soil N cycling
responses to more variable precipitation depend on baseline
precipitation amounts and variability and soil texture, so that
different ecosystems can be expected to respond uniquely to
climate change (Knapp et al., 2008). Since theNandC cycles are
tightly linked, these responsesmay lead to unique, and perhaps
surprising, interactions with the soil carbon cycle (Austin et al.,
2004).

A deeper understanding of the ecological consequences of
more extreme intra-annual precipitation patterns will also
strengthen our knowledge of N cycle and climate relationships
and feedbacks, and will inform emerging Earth systemmodels
so that they can more effectively assess this component of
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