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ARTICLE

Deep learning-based polygenic risk analysis for
Alzheimer’s disease prediction
Xiaopu Zhou 1,2,3, Yu Chen1,3,4, Fanny C. F. Ip1,2,3, Yuanbing Jiang 1,2, Han Cao1, Ge Lv5, Huan Zhong1,2,

Jiahang Chen5, Tao Ye 1,3,4, Yuewen Chen1,3,4, Yulin Zhang3, Shuangshuang Ma3, Ronnie M. N. Lo1,

Estella P. S. Tong1, Alzheimer’s Disease Neuroimaging Initiative*, Vincent C. T. Mok 6, Timothy C. Y. Kwok 7,

Qihao Guo8, Kin Y. Mok1,2,9,10, Maryam Shoai9,10, John Hardy2,9,10,11, Lei Chen5, Amy K. Y. Fu1,2,3 &

Nancy Y. Ip 1,2,3✉

Abstract

Background The polygenic nature of Alzheimer’s disease (AD) suggests that multiple var-

iants jointly contribute to disease susceptibility. As an individual’s genetic variants are con-

stant throughout life, evaluating the combined effects of multiple disease-associated genetic

risks enables reliable AD risk prediction. Because of the complexity of genomic data, current

statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in

unsatisfactory disease risk prediction. However, deep learning methods, which capture

nonlinearity within high-dimensional genomic data, may enable more accurate disease risk

prediction and improve our understanding of AD etiology. Accordingly, we developed deep

learning neural network models for modeling AD polygenic risk.

Methods We constructed neural network models to model AD polygenic risk and compared

them with the widely used weighted polygenic risk score and lasso models. We conducted

robust linear regression analysis to investigate the relationship between the AD polygenic

risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers

and individual cognitive performance). We stratified individuals by applying unsupervised

clustering to the outputs from the hidden layers of the neural network model.

Results The deep learning models outperform other statistical models for modeling AD risk.

Moreover, the polygenic risk derived from the deep learning models enables the identification

of disease-associated biological pathways and the stratification of individuals according to

distinct pathological mechanisms.

Conclusion Our results suggest that deep learning methods are effective for modeling the

genetic risks of AD and other diseases, classifying disease risks, and uncovering disease

mechanisms.

https://doi.org/10.1038/s43856-023-00269-x OPEN

A full list of author affiliations appears at the end of the paper.

Plain language summary
Polygenic diseases, such as Alzhei-

mer’s disease (AD), are those caused

by the interplay between multiple

genetic risk factors. Statistical models

can be used to predict disease risk

based on a person’s genetic profile.

However, there are limitations to

existing methods, while emerging

methods such as deep learning may

improve risk prediction. Deep learn-

ing involves computer-based soft-

ware learning from patterns in data to

perform a certain task, e.g. predict

disease risk. Here, we test whether

deep learning models can help to

predict AD risk. Our models not only

outperformed existing methods in

modeling AD risk, they also allow us

to estimate an individual’s risk of AD

and determine the biological pro-

cesses that may be involved in AD.

With further testing and optimization,

deep learning may be a useful tool to

help accurately predict risk of AD and

other diseases.
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Recent biotechnological advances have expanded the study
of human diseases from descriptive to quantitative ana-
lyses. In particular, genomic variations are a major category

of risk factors that contribute to various human diseases1. As
genetic variants are present in the human genome, they are a
reliable source of information for disease risk prediction
throughout life2. Therefore, profiling genetic variation enables
disease risk prediction in individuals before disease onset, which
is especially valuable for clinical investigations and developing
intervention strategies for age-related diseases such as Alzhei-
mer’s disease (AD)3–5.

AD is one of the most common neurodegenerative diseases and
is highly prevalent in older populations (~10% among people ≥65
years old)6. Genetic factors play a pivotal role in AD pathogen-
esis, supporting the utility of genetic information in AD risk
prediction7,8. In addition, developing effective genetic screening
tools for the early prediction of AD is vital for disease
management9. However, recent genome-wide association studies
(GWASs) have revealed that AD is polygenic in nature, with
dozens of loci contributing to disease risk10–19. APOE-ε4 is the
most prevalent genetic risk factor for AD20. However, as other
common AD-associated variants exert small to moderate effects
on AD risk, they cannot be used individually to infer disease
risk10–19. Therefore, to determine an individual’s risk of devel-
oping AD, we need to develop models that encompass multiple
informative genetic variants.

Tremendous efforts have been made to develop polygenic score
models using genetic information to estimate disease risk21,22.
One of the most commonly used is the weighted polygenic risk
score (PRS) model, which predicts an individual’s risk of disease
by summarizing the risk effects of multiple variants obtained
from GWASs23. Numerous studies have investigated the utility of
the weighted PRS model for classifying patients with various
diseases20,24–27. In particular, the weighted PRS model can be
used to classify clinically and pathologically confirmed AD as well
as predict the onset age of AD. Collectively, these findings
highlight the applicability of polygenic score models for pre-
dicting disease risk, particularly for AD28–30.

A weighted PRS model is constructed by multiplying the
weighted sum of risk allele dosages by their corresponding effect
sizes, which are derived from GWASs. However, most GWASs
calculate the effect sizes of each variant independently without
considering epistatic effects (i.e., the effects of interaction among
the variants), resulting in an inaccurate estimation of an indivi-
dual variant’s contribution to the disease31–34. Although various
modified weighted PRS models have been proposed35–37, they
have not been thoroughly tested using real-world data and are
unlikely to adapt well to high-dimensional genomic data owing to
their low model complexity (i.e., insufficient number of model
parameters).

Notably, recent studies suggest the possible application of
statistical learning (e.g., lasso [least absolute shrinkage and
selection operator])38 and deep learning (e.g., neural network)
models39,40 for polygenic risk analysis and disease risk classifi-
cation. Specifically, as neural network models have higher model
complexity (i.e., a greater number of model parameters) as well as
sophisticated and multilayered architecture, they may be better
suited to handle high-dimensional genomic data for disease
classification than weighted PRS models. Nevertheless, the per-
formance of lasso and neural network models for AD polygenic
risk prediction has not been systematically evaluated. Therefore, it
is of interest to investigate whether deep learning models, parti-
cularly neural network models, can be used for polygenic risk
analysis and AD risk classification.

In this study, we aimed to develop neural network models for
modeling AD polygenic risk. In particular, we find that neural

network models are effective for classifying patients with AD,
outperforming both weighted PRS and lasso models. Further-
more, by combining the predicted risk scores derived from neural
network models with AD-associated endophenotypic data, we
identify potential pathological mechanisms that contribute to AD
polygenic risk. Together, our results suggest that deep learning
methods can be used to predict AD risk, stratify at-risk indivi-
duals into subgroups, and identify the mechanisms underlying
the disease.

Methods
Study data. To investigate the performance of polygenic score
models for classifying AD risk, we included the array data from
the National Institute on Aging Alzheimer’s Disease Centers
(ADC) cohort (phs000372.v1.p1), the Late Onset Alzheimer’s
Disease Family Study cohort (“LOAD cohort” hereafter,
phs000168.v2.p2), and the Alzheimer’s Disease Neuroimaging
Initiative cohort (ADNI) cohort (http://adni.loni.usc.edu/) in our
analysis. The demographic data of these cohorts are presented in
Supplementary Table 1. The details of the quality control and
imputation processes are presented in the Supplementary
Methods.

We included two Chinese whole-genome sequencing (WGS)
cohorts to study the polygenic score models. The data for Chinese
WGS cohort 1 (N= 2340 comprising 1116 patients with AD, 309
patients with mild cognitive impairment [MCI], and 915 age- and
sex-matched normal controls [NCs]) have been published18. The
data for Chinese WGS cohort 2 (N= 1077 comprising 356
patients with AD, 68 patients with MCI, and 653 age- and sex-
matched NCs) have also been published38. The phenotypic data
of the participants analyzed in this study were based on the
participants’ most recent diagnostic records (as of December
2019). The study was approved by the Clinical Research & Ethics
Committees of Joint Chinese University of Hong Kong-New
Territories East cluster for Prince of Wales Hospital (CREC Ref
no. 2015.461), Kowloon Central Cluster/Kowloon East Cluster for
Queen Elizabeth Hospital (KC/KE-15-0024/FR-3), and Human
Participants Research Panel of the Hong Kong University of
Science and Technology (CRP#180 and CRP#225). All partici-
pants provided written informed consent for both study
participation and sample collection.

Variant selection for model construction. We selected variants
to evaluate the polygenic score models based on the AD GWAS
summary statistics reported by Jansen et al.13. For model con-
struction, we applied three different p-value thresholds (<1E−8,
<1E−6, and <1E−4) to the resultant variants. We retained the
variants detected by all imputed array data from the ADC,
LOAD, and ADNI cohorts that also fell into the corresponding
p-value ranges for model construction and comparison (selected
according to single nucleotide polymorphism [SNP] ID).

For polygenic score analysis in the European-descent datasets,
we compared the performance of the weighted PRS, lasso, and
neural network models in three different scenarios: (i) using all
the data from the three AD cohorts (i.e., ADC, LOAD, and
ADNI) as training data; (ii) using all the data from the three AD
cohorts for five-fold cross-validation analysis; and (iii) using two
AD cohorts (i.e., ADC and LOAD) as training data and the
remaining cohort (i.e., ADNI) as validation data.

For (ii), we conducted the five-fold cross-validation 10 times.
We preclassified the samples using the createFolds function from
the caret package in R; the classified labels were stored in a text
file to allow for a fair comparison with other models (i.e., the
weighted PRS and neural network models) for classification
accuracy. For (iii), we used the data of 70% of individuals from
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the LOAD (n= 2995 of 4278) and ADC (n= 3984 of 5692)
cohorts for model training and used the data of the remaining
30% (n= 2991 of 9970 total) to evaluate model accuracy at the
end of each epoch. We used the data from the ADNI cohort
(N= 1382 comprising 689 patients with AD and 693 NCs) as a
cross-evaluation dataset to assess the performance of polygenic
score models. Of note, to further avoid overestimating the model
performance in the validation dataset rendered by potential
duplicate samples among the three AD cohorts, we conducted
identity-by-descent analysis using PLINK. We found 415
potential duplicate samples (PI_HAT > 0.90; n= 16, 348, and
51 for ADC, LOAD [identified and removed from the data], and
ADNI, respectively) and then reconstructed the model and tested
its performance.

Construction and testing of the weighted polygenic risk score
model. We constructed the weighted PRS model by elementwise
multiplication of allele dosage and selected the corresponding
effect sizes from the AD GWAS summary statistics13 for the
variants according to the p-value thresholds. We applied the same
calculation method to evaluate the reported model for the Chi-
nese population11. We calculated weighted PRSs in RStudio
(v1.3.1056) using R programming (v4.0.2). We further used the
effect sizes of the selected variants from another set of AD GWAS
summary statistics (i.e., the IGAP 2019 Rare Variant Analysis
stage 1 dataset)12 to generate a parallel weighted PRS model.
More than 96% of the variants selected in the first GWAS were
captured by the second GWAS for model construction.

In addition, we used LDpred35, Winner’s curse correction36,
AnnoPred37, and SBayesR35 to model polygenic risk according to
the instructions in each program’s user manual. We ran LDpred,
AnnoPred, and SBayesR on the variant lists before the linkage
disequilibrium (LD)-clumping steps, as these applications can
utilize LD information for PRS modeling. Based on a p-value
threshold of 1E−4, 1149 sites were excluded by LDpred because
of its built-in filtering criteria (which removes all A/T and G/C
SNPs), and 6860 sites were excluded by AnnoPred because the
software was designed to only take variants listed in the
HAPMAP3 dataset. AnnoPred produced no output among the
four programs, possibly because too many variants were filtered.
For model evaluation in the scenarios (i) (i.e., all samples) and (ii)
(i.e., five-fold cross-validation) scenarios, we recalculated the
effect sizes by conducting logistic regression—adjusting for the
confounding effects of age, sex, and genomic structure (repre-
sented by the top five principal components)—in each training
set. As for scenario (iii) and all remaining weighted PRS analyses,
we obtained the effect sizes from the AD GWAS results reported
by Jansen et al. to provide a more unbiased estimation on variant
effects because of the large sample size.

For the Chinese data, we obtained the effect sizes from meta-
analysis results of two Chinese datasets. We also used another
published AD GWAS in the Chinese population to evaluate
model performance for classifying AD risk18.

Construction and testing of the lasso model. We applied logistic
regression to regress out the potentially confounding effects of
age, sex, and genomic structure (represented by the top five
principal components). We constructed the logistic lasso regres-
sion model using the cv.glmnet() function from the glmnet
package, with five-fold cross-validation (alpha= 1, type.-
measure= “mse”, nfolds= 5) for the variants selected according
to the p-value thresholds38. We selected the λ-value that retained
the most variants for the risk score calculation and used the
predict() function to retrieve the polygenic scores.

Regarding the Chinese WGS datasets, we used Chinese WGS
cohort 1 for the training dataset; we applied the same approach
for model construction using the information from the 37
variants selected by the association test (regressing out the
potentially confounding effects of age, sex, and genomic
structure). We subsequently used Chinese WGS cohort 2 to
evaluate the resultant model. We performed all analyses of the
lasso polygenic score model in RStudio (v1.3.1056) using R
programming (v4.0.2). We fixed the value of the random seed to
the same constant value before performing all analyses.

Construction and testing of the neural network model. We
constructed the neural network model using the Sequential()
function from the Keras package, an API for TensorFlow. Before
performing analyzing the European-descent population, we
annotated the selected SNPs for their associated loci using
ANNOVAR41 (77, 141, and 696 loci for p-value thresholds <1E
−8, <1E−6, and <1E−4, respectively). We designed a seven-layer
model, with the first and third layers as dropout layers (dropout
rate= 0.2 or 0.3). We designed the number of nodes as follows:
3 × number of loci (based on the assumption that a maximum of
three different haplotypes are associated with AD in each locus),
1 × number of loci (corresponding to the locus number), 22
(corresponding to the chromosome number), 5 (an arbitrary
number corresponding to the potential number of pathways that
affect the disease in parallel), and 1 (corresponding to the risk
score). We applied exponential decay using the ExponentialDe-
cay() function to accelerate the analysis (decay steps= 100,000,
decay rate= 0.96, staircase= True) with the sigmoid function as
the activation function. We applied the binary crossentropy loss
function and evaluated model accuracy using the accuracy,
auROC, and auPRC metrics. We applied the neural network
models for polygenic score analysis in the European-descent
population for three scenarios as described in the previous sec-
tion: (i) no validation, (ii) five-fold cross-validation, and (iii)
validation using an independent cohort. For (i), we configured the
models with 2000 epochs, a batch size of 256, and a learning rate
of 0.5. For (ii), we configured the models with 1500 epochs, a
batch size of 1024, and a learning rate of 0.5. For (iii), we chose
the number of epochs (i.e., 500–800) by observing the model
performance plot for the training and validation datasets. We
further applied the early stopping using the EarlyStopping()
function (patience= 50 or 100 epochs) when examining the
transethnic performance of the neural network model (i.e.,
training models on Chinese data before applying them to
European-descent data, or vice versa).

During model training for the Chinese WGS datasets, we used
Chinese WGS cohorts 1 and 2 as the training and validation
datasets, respectively. Accordingly, we designed a seven-layer
model for the study, with the second and fourth layers as dropout
layers (dropout rate= 0.3); the numbers of nodes in each layer
were 50, 30, 10, 5, and 1. We applied the binary crossentropy loss
function and evaluated model accuracy using the accuracy,
auROC, and auPRC metrics. We configured the models with a
batch size of 256. We chose the number of epochs (i.e., 1000) by
observing the model performance plot for the training and
validation datasets. Moreover, we used the backend.function()
function to extract the outputs from the nodes from the
penultimate layer for further analyses. We fixed the value of the
random seed to the same constant value before conducting all
analyses.

Construction and testing of the graph neural network model.
We modeled disease risk as a graph classification problem. In
brief, each participant was represented in a graph with nodes
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denoting the 37 selected variants, edges denoting pairwise LD
(calculated by PLINK) among the variants, and graph labels
denoting phenotypes. For node features, in addition to the allele
dosage, we considered the biological properties of variants,
including whether they resided in coding or untranslated regions,
and the number of events of histone, open chromatin, poly-
merase, and transcription factor binding. We retrieved these
biological properties of variants from the SNPnexus database42.
Considering the possible variations of LD among ethnic back-
grounds, we first inferred the ethnic backgrounds of 11,352
participants from the ADNI, ADC, and LOAD cohorts using
GRAF-pop software43. Accordingly, for each ethnic group, we
obtained the LD for 37 variants using the 1000 Genomes Project
Phase 3 data44.

To construct the graph neural network model, all node features
were normalized dimension-wise. We used an R2 threshold of 0.6
to determine if two variants connected and created the adjacent
matrix for the edge information. In particular, for each individual,
we used the LD data obtained from the matched ethnic
background to construct the adjacent matrix. We followed the
common practice45 of training a three-layer graph convolutional
network46 with 128 hidden dimensions. We used two fully
connected layers as the final classifier with 64 dimensions. We
adopted Relu as the nonlinear function and employed global max
pooling. We implemented the model using Pytorch47 and trained
it using Adam optimizer48 with an early stop (patience step= 20).

Whole-genome sequencing. We performed WGS (5× coverage)
using Novogene. We sequenced the genomic DNA libraries on an
Illumina HiSeq × Ten and NovaSeq platform (San Diego, CA,
USA) (150-bp paired-end reads). We adopted the GotCloud
pipeline49 to detect variants from our low-pass WGS data. In
brief, we subjected sequencing data to FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) for quality con-
trol and Trimmomatic50 to trim and filter low-quality reads. We
mapped clean data to the GRCh37 reference genome containing
decoy fragments using BWA-mem. We conducted subsequent
analysis by subjecting data to the GotCloud pipeline with data
processing and variant detection using the default settings18. We
then subjected the clean genotype files to Beagle51 for genotyping
refinement. For Chinese WGS cohort 2, we also used Thunder52

for genotyping refinement after Beagle processing.

Analysis of plasma protein and brain imaging data. Next, we
analyzed plasma protein and brain imaging data collected from a
subgroup of participants from Chinese WGS cohort 238. Speci-
fically, we analyzed plasma amyloid-beta (Aβ)42, Aβ40, tau, and
neurofilament light polypeptide (NfL) levels in 157 patients with
AD and 125 NCs by single-molecule detection assay (Neurology
3-Plex A Advantage Kit, #101995; NF-light Advantage Kit,
#103186; Quanterix, Billerica, MA, USA). We also examined
plasma p-tau181 levels in 154 patients with AD and 118 NCs
(pTau-181 Advantage V2 Kit, #103714, Quanterix, Billerica, MA,
USA). Detection was performed at the Quanterix Accelerator Lab
(Boston, MA, USA). Moreover, the plasma samples of 97 patients
with AD and 69 NCs from Chinese WGS cohort 2 were further
subjected to Olink Proteomics (Boston, MA, USA) to determine
the abundance of 1,160 plasma proteins by proximity extension
assay. The following panels were used for the analysis: Cardio-
metabolic (91802), Cardiovascular II (91202), Cardiovascular III
(91203), Cell Regulation (91702), Development (91703), Immune
Response (91701), Inflammation (91301), Metabolism (91801),
Neuro Exploratory (91502), Neurology (91501), Oncology II
(91402), Oncology III (91403), and Organ Damage (91901).

For brain imaging analysis, we retrieved T1-weighted magne-
tization-prepared rapid acquisition with gradient-echo
(MPRAGE) and fluid-attenuated inversion recovery (FLAIR)
sequences for 78 patients with AD and 104 NCs from Prince of
Wales Hospital (Hong Kong, China). We deidentified the raw
imaging files and sent them to BrainNow Medical Technology
(Hong Kong, China) to analyze volumetric information in
different brain regions and white matter hyperintensity levels.
We did not perform multiple test adjustment because of the
limited sample sizes of the plasma protein and brain magnetic
resonance imaging data.

Statistical analysis. We performed a meta-analysis with a fixed-
effects model using METASOFT software (v2.0.0) for variant
analysis. We evaluated the classification accuracy of the models
by calculating the area under the receiver operating characteristic
curve (auROC) using the roc() function from the pROC package
or the area under the precision–recall curve (auPRC) using the
pr.curve() function from the PRROC package. We estimated the
95% confidence intervals of the auROC using bootstrap methods
from the ci.auc() function. We used the roc.test() function using
the bootstrap method to test the potential differences in auROCs
obtained from the different models. We determined the low-,
medium-, and high-risk groups by fitting risk scores to a Gaus-
sian mixture model using the normalmixEM() function from the
mixtools package for the patients with MCI in Chinese WGS
cohort 1 (k= 3, maxit= 200, ECM= T). We calculated the
probability of an individual being classified into the low- or high-
risk group by using the corresponding scores as the input for the
fitted probability distributions (using values of μ and σ from the
fitted Gaussian mixture model). Meanwhile, we calculated the
probability of an individual being classified into the medium-risk
group by calculating the difference between 1 and the sum of the
probabilities of being in the low- or high-risk group.

In addition, we performed an association analysis between
polygenic score or risk group and disease phenotype by logistic
regression using the glm() function from the stats package. We
also performed an association analysis between polygenic score or
risk/phenotype group and cognitive performance, plasma bio-
markers, and brain volume using a robust linear regression model
using the lmrob() function from the robustbase package, with age,
sex, and genomic structure (represented by the top five principal
components) as covariates. For cognitive performance, we applied
rank-based, inverse-normal transformation to the cognitive
scores using the RankNorm() function from the RNOmni
package, with age, sex, and genomic structure (represented by
the top five principal components) as covariates. Regarding the
brain imaging data, we further included intracranial volume as a
covariate to normalize the possible interindividual variation in
brain volume. We conducted the Spearman’s rank correlation test
using the cor.test() function in R to examine the performance of
models constructed from different ethnic backgrounds.

We performed a Gene Ontology enrichment analysis of the
UniProt IDs in the Database for Annotation, Visualization and
Integrated Discovery (DAVID) (https://david.ncifcrf.gov/). More-
over, we performed a protein–protein interaction network
analysis of the UniProt IDs in the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database (https://string-
db.org/). For our cluster analysis, we applied k-means clustering
to separate plasma proteins into individual clusters using the
kmeans() function from the stats package for the absolute values
of t-statistics obtained from association tests between the levels of
plasma proteins (i.e., normalized protein expression) and the
polygenic scores from the five different modules. We determined
the optimal number of clusters by using the elbow method
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implemented in the fviz_nbclust() function from the factoextra
package.

For the cell-type enrichment analysis, we obtained the gene
expression levels measured by RNA sequencing in individual
blood cell types from the BLUEPRINT database (http://dcc.
blueprint-epigenome.eu/). We performed a cell-type enrichment
analysis using the TissueEnrich package. Briefly, we subjected cell-
type-specific transcript levels measured as fragments per kilobase
per million mapped fragments (FPKM) for 1159 plasma proteins
to the teGeneRetrieval() function to first identify genes expressed
by specific groups of cells (foldChangeThreshold= 1.5, express-
edGeneThreshold= 5). We then used the teEnrichmentCustom()
function for the enrichment analysis to identify the specific cell
types associated with individual gene clusters
(tissueSpecificGeneType= 1).

To stratify participants according to the outputs from the
penultimate layer in the neural network model, we determined
the optimal number of groups by using the elbow method
implemented in the fviz_nbclust() function from the factoextra
package. Then, we used the umap() function from the umap
package in R to apply the uniform manifold approximation and
projection (UMAP) method to project individual participants
onto the two-dimensional plane for visualization. To examine
individual variants’ contributions to the polygenic score, we
conducted a partial correlation analysis using the pcor() function
(method= “spearman”) from the ppcor package in R. We
performed the annotation of variant functions by submitting
the SNP rsID to the SNPnexus database (https://www.snp-nexus.
org/v4/citation/)42.

Data visualization. We generated a schematic diagram of the
study using Microsoft PowerPoint (v2105). We generated heat-
maps of AD classification accuracy (i.e., auROC and auPRC), box
plots, volcano plots, bar charts, and dot plots using GraphPad
Prism (v8.3.0). We plotted ROC and PR curves using the plot()
function in R. Moreover, we generated histograms of polygenic
scores using the ggplot() function from the ggplot2 package with
the geom_density_ridges_gradient() function from the ggridges
package. We generated a heatmap to visualize distinct protein
clusters using the heatmap.2() function from the gplots package.
In addition, we visualized the protein–protein network using
Cytoscape (v3.8.2) based on the node and interaction score
information obtained from the STRING database (v11.0). We
annotated candidate cis-regulatory regions and other epigenetic
signatures using the SCREEN database (https://screen.
encodeproject.org/)53, and visualized transcription factor bind-
ing events using the University of California Santa Cruz Genome
Browser (https://genome.ucsc.edu/)54,55. We also annotated the
chromatin accessible regions from human brain single-cell
ATAC-seq (Assay for Transposase-Accessible Chromatin using
sequencing) data56.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
To systematically evaluate the performance of different polygenic
score models for AD risk classification, we obtain the genotype
and phenotype data of three AD cohorts: the ADNI cohort57, the
LOAD cohort58, and the ADC cohort59,60 (N= 11,352 compris-
ing 6681 patients with AD and 4671 NCs; Supplementary
Table 1). For model construction, we select AD-associated var-
iants from the AD GWAS summary statistics reported by Jansen
et al13. with three p-value thresholds—1E−4, 1E−6, and 1E−8—

which yielded 8100, 2959, and 1799 SNPs, respectively. (Sup-
plementary Table 2). Figure 1 shows a schematic flow diagram of
the study.

Evaluation of the weighted polygenic risk models for Alzhei-
mer’s disease risk prediction. To examine the performance of
the weighted PRS models for classifying AD risk, we calculate
PRSs based on the effect sizes (i.e., weights) from the AD GWAS
summary statistics reported by Jansen et al.13. Besides including
all the variants from that study, we also include the variants that
reside outside the APOE locus (chr19:44000000-46000000;
GRCh38)—the region that harbors the most prevalent risk factor
for AD—to estimate their polygenic risk effects. Meanwhile, we
apply LD-based clumping to obtain the minimum number of
variants needed for classifying disease risk. We evaluate model
performance by calculating the auROC and auPRC, with higher
values indicating more accurate AD classification. We show that
the weighted PRS model constructed from the variant set with the
greatest number of variants (n= 8100; p < 1E−4) after LD-based
clumping yields the highest classification accuracy (auROC:
~0.67; Supplementary Fig. 1; Supplementary Table 3). Moreover,
only including the genetic variants outside of the APOE locus
provide enough information for AD risk classification as sug-
gested by auROCs from ~0.57 to 0.59 (Supplementary Fig. 1;
Supplementary Table 3).

To assess the performance of different weighted PRS models
for classifying AD risk, we conduct a parallel weighted PRS
analysis (designated wPRS2) using the effect sizes from the
summary statistics of the International Genomics of Alzheimer’s
Project (IGAP) 2019 Rare Variant Analysis stage 1 data12. We
find no significant differences in the accuracy of AD risk
classification scores generated from the two sets of the AD GWAS
summary statistics (Supplementary Fig. 1; Supplementary
Table 3). Meanwhile, we also construct modified weighted PRS
models using different tools including LDpred35, Winner’s curse
correction36, AnnoPred37, and SBayesR35. These modified models
do not significantly improve the accuracy of AD risk classification
(auROC: ~0.67; Supplementary Fig. 1; Supplementary Table 4).
Together, these findings demonstrate that genetic information
can be used for AD risk classification (auROC: ~0.67 from the
weighted PRS models), providing a basis for further evaluation of
the performance of neural network models for classifying
AD risk.

The neural network model outperforms both lasso and
weighted polygenic risk score models for Alzheimer’s disease
risk prediction. To evaluate the performance of a neural network
model for predicting AD risk, we construct a seven-layer neural
network model for disease risk classification with the same sets of
variants used to construct the weighted PRS models (see above:
8100, 2959, and 1799 variants). In addition, we construct a lasso
model to model polygenic risk in each scenario as a comparison,
because we previously showed that polygenic scores derived from
lasso models can be used for disease risk classification38.

First, to examine the potential of using the three models for
disease risk classification, we construct the models based on all
data from the three AD cohorts (N= 11,352; Supplementary
Table 1). We find that for all three models, including more SNPs
in the model construction increased the accuracy of AD risk
classification (Supplementary Fig. 2; Supplementary Table 5). In
particular, when we include 8100 SNPs in the model construc-
tion, the prediction accuracy of the neural network model is
nearly perfect (auROC= 1.00) and significantly higher than that
of both the lasso (auROC= 0.94; p < 0.001) and weighted PRS
models (auROC= 0.71; p < 0.001; Supplementary Fig. 2;
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Supplementary Table 5). However, the high auROC values
(>0.90) obtained from the neural network and lasso models
suggest possible overfitting during the model training steps.
Therefore, the model performance should be further evaluated
and compared with samples that are independent of those used in
the model training.

To mitigate overfitting, we conduct a five-fold cross-validation
analysis that trains the model using 80% of the data and tests model
performance with the remaining 20% of the data. Again, for all
three models, including more SNPs improves AD risk classification
accuracy. Moreover, when we use 8100 SNPs in the model
construction, the neural network model (auROC= 0.73) exhibits
greater prediction accuracy than both the lasso (auROC= 0.72;
p < 0.001) and weighted PRS models (auROC= 0.69; p < 0.001;
Supplementary Fig. 3; Supplementary Table 6). Therefore, our
findings suggest that the neural network model predicts AD risk
better than both the weighted PRS and lasso models.

To evaluate the performance of the three models (i.e., the
weighted PRS, lasso, and neural network models) for predicting

disease risk across different cohorts, we train the models using 70%
of the ADC and LOAD data and then evaluate and fine-tune the
models using the remaining 30% of the data. We then validate the
model performance in the ADNI dataset. Again, including more
SNPs in the model construction achieves higher classification
accuracy (Fig. 2a, b; Table 1; Supplementary Fig. 4; Supplementary
Table 7). Moreover, when we use the same number of SNPs for the
model construction, the neural network model outperforms the
weighted PRS and lasso models for AD risk classification. For
example, when we include 8,100 SNPs in the model construction,
the auROCs for the weighted PRS, lasso, and neural network
models in the ADC cohort is 0.70, 0.81, and 0.84, respectively; the
auPRCs are 0.84, 0.89, and 0.92, respectively (Fig. 2a–d; Table 1;
Supplementary Table 7). Of note, the neural network model also
performs better for classifying AD risk than the other two models
in the ADNI cohort (as suggested by higher auPRC values) (Fig. 2;
Table 1; Supplementary Table 7). Moreover, to avoid over-
estimating the model performance, we remove potential duplicate
samples (n= 415) inferred by our identity-by-descent analysis

Fig. 1 Study schematic. Schematic diagram showing the study design. AD, Alzheimer’s disease; ADC, National Institute on Aging Alzheimer’s Disease
Center cohort; ADNI, Alzheimer’s Disease Neuroimaging Initiative cohort; ATN, amyloid-beta, tau, and neurofilament light polypeptide; auROC, area under
the receiver operating characteristic curve; lasso, least absolute shrinkage and selection operator; LOAD, Late Onset Alzheimer’s Disease Family Study
cohort; MCI, mild cognitive impairment; n, number of samples or variants; NC, normal control; NN, neural network; PR, precision–recall; PRS, polygenic risk
score; p, p-values; p-tau181, tau phosphorylated at threonine-181; ROC, receiver operating characteristic; TNF, tumor necrosis factor; WGS, whole-genome
sequencing.
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(PI_HAT > 0.90) and reconstruct the models. Consistently, we
show that the neural network model outperformed the other two
models as suggested by the higher auROC and auPRC values
(Supplementary Fig. 5; Supplementary Table 8). Hence, our
findings demonstrate the superiority of the neural network model
for AD risk classification.

Effects of confounding factors on Alzheimer’s disease risk
prediction. Age and sex are risk factors for AD61. Ethnicity also
influences AD risk, as the risk effects of specific genetic variants
can vary across ethnic groups62. Hence, we assess the perfor-
mance of these polygenic score models in subgroups of people
stratified by age, sex, or ethnicity. For weighted PRS models
constructed using the GWAS results of European-descent

populations, we find significantly lower accuracy of AD risk
classification in people of African-American descent (n= 713;
auROC= 0.60; p < 0.001) and Latin-American descent (n= 604;
auROC= 0.60; p < 0.001) than in people of European descent
(n= 9940; auROC= 0.69). On the other hand, the neural net-
work model exhibits similar accuracy for classifying AD risk
between people of European descent (auROC= 0.80) and
African-American descent (auROC= 0.84) but lower accuracy in
people of Latin-American descent (auROC= 0.77; p < 0.05;
Supplementary Fig. 6; Supplementary Table 9). In addition, in
people of European descent, we observe similar classification
accuracy between males and females (Supplementary Fig. 7;
Supplementary Table 10), while older age groups (≥72 years old)
showed higher classification accuracy than younger groups (<72
years old; p < 0.05; Supplementary Fig. 8; Supplementary

Fig. 2 Application of the weighted polygenic risk score, lasso, and neural network models for Alzheimer’s disease risk classification. a, b Performance
of the wPRS, lasso, and NN models for classifying patients with AD as indicated by (a) auROCs and (b) auPRCs. The variant pools used for model
construction were selected according to the p-value cutoffs shown on the left side of each panel. c, d Representative plots showing the AD risk
classification accuracy of different models constructed using variants with p < 1E−4 in individual cohorts. c ROC curves and d PR curves showing AD risk
classification accuracy in different cohorts. AD, Alzheimer’s disease; ADC, National Institute on Aging Alzheimer’s Disease Center cohort; ADNI,
Alzheimer’s Disease Neuroimaging Initiative cohort; auPRC, area under the precision–recall curve; auROC, area under the receiver operating characteristic
curve; lasso, least absolute shrinkage and selection operator; LOAD, Late Onset Alzheimer’s Disease Family Study cohort; NN, neural network; p, p-value;
PR, precision–recall; ROC, receiver operating characteristic; wPRS, weighted polygenic risk score.
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Table 11). Hence, our results suggest that polygenic score models
may exhibit variable performance in AD risk classification among
people of different ages and ethnic backgrounds.

Polygenic score models for Alzheimer’s disease in the Chinese
population. To further test the performance of these neural
network models for classifying AD risk in non-European–descent
populations, we apply the models to two Chinese AD cohorts
with available WGS data: Chinese WGS cohort 1 (N= 2340
comprising 1116 patients with AD, 309 patients with MCI, and
915 NCs)18 and Chinese WGS cohort 2 (N= 1077 comprising
356 patients with AD, 68 patients with MCI, and 653 NCs)
(Supplementary Table 1)38. Notably, the weighted PRS models
constructed based on the AD GWAS summary statistics of Jansen
et al. show poor classification accuracy for both Chinese WGS
cohorts 1 and 2 (auROCs: ~0.50; Supplementary Figs. 9, 10;
Supplementary Tables 12–15). Meanwhile, the lasso and neural
network models constructed based on three AD cohorts (i.e.,
ADC, LOAD, and ADNI) classify AD risk in the two Chinese
cohorts with moderate accuracy (auROC= 0.63–0.67), although
less so than that in the European-descent populations
(auROC= 0.72–0.73; Supplementary Fig. 3). Hence, the variants
selected based on the AD GWAS summary statistics of Jansen
et al. are not representative of AD risk in the Chinese population
and are thus unsuitable for constructing polygenic score models
for AD in this population.

To obtain variants that are associated with AD in the Chinese
population for modeling AD polygenic risk, we gather the AD-
associated variants reported from several AD GWASs undertaken
across people of different ethnic backgrounds10,12–15,17,19,63,64,
which yielded 216 AD GWAS hits that may contribute to AD
(Supplementary Tables 16; Supplementary Data 1). Logistic
regression analysis including age, sex, and genomic structure
(represented by the top five principal components) as covariates
show that 38 of the 216 SNPs were significantly associated with
AD in the Chinese population (in either Chinese WGS cohort 1 or
2; Supplementary Data 2, 3). A meta-analysis of the two Chinese
cohorts showed that among these 38 SNPs, 33 are significantly
associated with AD (meta-p < 0.05; Table 2; Supplementary Data 4)
and an additional four SNPs (i.e., rs16824536, rs9271058,
rs61732533, and rs111278892) exhibit concordant risk trends in
both cohorts (Supplementary Data 4). Thus, we find 37 variants
that have been reported in European AD GWASs and are
associated with AD in the Chinese population that are useful for
modeling AD polygenic risk in the Chinese population.

Using these 37 AD-associated SNPs, we calculate the polygenic
scores using the weighted PRS, lasso, and neural network models

in Chinese WGS cohort 1 (see the “Methods” section;
Supplementary Data 5). The weighted PRS and lasso models for
AD risk classification yielded auROCs of 0.64 and 0.71,
respectively (Fig. 3a; Supplementary Fig. 11; Supplementary
Table 17), suggesting that the abovementioned variants can be
used to classify people at risk of AD in the Chinese population.
The modified PRS models (i.e., SBayesR and Winner’s curse
models) do not show superior performance for AD classification
compared to the weighted PRS model (Supplementary Fig. 12).
Again, we find that using the variants residing outside the APOE
locus is sufficient to distinguish patients with AD from NCs
(auROC= 0.61; Supplementary Fig. 11; Supplementary Table 17).
Thus, we demonstrated that variants in the non-APOE region
contribute to AD pathogenesis, corroborating the findings of
other AD polygenic score studies65,66 and our results in the
previous section.

Next, we evaluated whether the neural network model also
exhibits better performance for predicting AD in the Chinese
population than the weighted PRS and lasso models. Notably, in
Chinese WGS cohort 1, the neural network model (auROC=
0.77; auPRC= 0.77) distinguishes patients with AD from NCs
more accurately than the weighted PRS (auROC= 0.66; auPRC=
0.71; p < 0.001) and lasso regression models (auROC= 0.71;
auPRC= 0.74; p < 0.001) (Fig. 3a; Supplementary Fig. 11; Sup-
plementary Table 17). In addition, the neural network model
classifies individuals with MCI with higher accuracy than the
other two models (p < 0.01; Supplementary Fig. 11; Supplemen-
tary Table 17). To further validate the above results, we examine
the accuracy of these models for classifying AD risk in Chinese
WGS cohort 2. Notably, the lasso regression (auROC= 0.63;
auPRC= 0.51) and neural network models (auROC= 0.63;
auPRC= 0.53) perform similarly for AD risk classification and
perform slightly better than the weighted PRS model (auROC=
0.62; auPRC= 0.49; Supplementary Fig. 11; Supplementary
Table 17). Hence, our analyses in the Chinese population
demonstrate the applicability of the neural network model for
AD risk classification modeling.

As the selected 37 variants are significantly associated with AD
in both European-descent and Chinese populations, they can
likely be used to classify AD risk in both populations.
Interestingly, by conducting the five-fold cross-validation analysis
using these 37 variants separately in European-descent and
Chinese populations, the resultant polygenic score models could
classify AD risk in both populations (European-descent:
auROC= 0.68–0.72; Chinese: auROC= 0.66–0.69) (Supplemen-
tary Fig. 13; Supplementary Table 18). In particular, the lasso and
neural network models constructed from the 37 variants exhibit

Table 1 Model performance for Alzheimer’s disease classification.

p-value cutoff
(number of variants)

Cohort auROC auPRC

wPRS Lasso NN wPRS Lasso NN

<1.00E−08 (n= 1799) ADC 0.7005 0.7894 0.8156 0.8362 0.8820 0.9030
LOAD 0.6652 0.7615 0.7995 0.6291 0.7376 0.7909
ADNI 0.6835 0.6793 0.6853 0.6690 0.6577 0.6909

<1.00E−06 (n= 2959) ADC 0.7015 0.8159 0.8273 0.8371 0.8929 0.9095
LOAD 0.6657 0.7874 0.8162 0.6291 0.7565 0.8054
ADNI 0.6831 0.6555 0.6892 0.6708 0.6340 0.6832

<1.00E−04 (n= 8100) ADC 0.7003 0.8074 0.8438 0.8377 0.8956 0.9155
LOAD 0.6735 0.7939 0.8315 0.6413 0.7696 0.8147
ADNI 0.6747 0.6947 0.6956 0.6637 0.7014 0.7016

ADC National Institute on Aging Alzheimer’s Disease Centers cohort, ADNI Alzheimer’s Disease Neuroimaging Initiative cohort, auPRC area under the precision–recall curve, auROC area under the
receiver operating characteristic curve, lasso least absolute shrinkage and selection operator, LOAD Late Onset Alzheimer’s Disease Family Study cohort, n number of variants, NN neural network, wPRS
weighted polygenic risk score.
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comparable (or better) performance than the models constructed
based on the variants selected by p-value thresholds (i.e., 8100,
2959, and 1799 variants) in both the European-descent and
Chinese populations (Supplementary Figs. 14, 15). Furthermore,
the polygenic score models constructed using the 37 variants
based on Chinese data can classify AD risk in the European-
descent population (auROC= 0.62–0.65; auPRC= 0.70–0.73),
and the models using the same 37 variants based on European-
descent data can classify AD risk in the Chinese population
(auROC= 0.60–0.67, auPRC= 0.69–0.72; Supplementary Fig. 16;
Supplementary Table 19). In addition, the neural network models
constructed based on the 37 variants perform significantly better
for classifying AD risk than the models constructed with the 216
AD GWAS hits or with other sets of 37 variants randomly
selected from the 216 AD GWAS hits (p < 0.05; Supplementary
Fig. 17). Thus, the polygenic score models based on the 37
variants can be used for modeling and classifying AD risk in both
Chinese and European-descent populations.

Performance of the neural network model for Alzheimer’s
disease risk classification in the Chinese population. As the
neural network model using the 37 variants show superior per-
formance for classifying AD risk, we examine whether it could
stratify individuals with different levels of disease risk. Accordingly,

the scores calculated using the neural network model (neural
network risk scores hereafter) for individuals in the Chinese
cohorts show clear separation between individuals with the lowest
and highest scores. We apply a multiple Gaussian fitting model to
the neural network risk scores to stratify individuals into low-,
medium-, and high-risk groups (see the “Methods” section, Fig. 3c,
and Supplementary Fig. 18). Compared with the low-risk group,
the medium- and high-risk groups included larger proportions of
patients with AD in both Chinese WGS cohorts (e.g., for Chinese
WGS cohort 1, patients with AD made up 22.2%, 49.4%, and
70.9%, of the low-, medium- and high-risk groups, respectively)
(Fig. 3d; Supplementary Fig. 18; Supplementary Table 20). Fur-
thermore, individuals in the high-risk group have a greater risk of
developing AD and MCI than those in the low- or medium-risk
group (p < 1E−5 and 1E−3 for Chinese WGS cohorts 1 and 2,
respectively; Supplementary Table 20). Moreover, in Chinese WGS
cohort 1, individuals in the medium-risk group have higher risks of
AD (p < 2E−16) and MCI (p= 1.25E−2) than those in the low-
risk group (Supplementary Table 20). Thus, the neural network
model can be used to stratify people into subgroups based on their
relative risk of developing a disease.

To determine the relevance of the neural network risk scores
on clinical outcomes, we examine the association between
individuals’ scores and their cognitive functioning after control-
ling for confounding factors (i.e., age, sex, and genomic

Table 2 Variants significantly associated with Alzheimer’s disease in the two Chinese Alzheimer’s disease whole-genome
sequencing cohorts.

Variant EA Gene Effect Size (SE) Meta p-value I2 EAF (AD/NC)

Variants reported in European-descent populations
1 rs4663105 C BIN1 0.190 (0.058) 1.12E−03 0 0.506/0.463
2 rs6733839 T BIN1 0.169 (0.058) 3.82E−03 0 0.458/0.418
3 rs4504245 A CLNK 0.161 (0.078) 3.80E−02 0 0.177/0.157
4 rs6605556 G HLA-DQA1 −0.180 (0.088) 4.03E−02 22.49 0.107/0.127
5 rs9381040 T TREML2 0.190 (0.062) 2.13E−03 0 0.356/0.333
6 rs4236673 A CLU/PTK2B −0.147 (0.074) 4.56E−02 0 0.190/0.216
7 rs11787077 T CLU −0.157 (0.072) 2.85E−02 0 0.198/0.225
8 rs1532278 T CLU −0.162 (0.071) 2.37E−02 0 0.197/0.226
9 rs9331896 C CLU −0.143 (0.072) 4.60E−02 0 0.198/0.225
10 rs867611 G PICALM −0.164 (0.060) 6.14E−03 51.73 0.353/0.394
11 rs561655 G PICALM −0.151 (0.058) 9.85E−03 0 0.448/0.489
12 rs3844143 C PICALM −0.142 (0.060) 1.80E−02 34.68 0.372/0.410
13 rs10792832 A PICALM −0.139 (0.060) 2.01E−02 13.18 0.364/0.404
14 rs3851179 T PICALM −0.139 (0.060) 2.01E−02 13.18 0.364/0.404
15 rs74685827 G SORL1 0.188 (0.094) 4.57E−02 0 0.115/0.097
16 rs11218343 C SORL1 −0.205 (0.065) 1.61E−03 0 0.251/0.291
17 rs3752231 T ABCA7 0.122 (0.059) 3.72E−02 90.07 0.439/0.415
18 rs12151021 G ABCA7 −0.118 (0.058) 4.30E−02 85.93 0.475/0.503
19 rs3752246 G ABCA7 0.128 (0.061) 3.43E−02 87.24 0.369/0.345
20 rs4147929 A ABCA7 0.129 (0.061) 3.28E−02 88.42 0.368/0.343
21 rs769450 A APOE −0.224 (0.074) 2.42E−03 0 0.178/0.216
22 rs429358 C APOE 1.182 (0.086) 2.72E−43 0 0.256/0.090
23 rs75627662 T APOE 0.663 (0.069) 8.24E−22 0 0.304/0.186
24 rs9304690 T SIGLEC11 0.137 (0.070) 4.89E−02 0 0.244/0.233
Variants reported in Asian populations
25 rs11668861 G NECTIN2 0.527 (0.066) 1.71E−15 22.76 0.321/0.220
26 rs6859 A NECTIN2 0.455 (0.062) 1.53E−13 0 0.408/0.304
27 rs3852860 C NECTIN2 0.513 (0.065) 3.60E−15 52.36 0.332/0.229
28 rs71352238 C TOMM40 1.045 (0.086) 9.66E−34 0 0.230/0.091
29 rs157580 A TOMM40 0.334 (0.058) 7.58E−09 44.75 0.528/0.448
30 rs2075650 G TOMM40 1.050 (0.086) 4.11E−34 0 0.229/0.090
31 rs157582 T TOMM40 0.685 (0.069) 3.07E−23 0 0.315/0.192
32 rs439401 C APOE 0.422 (0.059) 6.16E−13 62.76 0.523/0.431
33 rs4420638 G APOC1 1.076 (0.080) 6.41E−41 0 0.272/0.110

The meta-analysis was conducted using a fixed-effects model.
AD Alzheimer’s disease, EA effect allele, EAF effect allele frequency, I2 statistic measuring heterogeneity, NC normal control, SE standard error.
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Fig. 3 Polygenic risk analysis for Alzheimer’s disease in the Chinese population. a ROC and b PR curves of the polygenic score classification of patients
with AD in Chinese WGS cohort 1. c Distribution of polygenic risk scores derived from the NN model for each phenotype group. The definitions of the low-,
medium-, and high-risk groups are shown in the upper panel. d Percentages of each phenotype group in the low-, medium-, and high-risk groups.
e–h Associations between polygenic risk score and MMSE score in e all participants, f non-AD participants (i.e., NCs plus patients with MCI), g APOE-ε3
homozygous carriers, and h APOE-ε4 carriers. Data are presented as box-and-whisker plots. Boxes indicate the 25th to 75th percentiles, and whiskers
indicate the 10th and 90th percentiles. The numbers of individuals in the corresponding group are shown at the bottom of each plot. Robust linear
regression model: ***p < 0.001, **p < 0.01, *p < 0.05. AD, Alzheimer’s disease; auPRC, area under the precision–recall curve; auROC, area under the
receiver operating characteristic curve; lasso, least absolute shrinkage and selection operator; MCI, mild cognitive impairment; MMSE, Mini–Mental State
Examination; NC, normal control; NN, neural network; p, p-values; PR, precision–recall; ROC, receiver operating characteristic; wPRS, weighted polygenic
risk score.
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structure). Notably, in Chinese WGS cohort 1, the neural network
risk scores are significantly associated with cognitive functioning
as measured by the Mini–Mental State Examination (MMSE) in
all participants (p < 2E−16), patients with MCI plus NCs
(p= 3.10E−04), patients with MCI (p < 0.05), APOE-ε3 homo-
zygous participants (p < 2E−16), and APOE-ε4 carriers
(p= 2.18E−07) (Fig. 3e–h; Supplementary Fig. 19; Supplemen-
tary Table 21). In addition, in Chinese WGS cohort 2, the neural
network risk scores are significantly associated with the Montreal
Cognitive Assessment (MoCA) scores of patients with AD plus
NCs (Supplementary Fig. 18) as well as those of patients with
MCI (p < 0.05; Supplementary Fig. 19). Hence, the neural
network risk scores calculated herein can predict cognitive
functioning in the Chinese population.

Determination of the pathological mechanisms of Alzheimer’s
disease according to polygenic scores. To investigate the
mechanisms whereby the identified variants (i.e., SNPs) modulate
disease risk, we examine the associations between polygenic risk
and AD endophenotypes in Chinese WGS cohort 238. We show
that the neural network risk scores are significantly associated
with levels of the blood-based ATN biomarkers of classical AD
pathology—Aβ, tau phosphorylated at threonine-181 (tau/p-
tau181), and NfL—which reflect the progression and severity of
AD67 (Fig. 4a; Supplementary Table 22). Detailed analysis shows
that the associations between polygenic scores and plasma bio-
marker levels are significant in NCs but not in patients with AD,
suggesting that the AD risk variants modulate AD-associated
pathways independent of disease state (Fig. 4a–d; Supplementary
Table 22). Moreover, among all participants, polygenic scores are
significantly associated with changes in the volumes of specific
brain regions68,69 including the amygdala (p= 6.53E−03), grey
matter (p= 1.21E−02), and hippocampus (p= 4.92E−02) (Sup-
plementary Fig. 20; Supplementary Data 6). Moreover, polygenic
scores are significantly associated with white matter hyper-
intensity, which is a marker of demyelination and axonal loss in
the brain70 (p= 2.69E−02; Supplementary Fig. 20; Supplemen-
tary Data 6). Hence, our results suggest that AD polygenic risk is
associated with known AD biomarkers, particularly in people
who have not yet developed AD.

To better understand how AD polygenic risk is associated with
endophenotypic changes regardless of disease state, we compre-
hensively analyze the associations between polygenic scores and
the changes in the levels of 1,160 plasma proteins that potentially
reflect changes in multiple biological pathways in NCs (n= 69).
The polygenic scores are significantly associated with the levels of
80 plasma proteins; among these proteins, PLTP (phospholipid
transfer protein; p= 2.67E−03), which is involved in cholesterol
metabolism71, and CCL19 (chemokine ligand 19; p= 6.65E−07),
a cytokine involved in inflammation72, are the most strongly
associated with the polygenic scores (Fig. 4e–g; Supplementary
Data 7). Specifically, Gene Ontology enrichment analysis suggests
that the polygenic scores are associated with plasma proteins
involved in TNF-α– and cytokine-related pathways, which are
closely related to the immune system73 (Fig. 4h; Supplementary
Data 8, 9). Furthermore, protein–protein interaction network
analysis of those plasma proteins involved in cytokine-related
pathways again suggests their enriched interaction (enrichment
p < 1E–16; Fig. 4i; Supplementary Table 32). Together, these
results show that AD polygenic risks may modulate immune-
associated signaling pathways in the blood.

Using neural network models to study disease mechanisms.
Given that AD polygenic risks are possibly related to the invol-
vement of multiple biological pathways in disease pathogenesis,

the effects of individual variants on PRSs may partly reflect the
contributions of corresponding biological pathways associated
with specific genetic variants to the disease. Such effects may not
be adequately captured by a single ultimate score derived from
polygenic score models but rather by the intermediate outputs of
the penultimate layer in neural network models. In our neural
network model, the penultimate layer summarizes the polygenic
effects of the 37 SNPs into five nodes (Fig. 5a); thus, the outputs
from these five nodes may represent distinct genetic risks that
affect different biological processes. Accordingly, we find that the
outputs from the five nodes are not perfectly correlated (Fig. 5b),
suggesting that they contain more information (i.e., polygenic
risks) than the final polygenic score. Therefore, we designate each
node in the penultimate layer as one module that may account for
a distinct biological effect.

To understand the biological effects of the individual modules,
we construct a multivariate model that simultaneously incorpo-
rates the outcomes of the five modules to determine their
associations with individual endophenotypes (i.e., plasma protein
levels). Notably, the levels of 336 plasma proteins are significantly
associated with the outcomes of the five modules (Supplementary
Table 23; Supplementary Data 10). Furthermore, unsupervised
clustering analysis shows that these plasma proteins could be
classified into four clusters (designated C1–C4) with distinct
biological functions (Fig. 5c). For instance, the plasma proteins
classify into C1, C3, and C4 are associated with immune
pathways; those in C3 and C4 are associated with cell
communication; and those in C1 and C4 are associated with
TNF-α–related signaling (Fig. 5c).

Accordingly, we hypothesize that the effects of specific risk
variants on gene expression regulation—possibly in specific
cellular contexts—underlie the observed associations between
polygenic risk and plasma protein levels74. Thus, to determine
whether specific plasma proteins are predominantly expressed
in specific blood cell types, we conduct a cell-type enrichment
analysis of the plasma proteins in each cluster. Interestingly, the
plasma proteins in C1 and C4 are expressed by B cells, those in
C2 by erythroblasts and megakaryocytes, and those in C4 by
dendritic cells and eosinophils (Fig. 5c; Supplementary
Tables 24, 25). Furthermore, protein–protein interaction net-
work analysis reveals that the proteins expressed by B cells are
closely interconnected (enrichment p= 1E− 12; Fig. 5d; Sup-
plementary Tables 26, 27). Specifically, the plasma protein
TCL1A (TCL1 family AKT coactivator A), which is uniquely
expressed by B cells and associated with B-cell maturation75, is
modulated by polygenic risks; furthermore, its plasma level is
altered in patients with AD compared with that in NCs (Fig. 5e,
f). Therefore, these results demonstrate that AD polygenic risks
are associated with specific biological pathways in a cell-type-
specific manner.

To evaluate whether changes in neural network architecture
affect the effects of specific risk variants on gene expression
regulation, we modify the neural network structure by changing
the numbers of nodes in the penultimate layer from five to two,
three, or 10 to examine whether the same plasma protein sets can
be obtained from the association analysis. First, we find that the
neural network risk scores obtain from the modified models are
highly correlated (R2 > 0.88; Supplementary Fig. 21a, b). In
addition, these modified models recover >80% of the plasma
proteins that are previously identified to be associated with the
neural network risk scores (i.e., p < 0.10; Supplementary Fig. 21c,
d). Furthermore, for the neural network model with three nodes
in the penultimate layer, the analysis again highlights the
associations between polygenic risks and immune-associated
signaling pathways such as TNF-α– and cytokine-related path-
ways (Supplementary Fig. 21e, f). Therefore, these findings
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Fig. 4 Modulatory effects of polygenic risk for Alzheimer’s disease on plasma protein biomarkers in normal controls. a Associations between the
polygenic risk scores derived from the corresponding models and the levels of plasma ATN biomarkers (i.e., Aβ42, Aβ40, Aβ42/Aβ40 ratio, tau, p-tau181, and
NfL) in all participants, NCs, and patients with AD. b–d Plasma Aβ42 level (b), Aβ42/Aβ40 ratio (c), and p-tau181 level (d) in NCs stratified according to
polygenic risk score group. e Volcano plots showing the associations between polygenic risk scores and plasma protein levels obtained from the high-
throughput assay. f, g Levels of the candidate plasma proteins f PLTP and g CCL19 in NCs stratified according to polygenic risk score group.
h Overrepresented Gene Ontology terms for plasma proteins associated with polygenic risk scores (p < 0.05). i Protein–protein interaction network of
cytokines associated with polygenic risk scores. The gray nodes are the five proteins most strongly associated with the other nodes. Line color and
thickness indicate the interaction strength of the connected nodes (darker and thicker lines denote stronger interactions). b–d, f, g Data are presented as
box-and-whisker plots. Boxes indicate the 25th to 75th percentiles, and whiskers indicate the 10th and 90th percentiles; numbers of individuals in the
corresponding group are shown at the bottom of each plot. Robust linear regression: ***p < 0.001, **p < 0.01, *p < 0.05; robust linear regression model.
e, h, i Colors denote plasma proteins or results derived from proteins that were positively (red) or negatively (blue) correlated with polygenic risk scores.
Aβ, amyloid-beta; AD, Alzheimer’s disease; CCL19, chemokine ligand 19; MCI, mild cognitive impairment; NC, normal control; NfL, neurofilament light
polypeptide; NN, neural network; p-tau181, tau phosphorylated at threonine-181; PLTP, phospholipid transfer protein; TNF, tumor necrosis factor.
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further strengthen our conclusions on the association of AD
polygenic risk with immune-associated pathways.

Using neural network models to stratify people at risk of
developing Alzheimer’s disease. The intermediate outputs from

the neural network model capture polygenic risks that correspond
to multiple biological pathways implicated in AD pathogenesis.
Therefore, it is of interest to examine whether this model can
stratify people into subgroups based on the polygenic risks esti-
mated by those intermediate outputs. Accordingly, we subject the
outputs from the penultimate layer of the neural network model

Fig. 5 Biological pathways modulated by the polygenic risk variants of Alzheimer’s disease. a Diagram showing the calculation of polygenic risk scores
using the NN model. The five nodes in the penultimate layer were designated modules M1–M5. b Associations between the polygenic risk scores derived
from the NN model and the outcomes of the five modules. c Heatmap showing the clusters of plasma proteins significantly associated with each module.
The proteins formed four clusters (designated C1–C4) with respect to the absolute values of t-statistics. The number of proteins in each cluster are
indicated in the plot. Representative Gene Ontology terms and cell-type enrichment analysis results are displayed in the center and right panels,
respectively. d Protein–protein interaction network of proteins expressed by B cells. Colors denote proteins from C1 (red) and C4 (blue). e Cell-type-
specific expression of TCL1A. (f) Plasma levels of TCL1A protein in NCs (n= 69) and patients with AD (n= 97). Data are presented as box-and-whisker
plots. Boxes indicate the 25th to 75th percentiles, and whiskers indicate the 10th and 90th percentiles; numbers indicate the numbers of individuals in the
corresponding group. Robust linear regression: **p < 0.01. AD, Alzheimer’s disease; FDR, false discovery rate; FPKM, fragments per kilobase per million
mapped fragments; NC, normal control; NK, natural killer; NN, neural network; p, p-values; TCL1A, TCL1 family AKT coactivator A; TNF, tumor necrosis
factor.

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00269-x ARTICLE

COMMUNICATIONS MEDICINE |            (2023) 3:49 | https://doi.org/10.1038/s43856-023-00269-x |www.nature.com/commsmed 13

www.nature.com/commsmed
www.nature.com/commsmed


Fig. 6 Stratification of individuals by polygenic risk score from neural network models. a K-means clustering of the individuals in the Chinese AD WGS
cohort 2 dataset according to the five sub-scores from the NN model. b Proportion of NCs in each group. c Levels of plasma ATN biomarkers in individual
groups (n= 16, 41, 22, 29, and 34 individuals in Groups 1–5, respectively). Data are presented as mean ± SEM and analyzed using one-way ANOVA
followed by Bonferroni’s post hoc test. *p < 0.05. d Heatmap of association t-values between plasma protein levels detected by two neurology panels and
individual groups. According to their t-values, proteins were divided into four clusters using the k-means method (number of proteins in each cluster= 46,
35, 67, 35, from top to bottom, accordingly). e Pathway and Gene Ontology enrichment analysis results for proteins in each cluster. Aβ, amyloid-beta; AD,
Alzheimer’s disease; ATN, amyloid-beta, tau, and neurofilament light polypeptide; FDR, false discovery rate; NC, normal control; NfL, neurofilament light
polypeptide; NN, neural network; p-tau181, tau phosphorylated at threonine-181; SEM, standard error of the mean; UMAP, Uniform Manifold Approximation
and Projection.
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to unsupervised clustering analysis and then subcluster the par-
ticipants from Chinese AD WGS cohort 2 into five groups. Of
note, the NCs in Groups 4 and 5 showed lower plasma levels of
Aβ (p < 0.05) and an increased trend of plasma p-tau181 and NfL
levels compared with the NCs in Groups 1–3 (Fig. 6a–c). Further
association analysis identifies four clusters of plasma proteins that
exhibited altered expression patterns among the five groups of
individuals. Gene Ontology and pathway analysis reveal that the
altered pathways included axon (p= 1.30E−06), neuron projec-
tion (p= 1.10E−05), and receptor activity (p= 2.80E−03)
(Fig. 6d). Thus, the neural network model can be used to classify
AD risk for individuals as well as provide insights into the disease
mechanisms based on their polygenic risk information.

Modeling of disease risk by polygenic score. To identify which
variants play critical roles in our neural network model for AD risk
classification, we prioritize the variants according to their biological
properties and use partial correlation analysis to estimate their rela-
tive contributions to the final neural network risk scores (Supple-
mentary Fig. 22). Interestingly, the variants involved in the regulation
of biological functions (e.g., residing in coding regions or transcrip-
tion factor binding regions) showed greater contributions to the
obtained polygenic scores (Supplementary Fig. 22a). For instance,
coding variant rs429358, which encodes APOE-ε4 and is one of the
most well-accepted AD genetic risk factors, is significantly correlated
with the obtained risk scores (Spearman’s rho= 0.24, p < 0.001;
Supplementary Fig. 22a). Meanwhile, the noncoding variant
rs439401, identified as an AD risk factor that exerts a risk effect
independent of the APOE-ε4 genotype76, is also significantly asso-
ciated with the obtained risk scores (Spearman’s rho= 0.05,
p < 0.001; Supplementary Fig. 22a). Of note, rs439401 resides in the
regulatory region and occupies the transcription factor-binding
regions, which may influence the expression of specific genes (Sup-
plementary Fig. 22b, c). Furthermore, our genotype–expression
analysis reveals the association between rs439401 and altered APOE
expression in skin tissues (Supplementary Fig. 22d). Meanwhile,
brain single-cell ATAC-seq data suggests that rs439401 resides in the
open chromatin regions of specific brain cells, further supporting the
roles of rs439401 in regulating APOE gene in the brain (Supple-
mentary Fig. 22e)56. Thus, variants with specific biological functions
might have a stronger effect on modulating disease risk, making them
more informative for classifying disease risk.

Discussion
Here, we present the first deep learning-based polygenic score
analysis for AD to the best of our knowledge. We evaluate the
performance of weighted PRS, lasso, and neural network models
for predicting AD risk based on genetic information and show
that the deep learning model classifies disease risk more accu-
rately than the weighted PRS and lasso models. When classifying
clinically diagnosed AD patients, the best auROC our neural
network model achieved is 0.84, which is higher than other
recently reported results based on the weighted PRS model
(auROC= 0.74)30. Meanwhile, by associating the risk scores (as
well as the outputs of the hidden layers) from the neural network
model with the disease-associated endophenotypes (e.g., cognitive
function and the plasma proteome), we identify how AD poly-
genic risk may be correlated with pathophysiological changes in
individual patients. Furthermore, we show that deep learning
methods can stratify people at risk of developing diseases into
subgroups according to their polygenic risks (Fig. 6)77. Thus, this
study highlights the potential of using deep learning methods to
investigate disease mechanisms and stratify at-risk people into
subgroups, thereby paving the way to develop precision medicine
for early disease intervention.

While the neural network model can be used for polygenic risk
analysis of AD, there is room to improve the model’s perfor-
mance. First, incorporating more variants into the classification
model may better capture the genetic signatures that contribute to
the disease, thereby increasing the accuracy of disease classifica-
tion. Meanwhile, misdiagnoses and misclassification of patients
(or NCs) may affect the accuracy of the model; this can be
improved by better defining the classification of the disease with
disease biomarkers such as brain amyloid load and levels of fluid
biomarkers (e.g., Aβ and p-tau181) for AD64,78. As most genetic
and polygenic risk analyses are performed in European-descent
populations, it would also be beneficial to conduct more studies in
non-European–descent populations to better understand the
disease-associated genetic risks and develop customized polygenic
score models for early risk prediction in distinct ethnic
populations79.

Disease-associated variants may modify disease risk by affect-
ing specific biological processes. Notably, our results suggest that
functional variants are likely to contribute more to the polygenic
risk model when modeling the disease risk (Supplementary
Fig. 22). Thus, incorporating the biological properties of variants
may enhance the model’s accuracy for classifying AD risk.
Accordingly, we construct a graph neural network model by
integrating allele dosage, annotated functions, and the LD of
variants, which exhibited superior classification accuracy com-
pared with the weighted PRS model (p < 0.001; Supplementary
Fig. 23). Thus, it is critical to conduct further research on the
interpretability of deep learning models80,81 and the usefulness of
different types of deep learning models (e.g., the graph neural
network model) for modeling disease risk to gain a comprehen-
sive understanding of disease mechanisms and develop more
accurate models for disease risk forecasting using genetic data.

Taken together, our results suggest the utility of deep learning
methods for predicting disease risk and stratifying people at risk
of developing diseases into subgroups as well as their potential
applications in uncovering disease mechanisms. Further studies
are required to explore the utility of these methods for predicting
disease risk at a population scale as well as their potential
applications in disease mechanism studies and therapeutic
development.

Data availability
All data associated with this study are in the main text and the Supplementary
Information or Supplementary Data. Source data for the figures are available as tables in
Supplementary Information or Supplementary Data. Supplementary Data 1–10 can be
found in the Supplementary Data file as separate spreadsheets. The genotype data used in
the study for variant selection can be accessed in the corresponding sources: the National
Institute on Aging–Late Onset Alzheimer’s Disease Family Study cohort (LOAD) raw
data can be accessed in the database of Genotypes and Phenotypes (dbGaP) at
phs000168.v2.p2; the Alzheimer’s Disease Genetics Consortium (ADGC) Genome Wide
Association Study–NIA Alzheimer’s Disease Centers cohort (ADC) raw data can be
accessed in the dbGaP at phs000372.v1.p1; and the Alzheimer’s Disease Neuroimaging
Initiative cohort (ADNI) dataset can be accessed in the ADNI database (https://adni.loni.
usc.edu/). The genetic and Alzheimer’s disease-associated endophenotypic data analysis
results are provided in the Supplementary Information. For data from the Chinese
population, the consent form signed by individual participants states that the research
content will be kept private under the supervision of the hospital and research team.
Therefore, these data will be made available and shared only in the context of a formal
collaboration; applications for data sharing and project collaboration will be processed
and reviewed by a Review Panel hosted at the Hong Kong University of Science and
Technology. Researchers may contact sklneurosci@ust.hk for further details on project
collaboration and the sharing of the data from this study.

Code availability
The code for the neural network for polygenic score analysis (NNP) together with the
dummy datasets has been deposited at GitHub (https://github.com/xzhouai/NNP;
https://doi.org/10.5281/zenodo.7566919)82.
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