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Abstract 

Kittur, Hummel and Holyoak (2004) showed that people have 

great difficulty learning relation-based categories with a 

probabilistic (i.e., family resemblance) structure. We 

investigated three interventions hypothesized to facilitate 

learning family-resemblance based relational categories: 

Naming the relevant relations, providing a hint to look for a 

family resemblance structure, and changing the description of 

the task from learning about categories to choosing the 

“winning” object in each stimulus, which was predicted to 

encourage subjects to form an invariant higher-order relation. 

We crossed these variables orthogonally in a factorial design. 

Of the three, the change in task description had by far the 

greatest impact on subjects’ ability to learn probabilistic 

relation-based categories. For subjects in the category 

learning task, naming the relations and the “no single 

relation” clue both improved performance individually, but in 

combination, they substantially impaired learning. These 

results suggest that the best way to learn a probabilistic 

relation-based category is to discover a higher-order relation 

that remains invariant over the category’s exemplars.  

Key words: Relational category learning; family 

resemblance; higher-order relations; relational invariants.  

One of the most robust findings in the vast literature on 

category learning is that people are capable of learning 

categories with a family resemblance structure, in which 

every member of the category shares some features with 

every other member, but no single feature is shared by all 

category members (e.g., Bruner, Goodnow, & Austin, 1956; 

Kruschke, 1992; Kruschke & Johansen, 1999; Medin & 

Schaffer, 1978; Nosofsky, 1992; Rosch & Mervis, 1975; 

Shiffrin & Styvers, 1997; Smith & Medin, 1981). The 

“prototype” effects that result from such learning (such as 

our ability to learn a category prototype from the exemplars 

without ever seeing the prototype itself) are so robust that 

they led Murphy (2002) to quip that any category learning 

experiment that fails to demonstrate prototype effects is 

suspect. It is hardly possible to teach a course in cognitive 

science without talking about prototype effects: They are 

among the most ubiquitously observed and widely accepted 

effects in cognitive psychology.  

In reviewing the literature on prototype effects, Kittur, 

Hummel and Holyoak (2004) noticed that all the studies 

reporting prototype effects used category structures defined 

by their members’ features. For example, if the categories to 

be learned were fictional animals then they might be defined 

by features such as the shape of the head, the shape of the 

tail, etc. Similarly, the vast majority of models of category 

learning and categorization assume that we represent 

categories and exemplars as lists of features and assign 

exemplars to categories by comparing their features (see 

Kittur et al. for a review). As Kittur et al. observed, this 

reliance on feature-based categories is a limitation inasmuch 

as many natural concepts and categories are based, not 

exclusively on features, but also on relations, including both 

relations between the features of an exemplar (e.g., the seat 

and back of a chair need to be in a particular spatial relation 

to serve as a chair) and relations between the exemplar and 

other objects (e.g., the category conduit is defined by a 

relation between the conduit and the thing it carries; the 

category barrier is defined by the relation between the 

barrier, the thing to which it blocks access and the thing 

deprived of that access; even such a basic category as 

mother is defined by a relation between the mother and her 

child) (see Gick & Holyoak, 1983; Pirolli & Anderson, 

1985; Ross, 1987). Relational categories also play a central 

role in mathematics and science (e.g., denominator, result, 

carnivore, pressure, magnetic, attraction; Anggoro, Gentner, 

& Klibanoff, 2005).  

The importance of relational categories in human 

cognition, in combination with their under-representation in 

one of the largest literatures in cognitive psychology, led 

Kittur et al. (2004) to pose the following simple question: 

Can we observe prototype effects with relational, rather than 

feature-based, categories? That is, if the categories to be 

learned are defined by the relations between the exemplars’ 

features, rather than the literal features themselves, can 

human subjects learn categories with a family resemblance 

structure? And if they do, what will the resulting prototypes 

be like? Kittur et al. never got an answer to the second 

question because the answer to the first question turned out 

to be a resounding No: Using a 2 X 2 design crossing 

category structure (family resemblance, in which no single 
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feature or relation always predicted category membership, 

vs. deterministic, in which one feature or relation remained 

invariant across all exemplars of a category) with defining 

property (exemplar features vs. relations between those 

features), Kittur et al. found that subjects in the 

relational/family resemblance condition found category 

learning much more difficult than subjects in the other 

conditions (an effect that Kittur, Holyoak & Hummel, 2006, 

used ideal observer analysis to demonstrate could not be 

attributed to the formal difficulty of the task itself); indeed, 

the majority of the subjects in the relational/family 

resemblance condition failed to reach criterion even after 

600 trials of learning. 

Kittur at al. (2004) interpreted their finings in terms of the 

LISA model of schema induction (Hummel & Holyoak, 

2003). Specifically, Kittur et al. reasoned that if a relational 

category is represented as a schema, as has been proposed 

by others (e.g., Barsalou, 1993; Gentner, 1983; Holland, 

Holyoak, Nisbett, & Thagard, 1986; Keil, 1989; Murphy & 

Medin, 1985; Ross & Spalding, 1994), and if schemas are 

learned by a process of intersection discovery, in which a 

schema is learned from examples by keeping what the 

examples have in common and discarding details on which 

they differ (as proposed by Hummel and Holyoak, 2003; see 

also Doumas, Hummel & Sandhofer, 2008)
1
, then learning 

probabilistic relational categories ought to be extremely 

difficult because the intersection of the examples is the 

empty set (i.e., there is no single relation shared by all 

category members). 

Although Kittur et al.’s (2004) data are consistent with 

their conclusions, there are several other reasons why 

probabilistic relational categories might be hard to learn 

from examples. In the research reported here, we sought to 

better understand the difficulty of learning relational 

categories with a family resemblance structure by 

investigating circumstances that might make them easier to 

learn. Specifically, we tested three not-mutually-exclusive 

hypotheses about what makes family resemblance relational 

categories difficult to learn. We evaluated these hypotheses 

using a 2 X 2 X 2 crossed factorial design. 

Following Kittur et al. (2004), each of our exemplars was 

composed of two shapes: a square and a circle (Kittur et al. 

used an octagon rather than a circle, and they placed their 

stimuli on a background designed to resemble a “computer 

chip” whereas we did not, but the stimuli are otherwise 

isomorphic). In each exemplar, one of the two shapes was 

larger than the other, one was darker than the other, one 

was in front of the other, and one was above the other. In the 

prototype of category A (never seen by subjects), the circle 

was larger, darker, above and in front of the square; in the 

prototype of category B, the square was larger, darker, 

above and in front of the circle. In any given exemplar seen 

by a subject, exactly three of these relations were shared 

                                                        

1. Doumas, Hummel, & Sandhofer (2008) predict that intersection 

discovery is essential, not only to learn entire relational schemas, 

but also to acquire basic relations, such above and larger-than. 

with the prototype of the exemplar’s category and one was 

shared with the exemplar of the opposite category (e.g., an 

exemplar of A might have the circle larger, darker and 

above [A-prototype relations] but behind [a B-prototype 

relation] the square).  

The first hypothesis we explored is that people are simply 

biased toward learning based on features rather than 

relations. To test this hypothesis, one factor varied whether 

the instructions to subjects explicitly stated which (and 

therefore that) relations were relevant to category 

membership. To the extent that the results of Kittur et al. 

(2004) reflect a bias against using relations for 

categorization, naming the relations should facilitate 

category learning 

The second hypothesis we tested was that, rather than 

being unable to learn relational categories with a family 

resemblance structure (as Kittur et al., 2004, concluded), 

people are simply biased against assuming that relational 

categories will have a family resemblance structure. That is, 

faced with relational categories, perhaps people simply 

assume that those categories will have some defining (i.e., 

deterministic; invariant) relation—for example, an essence 

(see Keil, 1989; Medin & Ortony, 1989)—that is shared by 

all members of the category, and that this assumption 

caused Kittur et al.’s subjects to adopt a suboptimal learning 

strategy. To test this hypothesis, the second factor varied 

whether a clue was given. In the clue condition the 

instructions explicitly informed subjects that no single 

property would always work as the basis for categorizing 

the exemplars. In the no clue condition, no such clue was 

provided. To the extent that subjects are biased against 

assuming a family resemblance category structure given 

relational categories, providing this clue should help them to 

adopt a more appropriate learning strategy, especially when 

the relations were also named.  

Our final hypothesis started with Kittur et al.’s (2004) 

conclusion: If it is difficult to learn relational categories that 

have a family resemblance structure, then anything that 

encourages subjects to discover and predicate a property—

e.g., a higher-order relation over the first-order relations—

that does remain invariant across all members of a category 

ought to substantially improve relational category learning 

(since the categories, although probabilistic in the first-order 

relations, would now be deterministic in the higher-order 

relation). To test this hypothesis, in the categorize condition, 

subjects were instructed to learn the category of each 

stimulus, as in Kittur et al. In the who’s winning condition, 

we told subjects they would see displays consisting of a 

circle and a square, and that in each display “either the 

circle is winning or the square is winning,” and that their 

task was to figure out which one was winning. In all other 

respects, the who’s winning task was identical to the 

categorize task: In any stimulus that would be categorized as 

a member of category A, the circle was “winning”, and in 

any stimulus that would be categorized as a B, the square 

was “winning.”  
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The “who’s winning” task could encourage subjects to 

discover an invariant that holds across all members of a 

“category” (even though subjects in this condition did not 

know they were learning categories) in at least two ways. 

First, subjects might semantically “mark” the “winning” 

role of each relation (e.g., the larger role of larger, the 

darker role of darker, etc.) and then notice, at the level of 

semantic features, that either the circle or square has more 

“winning features,” effectively changing the “who’s 

winning” task from a relational judgment to a featural one 

(namely, “which shape is currently bound to more ‘winning’ 

features?”; see Hummel & Holyoak, 2003). Alternatively, 

the “who’s winning” task could activate schemas 

participants have for situations in which one person or team 

wins and another loses; such a schema might encourage 

subjects to predicate a higher-order relation of the form 

“more winning relations on the circle/square,” which would 

remain invariant over members of a category. In either case, 

even though no (nominally relevant) first-order relation 

would remain invariant over all members of a category, at 

least one feature or higher-order relation would. If the 

presence vs. absence of an invariant is key to the learnability 

of relational categories (as concluded by Kittur et al., 2004), 

then subjects in the who’s winning condition might learn 

faster than subjects in the categorize condition. 

Method 

Participants. A total of 154 subjects participated in the 

study for course credit. Each participant was randomly 

assigned to one of the eight conditions. 

  

Materials. Subjects were first given instructions to 

categorize the stimuli (categorize condition) or decide 

whether the circle or square was winning (who’s winning 

task), which either named the relevant relations (relations 

named) or not (not named) and either provided the “no 

single property will always work” clue (clue condition) or 

not (no clue).  

After the instructions, all conditions were identical. On 

each trial following the instructions, an examplar consisting 

of a gray circle and a gray square appeared in the middle of 

the computer screen. The properties of the exemplars were 

determined by a family resemblance category structure 

defined over the relevant first-order relations. The 

prototypes of the categories were defined as [1,1,1,1] for 

category A and [0,0,0,0] for B, where [1,1,1,1] represents a 

circle larger, darker, on top of, and in front of a square and 

[0,0,0,0] represents a circle smaller, lighter, below and 

behind a square. Exemplars of each category were made by 

switching the value of one relation in the prototype (e.g., 

category A exemplar [1,1,1,0] would have the circle larger, 

darker, on top of and behind the square). Two variants of 

each logical structure were constructed by varying the 

metric properties size and darkness, respecting categorical 

relations larger and darker, resulting in eight exemplars per 

category.  

 

Design. The experiment used a 2 (relations named vs. not 

named) X 2 (clue vs. no clue) X 2 (categorize vs. who’s 

winning task) between-subjects design.  

 

Procedure. Participants were given different instructions 

based on the condition to which they belonged. After 

indicating that they fully understood the instructions, 

participants proceeded to the learning phase. Trials were 

presented in blocks of 16, with each exemplar presented in a 

random order once per block. In the categorize condition, 

subjects were instructed to press the A key if the stimulus 

belonged to category A and the B key if it belonged to B; in 

the who’s winning condition, they were instructed to press 

the A key if the circle was winning and the B key if the 

square was winning (i.e., the stimulus-response mapping 

was identical across tasks, since in all members of A the 

circle “wins” and in all members of B the square “wins”). 

Each exemplar remained on the screen until the participant 

responded. Responses were followed by accuracy feedback 

(i.e., the correct category label). The experiment consisted 

of 60 blocks (960 trials) and continued until the participant 

responded correctly on at least fourteen of sixteen trials 

(87.5% correct) for two consecutive blocks or until all 60 

blocks had transpired, whichever came first. At the end of 

the experiment, participants answered a debriefing 

questionnaire that queried them about the strategies they 

used during the experiment.   

Results 

Trials to criterion.  Since our primary interest is the rate at 

which participants learn the categories, we report our data 

first in terms of trials to criterion. These analyses are 

conservative (i.e., biased against our hypotheses) in the 

sense that participants who never learned to criterion were 

treated as though they reached criterion on the last block. 

Figure 1 shows the mean trials to criterion by condition. A 2 

(relation name vs. no name) × 2 (clue vs. no clue) × 2 

(categorize vs. who’s winning) between-subjects ANOVA 

revealed a main effect of task [F(1, 145) = 25.826, MSE = 

2,267,729, p < 0.001], reflecting the fact that participants 

took reliably fewer trials to reach criterion in the who’s 

winning task (M = 211, SD = 261) than in the categorize 

task (M = 453, SD = 339). No other main effects were 

statistically reliable. However, here was a reliable 

interaction between relation naming and clue, indicating 

that the effect of providing the clue was more pronounced 

for relation not named than for relation named [F(1, 145) = 

5.98, MSE = 525,066, p < 0.05]. Finally, there was a reliable 

three-way interaction between relation name, clue, and task 

[F(1, 145) = 4.10, MSE = 359,946, p < 0.05]. As shown in 

Figure 1, relation naming interacted with the clue differently 

across the two tasks. With the who’s winning task, the effect 

of the clue was roughly equivalent to the effect of naming 

the relations, with each reducing trials to criterion. By 

contrast, for participants given the categorize task, naming 

the relations without providing the clue and providing the 

clue without naming the relations were both beneficial 

1044



relative to doing neither (i.e., there were trends such that 

trials to criterion were lower in both the relations named, no 

clue and categorize and the relations not named, clue, and 

categorize conditions than in the relations not named, no 

clue and categorize condition, although these trends did not 

reach statistical reliability in our sample); but both naming 

the relations and providing the clue together did not 

facilitate category learning, and in fact the trend went in the 

opposite direction (i.e., trials to criterion tended toward 

being greater in the relations named, clue and categorize 

condition than in the relations not named, no clue and 

categorize condition). 

Of particular interest is the fact that the condition that 

gave rise to the worst performance with the categorize task 

(and overall)—specifically, the relation named and clue 

condition, with only 50% of participants learning to 

criterion (and a mean of 623 trials to criterion)—gave rise to 

the best performance with the who’s winning task (and 

overall), with 95% of participants learning to criterion (and 

a mean of 160 trials to criterion). We address the possible 

reasons for this effect in the Discussion. 
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Figure1. Mean number of trials required by subjects in each 

task to reach criterion. Top and bottom figure correspond to 

the categorize and the who’s winning tasks, respectively.   

 

Survival function. We also analyzed how many 

participants reached criterion by the end of each block. The 

resulting survival functions for the who’s winning and 

categorize conditions are shown in Figure 2. (A 

participant’s having “survived” on a given block means they 

had not yet reached criterion by that block. Participants who 

survived to block 60 never reached criterion.) As shown in 

Figure 2, a higher proportion of participants reached 

criterion in the who’s winning condition than in the 

categorize condition, and they did so much faster. 
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Figure 2. Proportion of survivors per block for each task.  

Response Times. Since participants in the categorize, 

relations named, and clue condition required so many more 

trials to reach criterion than participants in the who’s 

winning, relations named and clue condition, we also 

analyzed these conditions in terms of participants’ mean 

response times on individual trials in order to gain insight 

about the strategies participants in these two conditions may 

have adopted. Response times in the relations named, clue 

and categorize condition (M = 1.69 s) were reliably shorter 

than those in the relations named, clue and who’s winning 

condition (M = 3.31 s) [t(35) = -4.45, p < 0.001]. The 

reasons for this speed-accuracy tradeoff are addressed in the 

Discussion. 

Discussion 

Kittur et al. (2004) showed that people find relational 

categories with a probabilistic (family resemblance) 

structure disproportionately difficult to learn relative to 

featural categories with a family resemblance structure or 

relational categories with a deterministic structure. They 

interpreted this effect in terms of people invoking schema 

induction (via intersection discovery) when faced with 

relationally-defined categories, an approach that yields 

useful relational schemas (Doumas et al., 2008; Hummel & 

Holyoak, 2003) and succeeds with deterministic category 

structures, but fails catastrophically with family 

resemblance category structures. 

We sought to better understand this phenomenon by 

investigating conditions under which people might succeed 

at learning relational categories with a (nominally) family 

resemblance structure. Our results showed that recasting 

category learning as a “who’s winning” task substantially 

improved participants’ ability to learn relational categories 

with a family resemblance structure. Faced with the “who’s 

winning” task, other factors that might sensibly be expected 

to improve learning—specifically, naming the relevant 

relations and informing participants that no single relation 
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will work every time—seemed to improve performance 

(although not all these trends were statistically reliable in 

our data). Surprisingly, however, when combined, these 

factors did not improve the learning of participants charged 

with the (formally equivalent) task of categorizing the 

stimuli: Although each factor individually seemed to 

improve learning of our probabilistic relational categories, 

when combined they substantially impaired learning.  

The reasons for this trend toward an impairment of 

learning in the relations named, clue and categorize 

condition relative to the relations not named, no clue and 

categorize condition are not entirely clear, but it is 

consistent with the pattern that would be expected if 

participants in the relations named, clue and categorize 

condition were attempting to categorize the exemplars based 

on their features (i.e., the absolute size and darkness of the 

circle and square) rather than the relations between them. 

This conclusion is supported by the fact that response times 

were fastest in the relations named, clue and categorize 

condition (1.69 s per trial) and slowest in the relations 

named, clue and who’s winning condition (3.31s per trial), 

as though participants in the former condition were 

responding on the basis of readily perceptible features 

whereas those in the latter were actively seeking unseen 

higher-order invariant properties or relations. A post-hoc 

analysis of participants’ end-of-experiment self-reports also 

supports this conclusion: In their descriptions of the 

strategies they used during the experiment, participants in 

the relations named, clue and categorize condition named 

stimulus features (e.g., “dark”, “large”, etc.) rather than 

dimensions (“darkness”, “size”) or relations (“darker”, 

“larger”) more often than participants in any of the other 

conditions (19 times vs. a mean of 8.29 times [SD = 4.39] 

across the other conditions).  

These patterns suggest that participants in the relations 

named, clue and categorize condition may have simply 

abandoned the use of the first-order relations (larger, darker, 

above and in front) as the basis for categorization and, rather 

than discovering a useful higher-order relation, simply 

retreated to a strategy based on the exemplars’ features. At 

the same time, however, it remains unclear why only the 

participants in this condition would resort to this 

maladaptive strategy, especially given the absence of 

evidence that even participants in the relations not named, 

clue and categorize condition did not resort to this strategy: 

These latter participants were not even informed that the 

relations would be important to the task, and yet they show 

greater evidence of using them than the participants who (in 

all other respects treated equivalently) were told outright to 

pay attention to the relations. Perhaps being told what the 

relevant relations were, in combination with the clue that no 

single one of them would work every time, had the 

counterproductive (and counterintuitive) effect of helping 

these participants know which relations to ignore in their 

categorizations. Additional experiments will be required to 

answer this question. 

More important for our current purposes is the fact that, 

as predicted, changing the task from a category learning task 

to a “who’s winning” task substantially improved our 

participants’ ability to discover what separated stimuli 

requiring an “A” response (i.e., members of category A or, 

equivalently, stimuli in which the circle was “winning”) 

from those requiring a “B” response. Importantly, this 

improvement obtained even though the formal task—i.e., 

the specific stimulus-response mappings—were identical 

across the categorize and who’s winning conditions. This 

improvement is consistent with the idea that the “who’s 

winning” task encouraged participants to search for a 

relational invariant that remained constant across all 

members of a category. Our data do not allow us to know 

whether the invariant participants discovered was some sort 

of higher-order relation (e.g., “the majority of the first-order 

relations support such-and-such”) versus a re-representation 

of the first-order relations in terms of semantic primitives 

permitting a more feature-based approach to deciding 

whether the circle or square was “winning”. It is also 

unclear to what extent the “who’s winning?” task improves 

performance simply by somehow making the first-order 

relations more meaningful.  

These questions are the subject of ongoing research. But 

regardless of which (if any) of these possibilities turns out to 

be the case, the findings reported here are consistent with 

Kittur et al.’s (2004) conclusion that learning a relational 

categorization is greatly facilitated by the discovery of an 

abstract invariant of some sort that holds true across all 

members of a category. As such, our data support the idea 

that relational category learning may entail some form of 

intersection discovery. 

Our findings also suggest that the traditional format of the 

laboratory category learning task may, for some reason, 

inhibit the discovery of the invariants necessary for 

intersection discovery to succeed. Instead other tasks (such 

as our “who’s winning?” task) may be better suited to this 

purpose: It appears that probabilistic relational categories 

may be more learnable if you don’t think you’re engaged in 

category learning. Indeed, the fact that participants in our 

relations named, clue and categorize condition took the 

longest of all our participants to reach criterion—and were 

least likely to reach it—suggests that one of the worst things 

you can do to a person who is attempting to learn 

probabilistic relational categories is tell them that they are 

attempting to learn probabilistic relational categories. 

Finally, it is worth noting that our results and those of 

Kittur et al. (2004, 2006) raise the question of whether 

natural relational concepts and categories tend to have a 

deterministic or probabilistic structure. Do ad-hoc categories, 

such as “things to remove from a burning house”, “ways to 

escape the mob” and “things to take on a winter camping 

trip” (Barsalou, 1983) have a relational invariant that holds 

true across all members of the category? Does our tendency 

to assume the existence of (invariant) “essences” in 

biological categories reflect a desire for invariants in 

relational categories? And do schemas and theories tend to 
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possess relational invariants? For example, is there a 

relational core that all members of the category “mother” 

have in common? Although at first it is tempting to say yes, 

the differences between birth mothers and adoptive mothers, 

and between loving mothers and abusive mothers, suggest 

that the answer might be no. If the answer is no, then do 

people have difficulty acquiring an all-encompassing 

schema for the concept “mother”? Or do we simply have 

multiple “mother” schemas? 

The work of Kittur et al. (2004) suggests that schemas, 

theories and ad-hoc categories must either contain relational 

invariants or else be difficult to acquire. The findings 

presented here suggest that they may not be so difficult to 

acquire, even if they lack invariants among their first-order 

relations, provided the conditions under which they are 

learned promote the discovery of an invariant higher-order 

relation. 
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