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Have you tried turning it off and on again? Oscillating selection to enhance 
fitness-landscape traversal in adaptive laboratory evolution experiments 
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Thomas C. Williams a,b,* 

a Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia 
b CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, 2601, Australia 
c Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA 
d Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA 
e Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark  

A B S T R A C T   

Adaptive Laboratory Evolution (ALE) is a powerful tool for engineering and understanding microbial physiology. ALE relies on the selection and enrichment of 
mutations that enable survival or faster growth under a selective condition imposed by the experimental setup. Phenotypic fitness landscapes are often underpinned 
by complex genotypes involving multiple genes, with combinatorial positive and negative effects on fitness. Such genotype relationships result in mutational fitness 
landscapes with multiple local fitness maxima and valleys. Traversing local maxima to find a global maximum often requires an individual or sub-population of cells 
to traverse fitness valleys. Traversing involves gaining mutations that are not adaptive for a given local maximum but are necessary to ‘peak shift’ to another local 
maximum, or eventually a global maximum. Despite these relatively well understood evolutionary principles, and the combinatorial genotypes that underlie most 
metabolic phenotypes, the majority of applied ALE experiments are conducted using constant selection pressures. The use of constant pressure can result in pop
ulations becoming trapped within local maxima, and often precludes the attainment of optimum phenotypes associated with global maxima. Here, we argue that 
oscillating selection pressures is an easily accessible mechanism for traversing fitness landscapes in ALE experiments, and provide theoretical and practical 
frameworks for implementation.   

1. Microbial cell factories 

Microbial fermentation has emerged as a sustainable alternative for 
manufacturing of industrial, medical, and agricultural products. In these 
applications, microbial metabolism is harnessed to convert renewable or 
waste carbon and energy into valuable products such as chemicals, fuels, 
foods, materials, and pharmaceuticals. While there have been tremen
dous successes from traditional metabolic engineering efforts, it is 
widely recognised that the pace of innovation is too costly and too slow 
(Nielsen and Keasling Jay, 2016). These limitations arise due to the 
highly complex nature of biological systems, their partial characterisa
tion, and their evolutionarily optimisation for proliferation and survival 
under diverse conditions (Nielsen and Keasling Jay, 2016). 

The sometimes-overwhelming complexity of biological systems has 
led to the rise of semi-rational design and high-throughput screening in 
biofoundries, where thousands of genetic variants are designed, built, 
and tested for a target phenotype (Marcellin and Nielsen, 2018). Despite 
these approaches having great utility, they fall well short of addressing 

the available biological design space for a given phenotype, which is 
typically underpinned by millions of potential genotypic variations. 
Furthermore, there are biological ‘unknown unknowns’ that can only be 
uncovered by a truly untargeted process capable of screening hundreds 
of millions of variants. Adaptive Laboratory Evolution (ALE) has 
emerged as a tool with the potential to address all these problems 
through the optimisation of microbial phenotypes using evolution 
(Sandberg et al., 2019). 

2. Adaptive laboratory evolution 

ALE is a process in which organisms are subjected to an environment 
which offers a selective advantage to cells which perform a desired 
function (LaCroix et al., 2017; Dragosits and Mattanovich, 2013; Mans 
et al., 2018). Over time, cells which possess advantageous mutations 
relevant to the selective pressure have an increased chance of becoming 
dominant within the population (Fig. 1) (LaCroix et al., 2017; Dragosits 
and Mattanovich, 2013; Mans et al., 2018; Portnoy et al., 2011; Shepelin 
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et al., 2018). It is a semi-continual process that can be executed over a 
time scale of weeks to years (Dragosits and Mattanovich, 2013). Tradi
tionally, ALE has been used to evolve phenotypes with inherent selective 
advantages, where beneficial mutations directly aid the cell’s ability to 
grow and reproduce (Dragosits and Mattanovich, 2013; Mans et al., 
2018; Portnoy et al., 2011; Shepelin et al., 2018). For example, evolu
tion of alternative substrate utilization, resistance to toxic compounds, 
and increased temperature tolerance (Ho et al., 2017; Caspeta et al., 
2014; Voordeckers et al., 2015; Espinosa et al., 2020; Meyer et al., 2018; 
Xu et al., 2019). 

In recent years, a new focus of ALE has emerged in which phenotypes 
with no inherent growth advantage are being targeted for selection. That 
is, metabolite production phenotypes which offer no reproductive 
advantage are increasingly the focus of ALE experiments. While it is 
sometimes possible to engineer these selective pressures using gene 
knockouts that couple desired carbon fluxes to growth, these mecha
nisms are highly context specific and not sufficiently universal for broad 
application to most metabolic pathways (Alter and Ebert, 2019). ALE of 
metabolite production phenotypes is therefore increasingly being 
investigated using biosensors (Williams et al., 2016). Biosensors are 
commonly proteins, nucleic acids, or genetic circuits that can convert 
the presence of a chosen metabolite into a change in gene expression/
measurable signal that the researcher can use to apply a selection 
pressure (Carpenter et al., 2018). The output of such a biosensor could 
be the complementation of an auxotrophic marker, or the production of 
a fluorescent protein, allowing selection with growth or fluorescent 

activated cell sorting (FACS), respectively. This allows the expansion of 
the types of phenotypes that can be selected for in ALE as they allow the 
coupling of production of non-essential metabolites into a selectable 
output. However, FACS-based screening does have a reduced 
throughput compared to growth-based selection, with FACS screening 
10–100 million cells per day, compared to growth based selection of 
10–100 million cells per mL of liquid culture (Dragosits and Mattano
vich, 2013; Sciambi and Abate, 2015). Whilst not as common as ALE 
using growth-coupled outputs, FACS-based selection and 
high-throughput screening has been used for improved production of a 
variety of compounds including 3,4 dihydroxy benzoate, phenylalanine, 
threonine, and 1-butanol (Jha et al., 2014; Liu et al., 2015, 2017; Die
trich et al., 2013). 

3. Constant selection pressure 

Selective pressures in ALE experiments are largely applied either as a 
constant force or a constantly increasing force (Dragosits and Matta
novich, 2013; Mans et al., 2018; Shepelin et al., 2018). In each round of 
growth and selection, mutations can occur through natural mechanisms 
or induced via mutagenesis, and the fittest members of the population 
taken on to subsequent rounds (LaCroix et al., 2017; Dragosits and 
Mattanovich, 2013). For growth-based selection schemes this can be as 
simple as passaging a portion of the population into new media, and for 
fluorescence-based schemes, using FACS to isolate the brightest cells 
(Schallmey et al., 2014). The percentage of the population that is 

Fig. 1. Adaptive laboratory evolution work-flow 
A) Passaging of cells under selective pressure selects 
for cells with increased fitness (coloured red). 
Continual selection enriches higher performing vari
ants in the population. B) A biosensor which increases 
fluorescence in response to a compound of interest 
can be used to identify cells with increased produc
tion (coloured red). Continual growth and fluores
cence activated cells sorting (FACS) increases the 
proportion of higher producing members in the pop
ulation. C) A combination of genomics and systems 
biology is used to identify beneficial mutations. D) 
Beneficial genetic variants are reverse engineered 
into the parental strain to elucidate genotype- 
phenotype relationships and to increase production/ 
survival/growth. (For interpretation of the references 
to colour in this figure legend, the reader is referred 
to the Web version of this article.)   
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passaged varies based on experimental design and often depends on the 
time and resources available. Studies have suggested a range of popu
lation percentages to passage between rounds, ranging from 1% to 
13.5%–20% citing trade-offs between evolutionary bottle-necking and 
the time available (LaCroix et al., 2017; Wahl and Gerrish, 2001; Hub
barde and Wahl, 2008). Regardless of the percentage passaged, the 
concept is that the average fitness of the population will slowly “walk” 
up a fitness landscape (Fig. 2A). This process of passaging under selec
tion can be iterated upon until improvements in fitness plateau. 

4. Fitness landscapes and epistasis 

A constant selection strategy is most applicable under the assump
tion that the fitness landscape to be traversed is relatively smooth. 

Smooth landscapes allow the accumulation of mutations in a stepwise 
manner, where each new selected mutation increases fitness. The mu
tations involved in the phenotype do not need to occur in a specific order 
as each mutation has an additive effect. Constant selection is used 
frequently for directed evolution of proteins (Romero and Arnold, 2009; 
Tracewell and Arnold, 2009). However, a constant selection strategy 
becomes less efficient, or even completely ineffective, when the fitness 
landscape to be traversed is more rugged (Barton, 2017; Ochs and Desai, 
2015). In contrast to smooth landscapes which possess generally positive 
gradients towards a global peak, rugged landscapes contain multiple 
lower peaks separated by valleys of reduced fitness (Barton, 2017; Ochs 
and Desai, 2015; Obolski et al., 2017) (Fig. 2B). Constant positive se
lection tends to drive the population up the genetically closest fitness 
peak (de Vos et al., 2015). However, rather than being the global 

Fig. 2. Effects of epistatic interactions on evolutionary trajectoriesA) 
A smooth fitness landscape demonstrating the stepwise evolution of a population to a higher fitness state by progressive mutations. As cells with beneficial mutations 
arise their increased fitness allows easier fixation within the population. This can occur sequentially, raising the total fitness. B) A series of fitness landscapes 
progressing from smooth to rugged (left to right). The smooth fitness landscape is defined by a single peak which is approachable via gentle slopes. The more rugged 
fitness landscapes possess multiple peaks of various heights, separated by valleys of lower fitness. C) i) Evolution on a smooth fitness landscape with a constant 
selection pressure is straightforward. Cells with beneficial mutations that arise in the population can sequentially fixate in a series of steps that follow and uphill 
progression towards the global peak. ii) Evolution on a rugged fitness landscape with a constant selection pressure is less easy. The population is able to climb to the 
smaller peak in the same way as previously described. However, movement from the smaller peak to the larger requires cells to possess deleterious mutations. The 
constant selection pressure drives cells that might cross the valley back to the local-optimum fitness peak. D) Relative fitness of simplified genotype combinations 
demonstrating no epistasis, magnitude epistasis, sign epistasis, and reciprocal sign epistasis. Genomes are wildtype (i.e., a,b) with mutations A or B or both. i) Under 
no epistasis both mutations contribute in an additive fashion to fitness, where the double mutant has the sum fitness of each mutation alone. ii) Under magnitude 
epistasis the effect of each mutation in isolation is less than the double mutant. The effect on fitness of the double mutant is greater than the sum of the individual 
mutants. iii) Under sign epistasis one of the mutations has a negative effect on fitness when it occurs in isolation, but a positive effect when the other mutation is 
present. iv) Under reciprocal sign epistasis both mutants have a negative effect of fitness when they occur in isolation, but together increase fitness. 
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maximum, this peak may only be a local maximum. Once the population 
has been driven to a local maximum, the constant selective pressure 
applied to the system can make it difficult for the population to explore 
other peaks within the fitness landscape (Fig. 2C) (Sailer and Harms, 
2017; Weissman et al., 2009; Steinberg and Ostermeier, 2016). The 
ruggedness observed in fitness landscapes is due to epistatic interactions 
between mutations (Poelwijk et al., 2011). 

5. Epistasis 

Epistasis is the concept that the effect of a mutation on phenotype 
can be dependent on the genetic context in which that mutation occurs 
(Ochs and Desai, 2015; Obolski et al., 2017). Some mutations which may 
be important for reaching a fitness maximum may have a neutral, 
negative, or diminished effect if a previous mutation is not present 
(Barton, 2017; Sailer and Harms, 2017; Weissman et al., 2009; Van 
Cleve and Weissman, 2015). A hypothetical example of this is the evo
lution of ethanol production. Ethanol production can garner a selective 
advantage to cells as a defence mechanism in mixed populations, but 
only if they have a mechanism to resist the ethanol they are producing. A 
cell which evolved increased ethanol production without evolving 
tolerance would be at a disadvantage relative to the rest of the popu
lation. The three most relevant types of epistasis to this article are 
magnitude, sign, and reciprocal sign (Fig. 2D) (Obolski et al., 2017; 
Poelwijk et al., 2007; Dawid et al., 2010). Magnitude epistasis occurs 
when the size of a phenotypic effect resulting from the combination of 
two or more mutations does not equal the size of effects observed for 
each mutation in isolation. Rather than each mutation contributing to 
the phenotypic effect in an additive fashion, the net change in phenotype 
is greater than the sum of its parts (Poelwijk et al., 2007; Weinreich 
et al., 2005). Sign epistasis is when the effect a mutation has on fitness is 
inverted from advantageous to deleterious or vice versa, depending on 
the genetic context in which it occurs (Poelwijk et al., 2007; Weinreich 
et al., 2005). That is, a mutation may be deleterious in isolation, but 
beneficial if a secondary mutation is also present. Finally, reciprocal sign 
epistasis occurs when two or more mutations improve fitness when all 
are present, but individually each mutation decreases fitness (Poelwijk 
et al., 2007). 

Epistatic interactions are responsible for the rugged features of some 
adaptive landscapes. Specifically, sign epistatic interactions reduce the 
total number of viable trajectories, requiring mutations to arise in a 
specific order, or simultaneously (Sailer and Harms, 2017; Poelwijk 
et al., 2011). This has been exemplified in several protein evolution 
studies (Yang et al., 2019; Heckmann et al., 2013; Reetz and Sanchis, 
2008; Sugrue et al., 2017). These studies reviewed the possible muta
tional trajectories which could be taken for a series of proteins, recon
structing and/or analysing the fitness of each possible mutant within the 
fitness landscape. Each found that sign epistasis restricted the possible 
routes of evolution under a constant selection regime (Yang et al., 2019; 
Reetz and Sanchis, 2008; Sugrue et al., 2017). Alternatively, reciprocal 
sign interactions create fitness peaks and valleys (Barton, 2017; Kvitek 
and Sherlock, 2011; Chiotti et al., 2014). Rather than restricting 
evolutionary trajectories to a specific subset of mutations, reciprocal 
sign interactions do not offer an uphill path to the global maximum, 
trapping populations on local peaks. Metabolism is an extremely com
plex network including many feedback, inhibitory, synergistic, and 
antagonistic relationships both at the transcription/translational and 
enzyme kinetics levels (Alam et al., 2016; Sato et al., 2016). As such, the 
level of epistatic interactions within the system are quite high (Snitkin 
and Segrè, 2011; Szendro et al., 2013; Weinreich et al., 2013). Despite 
this, most ALE experiments still operate with selection schemes that are 
optimized for evolution on smooth fitness landscapes. These selection 
schemes struggle to tackle the unique challenges posed by rugged 
landscapes and entrapment on local peaks. This was highlighted by 
Kvitek and Sherlock (2011) in a study in which 448 generations of 
Saccharomyces cerevisiae were grown on glucose limiting conditions. 

This resulted in the identification of adaptive mutations in MTH1 and 
HXT6/7 that occurred in separate lineages but not simultaneously. 
Further investigation revealed that due to epistatic interactions, cells 
containing both mutants suffered a significant fitness penalty. Had the 
experiment been initiated with one of the numerous S. cerevisiae strains 
which naturally possess the MTH1 mutation, the probability of identi
fying the HXT6/7 variation would have been severely reduced (Kvitek 
and Sherlock, 2011). 

6. Stochastic tunnelling/shifting balance of evolution 

The main challenges for ALE on rugged landscapes involve peak 
navigation. Specifically, the avoidance of local maximums and the 
movement from one peak onto adjacent peaks, whilst crossing fitness 
valleys. There is a large quantity of theoretical and experimental 
research that has focused on evolutionary peak shifts via valley cross
ings, which is covered in several excellent studies (Barton, 2017; Ochs 
and Desai, 2015; Obolski et al., 2017; Weissman et al., 2009; Poelwijk 
et al., 2007). Whilst research in this area is still on going, and multiple 
hypotheses exists, the two classic theories of how populations cross 
fitness valleys are shifting balance theory (SBT) and stochastic tunnel
ling (Fig. 3) (Iwasa et al., 2004; Wright, 1932). SBT suggests that if 
populations are divided into smaller groups, the contribution of genetic 
drift will be much higher and the likelihood of non-adaptive mutations 
becoming fixed increases. Thus, a subdivided population could sto
chastically fix mutations that correspond with fitness valleys. This sub
divided population would then be capable of acquiring new mutations 
which place it in an adjacent fitness peak. Alternatively, stochastic 
tunnelling suggests that a small number of cells within a population may 
be able to accrue sufficient mutations to move from one peak to another 
without fixating the intermediate genotypes. That is, some cells within 
the population may develop deleterious mutations, but before becoming 
extinct develop additional mutations which place them in an adjacent 
fitness peak. From an ALE perspective, neither of these theories offer 
quick escape routes from local maxima, with even simple peak shifts 
sometimes requiring millions of generations (Ochs and Desai, 2015; 
Obolski et al., 2017; Weissman et al., 2009). 

7. Varying environments for valley crossing 

Since the establishment of SBT and stochastic tunnelling, other 
possible mechanisms of valley crossing have also been investigated with 
promising biotechnological applications. One such mechanism is that of 
environmental fluctuation. Adaptive landscapes are selection pressure 
specific, with different environments favouring different evolutionary 
trajectories (Taute et al., 2014; Pál and Papp, 2017). That is, a genotype 
with high fitness under one set of conditions may not necessarily have 
high fitness under a separate set of conditions. The key obstacle in fitness 
valley crossing is how intermediate deleterious genotypes can survive 
selection and allow escape from a local maximum (Obolski et al., 2017; 
Pál and Papp, 2017). It has been suggested that by altering the nature of 
the selection pressure, these intermediate genotypes could become 
neutral or even advantageous under the new fitness landscape (Pál and 
Papp, 2017; Hadany, 2003; Flynn et al., 2013). Thus, the alteration of 
selective pressure allows the exploration of mutations that would be 
neutral/deleterious in other environments, expanding the number of 
unique trajectories which can be explored, and allowing cells which 
have reached a local maximum an opportunity to “step off” that peak (de 
Vos et al., 2015; Steinberg and Ostermeier, 2016; Taute et al., 2014; Hall 
et al., 2019; Szappanos et al., 2016; Kashtan et al., 2007). Rather than 
relying on rare simultaneous mutations which shift cells from one peak 
to another in a stochastic tunnelling event, altering selective pressure 
could stabilize an intermediate genotype in a manner not dis-similar to 
enzymes lowering the activation energy of a chemical reaction. Given 
the epistatic nature of many phenotypes relevant to metabolic engi
neering such as metabolic flux, enzyme structure and activity, and 
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transcriptional regulation, we argue that oscillating selective conditions 
can be employed in ALE experiments to enhance the performance of 
resulting isolates and populations (Snitkin and Segrè, 2011; Szendro 
et al., 2013; Weinreich et al., 2013). 

8. Types of selection alteration 

ALE methods that include selection pressure oscillation could enable 
the traversal through local maxima and enable the generation of higher 
performing strains. Several computational and physical experiments 
have indicated that varying selection pressure can assist in the evolution 
of desired traits (de Vos et al., 2015; Steinberg and Ostermeier, 2016; 

Szappanos et al., 2016; Kashtan et al., 2007; Maltas et al., 2021; 
Abdul-Rahman et al., 2021; Sandberg et al., 2017). Computational 
studies have examined slightly different aspects of selection alteration, 
with strategies for valley traversal falling into three broad main groups 
(Sandberg et al., 2019; de Vos et al., 2015; Steinberg and Ostermeier, 
2016; Kashtan et al., 2007). Oscillating between positive selection and 
either neutral, alternative positive, or negative selection have all shown 
promise for fitness valley traversal (Fig. 4). Neutral selection in this 
context is the permissive growth/survival of the population independent 
of a directional selection. This would allow the majority of mutants that 
arise in the population to survive temporarily, giving cells the oppor
tunity to “step off” a local maximum (Kashtan et al., 2007). Rather than 

Fig. 3. Valley crossing under shifting balance and 
stochastic tunnelling theories of evolution 
Simplified evolutionary trajectories for shifting bal
ance and stochastic tunnelling theories of valley 
traversal. A) In shifting balance theory the population 
under consideration needs to be sufficiently small 
such that genetic drift is capable of overpowering 
selection. In this example genetic drift has allowed 
the fixation of an intermediate genotype despite its 
negative effect on fitness B) Stochastic tunnelling 
theory suggests that members within a population 
may develop intermediate deleterious genotypes fol
lowed by additional beneficial mutations before the 
effect of selection drives the intermediate genotypes 
to extinction. This allows for valley crossing without 
fixation of less fit genotypes.   

Fig. 4. Evolution on changing rugged fitness 
landscapes 
Oscillation of selective pressure applied alters the 
fitness landscape of a simplified ALE experiment. The 
y axis on each graph is fitness and the x axis is 
genotypic space. Figure shows only three rounds of 
selection for clarity, however in practice multiple 
repeating rounds would be used. A) Oscillation with 
neutral selection imposes a flattening of the land
scape, allowing the population to accrue non- 
beneficial mutations. When positive selection is 
resumed some members of the population may be 
able to ascend to the higher peak B) Oscillation with 
alternative positive selection imposes an alternative 
fitness landscape that may be similar to the original, 
but different enough to drive the population onto 
adjacent peaks. C) Oscillation with negative selection 
imposes a fitness landscape which is the inverse of the 
original. Selection in this manner drives cells away 
from the peak they were on in any direction which is 
available.   
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relaxing selection, alternative positive selection involves changing to a 
secondary target of directed evolution that is likely to share sub-goals 
with the primary target. This would change the fitness landscape, 
possibly turning a genotype that was at a fitness peak to now be on a 
slope (de Vos et al., 2015; Szappanos et al., 2016). This allows constant 
positive selection, albeit with alternating targets. This was partially 
demonstrated by Abdul-Rahman et al. (Abdul-Rahman et al., 2021) in an 
experiment which analysed diversity in populations of S. cerevisiae 
passaged between two selective environments. In this study a library of 
4000 mutants was grown in media that was carbon limited, nitrogen 
limited, or oscillated between the two conditions. By the conclusion of 
the experiment, both populations which had been grown under constant 
selection had simplified to the extent that a single mutant comprised 
more than 50% of their respective populations. This was in contrast to 
the population grown under oscillating conditions whose most dominant 
mutant made up only 3% of the population (Abdul-Rahman et al., 2021). 
The final and possibly most counter-intuitive oscillation strategy is 
negative selection, which involves actively selecting against the 
phenotype of interest. In this scenario, cells are actively selected to move 
away from the local maximum (Steinberg and Ostermeier, 2016). This 
technique relies on the concept that many routes are possible for 
descension and some of those routes may locate individuals at the base 
of an adjacent peak. This was highlighted by work conducted by 
Steinberg and Ostermeier (2016) which explored the evolution of 
β-lactam resistance using Escherichia coli populations expressing mutants 
of the β-lactamase gene TEM-1. This study incorporated negative se
lection by selecting cells with lower β-lactam resistance, which was then 
followed with positive selection by selecting cells with the highest 
β-lactam resistance. When compared to populations subjected to 
exclusively positive selection, the negative selection group was able to 
achieve a 4 fold higher increase in β-lactam resistance (Steinberg and 
Ostermeier, 2016). 

9. Implementation in ALE experiments 

Whilst the neutral, alternative positive, and negative methods of 
selective pressure oscillation have shown promise compared to constant 
selective pressure, questions remain as to which method is most effec
tive, and how they can be most effectively implemented. Despite this, 
there are still actionable concepts that can be implemented in ALE ex
periments. Implementation of oscillation with neutral selection would 
be feasible for many ALE experiments by simply adding rounds of 
growth in permissive media whilst maintaining whichever method of 
genetic diversification is being used. The use of permissive growth has 
been used previously to aid the ALE of methanol utilization in 
S. cerevisiae by maintaining biomass between selection rounds (Espinosa 
et al., 2020). Oscillation with alternative positive selection could be 
implemented with alternative media for growth-based experiments, 
either by using a similar carbon source, stress inducing compound, or 
enzymatic substrate. This approach would become more difficult if a 
biosensor was used as the selection method, as a second biosensor for a 
closely related metabolite would be required. Additionally, oscillation 
with negative selection may prove challenging to implement depending 
on the selection regime used. ALE experiments investigating growth 
specific phenotypes would need rounds in which growing cells are 
actively selected against. Biosensor-based selection schemes would be 
easier to use with rounds of negative selection using counter-selectable 
markers or low fluorescence as negative selection of biosensor output. 

The final challenges in implementing oscillating selective pressure in 
ALE experiments concern the stage and frequency of implementation. 
One might want to only begin oscillation once a plateau of fitness 
improvement is reached in a constant condition ALE experiment. This 
would allow for a low-risk method of exploring oscillating selection 
pressure and as a method to progress an otherwise successful, but pla
teaued experiment. However, it is plausible that for neutral and negative 
selection pressure oscillation, the further strains evolve into their local 

maximums, the harder it could be to leave that fitness peak. Addition
ally, data on the frequency with which selective pressure should be 
switched is sparse. However, some successful studies have previously 
changed selective pressure after 3–5 rounds of outgrowth on solid 
media, and 20 generations in liquid media (Steinberg and Ostermeier, 
2016; Kashtan et al., 2007). It’s conceivable that an overly high oscil
lation frequency would not provide sufficient opportunity for interme
diate genotypes to arise before being lost to positive selection. Finally, 
consideration must be given to the overall selective pressure of the 
experiment. Experiments which use equal durations of positive and 
alternative selections provide no net fitness advantage to the desired 
phenotype. Rather than facilitating fitness-valley crossing, 
equi-duration oscillation may result in the evolution of distinct 
sub-populations (Sandberg et al., 2017). It is likely that the optimal 
oscillation frequency, duration, and stage of implementation will be 
dependent on several factors, including the organism’s frequency of 
mutation, the level of sign epistasis within the system, and the genotypic 
distance between peaks. 

10. Future outlook 

The evolutionary trajectories of populations in ALE experiments are 
heavily impacted by experimental setup and the implementation of se
lective pressure. Many ALE experiments are conducted over the course 
of 100–500 generations or 1–2 months of daily passaging (Sandberg 
et al., 2019). While multiple mutations are typically present in the 
resulting populations and isolates, there is often a handful of simple 
causative mutations underlying the improved phenotype. This raises the 
question, is the lack of complex multigenic mutations identified by most 
ALE experiments a fundamental property of the phenotypes investi
gated, or an outcome of the experimental set-up? Given the clear 
complexity of most naturally evolved traits, we propose that the con
stant selective pressure typically used in ALE has contributed to the 
limited elucidation of complex traits. Additionally, as new forms of ge
netic diversification begin to be implemented in ALE experiments (e.g. 
SCRaMbLE, OrthoRep, MAGE etc), the ability to traverse rugged fitness 
landscapes will become more important (Wu et al., 2018; Rix et al., 
2020; Wang et al., 2009). Historically ALE experiments have typically 
relied on mutation rates dictated by the natural DNA replication error 
rate of the species being evolved. This approach avoids the problem of 
advantageous and deleterious mutations arising in the same genome, 
but underexplores the genotypic solution space (Zheng et al., 2021). In 
contrast, mutagenesis methods relying on chemical mutagens and ra
diation can give rise to excessive mutation rates, with desirable muta
tions masked by deleterious ones (Lee et al., 2011). Further, safety 
concerns of such mutagenic compounds can limit their usability. How
ever, an emerging set of synthetic biology approaches are aimed at 
increasing genetic diversity whilst decreasing the proportion of delete
rious mutations. For example, techniques have been developed for 
controlling the in vivo DNA replication error rate either in response to 
the desired phenotype using a biosensor or for a selected DNA region 
(Rix et al., 2020; Chou and Keasling, 2013; Jensen et al., 2021). Addi
tionally, efforts such as the synthetic yeast genome project (Sc 2.0) offer 
large scale rearrangements of entire transcriptional units (Annaluru 
et al., 2014). As these and other methods of genetic diversification 
become more commonplace in ALE experimentation, the nature of the 
mutational “step” will change, increasing the probability of escaping 
local fitness maximums. Combined with oscillating selective pressures, 
we predict this will enable more rapid traversal of rough fitness land
scapes and allow an easier approach towards reaching global maxima. 

11. Conclusions 

Significant progress has been made in the field of evolutionary 
biology in understanding the processes that influence evolution of or
ganisms in rugged fitness landscapes. The traditional view that 
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evolution of complex traits must progress through slow/improbable 
mechanisms such as stochastic tunnelling or SBT is receiving consider
able criticism (Obolski et al., 2017; Steinberg and Ostermeier, 2016). 
Selection pressure oscillation offers a viable method for improving 
evolutionary outcomes. However, the field of metabolic engineering has 
been slow to make use of these advances, despite the considerable 
improvement oscillation of selection could provide. Whilst optimum 
oscillation conditions have yet to be elucidated for the purposes of 
metabolic engineering, many opportunities exist for researchers to begin 
implementing versions of the technique into their work. This would 
allow ALE experiments to explore more diverse genetic space, 
decreasing the probability of entrapment on local fitness maximums, 
and increasing the probability of finding strains with improved target 
phenotypes. 
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