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ABSTRACT OF THE DISSERTATION 

 

 

Resilience-Based Seismic Evaluation and Design of Reinforced Concrete Structures 

 

by 

 

Abdoulreza Ghotbi  

 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2018 

Professor Ertugrul Taciroglu, Chair 

 

This dissertation addresses a wide spectrum of topics associated with resilience-based 

seismic evaluation and design of reinforced concrete structures. First, a comprehensive framework 

was developed enabling users to select, scale, and modify mainshock and aftershock ground 

motions (𝐺𝑀𝑠) based on a set of different criteria. Various hazard-consistent target intensity 

measure metrices were utilized based on a set of conditioning criteria (𝐼𝑀%′𝑠). Then, a statistical 

approach was utilized to pull realization samples from a multivariate distribution of multiple 

intensity measures (𝐼𝑀'’s) using both Monte-Carlo (𝑀𝐶) and Latin Hypercube Sampling (𝐿𝐻𝑆) 

techniques. A comprehensive database of seismic records—namely, the PEER NGA-WEST2 
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database—was utilized to select those records whose 𝐼𝑀'′s match the conditioning targets by 

assigning a different set of weights to different 𝐼𝑀'′s in a least-squares sense.  

The effects of different 𝐺𝑀 selection strategies on a range of engineering demand 

parameters (𝐸𝐷𝑃𝑠) were investigated for a pair of 4-, 8- and 12-story ductile and non-ductile 

reinforced concrete (RC) buildings.  In such studies, a very large number of nonlinear response 

history analyses (𝑁𝑅𝐻𝐴𝑠) is unavoidable. Therefore, the analyses were performed using a parallel 

computing approach, which was specifically designed for the task at hand and carried out at the 

Texas Advanced Computing Center’s “Stampede2” supercomputer. 

Another topic that was addressed in this dissertation has been the development of a novel 

framework to select earthquake records based on a spectral shape matching approach. The effects 

of different 𝐺𝑀 selection strategies based on a pre-existing spectral shape matching approach—

namely, the response spectrum matching method—versus the newer approach developed in the 

present study was studied. The same ductile and non-ductile RC buildings mentioned above were 

utilized for this task and a variety of damage limit states (including the collapse) were used for 

comparison of fragility functions obtained using the two approaches. 

Finally, an optimization framework was developed to reduce the effects of epistemic 

uncertainties associated with wide range of structural modeling parameters, on the probabilistic 

seismic responses of 𝑅𝐶 structures. To this end, a non-dominated sorting genetic algorithm 

(𝑁𝑆𝐺𝐴 − 𝐼𝐼) was integrated with OpenSeesMP to determine optimal values of several design 

variables that minimize the median peak inter-story drift ratios (𝐼𝐷𝑅𝑠) at two different 

performance levels—namely, Immediate Occupancy (𝐼𝑂) and Collapse Prevention (𝐶𝑃)—

simultaneously. 
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

Earthquakes are among one of the major threats to the built environment across the globe. Given 

their unpredictably, they cannot be evaded, which is sometimes possible for other natural disasters 

such as floods or wildfires. Earthquakes are invariably more destructive in regions of the world 

where there is less preparation to encounter them. Lack of proper seismic codes, or lack of 

enforcement of such codes significantly increase life and material losses due to earthquakes. 

There have been recurring/continuous efforts across the earthquake-prone regions of the 

world to improve the seismic resiliency of new/future infrastructure elements, and to assess the 

risks for those that already exist. These efforts can be categorized into to two main branches. One 

branch deals with reducing the uncertainties associated with seismic load (demand) predictions, 

which is primarily undertaken by seismologists who focus on, for example, factors that could 

trigger earthquake ground motions, fault rupture mechanisms, various causes that could amplify 

or de-amplify seismic motions, etc. These efforts have been producing outcomes such as ground 

motion prediction equations (GMPEs), and probabilistic seismic hazard assessment (PSHA) 

methods. Another main branch is populated by geotechnical and structural earthquake engineers 

who focus on developing predictive tools for quantifying the responses of structural/geotechnical 

systems. 

These two main threads of earthquake research have resulted in significant progress, and— 

at least in the US—have been steadily converging towards a performance-based seismic 

assessment (PBSA) methodology that combines probabilistic evaluation of uncertainties 

associated with both estimated seismic motions as well as predictive models of structures. 
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This research aims at shedding more light on multiple areas associated with the 

probabilistic seismic risk assessment and design of reinforced concrete structures, which is one of 

the most commonly encountered type of structure in many regions of the world including the 

United States. The study specifically focuses on the probabilistic mainshock and aftershock ground 

motion selection as well as scaling and modification on the ground motions side. On the structural 

side, the focus will be on devising accurate—yet computationally efficient—numerical models of 

reinforced concrete structures, carrying out detailed sensitivity analyses with respect to various 

structural modeling and ground motion characteristics with the objective of reducing the epistemic 

variabilities with respect to their selection.  

Specific research objectives and their brief descriptions are provided in the following 

sections of this chapter. 

1.2 MAINSHOCK AND AFTERSHOCK GROUND MOTION SELECTION  

Variabilities in the predicted responses of structures due to ground motion selection—and other 

associated procedures for conditioning/scaling the selected motions—have been recognized as one 

of the major sources of uncertainty in PBSA. This variability is often quantified by using a large 

number—i.e., a suite—of earthquake records for seismic analyses. There are already various 

ground motion selection methodologies by which one can select earthquake records for different 

levels of seismic hazard. However, neither the efficiency nor the sufficiency of the selected motions 

are matters that are deemed as settled by the research community. One of the main objectives of 

this research has thus been to make improvements in this area such that uncertainties/ dispersions 

in predicted structural performance due to record-to-record variability in earthquake records are 

reduced.  
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In this particular aspect of the dissertation, several methodologies are developed to generate 

a range of fully probabilistic and hazard-consistent targets with respect to different intensity 

measures representing various characteristics of earthquake records. Various conditioning criteria 

are considered to enforce the hazard consistency.  Moreover, a ground motion selection, scaling, 

and modification (GMSSM) methodology is developed that uses multiple characteristics/measures 

of the candidate earthquake records rather than only one—i.e., spectral amplitude at a building’s 

first period —, which is where the present state-of-the-art in GMSSM is at.  

Furthermore, a stochastic aftershock GMSSM methodology is developed that enables users 

to select hazard-consistent aftershock ground motion records. The effect of time-lapse is 

incorporated into a temporal framework for aftershock PSHA, and an algorithm is developed to 

select the aftershock earthquake records.  

These topics are presented and discussed in Chapters 2, and 3. 

1.3 GROUND MOTION SELECTION BASED ON SPECTRAL SHAPE 

Response-spectrum matching is arguably the most commonly used method for ground motion 

selection, which is based on picking ground motions whose response spectra match (in some 

manner) a hazard-consistent target response spectrum. This is achieved typically through a 

“spectral-shape matching,” wherein the spectrum of a selected earthquake record matches all of 

the peaks and valleys of a target spectrum. This is nominally a difficult task given the limited 

number of available recorded ground motions. 

To explore this problem more in depth, a new metric is developed in this dissertation to 

represent the spectral shape of a given earthquake record. Subsequently, a comprehensive study is 
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carried out to compare structural response outcomes due to ground motion records selected based 

on the traditional spectral-shape matching method and on the new method devised herein.  

This topic is presented and discussed in Chapter 4. 

1.4 EFFECTS OF GROUND MOTION SELECTION ON THE VARIABILITY OF 

SEISMIC RESPONSES OF REINFORCED CONCRETE STRUCTURES 

As previously mentioned, ground motion selection and conditioning is a major sources of 

variability in the predicted seismic responses of structures. This dissertation specifically 

investigates reinforced concrete structures in this regard, and quantitatively explores the 

dispersions of predicted structural responses due to various characteristics of the earthquake 

records. 

This topic is presented and discussed in Chapter 5. 

1.5 STRUCTURAL MODELING AND PARALLEL COMPUTING 

This research utilizes state-of-the-art nonlinear models of both code-conforming (ductile) to none 

code-conforming (non-ductile) reinforced concrete structures. The models are analyzed through 

the probabilistic framework of PBSA, and various sampling techniques are utilized to draw 

realization samples from multivariate distributions of structural modeling parameters to increase 

computational efficiency without sacrificing accuracy. Moreover, since performing multitudes of 

nonlinear time-history analyses nominally bear high computational costs, parallel computing 

techniques are used. Both the high-fidelity nonlinear models of reinforced concrete structures and 

the parallel computing techniques devised in this study should be valuable to the broader research 

community. 

These topics are presented and discussed in Chapters 4, 5, 6, and 7. 



` 5 

1.6 EFFECTS OF VARIABILITY IN STRUCTURAL MODELING PARAMETERES 

ON SEISMIC RESPONSES OF BUILDINGS 

It is well established among both researchers and practitioners that variability in material and/or 

element modeling parameters cause dispersions in seismic demand responses, which is additional 

to dispersions due to the record-to-record variability of seismic input. Both types of dispersions 

need to be quantified and considered and this dissertation, therefore, explores an optimization 

framework that aims to reduces the uncertainties due structural modeling parameters. 

This topic is presented and discussed in Chapter 7. 
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2 A GROUND MOTION SELECTION, SCALING, AND 
MODIFICATION FRAMEWORK 

2.1 INTRODUCTION 

One of the main tasks in performance-based seismic risk assessment and design of structures is 

the quantification of uncertainty in earthquake ground motion records. Ground motions have 

various characteristics such as amplitude, frequency content, and duration each of which can play 

significant roles in controlling diverse sets of structural responses. It is common to compile a 

ground motion suite (i.e., multiple earthquake records) that is broad enough to capture the inherent 

aleatoric variability in structural demands. On the other hand, if the record suite is too large, then 

it may not truly reflect the ground motions anticipated for the specific structure, rendering the 

performance assessment too conservative. Therefore, there is an optimal suite of GMs for each 

structure, selection of which can be an elusive task that is complicated by—among other things—

the fact that structural behavior migrates into loading-path-dependent inelastic regimes as damage 

begins to accumulate. 

2.2   SCOPE AND MOTIVATION   

There have been a significant amount of influential works conducted in the area of GM selection, 

scaling and modification (GMSSM), which will be reviewed in the next section. While the broad 

strokes of work in this area have already been made, there are knowledge gaps, especially because 

GMSSM is coupled with the type and the response characteristics of the structure/facility that is 

being assessed or designed.   

It is aimed, herein, to develop a comprehensive probabilistic framework to enable structural 

engineers to select ground motions based on a set of criteria for evaluating the expected 

performance of multi-story reinforced concrete buildings. The main tenet of this framework will 
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be to minimize the uncertainty in structural demands imposed by earthquake records for a set of 

different hazard levels. The framework will also be hazard-consistent, which means that multiple 

fault rupture scenarios will be incorporated into the GM selection algorithm so that the 

actual/known seismicity of the region is captured. Moreover, ground motions will be selected with 

respect to multiple structural modal characteristics—but not only the first mode period—, which 

will significantly minimize dispersion in structural demands due to record-to-record variability. 

The developed GMSSM framework yields hazard-consistent ground motions based on 

various conditioning criteria. First, a set of intensity measures (𝐼𝑀'′s) are chosen to represent 

various earthquake characteristics such as amplitude and duration as well as cumulative metrics. 

Next a conditioning protocol is introduced based on single, double and multiple conditioning 

intensity measures (𝐼𝑀%′s). The 𝐼𝑀%′s can be drawn from hazard curves for any given hazard levels. 

By using a disaggregation plot, which is a proxy to a seismic hazard curve, various rupture 

scenarios and their corresponding contributions to any 𝐼𝑀% level of interest can be defined and 

consequently incorporated into a conditioning multivariate distribution of 𝐼𝑀' vector consisting of 

several 𝐼𝑀'′s. This way, hazard consistency is fully enforced. Thus, a hazard-consistent 

conditioning multivariate distribution of multiple 𝐼𝑀'′s is defined by not only taking into 

correlation between all the 𝐼𝑀'′s in the 𝐼𝑀' vector with 𝐼𝑀% , but also the cross-correlation between 

various 𝐼𝑀'′s  in the 𝐼𝑀' vector. Parameters of this distribution—namely, the median and the 

logarithmic standard deviation—can be defined using various ground motion prediction equations 

(𝐺𝑀𝑃𝐸𝑠). Moreover, several empirical relationships that are proxies to 𝐺𝑀𝑃𝐸𝑠 are used for 

defining the correlations between various intensity measures.   

Ultimately, any number of realization samples can be drawn from the marginal distribution 

of each 𝐼𝑀' in the 𝐼𝑀' vector for which a multivariate distribution was previously defined. In the 
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present study this step is carried out using both the classical Monte Carlo technique and also the 

Latin Hypercube Sampling (𝐿𝐻𝑆) method, which offers significant computational savings. These 

samples represent a target distribution for each 𝐼𝑀' in the 𝐼𝑀' vector for which ground motion 

records can be selected in a least-squares sense with or without amplitude-scaling. For this, a 

comprehensive ground motion database—namely, the PEER NGA-West2 database—is consulted 

to select earthquake records matching the target realization samples. These steps yield a GM suite 

whose empirical distribution match the target so that one can claim to have selected GMs that are 

hazard-consistent with respect to a target distribution that is drawn from a multivariate distribution 

of various 𝐼𝑀'′s in the 𝐼𝑀' vector.  

Additionally, the GMSSM framework proposed herein is designed so that different weights 

can be assigned to each 𝐼𝑀'. This enables a ground motion suite to be compiled by giving more 

emphasis to amplitude-based characteristics rather than duration-based or cumulative measures of 

earthquake records, and vice versa.  

2.3 A REVIEW OF PRIOR STUDIES  

2.3.1 Background  

In recent years, there have been significant efforts in the area of GMSSM. Baker (2011) developed 

a conditional mean spectrum (CMS) framework in which the conditioning intensity measure was 

set to be the spectral acceleration at the fundamental period of structure, which could be derived 

directly from hazard curve for a pre-specified rate of exceedance. Hazard-consistency was, 

however, implemented through a mean approach for all of rupture scenarios contributing to an 𝐼𝑀% 

level—rather than considering the contribution of each rupture scenario separately—and by 

summing over all of them with respect to corresponding probability of occurrence for each rupture 
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scenario. In this approach, only the correlation between each 𝐼𝑀' in an 𝐼𝑀' vector—e.g., spectral 

acceleration at multiple periods (𝑆𝐴𝑇’s)—and 𝐼𝑀% (𝑒. 𝑔. 𝑆𝐴𝑇1) was considered and cross 

correlations between individual 𝐼𝑀'′s in the 𝐼𝑀' vector were not considered.  (Lin, et al., 2013) 

extended the 𝐶𝑆𝑀 approach to consider the contribution of multiple rupture scenarios to a 

conditioning 𝑆𝐴𝑇.  This approach did not still incorporate cross correlations between different 

𝐼𝑀'′s in the 𝐼𝑀' vector. 

Jayaram et al. (2011) developed a framework to select ground motions matching both 

median and variance target response spectrum by incorporating a greedy optimization algorithm 

to enhance the selection and matching procedures. Baker and Lee (2018) extended this work to 

select ground motions to not only match the median and variance of the response spectrum but 

also match correlations between 𝑆𝐴𝑇𝑠 for various periods assuming a period range. They did so 

by statistically drawing samples from target distribution of 𝑆𝐴𝑇𝑠 at various periods given their 

mean vector and covariance matrix and then selecting ground motions to individually match each 

of the realization using an optimization algorithm to enhance the match-finding process. Baker 

and Cornell  (2008) developed a vector-valued ground motion intensity measure metric consisting 

of other intensity measures such as spectral shape and also e (i.e. the number of standard deviations 

by which each of the record’s spectrum is away from the median target spectrum) in addition to 

𝑆𝐴𝑇 in order to see the effects on the dispersion in structural demands. Baker and Cornell (2005) 

used a vector-valued intensity measure consisting of 𝑆𝐴𝑇 and e, and concluded that failing to 

consider  e, which could be deemed as a proxy to spectral shape, would underestimate the structural 

response quite significantly. 

Bradley (2010) developed a generalized conditional intensity measure (𝐺𝐶𝐼𝑀) approach 

using a multivariate distribution of an	𝐼𝑀'vector, conditioned on any desirable intensity measure 
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(𝐼𝑀%), which is often drawn from the hazard curve. Bradley’s (2010) method is the basis of this 

study as well and is a good way to narrow down several intensity measures (𝐼𝑀s) representing an 

earthquake record into a single one, while implicitly incorporating the effects of other 𝐼𝑀'′s. In 

this method, marginal target distributions of various 𝐼𝑀'′s can be obtained from a multivariate 

distribution, and earthquake records can be selected such that empirical distributions of their 𝐼𝑀'′s  

match the targets so one can claim that the empirical multivariate distribution of the 𝐼𝑀'′s of the 

selected records match the target multivariate distribution. 

Bradley (2012) extended the 𝐺𝐶𝐼𝑀 by selecting earthquake records to match target 

realization samples drawn from a conditional marginal distribution of various 𝐼𝑀'′s for which a 

multivariate distribution was initially defined.  An acceptable suite of earthquake records is the 

one that is deemed to have its empirical distributions of various 𝐼𝑀'′s match the cumulative target 

distributions of target 𝐼𝑀'′s drawn from the conditional multivariate distribution. Tarbali & 

Bradley (2015)  extended the 𝐺𝐶𝐼𝑀 to draw scenario-based realization samples from a conditional 

multivariate target distribution and to find earthquake records that match the target using an 

optimal amplitude scaling factor. They also studied the effects of various importance weights that 

can be assigned to different 𝐼𝑀'′s, on the cumulative distributions of 𝐼𝑀'′s belonging to the 

selected records. They concluded that consideration of only the spectral acceleration at various 

periods (𝑆𝐴𝑇𝑠) in the selection phase may lead to the selection of records with poor representations 

of duration- and cumulative-based contents. Considering other 𝐼𝑀'′s other than the 𝑆𝐴𝑇s results 

in a ground motions suite that contains a better representation of those cumulative and duration-

based 𝐼𝑀'′s without significantly affecting the 𝑆𝐴𝑇 ordinates.   

Tarbali & Bradley (2016) also studied the effects of causal parameter bounds (e.g., 

magnitude, distance and site condition) on earthquake record selection through the 𝐺𝐶𝐼𝑀 



` 11 

approach. They concluded that by considering wider bounds, ground motions could be selected 

whose causal parameters match those of the target. Considering narrower bounds led to a ground 

motions ensemble with a poor representation of the target intensity measure distribution due to the 

insufficient number of ground motions after enforcing restrictions on the causal parameter bounds. 

Armstrong (2016) developed a ground motion selection algorithm to select earthquake 

records that match a set of different	𝐼𝑀'′s. He did so by first scaling the records to match a 

conditioning 𝐼𝑀 target, and then by utilizing a semi-automated algorithm to trim the records down 

to a final set with better 𝐼𝑀' statistics with respect to those of targets. Wong & Chopra (2017) 

extended the 𝐺𝐶𝐼𝑀 to generate target distributions conditioned on two 𝐼𝑀%′s instead of one. The 

reason for this is that in most nonlinear response history analysis (𝑁𝑅𝐻𝐴) cases, the ground 

motions conditioned on a single 𝐼𝑀%	do not have sufficient content to excite the structure at its 

various modes of vibration, especially as the structure undergoes some level of damage and 

experiences changes in its fundamental period. Therefore, it would be necessary to select multiple 

suites of ground motions conditioned on multiple single 𝐼𝑀%′s, which increases the computational 

costs quite significantly. Using two or more conditioning 𝐼𝑀%′s, however, would require users to 

select only a single suite of earthquake records, which would have sufficient content to be able to 

capture the nonlinear behavior of structures at several modes of vibration. This method will also 

be extended in the present study to devise a new target 𝐼𝑀' generation method based on a set of 

different 𝐼𝑀'′s as well a new selection procedure to select records matching the target 𝐼𝑀' 

realizations conditioned on two 𝐼𝑀%′s, rather than one.  

Wong & Chopra (2016) compared various GMSSM procedures using conditioning 

spectrum (𝐶𝑆) and 𝐺𝐶𝐼𝑀 to evaluate biases in the evaluation of seismic hazard demand curves 

(𝑆𝐷𝐻𝐶𝑠) for a given structure at a specific site in comparison with a benchmark 𝑆𝐷𝐻𝐶. Wong et 
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al. (2015) developed an algorithm to select unscaled ground motion records to evaluate	𝑆𝐷𝐻𝐶𝑠. 

Wong et al. (2015) used various methods to generate synthetic earthquake ground motion records 

to evaluate the effects of various GMSSM procedures on evaluating the 𝑆𝐷𝐻𝐶𝑠.  

Kohrangi et al. (2017) employed a conditional 𝐼𝑀' target generation approach based on the 

adoption of an average of multiple 𝑆𝐴𝑇s at various periods as 𝐼𝑀%, rather than a single conditioning 

𝐼𝑀% . Ground motion records were subsequently selected to match the new conditioning target 𝐼𝑀' 

and were utilized in the 𝑁𝑅𝐻𝐴s of structures, which ensured increased sufficiency and efficiency 

in estimation of response demands. Kohrangi et al. (2017) also studied the degree of site influence 

with respect to an adopted conditioning 𝐼𝑀% on the seismic responses of structures. They concluded 

that using a single 𝐼𝑀% as the conditioning 𝐼𝑀 results in significant variability in the seismic 

demand responses from site to site. In contrast, using an average 𝐼𝑀%—i.e. the average 𝑆𝐴𝑇𝑠 at 

multiple periods—helped decreasing the variability in response demand from site to site. 

Dai et al. (2014)  incorporated an optimization framework for the purpose of spectral 

matching to get a more robust GM suite matching a target spectrum. Wang (2011) proposed an 

algorithm to select 𝐺𝑀𝑠 to match a target median, standard deviation and correlation matrix 

conditioned on specific causal properties. He concluded that GMs selected based on this procedure 

are more efficient and sufficient in seismic demand response evaluations. Ha & Han (2016) 

proposed a computationally efficient GMSSM algorithm to select earthquake records to match a 

target response spectrum’s mean and standard deviation. Kottke & Rathje (2008) proposed a semi-

automated GMSSM procedure for matching a target response spectrum while maintaining the 

variability between the records in the suite. According to this method, earthquake records are 

selected to match the target spectral shape and then to match the amplitude and standard deviation 

of the target through the adjustment of scale factors for each record. 
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(Weng, et al., 2010) proposed a ground motion selection and scaling method to consider 

dominating modes of structural seismic demand responses. To this end, they proposed multi-mode 

ground motion scaling methods to combine various seismic demand responses in different modes 

to compute the peak response. 

Smerzini et al. (2014) selected displacement-spectrum-compatible real GMs especially for 

the sites in Italy by putting constraints on shorter and longer periods. Ebrahimian et al. (2012) 

compared various hazard-consistent GM selection methodologies based on different targets 

including the 𝐶𝑀𝑆 and 𝐶𝑆 in a region with multiple seismic hazard sources. They also investigated 

the application of GMs selected to match a conditioning target, conditioned on average 𝑆𝐴𝑇s at 

multiple periods. This method is extended, herein, to generate conditioning targets for various 

𝐼𝑀'′s in an 𝐼𝑀' vector which are conditioned on average 𝑆𝐴𝑇s as conditioning 𝐼𝑀% using novel 

sampling techniques and subsequently selecting ground motions to match the target 𝐼𝑀'′s.   

2.3.2 The state of research   

Selecting ground motions based on uniform hazard spectra (𝑈𝐻𝑆) which is commonly used, is 

overly conservative and generally unrealistic. As such, ground motions selection based on a single 

conditioning 𝐼𝑀% have been gaining popularity, including 𝐶𝑀𝑆  (Baker, 2011) and 𝐶𝑆 (Lin, et al., 

2013). These methods are more realistic than (𝑈𝐻𝑆) since the spectra of the 𝐺𝑀𝑠 selected based 

on these methods are hazard-consistent only at the 𝐼𝑀%, which is typically the spectral acceleration 

at the fundamental period of structure (SAT1). At other period values, however, they will fall below 

the 𝑈𝐻𝑆. For most structures, most of the structural mass is mobilized at the first mode and 

therefore ground motions that have a more intense 𝑆𝐴𝑇1 will have sufficient content to excite the 

structure in that mode of vibration. However, in case that the structure undergoes some level of 

damage and therefore experiences changes to its dominant periods of vibration (or if there are 
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many higher modes contributing to the overall response), then selecting 𝐺𝑀𝑠 whose spectrum is 

intense only at a single 𝐼𝑀% (i.e. 𝑆𝐴𝑇1 in most cases) would not have sufficient content to capture 

the nonlinear behavior of the structure. Thus, one would have to select 𝐺𝑀𝑠 based on multiple 

single 𝐼𝑀%’s and then to take the maximum or the average of the responses obtained using multiple 

suites. This increases the computational burden quite significantly. Moreover, selecting 𝐺𝑀𝑠 

solely based on response spectrum will generate suites with dominant inertia contents, and duration 

and cumulative effects could be inadequately considered.  This would result in an underestimation 

of structural responses for structures that exhibit significant cyclic degradation such as non-ductile 

reinforced concrete (𝑅𝐶) buildings, as they are inherently more sensitive to duration- and energy-

based earthquakes intensity measures.  

Attempts are made in the present study to address all of the aforementioned issues 

regarding GMSSM. Specifically, the 𝐺𝐶𝐼𝑀 approach (Bradley, 2012) is extended first by 

generating 𝐼𝑀' target distributions via different sampling techniques—by drawing realization 

samples from a multivariate distribution of various 𝐼𝑀'’s in the 𝐼𝑀' vector. Then, a new procedure 

to select 𝐺𝑀𝑠 conditioned on two 𝐼𝑀%’s is developed as a computationally efficient—and 

theoretically superior—alternative to the use of multiple single 𝐼𝑀%’s for ground motion selection.  

The method by Wong & Chopra (2017) is also extended to generate conditioning target 

distribution for 𝐼𝑀'’s other than 𝑆𝐴𝑇s. GMs are selected then to compile a suite whose empirical 

distribution matches that of the target conditioned on two 𝐼𝑀%’s. Hazard consistency is 

implemented by estimating the contribution of each hazard source to two 𝐼𝑀%’s simultaneously, 

using a novel approach, and then by summing over all of rupture scenarios based on the 

disaggregation of the seismic hazard curve. An additional method is introduced based on the use 
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of an average 𝐼𝑀%—namely, the geometric mean of 𝑆𝐴𝑇 at various periods— as an extension of 

the approach proposed by Ebrahimian et al. (2012).   

2.4 ALGORITHMS FOR GROUND MOTION SELECTION  

2.4.1 The generalized conditional intensity measure (𝑮𝑪𝑰𝑴) approach  

The generalized conditional intensity measure (𝐺𝐶𝐼𝑀) approach developed by Bradley (2012) 

forms the basis of the framework proposed, herein. The idea is to select records to match hazard-

consistent targets drawn from a multivariate distribution of various 𝐼𝑀'’s. Accordingly, ground 

motions selected based on this method can feature cumulative and duration measures in addition 

to the conventional amplitude ones. The 𝐺𝐶𝐼𝑀 algorithm is summarized in the following section 

and is extended such that users are enabled to utilize 𝐺𝐶𝐼𝑀 based on two-	𝐼𝑀% and multiple-	𝐼𝑀% 

conditioning criteria. 

2.4.1.1 Algorithm for a single	𝑰𝑴𝒋  

In Bradley’s 𝐺𝐶𝐼𝑀, first a vector of𝐼𝑀'′𝑠 are populated, and then a multivariate distribution for 

various 𝐼𝑀'’s in that vector are defined using statistical properties of each 𝐼𝑀' in the vector. The 

median and the logarithmic standard deviation of each 𝐼𝑀' can be obtained from various ground 

motion prediction equations (GMPEs). There are also empirical relationships that define the 

correlations between various 𝐼𝑀'’s. Ultimately, the conditional density function of an arbitrary 

𝐼𝑀' conditioned on an 𝐼𝑀% can be defined as: 

 𝑓ghi|ghk = l 𝑓ghi|mnop,ghk

qrst

uvw

𝑃mnop|ghk  (2.1) 
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where	𝑓ghi|ghk = 𝑓ghi|ghk(𝑖𝑚'|𝑖𝑚%)	is the conditional density function of an arbitrary 𝐼𝑀' 

conditioned on an 𝐼𝑀%, and 𝑃mnop|ghk  is the probability of rupture 𝑘. Hazard-consistency is 

enforced by considering a number of rupture scenarios ( 𝑁|no′𝑠).  

A lognormal distribution is assumed for various 𝐼𝑀𝑖′𝑠, whose probability density can be 

defined as 

 𝑓ghi|mno,ghk = 𝑓ghi|mnop,ghk}𝑖𝑚'~𝑟𝑢𝑝u,𝑖𝑚%�	~𝐿𝑁(µ��ghi|mno,ghk
, 𝜎��ghi|�st,��k

� ). (2.2) 

Here,  µ��ghi|mno,ghk
 is the conditional mean and 𝜎��ghi|�st,��k

� is the conditional variance for a given 

rupture scenario, which are defined as 

 
 

µ��ghi|mno,ghk
= µ��ghi|mno

+ 𝜎��ghi|mno𝜌��ghi,��ghk|mno𝜀��ghk , 
(2.3) 

 

 𝜎��ghi|mno,ghk = 𝜎��ghi|mno�1 − 𝜌��ghi,��ghk|mno
� . (2.4) 

where	µ��ghi|mno
 , and  𝜎��ghi|mno denote the logarithmic median and standard deviation of an 𝐼𝑀' 

for a given rupture scenario, respectively.  𝜌��ghi,��ghk|mno is the correlation coefficient between 

𝐼𝑀' and 𝐼𝑀% for a given rupture scenario, and 𝜀��ghk  is defined as 

 𝜀��ghk =
��ghk�µ����k|�st

�����k|�st
. (2.5) 

The correlation coefficients between various 𝐼𝑀'’s can be defined first by introducing the 

i-th element of the mean and standard deviation vector as 
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 µ��gh|mno,ghk
(𝑖) = µ��ghi|mno,ghk

, (2.6) 

 

 𝜎��gh|mno,ghk(𝑖) = 𝜎��ghi|mno,ghk  (2.7) 

and then by deriving the k-th 𝑒lement of the correlation coefficient matrix as 

 
𝜌��gh|mno,ghk(𝑖, 𝑘) =

𝜌'u − 𝜌'%𝜌u%

�1 − 𝜌'%� �1 − 𝜌u%�
 

(2.8) 

where 𝜌'u = 𝜌��ghi,��ghp|�st  is the correlation coefficient between ln𝐼𝑀' and ln𝐼𝑀u, given a 

rupture scenario, and so on and so forth for rest of the terms in Eq. (2.8)  

Having the median and standard deviation vectors for all of the 𝐼𝑀'’s in the 𝐼𝑀' vector and 

also the correlation coefficient matrix whose elements are derived using Eq. (2.8), the multivariate 

distribution of the 𝐼𝑀'vector can be defined. Then, any number of samples can be drawn from the 

marginal distributions of each 𝐼𝑀'. 

2.4.1.2 Algorithm for two	𝑰𝑴𝒋′s 

This section is devoted to generating hazard-consistent targets conditioning on two 𝐼𝑀%	levels 

rather than one, which was covered in the previous section. Conditioning on two 𝐼𝑀%′𝑠 has several 

advantages over one 𝐼𝑀% which is briefly explained here. As a structure experiences some level of 

damage and undergoes changes in vibration periods, ground motions which are intense only at a 

single conditioning period would not have sufficient contents to capture actual behavior of the 

structure especially in the higher modes. Thus, there would be a need to use a few suites 

conditioned on multiple single-	𝐼𝑀%′𝑠 rather than one to compensate for this problem. This, 
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however, would increase computational time, quite significantly. Setting the number of 

conditioning 𝐼𝑀% as two in generating hazard-consistent targets for a set of different 𝐼𝑀'’s would 

mitigate this problem by generating targets which are hazard-consistent for a range of 𝐼𝑀%′𝑠 

between  𝐼𝑀%w and 𝐼𝑀%�. 

Details as to how the following equations are derived can be traced back to (Wong & 

Chopra, 2017). Though, this work is extended to generate targets for other 𝐼𝑀'’s besides 𝑆𝐴𝑇s by 

using a random realization sample generation. Besides, in addition to simultaneously considering 

correlation between each 𝐼𝑀' in the 𝐼𝑀' vector, and the two conditioning 𝐼𝑀%′𝑠, the conditional 

cross correlation between various 𝐼𝑀'′𝑠 will also be considered.  

Eq.’s (2.3) and (2.4) are basis for this method as well, however since the number of 𝐼𝑀% 

are two, now, they are laid out as: 

 µ��ghi|mno,ghk�,ghk�
= µ��ghi|mno

+ 𝜎��ghi|mno𝜀'
∗ (2.9) 

 

 𝜎��ghi|mno,ghk�,ghk� = 𝜎��ghi|mno�1 − 𝜌'
∗ (2.10) 

where, µ��ghi|mno,ghk�,ghk�
and 𝜎��ghi|mno,ghk�,ghk�  are the conditional logarithmic median and 

standard deviation of for an 𝐼𝑀' conditioned on two 𝐼𝑀%’s. µ��ghi|mno
 and 𝜎��ghi|mno are the 

logarithmic median and standard deviation of the 𝐼𝑀' obtained from a corresponding GMPE. The 

terms 𝜀'∗ and 𝜌'∗  denote the generalized epsilon and correlation for an 𝐼𝑀' with respect to two 

𝐼𝑀%′𝑠, respectively, and are given by 
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 𝜀'∗ = 𝑐'w𝜀��ghk� + 𝑐'�𝜀��ghk� (2.11) 

 𝜌'∗ = 𝑐'w𝜌��ghi,��ghk�|�st + 𝑐'�𝜌��ghi,��ghk�|�st  (2.12) 

where 𝜀 is the number of standard deviations by which the record’s 𝐼𝑀' is away from the target 

median, which can be computed in a similar manner as what’s given in Eq. (2.5). The coefficients 

𝑐%wand 𝑐%� are 

 𝑐'w =
𝜌��ghi,��ghk�|�st − 𝜌��ghk�,��ghk�|�st𝜌��ghi,��ghk�|�st

1 − 𝜌��ghk�,��ghk�|�st
�  (2.13) 

 

 𝑐'� =
𝜌��ghi,��ghk�|�st − 𝜌��ghk�,��ghk�|�st𝜌��ghi,��ghk�|�st

1 − 𝜌��ghk�,��ghk�|�st
�  (2.14) 

where 𝜌��ghi,��ghk�|�st	is the correlation between ln𝐼𝑀', ln𝐼𝑀%w; 𝜌��ghi,��ghk�|�st  is the correlation 

between ln𝐼𝑀', and ln𝐼𝑀%�; and 𝜌��ghk�,��ghk�|�st  is the correlation between ln𝐼𝑀%w and ln𝐼𝑀%�. 

In addition to considering the correlation between each 𝐼𝑀' in the 𝐼𝑀' vector and the two 

𝐼𝑀%′𝑠, the cross-correlation between various 𝐼𝑀'′𝑠 with respect to two conditioning 𝐼𝑀%′𝑠 is 

considered as well. The correlation matrix is, therefore, 

 𝜌��gh|mno,ghk�,ghk�(𝑖, 𝑘) =
𝜌��ghi,��ghp|�st − 𝜌'

∗𝜌u∗

�1 − 𝜌'∗
��1 − 𝜌u∗

�
 (2.15) 

where 𝜌'∗, 𝜌u∗  are defined in Eq. (2.12). 
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Having the median, standard deviation vector as defined by Eq.’s (2.9) and (2.10) and also 

the correlation coefficients matrix as defined in Eq. (2.15), the conditional multivariate distribution 

of various 𝐼𝑀'′𝑠 with respect to two 𝐼𝑀%′𝑠 can be defined. 

The Eq. (2.9) to (2.15) are for a single rupture scenario whose simultaneous contribution 

to two 𝐼𝑀%′𝑠 can be computed as  

 Pr(𝑅𝑢𝑝|𝐴� = 𝑎�) =
𝑓��|mno(𝑎�|𝑅𝑢𝑝)𝜆mno(𝑅𝑢𝑝)

∑ 𝑓��|mnop(𝑎�|𝑅𝑢𝑝u)𝜆mno(𝑅𝑢𝑝u)
q�st
uvw

 (2.16) 

where 𝐴� = [𝐼𝑀%w	𝐼𝑀%�] is a vector including two 𝐼𝑀%′𝑠, 𝑓��|mno(𝑎�|𝑅𝑢𝑝) is the multivariate 

lognormal probability density function of log	(𝐴�) for any given rupture scenario. The 

denominator is the summation of contributions from all rupture scenarios that define the seismicity 

of the site for which the GM records are to be selected.  

2.4.1.3 Algorithm for multiple	𝑰𝑴𝒋  

In this algorithm—which is based on studies by Ebrahimian et al. (2012) and Kohrangi et al. (2017) 

works—, 𝐼𝑀% is set to be a vector consisting of more than two conditioning intensity measures 

(e.g., 𝑆𝐴𝑇𝑠). Thus, for a range of 𝑆𝐴𝑇s where 𝑇 = [𝑇(w), 𝑇(�), 𝑇(¦) … . 𝑇(�)], which includes the 

structure’s fundamental period as well, the geometric mean of the  𝑆𝐴𝑇 vector is defined as 

 𝑆𝑎¨©ª = 𝑆𝑎¨©ª}𝑇(w), … , 𝑇(�)� = «¬𝑆𝑎(𝑇(')
�

'vw

)­
w �⁄

, (2.17) 

and the logarithmic median and standard deviation for a given rupture are given by 

 𝜇��°¨±²³|�st =
1
𝑛l𝜇��°¨|mno}µ(i)�

�

'vw

 (2.18) 
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 𝜎��°¨±²³|mno =
1
𝑛¶

ll𝜌(𝑙𝑛𝑆𝑎(𝑇'), 𝑙𝑛𝑆𝑎(𝑇%)). 𝜎��°¨}µ(i)�|mno. 𝜎��°¨}µ(k)�|mno

�

%vw

�

'vw

 (2.19) 

where, 𝜇��°¨|mno}µ(i)� is the logarithmic median of each 𝑆𝑎(𝑇(')) for a given rupture, 

𝜌}𝑙𝑛𝑆𝑎(𝑇'), 𝑙𝑛𝑆𝑎(𝑇%)�	is the correlation between  ln𝑆𝑎(𝑇') and ln𝑆𝑎(𝑇%), and 𝜎��°¨}µ(i)�|mno and 

𝜎��°¨}µ(k)�|mno are the logarithmic standard deviations of 𝑆𝑎}𝑇(')� and 𝑆𝑎}𝑇(%)� for a given 

rupture, respectively. Then, the logarithmic median and standard deviation of conditioning 𝐼𝑀' for 

any 𝐼𝑀' conditioned on 𝑙𝑛𝑆𝑎¨©ª	can be obtained as 

 µ��ghi|��°¨±²³,mno
= µ��ghi|mno

+ 𝜎��ghi|mno𝜌��ghi,��°¨±²³|mno𝜀��°¨±²³|mno (2.20) 

 𝜎��ghi|��°¨±²³,mno = 𝜎��ghi|mno�1 − 𝜌��ghi,��°¨±²³|mno
�  (2.21) 

where, 

 𝜀��°¨±²³|mno =
𝑙𝑛𝑆𝑎¨©ª − 𝜇��°¨±²³|mno

𝜎��°¨±²³
 (2.22) 

The terms 𝜇��°¨±²³|�st	and  𝜎��°¨±²³|mno can be obtained by using an appropriate GMPE and by 

utilizing Eq’s (2.18) and (2.19). 

The correlation between ln𝐼𝑀' and ln𝑆𝑎¨©ª for a given rupture is defined as 

 

𝜌��ghi,��°¨±²³|mno

=
∑ 𝜌}𝑙𝑛𝑆𝑎(𝑇'), 𝑙𝑛𝑆𝑎(𝑇%)�. 𝜎��°¨}µ(i)�
�
'vw

�∑ ∑ 𝜌(𝑙𝑛𝑆𝑎(𝑇'), 𝑙𝑛𝑆𝑎(𝑇%)). 𝜎��°¨}µ(i)�. 𝜎��°¨}µ(k)��
%vw

�
'vw

. 
(2.23) 
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Since the cross-correlation between different 𝐼𝑀'′𝑠 in the 𝐼𝑀' vector is also considered in addition 

to Eq. (2.23), the correlation matrix of the multivariate distribution of various 𝐼𝑀'′𝑠 in the 𝐼𝑀' 

vector can be derived as 

 

𝜌��gh|��°¨±²³,mno(𝑖, 𝑘)

=
𝜌��ghi,��ghp|mno − 𝜌��ghi,��°¨±²³|mno𝜌��ghp,��°¨±²³|mno

�1 − 𝜌��ghi,��°¨±²³|mno
� �1 − 𝜌��ghp,��°¨±²³|mno

�
 (2.24) 

 Now, by having the logarithmic median, and the standard deviation vector via Eq’s (2.20) 

and (2.21), and the correlation matrix via Eq. (2.25), the conditional multivariate distribution of 

various 𝐼𝑀' conditioning on multiple 𝐼𝑀%′𝑠 can be derived. This, of course, is for a single rupture 

scenario whose contribution to 𝐼𝑀%—which is ln𝑆𝑎¨©ª in this case—can be obtained using Eq. (9) 

or (12) in (Ebrahimian, et al., 2012). By consulting the hazard disaggregation data for any given 

site and by summing over all of the potential rupture scenarios with respect to their contributions 

to ln𝑆𝑎¨©ª, a fully probabilistic and hazard-consistent conditional target can be computed.  

2.4.1.4 Drawing realization samples from a conditional multivariate distribution  

2.4.1.4.1 Mote Carlo sampling technique 

Following Bradley (2012), a two-level approach will be adopted herein, to draw realization 

samples of each 𝐼𝑀' from conditional multivariate distribution of various 𝐼𝑀'’s, which was defined 

in the previous sections based a single-, two-, and multiple-𝐼𝑀%. This is done first by obtaining a 

random rupture probability (𝑅𝑢𝑝�¸'¹) from a disaggregation density function. Then, to draw 

samples from a multivariate distribution, an uncorrelated standard normal random vector is defined 

(𝑢�¸'¹)  whose elements are drawn from a standard normal distribution, independently. Using this 

vector, a correlated vector can thus be defined as 
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 𝑣�¸'¹ = 𝐿𝑢�¸'¹  (2.25) 

where 𝐿 is the Cholesky decomposition of the correlation matrix, which is 

 𝜌��gh|ghk,�st = 𝐿𝐿µ. (2.26) 

Using this, the realization sample for each 𝐼𝑀' can be obtained via 

 ln𝐼𝑀'
�¸'¹ = µ��ghi|mno,ghk

+ 𝜎��ghi|mno,ghk𝑣'
�¸'¹  (2.27) 

where  𝑣'�¸'¹ = 𝑣�¸'¹(𝑖) is the i-th element in the 𝑣�¸'¹ vector, and 𝑅𝑢𝑝 = 𝑅𝑢𝑝�¸'¹. 

2.4.1.4.2 Latin Hypercube sampling technique  

The Latin hypercube sampling (𝐿𝐻𝑆) can be applied through a stratified sampling 

approach. In order to draw realization samples from a distribution of an 𝐼𝑀' , its domain is stratified 

into 𝑁 equally-spaced and non-overlapping intervals. Next is to randomly draw a sample from 

each of the interval. Hence, by utilizing a random permutation approach, a set of random 𝐿𝐻𝑆 

samples can be obtained. As such, the application of 𝐿𝐻𝑆 to draw samples from a theoretical 

multivariate distribution of multiple 𝐼𝑀'′𝑠 can be summarized as:  

1. Sample from the actual marginal distribution of each 𝐼𝑀' using 𝐿𝐻𝑆 (Zhang & Pinder, 

2003). 

2. Derive the correlation matrix of the sampled realizations of various 𝐼𝑀'′𝑠.  

3. Get the Cholesky decomposition of a Hermitian positive-definite matrix (𝐿) of the 

correlation coefficient matrix (see Eq. 2.26). If	𝐿 is not positive definite apply methods 

such as the one introduced by (Higham, 2002)	to find the nearest 𝑃𝐷 matrix.  
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4. Add dependency between the independent samples drawn using 𝐿𝐻𝑆 by transforming 

their governing normal distribution into a uniform distribution (this transformation 

preserves the dependency between the variables). 

5. Map each of the 𝐼𝑀'′𝑠 uniform distribution onto the associated probability distribution 

of each defined by a 𝐺𝑀𝑃𝐸. 

6.  Obtain the correlation between the new realization samples in order to compare it with 

the original correlation of the multivariate distribution to make sure they are identical. 

It is worth noting that due to the superior efficiency and accuracy of the 𝐿𝐻𝑆 versus Monte 

Carlo (see Chapter 6), given the number of realization samples to be drawn from the corresponding 

distributions, 𝐿𝐻𝑆 has been adopted for sampling purposes throughout this study. 

2.4.2 Record selection 

Once the properties of hazard-consistent target distributions are obtained and the realization 

samples are drawn, a database of ground motion records can be consulted to select the suitable 

ground motion records. The criterion in this selection process is to find earthquake records for 

which the empirical distributions of various 𝐼𝑀'’s match those of the realization samples drawn 

from the multivariate target distribution. It is useful to note here that once a record is selected 

matching a realization target, then that record will be removed from the database and will not be 

used again. To begin the selection process, all of the available records’ response spectra, should 

be scaled to match the 𝐼𝑀% at the conditioning intensity measure, after the restrictions on the causal 

bounds have been applied.  

2.4.2.1 Scaling  

For a single 𝐼𝑀%, the amplitude scale factor is given as follows 
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 𝑆𝐹¹ = «
𝐼𝑀%

𝐼𝑀%
¹,n�¸�¨�º»­

w ¼½

 (2.28) 

 

where 𝐼𝑀%
¹,n�¸�¨�º»  is the intensity measure (corresponding to 𝐼𝑀%) of an unscaled record. Here 𝛼 

is an integer, which for intensity measures such as peak ground acceleration	(𝑃𝐺𝐴), peak ground 

velocity, (𝑃𝐺𝑉), and spectral acceleration (𝑆𝐴) that scale linearly with amplitude scale factor, is 

considered as 1. For intensity measures such as arias intensity (𝐼𝐴), which exhibits quadratic 

scaling, 𝛼 = 2. Significant duration (𝑆𝐷) is independent of the amplitude scale factor, so 𝛼 = 0 

(Bradley, 2012). 𝐼𝑀𝑖 for each record is, therefore, scaled using 

 𝐼𝑀'
¹ = 𝐼𝑀'

¹,n�¸�¨�º»(𝑆𝐹¹)¼ (2.29) 

In cases of using two-, or multiple 𝐼𝑀%′𝑠 as the conditioning intensity measures, either of 

the following relationships can be used (Wong & Chopra, 2017) 

 𝑆𝐹 ©º|¨ªº =
∑ 𝑆𝐴𝑇 ¿Àh°(𝑇%)
qt
%vw

∑ 𝑆𝐴𝑇(𝑇%)
qt
%vw

 (2.30) 

 

 𝑆𝐹ÁoÂ'¹¨� = Ã¬
𝑆𝐴𝑇 ¿Àh°(𝑇%)
𝑆𝐴𝑇(𝑇%)

qt

%vw

Ä

w qt⁄

 (2.31) 

where 𝑆𝐴𝑇 ¿Àh° is the target spectral acceleration conditioned on two or multiple 𝐼𝑀%′𝑠, 𝑆𝐴𝑇(𝑇%) 

is the spectral acceleration of a record at the given period 𝑇%, and 𝑁o is the number of period points 

in the interval [𝑇w	𝑇�] corresponding to 𝐼𝑀%w and 𝐼𝑀%� (here, 𝑆𝐴𝑇1 and 𝑆𝐴𝑇2). 
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The selection algorithm adopted, herein, is a least-squares approach suggested by Bradley 

(2012), which uses the following objective function to minimize 

where, 

 𝑆𝐹ÁoÂ'¹¨� = exp	

⎝

⎜
⎛
∑ Ê 𝛼'

𝜎��ghi|mno�ËiÌ,ghk
�Í

q��
'vw 𝑙𝑛 Ê𝑙𝑛𝐼𝑀'

�¸'¹

𝑙𝑛𝐼𝑀'
¹ Í

∑ Ê 𝛼'
𝜎��ghi|mno�ËiÌ,ghk

Í
�

q��
'vw ⎠

⎟
⎞

 (2.33) 

 

and where ln𝐼𝑀'
�¸'¹ is the logarithmic 𝐼𝑀' of the realization target, 𝑙𝑛𝐼𝑀'

¹ is the logarithmic 𝐼𝑀' 

of the record and 𝜎��ghi|mno�ËiÌ,ghk
 is the logarithmic standard deviation of a realization target. 

The term 𝑤' is the normalized weight vector assigning importance weights to the 𝐼𝑀'’s considered 

during selection phase. Eq. (2.35)—which was proposed by (Wong & Chopra, 2017) —can also 

be used to further scale the records using an optimization approach to better match the target. 

2.5 APPLICATIONS 

The application of the methods described in the preceding sections are presented here through an 

example involving a simple and generic inelastic structure. First, an 𝐼𝑀' vector has to be populated. 

As suggested by Bradley (2012), 𝐼𝑀𝑖 = {𝑆𝐴(𝑇), 𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575,𝐷𝑠595}	where 

𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575,𝐷𝑠595 denotes the Arias intensity, cumulative absolute velocity, 5-75% 

significant duration, and 5-95% significant duration, respectively. For computation of 𝑆𝐴(𝑇), 21 

different periods identical to those for which hazard curves can be generated, have been chosen. 

 𝑟¹,�¸'¹ = l 𝑤'

q��i

'vw

Ó
𝑙𝑛𝐼𝑀'

�¸'¹ − 𝑆𝐹ÁoÂ'¹¨�𝑙𝑛𝐼𝑀'
¹

𝜎��ghi|mno�ËiÌ,ghk

Ô
�

 (2.32) 
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The GMPEs used to define distribution of each 𝐼𝑀' in the 𝐼𝑀'	vector are developed by Boore & 

Atkinson (2008) for 𝑆𝐴(𝑇), 𝑃𝐺𝐴, and	𝑃𝐺𝑉, Campbell & Bozorgnia (2012) for 𝐴𝐼, Campbell & 

Bozorgnia (2010) for 𝐶𝐴𝑉, and Bommer et al. (2009) for (𝐷𝑠575,𝐷𝑠595). 

In order to generate the multivariate distribution of 𝐼𝑀'’s in the 𝐼𝑀' vector, a correlation 

matrix defining the cross-correlations between various 𝐼𝑀'’s should be defined in addition to the 

median and standard deviation of each 𝐼𝑀'. For this, the reader is referred to Table 1 in Bradley 

(2012). 

In order to select the ground motion records, a hypothetical site in the city of Los Angeles, 

𝐶𝐴 (LONG−118.43; LAT34.053) with average shear-wave velocity for the upper 30	m depth of 

760	m/𝑠𝑒𝑐 and a depth to a 2.5	km/sec	shear-wave velocity horizon of 𝑧�.Þ = 	1	km has been 

chosen. Using the relationships developed earlier in the texts, a set of different GM suites are 

selected based on different conditioning criteria and 𝐼𝑀' importance weight factors. Various suites 

selected based on giving different weights to the different 𝐼𝑀'’s in the 	𝐼𝑀' vector. Thus, weight 

factors of 70%, 99%, 1% for the 𝑆𝐴𝑇′𝑠 and consequently weight factors of 30%, 1%, 99% for the 

non-𝑆𝐴𝑇′𝑠 are considered. The weights to be assigned to either of 𝑆𝐴𝑇′𝑠 or non-𝑆𝐴𝑇′𝑠 intensity 

measures are evenly distributed among them during the selection phase. For the causal parameters, 

the magnitude range of 𝑀 = [5	, 8], the closest source-to-site distance of 𝑅%ß = [0	, 100]	km and 

the 𝑉 ¦à = [300	, 1200]	m/sec are adopted. The maximum scale factor is set to 4. It is worth 

noting that hazard-consistency is implemented by considering up to 2,000 rupture scenarios and 

their contributions to different types of conditioning intensity measures. 

2.5.1 Selected ground motions based on single-𝑰𝑴𝒋  

This section is based on the algorithm developed in section 2.4.1.1. To begin, a structural 

fundamental period of 𝑇1 = 1.30	sec is adopted as the period for which the conditioning 𝐼𝑀%—
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which is 𝑆𝐴𝑇1 throughout this study—will be derived from a hazard curve assuming a 2% 

probability of exceedance in 50 years. The number of realization samples to be drawn from the 

conditional multivariate distribution of 𝐼𝑀'′𝑠 in the 𝐼𝑀' vector is set to 50.  The NGA-WEST2 

database (see Appendix A) is chosen to select the earthquake records from, following the 

instructions given in section 2.5.2 of (Bozorgnia, et al., 2014).   

 Figure 2.1(b) displays the response spectra after applying the scale factor based on section 

2.5.2.1 (see Figure 2.1(a)) using 1% 𝑆𝐴𝑇  and 99% non-𝑆𝐴𝑇 weight factors assigned to different 

𝐼𝑀'′𝑠. The blue solid and dashed curves are the statistics of the realizations drawn from 𝐺𝐶𝐼𝑀 

distribution (shown in red). As previously stated, ground motion records are selected to match 

these realizations. As such, the median as well as the 16- and 84-percentile ranges of the selected 

records (shown in green) appear to almost match those of the targets (shown in blue), it can be 

claimed that the empirical distribution of the selected records matches the theoretical distribution 

of the target. However, after more closely looking into the empirical distribution of 𝑆𝐴𝑇 at multiple 

periods, as can be observed in Figure 2.1(c) and Figure 2.1(d), it can be observed that there is a 

clear mismatch between the empirical distribution of the selected records and those of the target. 

Note that, in this selection procedure, a larger weight was given to the non-𝑆𝐴𝑇𝑠, so it is expected 

to get some levels of mismatch in the 𝑆𝐴𝑇𝑠, as discussed previously. Also applying various 

restrictions to different parameters will limit the number of records in the database, so a perfect 

match would be a rather difficult task to achieve unless a more comprehensive database is available 

and/or the restrictions on causal and site properties are relaxed.  
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                               (a)                                                                               (b)    

 

                                     (c)                                                                             (d)                              

 

Figure 2.1. (a) Amplitude scale factor, (b) 𝑆𝐴𝑇 of the selected records based on 1% 𝑆𝐴𝑇 and 99% 
non-𝑆𝐴𝑇 weigth factors and cumulative probability distribution of selected records for (c) 𝑆𝐴(𝑇 =

0.10𝑠𝑒𝑐) and (d) 𝑆𝐴(𝑇 = 1.0𝑠𝑒𝑐). 

For the cumulative and duration-based 𝐼𝑀'′𝑠, Figure 2.2 displays the empirical distribution 

of various non-𝑆𝐴𝑇 𝐼𝑀'′𝑠—namely, 𝐶𝐴𝑉, 𝐴𝐼, 𝐷𝑠575 and 𝐷𝑠495. Cumulative distribution of the 

realizations drawn from the theoretical distribution (median of which is shown in red) is shown in 

blue. As can be observed, there is a good match between empirical distribution of the selected 
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records for all of the non-𝑆𝐴𝑇 intensity measures which are shown in black and those of the target 

which are shown in blue. This clearly shows that assigning a larger weight to the non-𝑆𝐴𝑇 intensity 

measures results in a GM set with records whose cumulative and duration-based characteristics 

closely match those of the hazard-consistent targets.  

As can be observed, there is a good match between the empirical distribution of the selected 

records for all of the non-𝑆𝐴𝑇 intensity measures which are shown in black and those of the target 

which are shown in blue. 

                  (a)                                                                             (b) 

  

      

 

 

 

 

 

                                 (c)                                                                                     (d) 

                                                                                                                       

Figure 2.2. Cumulative probability distribution of selected records for (a) 𝐶𝐴𝑉, (b) 𝐴𝐼, (c) 𝐷𝑠575 
and (d) 𝐷𝑠595 based on 1% 	𝑆𝐴𝑇  and 99% non-𝑆𝐴𝑇 weigth factors. 
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For the other weight combinations considered, only a portion of the results are presented, 

for the sake of brevity. Figure 2.3 displays the response spectra and 𝐶𝐴𝑉 of the selected records 

based on 70% 𝑆𝐴𝑇  and 30% non-𝑆𝐴𝑇 weight factors. 

                        (a)                                                                                (b) 

 

Figure 2.3. (a) 𝑆𝐴𝑇 and (b) 𝐶𝐴𝑉 of the selected records based on 70% 𝑆𝐴𝑇  and 30% non-𝑆𝐴𝑇 
weigth factors. 

Assigning a larger weight to 𝑆𝐴𝑇𝑠 results in a better statistical property of the selected 

records with respect to those of the targets, which can be noticed in Figure 2.3(a) However, this 

choice will affect the empirical distribution of the selected records with respect to the cumulative 

intensity measures, which can be seen in Figure 2.3(b) Consequently, the distribution of the 

selected records (shown in black) does not closely match the distribution of the realizations (shown 

in blue), which was expected due to the weight factor used. However, the level of mismatch is not 

significant. 

Figure 2.4 displays the response spectra and 𝐶𝐴𝑉 of the selected records based on 99% 

𝑆𝐴𝑇 and 1% non-𝑆𝐴𝑇 weigth factors. Since the main goal was to select records based on matching 

the amplitude contents rather than cumulative ones, a better match can be observed in Figure 2.4(a) 

in the statistical properties of response spectra of the selected records with respect to those of the 
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target. Figure 2.4(b). shows a clear mismatch in the cumulative distribution (shown in black) of 

the selected records with respect to the target (shown in blue).  This is expected given the smaller 

importance weight given to the non-𝑆𝐴𝑇𝑠.  

          (a)                                                                                   (b) 

 

 

 

Figure 2.4. (a) 𝑆𝐴𝑇 and (b) 𝐶𝐴𝑉 of the selected records based on 99 % 𝑆𝐴𝑇  and 1% non-𝑆𝐴𝑇 
weigth factors. 

2.5.2 Selected ground motions based on two-𝑰𝑴𝒋  

This section is based on the algorithm developed in section 2.4.1.2. Lower and upper bound 
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order to obtain 𝐼𝑀%w and 𝐼𝑀%� based on the study by Eads et al. (2016) and Chandramohan (2016). 
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Figures 2.5(c) and 2.5(d). Based on that, empirical distributions (shown in black) of 𝑆𝐴𝑇 at two 

different periods don’t match those of the target (shown in blue). That’s clearly the goal from the 

beginning to select ground motions with a stronger representation of cumulative rather than 

amplitude-based measures, which was enforced by assigning a larger weight factor to cumulative- 

as well as duration-based 𝐼𝑀'′𝑠. 

Given that the records are selected here based on 1%	𝑆𝐴𝑇 and 99% non-𝑆𝐴𝑇 weight 

factors, Figure 2.6 clearly shows that there is good match between the cumulative and duration-

based characteristics of the selected records and those of the target. Therefore, it can be seen in all 

of the plots in Figure 2.6 that the empirical cumulative distributions of the selected records match 

those of the realization target quite closely, proving that assigning a larger weight factor to non-

𝑆𝐴𝑇𝑠 will result in a GM suite with stronger representation of cumulative and duration-based 

intensity measures. 

                  (a)                                                                                        (b) 
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                       (c)                                                                                  (d) 

 

Figure 2.5. Amplitude scale factor, (b) 𝑆𝐴𝑇 of the selected records based on 1% 𝑆𝐴𝑇  and 99% 
non-𝑆𝐴𝑇 weigth factors and cumulative probability distribution of the selected records for (c) 𝑆𝐴(𝑇 =

0.07 sec)	and (d) 𝑆𝐴(𝑇 = 5.0 sec). 
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                        (c)                                                                                  (d)                                        

 

Figure 2.6. Cumulative probability distribution of selected records for (a) 𝐶𝐴𝑉, (b) 𝐴𝐼, (c) 𝐷𝑠575 
and (d) 𝐷𝑠595 based on 1% 𝑆𝐴𝑇 and 99% non-𝑆𝐴𝑇 weigth factors. 

Changing the weight factors to 70%	𝑆𝐴𝑇 and 30% non-𝑆𝐴𝑇 will have some impact on the 

selected records. Figure 2.7(a) displays that the statistics of response spectra for the selected 

records match those of the targets quite closely, however when it comes to non-𝑆𝐴𝑇𝑠, as seen in 

Figure 2.7(b), the empirical cumulative distribution of 𝐴𝐼 (shown in black) does not match the 

target (shown in blue). This is a direct consequence of the weight factors assigned for the purpose 

of record selection.  
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Figure 2.7. (a) 𝑆𝐴𝑇 and (b) 𝐴𝐼 of the selected records based on 70% 𝑆𝐴𝑇  and 30% non-𝑆𝐴𝑇 
weigth factor. 
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Next, 1% 𝑆𝐴𝑇 and 99% non-𝑆𝐴𝑇 weight factors are utilized to select records to match a 

conditional target conditioning on two	𝐼𝑀%′𝑠. Figure 2.8(a) shows that given the larger weight 

assigned to 𝑆𝐴𝑇𝑠 during the selection process, the statistics of the selected records’ spectra match 

those of the target. However, as seen in Figure 2.8(b), the cumulative distribution of non-𝑆𝐴𝑇𝑠,	of 

which only 𝐷𝑠575 results are presented here for brevity, does not match the target, and there is a 

significant mismatch which is due to the smaller weight initially assigned to non-𝑆𝐴𝑇𝑠. 

                           (a)                                                                             (b) 

 

 Figure 2.8. (a) 𝑆𝐴𝑇 and (b) 𝐷𝑠575 of the selected records based on 99% 𝑆𝐴𝑇 and 1% non-𝑆𝐴𝑇 
weigth factor.  
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set to 0.25	sec and 4.0	sec, respectively. The algorithm described in section 2.4.1.3 is then utilized 

to develop a hazard-consistent conditional target conditioned on ln𝑆𝑎¨©ª and thereafter, the 

ground motion records are selected following section 2.4.2. 

Figures 2.9(a) and 2.9(b) display the cumulative distribution of amplitude scaling factors 

and response spectra of the selected records based on 1% 𝑆𝐴𝑇 and 99% non-𝑆𝐴𝑇 weigth factors, 

respectively. Given that the majority of weight has been assigned to non-𝑆𝐴𝑇𝑠, the statistics of the 

selected records (shown in green) do not match well those of the target (shown in blue). The same 

can also be seen in Figures 2.9(c) and 2.9(d) where there is a clear mismatch between distributions 

of the selected records (shown in black) and those of the target (shown in blue) for 𝑆𝐴(𝑇 =

0.50 sec)	and 𝑆𝐴(𝑇 = 1.50 sec),	respectively.  

            (a)                                                                               (b)  
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                                 (c)                                                                                  (d)                                                 

 

 

 

 

 

 

 

Figure 2.9. Amplitude scale factor, (b) 𝑆𝐴𝑇 of the selected records based on 1% 𝑆𝐴𝑇 and 99% 
non-𝑆𝐴𝑇 weigth factors and cumulative probability distribution of the selected records for (c)	𝑆𝐴(𝑇 =

0.50 sec)	and (d) 𝑆𝐴(𝑇 = 1.50 sec). 

While amplitude-based contents of the selected records do not match those of the target—

due to the smaller weight factors assigned to them during the selection process—, cumulative-

based characteristics do, as it can be observed in the plots of Figure 2.10. 
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                                   (c)                                                                              (d) 

 

Figure 2.10. Cumulative probability distribution of selected records for (a) 𝐶𝐴𝑉, (b) 𝐴𝐼, (c) 
𝐷𝑠575 and (d) 𝐷𝑠595 based on 1% 𝑆𝐴𝑇  and 99% non-𝑆𝐴𝑇 weigth factors. 
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Figure 2.11. (a) 𝑆𝐴𝑇’s and (b) 𝐴𝐼	of the selected records based on 70% 	𝑆𝐴𝑇  and 30% non-𝑆𝐴𝑇 
weigth factors. 
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of the target. However, as it can be seen in Figure 2.11(b), when it comes to non-𝑆𝐴𝑇𝑠 (such as 

𝐴𝐼), there is a poor match between the cumulative distribution of the selected records (shown in 

black) and the conditional target (shown in red). 

Another attempt is also made with 99% 𝑆𝐴𝑇 and 1% non-𝑆𝐴𝑇 weight factors in order to 

select earthquake records with near full emphasis on amplitude-based contents.  Figure 2.12(a) 

indicates that the statistics of the selected records match those of the target pretty closely, however 

cumulative distribution of the selected records (e.g., for 𝐴𝐼) has a very poor match with respect to 

the target, as it can be seen in Figure 2.12(b). 

                       (a)                                                                                  (b) 

 

 

Figure 2.12. (a) 𝑆𝐴𝑇 and (b)  𝐴𝐼 of the selected records based on 99% 	𝑆𝐴𝑇  and 1% non-𝑆𝐴𝑇 
weigth factors. 

2.6 DISCUSSION  

Ground motion earthquake records are one of the main sources of variability in the estimates of 

structural responses when it comes to the performance-based seismic risk assessment. In these 

procedures an appropriate suite of ground motion records is required to capture the said 

uncertainties. Depending on the structural type and the selected performance objective, a structure 

may experience significant changes to its fundamental period of vibration or have multiple modes 
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significantly contributing to its overall response. This, therefore, makes the structure sensitive to 

intensity measures of an earthquake motion other than the spectral amplitude/ordinate at the 

fundamental period of the structure (SAT1), which is what conventional methods for selecting GM 

suites are based on. Such selection procedures thus often produce structural demand/response 

estimates with large scatter (uncertainty).  

 In most cases, practicing engineers will prefer to use GMs selected to match a design 

spectrum recommended by various codes. As demonstrated in the preceding sections, ground 

motions selection procedures that give more emphasis to response spectrum may lack adequate 

representations of cumulative and duration-based intensity measures. This then may result in the 

underestimation of structural responses, especially for cases when structural nonlinearities are 

observed (e.g., for collapse estimates).  

Several new GM selection methods were proposed in the preceding sections by considering 

correlations between various 𝐼𝑀'′𝑠 conditioned on various 𝐼𝑀%′𝑠 while incorporating hazard-

consistency for various rupture scenarios. 

It is well known that selecting ground motions matching a uniform hazard spectrum (𝑈𝐻𝑆) 

is deemed to be overly conservative. 𝑈𝐻𝑆 is obtained directly from the hazard curves for various 

𝑆𝐴𝑇𝑠 over a range of periods. All of the ordinates of	𝑈𝐻𝑆 are, therefore, hazard-consistent and 

have the same return period. In reality, only a few as-recorded earthquakes can produce a response 

spectrum that is hazard-consistent over all of its ordinates. The algorithms developed herein are 

able to produce a more reasonable set of hazard-consistent targets.  

A quick comparison of the median response spectra obtained from various conditioning  

methods can be seen with the help of Figure 2.13, which is obtained for a hypothetical site in the 

city of Los Angeles, CA (LONG −118.43; LAT	34.053) with an average shear wave velocity of 
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760	m/sec for the upper 30m depth, varying towards 2.5	km/sec	shear-wave velocity at a 

horizon of 𝑧�.Þ = 	1	km. The structural fundamental mode period is set to be	𝑇1 = 1	sec. 

 

 

 

 

 

 

 

 

 

Figure 2.13. Comparison of median spectra obtained from various methods of conditioning target 
generation, with the target spectrum obtained based on 𝑈𝐻𝑆. 

As it can be observed from this figure, selecting earthquake records matching the 𝑈𝐻𝑆 

target spectrum (shown in black) will result in a very conservative set of records, simply because 

these records are going to be very intense at the entire set of structural periods of vibration.  On 

the other hand, the response spectrum obtained from the new methods proposed earlier, as well as 

the response spectrum using an unconditional approach, all fall below the 𝑈𝐻𝑆 at most period 

values. However, record selection based on an unconditional approach is highly non-conservative 

and produces hazard-inconsistent	𝑆𝐴𝑇𝑠 for any period of vibration, and therefore it is not 

recommended. The target conditioned on a single intensity measure (shown in red) produces a 

target that is hazard-consistent at a single	𝐼𝑀%	(i.e. 𝑆𝐴𝑇 = 1	sec) and falls below 𝑈𝐻𝑆 at all of the 

other 𝑆𝐴𝑇𝑠. Here, it can be argued that records selected matching this target spectrum may not be 

sufficient if the structure goes into a highly nonlinear phase. Therefore, one would have to repeat 
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this process for a few times to generate conditional targets using new 𝐼𝑀%′𝑠 each time, which then 

increases the computational burden significantly.  

Selecting records matching a target to be hazard-consistent over a range of conditioning 

periods—which has been the case for the proposed two-𝐼𝑀% and multiple-𝐼𝑀% methods—seems to 

have mitigated the aforementioned problems. As it can be observed in Figure 2.13, the target 

spectrum conditioned on two-𝐼𝑀% (shown in green) intercepts the 𝑈𝐻𝑆 over a range of periods 

between 𝐼𝑀%w and 𝐼𝑀%�— here, 𝑆𝐴𝑇(𝑇 = 0.2sec)	 and 𝑆𝐴𝑇(𝑇 = 3.0sec), respectively—, which 

necessarily brackets and includes 𝑆𝐴𝑇1	(𝑆𝐴𝑇 = 1.0	𝑠𝑒𝑐). Thus, the selected records matching this 

target will have sufficient intensity to excite the structure at its many modes (controllable by 

selecting the 𝐼𝑀%w and 𝐼𝑀%�) rather than only 𝑇1. This, then, obviates the use of multiple suites, 

thereby reducing the computational burden significantly.  

The records selected based on multiple-𝐼𝑀% conditioning (shown in cyan in Figure 2.13) 

produces but a more intense spectrum at a lower vibration periods than other methods, but a less 

intense spectrum around 𝑆𝐴𝑇1, eventually diminishing into the unconditional spectrum at longer 

periods.  

While a more comprehensive set of nonlinear time history analyses will be carried out on 

realistic (ductile and non-ductile multi-story reinforced concrete) structures in the Chapters 4 and 

5, parametric studies carried out with a simple nonlinear structure should unveil the consequences 

of different GM selection methods. For this purpose, a SDOF structure, which approximates the 

typical concrete bridge pier (Chandramohan, 2016) is considered, which is shown in Figure 2.14. 
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        Figure 2.14. A (𝑆𝐷𝑂𝐹) structural system (adopted from (Chandramohan, 2016) ). 

 

Figure 2.15 displays the statistics of the top-node normalized displacement (Drift (%)) of 

the 𝑆𝐷𝑂𝐹 system including the median as well as 16- and 84-percentile values obtained through 

the application of different GM selection algorithms (and importance weight factors therein). It is 

obvious that the medians decrease from Figure 2.15(a) to Figure 2.15(d), as the emphasis shifts 

away from the non-𝑆𝐴𝑇 intensity measures. It is evident that when non-𝑆𝐴𝑇𝑠 weight is at a 

maximum (see Figure 2.15.a), the median drift is above 1%, whereas when it drops to 50%, 30% 

and eventually 1%, the median drift decreases (nearly linearly) and falls even below 1% as seen in 

Figure 2.15(d). These results clearly indicate the importance of the inclusion/consideration of 

cumulative and duration-based intensity measures when compiling GM suites for performance 

assessment.  
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                        (a)                                                                                   (b) 

 

                                      (c)                                                                               (d) 

 

Figure 2.15. Comparison of a 𝑆𝐷𝑂𝐹 seismic demand responses obtained using different 𝐺𝑀 
suites selected based on various ground motion selection procedures with different weight factors: (a) 1% 

𝑆𝐴𝑇 and 99% non-𝑆𝐴𝑇, (b) 50% 𝑆𝐴𝑇 and 50% non-𝑆𝐴𝑇, (c) 70% 𝑆𝐴𝑇 and 30% non-𝑆𝐴𝑇 and (d) 
99%	𝑆𝐴𝑇 and 1% non-𝑆𝐴𝑇. 

Another set of comparisons can be made regarding the effect of the type of conditioning 

algorithm used—namely, those based on single, two or multiple-𝐼𝑀%—on the statistics of the 

estimated responses. It is clear from Figures 2.15(a) to 2.15(c) that the median drift is higher for 

two-𝐼𝑀% compared to the multiple-𝐼𝑀% and single-𝐼𝑀%, proving that the records selected matching 
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targets conditioned on more than one 𝐼𝑀% will have sufficient contents to capture the response of 

a structural system in multiple modes of vibration. This clearly stands out when looking at the 

upper percentiles of the response as well, which stand higher for the case of two- and multiple-

𝐼𝑀%, as compared to single-𝐼𝑀%. In Figure 2.15(d) where the non-𝑆𝐴𝑇𝑠 weight was set to be very 

small, there is a balance in the median response, so the records selected based on single-𝐼𝑀% seem 

to have sufficient contents to capture the demand. This is mainly due to the fact that the ground 

motions in this case were selected by giving more emphasis to 𝑆𝐴𝑇 intensity measures, with the 

inertia-based effects dominating the response while duration and cumulative effects were not that 

pronounced. 

2.7 CONCLUDING REMARKS 

A comprehensive GMSSM framework was proposed. Most of the existing methods/frameworks 

are based on response spectrum matching, and the use of intensity measures other than spectral 

amplitudes is often not considered. Moreover, most of the algorithms developed thus far are based 

on a median approach, both in considering the effects of various rupture scenarios as well as 

spectral matching. Given these potential shortcomings in GMSSM, various new algorithms were 

developed here to generate hazard-consistent target intensity measure distributions using single-

𝐼𝑀%, two-𝐼𝑀%, and multiple-𝐼𝑀% as the conditioning intensity measures. Correlations among the 

intensity measures themselves, and those of the conditioning 𝐼𝑀%′𝑠 have been considered when 

drawing realization targets from a multivariate distribution of various 𝐼𝑀'′𝑠. Ground motion were 

then selected by first drawing a desirable number of realization samples from the target and then 

by interrogating a GM database to find earthquake records whose contents match those of the 

corresponding realizations. Different importance weight factors for the considered 𝐼𝑀'′𝑠 were 
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examined, which enabled user-control in generating adequately diverse GM suites with records 

selected by assigning different weights to amplitude-, and duration- or cumulative-based intensity 

measures.    

It was concluded that for structures that will experience some level of damage and go into 

a highly nonlinear phase, the selected ground motions should have sufficient duration or 

cumulative characteristics in order to sufficiently probe the probable structural responses. This 

approach incidentally resulted in reducing the uncertainty in estimated structural responses. Based 

on parametric studies carried out using a generic nonlinear SDOF structure, ground motion suites 

selected based on more than one conditioning intensity measure were observed to be more 

appropriate in capturing the structural behavior (less uncertainty). Moreover, assigning a larger 

weight factor to energy-based (duration- or cumulative-based) rather than amplitude-based 

intensity measures in the selection process resulted in a more realistic (conservative) estimation of 

the responses. 
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3 A STOCHASTIC FRAMEWORK FOR AFTERSHOCK 

GMSSM 

3.1 INTRODUCTION  

A mainshock earthquake is typically followed by a sequence of aftershocks, which exhibit a higher 

frequency of occurrence in first few days after the mainshock event. Due to the mainshock 

earthquake event, a given structure may already have undergone some level of damage. As such, 

aftershocks pose further risks and additional losses on an already-damaged building. It is known 

that earthquakes are quite unpredictable, however, if a mainshock has already taken place, it is 

reasonable to assume that there will be a sequence of aftershocks. 

Past earthquakes remind us of both the financial and human losses due to mainshock-

aftershock events. In current seismic codes and provisions, buildings are designed only for the 

mainshock event, and there are no requirements to evaluate the performance of structures for a 

sequence of aftershocks. This, in part, can be attributed to the lack of a comprehensive database of 

aftershock earthquake ground motion records and the relative complexity of fault rupture 

mechanisms causing aftershocks, which makes it difficult to simulate aftershock earthquake 

records. Consideration of aftershocks in any seismic design appears to be a task that cannot be 

overlooked. 

3.2 SCOPE AND MOTIVATION  

Consideration of aftershocks requires detailed understanding of the mechanisms that produce both 

the mainshock and the aftershock events. In practical terms, there is a need to equip researchers 

and engineers with relevant tools and methodologies to enable them to select ground motions both 
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for mainshock and aftershock events that can be utilized during various stages of seismic 

evaluation. GM selection for mainshock events has been the topic of numerous prior studies (see 

Chapter 2), but studies on GM selection/characterization of aftershocks have been extremely 

scarce.  

Given the lack of prior studies, this research is aimed at developing tools (i) to define the 

seismicity of a given region for aftershocks, (ii) for producing hazard-consistent targets for various 

intensity measures (𝐼𝑀'′𝑠) for aftershock events, and subsequently (iii) for selecting as-recorded 

or simulated aftershock ground motion records. For achieving these objectives, a set of 

hypothetical fault rupture events will be devised to compute seismic hazard associated with 

aftershock events. In order to compute a seismic hazard curve for an aftershock event, aftershock 

magnitudes will be sampled from an existing magnitude density distribution in similar fashion 

with what is done for a mainshock event with the difference of setting the mainshock event 

magnitude as an upper bound limit for the aftershock event. For source-to-site distance 

computation, the epicenters of the mainshock and aftershock will be assumed to be the same, based 

on the fact that most of aftershocks will initiate within the same rupture area as the mainshock. 

Thus, by using existing relationships for computing the length of fault rupture as a function of 

magnitude, it will be possible to determine a probability distribution of distance. After having the 

magnitude and distance distributions for aftershock events, and given site conditions, it will be 

possible to generate a seismic aftershock hazard curve. This will be carried out in a manner that 

considers the difference between the frequency of occurrence of aftershock events and that of the 

mainshock. The overall method will thus produce aftershock hazard curves that are computed with 

respect to a specific elapsed time from the mainshock event, ranging from a day to several months. 

Additionally, disaggregation plots, which are proxies to hazard curves, will be computed and will 
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be used for defining the contribution of each rupture scenario to any given level of any intensity 

measure (𝐼𝑀) of interest. 

After computing the aftershock hazard curve—which will be computed for spectral 

acceleration (𝑆𝐴𝑇) as the adopted 𝐼M of interest here—, the uniform hazard spectrum (𝑈𝐻𝑆) will 

be derived for a specific return period. Finally, the GMSSM framework developed in Chapter 2 

will be utilized for selecting hazard-consistent aftershock GMs. The steps will be similar to what 

was carried out in Chapter 2, and thus hazard-consistent conditional aftershock ground motion 

target distributions conditioned on single-, two- or multiple-𝐼𝑀%′𝑠 will be produced first.  Then, 

earthquake records will be selected from a database of recorded or synthetic earthquake records 

whose 𝐼𝑀'′𝑠 match those of the target(s).  

Another objective will be to study the sensitivity of various key parameters involved in 

defining the aftershock seismicity—namely, the elapsed time from the mainshock during which a 

sequence of aftershocks will take place, multiple seismic sources, and the variations in upper-

bound magnitude, which caps the aftershock magnitude interval. The main outcome of this 

research effort will thus be a stochastic framework that defines aftershock seismicity of a given 

site and enables aftershock ground motion selection for performance-based seismic assessment 

and design.   

3.3 A REVIEW OF PRIOR STUDIES 

3.3.1 Background  

Research in the area of hazard-consistent aftershock GMSSM are presently very limited in scope 

and quantity. Although there have been some recent studies in the area of seismic risk evaluation 

of structures due to mainshock-aftershock events, the GMSSM-related aspects in these studies are 
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highly simplistic. Since, ground motion earthquake records are the primary source of variability 

on the estimated structural responses, failing to select accurate aftershock ground motion records 

would, in principle, negatively affect the seismic risk evaluation of structures due to mainshock-

aftershock sequences. 

Yeo & Cornell’s (2005) work in this area is one of the pioneering studies, which forms the 

basis of the present study. A good portion of their work is devoted to hazard characterization of 

aftershocks. However, aftershock hazard curves are developed using a deterministic rupture 

scenario. This shortcoming will be mitigated and enhanced in the present study by adopting a 

probabilistic approach to define the seismicity of a site due to aftershock events under a range of 

different fault rupture scenarios.  

In a follow-up study, Yeo & Cornell (2009) performed a building life-cycle cost analysis 

due to mainshock-aftershock events by modeling mainshocks as a homogenous Poisson process 

with a constant rate of co-occurrence, as opposed to aftershocks that are modeled as non-

homogenous Poisson processes with random magnitudes conditioned on the occurrence of a 

mainshock event. They introduced a general decision-making procedure based on stochastic 

dynamic programming wherein the main factor they considered was the time-varying effects of 

aftershocks. They proposed a method to develop aftershock hazard curves for 𝑆𝐴𝑇 as the intensity 

measure of interest, similar to the approach that develops mainshock hazard curves through 

probabilistic seismic hazard analysis (𝑃𝑆𝐻𝐴). The main difference of an aftershock probabilistic 

seismic hazard analysis (𝐴𝑃𝑆𝐻𝐴) as opposed to 𝑃𝑆𝐻𝐴 is that in 𝑃𝑆𝐻𝐴, the rate of occurrence of 

mainshock event is considered as constant, whereas in 𝐴𝑃𝑆𝐻𝐴 this rate varies with time and 

decreases as the elapsed time since the mainshock vent increases. Yeo and Cornell (2009) 

assumed—as is commonly done in other prior studies—that aftershocks are initiated due to a 
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rupture scenario that is identical to that for the mainshock and that the location where aftershocks 

initiate is in the same zone as the mainshock. As stated above, Yeo and Cornell’s works (2005, 

2009) form the basis of the present study wherein their deterministic approach will be extended to 

a probabilistic one and will be utilized thereafter for aftershock GMSSM.  

Other studies of note include that by Sunasaka & Kiremidjian (1993) who proposed a 

procedure to evaluate the seismic performance of structures under mainshock-aftershock 

sequences. They assumed that the probability density function of interval times of mainshock are 

Weibull or exponentially distributed, and that the number and magnitude of aftershocks depend on 

the same attributes of the mainshock. They used this information along with other assumptions to 

simulate aftershock ground motions using a method called “duration-independent envelope 

function.” More recently, Burton and Sharma (2017) studied the reduction in the collapse safety 

of reinforced concrete buildings that are already are in different damage states due to mainshock-

aftershock sequences. They used the same suite of ground motion records for both mainshock and 

aftershock events but incrementally scaled up the records to capture various states of post-

mainshock damage of buildings. Burton et al. (2017) studied the aftershock collapse vulnerability 

of buildings using different parameters such as mainshock intensity, engineering demand 

parameter response, and various physical damage indicators. They used a similar strategy as what 

was used in (Burton & Sharma, 2017) to simulate the mainshock-aftershock sequences. 

Most recently, Shokrabadi & Burton (2018) studied the post-mainshock seismic response 

of buildings due to mainshock-aftershock sequences by assuming various damage limit states for 

buildings after a mainshock event. They considered time-dependent nature of the aftershock events 

using a Markov risk assessment framework. They went on to develop a framework to estimate 

financial losses due to sequences of mainshock-aftershock events wherein they considered 
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uncertainties associated with the time-varying nature of aftershock events and various damage 

states of buildings after the mainshock.  

Li and Ellingwood (2007) studied the effects of mainshock-aftershock sequences on 

seismic damage of steel frames and Wang et al. (2017) on concrete gravity dams. The latter study 

used as-recorded mainshock-aftershock earthquake sequences and examined the effects of the 

correlation between mainshock and aftershock records on the seismic response of dams.  

Goda et al. (2015) used a dataset of as-recorded mainshock-aftershock events in Japan and 

examined the seismic responses of an SDOF system by considering the variability in nonlinear 

structural parameters. Goda & Taylor (2012) used both as-recorded and simulated mainshock-

aftershock events to study the nonlinear responses of an SDOF system wherein simulated 

sequences of aftershocks were generated to compensate when data were lacking.  

Ebrahimian et al. (2014) proposed a performance-based framework for an adaptive 

aftershock seismic risk assessment for buildings in a post mainshock environment. They used an 

epidemic-type aftershock sequence model to simulate the spatio-temporal evolution of 

aftershocks. Jalayer & Ebrahimian (2017) proposed a methodology for aftershock seismic risk 

evaluation of structures by considering both time-dependent rate of aftershock occurrence and 

uncertainties in building damage state due to a mainshock event. Jeon et al. (2015) developed a 

framework by first creating mainshock-aftershock sequences of earthquake records and then by 

analyzing several buildings to develop aftershock damage fragility curves given a range of 

mainshock damage states. 

Nazari et al. (2015) proposed a framework to incorporate the aftershock hazard into a 

performance-based framework through analytical studies using structural modeling parameters 

obtained from publicly available data on wood frame buildings. They developed aftershock 
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fragility curves using an incremental dynamic analysis (𝐼𝐷𝐴) approach in which the sequences of 

mainshock-aftershock earthquake records were utilized. 

Raghunandan et al. (2015) performed damage fragility assessment of ductile reinforced 

concrete buildings using mainshock-aftershock sequences.  They considered a range of damage 

states due to mainshock events and studied the effects on post-mainshock damage and collapse 

vulnerability of buildings. Han et al. (2015) studied the effects of mainshock-aftershock sequences 

using synthetic aftershock records to evaluate damage vulnerability of buildings. Ruiz-Garcia and 

Aguilar (2015) studied the effects of near-fault mainshock-aftershock sequences on seismic risk 

assessment of structures assuming various damage states the buildings sustained due to mainshock 

events. Yue et al. (2014) assessed the collapse vulnerability of steel buildings due to mainshock-

aftershock sequences. 

3.3.2 The state of research   

As can be noticed from the literature review presented in the previous section, there is a need for 

tools that enable structural engineers to select temporally hazard-consistent aftershock ground 

motion records so that mainshock-aftershock sequences can be generated for seismic risk 

assessment of different structural types. By delving into literature and pervious works on this topic, 

it becomes evident that there is yet no tool that is equivalent to 𝑃𝑆𝐻𝐴 in terms of rigor for 𝐴𝑃𝑆𝐻𝐴 

and for the subsequent task of aftershock GMSSM. The present work will aim towards that 

direction by introducing a framework for generating a set of probabilistic aftershock hazard curves 

and eventually by applying/extending the GMSSM framework developed in Chapter 2 to 

aftershocks. 
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3.4 AN ALGORITHM FOR AFTERSHOCK PROBABILISTIC SEISMIC HAZARD 

ASSESSMENT (𝑨𝑷𝑺𝑯𝑨)  

The algorithms and required ingredients to develop an aftershock probabilistic seismic hazard 

assessment (𝐴𝑃𝑆𝐻𝐴) framework can be found in (Yeo & Cornell, 2009) and (Li & Ellingwood, 

2007). These works are extended herein to simulate a range of fault rupture scenarios in developing 

aftershock seismic hazard by considering a range of elapsed times from mainshock event.   

Eq. (3.1) generates a time-dependent aftershock hazard curve for a number of seismic 

sources (𝑁𝑢𝑚¸Án|�º) given the lower- and upper-bound magnitudes, 𝑚�, and	𝑚¹, respectively:  

 𝜆(𝑖𝑚, 𝑇) = l 𝜇∗}𝑡, 𝑇;𝑚¹,'	�
qn¹Ëásr�â

'vw

ã 𝑃(𝐼𝑀 > 𝑖𝑚|𝑚'	, 𝑟'	)𝑓mi	|hi	

¹Ì	|Ì

¹�|�	

(𝑟'	|𝑚'	). 𝑓hi	(¹i	)𝑑𝑚𝑑𝑟 (3.1) 

the	𝑚� is set to be 5.20 and the 𝑚¹ is set to be the mainshock magnitude, 𝜆(𝑖𝑚, 𝑇) denotes the 

mean number of aftershocks in [𝑡, 𝑇] exceeding the ground motion intensity measure (𝑖𝑚), 𝑡 is the 

elapsed time from the mainshock and 𝑇 is the time window, which is usually set to be 1 year. 

𝑓hi	(¹i	) is the probability density, and  𝑓mi	|hi	
(𝑟'	|𝑚'	) is the source-to-site distance distribution 

conditioned on the source magnitude (𝑚'	). The terms 𝑟� and 𝑟¹ are the lower and upper bounds 

for closest source-to-site distance distribution.  𝜇∗}𝑡, 𝑇;𝑚¹,'	� is the mean number of aftershocks 

with magnitude range of [𝑚�,𝑚¹] in the time interval of [𝑡, 𝑇] following a mainshock magnitude 

of 𝑚¹, which is defined as 

 

𝜇∗(𝑡, 𝑇;𝑚¹) = ä 𝜇(𝑡;
Âåµ

Â
𝑚¹)𝑑𝜏

=
10¨åß(¹Ì�¹�) − 10¨

𝑝 − 1 [(𝑡 + 𝑐)w�o + (𝑡 + 𝑇 + 𝑐)w�o] 

(3.2) 
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Note that in a generic California sequence, 𝑎 = −1.67, 𝑏 = 0.91, 𝑝 = 1.08 and 𝑐 = 0.05. Also, 

when 𝜇∗(𝑡, 𝑇;𝑚¹) = 𝜆Á,' Eq. (3.1) can be used for (𝑃𝑆𝐻𝐴), where 𝜆Á,' is the mean annual 

frequency of total earthquakes in a specific magnitude interval for a given source. 

The last term in Eq. (3.1) that needs to be defined is 𝑃(𝐼𝑀 > 𝑖𝑚|𝑚'	, 𝑟'	), which can be computed 

using 

 𝑃(𝐼𝑀 > 𝑖𝑚|𝑚'	, 𝑟'	) = 1 − 𝜑(
ln(𝑖𝑚) − log(𝐼𝑀)éééééééééé

𝜎êë(ìí)
|𝑚'	, 𝑟'	) (3.3) 

 

Here 𝑃(𝐼𝑀 > 𝑖𝑚|𝑚'	, 𝑟'	) is the conditional probability of exceedance of a given intensity measure 

(𝑖𝑚) conditioned on a given 𝑚'	, 𝑟'	.	log(𝐼𝑀)éééééééééé and 𝜎êë(ìí) denote the logarithmic median and 

standard deviation, which can be obtained from a ground motion prediction equation (𝐺𝑀𝑃𝐸), and 

finally, 𝜑(. ) represents a standard normal cumulative distribution.  

Eq. (3.1) represents the temporal aftershock seismic hazard of a site for a range of rupture 

scenarios which dominate the hazard at that site. In earthquake engineering, a rupture can be 

represented by the properties of the rupture including the epicenter, length of rupture and also 

various properties of the fault. Magnitude (𝑚) is one of the parameters that can be correlated well 

with the physical properties of the rupture and is, therefore, adopted herein as one of the main 

parameters representing the rupture scenario, which will be used to develop site specific hazard 

curves. Another term that is key to developing hazard curves is the closest distance from source to 

site and often is denoted as 𝑅|no	.  

In order to develop time-varying aftershock hazard curves for any given site of interest, 

one would use a magnitude distribution function to simulate a range of magnitude at a specific 

interval of [𝑚�,𝑚¹].  A magnitude cumulative distribution function is 



` 57 

 𝐹h(𝑚) =
𝑒î¹Ì(𝑒�î¹� − 𝑒�î¹±)

(𝑒î(¹Ì�¹�) − 1)
 (3.4) 

 

where  𝛽 is a constant greater than zero which is related to the mainshock magnitude (𝑚¹). For 

the mean and logarithmic standard deviation of 𝛽, one could use the following relationships 

developed by (Sunasaka & Kiremidjian, 1993), 

 
𝐸(𝛽) = exp(1.1130 − 0.135𝑀¹), 

𝜎��î|hÌ = 0.41. 
(3.5) 

Sunasaka & Kiremidjian (1993) also studied the relationship between the number of aftershocks 

with magnitude greater than 3 and mainshock magnitude (𝑀¹) whose mean and logarithmic 

standard deviation respectively are 

 
𝐸}𝑁¨(3.0)� = exp(−0.647 + 0.684𝑀¹), 

𝜎��q±(¦.à)|hÌ = 0.79. 
(3.6) 

Having Eqs. (3.4) to (3.6), one could first draw sufficient number of realization samples for	𝛽 and 

𝑁¨(3.0), then for any given 𝛽, randomly draw 𝑚¨ samples from Eq. (3.4) and repeat this for the 

entire length of 𝑁¨(3.0). Each time the procedure is repeated, the maximum 𝑚¨ is restored and at 

the end a vector of 𝑚¨’s realization samples can be obtained to be used in Eq. (3.1) to compute 

the hazard curve. 

Another key parameter for computing the hazard curve using Eq. (3.1) is 𝑅|no	. It is 

assumed here that there is a correlation between 𝑚 and rupture length (Wells & Coppersmith, 

1994). In the present research, Table 2A in (Wells & Coppersmith, 1994) is used to get 

 log(𝑆𝑅𝐿) = −3.22 + 0.69𝑀 (3.7) 
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where 𝑆𝐿 stands for surface rupture length. By plugging the magnitude realization samples derived 

by drawing samples from Eq. (3.4) into Eq. (3.7), one can obtain the realization samples for 𝑆𝑅𝐿.  

Following Figure 3.1, the realization samples for 𝑅|no	can be obtained using simple geometry 

relationships.  

 

 

 

 

 

 

 

Figure 3.1.  Computing the closest source-to-site distance given various rupture configurations. 
(adopted from CEE245 notes by Yousef Bozorgnia at UCLA)  

In the next section, a practical example is provided to compute the mainshock and 

aftershock hazard curves for a hypothetical range of rupture scenarios using the information 

provided in this section.  

3.5 𝑨𝑷𝑺𝑯𝑨 FOR A HYPOTHETICAL RANGE OF RUPTURE SCENARIOS 

3.5.1 A segmental rupture scenario  

A hypothetical site in the city of Los Angeles, CA (LONG −118.43 LAT34.053) with average 

shear-wave velocity for the upper 30	m depth of 760	m/sec  and a depth to a 2.5	km/sec shear-

wave velocity horizon of 𝑧�.Þ = 	1	km has been chosen. For defining the seismicity for this site, a 

hypothetical range of faults with arbitrary dip angles (see definition in Figure 3.1) are picked. By 

using the sampling procedure that was laid out in section 3.4, and assuming an interval of 

[5.5, 8]	and [5.2, 7] for the mainshock and aftershock magnitudes, respectively, the magnitude and 
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closest source-to-site distance distributions to define the mainshock and aftershock seismic hazards 

for the given site are computed. 

  

 

 

 

 

 

 

 

Figure 3.2. Source and rupture definition for a range of aftershock events. 

Example results are shown in Figure 3.2, which displays a hypothetical representation of 

sources along with a set of different rupture scenarios with given rupture epicenters for an 

aftershock event. Here, it was assumed that the aftershock events are initiated from the same 

rupture zone as for the mainshock. Moreover, the probability of fault rupture for each of the sources 

shown in blue is equal, which is 25% for each. The probability of each rupture along with a source 

is also set to be equal which is 50% for each epicenter. With these assumptions and given the 

sampled magnitudes, a range of rupture lengths can be derived, which is shown in red in Figure 

3.2. Then, the closest source-to-site distance (𝑅|no	) can be computed (shown in grey) and 

ultimately the distribution of 𝑅|no		can be obtained, which is now fully correlated with the 

magnitude distribution. 

An example of a mainshock magnitude 𝑚 and 𝑅|no	,�ðÂº|¸ñÁ�u  distribution is shown in 

Figure 3.3. These examples are provided only as a demonstration, and the rest of distributions are 

omitted for brevity.  
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                    (a)                                                                                 (b) 

 

Figure 3.3. (a) Mainshock magnitude distribution. (b) Aftershock 𝑅|no	,�ðÂº|¸ñÁ�u  distribution.  

Figure 3.4 shows the cumulative distribution and histogram of the sampled aftershock 

magnitudes (𝑚¨) with respect to  𝑚¹. 

                (a)                                                                                  (b)  

 

Figure 3.4. (a) Cumulative distribution of the sampled aftershock magnitudes (𝑚¨) with respect 
to the maximum mainshock magnitude (𝑚¹). (b) Histogram of the sampled aftershock magnitude (𝑚¨). 

Having this information, one could use Eq. 3.1 to compute the hazard curves setting forth 

an intensity measure (𝐼𝑀) of interest, which, here, is set to be the spectral acceleration at multiple 

periods (𝑆𝐴𝑇). 
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Figure 3.5(a) displays the hazard curves for 𝑆𝐴𝑇 at multiple periods of vibration for both 

the mainshock and aftershock scenarios. Note that for both scenarios 𝑇 = 1	year; however, in case 

of aftershock, since the time-varying nature of that was taken into account, an elapsed time of 𝑡 =

7	days was considered to compute the 𝜇∗}𝑡, 𝑇;𝑚¹,'	� and ultimately to derive the hazard curves. 

It is also worth noting that in order to compute Eq. 3.3, the Boore & Atkinson (2008) GMPE was 

used to obtain log(𝐼𝑀)éééééééééé and 𝜎êë(ìí). Figure 3.5(b) shows the mainshock and aftershock uniform 

hazard response spectra (𝑈𝐻𝑆) that corresponds to 2% probability of exceedance in 50 years, 

which were directly derived from Figure 3.5(a) 

                (a)                                                                                      (b) 

 

Figure 3.5. (a) Hazard curves for various 𝑆𝐴𝑇𝑠 for both mainshock and aftershock earthquake 
events assuming 𝑇 = 1	𝑦𝑒𝑎𝑟 for both mainshock and aftershock events and  𝑡 = 7	days for the aftershock 
event. (b) The mainshock and aftershock uniform hazard response spectrum (𝑈𝐻𝑆) corresponding to 2% 

probability of exceedance in 50 years. 

As can be easily observed from Figure 3.1(a), the aftershock hazard curves, which are 

shown in black, fall atop those of the mainshocks shown in blue, indicating that for a given 𝑆𝐴𝑇, 

they exhibit a higher rate of exceedance compared to the mainshocks. This is mainly due to setting 

the elapsed time as 𝑡 = 7	days. During this timeframe, the frequency of aftershocks will be at its 

peak with a higher intensity and will eventually diminish as the elapsed time from the mainshock 
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event increases. This also applies to 𝑈𝐻𝑆, so that the 𝑈𝐻𝑆 corresponding to 2% probability of 

exceedance in 50 years is more intense for the aftershock (shown in black in Figure 3.5.b) than the 

mainshock (shown in blue). A similar conclusion was made in (Yeo & Cornell, 2009), however 

for a deterministic case. 

The information developed here for the aftershock hazard curve will be used for the 

aftershock ground motion selection wherein the required conditioning intensity measures will be 

extracted from the aftershock-𝑈𝐻𝑆 developed here. To this end, and by assuming a structural 

fundamental period of  𝑇1 = 1	sec, the 𝑆𝐴𝑇1 will be used as the conditioning intensity measure 

(𝐼𝑀%) for the case when a single-𝐼𝑀% will be used. As assumed in Chapter 2,  the lower and upper 

bound coefficients of 0.20	𝑎𝑛𝑑	3.0	suggested by (Eads, et al., 2016) and (Chandramohan, 2016), 

will be used for multiplying 𝑇1, to obtain 𝑇 = 0.2	sec and 𝑇 = 3.0	sec, which will be used as 𝐼𝑀%w 

and 𝐼𝑀%� for the two- and multiple-𝐼𝑀% cases.  

Disaggregation plots demonstrating the contribution of all of the sources shown in Figure 

3.2, to the conditioning 𝐼𝑀%′𝑠, namely 𝑆𝐴(𝑇 = 0.2	sec), a	𝑆𝐴(𝑇 = 1.0	sec), and 𝑆𝐴(𝑇 = 3.0	sec), 

are presented in Figure 3.6. As seen, the rupture scenario that initiated from the epicenter 1 of 

source 3 has the highest contribution to all 𝐼𝑀% levels. After that, sources 1 and 4, which are both 

at epicenter 1, have the highest contribution, respectively.  Looking back at the sources depicted 

in Figure 3.2, this is mostly due to 𝑅|no, since an identical magnitude distribution at each epicenter 

was assumed.  
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                                        (a)                                                                                         (b) 

  

 

 

 

               (c) 

 

 

                                                                               

 

 

 

   Figure 3.6. Disaggregation of seismic hazard. (a), (b) and (c) source contribution to 𝑆𝐴(𝑇 =
0.20	sec), 	𝑆𝐴(𝑇 = 1.0	sec), and 𝑆𝐴(𝑇 = 3.0	sec), respectively. 

3.5.2 A full-length rupture scenario  

Everything that was carried out in section 3.5.1 is replicated here, however with an assumption 

that fault rupture can take place at any point along the fault length. Such full-length aftershock 

scenarios are depicted in Figure 3.7. The only difference, however, would be in the magnitude 

distribution which is different for the aftershocks compared to the mainshock. Moreover, 

according to this approach, magnitude and distance are independent of each other as distribution 

of distance was not obtained using the relationship that provides length of rupture as a function of 

magnitude, which was the case in the previous section.   
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                 Figure 3.7. Source and rupture definition for a range of aftershock events. 

Magnitude distribution remains the same as the section 3.5.1 case, however given a 

different layout for epicenters, 𝑅|no distribution will change, which is the main reason of the 

subsequent difference in the hazard curve. Figure 3.8(a) displays the hazard curve for this rupture 

configuration and Figure 3.8(b) shows the 𝑈𝐻𝑆. As seen, the amplitudes of various curves in this 

case is a bit higher than those in Figure 3.5. Moreover, it can be noticed that the gap between the 

mainshock and aftershock 𝑈𝐻𝑆 curves is wider in this case compared to Figure 3.5. The 

disaggregation plots are shown in Figure 3.9. It is evident that source 4 has an absolutely dominant 

contribution to all the 𝐼𝑀% levels, and that is mainly due to 𝑅|no. 

                  (a)                                                                                 (b) 

 

 

Figure 3.8. (a) Hazard curves for various 𝑆𝐴𝑇𝑠 for both mainshock and aftershock earthquake 
events assuming 𝑇 = 1	year for both mainshock and aftershock events and 𝑡 = 7	days for the aftershock 
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event. (b) The mainshock and aftershock uniform hazard response spectrum (𝑈𝐻𝑆) corresponding to 2% 
probability of exceedance in 50 years. 

                       (a)                                                                                             (b) 

 

 

 

  

       (c)                                                                         

                                                     

 

 

 

 

 

Figure 3.9. Disaggregation of seismic hazard: (a), (b) and (c) source contribution to 𝑆𝐴(𝑇 =
0.20	sec), 	𝑆𝐴(𝑇 = 1.0	sec), and 𝑆𝐴(𝑇 = 3.0	sec), respectively. 

It is worth noting that each fault in this case has a uniform rupture probability of 25%, 

which is even for all of the 4 sources.  

3.6 AFTERSHOCK RECORD SELECTION, SCALING AND MODIFICATION  

The comprehensive GMSSM algorithm developed in Chapter 2, will also be used here to select 

hazard-consistent aftershock GMs based a generalized conditional intensity measure (𝐺𝐶𝐼𝑀) 

approach with a set of different conditioning intensity measures (𝐼𝑀%′𝑠) whose numeric values 

were computed in section 3.5.2 as 𝑆𝐴(𝑇 = 0.20	sec), a	𝑆𝐴(𝑇 = 1.0	sec), and 𝑆𝐴(𝑇 = 3.0	sec).  



` 66 

The same Los Angeles site (and properties) used in section 3.5.2 are used here. Also, the full-

length rupture scenario discussed in section 3.5.2 is considered.  For causal parameters, a 

magnitude interval of [5.2,8], 𝑅|no	 interval of [0, 100] kilometers, and 𝑉 ¦à interval of 

[400,1200]	m/sec, and maximum scale factor of 4 were used.  

3.6.1 The single- 𝑰𝑴𝒋 approach  

In this method, it is assumed that target realizations for various intensity measures (𝐼𝑀'′𝑠) are 

drawn from a multivariate distribution and ground motions are selected from the 𝑁𝐺𝐴 −𝑊𝐸𝑆𝑇2 

database (Bozorgnia, et al., 2014) to match the target 𝐼𝑀' realizations. As such, the aftershock 

ground motion records will be selected from a database of earthquake records consisting of both 

mainshock and aftershock records, however with respect to a set of different targets representing 

the characteristics of aftershock events.     

Figure 3.10(b) displays the response spectra of the selected records as well as median, 16-

, and 84-percent percentile of the selected records and those of the target 𝐼𝑀'′𝑠. Aftershock hazard-

consistency is enforced by considering the contribution of various rupture scenarios to the 𝐼𝑀%, 

which is 𝑆𝐴(𝑇 = 1.0	sec), from the disaggregation plots that were discussed in the preceding 

sections. A 99-percent weight is assigned to 𝑆𝐴𝑇-based intensity measures, and therefore the rest 

of 𝐼𝑀'′𝑠 (i.e. Non-	𝑆𝐴𝑇s) are assigned only a 1-percent weight. As such, this turns out to be a 

ground motion selection strategy that is solely based on response spectrum matching. 
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                 (a)                                                                                   (b)         

                                                                                              

                                (c)                                                                                         (d) 

 

Figure 3.10. (a) Cumulative distribution (𝐶𝐷𝐹) of amplitude scaling factor. (b) Conditional response 
spectrum conditioned on 𝑆𝐴(𝑇 = 1.0	sec). (c) and (d) Empirical 𝐶𝐷𝐹 of 𝑆𝐴(𝑇 = 4.0	sec) and 𝑆𝐴(𝑇 =

10.0	sec).  

With the number of records set to 50 and given the emphasis to record selection based on 

response spectrum, as well as the amplitude scaling shown in Figure 3.10(a), near perfect matches 

can be seen in all of the plots in Figure 3.10. Figure 3.10(b) shows that the statistics of the selected 

records (shown in green) closely match those of the realization targets (shown in blue). Figure 

3.10(c) and Figure 3.10(d) show that there is a good agreement between the empirical cumulative 
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distribution of selected records shown in black and those of the realization targets shown in blue, 

for 𝑆𝐴(𝑇 = 1.0	sec) and 𝑆𝐴(𝑇 = 10.0	sec). 

3.6.2 The two-𝑰𝑴𝒋 approach  

In an effort to select ground motions to be hazard-consistent, two conditioning intensity 

measures—namely,	𝑆𝐴(𝑇 = 0.20	sec) and 𝑆𝐴(𝑇 = 3.0	sec)—will be used as 𝐼𝑀%′𝑠. Emphasis 

here is again given to spectrum matching just like the selection based on single−𝐼𝑀% conditioning 

approach discussed earlier.  

Figure 3.11(b) shows that the statistics of the selected records conditioned on two 𝐼𝑀%′𝑠 

shown in green, match those of the target shown in blue, with a little bit of amplitude scaling, of 

course, which is shown in Figure 3.11(a), proving that the algorithm resulted in a hazard-consistent 

suite of ground motion records based on the 𝐺𝐶𝐼𝑀 approach. Figure 3.11(c) shows the cumulative 

distribution of 𝑆𝐴(𝑇 = 7.50	sec) shown in black which is in good agreement with target shown 

in blue.  Herein, a non-	𝑆𝐴𝑇 target intensity measure is included as well, which is the significant 

duration, 𝐷𝑠575. As can be observed from Figure 3.11(d), even though, a smaller weight was 

assigned to 𝐷𝑠575 during the selection phase, a reasonable agreement was still attained with 

respect to the empirical distribution of the selected records and the target.  
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                    (a)                                                                                  (b)        

 

                           (c)                                                                                  (d)             

 

              

 

 

Figure 3.11. (a) Cumulative distribution (𝐶𝐷𝐹) of amplitude scaling factor. (b) Conditional 
response spectra conditioned on 𝑆𝐴(𝑇 = 0.20	sec) and 𝑆𝐴(𝑇 = 3.0	sec). (c) and (d) Empirical 𝐶𝐷𝐹 of 

𝑆𝐴(𝑇 = 7.5	sec) and 𝐷𝑠575(sec). 

3.6.3 The multiple-𝑰𝑴𝒋 approach 

Another conditioning criterion is used, herein, to select records matching targets conditioned on a 

range of intensity measures by setting the conditioning intensity measure as 𝑆𝐴¨©ª as explained in 

Chapter 2. This is again an attempt to select records which have sufficient contents to excite a 

structure in multiple modes of vibration specially in case that the structure has undergone some 
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level of damage. All the assumptions which were applied during the selection phase for the 

pervious sections, will be applied here too. 

Figure 3.12(b) shows the statistics of the response spectra of the selected records shown in 

green which closely match those of the target shown in blue, with a little bit of amplitude scaling, 

of course (Figure 3.12(a)). 

                 (a)                                                                                           (b) 

                                                                        

                                                                      

 

 

 

 

       (c) 

 

 

 

 

 

 

 

Figure 3.12. (a) Cumulative distribution (𝐶𝐷𝐹) of amplitude scaling factor. (b) Conditional 
response spectra conditioned on 𝑆𝐴¨©ª .(c) Empirical 𝐶𝐷𝐹 of 𝑆𝐴(𝑇 = 3.0	sec). 

Figure 3.12(c) shows the cumulative distribution of 𝑆𝐴(𝑇 = 3.0	sec) with a slightly 

different distribution for the selected records (shown in black) with respect to the target (shown in 
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blue) which can still be deemed acceptable given the restrictions imposed on amplitude scaling 

factor, causal parameters, etc. during the selection phase. 

3.7 DISCUSSION 

Given a range of different parameters involved in the computation of time-varying aftershock 

hazard curves as laid out in section 3.5, a sensitivity analysis is carried out herein, to study the 

influence of each parameter on the seismic hazard, in a similar manner as the study by Yeo & 

Cornell (2009).  

At first, a sensitivity analysis is carried out to study the effects of elapsed time (𝑡) on the 

rate of exceedance of 𝑃𝐺𝐴, considering multiple levels of shaking. One can clearly notice from 

Figure 3.13 that for all levels of shaking, the annual rate of exceedance will decline gradually as 

the elapsed time increases. This indicates that, frequency of aftershocks is higher within days from 

the main event and as the time goes by, it declines which makes sense given past experiences with 

aftershocks. Moreover, as the level of shaking goes up, the annual rate of exceedance decreases 

indicating that stronger aftershocks are less frequent than the weaker ones. This can clearly be 

noticed from Figure 3.13 with respect to the hazard curves for different levels of 𝑃𝐺𝐴(𝑔). 
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Figure 3.13. Sensitivity of temporal aftershock hazard curves for peak ground acceleration	𝑃𝐺𝐴	(𝑔) with 
various exceedance levels, as a function of elapsed time from the mainshock event, 𝑡	(days). 

 Figure 3.14. shows the sensitivities of various sources’ dip angles, which are laid out in a 

counter clockwise fashion from the x-axis to the right of the source which is atop all other sources, 

on the temporal aftershock hazard carve. Figure 3.14(a) shows sources with different dip angles, 

and Figure 3.14(b) shows the effects of considering different dip angles on the seismic hazard. As 

can be noticed from Figure 3.14(b), given the dip angles of various faults positioning from top to 

bottom in a counter clockwise fashion, the annual rate decreases which indicates a rise in the return 

period, as the fault tends to get farther away from the site (i.e. increase in 𝑅|no), hence those faults 

tend to have less contribution to various levels of 𝑃𝐺𝐴𝑠. As such, since sources with dip angles of 

105 and 170 degrees are the farthest away from the site, thereby their contributions to the seismic 

hazard are the least. 

                  (a)                                                                                 (b)                                                                       

 

Figure 3.14. (a) Various source configurations with respect to the dip angle. (b) Effect of 
considering different dip angles on the aftershock hazard curve where 𝑡 = 7	days. 

Figure 3.15 shows the effects of considering various upper-bound aftershock magnitudes 

(𝑀¹′𝑠) on the annual rate of aftershock exceedance for different 𝑃𝐺𝐴 levels. As can be observed, 
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as the 𝑀¹ increases, the annual rate tends to increase as well, indicating that stronger aftershocks 

are more frequent within 𝑡 = 7	days and their contribution to various levels of 𝑃𝐺𝐴 is higher. 

 

 

 

 

 

 

 

 

Figure 3.15. Sensitivity of temporal aftershock hazard where 𝑡 = 7	days with respect to various 
upper bound aftershock magnitudes (𝑀𝑚). 

Figure 3.16 shows the influence of considering a set of different time windows (𝑇′𝑠) on 

the mean number of aftershocks given a specific level of shaking (e.g. 𝑃𝐺𝐴 > 0.5𝑔) with respect 

to an increase in the elapsed time (𝑡).  

It is clear that aftershock hazard is higher, when 𝑇 is longer. The difference between hazard 

given various	𝑇′𝑠 becomes more noticeable as 𝑡 increases indicating that aftershocks are more 

frequent in a shorter elapsed time from the mainshock event, hence their frequency of occurrence 

will diminish as 𝑡 increases. Therefore, at higher 𝑡′𝑠, difference between aftershock hazard for 

various 𝑇′𝑠 is more pronounced.   
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Figure 3.16. Sensitivity of considering effects of various time windows (𝑇′𝑠) on the mean number 
of aftershocks given a specific level of shaking (e.g. 𝑝𝑔𝑎 > 0.5(𝑔)) with respect to a range of elapsed 

times (𝑡′𝑠) from the mainshock event. 

Figure 3.17 shows the ratio of aftershock hazard to mainshock hazard with respect to 

different upper-bound aftershock magnitudes (𝑀¹′𝑠), normalized based on the case of 𝑀¹ = 7. 

The difference in the ratio is, to some extent, due to the difference between the mainshock and 

aftershock magnitudes which in case of aftershock is bounded by an upper-limit (e.g., 𝑀¹), which   

subsequently affects the 𝑅|no distribution. Thus, at some point when the magnitude and 𝑅|no	for 

both mainshock and aftershock become identical, the ratio does not change as much which is clear 

from the figure since with the increase of 𝑝𝑔𝑎 the curves go flat from some point onward.  Another 

potential cause of change in the ratio is the mean aftershock rate ( 𝜇∗(𝑡, 𝑇;𝑚¹) ) which was defined 

earlier. As can be noticed, for constant values of 𝑇 and 𝑡 , 𝑀¹ is the main parameter changing the 

value of mean aftershock rate and therefore having influence on the ratios in Figure 3.17. This 

ratio shows also not to be that sensitive to 𝑃𝐺𝐴, from some point onward, as can be noticed from 

the figure.  
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Figure 3.17. Ratio of aftershock hazard to mainshock hazard with respect to different upper- 
bound aftershock magnitudes (𝑀𝑚′𝑠), given a range of 𝑃𝐺𝐴𝑠. 

 

Last but not the least, in order to render the effects of various ground motion selection 

strategies based a set of different conditioning criteria as discussed in section 3.6, Figure 3.18 

displays the difference between conditioning median spectra conditioning on a range of 𝐼𝑀%′𝑠, 

with the 𝑈𝐻𝑆 and the unconditional spectrum. 

 

 

 

 

 

 

 

Figure 3.18. Comparison of the conditioning median spectra obtained from various methods of 
conditioning target generation, with the target spectrum obtained based on 𝑈𝐻𝑆. 
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As it can be observed from this figure, selecting earthquake records matching the 𝑈𝐻𝑆 

target spectrum (shown in black) will result in a very conservative set of records, simply because 

these records are going to be very intense at the entire set of structural periods of vibration.  On 

the other hand, the response spectrum obtained from the new methods proposed earlier, as well as 

the response spectrum using an unconditional approach, all fall below the 𝑈𝐻𝑆 at most period 

values. However, record selection based on an unconditional approach is highly non-conservative 

and produces hazard-inconsistent	𝑆𝐴𝑇𝑠 for any period of vibration, and therefore it is not 

recommended. The target conditioned on a single intensity measure (shown in red) produces a 

target that is hazard-consistent at a single	𝐼𝑀%	(i.e. 𝑆𝐴𝑇 = 1	sec) and falls below 𝑈𝐻𝑆 at all of the 

other 𝑆𝐴𝑇𝑠. Here, it can be argued that records selected matching this target spectrum may not be 

sufficient if the structure goes into a highly nonlinear phase. Therefore, one would have to repeat 

this process for a few times to generate conditional targets using new 𝐼𝑀%′𝑠 each time, which then 

increases the computational burden significantly.  

Selecting records matching a target to be hazard-consistent over a range of conditioning 

periods—which has been the case for the proposed two-𝐼𝑀% and multiple-𝐼𝑀% methods—seems to 

have mitigated the aforementioned problems. As it can be observed in Figure 3.18, the target 

spectrum conditioned on two-𝐼𝑀% (shown in green) intercepts the 𝑈𝐻𝑆 over a range of periods 

between 𝐼𝑀%w and 𝐼𝑀%�— here, 𝑆𝐴𝑇(𝑇 = 0.2sec)	 and 𝑆𝐴𝑇(𝑇 = 3.0sec), respectively—, which 

necessarily brackets and includes 𝑆𝐴𝑇1	(𝑆𝐴𝑇 = 1.0	𝑠𝑒𝑐). Thus, the selected records matching this 

target will have sufficient intensity to excite the structure at its many modes (controllable by 

selecting the 𝐼𝑀%w and 𝐼𝑀%�) rather than only 𝑇1. This, then, obviates the use of multiple suites, 

thereby reducing the computational burden significantly.  
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The records selected based on multiple-𝐼𝑀% conditioning (shown in cyan in Figure 3.18) 

produces but a more intense spectrum at a lower vibration periods than other methods, but a less 

intense spectrum around 𝑆𝐴𝑇1, eventually diminishing into the unconditional spectrum at longer 

periods. 

3.8 CONCLUDING REMARKS  

A new framework was proposed for an aftershock probabilistic seismic hazard assessment 

(𝐴𝑃𝑆𝐻𝐴). To this end, various hypothetical rupture scenarios were considered at a given site; and 

using a set of different relationships, aftershock hazard curves were computed in comparison with 

those of the mainshock for a set of different intensity measures. The time-varying nature of 

aftershock is one of the main parameters making the computation of aftershock hazard curves 

different than those of the mainshock, which was incorporated herein.  Both uniform hazard 

spectrum (𝑈𝐻𝑆) and disaggregation data were also generated. The obtained information was then 

used to select hazard-consistent aftershock ground motion records from a database of earthquake 

ground motion records.  

 Ground motions selection was carried out using 𝐺𝐶𝐼𝑀 for a range of conditioning intensity 

measures to select records with sufficient contents to be able to excite a structure at its multiple 

modes of vibration and/or in case the structure experiences some level of damage. Given the fact 

that as-recorded aftershock ground motion earthquake records are limited, the present method 

paves the way to select identical hazard-consistent aftershock records from a database of both as-

recorded mainshock and aftershock records. 

Extensive sensitivity analyses were also carried out with respect to a set of different 

variables, which are key in performing 𝐴𝑃𝑆𝐻𝐴. To this end, the effect of time window (𝑇) as well 
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as elapsed time (𝑡) from the mainshock on the annual rate of aftershock hazard were thoroughly 

examined. The effect of upper-bound aftershock magnitude (𝑀¹) on the ratio of mean number of 

aftershocks to mainshock was also studied for a range of hazard levels. Furthermore, the effect of 

source properties, such as dip angle on annual rate of aftershock hazard exceedance, was also 

studied and proper conclusions were drawn. 

 

 

 

 

 

 

 

 

 

 

  



` 79 

4 A PROBABILISTIC GM SELECTION ALGORITHM BASED 

ON SPECTRAL SHAPE AND A CASE STUDY ON 

REINFORCED CONCRETE STRUCTURES  

4.1 INTRODUCTION  

Due to the significant amount of variability in various aspects of earthquake engineering, a 

probabilistic approach should be utilized to estimate structural responses. The said variabilities 

could be due to source and fault rapture properties, site effects, ground motion attenuation 

characteristics, and so on and so forth. The presence of such variabilities makes it difficult to obtain 

an accurate suite of earthquake record to represent the seismicity of a given site. The number of 

records in the suite and the algorithm through which the records are selected play key roles in 

capturing and minimizing dispersions in estimated structural responses due to record-to-record 

variabilities in the selected ground motion suite.   

It is also well established that depending on structural systems, different characteristics of 

ground motion records will be key in properly capturing the expected behavior of structures. These 

characteristics should be considered in the ground motion selection algorithm up-front, so that the 

selected earthquake records have sufficient content/features to probe and capture the variability in 

structural responses.    

4.2 SCOPE AND MOTIVATION  

One of the popular methods for ground motion selection is based on target spectrum matching. In 

doing so, a hazard-consistent target, which is usually a design spectrum has to be picked. GM 

records whose spectra closely match the target are then selected from an appropriately rich/large 
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database of earthquake records. It should be noted that there is also some inherent variability in 

the adopted target, which is often neglected, and a median-based approach is adopted wherein the 

target variance is not considered. Moreover, a least-squares optimization approach is often utilized 

to select records within a reasonable confidence interval of the target spectrum. Due to the limited 

number of as-recorded ground motions, a perfect match is unlikely to be achieved even by using 

an aggressive amplitude scaling strategy. As such, the set of selected records typically do not 

represent the actual seismicity of the site.  

The shape of a response spectrum for an earthquake record consists of numerous peaks and 

valleys, which represent the amplitude and frequency contents of the earthquake record. This could 

be taken as one of the factors as to how destructive a record could be. The spectral shape, however, 

is not often considered as an independent metric to represent an earthquake record. Hence, in 

engineering practice, the spectrum-matching is usually called record selection based on spectral 

shape, which is not quite the correct terminology.  

In the absence of an independent metric to represent the effects of spectral shape of the 

selected ground motion records on seismic responses of structures, the present study aims at 

developing a probabilistic algorithm to select GM records based on spectral shape matching. To 

this end, a parameter is introduced to represent the spectral shape for which a hazard-consistent 

target will be developed using a probabilistic approach. The goal is then to select earthquake 

records whose spectral shapes, based upon the newly defined parameter, match those of the hazard-

consistent target.   

In order to study the relative consequences of GM records selected based on the newly 

defined parameter, namely the spectral shape, against those selected based on the common 

approach, namely response spectrum matching, a set of ductile and non-ductile reinforced concrete 
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(𝑅𝐶) buildings will be employed.  These structures, which vary in height, will be analyzed using 

the GM suites compiled using different methods through nonlinear response history analyses 

(𝑁𝑅𝐻𝐴𝑠) and incremental dynamic analyses (𝐼𝐷𝐴𝑠). These parametric studies are intended to 

unveil the effects of the two different GM selection strategies on estimate structural responses. 

4.3 A REVIEW OF PRIOR STUDIES 

4.3.1 Background  

Previous works on independently considering the spectral shape as a metric in ground motion 

selection are not many.  (Baker & Cornell, 2008) developed a vector-valued ground motion 

intensity measure metric consisting of other intensity measures such as spectral shape and also e 

(i.e. the number of standard deviations by which each of the record’s spectrum is away from the 

median target spectrum) in addition to spectral acceleration (𝑆𝐴𝑇) in order to see the effects on 

the uncertainty in structural demands. (Baker & Cornell, 2005) used a vector-valued intensity 

measure metric consisting of 𝑆𝐴𝑇 and epsilon (e) and concluded that failing to consider e which 

could be deemed as a proxy to spectral shape would underestimate the structural response, quite 

significantly. (Eads, et al., 2016) examined a set of different parameters that could represent the 

spectral shape and studied the effects on the collapse vulnerability of a given building with respect 

to those parameters. They showed that in case of using spectral acceleration at the fundamental 

period of the structure (𝑆𝐴𝑇1) as the 𝐼𝑀 representative, records causing collapse at lower 𝑆𝐴𝑇1′𝑠 

have a totally different spectral shape as opposed to others which wouldn’t cause collapse until 

way higher 𝑆𝐴𝑇1′𝑠.	(Kennedy, et	al. , 1984) studied relationship between 𝑆𝐴𝑇1 and an average- 

𝑆𝐴𝑇 for a lengthened period range with respect to the structural fundamental period , on nonlinear 

responses of structures. They concluded that when average-𝑆𝐴𝑇 is greater than 𝑆𝐴𝑇1, ground 
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motions would need less scaling beyond the yield level to cause certain ductility demand in the 

structure as opposed to those records with smaller average-𝑆𝐴𝑇. 

(Sewell, et al., 1996) showed that damage potential of a record would be related to specific 

parameters such as spectral breath and slope, etc. which are obtained from spectral amplitudes at 

various frequencies of interest. They also concluded that for those records which were scaled to 

have the same 𝑆𝐴𝑇1, damage potential could be due to the slope of the spectrum at the fundamental 

period (𝑇1). (Cordova, et al., 2000) considered 𝑆𝐴𝑇𝑠 at other periods longer than 𝑇1 in addition 

to 𝑇1  which ended up in reducing variability in structural demand response. (Vamvatsikos & 

Cornell, 2005) utilized one, two and three 𝑆𝐴𝑇𝑠 as well as a weighting sum average of 𝑆𝐴𝑇𝑠 

normalized by 𝑆𝐴𝑇1,	for a period range of interest, in order to study the effects on structural 

demand responses. (Haselton, et al., 2011) studied the effects of spectral shape based on response 

spectrum matching approach on collapse probability of various types of structure and proposed to 

use the epsilon (e) in lieu of the spectral shape. (Mousavi, et al., 2011) proposed another proxy to 

spectral shape called 𝜂 which is a linear combination of e’s based on 𝑆𝐴𝑇 and peak ground 

velocity. They showed that  𝜂 was more effective than e to predict the probability of collapse. 

(Bojórqueza & Iervolinob, 2011) concluded that using spectral shape as ratio of average 𝑆𝐴𝑇𝑠 in 

period interval of [𝑇1,2𝑇1], to 𝑆𝐴𝑇1 could reduce dispersion in demand response by almost 70% 

compared to using 𝑆𝐴𝑇1 alone. 

(Kohrangi, et al., 2017) employed a conditional 𝐼𝑀' target generation approach based on 

adoption of an average of multiple 𝑆𝐴𝑇s at various periods as the conditioning intensity measure 

(𝐼𝑀%) rather than a single conditioning 𝐼𝑀%. Ground motion records were subsequently selected to 

match the new conditioning target intensity measure (𝐼𝑀') and were utilized in 𝑁𝑅𝐻𝐴s of 

structures which ensured increased sufficiency and efficiency in estimation of the demands. 
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(Kohrangi, et al., 2016) adopted a vector-valued probabilistic seismic hazard approach using 

several scaler and vector intensity measures such as 𝑆𝐴𝑇𝑠, ratio of 𝑆𝐴𝑇𝑠, and average of 𝑆𝐴𝑇𝑠 for 

a certain period range, in order to study the seismic response of buildings which were molded 3-

dimentionally.  

4.3.2 The state of research   

Given a lack of state-of-the-art research on developing various metrices for ground motion spectral 

shape and considering its importance which was delineated in the handful number of works carried 

out in the past as reviewed in the previous section, the present study will try to shed some light on 

this topic. Hence, this research is proposed which is mainly based on (Chandramohan, 2016) who 

has developed a probabilistic framework to select ground motion earthquake records based on 

spectral shape and duration metrices. His work will be further extended, herein, by taking the 

spectral shape as an additional metric to 𝑆𝐴𝑇 at multiple periods, to form a vector-valued intensity 

measure (𝐼𝑀). The elements of this 𝐼𝑀 are assumed to be correlated and by defining the median, 

standard deviation of those elements and also the correlation coefficients between them, a 

multivariate distribution will be defined. It is worth noting that the multivariate distribution will 

be conditioned on a single 𝐼𝑀%, namely 𝑆𝐴𝑇1. 

Next, a desirable number of realization samples will be drawn from the multivariate 

distribution considering two sets of importance weight to be assigned to 𝑆𝐴𝑇 and spectral shape 

metrices during the selection phase. Accordingly, first ground motion records will be selected by 

assigning larger weights to 𝑆𝐴𝑇𝑠. Next, they will be selected with respect to spectral shape metric 

so that this time a larger weight will be assigned to that. Using the selected records based on the 

aforementioned strategies, a set of different types of structural analyses will be conducted (e.g.  
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𝑁𝑅𝐻𝐴𝑠 and 𝐼𝐷𝐴𝑠) to compare seismic demand responses of a range of different ductile and 

nonductile 𝑅𝐶 buildings. 

4.4 HAZARD-CONSISTENT GM SELECTION BASED ON SPECTRAL SHAPE 

 An algorithm is developed, herein, to select ground motion earthquake records to match a set of 

different hazard-consistent targets consisting of spectral shape as one of the intensity measure 

metrices (𝐼𝑀'). To this end, the work by Chandramohan (2016) is extended to form a multivariate 

distribution of a set of different 𝐼𝑀'′𝑠 including the spectral shape as an independent metric. The 

algorithm will then enable users to draw a desirable number of realization samples from the 

marginal distribution of each 𝐼𝑀'. Hence, an empirical cumulative distribution of these realizations 

for each 𝐼𝑀' , including the spectral shape, can be obtained. The algorithm will be equipped with 

a novel ground motion selection, scaling and modification tool as discussed in Chapter 2, in order 

to select earthquake records whose empirical distribution of various 𝐼𝑀'′𝑠 match those of the 

hazard-consistent target drawn from a multivariate distribution. By assigning a set of different 

importance weight factors to different 𝐼𝑀'′𝑠 including the spectral shape, one could select records 

with respect to different contents of an earthquake record.  

The 𝐼𝑀 vector representing the logarithmic of a set of different intensity measures (e.g. 

𝐼𝑀w, 𝐼𝑀�…)  is represented with 

 

 𝑙𝑛(𝐼𝑀) =

⎩
⎪
⎨

⎪
⎧
ln(𝐼𝑀w)
ln(𝐼𝑀�)

⋮
ln(𝐼𝑀��w)
ln(𝐼𝑀�) ⎭

⎪
⎬

⎪
⎫

. (4.1) 
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The distribution of each of the 𝐼𝑀' can be obtained from a respective ground motion prediction 

equation (𝐺𝑀𝑃𝐸) which can be represented with 

 

where µêë	(ghi)|mno
 and 𝜎êë	(ghi)|mno are the logarithmic median and standard deviation of the 

distribution and 𝑀|𝑅𝑢𝑝, 𝑅|𝑅𝑢𝑝 l and Θ|𝑅𝑢𝑝 are the magnitude, closest source-to-site distance and 

other site properties for a given rupture scenario, respectively. 

Given the provided information, the covariance matrix can be obtained as 

 

 

where, 

 

and, 

 

where 𝜌gh|mno  is the correlation coefficient matrix whose off-diagonal elements (e.g., 

𝜌(gh�,gh�)|mno) are the correlation coefficients between any given pair of  𝐼𝑀'′𝑠. 

 
µêë	(ghi)|mno

= 𝑓(𝑀|𝑅𝑢𝑝, 𝑅|𝑅𝑢𝑝, Θ|𝑅𝑢𝑝), 

𝜎êë	(ghi)|mno = 𝑔(𝑀|𝑅𝑢𝑝, 𝑅|𝑅𝑢𝑝, Θ|𝑅𝑢𝑝) 
(4.2) 

 Σêë	(gh)|mno = 𝜎êë	(gh)|mno𝜌gh|mno𝜎êë	(gh)|mno (4.3) 

 𝜎êë	(gh)|mno = Ã
𝜎êë	(gh�)|mno 0 0

0 ⋱ 0
0 0 𝜎êë	(gh�)|mno

Ä (4.4) 

 𝜌gh|mno =

⎣
⎢
⎢
⎡

1 𝜌(gh�,gh�)|mno ⋯ 𝜌(gh�,gh�)|mno
𝜌(gh�,gh�)|mno 1 ⋮ 𝜌(gh�,gh�)|mno

⋮ ⋮ ⋱ ⋮
𝜌(gh�,gh�)|mno 𝜌(gh�,gh�)|mno ⋯ 1 ⎦

⎥
⎥
⎤
 (4.5) 
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The conditional median vector consisting of the medians of different 𝐼𝑀'′𝑠 conditioning 

on an intensity measure (𝐼𝑀%), which is chosen to be 𝑆𝐴𝑇1 herein, can be derived as 

 

where µêë	(gh�)|mno , and 𝜎êë	(gh�)|mno, as an example, are the unconditional logarithmic median and 

standard deviation, obtained from Eq. (4.2) for a given rupture scenario; 𝜌(gh�,°�µw)|mno is the 

correlation between 𝐼𝑀w and 𝑆𝐴𝑇1 and 𝜀êë(°�µw), which is the number of standard deviations by 

which ln(𝑆𝐴𝑇1) of each record is away from µêë	(°�µw)|mno, is defined as 

 

Hence, the conditional covariance matrix can be derived as 

 

where Σêë	(gh)|mno is the diagonal variance matrix of 𝐼𝑀'′𝑠 for a given rupture and 𝑎êë	(gh)|mno is 

 

where 𝑎êë	(gh)|mnoµ  is the transpose of 𝑎êë	(gh)|mno . 

 µêë	(gh)|êë	(°�µw),mno =

⎩
⎪
⎨

⎪
⎧

µêë	(gh�)|mno + 𝜌(gh�,°�µw)|mno𝜀êë(°�µw)𝜎êë	(gh�)|mno
µêë	(gh�)|mno + 𝜌(gh�,°�µw)|mno𝜀êë(°�µw)𝜎êë	(gh�)|mno

⋮
µêë	(gh�(�)|mno + 𝜌(gh�(�,°�µw)|mno𝜀êë(°�µw)𝜎êë	(gh�(�)|mno
µêë	(gh�)|mno + 𝜌(gh�,°�µw)|mno𝜀êë(°�µw)𝜎êë	(gh�)|mno ⎭

⎪
⎬

⎪
⎫

 (4.6) 

 𝜀��(°�µw) =
ln	(𝑆𝐴𝑇1) − µêë	(°�µw)|mno

𝜎êë	(°�µw)|mno
 (4.7) 

 Σêë	(gh)|êë	(°�µw),mno = Σêë	(gh)|mno − 𝑎êë	(gh)|mno𝑎êë	(gh)|mnoµ (4.8) 

 𝑎êë	(gh)|mno =

⎩
⎪
⎨

⎪
⎧

𝜌(gh�,°�µw)|mno𝜎êë	(gh�)|mno
𝜌(gh�,°�µw)|mno𝜎êë	(gh�)|mno

⋮
𝜌(gh�(�,°�µw)|mno𝜎êë	(gh�(�)|mno
𝜌(gh�,°�µw)|mno𝜎êë	(gh�)|mno ⎭

⎪
⎬

⎪
⎫

 (4.9) 
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Having Eqs. (4.6) to (4.8), the conditional multivariate normal distribution of various 𝐼𝑀'′𝑠 

can be defined for a single rupture scenario. For multiple rupture scenarios, however, the 

aforementioned equations can be defined as 

 

where 𝑛mno is the number of rupture scenarios contributing to the hazard-consistent conditional 

intensity measure (e.g. 𝑆𝐴𝑇1)	for all the rupture cases and 𝑝� is the probability associated with 

each rupture scenario, which can be obtained from hazard disaggregation information. Moreover, 

the hazard-consistent covariance matrix for a combination of rupture cases can be defined as 

 

where 

 

4.4.1 An intensity measure for spectral shape  

𝑆𝐴m¨Â'Á, which is the ratio of the spectral acceleration at the first mode period to the average of 

spectral ordinates over a range of periods with an interval of [𝑇�ß,𝑇nß], is one of the metrics to 

 µêë	(gh)|êë	(°�µw) = l 𝑝�

��st

�vw

µêë	(gh)|êë	(°�µw),mno�  (4.10) 

 

Σêë	(gh)|êë	(°�µw)

= l 𝑝�

��st

�vw

)Σêë	(gh)|êë	(°�µw),mno�

+ Δµêë	(gh)|êë	(°�µw),mno�Δµêë	(gh)|êë	(°�µw),mno�
µ+ 

(4.11) 

 Δµêë	(gh)|êë	(°�µw),mno� = µêë	(gh)|êë	(°�µw),mno − µêë	(gh)|êë	(°�µw). (4.12) 
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represent the spectral shape, as was addressed in section 4.3.1 while reviewing previous studies. 

This metric is thus given by 

 

where 𝑇�ß, and 𝑇nß are the lower- and upper-bound periods, respectively; and 𝑇1 is the conditional 

period, which is often chosen to be the fundamental period of vibration of a given structure. 

𝑆𝐴¨©ª(𝑇�ß,𝑇nß), which is the geometric mean of spectral ordinates over a range of periods with a 

period interval of [𝑇�ß,𝑇nß], can be computed using 

 

which, in a logarithmic space, can be rearranged as 

 

Given these new terms, a new 𝐼𝑀' vector can be defined as 

 

 

 𝑆𝐴m¨Â'Á}𝑇1,𝑇�ß,𝑇nß� =
𝑆𝐴(𝑇1)

𝑆𝐴¨©ª(𝑇�ß,𝑇nß)
 (4.13) 

 𝑆𝐴¨©ª}𝑇�ß,𝑇nß� = «¬𝑆𝐴(𝑇')
�

'vw

­

w �½

 (4.14) 

 ln(𝑆𝐴m¨Â'Á) = ln}𝑆𝐴(𝑇1)� − w
�
∑ ln	(�
'vw 	𝑆𝐴(𝑇')). (4.15) 

 𝑙𝑛(𝐼𝑀) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
ln(𝑆𝐴𝑇w)
ln(𝑆𝐴𝑇�)

⋮
ln(𝑆𝐴𝑇�ß)

⋮
ln(𝑆𝐴𝑇�ß)

⋮
ln(𝑆𝐴𝑇��w)
ln(𝑆𝐴𝑇�) ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (4.16) 
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which can be reproduced after computing/adding the spectral shape metric (𝑆𝐴m¨Â'Á) over the 

period interval of [𝑇�ß,𝑇nß], as follows 

 

Eq. (4.17) can be represented using an affine function. That is, 

 

where A and b are defined as 

 

 

 ln(𝐼𝑀©º�ÂÁ|) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
ln(𝑆𝐴m¨Â'Á)
ln(𝑆𝐴𝑇w)
ln(𝑆𝐴𝑇�)

⋮
ln(𝑆𝐴𝑇�ß)

⋮
ln(𝑆𝐴𝑇nß)

⋮
ln(𝑆𝐴𝑇��w)
ln	(𝑆𝐴𝑇�) ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

. (4.17) 

 ln(𝐼𝑀©º�ÂÁ|)|ln	(𝑆𝐴𝑇1) = 𝐴𝑙𝑛(𝐼𝑀)|ln	(𝑆𝐴𝑇1) + 𝑏 (4.18) 

 𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0 0 … −1 𝑛⁄ −1 𝑛⁄ … −1 𝑛⁄ −1 𝑛⁄ … 0 0
1 0 … 0 0 … 0 0 … 0 0
0 1 … 0 0 … 0 0 … 0 0
0 0 … 1 0 … 0 0 … 0 0
⋮ ⋮ … ⋮ ⋮ … ⋮ ⋮ … ⋮ ⋮
0 0 … 0 0 … 0 0 … 1 0
0 0 … 0 0 … 0 0 … 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (4.19) 
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Given these, the conditional logarithmic median of 𝐼𝑀©º�ÂÁ| for a given rupture scenario 

is 

 

and the conditional covariance is 

 

The conditional logarithmic median and standard deviation for any given 𝐼𝑀' (e.g. 𝑆𝐴𝑇u) other 

than 𝑆𝐴m¨Â'Á  in the 𝐼𝑀©º�ÂÁ|, can be obtained using 

 

the conditional logarithmic median for 𝑆𝐴m¨Â'Á, which is the first element of 

µêë(gh²â�,ár)|êë	(°�µw),mno to be obtained from Eq. (4.21), can be defined as 

 𝑏 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑆𝐴𝑇1
0
⋮
0
⋮
0
⋮
0
⋮
0 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

. (4.20) 

 µêë(gh²â�,ár)|êë	(°�µw),mno = 𝐴µ��(gh)|êë	(°�µw),mno + 𝑏 (4.21) 

 Σêë(gh²â�,ár)|êë	(°�µw),mno = AΣ��(gh)|êë	(°�µw),mno𝐴µ. (4.22) 

 
µêë(°�µp)|êë	(°�µw),mno = µ��(gh²â�,ár)|êë	(°�µw),mno(𝑘) 

σêë(°�µp)|êë	(°�µw),mno = σ��(gh²â�,ár)|êë	(°�µw),mno(𝑘) 
(4.23) 
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and the conditional logarithmic standard deviation for that can be derived as follows, given that 

there is a correlation between the 𝑆𝐴𝑇 ordinates over which the 𝑆𝐴m¨Â'Á  is computed 

 

where all the σ terms are based on a given rupture scenario and are conditioned on ln	(𝑆𝐴𝑇1)—

e.g., σêë(°�µi) = σêë(°�µi)|êë	(°�µw),mno, and so on and so forth. The standard deviation matrix can 

then be derived as 

 

where, as before, all the σ terms are based on a given rupture scenario and are conditioned on 

ln(𝑆𝐴𝑇1)—e.g., σêë(°�µ�) = σêë(°�µ�)|êë	(°�µw),mno, or σêë(°��±,iá) = σêë(°��±,iá)|êë	(°�µw),mno  and 

so on and so forth. These terms were derived/defined previously. Having the covariance matrix as 

laid out in Eq. (4.22), the correlation coefficient matrix can be derived as follows 

 

 µêë(°��±,iá)|êë	(°�µw),mno = µêë(gh²â�,ár)|êë	(°�µw),mno(1) (4.24) 

 

σêë(°��±,iá)|êë	(°�µw),mno

= ¶l(
1
𝑛)

�σêë(°�µi)
� +l l 2 /

1
𝑛0 𝑐𝑜𝑣(ln

(𝑆𝐴𝑇'), ln}𝑆𝐴𝑇%�)σêë(°�µi)σêë}°�µk�

��w

%v'åw

�

'vw

�

'vw

 
(4.25) 

 σêë(gh²â�,ár)|êë	(°�µw) =

⎣
⎢
⎢
⎢
⎢
⎡
σêë(°�µ�) 0 0 0 0

0 σêë(°�µ�) 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 σêë(°�µp) 0
0 0 0 0 σêë(°��±,iá)⎦

⎥
⎥
⎥
⎥
⎤

 (4.26) 

 
𝜌(êë(°�µp),êë(°��±,iá)|êë	(°�µw),mno =

σêë(gh²â�,ár)|êë	(°�µw),mno
�w Σêë(gh²â�,ár)|êë	(°�µw),mnoσêë(gh²â�,ár)|êë	(°�µw),mno

�w . 
(4.27) 
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4.5 DRAWING REALIZATION SAMPLES AND GM SELECTION  

Given the conditional logarithmic median and standard deviation for each 𝐼𝑀', and also the 

correlation between various 𝐼𝑀'′𝑠, all of which derived in the preceding section, a multivariate 

normal distribution can be fitted into the 𝐼𝑀 vector. Moreover, the marginal distribution of each 

𝐼𝑀', considering its respective correlation with the rest of 𝐼𝑀'′𝑠, can be obtained. One then can 

draw any desirable number of samples from the marginal distribution of each 𝐼𝑀' following the 

procedure laid out down below. 

According to Bradley (2012), a two-level approach will be adopted herein to draw 

realization samples of each 𝐼𝑀' from the conditional multivariate distribution of various 𝐼𝑀'’s, 

which was defined in the previous section. This is done first by obtaining a random rupture 

(𝑅𝑢𝑝�¸'¹) from the disaggregation probability density function. Next, in order to draw samples 

from a multivariate distribution, first an uncorrelated standard normal random vector is defined 

(𝑢�¸'¹)  whose elements are drawn from a standard normal distribution, independently. Using this 

vector, the correlated vector can then be defined as 

 

where 𝐿 is the Cholesky decomposition of the correlation matrix, which is 

𝜌(êë(°�µp)|êë	(°�µw),mno,êë(°��±,iá)|êë	(°�µw),mno) = 𝐿𝐿µ. 

Using this, each of the realization sample for each 𝐼𝑀' can be obtained, as in 

 

where  𝑣'�¸'¹ = 𝑣�¸'¹(𝑖) is the i-th element in the 𝑣�¸'¹ vector, and 𝑅𝑢𝑝 = 𝑅𝑢𝑝�¸'¹. 

 𝑣�¸'¹ = 𝐿𝑢�¸'¹  (4.28) 

  (4.29) 

 𝑙𝑛𝐼𝑀'
�¸'¹ = µ��ghi|mno,êë	(°�µw)

+ 𝜎��ghi|mno,êë	(°�µw)𝑣'
�¸'¹ (4.30) 
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4.5.1 Record selection 

Once the properties of the hazard-consistent target distributions are obtained and the realization 

samples are drawn, a database of as-recorded GMs can be consulted to compile a suitable set. The 

aim is to select records for which the empirical distribution of various 𝐼𝑀'’s match those of the 

realization targets drawn from the multivariate target distribution, so that one can claim that the 

empirical multivariate distribution of the selected records for various 𝐼𝑀'’s matches those of the 

target. It is essential to note that, once a record is selected matching a realization target, that record 

will be removed from the database and will no longer be used.  

 To get started with this process, first, the entire records in the database should be scaled so 

that their response spectra at 𝑇1 match the conditioning 𝑆𝐴𝑇1, after restrictions on causal bounds 

have been applied. Note that, the value of 𝑆𝐴m¨Â'Á does not change with amplitude scaling, which 

can be easily inferred from Eq. (4.13). 

4.5.1.1 Scaling  

The amplitude scale factor is derived as follows 

 

 

where 𝑠𝑎𝑡1¹,n�¸�¨�º»  is the spectral acceleration at the fundamental period of the unscaled record. 

𝛼 is an integer, which, for intensity measures such as peak ground acceleration	(𝑃𝐺𝐴), peak 

ground velocity (𝑃𝐺𝑉), and spectral acceleration (𝑆𝐴) that scale linearly with amplitude scale 

factor, is set to 1 (Bradley, 2012). The 𝐼𝑀' for each record is, therefore, scaled using 

 𝑆𝐹¹ = /
𝑆𝐴𝑇1

𝑠𝑎𝑡1¹,n�¸�¨�º»0
w ¼½

 (4.31) 
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4.5.2 Selection algorithm 

The selection algorithm adopted herein is a least-squares approach suggested by (Bradley, 2012), 

which can be laid out as 

 

where, 

 

 

in which 𝑙𝑛𝐼𝑀'
�¸'¹ is the logarithmic 𝐼𝑀𝑖 of the realization target, 𝑙𝑛𝐼𝑀'

¹ is the logarithmic 𝐼𝑀𝑖 

of the record, and 𝜎��ghi|mno�ËiÌ,êë	(°�µw) is the logarithmic standard deviation of the realization 

target. 𝑤' is the normalized weight vector assigning importance weights to any desirable 𝐼𝑀'’s to 

be considered during the selection phase. Other terms have already been defined in the text. 

4.6 APPLICATIONS  

In this section, the effects of two different methods of GM selection to match the spectral shape 

will be discussed. One of these is the traditional spectrum matching approach where a number of 

ground motions are selected to match the response spectrum realization samples drawn from a 

 𝐼𝑀'
¹ = 𝐼𝑀'

¹,n�¸�¨�º»(𝑆𝐹¹)¼. (4.32) 

 𝑟¹,�¸'¹ = l 𝑤'

q��i

'vw
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¹
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2
�

 (4.33) 

 𝑆𝐹ÁoÂ'¹¨� = exp	
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 (4.34) 
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multivariate distribution of several 𝐼𝑀'’s (see Eq. 4.17). In the traditional spectrum matching 

approach, which is adopted herein, the ground motions (𝐺𝑀𝑠) are selected based on a generalized 

conditional intensity measure (𝐺𝐶𝐼𝑀) approach (see section 4.4), thereby they may still be deemed 

to have matched the spectral shape of the target response spectrum. That is because, based on the 

𝐺𝐶𝐼𝑀, ground motions records have all gotten the same 𝑆𝐴𝑇1 at the conditioning period (𝑇1). 

Moreover, they are selected such that the empirical multivariate distribution of their spectra match 

those of the 𝐺𝐶𝐼𝑀 theoretical target. As such, the effects of 𝜀 which can be deemed as one of the 

metrices representing the spectral shape of the ground motion records, has already been 

incorporated in defining the correlation coefficient matrix in the 𝐺𝐶𝐼𝑀 which is one of the key 

parameters in defining the theoretical multivariate distribution.  To render the difference between 

this method of spectral shape matching with another one, a second suite of earthquake records will 

be selected based on the procedure described in section 4.5. Accordingly, a GM suite will be 

selected whose empirical distribution of 𝑆𝐴m¨Â'Á matches the empirical target 𝑆𝐴m¨Â'Á  distribution 

of the realization samples drawn from a multivariate distribution, as described in section 4.5. To 

study the corresponding effects of these two different GM suites on the seismic responses of 

structures, various types of ductile and non-ductile reinforced concrete (𝑅𝐶) structures will be 

analyzed next.  

4.6.1 Ground motion records 

In order to select ground motion records, a hypothetical site in the city of Los Angeles, 𝐶𝐴 

(LONG−118.43; LAT34.053) with average shear-wave velocity for the upper 30	m depth of 

760	m/sec, and a depth to a 2.5	km/sec	shear-wave velocity horizon of 𝑧�.Þ = 	1	km, has been 

chosen. Hazard-consistency is enforced by considering a 2% probability of exceedance as the 

hazard level of interest for which the GM suites are selected. An 𝐼𝑀 vector consisting of only 𝑆𝐴𝑇 
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at multiple periods of vibration is adopted. The number of 𝑆𝐴𝑇𝑠 in the 𝐼𝑀 vector is set exactly the 

same as the number of 𝑆𝐴𝑇𝑠 for which hazard curves can be generated. Using the algorithm 

described in section 4.5, an 𝐼𝑀 vector corresponding to Eq. (4.17) is generated in which the 

intensity measures are 𝑆𝐴m¨Â'Á	and multiple 𝑆𝐴𝑇𝑠 at various periods of vibration, respectively. 

The period interval [𝑇�ß,𝑇nß] to compute the 𝑆𝐴m¨Â'Á  is chosen to be 𝑇�ß = 0.20𝑇1, 𝑇�ß = 3.0𝑇1 

where 𝑇1 is the fundamental period of vibration for the specimen structure, based on 

(Chandramohan, 2016) and (Eads, et al., 2016). 

Hereafter, following the algorithm described in section 4.5, two sets of earthquake records 

from the NGA-WEST2 database (Bozorgnia, et	al. , 2014) will be selected using a least-squares 

approach via Eq. (4.33). As such, one of the suites will be selected with more emphasis given to 

𝑆𝐴𝑇𝑠 by assigning a 99% weight factor to the 𝑆𝐴𝑇𝑠 at multiple periods of vibration, which is 

distributed evenly among them. The remainder weight, i.e. 1%, is assigned to the 𝑆𝐴m¨Â'Á . The 

other suite will be selected by reversing the weight factors. Note that the scale factor during this 

phase (e.g., 𝑆𝐹ÁoÂ'¹¨�) is set to 1, so no scaling is required in order to make sure no improvement 

is enforced with respect to the spectrum matching approach, thereby isolating the effect of the 

traditional spectral shape matching approach. As for the causal parameters, the magnitude range 

of 𝑀 = [5	, 8], the closest source-to-site distance of 𝑅%ß(𝑘𝑚) = [0	, 100] and the 𝑉 ¦à(𝑚 𝑠𝑒𝑐⁄ ) =

[300	, 1200] are adopted. The maximum scale factor is set to 4, and the number of records is set 

to 50. It is also worth noting that hazard-consistency is implemented by considering up to 2,000 

rupture scenarios and their contributions to the conditioning intensity measure. 

Figure 4.1(a) is response spectra of the records selected for a 4-story structure with 𝑇1 =

1.3	𝑠𝑒𝑐. A 99% weight factor was assigned to the 𝑆𝐴𝑇𝑠 in the 𝐼𝑀 vector which results in a perfect 

match with respect to the statistics of the selected records shown in green as compared with those 
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of the realization target shown in blue. Figure 4.1(b), on the other hand, shows a clear mismatch 

with respect to the other 𝐼𝑀', namely, the 𝑆𝐴m¨Â'Á, which is the direct result of smaller weight 

factor (1%) which was assigned to it during the selection phase. This record set is deemed as the 

set to have been selected based on the traditional spectral shape matching approach as it is 

common. 

                                      (a)                                                                             (b) 

 

Figure 4.1. (a) Response spectra of the records selected based on 99% weight factor assigned to  
𝑆𝐴𝑇𝑠. (b) Cumulative distribution of the 𝑆𝐴m¨Â'Á′𝑠 of the selected records based on 1% weight factor.                                                       

The second suite of earthquake records is selected by assigning 99% importance weight to  

𝑆𝐴m¨Â'Á. As such, 50 realization samples of 𝑆𝐴m¨Â'Á , whose empirical distribution is shown in blue 

in Figure 4.2(b), were drawn from the marginal target distribution of the 𝑆𝐴m¨Â'Á  —i.e., based on 

a generalized conditional intensity measure (𝐺𝐶𝐼𝑀) approach (Bradley, 2012)—, the way 

described in section 4.5. The dashed curves are the confidence bounds. Next, earthquake records 

were selected such that the distribution of their 𝑆𝐴m¨Â'Á′𝑠 , shown in black in Figure 4.2(b), matches 

that of the target. As can be seen, a perfect match has been attained since the emphasis was given 

to the 𝑆𝐴m¨Â'Á matching during the selection phase. As such, the statistics of the selected record’s 

spectra shown in green, in Figure 4.2(a), does not match those of the target shown in blue. 
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                           (a)                                                                              (b) 

 

Figure 4.2. (a) Response spectrum of the records selected based on 1% weight factor assigned to  
𝑆𝐴𝑇𝑠. (b) Cumulative distribution of the 𝑆𝐴m¨Â'Á′𝑠 of the selected records based on 99% weight factor.                                                       

These ground motions suites were presented just as an example, herein, and for the sake of 

saving the space, the reminder of ground motions suites selected for the 8- and 12- story buildings 

to be used in this study, are omitted.    

4.6.2 Ductile and Non-ductile reinforced concrete structures 

Three buildings of various heights—i.e., 4, 8, and 12 stories—are modeled assuming either a 

ductile or non-ductile behavior so six structures are simulated, in total. Degree of non-ductility is 

enforced by 
𝑉o
𝑉�6  where 𝑉o is the shear corresponding to development of probable moment 

strengths and 𝑉� is the nominal shear strength in accordance with ASCE/SEI 41-06 for low ductility 

demand. 
𝑉o
𝑉�6  is set to one for the non-ductile buildings to be used in this study. The fundamental 

periods of vibration for these three buildings are 𝑇1 = 1.30	𝑠𝑒𝑐, 𝑇1 = 1.80	𝑠𝑒𝑐 and 𝑇1 =

2.20	𝑠𝑒𝑐 for the 4-, 8- and 12-strory, respectively. The structures were modeled in OpenSees which 

is a finite element software and widely used for earthquake engineering simulations (McKenna, et 

al., 2000). 
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Properties of the ductile and no-ductile 𝑅𝐶 structures which are all modeled two-

dimensionally are taken from (Galanis, 2014). Figure 4.4 shows the schematics of these three 

buildings.  Figure 4.3 shows some of the elements and the material model which are utilized to 

simulate the ductile and non-ductile behaviors.  

                  (a)                                                                                    (b) 

 

 

Figure 4.3. (a) Ibarra backbone curve for the component model (b) zero length elements to be 
assigned to plastic hinges to simulate ductile and non-ductile behavior (in case of ductile members, the 

axial and shear springs are removed). Adopted from (Galanis, 2014). 

                                      (a)                                                                                 (b) 
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                                                                      (c) 

  

 

 

 

 

 

 

 

 

 

Figure 4.4. (a), (b) and (c) Schematic of a 4-, 8-, and 12-story building. 

 

Figure 4.3(a) shows the backbone curve to be assigned to various plastic hinges in different 

elements, shown in purple in Figure 4.4, for various buildings based on (Ibarra, et al., 2005). To 

simulate the ductile behavior, an element such as the one shown in Figure 4.3(b), but without the 

shear and axial springs, will be assigned to plastic hinges within different columns and beams 

across multi levels for various buildings. As per non-ductile behavior, the element shown in Figure 

4.3(b), including the shear and axial springs is assigned to plastic hinges whose properties to 

capture the shear and axial behavior are adopted from (Elwood, 2004). All the details regarding 

the structural elements being used in this study including the cross-sectional properties, definition 

of various parameters to be assigned to plastic hinges, and their properties both for simulating 

ductile and non-ductile behaviors have been adopted from (Galanis, 2014). 
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It is worth noting that given a very high computational cost of the nonlinear response 

history analyses for multiple suites of earthquake records as is the case for this study, a parallel 

computing approach is adopted. Therefore, all of the upcoming analyses are run on the 𝑋𝑆𝐸𝐷𝐸 

supercomputing facilities—more specifically, the Stampede2 platform—, which is managed by 

the University of Texas at Austin.  Stampede2 is a high-performance computational platform with 

12,000,000 node-hour capacity, which makes it suitable for this study. Figure 4.5 demonstrates the 

schematics of the job submission procedures and the configuration of the platform. Figure 4.6 

displays the algorithm utilized to run the required analyses on the Stampede2 platform.  

 

 

 

 

 

 

 

Figure 4.5. Schematic of the job submission process (e.g., batch submission) and the 
configuration of the supercomputing platform (adopted from https://portal.tacc.utexas.edu/user-

guides/stampede2). 
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Figure 4.6. The parallel computing algorithm adopted in this study. 

4.6.3 Analysis results 

All of the structural models discussed in section 4.6.2 will be analyzed using the two suites of 

earthquake records, to be selected separately for each building type, considering two methods of 

the spectral shape matching as discussed in section 4.6.1. Two types of engineering demand 

parameters (𝐸𝐷𝑃𝑠), namely the inter-story drift ratio (𝐼𝐷𝑅(%)) and the peak floor acceleration 

(𝑃𝐹𝐴) are set to be recorded for each 𝑁𝑅𝐻𝐴. Figure 4.7 displays the results of the 𝑁𝑅𝐻𝐴𝑠 on an 

8-story non-ductile building using a GM suite compiled by giving more emphasis to 𝑆𝐴m¨Â'Á  

during the selection phase. Note that, this is presented here only as an example. The statistics of 

the responses (shown in grey) for both 𝐼𝐷𝑅 and 𝑃𝐹𝐴—namely, the median, and the 16- and 84-

percentile are shown in red in both of the plots in Figure 4.7. Hereafter, these metrices will be used 

for comparison purposes. 
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                    (a)                                                                                    (b) 

 

Figure 4.7. (a) and (b) 𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) responses for a 8-story non-ductile building using a 
ground motions suite selected based on giving more emphasis to 𝑆𝐴m¨Â'Á during the selection phase. 

Figure 4.8 includes four plots which obtained by performing 𝑁𝑅𝐻𝐴𝑠 on a 4-story ductile 

and non-ductile RC structure using two different suites of earthquake records one of which selected 

based on the traditional spectral shape matching and the other one based on the 𝑆𝐴m¨Â'Á  matching 

approaches, which is a novel (and arguably more appropriate) method of spectral matching, as 

discussed in section 4.5. 

Figure 4.8(a) and Figure 4.8(b) show the comparison between the statistics of the 𝐼𝐷𝑅(%) 

obtained using the two different suites for a ductile and non-ductile building, respectively. Figure 

4.8(c) and Figure 4.8(d) present identical things, but for the 𝑃𝐹𝐴(𝑔). As can be observed from all 

of the figures, using a suite selected based on the  𝑆𝐴m¨Â'Á matching approach, imposes higher 

median and percentile demands (see the blue lines) both for the 𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔). This effect 

is more pronounced specially in the higher percentiles of the responses where the structure would 

already be in the nonlinear phase. Moreover, it can be found from Figure 4.8(a) and Figure 4.8(b) 

that using the suite selected based on the 𝑆𝐴m¨Â'Á  matching approach in comparison with the one 

selected based on the traditional spectral shape matching (see the red lines), intensify the demands 
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for the non-ductile case as opposed to the ductile one. It should also be noted from Figure 4.8 that, 

the soft story mode of failure seems to be dominant as the peak 𝐼𝐷𝑅(%) is at the first or second 

floor for the ductile and non-ductile scenarios, respectively.  

                                (a)                                                                               (b) 

 

                     (c)                                                                               (d) 

 

     Figure 4.8. (a) and (b) Comparison between the statistics of the 𝐼𝐷𝑅(%) obtained using the 
two different suites for a ductile and non-ductile 4-story building, respectively. (c) and (d) Comparison 

between the statistics of the 𝑃𝐹𝐴(𝑔) obtained using the two different suites for a ductile and non-ductile 
building, respectively.  

An identical task is performed on an 8-story 𝑅𝐶 building, considering both ductile and non-

ductile behaviors and using the two suites of earthquake records selected for a 8-story 𝑅𝐶 building. 
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Figure 4.9 shows the results. It is evident from the plots of various demands presented in Figure 

4.9 that the second ground motion set selected by giving more emphasis to 𝑆𝐴m¨Â'Á as the adopted  

metric of spectral shape, again imposes higher median and percentile demands (shown in blue) on 

the structure as opposed to the set selected based on the traditional way of spectral shape matching 

which is based on response spectrum matching (shown in red). This is more pronounced for the 

non-ductile building (shown in Figure 4.9(b)). However, the magnitude of this difference is not as 

high compared to the 4-story building. Moreover, it can be seen that that due to the contribution 

of the higher modes, the peak responses are shifted from the bottom floor to the upper ones which 

is in contrast with the 4-story.  
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Figure 4.9. (a) and (b) Comparison between the statistics of the 𝐼𝐷𝑅(%) obtained using the two 
different suites for a ductile and non-ductile 8-story building, respectively. (c) and (d) Comparison 

between the statistics of the 𝑃𝐹𝐴(𝑔) obtained using the two different suites for a ductile and non-ductile 
building, respectively. 

The last batches of analysis are carried out on a 12-story 𝑅𝐶 building considering both 

ductile and non-ductile behaviors and using the two suites of earthquake records selected for a 12-

story 𝑅𝐶 building. The differences between demands obtained using the record sets produced by 

two different methods of spectral shape matching seems to be declined significantly compared to 

the 4-store case and quite a bit compared to the 8-story. It seems that as the building height goes 

up, this difference becomes less pronounced. One of the reasons for that would be that, as the 

number of stories and therefore the fundamental period goes up and multiple modes of vibration 

starts to contribute, other ground motion attributes, other than spectral shape begin to participate 

in capturing the seismic demand responses of the structure.    

                                  (a)                                                                                    (b) 

   

0 0.5 1 1.5 2 2.5

Demand

1

2

3

4

5

6

7

8

9

10

11

12

Fl
oo

r

Non_Ductile

 Median_IDR_Spectral_Shape_matched(%)
 Median_IDR_SAT_matched(%)
16_percentile_IDR_Spectral_Shape_matched(%)
16_percentile_IDR_SAT_matched(%)
84_percentile_IDR_Spectral_Shape_matched(%)
84_percentile_IDR_SAT_matched(%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Demand

1

2

3

4

5

6

7

8

9

10

11

12

Fl
oo

r

Ductile

 Median_IDR_Spectral_Shape_matched(%)
 Median_IDR_SAT_matched(%)
16_percentile_IDR_Spectral_Shape_matched(%)
16_percentile_IDR_SAT_matched(%)
84_percentile_IDR_Spectral_Shape_matched(%)
84_percentile_IDR_SAT_matched(%)



` 107 

   (c)                                                                                    (d) 

 

Figure 4.10. (a) and (b) Comparison between the statistics of the 𝐼𝐷𝑅(%) obtained using the two 
different suites for a ductile and non-ductile 12-story building, respectively. (c) and (d) Comparison 

between the statistics of the 𝑃𝐹𝐴(𝑔) obtained using the two different suites for a ductile and non-ductile 
building, respectively. 
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level of shaking, one can potentially capture the state of structural collapse where for a small 

incremental increase in the level of shaking, the 𝐸𝐷𝑃 response increases quite significantly.  

Through performing the 𝐼𝐷𝐴, one can simulate the 𝐸𝐷𝑃 distribution for various levels of 

shaking from which the damage fragility functions can be obtained assuming a range of damage 

limit states using 

 

where, Φ represents a normal cumulative distribution, 𝑥 is a damage limit state, 𝜃 is the median 

demand which is the peak inter-story drift ratio, and 𝛽 is the logarithmic standard deviation of the 

peak inter-story drift ratio. The probability of collapse can also be obtained by fitting an empirical 

cumulative distribution function into the level of shakings causing the collapse (by setting the drift 

limit to 10%) assuming that all of the GMs in the suite have been scaled up to collapse. The 𝐼𝑀 

representing the level of shaking is often picked as 𝑆𝐴𝑇1. In order to scale the GMs in the suite to 

a higher level of 𝑆𝐴𝑇1, it is common to use an amplitude scaling factor approach, such that the 

𝑠𝑎𝑡1 of each of the record in the site is scaled to match the 𝑆𝐴𝑇1. 

 𝐼𝐷𝐴, which is based on the amplitude scaling of the earthquake records, does not make 

the earthquake records to be hazard-consistent for a given level of shaking to which the records 

have been scaled. This is the main drawback of 𝐼𝐷𝐴. In order to enforce the hazard-consistency 

for a level of shaking, other characteristics of the records—including frequency, duration, and 

cumulative characteristics —should also be hazard-consistent, instead of only being so for the 

spectral amplitude, as is the case with 𝐼𝐷𝐴.  

 Fragility =Φ Ê
ln	(𝑥 𝜃⁄ )

𝛽 Í (4.35) 
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To overcome this shortcoming of 𝐼𝐷𝐴, Baker (2015) introduced a new way to derive 

fragility functions using a technique called “multiple-stripe analysis.” According to this technique, 

a separate suite of hazard-consistent earthquake records is selected for each level of shaking. 

Although more efficient than 𝐼𝐷𝐴, this method has its own drawbacks. First, several suites of 

earthquake records need to be selected so that various states of damage can be captured, whereas 

in 𝐼𝐷𝐴 only one baseline suite is required. Second, some of the earthquakes in multiple suites for 

different levels of shaking would be repetitive as some earthquakes can be hazard-consistent at 

multiple levels of shaking. This introduces some inconsistency/redundancy into the outcomes and 

complicate the interpretation of PBSA outcomes.  

𝐼𝐷𝐴 is the method that is utilized throughout the present study. The baseline suites are 

selected according to section 4.6.1 with identical properties with the only difference in the hazard 

level. As such, a 50% probability of exceedance in 50 years is adopted as the hazard level and 

records are selected accordingly. As such, 25 earthquake records for each suite are set to be 

selected.  The earthquakes selected for this hazard level are usually not that intense, so through 

𝐼𝐷𝐴, and by scaling the records up, one can simulate various levels of structural damage quite 

accurately.  

Figure 4.11 presents the damage fragilities at different states of damage for various types 

of structures. These are obtained one at a time using 𝐼𝐷𝐴, and by utilizing two sets of earthquake 

records for spectral shape matching purposes based on different methods as explained before. 
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Figure 4.11. Comparison of damage fragilities for a range of damage limit states (𝐿𝑆 = 𝐼𝐷𝑅(%)) 
as indicated on the figures, obtained from 𝑆𝐴m¨Â'Á– based method of spectral shape matching, with the 
𝑆𝐴𝑇-based method of spectral shape matching for a (a) 4-, (b) 8- and (c) 12-story ductile building.  

From Figure 4.11(a), it is clear that using 𝑆𝐴m¨Â'Á–based method of spectral shape matching 

will estimate the structure to be more fragile at all of the damage limit states. However, as the 

damage limit states increases, the probabilities of damage become closer with respect to using two 

different methods of spectral shape matching for the baseline earthquake suites.  For the 8-story 

structure (see Figure 4.11(b)), this trend is reversed as the use of the 𝑆𝐴𝑇-based method of spectral 

shape matching produces more fragile curves compared to the other method (of spectral shape 

matching). Again, as the damage state increases, the difference in damage probabilities become 

less pronounced and the blue and red curves stand closer to each other.  
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Finally, for the 12-story structure as can be observed in Figure 4.11(c), for a very low level 

of damage where higher modes would not contribute much, the 𝑆𝐴m¨Â'Á-based method of spectral 

shape matching results in a higher damage probability (see blue curve at the damage limit state 

𝐿𝑆 = 𝐼𝐷𝑅(%) = 0.50). As the damage state increases, this trend gets reversed again, however, 

the difference between the damage fragilities obtained using two different ground motion suites 

are not that pronounced. 

For collapse fragilities, Figure 4.12 shows the collapse cumulative distributions for 

different structures using two different suites of earthquake records as the baselines.  Herein, the 

collapse limit state is set to be 𝐿𝑆 = 𝐼𝐷𝑅(%) = 10. It can be observed that 𝑆𝐴m¨Â'Á-based method 

of spectral shape matching results in a slightly higher collapse fragility (blue curve). However, the 

difference between the red and blue curves are not that pronounced. This corroborates the 

conclusions made in the preceding paragraphs with respect to reduction in the differences between 

damage fragilities using two different suites, as the damage limit state increases.  Moreover, at 

higher levels of damage, other attributes of the earthquake record other than the spectral shape 

begin to participate in capturing the seismic demand responses.   

It should again be emphasized that using 𝐼𝐷A, for the reasons discussed at the beginning 

of this section, is not the most accurate method, as only one suite of records is used throughout the 

entire process, and hazard-consistency is implemented by amplitude scaling alone. Using the 

multiple-stripe analysis method (Baker, 2015) would be more appropriate for this comparison. As 

such, the results obtained here may not be quite comparable with those of section 4.6.3 where a 

hazard-consistent sets of records had been selected.  
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Figure 4.12. Comparison of the probability of collapse obtained from 𝑆𝐴m¨Â'Á– based method of 
spectral shape matching, with the 𝑆𝐴𝑇-based method of spectral-shape matching for a (a) 4-, (b) 8- and 

(c) 12-story ductile building. 

4.8 CONCLUDING REMARKS  

A new GM selection algorithm was purposed to select ground motion earthquake records with 

emphasis on the spectral shape of the records. This method is based on defining a hazard-consistent 

target multivariate distribution for a vector of intensity measures including a new metric to 

represent the spectral shape. The marginal target distributions can ultimately be obtained by 
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considering the cross-correlations between different intensity measures, including the 

aforementioned new metric defining the spectral shape. A desirable number of realization samples 

can then be drawn from the marginal distribution of each intensity measure. Finally, ground motion 

earthquake records can be selected considering different sets of importance weight factors to be 

assigned to different intensity measures during the selection phase. Therefore, the records could 

be selected such that the distributions of their intensity measures match those of the corresponding 

target distributions of the realization samples. 

Accordingly, two sets of records were selected—one with respect to the new metric of 

spectral shape, and the other one based on the traditional spectral shape matching. A set of different 

types of ductile and non-ductile reinforced concrete structures have been adopted to study the 

effects of each of the selected earthquake suites on their seismic demand responses. It was 

concluded, in most cases, that the ground motion records selected based on the new spectral shape 

metric have a more destroying effect than those selected based on the traditional way.     

To study the probability of damage given a wide range of damage limit states including 

collapse, a set of incremental dynamic analyses were performed using two baseline suites of 

ground motions selected based on two different ways of spectral shape matching. It was concluded 

that as the damage state grows, the difference between the damage probability obtained using 

different earthquake records becomes less pronounced. As such, the collapse probability 

distributions have become quite identical.   
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5 EFFECTS OF GM SELECTION ON SEISMIC RESPONSES 

OF DUCTILE AND NON-DUCTILE REINFORCED 

CONCRETE STRUCTURES  

5.1 INTRODUCTION 

Earthquake hazard imposes a significant risk on the safety of our societies. Experiences with past 

earthquakes prove that, in regions where there hadn’t been a set of standards to consider the effects 

of earthquake on structures, consequences were devastating. Current seismic codes and provisions 

require all buildings constructed in any region to be designed for seismic loads in addition to 

gravity and other types of common loads. This is applied even to those places where seismic 

activities are not that pronounced where it is still necessary to apply a minimum seismic design 

requirement.  

There are many sources of uncertainties in almost all aspects of seismic analysis, design 

and evaluation of structures which need to be quantified and considered in subsequent analyses. 

One of the major sources of variability in structural seismic responses can be attributed to 

earthquake ground motion records. Hence, in order to analyze a structure for seismic activities, 

ground motions to be utilized should actually represent the seismicity of a given site where the 

structure is located. That means that ground motion records should actually be hazard-consistent. 

Structural modeling is another important task which needs to be rigorously carried out for seismic 

analyses of structures. To this end, both component and material modeling would play some role 

in capturing the seismic demand responses.  

There have recently been lots of progresses in the area of ground motion selection, scaling 

and modification. It is, therefore, very common to select a number of ground motion records (i.e. 
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a suite of earthquake records) rather than just a single record for the purpose of seismic analyses. 

It has also been known that in addition to the records in a suite, the methodology by which the 

suite itself is selected, would be a source of variability in the subsequent structural seismic 

responses. Hence, considering different ground motion selection criteria would end up with ground 

motion suites with different ground motion characteristics. As such, different types of structures 

would be sensitive to various earthquake characteristics and this would be a source of variability 

in seismic responses of structures which needs to be considered.  

5.2 SCOPE AND MOTIVATION  

Given recent advances in the area of probabilistic seismic hazard analysis, availability of databases 

of as-recorded ground motions and with the advent of new tools and methodologies to produce 

simulated (i.e. synthetic) earthquake records, seismic analysis and design of structures have 

become a much more mature task than would have been in the past. However, there is still a 

significant need for research works to be carried out specially in the area of ground motion 

selection, scaling and modification.  

It is known that depending on structural characteristics, different contents of earthquake 

records would have different effects on seismic responses of structures. Structures which were 

designed based on recent seismic standards which are known as code-conforming or ductile are 

known to be more sensitive to specific ground motion contents such as amplitude and frequency 

contents, so that the inertia effects of earthquakes would play a key role in capturing the seismic 

responses of these types of structure. Whereas, existing structures especially those which are older 

and wouldn’t have been designed based on rigorous seismic standards, would be sensitive to both 

amplitude- and cumulative-based contents of earthquakes. These structures which are known as 



` 116 

none code-conforming or non-ductile are of paramount importance in the field of performance-

based seismic risk assessments of structures. As such, failing to reevaluate the seismic performance 

of these types of structures based on the up-to-date seismic codes, would end up in devastating 

consequences in a real earthquake, which have been the case in many of the past earthquake events, 

due to significant damages that an earthquake could inflict on those types of structure.   

Performing a reliable and accurate performance-based seismic risk evaluation of structures 

requires knowledges with regard to both computer simulation of structures and also ground 

motions, to enable users to capture the actual responses of structures corresponding to several 

modes of vibration. Computer modeling of structures, whether ductile or non-ductile, requires 

various linear and nonlinear structural components which would be capable of simulating the 

actual behavior of a given structure. Picking properties of material models to be assigned to these 

components, whether using experimental data or by following available codes, would also be 

deemed key for an accurate seismic risk assessment.    

Given the importance of ground motion selection, scaling and modification in the area of 

seismic risk evaluation and design of both ductile and non-ductile, reinforced concrete (𝑅𝐶) 

structures, this study aims at shedding some more light on that area. To this end, not only the most 

recent advances in structural elements, and martial properties will be incorporated into the 

computer modeling (i.e. numerical simulation) of both ductile and non-ductile 𝑅𝐶 structures, but 

also a set of rigorous algorithms will be used for ground motion selection purposes to study the 

effects on the seismic performances of different structural systems. As such, the performance of 

various earthquake ground motion suites selected based on different criteria will be evaluated with 

respect to the statistical responses of different types of structures and appropriate conclusions will 

be drawn. 
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5.3 A REVIEW OF PRIOR STUDIES 

5.3.1 Background  

In recent years, there have been quite an extensive amount of studies on the area of efficiency and 

sufficiency of earthquake ground motion records to capture the seismic responses of structures in 

various modes of vibration. This has become even more common especially considering recent 

developments in the field of probabilistic seismic hazard assessment and ground motion selection 

using novel algorithms. As such, some of the most recent works on the effects of various ground 

motion selection criteria on the seismic performances of different structural systems will be 

reviewed. It is worth noting that, a compressive review along with developing a number of rigorous 

algorithms on ground motion selection, scaling and modification has already been conducted in 

Chapter 2.    

 (Baker & Cornell, 2008) developed a vector-valued ground motion intensity measure 

metric consisting of other intensity measures such as spectral shape and also e (i.e. the number of 

standard deviations by which each of the record’s spectrum is away from the median target 

spectrum) in addition to 𝑆𝐴𝑇, in order to see the effects on the uncertainty in structural demands. 

(Baker & Cornell, 2005) also used a vector-valued intensity measure metric consisting of 𝑆𝐴𝑇 and  

e, and concluded that failing to consider e which can be deemed as a proxy to spectral shape would 

underestimate the structural response, quite significantly. 

(Wong & Chopra, 2017) extended the generalized conditioning intensity measure (𝐺𝐶𝐼𝑀)  

approach, initially developed by (Bradley, 2010), to generate target distributions conditioned on 

two 𝐼𝑀%’s rather than one. The reason for this is that in most of nonlinear response history analysis 

(𝑁𝑅𝐻𝐴) cases, ground motions conditioned on a single 𝐼𝑀% would not have sufficient contents to 

excite a given structure in various modes of vibration especially as the structure undergoes some 
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level of damage and experiences changes in its fundamental period. Therefore, it would be 

necessary to select multiple suites of ground motions conditioned on multiple single 𝐼𝑀%’s which 

increases the computational costs, quite significantly. Using two or more conditioning 𝐼𝑀%’s, 

however, would require users to select only a single suite of earthquake records which would have 

sufficient contents to be able to capture the nonlinear behavior of structures in several modes of 

vibration.  

(Wong & Chopra, 2016) also compared various ground motion selection, scaling and 

modification procedures using conditioning spectrum (𝐶𝑆), initially developed by (Lin, et al., 

2013), and the 𝐺𝐶𝐼𝑀 to evaluate biases in the evaluation of the seismic hazard demand curves 

(𝑆𝐷𝐻𝐶𝑠) for a given structure at a specific site in comparison with a benchmark 𝑆𝐷𝐻𝐶. (Wong, 

et al., 2015) developed an algorithm to select unscaled ground motion records to evaluate	𝑆𝐷𝐻𝐶𝑠. 

(Wong, et al., 2015) used various methods to generate synthetic earthquake ground motion records 

to evaluate the effect of various ground motion selection and modification procedures on the 

𝑆𝐷𝐻𝐶𝑠.  

(Kohrangi, et al., 2017) employed a conditional 𝐼𝑀' target generation approach by adopting 

an average of multiple 𝑆𝐴𝑇s at various periods as 𝐼𝑀% rather than a single conditioning 𝐼𝑀%. 

Ground motion records were subsequently selected to match the new conditioning target 𝐼𝑀' and 

were utilized in 𝑁𝑅𝐻𝐴s of structures which ensured increased sufficiency and efficiency in the 

estimation of the seismic demands. (Kohrangi, et al., 2017) studied the degree of site influence 

with respect to the adopted conditioning 𝐼𝑀%,  on the seismic responses of structures. They 

concluded that using a single 𝐼𝑀%	as the conditioning intensity measure (𝐼𝑀) results in a significant 

variability in the seismic demand responses from site to site. In contrasts, using an average-𝐼𝑀% -
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i.e. average of 𝑆𝐴𝑇𝑠 at multiple periods- helps to decrease the variability in the seismic demands 

from site to site. 

(Wang, 2011) proposed a ground motion selection algorithm to select ground motions 

(𝐺𝑀𝑠) to match a target median, standard deviation and correlation matrix conditioned on specific 

causal properties. He concluded that ground motions selected based on this procedure are more 

efficient and sufficient in capturing the seismic demand responses. (Weng, et al., 2010) proposed 

a ground motion selection and scaling method to consider the dominant modes of vibration with 

regard to the structural seismic demand responses. To this end, they proposed a multi-mode ground 

motion scaling method to combine various seismic demand responses in different modes to 

compute the peak response.   

(Yang, et al., 2009) developed a rigorous performance-based methodology which considers 

seismic hazard, structural response, inflicted damage, and subsequent repair costs using a fully 

probabilistic approach. (Bradley, et al., 2015) utilized various methods of ground motion 

simulations instead of using the empirical ground motion prediction equations to generate a set of 

hazard-consistent synthetic records to study the seismic responses of engineered systems. (Tarbali, 

et al., 2018) investigated the effects of uncertainty in seismic hazard and ground motion selection 

methodologies, on the seismic responses of structures. (Shokrabadi & Burton, 2017) utilized a set 

of different intensity measures (𝐼𝑀𝑠) to study the effects on the dispersion of seismic responses of 

two different structural systems, namely, a controlled rocking steel braced frame system with self-

centering action and a rocking spine system for reinforced concrete infill frames.  

Chandramohan et al. (2016) studied the duration effects on the collapse capacity of both 

steel and 𝑅𝐶 structures by using a pair of spectrally-equivalent long- and short-duration ground 

motion records. Chandramohan et al. (2016) studied the duration effects of ground motions on the 
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seismic demands of various structural systems. As such, they used the 𝐺𝐶𝐼𝑀 methodology to select 

ground motions whose cumulative distributions of duration metrices match those of the hazard-

consistent target distributions. 

Cantagallo et al. (2014) used two different ground motion selection strategies, one based 

on the response spectrum matching and another one by minimizing the amplitude scaling 

procedure. They, then, studied the effects on the seismic demand responses of 𝑅𝐶 strcutrues. 

Araujo et al. (2106) studied the effects of various code-based ground motion selection criteria on 

the seismic responses of steel structures with emphasis on the efficiency of the selected records. 

(Champion & Liel, 2012) studied the effects of forward directivity on the collapse capacity of 𝑅𝐶 

structures using an incremental dynamic analysis (𝐼𝐷𝐴) approach. Haselton et al. (2011) studied 

the collapse risk of ductile 𝑅𝐶 special moment-frame structures considering various seismic design 

provisions. Raghunandan & Liel (2013) studied the collapse risk of 𝑅𝐶 structures by considering 

the duration effects of the GMs as well as various properties for the structures. They used an 𝐼𝐷𝐴 

approach to derive the probability of collapse for various structures. They concluded that 

considering the duration effect would increase the collapse risk. Liel et al. (2011) studied the 

collapse risk of non-ductile 𝑅𝐶 structures considering various seismic design provisions. 

Raghunandan et al. (2015) studied the effects of subduction earthquakes (as compared to crustal 

earthquakes) on the probability of collapse of non-ductile 𝑅𝐶 structures. 

5.3.2 The state of research   

The main goal of this research is to compare the effects of various ground motion suites selected 

based on different methodologies, on the seismic demand responses of both ductile and non-ductile 

𝑅𝐶 structures. These methodologies which are based on the algorithms developed in Chapter 2, 

can produce different hazard-consistent conditioning target 𝐼𝑀'′𝑠 by using some sampling 
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methods to be applied to draw 𝐼𝑀'	realization samples from the multivariate distribution of various 

𝐼𝑀'′𝑠 assuming a single-, double- and multiple-𝐼𝑀%. Ground motions will then be selected from a 

database of earthquake ground motion records considering a variety of importance weighs to be 

assigned to different 𝐼𝑀'′𝑠 during the selection phase. As such, numerous suites of ground motions 

will be selected with an emphasis on several characteristics of earthquake records ranging from 

amplitude- to cumulative- and duration-based characteristics.  

In order to study the impacts of the aforementioned earthquake suites on the seismic 

responses of  𝑅𝐶 structures, a set of different ductile and non-ductile 𝑅𝐶 structures with a varying 

height will be modeled in OpenSees. These structures will then be analyzed using various ground 

motion suites and the statistics of the demand responses will be determined.  A set of different 

comparisons will be made with respect to different parameters, namely, the conditioning 𝐼𝑀%′𝑠, 

the 𝐼𝑀' importance weight factors, various engineering demand parameters (𝐸𝐷𝑃𝑠), type of 𝑅𝐶 

buildings, and the specimen buildings’ height. The appropriateness of various ground motions 

suites will accordingly be evaluated and discussed.   

5.4 APPLICATIONS  

5.4.1 Ductile and Non-ductile reinforced concrete structures 

Three buildings of various heights—i.e., 4, 8, and 12 stories—are modeled assuming either a 

ductile or non-ductile behavior so six structures are simulated, in total. Degree of non-ductility is 

enforced by 
𝑉o
𝑉�6  where 𝑉o is the shear corresponding to development of probable moment 

strengths and 𝑉� is the nominal shear strength in accordance with ASCE/SEI 41-06 for low ductility 

demand. 
𝑉o
𝑉�6  is set to one for the non-ductile buildings to be used in this study. The fundamental 
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periods of vibration for these three buildings are 𝑇1 = 1.30	𝑠𝑒𝑐, 𝑇1 = 1.80	𝑠𝑒𝑐 and 𝑇1 =

2.20	𝑠𝑒𝑐 for the 4-, 8- and 12-strory, respectively. The structures were modeled in OpenSees which 

is a finite element software and widely used for earthquake engineering simulations (McKenna, et 

al., 2000). 

Properties of the ductile and no-ductile 𝑅𝐶 structures which are all modeled two-

dimensionally are taken from (Galanis, 2014). Figure 5.2 shows the schematics of these three 

buildings.  Figure 5.1 shows some of the elements and the material model which are utilized to 

simulate the ductile and non-ductile behaviors. 

 

                             (a)                                                                            (b) 

 

Figure 5.1. (a) Ibarra backbone curve for the component model (b) zero length elements to be 
assigned to plastic hinges to simulate ductile and non-ductile behavior (in case of ductile, the axial and 

shear springs are removed). (Adopted from (Galanis, 2014)). 
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                                      (a)                                                                                 (b) 

                                                                      (c) 

  

  

 

 

 

 

 

 

 

 

 

Figure 5.2. (a), (b) and (c) Schematic of a 4-, 8-, and 12-story building. 

Figure 5.1(a) shows the backbone curve to be assigned to various plastic hinges in different 

elements, shown in purple in Figure 5.2, for various buildings based on (Ibarra, et al., 2005). To 

simulate the ductile behavior, an element such as the one shown in Figure 5.1(b), but without the 

shear and axial springs, will be assigned to plastic hinges within different columns and beams 
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across multi levels for various buildings. As per non-ductile behavior, the element shown in Figure 

5.1(b), including the shear and axial springs is assigned to plastic hinges whose properties to 

capture the shear and axial behavior are adopted from (Elwood, 2004). All the details regarding 

the structural elements being used in this study including the cross-sectional properties, definition 

of various parameters to be assigned to plastic hinges, and their properties both for simulating 

ductile and non-ductile behaviors have been adopted from (Galanis, 2014). 

It t is worth noting that given a very high computational cost of the nonlinear response 

history analyses for multiple suites of earthquake records as is the case for this study, a parallel 

computing approach is adopted. Therefore, all of the upcoming analyses are run on the 𝑋𝑆𝐸𝐷𝐸 

supercomputing facilities—more specifically, the Stampede2 platform—, which is managed by 

the University of Texas at Austin.  Stampede2 is a high-performance computational platform with 

12,000,000 node-hour capacity, which makes it suitable for this study. Figure 5.3 demonstrates the 

schematics of the job submission procedures and the configuration of the platform. Figure 5.4 

displays the algorithm utilized to run the required analyses on the Stampede2 platform.  

 

 

 

 

 

 

Figure 5.3. Schematic of job submission process (e.g. batch submission) and the configuration for 
the platform. (Adopted from https://portal.tacc.utexas.edu/user-guides/stampede2). 
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Figure 5.4. The parallel computing algorithm adopted in this study. 

5.4.2 Ground motions  

The ground motion suites to be used for the subsequent structural analyses, are briefly described 

here. The full list of ground motion suites and more detailed information with regard to the 

algorithms these ground motions have been selected based upon, can be found in Chapter 2.  

First, 𝐼𝑀' = {𝑆𝐴(𝑇), 𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575,𝐷𝑠595}	is set as the target 𝐼𝑀'	intensity measure 

vector where 𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575 and 𝐷𝑠595 are defined as, arias intensity, cumulative absolute 

velocity, 5-75%, and 5-95% significant durations, respectively. For computation of 𝑆𝐴(𝑇), 21 

different periods identical to those for which hazard curves can be generated, have been chosen. 

The goal would, then, be to select ground motion records with matching contents as those in the 

target 𝐼𝑀' vector. 

In order to select ground motion records, a hypothetical site in the city of Los Angeles, 𝐶𝐴 

(LONG−118.43; LAT34.053) with average shear-wave velocity for the upper 30	m depth of 

760	m/sec , and a depth to a 2.5	𝑘𝑚/sec	shear-wave velocity horizon of 𝑧�.Þ = 	1	𝑘𝑚, is chosen. 
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Using the relationships developed in Chapter 2, a set of different ground motion earthquake suites 

are selected based on different conditioning criteria and 𝐼𝑀' importance weight factors. Hence, 

various suites selected based on giving different weights to different 𝐼𝑀'’s in the 𝐼𝑀' vector. As 

such, weight factors of 70%	, 99%, 1% for the 𝑆𝐴𝑇𝑠, and consequently weight factors of 

30%	, 1%, 99% for the non-𝑆𝐴𝑇𝑠 are considered. The weights to be assigned to either of 𝑆𝐴𝑇 or 

non-𝑆𝐴𝑇 intensity measures are evenly distributed among all of them during the selection phase. 

Hence, the sum of the 𝑆𝐴𝑇 and non-𝑆𝐴𝑇 weights equals one. A separate ground motions suite is 

also selected solely based on the duration as an independent metric considering an interval of 

𝑇(𝑠𝑒𝑐) = [40	, 300].  As for causal parameters, the magnitude range of 𝑀 = [5	, 8],  the closest 

source-to-site distance of 𝑅%ß(𝑘𝑚) = [0	, 100], and the 𝑉 ¦à(m/sec) = [300	, 1200] are adopted. 

The maximum scale factor is set to 4. It is also worth noting that hazard-consistency is 

implemented by considering up to 2,000 rupture scenarios and their contribution to different types 

of conditioning intensity measures. 

5.4.2.1 An example of selected ground motion suites  

In this section, some of the information related to the selected ground motion suites conditioned 

on a single, two and multiple conditioning intensity measures (𝐼𝑀%′𝑠) based on 1% 𝑆𝐴𝑇 and 99% 

non-𝑆𝐴𝑇 weigth factors is provided for a 8-story structure, just as an example. The structural 

fundamental period is 𝑇1 = 1.80	sec. Hence, the 𝐼𝑀% is turned out to be 𝑆𝐴(𝑇1 = 1.80	sec) 

throughout this study, which will be derived from the hazard curve for a 2% probability of 

exceedance in 50 years.   
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                                            (a)                                                                  (b)                                                                         

 

         

                                                                                    

                                                                                                                                                     

                                

                                   

                               (c)                                                                 (d)                                                                                 

  

 

 

 

 

 

                                            (e)                                                                  (f)                                            

 

 

 

 

 

Figure 5.1. (a), (c), and (e) Response spectra of the selected records for a single-, two-, and 
multiple-	𝐼𝑀% . (b), (d) and (f) empirical distribution of 𝐷𝑠575, 𝐶𝐴𝑉, and		𝐴𝐼 for the selected records. 

When it comes to multiple conditioning 𝐼𝑀%′𝑠, the lower and upper bound coefficients of 

0.20 and 3.0 were, respectively, applied to derive 𝐼𝑀%w and 𝐼𝑀%� based on (Eads, et al., 2016) and 
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(Chandramohan, 2016). Thus, 𝑇1, 𝑇2 were set to 0.40	sec and 5.0	sec , respectively. Hence, 𝐼𝑀%w 

and 𝐼𝑀%� are turned out to be 𝑆𝐴(𝑇 = 0.4	𝑠𝑒𝑐)	and	𝑆𝐴(𝑇 = 5.0	𝑠𝑒𝑐) , respectively. Using the 

algorithm described in Chapter 2, 50 earthquake records from the NGA-WEST2 database 

(Bozorgnia, et	al. , 2014) are selected based on various conditioning criteria. (see Figure 5.5) 

As observed in Figure 5.5, since more emphasis was given to the non-𝑆𝐴𝑇 intensity 

measures during the selection phase, it is clear from the figures (e.g. ,Figures 5.5(b), 5.5(d), 5.5(f)) 

that the ground motions are richer in cumulative- and duration-based contents with respect to the 

hazard-consistent targets as opposed to amplitude-based contents, as can be observed from the 

response spectra (e.g., Figures 5.5(a), 5.5(c), 5.5(e)). It is worth noting that on all of the plots 

presented in Figure 5.5, the grey curves represent the response spectra of the selected records, the 

green curves are the statistics of the selected record’s spectra, the blue curves are the statistics of 

the realizations drawn from a generalized conditioning intensity measure (𝐺𝐶𝐼𝑀)	(shown in red) 

for which the matching records (gray curves) have been selected, and the red curves are the 

statistics of the theoretical target distribution obtained using the 𝐺𝐶𝐼𝑀 approach as described in 

Chapter 2. Finally, the black curves (in the 𝐶𝐷𝐹 plots) are the cumulative distributions of the non-

𝑆𝐴𝑇 intensity measures which belong to the selected records.  

Figure 5.5 is presented, herein, just an example of the ground motion suites that will be 

used for the subsequent structural analyses, and the rest of them (for example those that are selected 

based on different importance weight factors, etc.) are omitted here for the sake of brevity but can 

be found in Chapter 2.    

As per the reason why various conditioning criteria are picked, a brief description is 

provided herein. As it is known, selecting GMs matching a uniform hazard spectrum (𝑈𝐻𝑆) is 

deemed to be overly conservative. The 𝑈𝐻𝑆 is obtained directly from hazard curves for various 
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𝑆𝐴𝑇𝑠 over a range of periods. All the ordinates of	𝑈𝐻𝑆 are, therefore, hazard-consistent and have 

the same return period. In reality, few as-recorded earthquakes can produce a response spectrum 

which is hazard-consistent at all periods without applying unrealistic amplitude scaling. One way 

to mitigate this problem is to choose the target response spectrum to be hazard-consistent only at 

specific ordinates of the spectrum instead of all.   

A quick comparison of median response spectra obtained using various conditioning 

methods can be seen in Figure 5.6, which is obtained for a hypothetical site in the city of Los 

Angeles, CA (LONG−118.43; LAT34.053) with average shear-wave velocity for the upper 30	m 

depth of 760	m/sec , and a depth to a 2.5m/sec	shear-wave velocity horizon of 𝑧�.Þ = 	1	km. The 

structural fundamental mode period is set to 𝑇1 = 1	sec. 

 

 

 

 

 

 

 

Figure 5.6. Comparison of median spectra obtained from various methods of conditioning target 
generation, with the target spectrum obtained based on 𝑈𝐻𝑆. 

As it can be observed from this figure, selecting earthquake records matching the 𝑈𝐻𝑆 

target spectrum (shown in black) will result in a very conservative set of records, simply because 

these records are going to be very intense at the entire set of structural periods of vibration.  On 

the other hand, the response spectrum obtained from the new methods proposed earlier, as well as 

the response spectrum using an unconditional approach, all fall below the 𝑈𝐻𝑆 at most period 
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values. However, record selection based on an unconditional approach is highly non-conservative 

and produces hazard-inconsistent	𝑆𝐴𝑇𝑠 for any period of vibration, and therefore it is not 

recommended. The target conditioned on a single intensity measure (shown in red) produces a 

target that is hazard-consistent at a single	𝐼𝑀%	(i.e. 𝑆𝐴𝑇 = 1	sec) and falls below 𝑈𝐻𝑆 at all of the 

other 𝑆𝐴𝑇𝑠. Here, it can be argued that records selected matching this target spectrum may not be 

sufficient if the structure goes into a highly nonlinear phase. Therefore, one would have to repeat 

this process for a few times to generate conditional targets using new 𝐼𝑀%′𝑠 each time, which then 

increases the computational burden significantly.  

Selecting records matching a target to be hazard-consistent over a range of conditioning 

periods—which has been the case for the proposed two-𝐼𝑀% and multiple-𝐼𝑀% methods—seems to 

have mitigated the aforementioned problems. As it can be observed in Figure 5.6, the target 

spectrum conditioned on two-𝐼𝑀% (shown in green) intercepts the 𝑈𝐻𝑆 over a range of periods 

between 𝐼𝑀%w and 𝐼𝑀%�— here, 𝑆𝐴𝑇(𝑇 = 0.2sec)	 and 𝑆𝐴𝑇(𝑇 = 3.0sec), respectively—, which 

necessarily brackets and includes 𝑆𝐴𝑇1	(𝑆𝐴𝑇 = 1.0	𝑠𝑒𝑐). Thus, the selected records matching this 

target will have sufficient intensity to excite the structure at its many modes (controllable by 

selecting the 𝐼𝑀%w and 𝐼𝑀%�) rather than only 𝑇1. This, then, obviates the use of multiple suites, 

thereby reducing the computational burden significantly.  

The records selected based on multiple-𝐼𝑀% conditioning (shown in cyan in Figure 5.6) 

produces but a more intense spectrum at a lower vibration periods than other methods, but a less 

intense spectrum around 𝑆𝐴𝑇1, eventually diminishing into the unconditional spectrum at longer 

periods. 
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5.4.3 Structural analysis results  

Given the variety of GM selection algorithms described briefly in the previous section, a 

comprehensive range of nonlinear response history structural analyses (𝑁𝑅𝐻𝐴𝑠) are performed 

on the cloud and various comparisons are made with respect to multiple sets of importance weights 

assigned to both 𝑆𝐴𝑇 and non-𝑆𝐴𝑇	intensity measures, different methods of conditioning, and 

finally various structural systems (see section 5.4.1). As such, once a 𝑁𝑅𝐻𝐴 is carried out on a 

structural system using a GM suite, the results will be post-processed just like what can be seen in 

Figure 5.7. In this figure, the gray curves are the results from the entire 𝑁𝑅𝐻𝐴𝑠 using the records 

in the suite. Hence, the statistics of both the inter-story drift ratio (𝐼𝐷𝑅) and peak floor acceleration 

(𝑃𝐹𝐴)—namely, the median, 16- and 84 percentiles—will be estimated, which are shown in red 

in both of the plots in Figure 5.7. Hereafter, these metrices will be used for comparison purposes. 

                            (a)                                                                                           (b) 

 

Figure 5.2. (a) and (b) 𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) responses for a 8-story non-ductile building using a 
ground motions suite. 

5.4.3.1 Effects of importance weight factors 

In this section, the effects of varying importance weight factors to be assigned to both 𝑆𝐴𝑇 and 

non-𝑆𝐴𝑇 intensity measures, on different engineering demand parameters (𝐸𝐷𝑃𝑠) for various 

types of structural systems, will be investigated. Hence, a set of different weight factors as 
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mentioned in section 5.4.2 will be adopted to study the effects of the amplitude-, frequency-, 

cumulative-, and duration-based characteristics of the earthquake records on the statistics of the 

structural 𝐸𝐷𝑃𝑠. 

5.4.3.1.1 Ductile reinforced concrete (𝑹𝑪) structrues   

This section will study the effects of varying importance weight factors on the statistics of the 

𝐸𝐷𝑃𝑠 for ductile 𝑅𝐶 structures with varying heights.  

Figure 5.8. demonstrates the median (solid lines) and 16th and 84th percentiles (dashed 

lines) of 𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 4-story ductile 𝑅𝐶 structure. The basis of comparisons, herein, 

is in accordance with different sets of importance weight factors. Hence, comparing the effects of 

records selected based on different conditioning algorithms on the statistics of the responses will 

be discussed in another section. 

                       (a)                                                                                 (b)        

 

Figure 5.3. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 4-story ductile 𝑅𝐶 structure. 

From Figure 5.8(a), it can be observed that giving more emphasis to the cumulative 

characteristics of the records during the selection phase underestimated the response with respect 

to both of the median and percentiles (see the blue curves). That makes sense as the structure is 
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ductile or code-conforming, thereby it is not supposed to undergo large nonlinear deformation and 

therefore the response will mostly be governed by the inertia effects of the records. Hence, the 

records with more inertia- or amplitude-based contents should perform better in capturing the 

actual response of this structure. This can be clearly observed in Figure 5.8(a) as the median as 

well as the percentile responses of 𝐼𝐷𝑅(%) are all capped by the red curves which are obtained 

using the records where the majority of emphasis or weight was given to their amplitude-based 

contents during the selection phase. This is also clear from the black curves in Figure 5.8(a) for 

which the underlying records were selected by giving the majority of weights (i.e. 70%) to their 

amplitude-based contents, which stands in the second place after the red curves in capturing the 

response. The effects of selected records with emphasis on duration given an interval of 𝑇(𝑠𝑐) =

[40	, 300], on the	𝐼𝐷𝑅(%)  response can also be seen in Figure 5.8(a) (see green curves). 

Although, it appears that the records selected based, solely, on a duration interval have been able 

to capture the actual responses as accurate as the red and black curves, the results, herein, would 

be affected by an insufficient number of records with long durations available in the 𝑁𝐺𝐴 −

𝑊𝐸𝑆𝑇2 database. Besides, since the records were selected only by setting bounds on the duration, 

it is suspected that the records could be rich in amplitude-based contents as well which would 

magnify the responses.  It is, however, worth mentioning that a hazard-consistent effect of duration 

has also been incorporated into the ground motion selection phase as the significant duration was 

set as one of the 𝑛𝑜𝑛 − 𝑆𝐴𝑇 intensity measures. Given that, giving more weight to this metric 

during the record selection phase does not seem to be effective in capturing the drift as can be seen 

from the blue curves in Figure 5.8(a) which was discussed earlier as well.  

𝑃𝐹𝐴(𝑔) is another very important 𝐸𝐷𝑃 which is considered in this study. Figure 5.8(b) 

shows the variation of 𝑃𝐹𝐴(𝑔) with respect to different sets of weight factors during the record 
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selection phase. Comparing the median 𝑃𝐹𝐴(𝑔) demands shows that records selected based on 

different weight factors resulted in almost identical median 𝑃𝐹𝐴(𝑔) demands. However, at the 

84th percentile, giving more weights to non-	𝑆𝐴𝑇 contents, results in a larger demand as can be 

seen from the dashed blue curve. The reason why this record set estimates the largest of  𝑃𝐹𝐴(𝑔), 

among all of the other methods could be attributed to its contents which have imposed more 

variability on the structural response. 

A similar type of analysis was performed on a 8-story ductile 𝑅𝐶 structure for which 

sample results are provided in Figure 5.9 

    (a)                                                                                      (b) 

 

 

 

 

 

 

 

Figure 5.4.  (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 8-story ductile 𝑅𝐶 structure. 

Figure 5.9(a) includes the statistics of the 𝐼𝐷𝑅(%) which shows that variation in weight 

factors did not significantly affect the median response as the demands are very close. Hence, the 

red and black curves which are the 𝐼𝐷𝑅(%) obtained using records where most of emphasis was 

given to 𝑆𝐴𝑇 contents during the selection phase, are slightly larger than the rest. The duration-

based set whose associated 𝐼𝐷𝑅(%) response shown in green seems to impose the smallest 

response among all. However, by looking at other percentiles of the response shown with dashed 
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curves, especially the 84th percentile on the far-right hand side of the graph, there is a more sensible 

variation in the responses obtained by using different record sets with various weight factors.  This 

proves that as the 𝐼𝐷𝑅(%) level increases and the structure begins to experience some level of 

damage, in other word as the structure goes into the nonlinear phase, the effects of different weight 

factors stand out and various earthquake record attributes begin to contribute.  

Similar conclusions can too be drawn for 𝑃𝐹𝐴(𝑔) as compared with 𝐼𝐷𝑅 . Hence, as can 

be observed in Figure 5.9(b) the median 𝑃𝐹𝐴 obtained using various sets of records with different 

weight factors are identical for most of the sets expect for the one which had been selected solely 

based on a duration interval. The underlying reasons for this have already been discussed. At the 

84th percentile, though, there is a variation as the structure undergoes a larger level of deformation.  

Similar types of analysis were carried out on a 12-story ductile 𝑅𝐶 structure for which the 

results are presented as follows. 

                                    (a)                                                                                  (b) 

 

 

 

 

 

 

 

Figure 5.5. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 12-story ductile 𝑅𝐶 structure. 

Looking at the median drift and acceleration plots in Figures 5.10(a) and (b), one could 

notice that as the height of structure increases, the effects of different weight factors do not play a 
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tangible role especially for code-conforming structures where median demands are not that high. 

Once the structure starts going into the nonlinear phase and multiple modes of vibration begin to 

contribute, this trend starts to change and there is a variation in the demand responses as can been 

seen in the 84th percentiles of both plots shown with dashed curves on the far right-hand side of 

the graphs. Moreover, it is worth noting that by looking at the median 𝐼𝐷𝑅, the ground motion 

records with more cumulative characteristics impose a larger demand compared to other sets (see 

blue curve in Figure 5.10(a)). This difference is not that noticeable, though, as all of the sets impose 

identical demands.  Lastly, in Figure 5.10(b) just like for the 4- and 8-story, the records selected 

with higher weights assigned to 𝑛𝑜𝑛 − 𝑆𝐴𝑇s predict the largest 84th percentile in 𝑃𝐹𝐴(𝑔) 

demands. This is specifically more noticeable from the blue curve in the 84th percentile of Figure 

5.10(b).  

5.4.3.1.2 Non-Ductile reinforced concrete (𝑹𝑪) structrues   

A similar type of analysis which was carried out for the ductile 𝑅𝐶 structures, will be conducted 

for the non-ductile 𝑅𝐶 structures, herein, and the results will be presented. Figure 5.11 

demonstrates the outcomes for a 4-story non-ductile 𝑅𝐶 structure. 

                                  (a)                                                                                (b) 
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Figure 5.6. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 𝐼𝐷𝑅(%) and 
𝑃𝐹𝐴(𝑔) for a 4-story non-ductile 𝑅𝐶 structure. 

From Figure 5.11(a) and by looking first at the median responses (i.e. solid curves), it can 

clearly be observed that the record selected based on restricting the duration by setting a duration 

interval, has imposed the largest demand (see the green curve). That makes sense as in non-ductile 

structures, damage will be accumulated at lower level of drift so given the shear and axial failure 

in columns and generation of plastic hinges in various elements, the long-duration records would 

impose more severe damage due to continuous deterioration in various structural elements. 

Moreover, other records selected by giving emphasis to different contents of earthquake records 

have pretty much produced identical median responses, however, it can still be observed that 

records with more cumulative- and duration-based characteristics (see the blue and black curves) 

have produced a larger median demand compared to those which were solely selected based on 

the amplitude-based contents (see the red curve). This fact can be clearly noticed from the 84th 

percentile on Figure 5.11(a) where due to a larger level of drift and more nonlinearity, demand 

variation imposed by using different records is clearly noticeable. Moreover, it can again be 

noticed that the records selected solely based on duration and those selected based on giving more 

weights to the 𝑛𝑜𝑛 − 𝑆𝐴𝑇 contents have produced a larger variability in demand (see the 84th 

percentile dashed curves).  

When it comes to 𝑃𝐹𝐴 (see Figure 5.11(b)), as can be seen from both of the medians and 

percentiles, the records selected by giving more emphasis to cumulative effects have imposed a 

larger demand variability which can be noticed from blue solid and dashed curves. This 

corroborates the results obtained earlier by studying the ductile buildings.  

Similar analyses were conducted on a 8-story non-ductile 𝑅𝐶 structure for which the results 

are presented in Figure 5.12. In Figure 5.12(a) it can, again, be noticed that with respect to both of 



` 138 

the medians and percentiles of the drift, the records selected based on giving more weights to the 

duration and cumulative effects, have imposed a larger median and variability, respectively. 

Hence, duration-based records (see the green curves) have imposed the largest demand and those 

selected based on giving more emphasis to cumulative characteristics (see blue curves) are next. 

This again could be due to the cumulative damage at lower level of drifts and contribution of 

multiple modes which distinguishes the non-ductile structures from those of the ductile where the 

amplitude effects of the records were more pronoucned.  As per 𝑃𝐹𝐴, as can be seen in Figure 

5.12(b), giving more emphasis to cumulative characteristics during the record selection phase, 

resulted in a higher median	𝑃𝐹𝐴 and 𝑃𝐹𝐴 variability which is more pronounced in the 84th 

percentile (see the blue curves).  

                                   (a)                                                                                      (b)  

 

Figure 5.7. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 8-story non-ductile 𝑅𝐶 structure. 

Last but not the least, a 12-story non-ductile 𝑅𝐶 structure is studied for which the results 

are presented in Figure 5.13. From Figure 5.13(a), it can, again, be observed that the records 

selected based on giving more emphasis to duration and cumulative characteristics resulted in 

larger median demand and variability in demand which can be noticed from the green, and blue 
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curves. The variation in percentile responses is more tangible especially in the 84th percentile 

which is due to a more nonlinearity at higher drift levels.   

When it comes to 𝑃𝐹𝐴 as can be observed from Figure 5.13(b), again, the records selected 

based on cumulative effects have imposed a larger median demand and variability in demand as 

can be seen from the blue curves. Hence, identical trends were observed for all the previous 

structures as well. 

                                    (a)                                                                                 (b) 

 

Figure 5.8. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 12-story non-ductile 𝑅𝐶 structure. 
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addition to the main 𝐼𝑀% which is 𝑆𝐴𝑇1, two additional suites will also be selected for which the 

𝐼𝑀% is set as 𝑆𝐴(𝑇 = 0.2𝑇1) and 𝑆𝐴(𝑇 = 3.0𝑇1), respectively. Hence, average of responses 

obtained from these three sets will be computed.  This could help to mitigate the drawback 

associated with the single suite selected conditioned on a single 𝐼𝑀%, which would not have 

sufficient contents to capture the seismic demand responses due to contribution of multiple modes. 

5.4.3.2.1 Ductile reinforced concrete (𝑹𝑪) structures   

Figure 5.14 demonstrates median (solid curves) and 16th and 84 percentiles (dashed curves) of the 

𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) responses for a 4-story ductile 𝑅𝐶 structure with respect to different record 

sets selected based on various conditioning criteria. 

       (a)                                                                                (b) 

 

Figure 5.9. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 4-story ductile 𝑅𝐶 structure. 

From Figure 5.14(a), it can be noticed that the record sets selected based on single- and 

double-𝐼𝑀% impose a larger demand and variability in demand with respect to both median and 

percentile demands (see the blue and black curves). Hence, the records selected based on multiple 

𝐼𝑀% and an average-based approach (i.e. average of demands obtained using multiple single-𝐼𝑀% 
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suites) could predict the lowest demand. This makes sense for a ductile structure with a lower level 

of drift demand where the first mode of vibration is dominant. Hence, records selected based on 

single 𝐼𝑀% (i.e. 𝑆𝐴𝑇1) have sufficient contents to capture the response in the first mode. The suite 

selected based on two-𝐼𝑀% imposes similar demands as the one with single 𝐼𝑀% and that’s mainly 

because those records have been selected to be hazard-consistent over a range of periods including 

the fundamental period, so they have sufficient contents to capture the response in the dominant 

mode of vibration as well. An average-based approach whose results can be seen as the cyan curve 

and also a multiple-𝐼𝑀% approach shown in red have both underestimated the response since they 

would lack the necessary contents to capture the response in the dominant mode.  

From Figures 5.14(a) and (b), one could easily notice that when it comes to higher 

percentiles (e.g. 84th) there is more variation imposed using different suites which is stemmed from 

the fact that as the drift level increases, multiple modes of vibration begin to contribute as the 

structure starts undergoing some level of damage. 

When it comes to 𝑃𝐹𝐴, the selected suites based on different conditioning approaches have 

slightly different impact as compared with the 𝐼𝐷𝑅 which can clearly be noticed from Figure 

5.14(b). As such, the suites selected based on two and multiple 𝐼𝑀%’s have imposed the largest 

demand with respect to both of the medians and percentiles of the 𝑃𝐹𝐴. This clearly proves the 

contribution of multiple modes of vibration to predict the demand responses. 

A similar study was carried out, this time however, on a 8-story ductile 𝑅𝐶 structure. Figure 

5.15 presents the results. As can be noticed from Figure 5.15(a), the records selected based on one 

-and two-𝐼𝑀% imposed the largest median and percentile demands. This was the case for the 4-

story structure as well for which the underlying reasons were discussed. As per 𝑃𝐹𝐴, a similar 

conclusion as made for the 4-story can be made here as well. As can be seen in Figure 5.15(b), the 
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suites conditioned on two and multiple 𝐼𝑀%′𝑠 impose the largest median and percentile demands 

(see the red and black curves).       

                     (a)                                                                                  (b) 

 

 

 

 

 

 

 

Figure 5.10. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 8-story ductile 𝑅𝐶 structure. 

Last but not the least, a 12-story ductile 𝑅𝐶 structure is studied for which the results are 

presented in Figure 5.16. From Figure 5.16(a) it can be noticed that, again, the suites selected based 

on single- and two- 𝐼𝑀% have imposed the largest median and percentile demands, which can be 

noticed from the blue and black curves, respectively. This is consistent with the outcomes which 

have already been discussed so for the sake of brevity will no longer be discussed herein.  As per 

𝑃𝐹𝐴, similar conclusions drawn for the 4- and 8-story, can be made for the 12-story as well. As 

such, the suites selected based on multiple and two conditioning approaches imposed the largest 

median and percentile demands as can be noticed from the red and black curves in Figure 5.16(b).  
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   (a)                                                                                  (b) 

 

Figure 5.11. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 12-story ductile 𝑅𝐶 structure. 

5.4.3.2.2 Non-Ductile reinforced concrete (𝑹𝑪) structrues   

A similar type of analysis carried out for the ductile 𝑅𝐶 structures, will be conducted for the non-

ductile 𝑅𝐶 structures, herein, and the results will be presented. Figure 5.17 demonstrates the 

outcomes for a 4-story non-ductile 𝑅𝐶 structure. 

As can be observed from Figure 5.17(a). the suite selected based on two-𝐼𝑀% has imposed 

the largest median and percentile demands (see the back curves). After that, the suites selected 

based on one and multiple conditioning 𝐼𝑀%′𝑠 impose the largest demands. The demand obtained 

using an average-based approach seems again to have underestimated the response. The efficiency 

of the records conditioned on two-𝐼𝑀% in estimating the median response stems from the fact that 

as the non-ductile structures starts to experience some level of damage at a lower drift level, 

multiple modes of vibration would come to play a role, thereby those suites that are hazard-

consistent over a range of periods including the fundamental period would perform better in 

capturing the median demand as is the case for the records selected based on two-𝐼𝑀%  approach.  
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                       (a)                                                                                (b) 

 

Figure 5.12. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 4-story non-ductile 𝑅𝐶 structure. 

As per the 𝑃𝐹𝐴, as demonstrated in Figure 5.17(b), just like the ductile case, the suites 

selected based on multiple and two 𝐼𝑀%′𝑠 have imposed the largest median and percentile demands. 

As such the single-𝐼𝑀% conditioning suite, as can be noticed from the blue curve, has 

underestimated the demand. This proves the efficiency of the records selected with respect to the 

hazard-consistency over a range of conditioning periods rather than just a single one as is the case 

with the single 𝐼𝑀% conditioning approach.  

A similar study was carried out, this time however, on a 8-story non-ductile 𝑅𝐶 structure. 

Figure 5.18 presents the results. As can be noticed from Figure 5.18(a), the suites selected based 

on the single- and two-𝐼𝑀% approaches have produced the largest median 𝐼𝐷𝑅 demands, which can 

be noticed from the blue and black curves, respectively.  

As per 𝑃𝐹𝐴,  the multiple- and two-𝐼𝑀% conditioning approach have, once again, produced 

the largest median and percentile demands. 
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                         (a)                                                                                 (b) 

 

Figure 5.13. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 8-story non-ductile 𝑅𝐶 structure. 

Lastly, a 12-story non-ductile 𝑅𝐶 structure is studied for which the results are presented in 

Figure 5.19. Figure 5.19(a) shows the median and 16th and 84th percentiles of 𝐼𝐷𝑅 and Figure 

5.19(b) shows the same things but this time for the 𝑃𝐹𝐴. From Figure 5.19(a), it can, once again, 

be noticed that the suites selected based on single- and two-𝐼𝑀% approaches have been able to 

impose the largest median and percentile demands. As per the 𝑃𝐹𝐴, it can be observed from Figure 

5.19(b), again, that the suites selected based on multiple and two conditioning approaches have 

been able to impose the largest demands, which was the case for all the structures that were studied 

in the preceding sections.   

It should also be added that the poor performance of the suites selected base on multiple-

𝐼𝑀% could be attributed to the fact that those suites were not hazard-consistent at the structural 

fundamental period (see the cyan curve in Figure 5.6 in Chapter 5). As such, they underestimated 

the drift demand responses due to the inertia effects and the contribution of the first mode.  
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                                   (a)                                                                                (b) 

 

Figure 5.14. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for a 12-story non-ductile 𝑅𝐶 structure. 

5.4.3.3 Ductile versus non-ductile 𝑹𝑪 structures  

Figures 5.20-5.22 are presented here to render the effects of building type (i.e. ductile versus non-

ductile) with respect to various demands for a 4-, 8- and 12-story 𝑅𝐶 structure, respectively. It is 

worth noting that all of the respective comparisons with respect to importance weights, 

conditioning methods, etc. have already been carried out in the preceding sections. As such, the 

following figures are presented herein just for the sake of demonstration and the rest of results are 

omitted for the sake of saving the space.  

As can be observed from all of the figures listed below, the median demands and also the 

associated percentiles are both larger for non-ductile cases compared with those of the ductile. The 

median demands are more similar for both building types in the plots of 𝑃𝐹𝐴 compared to those 

of the 𝐼𝐷𝑅. It can also be noticed that non-ductile cases have a wider range in the percentiles 

response as opposed to those of the ductile proving a higher level of nonlinearity that non-ductile 

structures experience at lower levels of drift demand.   
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                                   (a)                                                                                (b) 

 

Figure 5.15. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for 4-story ductile and non-ductile 𝑅𝐶 structures. 

                                    (a)                                                                               (b) 

 

Figure 5.16.  (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for 8-story ductile and non-ductile 𝑅𝐶 structures. 
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                                 (a)                                                                                    (b) 

 

 

Figure 5.17. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) and 𝑃𝐹𝐴(𝑔) for 8-story ductile and non-ductile 𝑅𝐶 structures. 

 

5.5 DISCUSSION 

So far, the effects of a set of different parameters on the statistics of various demand responses for 

a set of different structures have been studied for both ductile and non-ductile 𝑅𝐶 structures. One 

of the approaches, which was utilized to mitigate the potential drawback with using records 

conditioned on a single 𝐼𝑀𝑗, was to use multiple suites of earthquake records selected based on 

multiple single 𝐼𝑀𝑗’s and then take the mean of the structural response obtained by using each of 

those suites. That approach, however, in most of the cases, as seen in pervious sections ended up 

with producing results which underestimated the responses compared to other conditioning 

algorithms which were also used to select earthquake records.   

To explore this further, another approach is adopted here based on taking the maximum of 

the responses to be obtained using multiple single-	𝐼𝑀𝑗 suites which is called the maximum-	𝐼𝑀𝑗 

approach, hereafter.  
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                        (a)                                                                                  (b) 

                     

 

Figure 5.18. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
𝐼𝐷𝑅(%) for a ductile and non-ductile 8-story 𝑅𝐶 structure. 

Figure 5.23 shows the 𝐼𝐷𝑅 outcomes for a ductile and non-ductile 8-story 𝑅𝐶 structure. It 

should be added that the exactly identical results were obtained for the 4- and 12-story which are 

not repeated here. As can be seen from both graphs in Figure 5.23, the maximum-𝐼𝑀𝑗 approach 

results in a demand which is exactly identical to the results based on a single 𝐼𝑀𝑗 approach, in 

both ductile and non- ductile cases. That means that of three record sets with different conditioning 

𝐼𝑀𝑗′𝑠 (e.g. 𝑆𝐴(𝑇 = 0.3𝑇1), 𝑆𝐴𝑇1	𝑎𝑛𝑑	𝑆𝐴(𝑇 = 3.0𝑇1), the record conditioned on 𝑆𝐴𝑇1 produces 

the maximum demand.  This proves that the other sets produce much smaller demands so that in 

the average-𝐼𝑀𝑗 approach, the average of responses obtained from the three sets became small, in 

most of the cases as observed in the previous sections. Another conclusion that can be made here 

would be that the structures are not sensitive to the spectral contents at the very short and long 

periods and therefore will not be excited by those records selected based on a very low or high 

conditioning periods so that the associated demands will be lower as opposed to the suite which 

was conditioned on 𝑆𝐴𝑇1. 
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As per 𝑃𝐹𝐴 demand, Figure 5.24 presents the results for a 8-story ductile and non-ductile 

structure.  

As can be observed from both graphs in Figure 5.24, the maximum-	𝐼𝑀𝑗 approach produces 

larger 𝑃𝐹𝐴 demands, very close to those obtained using the record conditioned on multiple-	𝐼𝑀𝑗. 

Whereas, the average-	𝐼𝑀𝑗 approach, as observed previously, underestimated the 𝑃𝐹𝐴 by 

producing the smallest demands as compared with the rest of conditioning methods.   

                      (a)                                                                                  (b) 

 

Figure 5.19. (a) and (b) Median (solid curves) and 16th and 84th percentiles (dashed curves) of 
	𝑃𝐹𝐴(𝑔) for a ductile and non-ductile 8-story 𝑅𝐶 structure. 

In summary, it can be concluded that the maximum-𝐼𝑀𝑗 approach is superior over average-

	𝐼𝑀𝑗, as it produces more reasonable demands with respect to both drift and acceleration for ductile 

and non-ductile buildings.   

5.6  CONCLUDING REMARKS  

Applications of various ground motion selection, scaling and modification techniques on 

estimating the seismic responses of a set of different types of structures were explored. Different 

conditioning approaches in selecting hazard-consistent suites of earthquake records have been 
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adopted and the effects on the seismic responses of both ductile and non-ductile 𝑅𝐶 structures with 

varying heights, were investigated. It was concluded that depending on the type of structure and 

the level of demand the structure undergoes, the ground motion suites selected to be hazard-

consistent over a range of spectral ordinates including the one associated with the fundamental 

period of the structure, have been able to capture the seismic demand responses, in a more realistic 

way. As such, one of the major conclusions that can be made is that the two-	𝐼𝑀𝑗 conditioning 

approach could probably be deemed as the most reliable approach for ground motion selection 

purposes to produce unbiased demands. Moreover, dispersion in the demand responses with 

respect to both median and percentiles of the demands had increased in non-ductile structures as 

opposed to those of the ductile. This can be a direct consequence of higher drift level that the non-

ductile structures would undergo as a result of cumulative damage. As such, multiple modes of 

vibration begin to contribute, thereby other contents of earthquake records come to play role in 

capturing the demand responses. This would be the main reason for the observed contrast which 

was observed between the demand responses using different suites. 

Moreover, the effects of considering different characterizations of earthquake record, 

through selection of multiple suites, on the seismic responses of different types of structures were 

explored. It was concluded that for ductile structures using suites selected based on giving more 

emphasis to their amplitude-based contents ended up in a better estimation of demand responses. 

Moreover, it was found that when the drift demand is low, as is the case for the ductile structures, 

assigning various weight factors to different intensity measures during the selection phase does 

not make a noticeable difference, in most cases, especially when multiple modes of vibration do 

not contribute much. Whereas, for the non-ductile structures where the cumulative- and duration-
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based characteristics of records begin to contribute, a larger contrast was observed between the 

responses especially at the higher percentiles. 

Last but not the least, a maximum-based approach was suggested over an average-based, 

to compute the demands when multiple suites of records conditioned on different 𝐼𝑀𝑗′𝑠 had been 

utilized. This approach was mainly proposed to compensate for a potential drawback of the single-

	𝐼𝑀𝑗 approach in estimating the demands especially for those structures which experience changes 

in their fundamental period.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



` 153 

6 APPLICATION OF DIFFERENT SAMPLING TECHNIQUES 

FOR DEVELOPING HAZARD-CONSISTENT TARGET 

INTENSITY MEASURES  

6.1  INTRODUCTION 

Due to various sources of uncertainty in the fields of probabilistic seismic hazard analysis (𝑃𝑆𝐻𝐴) 

and ground motion selection, scaling and modification, using probability density functions for 

different contributing parameters are very common.  As such, various parameters which would be 

deemed as uncertain are often represented by probability distribution functions (𝑃𝐷𝐹𝑠) from which 

one could draw any desirable number of realization samples using different sampling techniques.   

 In 𝐺𝑀𝑆𝑆𝑀, it is common that the ground motion earthquake records are selected with 

respect to the hazard-consistency meaning that the seismicity of any site of interest for which the 

ground motion records are selected are fully incorporated into the ground motion selection phase. 

Ground motions need often to be selected for the purpose of seismic evaluation and design 

of different types of structures. It is common to select a number of earthquake records rather than 

only a single record for the purpose of seismic evaluation of buildings, and that is mainly due to 

the aleatoric variability in earthquake records. Moreover, given the type of structure being 

analyzed, different characteristics of an earthquake record would play role in capturing the 

structural response over multiple modes of vibration of the structural system. As such, ground 

motion selection phase is of paramount importance so that records which can properly excite a 

structural system and predict the seismic demand responses over multiple periods of vibration, 

need to be selected. 
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6.2 SCOPE AND MOTIVATION  

An earthquake record contains a set of different characteristics (e.g. amplitude-, frequency-, 

cumulative- and duration-based) which need to be considered during the selection phase. It is very 

common that various characteristics of an earthquake records are often represented with different 

intensity measures (𝐼𝑀'′𝑠). In the field of earthquake engineering, these 𝐼𝑀'′𝑠 are considered as 

uncertain whose uncertainties can be quantified by using the so-called ground motion prediction 

equations (𝐺𝑀𝑃𝐸𝑠) (e.g. (Campbell & Bozorgnia, 2012) ) which provide essential parameters to 

define the distribution of 𝐼𝑀'′𝑠. These 𝐼𝑀'′𝑠 are also often correlated and there are empirical 

relationships (e.g. (Bradley, 2011)) to provide the correlation coefficients between them. Hence, 

one could fit a multivariate distribution into a number of 𝐼𝑀'′𝑠 knowing the distribution of each 

from a 𝐺𝑀𝑃𝐸𝑠 and the cross correlation between them from some empirical relationships.  

The number of 𝐼𝑀'′𝑠 to be utilized for the purpose of ground motion selection is dependent 

on the type of structural system for which the ground motions are selected. As such, after setting 

forth a number of 𝐼𝑀'′𝑠 and by forming the multivariate distribution given the information 

provided in the preceding paragraph, one could draw any desirable number of samples from the 

corresponding marginal distributions of different 𝐼𝑀'′𝑠. Hence, the application of different 

sampling techniques has to be incorporated in this stage. Thus, any sampling technique providing 

a more identical empirical distributions of the realization samples with respect to those of the 

theoretical marginal distribution from which these samples were drawn, is deemed suitable. Hence, 

the last stage of ground motion selection would be to select earthquake records whose 

characteristics are identical to those of the realization samples.  
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Given the information provided in the preceding paragraph, this research is aimed to 

investigate the application of different sampling techniques in the area of ground motion selection, 

scaling and modification.  The prime goal would then be to apply these sampling techniques to 

generate realization samples for various hazard- consistent target 𝐼𝑀'′𝑠 which will be utilized in 

𝐺𝑀𝑆𝑆𝑀.  

6.3 A REVIEW OF PRIOR STUDIES 

6.3.1 Background  

Of different sampling techniques which are commonly used to draw realization samples from any 

type of distribution, the Monte Carlo (𝑀𝐶) and the Latin Hypercube Sampling (𝐿𝐻𝑆) techniques 

will be utilized herein. The Monte Carlo (𝑀𝐶) sampling method which can be deemed as a brute-

force technique, has been widely used in several engineering fields including the earthquake 

engineering. As such (Bradley, 2010), (Bradley, 2012) (Tarbali & Bradley, 2015), (Tarbali & 

Bradley, 2016), and (Tarbali, et al., 2018) have all utilized the 𝑀𝐶 in order to draw realization 

samples from various distributions associated with different 𝐼𝑀'′𝑠 which were ultimately used for 

the purpose of ground motions selection. 

The 𝐿𝐻𝑆, though, has not been broadly used in the field of earthquake engineering despite 

of its wide application in various other fields of engineering. (Vorechovsky & Novák, 2009) 

combined the 𝑀𝐶 and 𝐿𝐻𝑆 in order to draw a smaller number of samples from a multivariate 

distribution of various parameters to match the theoretical marginal distribution of each parameter 

as well as the covariance matrix of all the parameters. (Dolsek, 2009) utilized the 𝐿𝐻𝑆 to draw 

realization samples from the 𝑃𝐷𝐹 of various structural modeling parameters to consider the 

epistemic variability in those parameters in addition to the variability in ground motions to perform 
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a set of incremental dynamic analyses. (Chouna & Elnashai, 2010) utilized a simplified method 

based on modifying the quantile athematic methodology in comparison with the 𝑀𝐶, in order to 

consider the epistemic variability associated with different parameters involved in seismic loss 

assessment of structures. (Zhongxian, et al., 2014) studied the effects of variability in ground 

motions and also some of the structural modeling parameters on the probabilistic seismic response 

of bridges. They used the 𝐿𝐻𝑆 to consider the effects of epistemic variability in structural modeling 

parameters. (Decò & Frangopol, 2013) used the 𝐿𝐻𝑆 to generate random earthquakes for the 

purpose of life-cycle risk assessment of bridges. (Celarec & Dolšek, 2013) studied the effect of 

variability in structural modeling parameters on the probabilistic seismic risk of reinforced 

concrete (𝑅𝐶) structures by using a first- order-second-moment (𝐹𝑂𝑆𝑀) reliability approach 

combined with 𝐿𝐻𝑆.  

(Decò, et al., 2013) utilized the 𝑀𝐶 and 𝐿𝐻𝑆 to consider the effects of uncertainty 

associated with expected damage, restoration process, and rehabilitation costs with respect to the 

resilience-based seismic assessment of bridges. (Kosič, et al., 2014) studied the probabilistic 

response of  𝑅𝐶 structures using a single degree of freedom (𝑆𝐷𝑂𝐹) structural system instead of 

modeling the entire structural system. They used the 𝐿𝐻𝑆 to consider the effects of structural 

modeling parameters and also used a suite of ground motion records in order to incorporate the 

effects of record-to-record variability in ground motions. (Vamvatsikos & Fragiadakis, 2010) 

performed an incremental dynamic analysis (𝐼𝐷𝐴) on a 9-story moment-frame steel structure 

considering the effects of epistemic variability in structural modeling parameters and also 

variability in ground motion earthquake records.  They used different methods such as 𝑀𝐶 mixed 

with 𝐿𝐻𝑆 as well as 𝐹𝑂𝑆𝑀 to consider the effects of aforementioned variability. 
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(Bucher, 2009) used the 𝑀𝐶 mixed with 𝐿𝐻𝑆 for the purpose of optimization and design 

of seismic isolation devices to be incorporated into various structural systems. (Pan, et al., 2007) 

utilized the 𝐿𝐻𝑆 and a restricted pinning approach in considering the uncertainty in various 

modeling parameters of the steel bridges. They also considered the simultaneous effects of 

variability in ground motion earthquake records and studied the corresponding impacts of both 

sources of uncertainty on the seismic demand fragilities for various components of the bridges. 

(Tubaldi, et al., 2012) utilized the 𝑀𝐶 mixed with 𝐿𝐻𝑆 for the purpose of uncertainty propagation 

into the structural models, in order to perform seismic damage assessments on multi-span 

continuous bridges with dissipative piers and a steel-concrete composite deck. (Vamvatsikos, 

2014) adopted the 𝑀𝐶 mixed with 𝐿𝐻𝑆 to incorporate the effects of uncertainty in structural 

modeling parameters on the 𝐼𝐷𝐴 which is used to assess seismic response of structures at various 

damage limit states.   

6.3.2 The state of research   

The main purpose of this research is to study the application of both 𝑀𝐶 and 𝐿𝐻𝑆 techniques in 

the area of ground motion selection, scaling and modifications. As such, these methods will be 

utilized to draw realization samples form a multivariate distribution of various 𝐼𝑀'’s. In order to 

do so, a comprehensive and robust algorithm to generate hazard-consistent targets of various 𝐼𝑀'′𝑠, 

which was developed in Chapter 2, will be utilized. A set of comparisons will then be made to 

compare the efficiency of the aforementioned sampling methods with respect to the statistics of 

the realization samples drawn from the theoretical marginal distribution of each	𝐼𝑀'. 
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6.4 MONTE CARLO AND LATIN HYPERCUBE SAMPLING TECHNIQUES 

The underlying framework to which different sampling techniques will be applied which is the 

main focus of this study, was developed in Chapter 2 and will not be repeated, herein. Hence, the 

goal is to apply both of the 𝑀𝐶 and 𝐿𝐻𝑆 sampling methods in order to draw realization samples 

for various	𝐼𝑀𝑖′𝑠 which can be represented with a theoretical multivariate distribution.  

6.4.1 Monte Carlo sampling technique  

Given the conditioning logarithmic median, and standard deviation of each 𝐼𝑀' and also the 

correlation between various 𝐼𝑀'′𝑠, all derived in Chapter 2, a multivariate normal distribution can 

be fitted into an 𝐼𝑀' vector consisting of several 𝐼𝑀'′𝑠. Moreover, marginal distribution of each 

𝐼𝑀'	considering its correlation with others can be obtained. One could then draw any desirable 

number of samples from the marginal distribution of each 𝐼𝑀' following the procedure listed 

below. 

Following Bradley (2012), a two-level approach will be adopted herein, to draw realization 

samples of each 𝐼𝑀' from conditional multivariate distribution of various 𝐼𝑀'’s, which was defined 

in Chapter 2 based a single-, two-, and multiple-𝐼𝑀%. This is done first by obtaining a random 

rupture probability (𝑅𝑢𝑝�¸'¹) from a disaggregation density function. Then, to draw samples from 

a multivariate distribution, an uncorrelated standard normal random vector is defined (𝑢�¸'¹)  

whose elements are drawn from a standard normal distribution, independently. Using this vector, 

a correlated vector can thus be defined as 

 

where, 𝐿 is the Cholesky decomposition of the correlation matrix which is 

 𝑣�¸'¹ = 𝐿𝑢�¸'¹  (6.1) 
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where 𝜌��gh|ghk,�st  is the conditional correlation coefficient matrix given a specific rupture 

scenario. Using this, the realization sample for each 𝐼𝑀𝑖 can be obtained through a 𝑀𝐶-based 

approach as follows 

 

where µ��ghi|mno,ghk
 and 𝜎��ghi|mno,ghk  are the logarithmic median and standard deviation of 

	𝐼𝑀'	for a given rupture scenario (𝑅𝑢𝑝) and conditioning intensity measure (𝐼𝑀%), 𝑣'�¸'¹ =

𝑣�¸'¹(𝑖) is the 𝑖𝑡ℎ element in 𝑣�¸'¹ vector and  𝑅𝑢𝑝 = 𝑅𝑢𝑝�¸'¹. 

6.4.2 Latin Hypercube sampling technique  

The Latin hypercube sampling (𝐿𝐻𝑆) can be applied through a stratified sampling approach 

(see Figure 6.1). In order to draw realization samples from a distribution of an 𝐼𝑀' , its domain is 

stratified into 𝑁 equally-spaced and non-overlapping intervals. Next is to randomly draw a sample 

from each of the interval. Hence, by utilizing a random permutation approach, a set of random 

𝐿𝐻𝑆 samples can be obtained. As such, the application of 𝐿𝐻𝑆 to draw samples from a theoretical 

multivariate distribution of multiple 𝐼𝑀'′𝑠 can be summarized as:  

1. Sample from the actual marginal distribution of each 𝐼𝑀' using 𝐿𝐻𝑆 (Zhang & Pinder, 

2003). 

2. Derive the correlation matrix of the sampled realizations of various 𝐼𝑀'′𝑠.  

 𝜌��gh|ghk,�st = 𝐿𝐿µ (6.2) 

 𝑙𝑛𝐼𝑀'
�¸'¹ = µ��ghi|mno,ghk

+ 𝜎��ghi|mno,ghk𝑣'
�¸'¹  (6.3) 
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3. Get the Cholesky decomposition of a Hermitian positive-definite matrix (𝐿) of the 

correlation coefficient matrix (see Eq. 6.2). If	𝐿 is not positive definite apply methods 

such as the one introduced by (Higham, 2002)	to find the nearest 𝑃𝐷 matrix.  

4. Add dependency between the independent samples drawn using 𝐿𝐻𝑆 by transforming 

their governing normal distribution into a uniform distribution (this transformation 

preserves the dependency between the variables). 

5. Map each of the 𝐼𝑀'′𝑠 uniform distribution onto the associated probability distribution 

of each defined by a 𝐺𝑀𝑃𝐸. 

6.  Obtain the correlation between the new realization samples in order to compare it with 

the original correlation of the multivariate distribution to make sure they are identical. 

 

 

 

 

 

 

 

 

 

Figure 6.1.  Schematic of the stratification of a variable distribution’s domain using 𝐿𝐻𝑆 
(Adopted from (Vorechovsky & Novák, 2009) 
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6.5 APPLICATIONS  

Applications of the methods described in the preceding sections are discussed in this section. For 

this purpose, first an 𝐼𝑀' vector has to be populated. As suggested by (Bradley, 2012),  𝐼𝑀' =

{𝑆𝐴(𝑇), 𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575,𝐷𝑠595}	where 𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575,𝐷𝑠595 are defined as Arias intensity, 

cumulative absolute velocity, 5-75% significant duration, and 5-95% significant duration, 

respectively. For computation of 𝑆𝐴(𝑇), 21 different periods identical to those for which hazard 

curves can be generated, have been chosen. The 𝐺𝑀𝑃𝐸s which are used to define the distribution 

of each of the 𝐼𝑀' in the 𝐼𝑀'	vector are, (Boore & Atkinson, 2008) for 𝑆𝐴(𝑇), 𝑃𝐺𝐴	𝑎𝑛𝑑	𝑃𝐺𝑉, 

(Campbell & Bozorgnia, 2012) for 𝐴𝐼 , (Campbell & Bozorgnia, 2010) for 𝐶𝐴𝑉, and (Bommer, et 

al., 2009) for (𝐷𝑠575,𝐷𝑠595).  

In order to generate the multivariate distribution of 𝐼𝑀'’s in the 𝐼𝑀' vector, a correlation 

matrix defining the cross correlation between various 𝐼𝑀'’s should be obtained in addition to the 

median and standard deviation of each 𝐼𝑀'. For that, one would refer to Table. 1 in (Bradley, 

2012).  

As laid out in Chapter 2, three different algorithms were proposed to generate hazard-

consistent target 𝐼𝑀'′𝑠 based on different conditioning approaches, namely, the single-, two-, and 

multiple-conditioning approach. As such, three different multivariate distributions for various 

𝐼𝑀'′𝑠 can be generated with respect to different conditioning intensity measures (𝐼𝑀%′𝑠). The 𝑀𝐶 

and 𝐿𝐻𝑆 will then be utilized to draw 50 realization samples from the marginal distribution of each 

𝐼𝑀' given their multivariate distribution and the performance of each method of sampling will be 

evaluated. Figure 6.2 shows the realization samples (blue curves) of response spectrum (𝑆𝐴(𝑇) at 

multiple periods) conditioned on a set of different 𝐼𝑀%′𝑠.  The 𝐿𝐻𝑆 was utilized to draw samples 
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from the theoretical distribution of 𝑆𝐴(𝑇) whose median (see the red solid curve), 16th and 84th 

percentiles (see the red dashed curves) are also shown in the figures. It is worth noting that the 

underlying algorithm to derive the theoretical multivariate distribution of various 𝐼𝑀'′𝑠 is called 

the generalized conditioning intensity measure (𝐺𝐶𝐼𝑀) approach based on (Bradley, 2010) which 

is thoroughly explained in Chapter 2. It is also worth noting that the hazard-consistency is 

implemented by considering up to 2,000 rupture scenarios and their contribution to different 

conditioning intensity measures. 

                                   (a)                                                                                     (b) 

 

 

 

 

 

          

 (c)                            

 

 

 

 

 

 

 

Figure 6.2.  Theoretical distribution (red solid and dashed curves) as well as realizations samples 
(blue curves) for (a) single- , (b) two- , and (c) multiple-conditioning approach. 
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Figure 6.3 shows the comparison between empirical distributions of (a) 𝑆𝐴(𝑇), (b) 𝐶𝐴𝑉, 

(c) 𝐴𝐼 and (d) 𝐷𝑠595 obtained using 𝑀𝐶 (shown in blue) and 𝐿𝐻𝑆 (shown in red) with respect to 

the theoretical distribution (𝐺𝐶𝐼𝑀) (shown in black) for a single conditioning intensity measure 

case.  As can be noticed from all the graphs, 𝐿𝐻𝑆 performed better compared to 𝑀𝐶 with the same 

sample size. Hence, 𝑀𝐶 can be improved by increasing the sample size or repeating the procedure 

for a few more times to get better results. 

                       (a)                                                                             (b) 

                                                                                     

                                  (c)                                                                               (d) 

                                                                                          

 

 

 

 

         

Figure 6.3.  Comparison between empirical distributions of (a) 𝑆𝐴(𝑇), (b) 𝐶𝐴𝑉, (c) 𝐴𝐼 and (d) 
𝐷𝑠595 obtained using 𝑀𝐶 and 𝐿𝐻𝑆 with respect to the theoretical distribution for a single-conditioning 

intensity measure case.   
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Figure 6.4 shows the comparison between empirical distributions of (a) 𝑆𝐴(𝑇), (b) 𝐴𝐼, (c) 

𝐷𝑠595 and (d) 𝐷𝑠575 obtained using 𝑀𝐶 and 𝐿𝐻𝑆 with respect to the theoretical distribution for 

a two-conditioning intensity measure case.  Again, 𝐿𝐻𝑆 performed better as is clear from all the 

graphs, as opposed to 𝑀𝐶. 

                   (a)                                                                                  (b) 

        

                     (c)                                                                                (d)                                                          

 

Figure 6.4  Comparison between empirical distributions of (a) 𝑆𝐴(𝑇), (b) 𝐴𝐼, (c) 𝐷𝑠575 and (d) 
𝐷𝑆595 obtained using 𝑀𝐶 and 𝐿𝐻𝑆 with respect to the theoretical distribution for a two-conditioning 

intensity measure case.  
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a multiple-conditioning intensity measure case.  In case of multiple-conditioning intensity 

measure, 𝐿𝐻𝑆 has again performed better than 𝑀𝐶.  

                         (a)                                                                               (b) 

   

                      (c)                                                                                 (d) 

 

Figure 6.5. Comparison between empirical distributions of (a) 𝑆𝐴(𝑇), (b) 𝐴𝐼, (c) 𝐷𝑠575 and (d) 
𝐷𝑆595 obtained using 𝑀𝐶 and 𝐿𝐻𝑆 with respect to the theoretical distribution for a multiple-conditioning 

intensity measure case.  

In some of the graphs, it was seen that the blue curve which is obtained using 𝑀𝐶 

intercepted the confidence bounds (dashed curves) meaning that those samples must be rejected. 
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However, none of the cumulative distributions obtained by 𝐿𝐻𝑆 (see the black curves) hit the 

confidence bounds which means all of them are accepted.  

The main reason why 𝐿𝐻𝑆 performed better in all of the above cases can be attributed to 

the stratification strategy which made it possible to draw samples from the entire domain of 

distribution. Whereas in 𝑀𝐶, since the samples are randomly drawn, as the number of samples are 

low, there is no guarantee that samples are drown uniformly from the entire distribution domain. 

Increasing the number of samples or executing the 𝑀𝐶 for a few more times would mitigate this 

problem.    

6.6 CONCLUDING REMARKS 

Application of two sampling techniques, namely the monte Carlo (𝑀𝐶) and the Latin hypercube 

sampling (𝐿𝐻𝑆) was investigated in the field of earthquake engineering. As such, a multivariate 

distribution for a range of intensity measures (𝐼𝑀'′𝑠) were defined and these sampling techniques 

were applied to draw realization samples from the marginal distribution of each 𝐼𝑀'. Different 

cases were investigated considering a range of different conditioning intensity measures.  A 

thorough comparison was then made with respect to the application of these two methods to 

evaluate the performance of each for all of the cases being considered. It was observed, in all of 

the cases, that 𝐿𝐻𝑆 performed better than 𝑀𝐶 assuming the same number of samples and 

executions for each sampling methods.  
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7 PERFORMANCED-BASED SEISMIC DESIGN 

OPTIMIZATION OF RC STRUCTURES 

7.1 INTRODUCTION 

Earthquake is a viable threat to the safety of our societies which could seriously put both of the 

people and infrastructure at risk. As such, there is a need for any type of building to be designed 

in accordance with the regional seismic codes and provisions, and those which are already in 

service must be reevaluated to assess their seismic performance. Due to various sources of 

uncertainty in seismic evaluation and design of structure, a probabilistic approach needs to be 

adopted. Hence, only through a probabilistic approach, it is possible to first quantify all sources of 

uncertainty involved in various stages of seismic evaluation and design of structures, and then take 

them into account in any type of structural analysis and design strategy.  

There are several key ingredients in seismic evaluation and design of structures. Hence, 

ground motion earthquake records are one of the main components and an essential part of 

performance-based seismic evaluation and design of structures. Uncertainty in ground motions is 

called the record-to-record or aleatory variability in earthquake records. This indicates that, for 

instance, two earthquake records that seem identical in some of their characteristics, may differ in 

others. These differences in characteristics would impose variability on structural seismic demand 

responses. The only way to quantify this variability is to employ a ground motion suite consisting 

of several earthquake records rather than just a single record. It is also necessary that the ground 

motion suite is selected to be representing the actual seismicity of a site where the records are 

selected for in order to utilize them in seismic evaluation of a given structure located at that site.  
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Besides ground motion earthquake records, there is a variability in structural modeling 

parameters which is essential to be considered in performance-based seismic evaluation and design 

of structures as well. The simplified numerical models for various types of structures is key in an 

accurate estimation of seismic demand responses.  Different types of structures would behave 

differently when they are subjected to ground motion earthquake records. There is a wide range of 

responses (e.g. linear elastic to nonlinear) that a structure would undergo depending on how well 

it was designed to withstand the seismic loads.  Therefore, this needs to be incorporated in any 

structural modeling and various types of material models should be assigned to different elements 

across a given structure to enable an accurate seismic response assessment.  As such, there is a 

considerable number of parameters, called the structural modeling parameters, which are the main 

ingredients of those material models.   

Quantifying the uncertainty in structural modeling parameters are often carried out through 

experiments. As such, different components of a structure or a prototype model of it, will be 

simulated in a lab under identical gravity and seismic loads, as those the structure would actually 

be subjected to in real life, in order to calibrate the modeling parameters for a range of prescribed 

seismic performances.  This, in itself, is subjected to uncertainties, associated with various 

ingredients of the experimental protocol.   

It is often known that the variability in structural modeling parameters in the presence of 

the aleatory variability in earthquake records, would impact seismic responses of a given structure 

in different modes of vibration. Accordingly, along with the aleatory variability in earthquake 

records, the variability in structural modeling parameters would also have to be considered in any 

performance-based seismic evaluation and design of structures. It is also essential to find practical 

strategies to reduce the impact of this variability on seismic responses. This would be possible 
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whether through improving the methodologies by which this type of uncertainty is quantified, or 

by using advanced methods of structural analysis integrated with different optimization techniques 

in order to minimize the effects of this variability.  

7.2 SCOPE AND MOTIVATION  

As explained in the previous section, the effects of both aleatory variability in ground motion 

earthquake records and also variability in structural modeling parameters would have to be 

considered in performance-based seismic evaluation and design of structures. Adopting 

appropriate strategies with regard to both trying to quantify these sources of uncertainty and also 

to reduce their impacts on the seismic responses of structures is of paramount importance. This is 

an essential task which needs to be undertaken for an accurate performance-based seismic 

evaluation and design of structures which is key for the subsequent damage and loss assessments.  

As stated previously, performance-based seismic evaluation and design of structures has 

several key ingredients of which the ground motions are of paramount importance. Failing to 

accurately quantify the uncertainty associated with them as well as the underlying impact, would 

impose a considerable amount of dispersion on the seismic responses of various types of structural 

systems. As such, one or multiple hazard-consistent suites of earthquake records would often have 

to be selected for the purpose of the performance-based seismic evaluation and design of 

structures.  

After ground motion earthquake records, the effects of structural modeling and the 

underlying parameters are of prime importance in the performance-based seismic evaluation and 

design of structures. With the advent of various numerical software which are available and being 

utilized in computer molding of various structural systems, the task of structural modeling would 
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have never been as straightforward as is today. Hence, accurate modeling of structural components 

to actually enable users to capture the actual responses, has still remained a challenging task, 

especially when it comes to the seismic analysis and design of structures. As such, there is a 

considerable number of simplifying assumptions which need to be made in order to develop 

numerical models of structures. These assumptions could range anything from, using various 

structural elements with a set of different material types to capture a range of structural responses 

from elastic to nonlinear, or sticking to two-dimensional (2𝐷) rather than three-dimensional (3𝐷) 

modeling strategies. These assumptions, although often quite erroneous, would still be necessary 

as continuum modeling of a structure similar to the as-built condition is not an easy task if not 

impossible, or very costly in terms of computational resources to be utilized for this purpose.  

In addition to the strategies to be adopted for structural modeling purposes, the properties 

of various materials to be utilized in different elements across a structure are key in an accurate 

performance-based seismic evaluation and design of structures. These are known as the structural 

modeling parameters which often are deemed as uncertain. Given the uncertainty associated with 

these parameters, it is often necessary to take a probabilistic approach rather than a deterministic 

one. As such, these uncertainties would have to be quantified and propagated into any 

performance-based seismic evaluation and design of structure. The effects of these uncertainties 

along with those which are due to ground motion earthquake records would often be undesirable 

as they cause dispersion, often quite significant, in structural demand responses which would 

impact the subsequent seismic damage assessment and loss evaluation.   

As such, this research is aimed to study the effects of both uncertainties associated with the 

earthquake ground motion records and those due to structural modeling parameters on 

performance-based seismic evaluation and design of 𝑅𝐶 structures. An emphasis would be given 
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to reducing the effects of uncertainty in structural modeling parameters through a performance-

based optimization framework by which new designs with respect to various modeling parameters 

will be proposed given a set of different performance levels.  

7.3 A REVIEW OF PRIOR STUDIES 

7.3.1 Background  

Pervious works on the effects of epistemic variability in structural modeling parameters are quite 

handful both in quantity and scope, especially when it comes to quantifying and somehow reducing 

this source of variability.     

7.3.1.1 Effects of epistemic variability in structural modeling parameters   

(Dolsek, 2009) utilized a sampling technique, namely, the Latin hypercube sampling (𝐿𝐻𝑆) to 

draw realization samples from probability distributions (𝑃𝐷𝐹𝑠) of various structural modeling 

parameters to consider the epistemic variability in those parameters in addition to variability in 

ground motions to perform a set of incremental dynamic analyses. (Chouna & Elnashai, 2010) 

utilized a simplified method based on modifying the quantile athematic methodology in 

comparison with the Monte Carlo (𝑀𝐶) sampling technique in order to consider the epistemic 

variability associated with different parameters involved in seismic loss assessment of structures. 

(Zhongxian, et al., 2014) studied the effects of variability in ground motions and also some of the 

structural modeling parameters on the probabilistic seismic response of bridges. They used 𝐿𝐻𝑆 

to consider the effects of epistemic variability in structural modeling parameters. (Celarec & 

Dolšek, 2013) studied the effect of variability in structural modeling parameters on the 

probabilistic seismic risk of reinforced concrete (𝑅𝐶) structures by using a first- order-second-

moment reliability approach (𝐹𝑂𝑆𝑀) combined with the 𝐿𝐻𝑆.  
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(Decò, et al., 2013) utilized the 𝑀𝐶 and 𝐿𝐻𝑆 to consider the effects of uncertainty 

associated with expected damage, restoration process, and rehabilitation costs with respect to 

resilience-based seismic assessment of bridges. (Kosič, et al., 2014) studied the probabilistic 

response of 𝑅𝐶 structures using a single degree of freedom (𝑆𝐷𝑂𝐹) structural system instead of 

modeling the entire structural system. They used 𝐿𝐻𝑆 to consider the effects of structural modeling 

parameters and also used a suite of ground motion records in order to incorporate the effects of 

record-to-record variability in ground motions. (Vamvatsikos & Fragiadakis, 2010) performed an 

incremental dynamic analysis (𝐼𝐷𝐴) on a 9-story moment-frame steel structure with considering 

the effects of epistemic variability in structural modeling parameters and also the variability in 

ground motion earthquake records.  They used different methods such as 𝑀𝐶 mixed with 𝐿𝐻𝑆 as 

well as 𝐹𝑂𝑆𝑀 to consider the effects of the aforementioned variability. 

(Bucher, 2009) used the 𝑀𝐶 mixed with 𝐿𝐻𝑆 for the purpose of optimization and design 

of seismic isolation devices to be incorporated into various structural systems. (Pan, et al., 2007) 

utilized 𝐿𝐻𝑆 and a restricted pinning approach in considering the uncertainty in various steel 

bridges’ modeling parameters and studied the corresponding effects as well as the simultaneous 

effects of the variability in ground motion earthquake records, on the seismic demand fragilities 

for various components of the bridges. (Tubaldi, et al., 2012) utilized 𝑀𝐶 mixed with 𝐿𝐻𝑆 for the 

purpose of uncertainty propagation into the structural models, in order to perform seismic damage 

assessments on multi-span continuous bridges with dissipative piers and a steel-concrete 

composite deck. (Vamvatsikos, 2014) adopted the 𝑀𝐶 mixed with 𝐿𝐻𝑆 to incorporate the effects 

of uncertainty in structural modeling parameters on the 𝐼𝐷𝐴 which is used to assess the seismic 

response of structures in various damage limit states. (Gokkaya, et al., 2016) studied the effects of 
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epistemic variability on the seismic response of a range of different ductile and non-ductile 𝑅𝐶 

strcutures.  

7.3.1.2 Application of optimization strategies  

There have been some advances in the application of various optimization algorithms in the 

minimization of multiple, and often contradicting, objective functions in the field of performance-

based seismic evaluation and design of structures.  This would be the strategy to be adopted, herein, 

in order to reduce the effects of epistemic variability in structural modeling parameters, on the 

performance-based seismic evaluation and design of 𝑅𝐶 structures. As such, some of the past 

research works, which have been conducted in this area, will be reviewed, herein. 

(Bai, et al., 2016) utilized an optimization framework for uniform damage design of 𝑅𝐶 

moment resisting buildings using a consecutive modal pushover analysis and by incorporating the 

performance-based earthquake engineering methodology. (Fragiadakis & Papadrakakis, 2008) 

developed a performance-based optimization framework for optimum seismic design of 𝑅𝐶 

structures based on a deterministic and also a probabilistic approach.  

(Liu, et al., 2005) investigated the performance-based seismic design optimization of steel 

special moment-resisting frame structures as a multi-objective optimization problem with a set of 

different contradicting objectives, which reflect the present capital investment as well as the future 

seismic risk. They also considered a set of different design constraints on the structural modeling 

parameters as well as response demands. (Paya, et al., 2008) used a simulated-annealing 

optimization algorithm for the purpose of design of 𝑅𝐶 structures considering multiple 

contradicting objectives, namely, the economic cost, the constructability, the environmental 

impact, and the overall safety of 𝑅𝐶 framed structures. (Liu, et al., 2013) incorporated the effects 

of uncertainty in structural modeling parameters for special moment-resisting frames. They, then, 
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developed an optimization framework to generate a new set of optimum designs with respect to 

the modeling parameters by incorporating the performance-based earthquake engineering and also 

by considering multiple contradicting objectives.  

(Foley, et al., 2007) and (Alimoradi, et al., 2007) developed a performance-based seismic 

design optimization methodology utilizing a set of different contradicting objectives and multiple 

hazard-consistent demand limits by using the genetic algorithm as the optimization tool. 

(Pourzeynali & Zarif, 2008) utilized a non-dominated sorting genetic algorithm (𝑁𝑆𝐺𝐴 − 𝐼𝐼) in 

order to optimize the modeling parameters of the base isolation devices utilized for the purpose of 

seismic rehabilitation of tall buildings given two different objectives, namely, the roof and the base 

isolator displacement.  (Saadat, et al., 2016) utilized a performance-based optimization framework 

for optimum design of steel structures considering the seismic performance of both structural and 

non-structural components where the minimization of initial cost and expected annual loss were 

set to be the objectives of their framework.  

7.3.2  The state of research   

Given the importance of structural modeling parameters in performance-based seismic evaluation 

and design of structures, this research will be aimed at shedding some more light on this topic. To 

this end, a set of different 𝑅𝐶 ductile structures will be modeled. Moreover, twelve different 

structural modeling parameters simulating a range of structural behavior, from linear-elastic to 

nonlinear, will be considered as uncertain to be assigned to different plastic hinges across various 

structural components. These parameters would play a key role in capturing a range of structural 

behavior from linear-elastic to nonlinear. A set of probability distribution functions will be utilized 

to quantify the variability in the aforementioned parameters. A sampling technique will then be 
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adopted to draw realization samples from these distributions to be utilized as the structural input 

parameters. 

As per incorporating the performance-based earthquake engineering methodology, two 

different suites of earthquake records will be selected to be hazard-consistent at two different 

hazard levels. Ultimately an optimization framework will be utilized to be integrated with a 

structural simulation software in order to generate optimum designs for the structures with respect 

to modeling parameters. As such, the initial population of design variables obtained by drawing 

realization samples from various distributions of structural modeling parameters will be utilized 

to generate performance-based objectives at two different performance levels for which two suites 

of ground motion had been selected. Thereafter, an optimization framework will be incorporated 

with the aim of reducing the effects of uncertainty in structural modeling parameters on the 

structural seismic demand responses, in an iterative fashion. Finally, the effects of optimum design 

variables will be studied on the seismic damage fragility of different types of structures. 

7.4 A FRAMEWORK FOR OPTIMUM DESIGN OF RC STRUCTURES  

In this section an optimization framework will be developed for the purpose of optimum design of 

reinforced concrete (𝑅𝐶) structures based on two objectives, namely, the median peak inter-story 

drift (𝐼𝐷𝑅(%)) at immediate occupancy (𝐼𝑂), and collapse prevention (𝐶𝑃) performance levels, 

respectively. It should be noted that the immediate occupancy and collapse prevention 

performance levels are enforced by simultaneously subjecting the structures to two suites of 

earthquake records corresponding to a 50- and 2-percent probability of exceedance in 50 years.  

The algorithm for the optimization framework is demonstrated in Figure 7.1. As can be 

observed, two different software programs, namely the OpenSeesMP (McKenna, et al., 2000) and 
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Matlab (https://www.mathworks.com/products/matlab.html) will be integrated for this purpose. 

Median drift demands at two performance levels to be obtained by performing nonlinear response 

history analysis (𝑁𝑅𝐻𝐴) on the cloud, are set as the objectives. They are generated using 

OpenSeesMP on Stampede2 platform (see Figure 7.2 and Figure 7.3) by iteratively running the 

𝑁𝑅𝐻𝐴𝑠 for a population of design variables using two suites of ground motion records. The design 

variables which are actually the structural modeling parameters for which an optimum design is 

sought, are iteratively updated through a non-dominated sorting genetic algorithm (𝑁𝑆𝐺𝐴 − 𝐼𝐼) 

(Deb, et al., 2002). This process continues until convergence is reached based on an internal 

convergence criterion or a user-defined maximum number of iterations.  

 

 

 

 

 

 

 

 

 

 

Figure 7.1. An optimization-based algorithm for optimum design of reinforced concrete 
structures.  
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Figure 7.2. Schematic of job submission process (e.g. batch submission) and the configuration for 
the platform. (Adopted from https://portal.tacc.utexas.edu/user-guides/stampede2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. The parallel computing algorithm adopted in this study. 
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7.4.1 A multi-objective optimization algorithm  

A non-dominated sorting genetic algorithm (𝑁𝑆𝐺𝐴 − 𝐼𝐼) based on (Deb, et al., 2002) will be 

utilized, herein. This algorithm produces a set of solutions (Pareto Optimal set) which are not 

dominated by other solutions in the solution space. Domination in a minimization problem means 

that a possible solution dominates another solution if all its components are smaller or equal to the 

components in the other solution and at least one of the components is absolutely smaller (Xie, 

2017). After achieving the Pareto Optimal solutions set which provides a set of optimum design 

variables, choice of selecting a single design would totally be up to analyst based on various 

choices of tradeoff. 

The way the algorithm shown in Figure 7.1 works is to first generate an initial population 

of design variables and then derive the parent populations (drift demands) associated with them 

thorough running 𝑁𝑅𝐻𝐴𝑠. Thereafter, using 𝑁𝑆𝐺𝐴 − 𝐼𝐼, a solution with lower rank (i.e. non-

dominated) will be picked. Moreover, in order to sort out the solutions in the less crowded area, 

the distance between two nearest data points are computed and ranked. Hence, the sorting protocol 

guarantees convergence to Pareto optimal solutions and the distance ranking maintains diversity 

among populations. A set of classic genetic operator, namely, the mutation and crossover will be 

used to generate offspring populations so that better genes of the parent population and the 

population diversity can be maintained. As such, a default value of 20% and 80% will be assigned 

to each of these parameters, herein. 

7.5 APPLICATIONS  

The optimization framework described in the previous section is utilized, herein, to generate 

optimum design variables for a set of three different ductile 𝑅𝐶 structures. To compute the 
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objectives at two different performance levels (e.g. 𝐼𝑂 and 𝐶𝑃), two sets of ground motion 

earthquake records are selected for which the details will be provided in the next section.   

7.5.1 Ground motions  

The ground motion suites to be used for the subsequent structural analyses, are briefly described 

here. A more detailed information on the algorithms these ground motions have been selected 

based upon, can be found in Chapter 2.  

First, 𝐼𝑀' = {𝑆𝐴(𝑇), 𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575,𝐷𝑠595}	is set as the intensity measure (𝐼𝑀') vector 

where 𝐴𝐼, 𝐶𝐴𝑉, 𝐷𝑠575 and 𝐷𝑠595 are defined as, arias intensity, cumulative absolute velocity, 

5-75%, and 5-95% significant durations, respectively. For computation of 𝑆𝐴(𝑇), 21 different 

periods identical to those for which hazard curves can be generated, have been chosen. The goal 

would, then, be to select ground motion records with matching characteristics identical to those in 

the 𝐼𝑀' vector, which are generated based on a generalized conditioning intensity measure (𝐺𝐶𝐼𝑀) 

approach. 

In order to select ground motion records, a hypothetical site in the city of Los Angeles, 𝐶𝐴 

(LONG−118.43; LAT34.053) with average shear-wave velocity for the upper 30	m depth of 760 

m/sec, and a depth to a 2.5 km/sec shear-wave velocity horizon of z2.5 = 1 km, is chosen. Using 

the relationships developed in Chapter 2, a set of different ground motion earthquake suites are 

selected based on the two-𝐼𝑀%  approach. The ground motions selected based on this approach are 

hazard-consistent over a range of intensity measures, and thus they have sufficient content to 

capture a range of structural behavior corresponding to multiple modes of vibration (see Chapter 

5).   

  Weight factors of 70% for the amplitude-based and 30% for the cumulative-based 

intensity measures have been considered, which are enforced during the selection phase. Since 
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ductile 𝑅𝐶 structures are analyzed, the majority of importance weight is given to the amplitude-

based contents as these structures are not expected to undergo significant nonlinearity and the 

inertia mode seems to be dominant. The weights to be assigned to either of the amplitude- or 

cumulative-based intensity measures are evenly distributed among all of them during the selection 

phase. As for causal parameters, the magnitude range of 𝑀 = [5	, 8], the closest source-to-site 

distance of 𝑅%ß(km) = [0	, 100] and the 𝑉 ¦à(m/sec) = [300	, 1200] are adopted. The maximum 

scale factor is set to 4. 

7.5.1.1 An example of selected ground motion suites  

In this section, some of the information with regard to two ground motion suites selected at the 𝐼𝑂 

and 𝐶𝑃 performance levels will be presented. While separate suites were selected for different 

buildings (e.g., 4-, 8-, and 12-story), only the ground motions suites selected for the 4-story ductile 

𝑅𝐶 building are presented here for brevity. The structural fundamental period of that building is 

𝑇1 = 1.30	sec. The spectral acceleration at the fundamental period (𝑆𝐴𝑇1) is picked as the 𝐼𝑀%. 

Since the two-𝐼𝑀% approach is adopted, the lower- and upper-bound coefficients of 0.20  and 3.0 

were applied to determine 𝐼𝑀%w and 𝐼𝑀%� based on (Eads, et al., 2016) and (Chandramohan, 2016). 

Thus, 𝑇1, and 𝑇2 were set to 0.25	sec, and 4.0	sec, respectively. Hence, 𝐼𝑀%w and 𝐼𝑀%� are adopted 

as 𝑆𝐴(𝑇 = 0.25	sec)	and	𝑆𝐴(𝑇 = 4.0	sec), respectively. Finally, using the algorithm described in 

Chapter 2, 25 earthquake records are selected from the 𝑁𝐺𝐴 −𝑊𝐸𝑆𝑇2 database 

(Bozorgnia, et	al. , 2014). It is also worth noting that hazard consistency is implemented by 

considering up to 2,000 rupture scenarios and their contribution to different types of conditioning 

intensity measures. 

Figures 7.4(a) and (b) demonstrates the response spectra of the selected records (shown in 

gray) for two different hazard levels, respectively.  Since the statistics of the select records shown 
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in green match those of the realization target (drawn from the 𝐺𝐶𝐼𝑀 distribution shown in red) 

shown in blue, one could claim that the hazard-consistency has been fully enforced.  

In addition to response spectrum, the empirical distribution of two other cumulative 

metrices, namely, the 𝐶𝐴𝑉 and 𝐷𝑠575 are presented in Figures 7.4(c) and (d), respectively. These 

metrices would represent the cumulative characteristics of the records for which a 30% importance 

weight had been initially assigned during the selection phase. As can be seen, despite the lower 

weight, still a good match can be observed between the empirical distributions of the selected 

records (shown in black) and those of the realization targets shown in blue. It should be noted that 

the empirical distributions of the realization targets were initially drawn from the 𝐺𝐶𝐼𝑀 

distribution whose statistics are provided on the figures which are shown in red. 

                         (a)                                                                                   (b) 
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                        (c)                                                                                      (d) 

 

 

 

 

 

 

 

Figure 7.4. (a) and (b) Response spectra of the selected records at the 𝐼𝑂 and 𝐶𝑃 performance 
levels, respectively. Empirical distributions of the (c) 𝐶𝐴𝑉 and (d) 𝐷𝑠575 of the selected records at the 

𝐼𝑂 performance level. 

7.5.2 Ductile reinforced concrete structures 

Three buildings of various heights—i.e. 4, 8, and 12 stories—are modeled assuming a 

ductile behavior. The fundamental periods of vibration for these three buildings are 𝑇1 =

1.30	𝑠𝑒𝑐, 𝑇1 = 1.80	𝑠𝑒𝑐 and 𝑇1 = 2.20	𝑠𝑒𝑐 for the 4-, 8- and 12-strory, respectively. The 

structures were modeled in OpenSeesMP which is a finite element software and widely used for 

earthquake engineering simulations (McKenna, et al., 2000). Figure 7.5 shows the schematics of 

these three buildings. 
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                     (a)                                                                                         (b)     
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Figure 7.5. (a), (b) and (c) Schematic of a 4-, 8, and 12-story building. 

As discussed before, the main goal of this study is to reduce the variability in structural 

seismic demand responses due to the uncertainty in the structural modeling parameters, using an 

optimization algorithm. As such, 12 different modeling parameters simulating the ductile behavior, 

are recognized as uncertain. These parameters are actually the properties of the backbone curves 

to be assigned to plastic hinges across different beam and column elements within the structure 
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(see Figure 7.6(b)). They are defined as flexural strength (𝑀;), ratio of maximum moment and 

yield moment capacity (𝑀� 𝑀;	⁄ ), effective initial stiffness which is defined as the secant stiffness 

to 40% of yield force (𝐸𝐼 Âð,<à 𝐸𝐼ª	⁄ ), plastic rotation capacity (𝜃�¨o,o�), post-capping rotation 

capacity (𝜃o�) and energy dissipation capacity for cyclic stiffness and strength deterioration (𝜆). 

These parameters are identical for both of the beam and column elements. 

Since the aforementioned parameters will be utilized to generate initial population of 

design variables to be used in the initial stage of the optimization framework (see Figure 7.1), they 

first need to be quantified. Hence, various probability distribution functions whose properties are 

obtained from (Gokkaya, et al., 2016) and (Haselton, et al., 2008) will be adopted to quantify the 

uncertainty associated with those parameters. In addition to the variability in each parameter, the 

correlation between the parameters will be considered as well. Hence, according to (Gokkaya, et 

al., 2016), it was assumed that parameters between beams and between columns within a building 

are fully correlated. Moreover, parameters between beams and columns and those within each 

component model (e.g. within a beam or column) of a building are partially correlated. Figure 

7.6(a) clarifies the definition of various correlation types- e.g. between or within components. 

                       (a)                                                                                    (b) 
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Figure 7.6 (a) Definition of various correlation types- e.g. between or within components (b) zero 
length elements to be assigned to plastic hinges to simulate a ductile behavior. (Adopted from (Gokkaya, 

et al., 2016)) 

Given the information provided in the preceding paragraph, 12 parameters are defined as 

the design variables of which six belong to the beam and the reminder to the column elements.  

Given the marginal distribution of each of these parameters as well as the cross correlation between 

them which were obtained according to (Gokkaya, et al., 2016)- see Tables I and II- and (Haselton, 

et al., 2008), one could draw any number of realization samples using a sampling technique. As 

such, the Latin Hypercube Sampling (Vorechovsky & Novák, 2009), which was discussed in 

Chapter 6, is utilized to draw 200 realization samples from the multivariate distribution of the 

design parameters. This is called the so-called design population which will be utilized as the initial 

population to be fed into the optimization algorithm in the very initial stage (see Figure 7.1). 

7.6 APPLICATIONS  

The information provided in the preceding sections have been applied to all the three 𝑅𝐶 ductile 

structures. It is worth noting that on average more than 250,000 𝑁𝑅𝐻𝐴𝑠 were conducted on each 

of the building type. The average runtime, on Stampede2 platform, to get the optimization done 

for each of these buildings is approximately one day and half which is a reasonable runtime given 

the tremendous number of dynamic analyses being performed. If this was to be done on a personal 

computer or on a sequential machine with only multiple cores, it would have taken months to get 

the optimization done for these buildings, so the necessity and effectiveness of parallel commuting 

can easily be noticed here.    
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The objectives of the optimization framework were set as the median peak 𝐼𝐷𝑅s at two 

different performance levels, namely, the 𝐼𝑂 and 𝐶𝑃. Moreover, drift limits of 1.5% for the 𝐼𝑂 and 

6.5% for the 𝐶𝑃 levels were implemented which were enforced throughout the optimization.  

7.6.1 4-story ductile 𝑹𝑪 structure  

Figure 7.7 presents the net outcome of the optimization framework on a 4-story ductile 𝑅𝐶 

structure. As can be seen from this figure, the epistemic variability in structural modeling 

parameters, had imposed a large scatter on the response which can be noticed from the blue circles. 

It should be added that since the building is a ductile 𝑅𝐶, the drift level is low at both of the 

performance levels. In any case, it can easily be noticed that the optimization framework has had 

a very positive impact on shrinking the scatter due to epistemic variability in the design variables. 

As such, scatter in the red circles which show the responses (the Pareto-front solutions) due to the 

optimum design population, compared to the initial population (blue circles) have considerably 

shrunk. Reducing the effects of epistemic variability on the nonlinear response of structures have 

never been an easy task, but as it is observed from Figure 7.7, the optimization framework has 

succeeded in this matter and reduced this effect, quite significantly.  

 

 

 

 

 

 

 

Figure 7.7. Effect of epistemic variability in structural modeling parameters before (see the blue 
circles) and after (see the red circles) optimization. 
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In order to, separately, study the effect of the optimization framework on the statistics of 

the responses at two different performance levels, another effort was made. Figure 7.8 shows the 

median 𝐼𝐷𝑅 for both of the initial and last design populations which are plotted along with the 

entire height of the building.  

                 (a)                                                                                          (b) 

 

 

 

 

 

 

 

Figure 7.8. The responses obtained using the initial and last population of design variables at (a) 
𝐼𝑂 and (b) 𝐶𝑃 performance levels. 

Figure 7.9(a) demonstrates the median as well as 16th and 84th percentile responses (see 

Figure 7.8) for both the initial (shown in gray) and optimum design populations (shown in red) at 

the 𝐼𝑂 performance level. Figure 7.9(b) displays the same information, however this time at the 

𝐶𝑃 performance level. As can be observed from these plots, both of the median and percentile 

responses associated with the Pareto-front solutions (red curves) have decreased with respect to 

those associated with the initial design population (gray curves). The difference is not that 

significant as the overall drift level is low, since a ductile structure is being analyzed; however, it 

shows the effectiveness of the optimization algorithm being utilized in reducing the effects of 

epistemic uncertainty in design variables on the structural responses.    
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                   (a)                                                                                      (b) 

 

Figure 7.9. Median as well as 16- and 84-percentile of responses at (a) 𝐼𝑂 and (b) 𝐶𝑃 
performance levels. 

7.6.2 8-story ductile 𝑹𝑪 structure  

In this section, a similar type of analysis which was carried out in section 7.6.1, will be repeated, 

however this time for a 8-story ductile 𝑅𝐶 structure.   

 

 

 

 

 

 

 

 

 

Figure 7.10. Effect of epistemic variability in structural modeling parameters before (see the blue 
circles) and after (see the red circles) optimization. 
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As can be noticed from Figure 7.10, the optimization framework has again had a significant 

impact in reducing the effects of epistemic uncertainty in structural modeling parameters, on the 

structural seismic demand responses. As such, the scatter in the Pareto-front solutions shown in 

red has shrunk as opposed to the one in the initial design solutions which is shown in blue.  

Figure 7.10(a) demonstrates the median as well as 16th and 84th percentile responses for 

both of the initial (shown in gray) and optimum design populations (shown in red) at the 𝐼𝑂 

performance level. 7.10(b) shows the same things, however this time at the 𝐶𝑃 performance level. 

 Overall, the optimization framework has again done a great job in reducing the effects of 

epistemic variability in structural modeling parameters, on the structural seismic demand 

responses at both of the performance levels.  As such, both of the median and percentile responses 

have decreased for the Pareto-front solutions as opposed to those of the initial designs.  

                     (a)                                                                                    (b) 

 

Figure 7.11. Median as well as 16- and 84- percentile of responses at (a) 𝐼𝑂 and (b) 𝐶𝑃 
performance levels. 
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7.6.3 12-story ductile 𝑹𝑪 structure  

In this section a similar set of analyses will be carried out on a 12-story ductile 𝑅𝐶 structure. Figure 

7.12 shows the scatter in the structural responses at two different performance levels due to the 

optimum design population (see the red circles) as well as initial design population (see the blue 

circles). It is clear that the optimization framework has shrunk the initial scatter, significantly.  

 

 

 

 

 

 

Figure 7.12. Effect of epistemic variability in structural modeling parameters before (see the blue 
circles) and after (see the red circles) optimization. 
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epistemic variability in structural modeling parameters on the structural responses at multiple 

performance levels.   

0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

Drift(%) @ Fiftyp50yrs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
D

rif
t(%

) @
 T

w
op

50
yr

s
Median-1st-Generation
Median-Last-Generation



` 191 

                    (a)                                                                                         (b) 

 

 

 

 

 

 

 

 

Figure 7.13. Median as well as 16- and 84-percentile of responses at (a) 𝐼𝑂 and (b) 𝐶𝑃 
performance levels. 

7.7 DISCUSSION 

In this section the effects of epistemic variability on damage fragilities with respect to both of the 

initial and optimum designs will be discussed. Hence, by assuming a normal distribution for 

median peak drift demands and given the logarithmic medians and standard deviations obtained 

from the previous sections, damage fragilities (based on Eq. 7.1) will be generated for all of the 

three structures discussed in the previous sections. 

 

where, Φ represents a normal cumulative distribution, 𝑥 is a damage limit state, 𝜃 is the median 

demand which is the peak inter-story drift ratio, herein, and finally 𝛽 is the logarithmic standard 

deviation of the peak inter-story drift ratio. 
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   Additionally, some information with regard to the statistics of the optimum and initial 

design variables will be included in the end of this section as well. 

7.7.1 4-story ductile 𝑹𝑪 structure  

Figures 7.14(a) and (b) show the probability of exceedance of various levels of damage 

with respect to the initial and optimum design populations at 𝐼𝑂 and 𝐶𝑃 performance levels, 

respectively.  As can be noticed from these figures, utilizing the optimum designs is ended up with 

a less fragile structure (see the red curves) as opposed to the initial designs (see the gray curves). 

In other word, when the effect of epistemic variability is reduced by utilizing the optimization 

framework, the structure becomes less fragile for a given damage limit state. This is a considerable 

achievement with regard to isolating the effect of epistemic variability in the probabilistic seismic 

response of a 4-story 𝑅𝐶 structure.               

                         (a)                                                                                    (b) 

 

 

Figure 7.14. Damage fragilities for the initial and optimum design populations at (a) 𝐼𝑂 and (b) 
𝐶𝑃 performance levels. 
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7.7.2 8-story ductile 𝑹𝑪 structure  

A similar type of analysis is repeated for an 8-story ductile 𝑅𝐶 structure for which the damage 

fragilities are presented in Figure 7.15 at two different performance levels.  

                       (a)                                                                                      (b)                                                           

 

             Figure 7.15. Damage fragilities for the initial and optimum design populations at (a). 𝐼𝑂 
and (b). 𝐶𝑃 performance levels. 

 

As can be noticed from both of the plots presented in Figure 7.15, the optimization 

algorithm has again had a positive impact with regard to reducing the effects of epistemic 

variability in structural modeling parameters, on damage fragilities for various levels of damage. 

As such, the optimum designs are more reliable with regard to performing any type of probabilistic 

damage and subsequent loss assessments on this structure. 

7.7.3 12-story ductile 𝑹𝑪 structure  

Last but not the least, a set of comparisons has been made with regard to the effects of optimization 

of the design variables on the damage fragilities of a 12-story ductile 𝑅𝐶 structure which can be 

observed from Figure 7.16. The optimum designs whose fragilities are shown in red at both of the 

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Damage-Limit-State (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bl

ity
 o

f E
xc

ee
da

nc
e

Twop50yrs

1st-generation
optimizatized-generation

0.15 0.2 0.25 0.3

Damage-Limit-State (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
lit

y 
of

 E
xc

ee
da

nc
e

Fiftyp50yrs

1st-generation
optimizatized-generation



` 194 

performance levels have made the structure less fragile as opposed to the initial population designs 

(see the gray curves). This is, again, a positive impact that the optimization framework has had in 

reducing the effects of epistemic variability in design variables on the damage fragilities of a 12-

story ductile 𝑅𝐶 structure.  

                    (a)                                                                                         (b) 

 

 

 

 

 

 

 

 

Figure 7.16. Damage fragilities for the initial and optimum design populations at (a) 𝐼𝑂 and (b) 
𝐶𝑃 performance levels. 
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                     (a)                                              (b)                                           (c) 

    

            (d)                                             (e)                                           (f)                                                                                    

 

 

 

 

Figure 7.17. Histograms of initial and optimum design populations for some of the structural 
modeling parameters belonging to a 4-story ductile 𝑅𝐶 structure. 
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were the median peak inter-story drift ratios at two different performance levels.  
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Two sets of earthquake ground motion records were selected at two different hazard levels 

based on a two-conditioning intensity measure approach. The structural realizations were then 

analyzed using these two sets of ground motions and the median peak demand responses (i.e. inter-

story drift) were computed. As such, the initial designs and the corresponding median responses 

were used as an initial population to be fed into the optimization algorithm, namely the non-

dominated sorting genetic algorithm to update the design variables based on two objectives. Hence, 

the two objectives were set as the minimization of the inter-story drift ratios at two different 

performance levels.  

A set of different scatter and statistics plots were generated using the optimum and initial 

design populations. It was observed that the optimum designs have reduced the scatter in the 

responses at different performance levels. They have also done so with respect to the statistics of 

the median drifts at both performance levels. As such, it can be concluded that the optimization 

framework had a very positive impact in reducing the effects of epistemic variability in structural 

modeling parameters, on the structural responses. This is clear especially when the results are 

compared with respect to the initial designs. 

A set of different fragilities have also been generated for all of the structures with respect 

to the comparison of the effects of optimum and initial designs. It was observed that the optimum 

designs which were achieved by using the optimization framework, have made, all of the structures 

being analyzed, less fragile compared to the initial designs. This can be deemed as a noticeable 

outcome since reducing the effects of epistemic variability in structural modeling parameters, on 

damage fragilities is extremely important and will have a positive impact on the subsequent loss 

assessments.   
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8 CONCLUSIONS 

A comprehensive list of conclusions has already been drawn and included in the end of each 

chapter which will not be repeated, herein. However, a bullet list of concluding remarks as well as 

some recommendations for future studies in this area are presented in this chapter.  

8.1 SUMMARY & CONCLUDING REMARKS 

1. Various probabilistic algorithms were developed to select ground motions with respect 

to a range of different conditioning methods, and by giving emphasis to different 

characteristics of the earthquake records. 

2. A temporal aftershock probabilistic seismic hazard assessment (APSHA) framework 

was developed to assist with aftershock ground motion selection, scaling and 

modification (GMSSM).  

3. After performing a range of nonlinear response history analyses on both single- and 

multi-degree of freedom structural systems, it was concluded that using a two-𝐼𝑀𝑗 

conditioning method was superior in estimating the demands, over the single- or 

multiple-𝐼𝑀𝑗 approach. 

4. It was also concluded that including the cumulative and duration-based characteristics 

of earthquake records rather than amplitude-based contents during the selection phase, 

are important in capturing the inelastic responses of ductile and non-ductile reinforced 

concrete structures.   

5. A probabilistic framework was developed to select ground motion records matching a 

new metric for spectral shape. Also, a wide range of structural analyses were performed 

using two sets of earthquake records—one selected based on the traditional way of 
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spectral shape matching (a.k.a. response spectrum matching) and the other one based 

on the newly developed algorithm for spectral shape matching. It was observed that the 

latter had more destructive effects on the examined structures in most cases.    

6. Efficiency of different sampling techniques in drawing a desirable number of 

realization samples from a multivariate distribution of various parameters, with respect 

to both its application in earthquake engineering as well as structural modeling was 

investigated.  

7. The effect of variability in structural modeling parameters and ground motion records, 

on seismic responses of different structural types were studied. Moreover, an efficient 

multi-objectives optimization algorithm was developed with a main goal of reducing 

the effect of epistemic variability in structural modeling parameters, on structural 

seismic response. As such, various types of ductile reinforced concrete structures were 

studied to test the application of the optimization framework which resulted in a 

significant reduction in epistemic variability with respect to median peak inter-story 

drift ratios at two different performance levels. 

8. It was also concluded that by generating optimum designs with respect to a set of 

different structural modeling parameters and given multiple objectives at two different 

performance levels, damage probability or fragility has decreased with respect to the 

initial design population. 

9. Parallel computing was widely utilized throughout this study by developing various 

algorithms to help run numerous jobs on the cloud which resulted in saving a significant 

amount of computational expenses.   
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8.2 RECOMMENDATIONS FOR FUTURE STUDIES 

 The following items are identified as potential future studies as a follow up to those presented in 

this dissertation: 

1. The aftershock framework developed in Chapter 3 can be applied to a real site with 

actual neighboring faults. Depending on data availability, a validation study can be 

carried out. 

2. The assumption of aftershock rupture occurring at the end of mainshock rupture zones 

can be implemented, and the effects on aftershock probabilistic seismic hazard 

assessment can be investigated.  

3. Application of various GMSSM methodologies developed in this dissertation can be 

repeated for three-dimensional models of reinforced concrete structures. There are 

likely new things to discover regarding GMSSM when torsional irregularities are 

considered. Moreover, even for structures with regular geometry and configuration, 

uneven generation of damage can induce torsional irregularities at lower performance 

levels. 

4. The variability imposed using various sets of ground motion records can be quantified, 

using a cloud-based approach to define and compare dispersions in each scatter plot 

with respect to different GM suites being used.     

5. A deterministic approach based on a vector of intensity measures can be investigated 

with respect to efficiency of ground motion records in capturing seismic responses. 

This approach can then be compared with the probabilistic approach developed in this 

study.   
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6. Additional measures can be considered when constructing the objective function in the 

PBSD optimization framework such as initial cost and/or the mean annual rate of 

exceedance of various levels of loss, for different structural types.  
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Appendix A: NGA-WEST2 Database 

 

Various properties of the NGA-WEST2	(Bozorgnia, et	al. , 2014) database are presented. 

                   (a)                                                                                   (b) 

                              

                       (c)                                                                                (d)                                             

 

Figure A.1. Various causal properties of 𝑁𝐺𝐴 −𝑊𝐸𝑆𝑇2 database. 
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Figure A.2. Response spectra of all the available records in 𝑁𝐺𝐴 −𝑊𝐸𝑆𝑇2 database. 

                                 (a)                                                                                 (b) 

 

 

 

 

 

 

 

                      (c)                                                                                  (d) 

 

 

 

 

 

 

Figure A.3. Histograms of various cumulative- and duration -based characteristics of 𝑁𝐺𝐴 −
𝑊𝐸𝑆𝑇2 database. 
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                         (a)                                                                                   (b) 

 

                          (c)                                                                                   (d) 

                

 

Figure A.4. Histograms of various amplitude- and duration -based contents of 𝑁𝐺𝐴 −𝑊𝐸𝑆𝑇2 
database. 
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                   (a)                                                                                      (b) 

 

 

 

 

 

 

 

 

Figure A.5. Histograms of the (a) magnitude, and (b) closest source-to-site distance of aftershock 
records in 𝑁𝐺𝐴 −𝑊𝐸𝑆𝑇2 database.  

 

                    (a)                                                                                  (b) 

 

Figure A.6. Histograms of (a) magnitude, and (b) closest source-to-site distance of the records 
influenced by footwall (𝑓𝑤) and hanging wall (ℎ𝑤) effects, in 𝑁𝐺𝐴 −𝑊𝐸𝑆𝑇2 database.  
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