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Professor Marcia C. Linn, Co-Chair

The increasing complexity of global challenges demands a STEM-enriched approach to learning
for all students, regardless of their future career paths. Challenge-Based Learning (CBL) is a
pedagogical method to foster a STEM-enriched education, engaging students in the design of
societally impactful, interdisciplinary solutions. To investigate the potential of CBL, specifically
in the context of Undergraduate STEM Education (USE), it is crucial to assess students’ affective
development such as their attitudes, beliefs, and self-perceptions related to STEM. This
dissertation explores the impact of CBL on student affect through three interconnected studies
centered on a large-enrollment Bioinspired Design course. Chapter 1 explores overall growth in
measures of science connection—Science Identity (SciID), Science Self-Efficacy (Eff), and
Internalization of Scientific Community Values (Val)—using the Tripartite Integration Model of
Social Influence (TIMSI) framework. Results demonstrated significant pre/post increases in
SciID and Eff across five semesters, with Val remaining stable. Item level analyses revealed
specific impacts of CBL activities on these affective measures, particularly in developing
students’ confidence in creating novel technologies. Chapter 2 investigates the equity of these
affective growth outcomes across seven demographic variables. Results indicated that the
observed increases in science connection were largely equitable across diverse student
populations, with differences in SciID development based on STEM major status and class
status. Chapter 3 introduces and validates a novel affective construct: Innovation Skills
self-efficacy. Developed using the Berkeley Evaluation & Assessment Research (BEAR)
Assessment System, this construct provides a more targeted measure of self-efficacy aligned
with the Innovation Skills needed for the future STEM-enriched workforce. Results showed
approximately one standard deviation of pre/post growth, with a large effect size in the context
of educational interventions. Collectively, this dissertation showcases the potential of CBL
approaches in USE to foster equitable development of science connection and Innovation Skills
self-efficacy across diverse student populations through comprehensive, psychometrically robust
assessments of student affect. This research underscores the importance of holistic approaches to
STEM education that cultivate not only knowledge and skills, but also the attitudes and beliefs
necessary for success in the known and unknown STEM-enriched careers of the future.
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Positionality Statement

I am a practicing Muslim and firmly believe in the mutually reinforcing nature of Islam and
science. I come from an immigrant and first-generation background. I was born in Pakistan to
parents without college degrees. I come from a background in which no one I ever knew pursued
a PhD. As an undergraduate, pursuing a biology degree felt easy for me (aside from organic
chemistry) because I had been so well prepared by my high school, Bergen County Academies.
But the same could not be said for so many of my peers. I saw students drop out of introductory
STEM courses like Gen Bio, Gen Chem, and Gen Physics as part of what seemed like an
embedded “weed out” process. These same peers often left their pursuit of a STEM degree
altogether. This prompted my initial motivation to investigate pedagogical practices within
undergraduate STEM education. From there, I became interested in improving student learning
through disciplinary-based education research.

Eventually, I found my way to the Science and Math Education (SESAME) program at Berkeley.
I was excited by the interdisciplinary nature of the program that emphasized both STEM and the
learning/teaching of STEM through evidence-based practices. As a SESAME student, I was
introduced to the interdisciplinary subject of Bioinspired Design. I saw firsthand just how
impactful an undergraduate course based on this unique context can be for all students. Barriers
of STEM versus non-STEM were erased. Learning was a collaborative endeavor. Learning was
built on authentic discovery. Learning involved making something that was personally
meaningful and societally relevant.

After seeing the promise of this innovative course, I personally became interested in researching
the assessment of student learning within this course. I began to consider questions such as: How
do we know this course is actually working? Is it working for all students? What can we measure
to support this? Why should we measure that and not something else? How should we measure
this? Based on my interests in these questions, I present the following dissertation on how we
can make undergraduate STEM education more inclusive, interpersonal, and interdisciplinary
through Challenge-Based Learning.
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Dissertation Introduction

Reimagining Undergraduate STEM Education through the TrI Model

The demand for innovative, interdisciplinary solutions to global challenges is rapidly
changing the landscape of science, technology, engineering, and mathematics (STEM). To meet
these challenges, we must fundamentally reimagine undergraduate STEM education (USE) to
better prepare the next generation of informed citizens. This reimagination requires a shift
towards a STEM-enriched approach to learning, where scientific knowledge and practices are
applied not just within traditional STEM fields, but across all areas of society. This outlook
recognizes that all students, regardless of their major, benefit from developing STEM-enriched
perspectives to make informed decisions as part of their civic duties in a democratic society.

Considering the evolving demands of an ever-changing world, many of the jobs of the
future do not currently exist. This poses a unique challenge—how can we prepare
undergraduates for an uncertain future? Moreover, how can we ensure that USE meets the needs
of an increasingly diverse student population while fostering the skills necessary to tackle
pressing global issues? These questions underscore the need for a USE system that is not
confined to STEM majors alone, but rather enriches all students with STEM-related skills and
knowledge applicable to areas both within and outside of STEM.

To meet these challenges, the research in this dissertation is centered on a reimagination
of USE based on the TrI model (Figure 1). The future of USE must be Inclusive, Interpersonal,
and Interdisciplinary. These three principles form the foundation of a STEM education that is
effective in developing technical skills while also being more equitable, collaborative, and
reflective of scientific practices that promote innovation. By embracing these principles within a
STEM-enriched framework, we can create a USE system that truly serves all students,
empowering them to apply scientific thinking and problem-solving skills across diverse contexts,
thereby advancing the frontiers of scientific knowledge and societal progress.

Figure 1
TrI Model for Undergraduate STEM Education
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The future of USE must be Inclusive. A student cannot adequately learn if they do not
feel like they belong, and historically, STEM education has not been a place where marginalized
groups have felt welcome. Scientific investigations require the voices of diverse stakeholders to
develop creative solutions to complex problems. Therefore, it is our responsibility to develop a
USE system that is not only diverse, but also inclusive, ensuring that those diverse perspectives
can flourish. This inclusivity is central to a STEM-enriched education, recognizing that all
students, regardless of their major or background, can contribute valuable insights to scientific
problem-solving. Fostering this environment requires culturally-sustaining research practices that
better integrate how students’ backgrounds and lived experiences impact their learning. This
dissertation addresses this crucial need for inclusivity through a Challenge-Based Learning
(CBL) approach implemented in a Bioinspired Design course. By examining the development of
science connection across diverse student populations, this research demonstrates how CBL can
cultivate an inclusive learning environment that promotes equitable growth in Science Identity
(SciID), Science Self-Efficacy (Eff), and Internalization of Scientific Community Values (Val)
for all students, regardless of their demographic identity or disciplinary background.

The future of USE must be Interpersonal. STEM is a deeply interpersonal endeavor.
Nearly all landmark publications of the past decade contain multiple authors conducting research
as an agile team. Collaboration is no longer a luxury—it is a necessity. USE must be the same.
Learners need to work on the STEM problems of today and tomorrow together, developing skills
that are transferable across various domains in our STEM-enriched society. The prevailing image
of an isolated student completing solitary assignments distorts students’ perceptions of STEM.
Thus, interpersonal collaboration needs to start as early as possible. Courses can capture this
reality with opportunities for collaborative CBL. The Bioinspired Design course studied in this
dissertation embodies this principle by engaging students in interdisciplinary team projects.
These projects mirror real-world scientific practice, requiring students to work together to
translate scientific discoveries into novel, societally beneficial designs. The course not only
develops students’ collaborative skills but also provides them with a more authentic
understanding of how science works, benefiting both future STEM professionals and those who
will apply STEM thinking in other fields.

The future of USE must be Interdisciplinary. The cutting-edge discoveries of today
originate from interdisciplinary publications. Seemingly disparate research fields are becoming
more integrated because the world’s most pressing problems require interdisciplinary solutions.
USE of the future must reflect this reality, preparing students for a STEM-enriched landscape
where scientific thinking integrates into various sectors of society. This dissertation explores how
a course open to all majors, all years, with no prerequisites, can break down traditional
disciplinary barriers. Our Bioinspired Design course brings together students from over 40
different majors, fostering collaborative learning between diverse disciplinary perspectives. This
interdisciplinary principle is exemplified in Chapter 3 by the Innovation Skills self-efficacy
construct which measured students’ confidence in their abilities related to scientific discovery
and translation, interdisciplinary thinking, and interdisciplinary collaboration. Increasing
confidence in these skills is a critical part of equipping all students with the ability to apply
STEM-enriched thinking to all fields, enhancing their capacity to tackle complex societal issues
regardless of their chosen profession.
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Dissertation Overview

This dissertation explores the implementation and impact of a CBL approach in USE
through three interconnected studies. Chapter 1 examines the overall growth in science
connection measures (SciID, Eff, and Val) observed in students participating in a Bioinspired
Design course, providing insight into how CBL can foster meaningful engagement with science
across diverse student populations. Building on these findings, Chapter 2 investigates the equity
of these outcomes across various demographic groups, demonstrating the potential of CBL to
promote inclusive USE. Finally, Chapter 3 advances our understanding of student self-efficacy in
the unique CBL environment by developing and validating a novel construct called Innovation
Skills self-efficacy. This progression from established measures to new, context-specific
assessments reflects the evolving nature of USE and the need for more comprehensive methods
to measure student confidence in carrying out 21st century skills.
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Chapter 1

A Challenge-Based Learning Approach to Foster
Science Connection in a Bioinspired Design course

Abstract

Fostering science connection among undergraduate students is crucial for developing a
STEM-enriched citizenry capable of addressing complex global challenges. This chapter
examines the impact of a Challenge-Based Learning (CBL) course, Bioinspired Design, on
promoting science connection among 180 undergraduate students from over 40 majors in a single
semester across five distinct years. The course engaged students in collaborative identification of
biological principles to develop solutions to societal challenges. Using the Tripartite Integration
Model of Social Influence (TIMSI) framework, we conceptualized science connection
development based on changes in Science Identity (SciID), Science Self-Efficacy (Eff), and
Internalization of Scientific Community Values (Val). We utilized a pre/post survey design,
employing repeated measures ANOVAs and paired t-tests to evaluate individual and collective
changes in the science connection constructs. We found significant increases in science
connection over five years of course iterations, with notable increases in SciID and Eff
specifically, while Val remained stable. Significant connection increases were observed across all
semester iterations of course, despite varying instructional modalities due to the COVID-19
pandemic. Item level analyses revealed specific impacts of course activities on TIMSI measures,
particularly in developing students’ Eff, related to their confidence to create novel technological
solutions. Findings demonstrated that CBL can effectively promote science connection in
interdisciplinary classroom settings within a single semester, even under challenging social
disruptions. Results showcase the potential of CBL as a scalable and adaptable model to support
reform in undergraduate STEM education. By creating pathways for students to meaningfully
connect with science, CBL experiences contribute to building a more STEM-enriched society
crucial for navigating unprecedented rates of change in the world today. The subsequent chapter
follows up on these growth outcomes in science connection by investigating potential differential
impacts across diverse demographic groups to further understand the inclusive nature of this
CBL approach.
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Background

Reimagining Undergraduate STEM Education through Challenge-Based Learning

Student learning trajectories through STEM education need to be reimagined to meet the
evolving demands of the future (Batchelor et al., 2021; National Science Board, 2015). For
example, the “braided river” model proposed by Batchelor et al. (2021) challenges the notion
that STEM education is confined to a narrow focus of preparing students for careers in STEM
fields alone. Instead, this model captures the interconnected and dynamic nature of STEM
education and careers, envisioning the educational landscape as a braided river with multiple
interweaving channels representing the diverse paths students can take, both within and beyond
traditional STEM boundaries. This model better aligns with future workforce requirements
expanding the skills needed for STEM success beyond single-domain expertise (National
Research Council, 2014). Importantly, embracing a perspective that includes students from more
diverse paths can also lead to the competitive advantages that diversity brings to STEM,
empowering a STEM-enriched workforce that can propel future innovation (AlShebli et al.,
2018; Hernandez et al., 2013; Hofstra et al., 2020; National Academy of Engineering, 2015).

Interventions at the undergraduate level present a critical opportunity to enhance diversity
in STEM fields, as this stage offers a wide variety of entry points and pathways into STEM
careers (Miller & Wai, 2015). Implementing effective change strategies during undergraduate
education can lead to a more inclusive and interdisciplinary approach to STEM that recognizes
the diverse routes students can take and values transferable STEM skills across various contexts.
This approach is particularly important given the need to develop a STEM-enriched workforce
capable of applying scientific understanding in both STEM and Non-STEM fields (National
Science Board, 2015). To achieve this goal, educational models that promote interdisciplinary
connections among students are essential. One promising framework for designing impactful
interdisciplinary learning experiences in undergraduate education is Challenge-Based Learning
(CBL).

CBL is as an interdisciplinary, collaborative learning approach where students work to
develop solutions to real-world, open-ended challenges by prioritizing global issues and
involving the use of technology and input from external stakeholders (Gallagher & Savage,
2020; Johnson et al., 2009; Malmqvist et al., 2015; Membrillo-Hernández et al., 2019). CBL
differs from other approaches like problem-based learning (PBL) in its open-endedness and
reduced emphasis on prescribed rules of engagement. In PBL, students are given a specific
problem with clear parameters and a structured process for developing a solution (Savery, 2006).
In contrast, CBL highlights broader, less defined challenges that require students to identify and
frame the problem themselves before developing solutions (Malmqvist et al., 2015). CBL is
inherently multidisciplinary, drawing on knowledge and skills from multiple fields to develop
solutions to complex problems (Malmqvist et al., 2015). Students collaborate in teams,
leveraging technology to enable the learning process and develop solutions (Johnson et al.,
2009). The learning process in CBL centers itself on problem formulation and solution design,
not just acquiring content knowledge (Membrillo-Hernández et al., 2019). By engaging students
in authentic, real-world challenges, CBL aims to both educate students and have real-world
impact (Gallagher & Savage, 2020; Apple, 2008).

5



Implementing Challenge-Based Learning through Bioinspired Design

At the University of California, Berkeley, we developed a large-enrollment (180 students)
semester course called Bioinspired Design (Full et al., 2021) exemplifying key features of CBL
(Table 1). The course was situated within our campus makerspace at the Jacobs Institute for
Design Innovation, capitalizing on principles of the Maker Movement to provide hands-on,
creative learning experiences. Through this partnership, each student received a maker pass,
comprehensive safety training, and access to a wide array of makerspace equipment, enabling
them to bring their designs to life. Throughout the course, students engaged in the bioinspired
design process by identifying biological principles from original, published, scientific
discoveries, analyzing their potential for translation, and designing sustainable solutions to
societal problems. For example, in one design project, students proposed designs for a safer
infant car seat activated by the unique frictional adhesive mechanism of gecko toes. In another
design project based on insect exoskeletons, students constructed an origami-based legged robot
and developed modified prototypes for societally relevant contexts such as agricultural soil
monitoring, humanitarian demining, and search-and-rescue operations. In each of these guided
design projects, students demonstrated the identification and translation of biological principles
into designs that solved open-ended societal challenges.

These projects, and the course as a whole, represented the CBL feature of
interdisciplinary thinking. Our course was open to all majors, all years, with no prerequisites,
leading to enrollment of students from over 40 different majors. This disciplinarily diverse mix
of students, from both STEM and Non-STEM backgrounds, represented the interdisciplinary
thinking needed to solve real-world challenges. The course also included the CBL feature of
collaborative learning, with students working in selected teams that were balanced across major,
class year, and prior design experience. Throughout the course, students also engaged in various
team-building exercises and received training on effective teaming strategies to ensure inclusive
collaboration.

The course gave students the opportunity to develop solutions to open-ended challenges
they themselves defined and deemed most urgent. This included multiple scaffolded assignments
where students deconstructed research papers, distinguished between primary and secondary
sources, evaluated credibility, used analogical reasoning to propose novel designs, and
communicated their ideas to diverse audiences. Through this iterative process of discovery,
analysis, and invention, students learned to frame problems, ideate solutions, and refine their
designs based on feedback. This culminated in a variety of team-based final design projects
derived from start to finish by students, showcasing the interdisciplinary and sociotechnical
nature of the challenges they aimed to address. Student teams collaboratively designed
sustainable solutions that considered environmental, social, and economic factors. Final design
projects have included a flexible cast to reduce muscle atrophy based on the skeleton of
seahorses, a voice restoration system for throat cancer patients based on a songbird’s syrinx, and
a compliant novel suturing device derived from porcupine spines (Full et al., 2021). Many of
these final design projects can be seen at https://www.behance.net/berkeleybiodesign.
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Table 1
Bioinspired Design Course Connections with Challenge-Based Learning (CBL)

CBL Features Course Connection Explanation/Example

Real-world, open-ended
challenges

Bioinspired design process;
sustainable solutions to societal
problems

Guided team design projects; final
team design project

Interdisciplinary 40+ majors; interdisciplinary
student teams

Criteria selected teams balanced
across major, class year, and prior
design experience

Collaborative learning Team-building exercises; training
on effective collaboration strategies

Seed dispersal (marshmallow)
challenge; collaborative plan

Problem formulation and
solution design

Scaffolded assignments; iterative
process of discovery, analysis, and
invention

Discovery Decomposition and
Analogy Check (See Figures 4 and
5)

From Full et al. (2021)

Assessing Social Influence Constructs in a CBL Scientific Community

Considering the distinctive CBL features in our Bioinspired Design course (Table 1), we
became interested in assessing the correspondingly unique scientific learning community that
formed over the semester. In a professional context, a scientific community is a network of
scientists and researchers who share a common field of study, interact with one another,
exchange ideas and information, and work together to advance scientific knowledge within their
domain of expertise (Börner et al., 2010). This community is characterized by shared knowledge
and methodologies, communication and collaboration, peer review, consensus-building, and
association with specific institutions and organizations (Fortunato et al., 2018; Mukherjee et al.,
2017). This professional community also consists of university faculty and researchers who act
as agents of social influence, attempting to socialize and integrate students into the community
through courses, training programs, and mentorship (Estrada et al., 2011). Social influence refers
to the ways in which individuals’ attitudes, beliefs, and behaviors are shaped by their interactions
with others and their social environment to align with the norms and expectations of the
community (Estrada et al., 2011; Kelman, 1958).

Our Bioinspired Design course represents what we envision as the science learning
community of the future. By engaging both STEM and Non-STEM students in authentic
socioscientific issues, we hypothesize that the course cultivates a scientific community which
equips all students with proscience attitudes, scientific literacy skills, and evidence-based
decision-making skills, empowering them to contribute to society as scientifically literate
citizens (Ballen et al., 2017; Gormally & Heil, 2022; Sadler, 2009). This community could
mirror the collaborative, interdisciplinary nature of professional scientific communities, allowing
students to experience authentic aspects of impactful scientific work. As students participated in
our unique CBL-based scientific community, we aimed to assess the social influence constructs
shaping their connection to the field of science. Students in scientific communities can become
more connected to science by developing greater Science Identity (SciID), Science Self-Efficacy
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(Eff), and Internalization of Scientific Community Values (Val), three social influence constructs
that make up the Tripartite Integration Model of Social Influence (TIMSI) (Estrada et al., 2011).

Using TIMSI as a Framework to Promote Science Connection for All Students

TIMSI offers a valuable framework for examining social influence constructs that
contribute to students’ integration into the scientific community (Estrada et al., 2011). In this
framework, three constructs individually and collectively contribute to student
integration—SciID, Eff, and Val (Figure 1). SciID refers to the extent to which a person sees
themselves as a “science person” (Carlone & Johnson, 2007; Chemers et al., 2011; Estrada et al.,
2011). Eff is defined as a person’s belief in their ability to successfully perform scientific tasks
and achieve scientific goals (Bandura, 1997; Estrada et al., 2011). Val involves endorsing and
accepting the objectives, goals, and values of the scientific community as one’s own (Estrada et
al., 2011; Kelman, 1958). Put simply, each of these social influence constructs can be
characterized by three belief statements: “I am a scientist” (SciID), “I can do what scientists do”
(Eff), and “I agree with the values of the scientific community” (Val).

Figure 1
Conceptual Diagram of the Tripartite Integration Model of Social Influence (TIMSI) Framework

Note. The framework illustrates how Science Identity (SciID), Science Self-Efficacy (Eff), and Internalization of
Scientific Community Values (Val) collectively contribute to Science Connection. Each construct is accompanied by
a brief definition and a representative statement reflecting its core concept. Arrows indicate how these social
influence constructs collectively lead to science connection. Adapted from Estrada et al., (2011).

In the TIMSI framework, these social influence constructs impact student integration into
the scientific community. Importantly, in disciplinarily diverse settings like our course, the
overarching outcome of integration (i.e., persistence in STEM) may not be equally relevant or
desirable for all students. To account for this breadth of interests, we reconceptualized use of the
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TIMSI framework (and its social influence constructs) to measure science connection.
Conceptually, science connection acknowledges the diverse ways in which both STEM and
Non-STEM students can develop a connection to science without necessarily pursuing a STEM
career (i.e., integrating into a formalized STEM community). These students, just like their
STEM counterparts, participate in science contexts within and outside of the classroom. We
recognize that nearly all students participate in proximal science contexts such as STEM course
communities (e.g., science breadth courses), but these same students could benefit from science
connections after graduating, such as participation in science-related legislation, public health
decision-making, and consumer decision-making. These contexts represent moments in which
high levels of SciID, Eff, and Val can lead to informed participation in the democratic process,
pro-science behaviors, and critical evaluation of scientific claims (Estrada et al., 2017; Ballen et
al., 2017; Gormally & Heil, 2022). By fostering science connection, all students can contribute to
a more scientifically literate society and make informed decisions across diverse aspects of their
lives. Thus, this reconceptualization of the TIMSI framework allows us to examine the
development of key social influence constructs—SciID, Eff, and Val—among all students,
regardless of their disciplinary background. Here and henceforth, “development” refers to
growth in these constructs, particularly after an intervention. By demonstrating that different
types of students can develop in these constructs, we can provide evidence for the transformative
potential of CBL-based interventions for a broader array of students.

Hypotheses for Science Connection Development in a CBL Environment

The unique student composition of our Bioinspired Design course offers a critical
opportunity to investigate the development of science connection in a unique CBL environment
open to all students. Broadly speaking, measures of science connection have been shown to
decrease or remain stable in students as they progress through traditional undergraduate STEM
courses (Estrada et al., 2019; Seymour & Hunter, 2019). Cole & Beck (2022) found that while
Eff and SciID increased over a year-long introductory biology course sequence, Val did not,
suggesting that different aspects of science connection may develop at different rates and in
response to different factors. Other studies examining changes in science connection constructs
during a single semester have yielded mixed results, with increases in Eff in introductory biology
(Ainscough et al., 2016) and varied trajectories of SciID in introductory chemistry, including
rapid negative shifts for some students (Robinson et al., 2019). Given the trend of decreasing or
stable measures of science connection in other studies, maintaining baseline levels of these
constructs can be considered a positive outcome, while any significant increases would be
particularly noteworthy. We predicted that our Bioinspired Design course would cultivate
statistically significant gains in social influence indicators of science connection (SciID, Eff, and
Val) and tested the following hypothesis:

Overall growth hypothesis; H1. The Bioinspired Design course will lead to significant
pre/post increases in science connection, as measured by individual and collective SciID,
Eff, and Val development.

Moreover, the semester in which students took the course may have influenced their
science connection due to variations in instructional modality instigated by the COVID-19
pandemic. Our data span five Spring semesters (Spring 2019-Spring 2023), each with varying
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instructional modalities pre-, mid-, and post-pandemic. The unprecedented transition to online
learning in Spring 2020 had significant impacts on students’ experiences and outcomes, with
many facing challenges related to technology access, motivation, and course engagement (Means
& Neisler, 2020). These impacts were not uniform and continued to evolve as the pandemic
progressed, with institutions adapting their instructional approaches over time (National
Academies of Sciences, Engineering, and Medicine [NASEM], 2021). Given the systemic effects
of the pandemic on higher education, it is crucial to assess whether semester specific contexts
influenced students’ development of science connection. Our dataset spanning five different
years provides a unique opportunity to examine the course’s effectiveness and adaptability in
promoting science connection under diverse and evolving circumstances. Thus, we also tested:

Semester growth hypothesis; H2. The Bioinspired Design course will lead to pre/post
improvements in science connection across five different semester iterations (Spring
2019-Spring 2023) with varying modalities of instruction.

Methods

Study Design

We employed a pre/post survey design to measure the change in each of the TIMSI
constructs in students as a result of participating in the Bioinspired Design course. This research
design allowed us to conduct within-subjects comparisons that assessed the same set of students
before and after the course. The survey data comes from independent iterations of the course
over five semesters (Spring 2019-Spring 2023). We analyzed response data from students who
completed both the pre- and post-survey, enabling us to conduct the subsequent statistical
analyses with matched pre/post pairs (ranging from N = 494 to N = 529 depending on the
statistical test). We also collected student demographic data and present those results in Chapter
2 alongside the demographic-based data analyses assessing equitable course outcomes. Students
voluntarily completed both the pre- and post-survey online via Qualtrics for one point of extra
credit. The survey included an informed consent notice and assurance of confidentiality. All
experimental protocols were IRB approved (Protocol ID: 2017-12-10602).

Statistical Analysis

We used a statistical package for all analyses (IBM SPSS Statistics for Macintosh,
Version 28.0, IBM Corp., 2021). Complementary visualizations of the SPSS results were created
using R (version 4.4.1; R Core Team, 2024) with the ggplot2 and dplyr packages (Wickham,
2016) to enhance the interpretability of the statistical findings. Descriptive statistics were
computed for each survey item (pre and post) and the overall constructs of SciID, Eff, and Val.
Normality was examined through histograms, skewness and kurtosis values. The subsequent
parametric tests (e.g., ANOVA) are considered robust to violations of normality, particularly with
large sample sizes such as ours (Blanca et al., 2017; Blanca et al., 2023). Bonferroni corrections
were applied to all applicable statistical analyses to control for Type I error when making
multiple comparisons.

We conducted repeated measures ANOVA (RM ANOVA) to compare pre- and
post-survey scores. Given a repeated measures design with only two time points (pre and post),
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both assumptions of sphericity and homogeneity of variance were inherently met. We first
conducted a set of RM ANOVAs labeled “Overall RM ANOVAs.” We used a within-subjects
design with time (pre/post) as the within-subjects factor. These RM ANOVAs tested H1 (overall
growth hypothesis) by measuring overall pre to post changes in survey scores. Multivariate tests
assessed overall pre-to-post changes across the combined constructs and univariate tests assessed
pre-to-post changes for each individual construct. The next set, labeled “Semester RM
ANOVAs,” tested the impact of the Bioinspired Design course on pre to post changes in science
connections within the context of each unique semester. This allowed us to test H2 (semester
growth hypothesis), or the effectiveness of the course in promoting science connection under the
specific circumstances of each semester (e.g., varying instructional modalities necessitated by the
COVID-19 pandemic).

We then supplemented the RM ANOVA analysis with two sets of paired t-tests analyses
at the item and overall construct levels to further assess pre/post differences. The item level
analyses investigated pre-to-post changes at a more granular level and were used to explore
underlying factors potentially driving the overall results. Based on Maher et al.’s (2013)
recommendation for quantitative discipline-based education research, we also obtained effect
sizes (partial eta squared [ηp²] values and Cohen’s d values) to evaluate the practical significance
of any pre/post changes. In other words, we sought to determine how meaningful the magnitude
of change was in the specific context of our course-based intervention, beyond just statistical
significance. For partial eta squared (ηp²), effect size values of .01 (small), .06 (medium), and .14
(large) are referenced as general guidelines, while for Cohen’s d, values of 0.2 (small), 0.5
(medium), and 0.8 (large) are commonly cited benchmarks (Cohen, 1988). Being mindful of
Cohen’s (1988) caution against using these benchmarks as rigid defaults and in accordance with
recent discussions in educational research (Kraft, 2020), we interpreted our effect sizes within
the specific context of our semester-based educational intervention (e.g., adapted Cohen’s d
value interpretations to < 0.1 = small, 0.1 to < 0.3 = medium, and ≥ 0.3 = large). We further
explain the details motivating our effect size interpretations in Supplement 1.

Survey Design

We administered an adapted version of a previously validated pre/post survey measuring
student integration into the scientific community based on the TIMSI framework (Estrada et al.,
2011). Our survey measured the aforementioned constructs—SciID, Eff, Val—through the same
three sets of Likert scale items as Estrada et al. (2011) with the exception of two new Eff items
(see Table 2). This included a 5-item scale evaluating SciID, with statements such as “I have
come to think of myself as a scientist” rated from 1 (strongly disagree) to 7 (strongly agree).
SciID items connected to course activities such as the final design project, where students
proposed and communicated their own bioinspired designs, potentially promoting a view of
themselves as capable of contributing to scientific discourse and innovation (Full et al., 2021).
Eff was measured through an 8-item scale assessing confidence to complete core science tasks
on a scale from 1 (not at all confident) to 5 (absolutely confident). Items 12 and 13 were
specifically added for our unique course context. Item 12 assessed confidence in designing
experiments to test hypotheses, which aligned with the course’s scaffolded assignments
involving primary literature decomposition and analogical reasoning to propose novel designs
(Full et al., 2021). Item 13 evaluated confidence in developing novel technologies, which
connected to several course activities like the final design project where student teams created a
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novel bioinspired invention. Lastly, Val was evaluated with a 6-item scale including
endorsements of priorities like building scientific knowledge and identifying truths using the
scientific method on a scale from 1 (not like me at all) to 6 (very much like me). For example,
the final design project involved communicating discoveries in a public design showcase,
reflecting a scientific community value of making knowledge accessible and usable by society
(Full et al., 2021).

By outlining these connections between the SciID, Eff, and Val items and key course
activities, we establish a validity argument for employing the TIMSI framework to measure the
development of science connection in the unique CBL context of our course. The alignment
between the TIMSI survey items and the activities in the Bioinspired Design course supports the
use of this adapted instrument as an applicable tool for evaluating outcomes related to science
connection.

Table 2
TIMSI Survey Items

Item TIMSI Construct Scale

1. I have a strong sense of belonging to the community
of scientists. SciID Strongly Disagree (1) to

Strongly Agree (7)

2. I derive great personal satisfaction from working on
a science team that is doing important work. SciID Strongly Disagree (1) to

Strongly Agree (7)

3. I have come to think of myself as a scientist. SciID Strongly Disagree (1) to
Strongly Agree (7)

4. I feel like I belong in the field of science. SciID Strongly Disagree (1) to
Strongly Agree (7)

5. The daily work of a scientist is appealing to me. SciID Strongly Disagree (1) to
Strongly Agree (7)

6. Use technical skills (use of tools, instruments,
and/or techniques of your field of study). Eff Not at all confident (1) to

Absolutely confident (5)

7. Generate a research question to answer. Eff Not at all confident (1) to
Absolutely confident (5)

8. Determine what data/observations to collect and
how to collect them. Eff Not at all confident (1) to

Absolutely confident (5)

9. Create explanations for the results of the study. Eff Not at all confident (1) to
Absolutely confident (5)

10. Use academic literature and/or reports to guide
your research. Eff Not at all confident (1) to

Absolutely confident (5)

11. Develop theories (integrate and coordinate results
from multiple studies and/or theories). Eff Not at all confident (1) to

Absolutely confident (5)

12. Designs experiments to test hypotheses. Eff Not at all confident (1) to
Absolutely confident (5)
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13. Develop novel technologies. Eff Not at all confident (1) to
Absolutely confident (5)

14. A person who thinks discussing new theories and
ideas between scientists is important. Val Not like me at all (1) to

Very much like me (6)

15. A person who believes writing up research results
to be published in a leading scientific journal is a good
use of time.

Val Not like me at all (1) to
Very much like me (6)

16. A person who thinks it is valuable to conduct
research that builds the world’s scientific knowledge. Val Not like me at all (1) to

Very much like me (6)

17. A person who thinks that scientific research can
solve many of today’s world challenges. Val Not like me at all (1) to

Very much like me (6)

18. A person who feels discovering something new in
the sciences is thrilling. Val Not like me at all (1) to

Very much like me (6)

19. A person who thinks it is important work to
identify truths using the scientific method. Val Not like me at all (1) to

Very much like me (6)

Reliability

Reliability analyses were performed to measure the internal consistency (Cronbach’s
alpha [α]) of the pre- and post-survey. The instrument demonstrated sufficient internal
consistency across each set of pre/post items (SciID, 5 items; Eff, 8 items; Val, 6 items) and the
overall pre/post survey (19 items). Alpha values ranged from good to excellent internal
consistency (α > 0.8) as shown in Table 3. In response to Maric et al.’s (2023) call for expanding
reliability evidence in science education research, Supplement 2 contains further discussion of
these results, including contextualized interpretations and an additional analysis of reliability
based on McDonald’s omega (ω). The results in the supplementary analysis matched the results
presented here, supporting the overall reliability of the instrument.

Table 3
Reliability of Survey Constructs (Cronbach’s Alpha [α])

Construct N of Items N (pre) N (post) α (pre) α (post)

SciID 5 966 554 0.925 0.927

Eff 8 958 546 0.907 0.910

Val 6 956 540 0.894 0.906

Overall 19 944 529 0.916 0.925
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Results

Significant Pre/Post Growth in Science Connection Based on Overall RM ANOVAs

The descriptive statistics (means and standard deviations) for each construct in our
sample of N = 494 matched pre/post surveys are shown in Table 4. For the Overall RM
ANOVAs, pre-post differences were analyzed through both a multivariate test combining all
constructs alongside univariate tests analyzing each individual construct (SciID, Eff, and Val).

Table 4
Descriptive Statistics of RM ANOVA Constructs

Construct Mean SD N
SciID_mean_pre 4.363 1.500 494
SciID_mean_post 4.569 1.477 494

Eff_mean_pre 3.503 .735 494
Eff_mean_post 3.830 .705 494

Val_mean_pre 4.886 .834 494
Val_mean_post 4.872 .926 494

Based on the multivariate test, the impact of completing the Bioinspired Design course on
the change in pre-to-post survey scores was statistically significant at p < .05 level: F(3, 491) =
43.766, p < .001, ηp² = .211. This represents a large effect size (ηp² > 0.14; Cohen, 1988) when
comparing the change in pre- versus post-survey scores in the combined constructs. Based on the
univariate tests (Figure 2; Table 5), the impact of completing the Bioinspired Design course on
the change in pre-to-post survey scores was statistically significant at the p < .05 level for SciID
with small-medium effect size: F(1, 493) = 20.086, p < .001, ηp2 = .039 (Figure 2A). Post-hoc
pairwise comparisons with a Bonferroni adjustment indicated a statistically significant mean
score gain (+0.206; 95% CI [.116, .296], p < .001) in the SciID post-survey (M = 4.57, SE =
.046) versus the pre-survey (M = 4.36, SE = .046). There was also a statistically significant
difference at the p < .05 level for the change in Eff with large effect size: F(1, 493) = 105.470, p
< .001, ηp2 = .176 (Figure 2B). Post-hoc pairwise comparisons with a Bonferroni adjustment
indicated a statistically significant mean score gain (+0.327; 95% CI [.264, .389], p < .001) in the
Eff post-survey (M = 3.83, SE = .032) versus the pre-survey (M = 3.50, SE = .032). Lastly, there
was no statistically significant difference from pre to post in Val: F(1, 493) = .173, p = .677, ηp2 =
.000 (Figure 2C). Post-hoc pairwise comparisons with a Bonferroni adjustment indicated that
there was non-significant mean difference of -.015 (95% CI [-.083, .054], p = .667) in the Val
post-survey (M = 4.87, SE = .035) versus the pre-survey (M = 4.89, SE = .035).
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Figure 2
Dot Plots of Overall RM ANOVA Univariate Tests

Note. Dot plots show change in estimated marginal means from pre-to-post in A) SciID [1 (strongly disagree) to 7
(strongly agree) Likert scale], B) Eff [1 (not at all confident) to 5 (absolutely confident) Likert scale], and C) Val [1
(not like me at all) to 6 (very much like me) Likert scale] constructs. Error bars represent 95% confidence intervals.
Asterisks indicate statistically significant differences between pre and post with Bonferroni correction applied (p <
.05/3).
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Table 5
Overall RM ANOVA - Tests of Within-Subjects Effects - Univariate

Source Construct

Type III
Sum of
Squares df

Mean
Square F Sig.*

Partial Eta
Squared Effect Size

PrePost SciID 10.489 1 10.489 20.086 <.001 .039 Small-med
Eff 26.399 1 26.399 105.470 <.001 .176 Large
Val .052 1 .052 .173 .677 .000 N/A

Error
(PrePost)

SciID 257.451 493 .522
Eff 123.398 493 .250
Val 147.906 493 .300

*Bold indicates significant difference between pre and post; Bonferroni correction applied (p < .05/3)

Development of Science Connection in All Semesters Based on RM ANOVAs

A second set of RM ANOVAs were conducted for each individual semester (Spring 2019,
N = 127; Spring 2020, N = 127; Spring 2021, N = 97; Spring 2022, N = 72; Spring 2023, N =
71). In the multivariate RM ANOVA combining all constructs, we observed statistically
significant pre to post growth in each individual semester (Table 6). The effect sizes varied
across semesters, with Spring 2020 showing the highest effect size (ηp² = .084; medium-large
effect), followed by Spring 2023 (ηp² = .072; medium-large effect), Spring 2022 (ηp² = .047;
small-medium effect), Spring 2021 (ηp² = .036; small-medium effect), and Spring 2019 (partial
η² = .043; small-medium effect).

Table 6
Semester RM ANOVA - Tests of Within-Subjects Effects - Multivariate

Semester Value F
Hypothesis

df
Error
df Sig.

Partial Eta
Squared Effect Size

Spring 2019 Pillai's Trace .043 7.251 3.000 487.000 <.001 .043 Small-med
Wilks' Lambda ..957 7.251 3.000 487.000 <.001 .043 Small-med

Spring 2020 Pillai's Trace .084 14.809 3.000 487.000 <.001 .084 Med-large
Wilks' Lambda .916 14.809 3.000 487.000 <.001 .084 Med-large

Spring 2021 Pillai's Trace .036 5.987 3.000 487.000 <.001 .036 Small-med
Wilks' Lambda .964 5.987 3.000 487.000 <.001 .036 Small-med

Spring 2022 Pillai's Trace .047 7.988 3.000 487.000 <.001 .047 Med-large
Wilks' Lambda .953 7.988 3.000 487.000 <.001 .047 Med-large

Spring 2023 Pillai's Trace .072 12.520 3.000 487.000 <.001 .072 Med-large
Wilks' Lambda .928 12.520 3.000 487.000 <.001 .072 Med-large

In the univariate RM ANOVA (Figure 3; Table 7), pairwise pre/post comparisons for
each semester revealed that for SciID (Figure 3A), statistically significant increases were
observed in all semesters except Spring 2019 and Spring 2022, though these semesters still
showed non-significant positive trends. Eff (Figure 3B) demonstrated statistically significant
increases across all semesters, indicating consistent growth in students’ scientific self-efficacy
regardless of the instructional modality. Val (Figure 3C) showed no statistically significant
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increases or decreases in any semester, mirroring the stability observed in this construct from the
Overall RM ANOVA analysis.

Figure 3
Bar Graphs of Semester RM ANOVA Pairwise Pre/Post Comparisons
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Note. Bar graphs show change in estimated marginal means from pre-to-post in A) SciID [1 (strongly disagree) to 7
(strongly agree) Likert scale], B) Eff [1 (not at all confident) to 5 (absolutely confident) Likert scale], and C) Val [1
(not like me at all) to 6 (very much like me) Likert scale] constructs across five semesters (Spring 2019 to Spring
2023). Error bars represent 95% confidence intervals. Asterisks indicate statistically significant differences between
pre and post with Bonferroni correction applied (p < .05/5).

Table 7
Semester RM ANOVA - Pairwise Pre/Post Comparisons - Univariate
Semester Construct Pre Mean (SD) Post Mean (SD) Mean Difference Sig*
Spring 2019 SciID 4.32 (1.45) 4.39 (1.48) 0.07 .455

Eff 3.40 (0.71) 3.66 (0.68) 0.26 <.001
Val 4.87 (0.82) 4.82 (0.91) -0.05 .435

Spring 2020 SciID 4.27 (1.51) 4.55 (1.45) 0.28 .002
Eff 3.45 (0.72) 3.84 (0.67) 0.39 <.001
Val 4.90 (0.81) 4.96 (0.89) 0.06 .371

Spring 2021 SciID 4.37 (1.54) 4.67 (1.47) 0.30 .004
Eff 3.62 (0.75) 3.83 (0.73) 0.21 .003
Val 4.86 (0.91) 4.84 (0.99) -0.02 .777

Spring 2022 SciID 4.51 (1.50) 4.64 (1.48) 0.13 .300
Eff 3.56 (0.76) 3.91 (0.71) 0.35 <.001
Val 4.85 (0.84) 4.77 (0.94) -0.08 .363

Spring 2023 SciID 4.40 (1.52) 4.67 (1.51) 0.27 .026
Eff 3.54 (0.75) 4.01 (0.69) 0.47 <.001
Val 4.93 (0.87) 4.93 (0.92) 0.00 1.000

*Bold indicates significant difference between pre and post; Bonferroni correction applied

Science Connection Development Based on Paired t-Tests, Significant Increases in All Eff
Items

Overall construct paired t-tests (Table 8) indicated statistically significant gains in mean
score from pre to post in the SciID (+0.193, t(524) = 4.283, p < .001) and Eff (+0.329, t(516) =
10.613, p < .001) constructs. Based on an effect size interpretation of Cohen’s d contextualized
to our specific educational context (Kraft, 2020; see Supplement 1), overall effect sizes were
medium and large for the pre/post growth in SciID and Eff, respectively (< 0.1 = small, 0.1 to <
0.3 = medium, and ≥ 0.3 = large). Val had a -0.001 decrease in mean score that was not
statistically significant (t(506) = -.037, p = 0.970).

Table 8
Overall Construct Paired t-tests

Construct
(Post-Pre)

Mean
Difference SD

Std. Error
Mean

95% CI
t df Sig.* Cohen’s dLower Upper

SciID .193 1.037 .045 .104 .282 4.283 524 <.001 .187
Eff .329 .705 .031 .268 .390 10.613 516 <.001 .467
Val -.001 .790 .035 -.070 .067 -.037 506 .970
*Bold indicates significant difference between pre and post; Bonferroni correction applied (p < .05/3)
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We also compared item means from the pre-survey to the post-survey (Table 9). Sample
sizes ranged from N = 512 to N = 529. Increases from pre to post were observed in 5/5 SciID
items, 8/8 Eff items, and 2/6 Val items. The remaining 4 Val items showed no difference in 1
item (Item 14) and decreases in Items 16-18. To assess the statistical significance of these
differences, item level paired t-tests were conducted. These tests showed statistically significant
pre-to-post increases in 2/5 SciID items, 8/8 Eff items, and 1/6 Val items after Bonferroni
correction (p < .05/19). Mean differences in Item 4 and Item 18 were initially significant, but not
after Bonferroni correction. Effect sizes of these differences ranged from d = 0.136 (medium) to
d = 0.620 (large) (Table 10).

Table 9
Item Level Paired t-Tests

Item (Post-Pre)
Mean

Difference SD

Std.
Error
Mean

95% CI
t df

Sig.*
(2-tailed)Lower Upper

Item1_SciID .308 1.390 .060 .189 .427 5.097 528 <.001
Item2_SciID .100 1.500 .065 -.028 .229 1.538 527 .125
Item3_SciID .302 1.372 .060 .185 .420 5.051 525 <.001
Item4_SciID .159 1.366 .059 .042 .275 2.674 528 .008
Item5_SciID .109 1.421 .062 -.012 .231 1.773 529 .077

Item6_Eff .235 .956 .042 .153 .317 5.650 526 <.001
Item7_Eff .294 1.046 .046 .204 .384 6.429 523 <.001
Item8_Eff .276 .983 .043 .191 .360 6.433 525 <.001
Item9_Eff .238 .942 .041 .157 .319 5.790 524 <.001
Item10_Eff .245 1.010 .044 .159 .332 5.570 525 <.001
Item11_Eff .316 1.033 .045 .228 .405 7.011 524 <.001
Item12_Eff .312 1.008 .044 .226 .399 7.098 524 <.001
Item13_Eff .699 1.127 .049 .603 .795 14.252 527 <.001

Item14_Val .000 1.174 .052 -.101 .101 .000 518 1.000
Item15_Val .174 1.286 .057 .063 .286 3.080 515 .002
Item16_Val -.050 1.050 .046 -.141 .040 -1.091 514 .276
Item17_Val -.060 1.024 .045 -.149 .028 -1.336 512 .182
Item18_Val -.113 1.078 .048 -.206 -.019 -2.371 514 .018
Item19_Val .004 1.139 .050 -.095 .102 .077 515 .938

*Bold indicates significant difference between post item mean and pre item mean; Bonferroni correction applied (p
< .05/19)
Note: Item4_SciID (0.008 > .05/19) and Item18_Val (0.018 > .05/19) not statistically significant after Bonferroni
correction
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Table 10
Effect Sizes of Significant Item Level t-Tests

Item (Post-Pre)
Mean

Difference
Sig.*

(2-tailed) Cohen’s d
95% CI

Lower Upper

Item1_SciID .308 <.001 .222 .135 .308
Item3_SciID .302 <.001 .220 .134 .307

Item6_Eff .235 <.001 .246 .159 .333
Item7_Eff .294 <.001 .281 .193 .368
Item8_Eff .276 <.001 .281 .193 .368
Item9_Eff .238 <.001 .253 .166 .339
Item10_Eff .245 <.001 .243 .156 .329
Item11_Eff .316 <.001 .306 .218 .393
Item12_Eff .312 <.001 .310 .222 .397
Item13_Eff .699 <.001 .620 .527 .713

Item15_Val .174 .002 .136 .049 .222
*Bonferroni correction applied (p < .05/19)

Discussion

In this study, we presented a CBL course context that expanded the use of TIMSI
constructs (i.e. social influence constructs; SciID, Eff, and Val) to an undergraduate breadth
course open to all students. Previous research has examined these constructs in longitudinal
science training programs (Estrada et al., 2021), investigations centered on social influence
agents like mentor networks and research experiences (Hernandez et al., 2020), and various
formalized research experiences such as course-based undergraduate research experiences
(CUREs) (Newell & Ulrich, 2022; Ramírez-Lugo et al., 2021; Shuster et al., 2019). Our
Bioinspired Design course represented a new type of learning environment that diverged from
the longitudinal nature of previous TIMSI studies (e.g., Estrada et al., 2018; Robnett et al.,
2015), the smaller class sizes of CUREs (e.g., Miller et al., 2023; Rodenbusch et al., 2017), while
overcoming some of the known challenges to CURE implementation (e.g., scalability, instructor
training, and resource availability) (Bakshi et al., 2016; Linn et al., 2015; Spell et al., 2014). In
this course, we built upon the strengths of CUREs in facilitating discovery-based inquiry, while
making key adaptations for a breadth course format that was scalable and accessible to a broad
student population. This breadth course context accommodated large enrollments and did not
require extensive experimental methods training yet remained effective at equitably promoting
science connection in students based on the adapted TIMSI framework. We discuss the possible
mechanisms behind the key results below.

Overall Growth Hypothesis (H1): Significant Gains in SciID, Eff, and stability in Val
Demonstrate Course Impact

Our analysis of pre/post survey data revealed significant overall gains in science
connection, supporting H1 (overall growth hypothesis). The large effect size observed in the
multivariate (combined constructs) RM ANOVA (ηp² = .211) suggests that our CBL course had a
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meaningful impact on students’ overall science connection after they completed the course. For
example, as compared to before the course, greater science connection may have developed
through students completing various course activities such as engagement with scientific
literature, team collaborations, and multiple design projects. On the univariate (individual
construct) level, we found statistically significant increases with meaningful effect sizes in both
SciID and Eff, but not in Val (Figure 2; Table 5). We saw similar results in the overall construct
paired t-tests with the highest increases in Eff, followed by growth in SciID, and no statistically
significant changes in Val (Table 8). The large effect sizes for Eff in both analyses (ηp² = .176; d
= 0.467) suggests that our course was particularly effective in enhancing this social influence
construct. The small/medium effect sizes for SciID (ηp² = .039; d = 0.187) indicates a notable but
smaller impact compared to Eff.

These results may be attributed to the inherent nature of SciID as a construct that takes
longer to develop than Eff. As students gain confidence in their ability to perform scientific tasks
(Eff), they may then gradually incorporate these experiences into their self-concept as a scientist
(SciID). In the research context of a single semester, SciID has been shown to remain mostly
stable or even decline rapidly for some students in introductory science courses (Robinson et al.,
2019). Our results, gains in both Eff and SciID, are consistent with studies suggesting that
increases in Eff often precede and contribute to the development of a stronger SciID (Cole &
Beck, 2022; Robnett et al., 2015). This also corresponds with qualitative research suggesting that
increased confidence in science abilities contributes to students’ sense of becoming a scientist
(Seymour et al., 2004; Aschbacher et al., 2010). In contrast to Eff and SciID, the Val construct
showed no significant change from pre-to-post, suggesting that students’ internalization of
scientific values remained relatively stable over the course of the semester. Our discussion of the
item level results provides more insight on Val outcomes.

Semester Growth Hypothesis (H2): A CBL Approach Demonstrates Resilient Development of
Science Connection

The semester-by-semester analysis of our CBL course revealed significant growth in
science connection across all five semesters, regardless of instructional modality (Figure 3;
Tables 6 and 7). Given the varied circumstances under which the course was delivered in each
semester, a particularly notable result came from the Spring 2020 multivariate RM ANOVA
(Table 6). This semester involved a sudden shift from in-person to remote learning due to the
COVID-19 pandemic, yet we observed the highest growth based on effect size (ηp² = .084;
medium-large effect) in this semester compared to other semesters. Despite the abrupt transition
to remote learning at the onset of a global pandemic, students demonstrated significant gains in
science connection. This finding is particularly significant when considered alongside other
studies that found decreased satisfaction and engagement among STEM students during the
transition to online learning (Means & Neisler, 2020).

We suspect that important structural adaptations to the course potentially enhanced
certain aspects of student learning and subsequently, the social influence constructs underlying
their science connection. For example, implementing flexible deadlines, modified assessment
formats, and the option for both asynchronous and synchronous learning may have provided
students with greater autonomy and reduced stress, potentially facilitating deeper engagement
with the course material. These adaptations matched with recommendations from Camfield et al.
(2020) for addressing pandemic-induced inequalities in higher education by offering more
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flexible and inclusive assessment methods. Such modifications may have helped mitigate some
of the negative impacts on student learning reported in other studies during the pandemic
(NASEM, 2021). This approach seems to have been particularly effective in sustaining and
enhancing students’ science connection, contrasting with the challenges in student engagement
and learning reported by Morán-Soto et al. (2022) during the transition to online learning. Based
on overwhelmingly positive student feedback, we retained these adaptations in subsequent
iterations of the course, leading to sustained positive impacts as exemplified by the growth in
science connection across all semesters of analysis even after Spring 2020.

Focusing on the specific social influence construct level (univariate Semester RM
ANOVAs), SciID and Eff showed increases in every semester of the analysis (Figure 3; Table 7).
Increases in SciID were statistically significant in three out of five semesters (Figure 3A), while
Eff significantly increased in every semester (Figure 3B). This consistent growth in Eff is
especially notable, as it stands in contrast to findings from Forakis & March (2023), who
observed decreased Eff in chemistry students during the pandemic. Similarly, Means & Neisler
(2020) reported that STEM students faced significant challenges in maintaining confidence in
their abilities during remote learning. Our results suggest that the CBL approach may be
particularly effective in advancing students’ confidence in their scientific abilities (Eff), even
during unprecedented educational contexts.

We theorize that the revised midterm exam format (Figure 4) may have contributed to the
specific growth we saw in these social influence constructs. The midterm exam situated learning
in a real-world context, tasking students to take on the role of an expert biologist in an
interdisciplinary design team, explain relevant concepts from lectures to their hypothetical team,
apply class methods to extract fundamental principles from authentic discoveries, and ultimately
propose their own novel bioinspired design based on extracted principles. Students were given a
14-day window to complete the exam, reducing stress and promoting more equitable evaluation
practices. This creative application of course concepts and extended timeframe for submission
may have contributed to increased Eff, as students had more opportunity to engage deeply with
the material and demonstrate their understanding in a novel “show what you know” assessment.
The real-world context and role-playing aspect may have supported SciID, as students
envisioned themselves as part of a diverse scientific team.

Figure 4
Portion of Modified Midterm Exam Situating Students as the Biologist in an Interdisciplinary Design Team
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Considering these outcomes, our semester-by-semester analysis reveals the robustness of
the CBL approach in fostering science connection across unprecedented learning contexts
necessitated by a global pandemic. This approach was resilient across modalities and speaks to
the adaptability and effectiveness of CBL as a framework for promoting science connection.
While other studies have highlighted the challenges and disruptions faced by STEM students
during the pandemic (NASEM, 2021), our findings further highlight the potential of CBL as an
effective pedagogical approach, capable of fostering science connection even in challenging and
rapidly changing educational environments.

Item Level Analysis Reveals Specific CBL Impacts on Science Connection Measures

Item level paired t-tests (Table 9) provided further insight on the trends observed in each
of the individual constructs. All eight Eff items showed statistically significant increases. These
gains closely corresponded with key course activities. The largest observed effect size was for
Item 13 (d = 0.620; mean difference = +0.699), which assessed confidence in developing novel
technologies. Throughout the course, students engaged in multiple design projects that were
carefully scaffolded to build both their skills and confidence. A key principle of each design
project was the development of novel technologies with potential for societal impact. Integrated
into each of these projects was an Analogy Check exercise (Figure 5), which required students to
use analogical reasoning to systematically translate biological principles into innovative design
solutions (Full et al., 2021). Multiple iterations of this activity may have been particularly
instrumental to promoting students’ confidence in developing novel technologies.

Figure 5
Linking Analogy Check Exercise to Item13_Eff

Note. Students analogize a Design Solution (left hand column) from nature to a societally relevant Design Problem
(right hand column). Students check their analogy (compare and contrast design solution and problem) in the middle
column by labeling it “similar,” “different,” or “uncertain.” Adapted from S2 in Full et al. (2021).
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Other Eff items of interest included those that assessed confidence in creating explanations for
study results (Item 9; d = 0.306; mean difference = +0.238), using academic literature to guide
research (Item 10; d = 0.243; mean difference = +0.245), and designing experiments to test
hypotheses (Item 12; d = 0.310; mean difference = +0.312). The guided team design projects,
such as the gecko-inspired adhesive and insect-inspired robot activities, provided opportunities
for students to design and conduct experiments, potentially enhancing their self-efficacy in this
area. Students’ confidence in creating explanations for study results and examining academic
literature may have improved due to the Discovery Decomposition exercise (Figure 6). In this
activity, students extracted principles from scientific papers to visualize a logic flow that
connected the study results back to the initial hypothesis (Full et al., 2021).

Figure 6
Linking Discovery Decomposition Exercise to Item9_Eff and Item10_Eff

Note. Students read original, published, scientific discoveries and formulate a logic flow that extracts fundamental
principles with potential for translation into bioinspired designs. Adapted from S2 in Full et al. (2021).

For SciID, two out of five items showed statistically significant increases with
small-to-medium effect sizes. Item 1 (I have a strong sense of belonging to the community of
scientists; d = 0.222; mean difference = +0.308) and Item 3 (I have come to think of myself as a
scientist; d = 0.220; mean difference = +0.302) demonstrated the most substantial changes. These
results suggest that our CBL course was particularly effective in students developing a sense of
belonging and identity within the scientific community. This may be attributed to the course’s
emphasis on engaging with real scientific literature, participating in societally relevant
team-based projects, and presenting work in a public showcase, all of which mirror practices
embodied by professional scientists.
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The lack of significant change, or stability, in the Val construct is noteworthy. Results
from the univariate Overall RM ANOVA (Figure 2C; Table 5) and the overall construct paired
t-tests (Table 8) suggest that the course did not significantly impact pre/post development of Val.
This finding aligned with previous work from Cole and Beck (2022), who also observed no
significant changes in Val (despite increases in SciID and Eff) after a year-long introductory
biology sequence. Additionally, at the item level (Table 9), 5/6 Val items showed no significant
increases, with three items (Items 16-18) showing non-significant decreases. Considering these
results, we suspect that the Val construct measured more stable, trait-like attitudes that were less
susceptible to change within the timeframe of a single semester. In science education research,
values have been considered more enduring than other constructs, requiring more time to
substantially shift (Koballa & Glynn, 2013; Trenholm, 1989). This is supported by other TIMSI
research showcasing the longitudinal development of Val (Estrada et al., 2021). Future
longitudinal studies could provide insight into how Val evolves as students continue to engage
with CBL communities beyond a single course. While a single course may not produce major
shifts in Val, we suspect that the cumulative effect of multiple CBL experiences over time has the
potential to yield more substantial changes.

From another perspective, the fact that Val scores did not decline suggests that our CBL
approach effectively supported students’ existing alignment with scientific community values.
This maintenance of Val, especially for the many Non-STEM majors in our course engaging in
STEM-based coursework, highlights the course’s ability to sustain students’ connection to
scientific values while developing other aspects of their science connection (SciID and Eff).
Additionally, while the overall Val construct remained stable, one Val item did show a
statistically significant increase: A person who believes writing up research results to be
published in a leading scientific journal is a good use of time (Item 15; d = 0.136; mean
difference = +0.174). The growth in this specific item may be attributed to dedicated course
activities that involved evaluating sources, learning about the publication process that leads to
primary literature, and consistently referring to primary literature for design inspiration.
Internalizing this value suggests students became more aware of the origin of facts, the need for
discovery dissemination, and the overall significance of primary literature.

Chapter 1 Conclusion: Limitations and Future Research

This study examined the impact of a Bioinspired Design CBL course on students’ science
connection based on an application of the TIMSI framework. We observed statistically
significant increases in SciID and Eff, while Val remained stable. We also saw significant
improvements in science connection across all five semester iterations of the course spanning
pre-, mid-, and post-COVID-19 pandemic timelines. While results from this study were
encouraging, they represented only the first step in understanding the full impact of our CBL
course. Limitations of this study and their connection to future research prospects are discussed
below.

This study was conducted within a single course at one institution. Replication in other
settings could enhance generalizability. Additionally, self-report survey data are subject to biases
such as social desirability. Importantly, science connection is a subjective experience based on
affective social influence constructs (SciID, Eff, and Val). Thus, in our assessment context,
claims made based on affective self-report data are valid. Investigating affective aspects of
student experiences is critical for understanding and improving learning in undergraduate science
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classrooms (Trujillo & Tanner, 2014). Nonetheless, we plan on conducting future research
cross-validating the self-report data with analysis of student products. For example, the most
notable Eff item—I am confident that I can develop novel technologies—can be further assessed
in the context of student performance on course assignments that require this skill, such as the
final project or midterm assessment. This follow-up analysis of student work would provide a
more comprehensive understanding of science connection rooted in both subjective and objective
measures.

Additionally, this study focused on overall outcomes without considering potential
variations across different demographic populations of students. Given the inclusive nature of
our course—open to all majors, all years, with no prerequisites—there is a critical opportunity to
investigate how the diverse student population of the course responded to our CBL approach.
The next chapter further investigates science connection development by assessing whether the
observed growth from this chapter was promoted equitably across various demographic groups.
By examining potential differential impacts, we can gain insights into how CBL might
differentially affect students based on gender, underrepresented minority status, first-generation
status, major, or class year. This exploration is needed to not only provide a better understanding
of our course’s impact, but also as a contribution to the broader need for creating inclusive
undergraduate STEM learning environments that benefit all students.
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Chapter 2

Using Challenge-Based Learning to Promote
Equitable Science Connection in a Bioinspired Design Course

Abstract

Building on the overall growth in science connection observed in Chapter 1, this chapter
investigates the equity of these outcomes across diverse student populations in a
Challenge-Based Learning (CBL) course. We examined whether a CBL approach could promote
equitable outcomes in science connection measures for 180 undergraduate students from over 40
majors across five semester iterations of our Bioinspired Design course. Using the Tripartite
Integration Model of Social Influence (TIMSI) framework, we assessed changes in Science
Identity (SciID), Science Self-Efficacy (Eff), and Internalization of Scientific Community Values
(Val) across seven demographic variables (gender, underrepresented minority status,
first-generation status, STEM/Non-STEM major, Biology/Not Biology major, class status, and
term). We expanded our statistical approach from Chapter 1 by employing repeated measures
ANOVAs with demographic variables as between-subjects factors and introducing ANCOVAs to
control for pre-survey scores. Results revealed that the significant increases in SciID/Eff and the
stability in Val observed in Chapter 1 were equitable across all demographic groups, with
exceptions in SciID development based on STEM/Non-STEM status and class status. Findings
from this chapter suggest that our CBL approach effectively promoted science connection
development across diverse student populations, challenging the notion that such development
requires extensive time or is limited to specific demographic groups. The chapter highlights the
potential of CBL as an inclusive pedagogical model that can foster equitable science connection
for all students within a single semester. In conjunction with the previous chapter, this research
supports a view of science connection as a continuous process that can be cultivated through
participation in various types of CBL communities, such as large enrollment breadth courses.
Overall, this work supports creating more inclusive STEM education experiences by
emphasizing the importance of promoting science connection for all students in the ongoing
effort to build a more scientifically literate society capable of addressing complex global
challenges.
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Background

In Chapter 1, we explored the impact of our Challenge-Based Learning (CBL) course,
Bioinspired Design (Full et al., 2021), on fostering science connection among undergraduate
students. Using the Tripartite Integration Model of Social Influence (TIMSI) framework, we
observed significant increases in Science Identity (SciID) and Science Self-Efficacy (Eff), while
Internalization of Scientific Community Values (Val) remained stable. These gains persisted
across varying instructional modalities necessitated by the COVID-19 pandemic, demonstrating
the resilience of the CBL approach. However, these overall findings did not address potential
variations in outcomes across different demographic groups—a critical consideration for
promoting STEM-enriched learning for all students. To capitalize on this research opportunity,
the current chapter investigated whether the observed growth in science connection was
promoted equitably across diverse student populations.

To further assess the key developmental results from Chapter 1 and contribute to our
understanding of equitable science education, Chapter 2 focuses on the following aims:

Aim 1: Examine the effect of demographic groups on the development of science
connection (SciID, Eff, and Val) in our CBL course.
Aim 2: Evaluate the effectiveness of our CBL approach in promoting equitable science
connection outcomes across seven key demographic variables.

By centering these aims, we strive to provide a more comprehensive understanding of the impact
of our CBL approach on diverse student populations and contribute to the broader discourse on
equity in STEM education.

Hypotheses for Equitable Science Connection Development in a Diverse CBL Environment

The unique student composition of our Bioinspired Design course offers a critical
opportunity to investigate the development (i.e., change, or growth) of science connection in a
unique CBL environment open to all students. Given that students from diverse backgrounds
may respond differently to evidence-based teaching methods (Ballen et al., 2017b), we
recognized the crucial need to assess our CBL course-based intervention for potentially
differential impacts across various demographic identities. Therefore, we aimed to explore how
key demographic variables may have impacted science connection development in our students.
The specific demographic variables of interest in this study had previously documented impacts
in the context of SciID, Eff, and Val development (e.g., Cole & Beck, 2022). We intentionally
chose these variables to connect with the prior literature and predicted equitable growth
outcomes for students in the course regardless of demographic classification. Thus, we
investigated the following Equity hypothesis: Demographic status will have no effect on
changes in science connection (i.e., SciID, Eff, and Val) after experiencing a CBL course. Below,
we break down this Equity hypothesis into two nested hypotheses differentiated by their thematic
grouping of seven key demographic variables (Figure 1).
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Figure 1
Visual Representation of the Equity Hypothesis and its Sub-Hypotheses

Note. Equity hypothesis and its sub-hypotheses for analyzing science connection development across diverse student
populations in a Challenge-Based Learning (CBL) course. The Equity hypothesis is broken down into Nondominant
identities hypotheses (H1) and Academic paths hypotheses (H2), each examining specific demographic variables.

Nondominant identities hypothesis; H1. Our CBL course will promote equitable
outcomes in SciID, Eff, and Val development regardless of students’ gender,
underrepresented minority (URM) status, or first-generation status (Figure 1).
Specifically, we tested three distinct statistical sub-hypotheses within H1: H1A-Gender
(Female/Male), H1B-URM status (URM/Not URM), and H1C-First-generation status
(FirstGen/Not FirstGen) will have no effect on changes in science connection after
experiencing a CBL course.

Our goal of implementing equitable and inclusive pedagogy for all students results in a
need to investigate learning interventions for potential differential impacts on students with
nondominant1 identities (Ballen et al., 2017b; Cole & Beck, 2022; Shortlidge et al., 2024;
Vincent-Ruz et al., 2018). Historically, students from nondominant backgrounds, especially
based on gender, URM status, and first-generation status, have faced barriers to integration, and
by extension, science connection (Estrada et al., 2011; Estrada et al., 2016; Hazari et al., 2013; Li
et al., 2024; Shortlidge et al., 2024). These barriers negatively impact key social influence
constructs of science connection, such as SciID, Eff, and Val (Cole & Beck, 2022; Estrada et al.,
2021). Previous studies have found that perceptions of gender stereotypes and racial stigmas
1 Our choice in using this specific term aligns with the reasoning outlined by Gutiérrez et al. (2009): “We use the
term nondominant rather than terms such as minority, students of color, and so on, given that the central issue is the
power relations between those who are in power and those who, despite their growing census numbers, are not.”
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within the sciences negatively influence students’ SciID (Hazari et al., 2013; Shortlidge et al.,
2024). Women and URM students, even those intending to pursue STEM careers, are less likely
to see themselves as a “science person” compared to their male and non-URM counterparts
(Hazari et al., 2013; Vincent-Ruz et al., 2018). Females in STEM also report lower Eff than their
male counterparts, even when actual academic performance is held constant (Bloodhart et al.,
2020; Marshman et al., 2018; Robnett & Thoman, 2017). In a study by Cole and Beck (2022),
URM and female students entered an introductory biology course sequence with lower SciID and
Eff compared to their non-URM and male counterparts and despite experiencing similar rates of
growth, these initial disparities persisted. This result aligned with prior observations of lower
SciID or Eff in URM students as compared to non-URM students (Adedokun et al., 2013;
Beltran et al., 2020; Cole & Beck, 2022; Hazari et al., 2013; MacPhee et al., 2013). In terms of
Val, students from nondominant backgrounds may lack systemic exposure to scientific norms
and practices, thereby experiencing a perceived misalignment between their personal values and
those of the scientific community (Estrada et al., 2018). Thus, students with nondominant
identities may report lower endorsement of Val compared to their peers (Shortlidge et al., 2024).
For example, Cole and Beck (2022) observed that first-generation students had lower levels of
Val that continued to decrease over time, highlighting the need for targeted interventions to
support the development of Val in this nondominant population.

These ongoing demographic disparities in SciID, Eff, and Val have led to decreased
persistence and engagement in STEM fields, especially in nondominant populations (Chemers et
al., 2011; Estrada et al., 2011; Estrada et al., 2018). These findings confirm the need for creating
equitable and inclusive learning environments that actively work to mitigate the negative impacts
of systemic barriers on students’ science connection, particularly for students from nondominant
backgrounds. By cultivating equitable growth in SciID, Eff, and Val through CBL, we can propel
all students—from both dominant and nondominant backgrounds—to develop deeper
connections to science.

Our next nested hypothesis recognized that students in our course were coming from a
wide variety of academic paths differentiated by their disciplinary identities, specific stage in
college, and distinct semesters of enrollment. Given the heterogeneity of these academic paths,
we sought to investigate how these varied identities, stages, and semester contexts may influence
the development of science connection. Thus, we tested:

Academic paths hypothesis; H2. Our CBL course will effectively promote science
connection for all students, regardless of their disciplinary identity, class status, or the
specific semester in which they take the course (Figure 1). Specifically, we tested three
distinct statistical sub-hypotheses within H2: H2A-Intended/declared major status
(STEM/Non-STEM; Biology/Not Biology), H2B- Class status
(Lowerclassmen/Upperclassmen), and H2C-Term (semester iteration) will have no effect
on changes in science connection after experiencing a CBL course.

This nested hypothesis addresses three key dimensions of students’ academic paths: 1)
disciplinary identity, defined by their intended or declared major; 2) stage in college journey,
defined by their class status as a lowerclassmen (Years 1 and 2) or upperclassmen (Years 2 and
beyond); and 3) specific semester in which they took the course, differentiated by instructional
impact of the COVID-19 pandemic. Exploring these dimensions provides critical insight into the
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effectiveness of our CBL course in promoting science connection development for the diverse
academic paths represented in our student population.

The TIMSI framework proposes that students’ integration into the scientific community
is shaped by their experiences within that community (Estrada et al., 2011). Thus, students’ level
of exposure to and engagement with scientific disciplines may impact their SciID, Eff, and Val.
Previous research has investigated potential differences between STEM and Non-STEM majors
(i.e., majors and nonmajors), as well as between majors within STEM fields. Hazari et al. (2013)
emphasized the importance of examining specific disciplinary identities (e.g., biology identity,
chemistry identity, and physics identity) to better understand differences in participation and
engagement between fields. More broadly, various attitudinal differences have been observed
between STEM and Non-STEM majors. Non-STEM majors are less likely than biology majors
to see science as personally relevant (Cotner et al., 2017). However, STEM majors tend to place
less importance on social agency and working for social change compared to Non-STEM majors
(Garibay, 2015). Interestingly, despite these attitudinal differences, nonmajors and majors may
possess similar levels of science process skills at the beginning of their undergraduate studies
(Hebert & Cotner, 2019). This implies that both groups have the capacity to participate in
authentic scientific inquiry, and educators should prioritize instructional approaches that address
attitudinal disparities between nonmajors and majors to advance scientific literacy (Hebert &
Cotner, 2019; Knight & Smith, 2010). This aligns with calls for engaging Non-STEM majors in
meaningful scientific inquiry to develop a scientifically literate citizenry capable of tackling the
socioscientific issues of the future (Ballen et al., 2017a; Gormally & Heil, 2022). By assessing
how our CBL course impacts science connection development across different disciplinary
identities, we aim to enrich understanding of effective methods for promoting scientific literacy
and engagement among undergraduate students from all disciplines.

Students’ stage in their college journey, as defined by their class status (i.e., year in
college), may also influence their science connection. As students progress through college, their
self-perceptions with respect to science are likely to become more stable (Hazari et al., 2013).
Thus, upperclassmen may have more rigid conceptions of their SciID, Eff, and Val that are
resistant to change compared to lowerclassmen who may express more malleable conceptions in
these constructs. Estrada et al. (2011) hypothesized that graduate students, being more socialized
into the scientific community, would exhibit greater SciID, Eff, and Val compared to
undergraduates. Extending this notion to undergraduates, upperclassmen—who have more
knowledge, training, and exposure to their fields—might express stronger SciID, Eff, and Val
compared to lowerclassmen. Knight and Smith (2010) investigated the effect of class standing on
attitudinal changes in a genetics course, finding that upperclassmen exhibited a significant
positive shift in attitudes towards science compared to underclassmen. These findings suggest
that class status can impact students’ responsiveness to instructional interventions geared toward
developing attitudinal constructs like SciID, Eff, and Val. Additionally, in the specific timeline of
our study, the semester in which students took the course may have influenced their science
connection due to variations in instructional modality instigated by the COVID-19 pandemic. By
assessing the potential impact of these academic path variables in our study, we strive to further
support the tailoring of interventions that meet the needs of students at different stages of their
academic journey.
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Methods

Study Design

We employed a pre/post survey design to measure changes in TIMSI constructs (SciID,
Eff, and Val) among students participating in the Bioinspired Design course, with a focus on
examining potential differences across demographic groups. This approach allowed for both
within-subjects comparisons of students’ pre- and post-course responses and between-subjects
analyses based on demographic variables. Data were collected from course iterations over five
semesters (Spring 2019-Spring 2023), providing a sufficient sample size for investigating
demographic trends. We analyzed matched pre/post pairs from students who completed both
surveys, with sample sizes ranging from N = 315 to N = 529 depending on the specific statistical
test. To encourage participation, students received one point of extra credit for voluntarily
completing the pre- and post-surveys online via Qualtrics. The survey protocol included
informed consent and confidentiality assurances, and all experimental procedures were approved
by the Institutional Review Board (Protocol ID: 2017-12-10602).

Survey Design and Demographic Data Collection

This chapter utilizes the same survey response data from Chapter 1 based on the adapted
TIMSI survey items. See Chapter 1-Table 2 for the complete survey instrument (19 Likert-type
items with SciID, Eff, and Val subscales). As discussed in Chapter 1, the survey demonstrated
good to excellent reliability at the overall and individual construct levels based on both
Cronbach’s alpha and McDonald’s omega values, indicating high internal consistency of the
instrument (See Chapter 1-Table 3 and Supplement 2).

In addition to pre/post survey results from the SciID, Eff, and Val measures, this chapter
also presents key demographic data linked to our Equity hypotheses. Demographic survey items
collected students’ potentially nondominant identities (Gender, URM status, FirstGen status) and
academic paths (Intended/Declared Major Status, Class Status, Term). Each of these
demographic variables were split into dichotomous groups to test for statistically significant
differences in pre/post survey results. STEM/Non-STEM was categorized based on responses to
the selected choice survey item “Major field of study or interest.” STEM majors were students
who selected 1) Science, 2) Technology, 3) Engineering, 4) Mathematics, or 5) Computer
Science; Non-STEM majors were students who selected 1) Design, 2) Uncertain/not sure, and 3)
Other. As a breadth course open to all students, we categorized “Other” as Non-STEM to
capture the full range of majors beyond the designated categories. This ensured a comprehensive
sampling of the course’s diverse student body and enabled STEM versus Non-STEM group
comparisons in our analysis. Response data for all demographic variables are presented within
the Results section alongside the associated statistical analysis.

We recognize the limitations of binary classification for each of these demographic
groups, particularly for gender and URM status. We want to make clear that the gender
demographic item allowed students to select from male, female, non-binary, and other. Students
also selected from disaggregated racial identities (e.g., disaggregated subgroups within the
“Asian” demographic) that were later aggregated into URM/Non-URM based on the National
Science Foundation (NSF) (2023) definition of underrepresented minorities—“Races or
ethnicities whose representation in STEM employment and S&E [science & engineering]
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education is smaller than their representation in the U.S. population. This includes Blacks or
African Americans, Hispanics or Latinos, and American Indians or Alaska Natives.” There are
known limitations with this definition, particularly in the context of undergraduate STEM
education (Bhatti, 2021). We chose to use this definition to align with the demographic standards
of the TIMSI framework literature. We encourage future research to consider alternatives to
traditional notions of URM/Non-URM.

Statistical Analysis

For all statistical analyses, we used IBM SPSS Statistics for Macintosh (Version 28.0,
IBM Corp., 2021). We calculated descriptive statistics for individual survey items and overall
constructs (See Chapter 1-Results), and assessed normality using histograms, skewness, and
kurtosis values. Given our large sample size, we proceeded with ANOVA and ANCOVA
parametric tests, which are generally robust to normality violations (Blanca et al., 2017; Blanca
et al., 2023). We generated visualizations of our ANCOVA results using R (version 4.4.1; R Core
Team, 2024) with the ggplot2, dplyr, and gridExtra packages (Wickham, 2016) to create
high-contrast dot plots with error bars for each construct. We conducted Box’s test (Box, 1949)
for homogeneity of covariance and Levene’s test (Levene, 1960) for homogeneity of variance
across groups to evaluate assumptions for group comparisons, with results detailed in
Supplement 3. We mitigated potential for Type I errors in multiple comparisons by applying
Bonferroni corrections to all relevant statistical tests.

To examine potential differences across the seven dichotomous demographic groups, we
conducted a set of RM ANOVAs labeled “Demographic RM ANOVAs,” or those with time as
the within-subjects factor and demographic group variables as additional between-subjects
factors. These RM ANOVAs tested H1 (nondominant identities hypotheses) and H2 (academic
paths hypotheses). Similar to the RM ANOVA analysis in Chapter 1, multivariate and univariate
tests examined potential differences in pre-to-post changes across the demographic groups at the
combined and individual construct levels, respectively.

In contrast to Chapter 1, we recognized that the hypotheses in this chapter centered on
investigating the absence of statistically significant differences (i.e., null hypotheses) based on
demographic groups. Thus, we sought to strengthen our analytical approach by also conducting
analyses of covariance (ANCOVAs) to investigate potential variations in course impact between
demographic groups while controlling for pre-survey scores. This additional approach enhanced
our ability to detect effects that may not have been apparent in the RM ANOVA alone (Dimitrov
& Rumrill Jr, 2003; Maxwell et al., 2017). Importantly, due to potential limitations in statistical
power, the absence of statistically significant differences does not definitively equate to lack of
demographic differences. However, the combined use of RM ANOVA and ANCOVA provides a
thorough assessment of our null hypotheses. By examining both changes over time and adjusted
post-survey scores, our dual methodology strengthened the validity of findings that aligned with
our hypotheses of no demographic differences in science connection development.

Results

In the results tables below, dashed lines within the tables separate the demographic
variables for H1 (nondominant identities hypotheses; H1A-1C) and H2 (academic paths hypotheses;
H2A-2C). The descriptive statistics (means and standard deviations) for each of the pre/post survey
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constructs can be found in Chapter 1-Table 4. The demographic response data for the RM
ANOVAs are shown in Table 1 below.

Table 1
Demographic Response Data for RM ANOVAs
Demographic Variable N

Gender Male 192
Female 292

URM Status URM 48
Non-URM 438

FirstGen Status Yes 45
No 265

Biology Major Yes 137
No 356

STEM/Non-STEM STEM 329
Non-STEM 164

Class Status Lowerclassmen 293
Upperclassmen 201

Term 2019 127
2020 127
2021 97
2022 72
2023 71

No Significant Differences in Science Connection Development Across Demographic Group
RM ANOVAs

Multivariate Tests Show Equitable Growth Across All Demographic Variables. Prior
to analysis, we ran assumption tests including Box’s test and Levene’s test (Supplement 3-Tables
S2-S4). Based on our assumption test results and the robustness of multivariate and univariate
tests to departures from assumptions (Field, 2024; Supplement 3), we proceeded with our
planned analyses. We first tested the nondominant identities hypotheses (H1A-1C) and the
academic paths hypotheses (H2A-2C) by conducting multivariate RM ANOVA tests with each
demographic variable as a between-subjects factor. This resulted in seven tests (one for each
demographic group variable) as shown in Table 2. A Bonferroni corrected critical value of p <
.05/7 was applied to all tests. We observed no statistically significant differences between any of
the seven dichotomous demographic groups, supporting both H1 and H2.
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Table 2
Demographic RM ANOVAs - Multivariate

Variable Value F Hypothesis df Error df Sig.*
Partial Eta
Squared

PrePost * Gender Pillai's Trace .003 .547 3 480 .650 .003
Wilks' Lambda .997 .547 3 480 .650 .003

PrePost * URM Pillai's Trace .002 .343 3 482 .794 .002
Wilks' Lambda .998 .343 3 482 .794 .002

PrePost * FirstGen Pillai's Trace .002 .184 3 306 .908 .002
Wilks' Lambda .998 .184 3 306 .908 .002

PrePost * Biology
Major

Pillai's Trace .005 .878 3 489 .452 .005
Wilks' Lambda .995 .878 3 489 .452 .005

PrePost *
STEM/Non-STEM

Pillai's Trace .007 1.211 3 489 .305 .007
Wilks' Lambda .993 1.211 3 489 .305 .007

PrePost * Class
Status

Pillai's Trace .013 2.073 3 490 .103 .013
Wilks' Lambda .987 2.073 3 490 .103 .013

PrePost * Term Pillai's Trace .028 1.132 12 1467 .330 .009
Wilks' Lambda .973 1.130 12 1288 .331 .009

*Bonferroni correction applied (p < .05/7)

Univariate Analyses Further Support Equitable Development in Individual Social
Influence Constructs.We followed up these multivariate tests with univariate tests that also
analyzed potential demographic differences at a more granular level of each individual social
influence construct. This resulted in 21 tests (3 constructs x 7 demographic group variables) as
shown in Table 3. A Bonferroni corrected critical value of p < .05/21 was applied to all tests. In
alignment with the multivariate test, we observed no statistically significant differences across all
21 univariate tests, further supporting equitable developmental outcomes in science connection
regardless of demographic classification.
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Table 3
Demographic RM ANOVAs - Univariate

Variable Construct
Type III Sum
of Squares df

Mean
Square F Sig.*

Partial Eta
Squared

PrePost * Gender SciID .008 1 .008 .016 .900 .000
Eff .328 1 .328 1.325 .250 .003
Val .195 1 .195 .649 .421 .001

PrePost * URM SciID .139 1 .139 .266 .606 .001
Eff .134 1 .134 .537 .464 .001
Val .245 1 .245 .808 .369 .002

PrePost * FirstGen SciID .009 1 .009 .017 .897 .000
Eff .052 1 .052 .224 .636 .001
Val .046 1 .046 .151 .698 .000

PrePost * Biology
Major

SciID .980 1 .980 1.876 .171 .004
Eff .021 1 .021 .084 .772 .000
Val** .467 1 .467 1.579 .209 .003

PrePost *
STEM/Non-STEM

SciID .140 1 .140 .267 .605 .001
Eff .603 1 .603 2.411 .121 .005
Val** .060 1 .060 .199 .656 .000

PrePost * Class Status SciID .543 1 .543 1.040 .308 .002
Eff .539 1 .539 2.159 .142 .004
Val .399 1 .399 1.330 .249 .003

PrePost * Term SciID 2.402 4 .600 1.151 .332 .009
Eff 1.978 4 .495 1.992 .095 .016
Val .648 4 .162 .538 .708 .004

*Bonferroni correction applied (p < .05/21)
**Val failed Levene’s test in Bio and STEM

ANCOVA Results Support Equitable Outcomes with Exceptions in SciID

ANCOVA analyses examined whether any differences in post-survey scores across
demographic groups were significant after controlling for pre-survey scores. These tests provided
an additional and alternative assessment of the Equity hypotheses that adjusted for baseline
variations. Prior to conducting each ANCOVA, Levene’s test was performed to assess the
assumption of homogeneity of variances across groups (Supplement 3-Tables S5-S7). If this
assumption was not met, robust standard errors were used instead. Robust standard errors
provide unbiased standard errors of the parameter estimates when the homoscedasticity
assumption is not met (White, 1980), allowing for valid interpretation of the significance tests. A
Bonferroni corrected critical value of p < .05/7 was applied to all tests. The demographic
response data for the ANCOVAs are shown in Tables 4 and 5. ANCOVA results for each social
influence construct (SciID, Eff, and Val) are presented in separate subsections below.

36



Table 4
Demographic Response Data for ANCOVA Tests
Variable SciID Eff Val
Gender
Male 208 202 199
Female 305 303 296

URM Status
URM 50 50 48
Non-URM 464 457 450

FirstGen
Yes 47 45 46
No 275 274 269

Biology Major
Yes 148 149 141
No 376 367 365

STEM/Non-STEM
STEM 310 346 341
Non-STEM 215 170 165

Class Status
Lowerclassmen 293 306 300
Upperclassmen 201 211 207

Table 5
Response Data (N) for Term ANCOVA
Term SciID Eff Val
2019 132 131 130
2020 133 132 129
2021 104 101 101
2022 81 79 76
2023 75 74 71

SciID ANCOVA: Statistically Significant Variations Based on STEM/Non-STEM
and Class Status. Levene’s test showed homogeneity of variance was met for all covariates
(Supplement 3-Table S5). SciID ANCOVA results are shown in Figure 2 and Table 6. For
purposes of brevity, the effect of the Term demographic variable is shown only in the ANCOVA
results tables. There were no significant differences based on Term across SciID, Eff, and Val.
Testing H1 (nondominant identities), there were no significant differences based on Gender,
URM status, and FirstGen status in the SciID ANCOVA. Testing H2 (academic paths), there were
no significant differences based on Biology Major and Term. There was a statistically significant
difference between STEM (M = 4.78, SE = 0.056) and Non-STEM (M = 4.40, SE = 0.067) with
small-medium effect size; F(1, 522) = 23.331, p < .001, ηp2 = 0.043. There was also a statistically
significant difference based on Class Status between lowerclassmen (M = 4.49, SE = 0.057) and
upperclassmen (M = 4.70, SE = 0.069) with small effect size; F(1, 523) = 8.547, p = .004, ηp2 =
.016.
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Figure 2
Dot Plots of Science Identity (SciID) ANCOVA Results

Note. The plots display estimated marginal means for groups based on nondominant identity demographics (Gender,
URM Status, FirstGen Status) and academic path demographics (Biology Major, STEM/Non-STEM, Class Status)
separated by a dashed line. Asterisks (*) denote statistically significant differences between the compared groups
after applying a Bonferroni correction (p < .05/7). Error bars represent 95% confidence intervals. The Likert scale
ranges from 1 (strongly disagree) to 7 (strongly agree). Comparisons show that STEM/Non-STEM and
Lowerclassmen/Upperclassmen groups had significant differences, while other demographic groups did not show
statistically significant differences.

Table 6
SciID ANCOVA Results

Variable

Type III
Sum of
Squares F Sig.*

Partial Eta
Squared Effect Size

Gender .569 .607 .436 .001 N/A
URM .177 .189 .664 .000 N/A
FirstGen .002 .002 .962 .000 N/A
Biology Major .046 .049 .825 .000 N/A
STEM/Non-STEM 20.961 23.331 <.001 .043 Small-med
Class Status 7.878 8.547 .004 .016 Small
Term 4.166 1.115 .349 .009 N/A

38



*Bold indicates significant difference; Bonferroni correction applied (p < .05/7)
Eff ANCOVA: Equitable Outcomes Across All Groups. Levene’s test showed

homogeneity of variance was met for all covariates except Class Status (Supplement 3-Table S6).
To account for this violation, the Class Status ANCOVA was conducted using robust standard
errors. Testing H1 and H2, no statistically significant differences were detected across all
demographic variables (Figure 3; Table 7).

Figure 3
Dot Plots of Science Self-Efficacy (Eff) ANCOVA Results

Note. The plots display estimated marginal means for groups based on nondominant identity demographics (Gender,
URM Status, FirstGen Status) and academic path demographics (Biology Major, STEM/Non-STEM, Class Status)
separated by a dashed line. Bonferroni correction applied (p < .05/7) to all analyses. Error bars represent 95%
confidence intervals. Likert scale range 1 (not at all confident) to 5 (absolutely confident). Comparisons between
demographic groups showed no statistically significant differences.
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Table 7
Eff ANCOVA Results

Variable

Type III
Sum of
Squares F Sig.*

Partial Eta
Squared Effect Size

Gender .167 .458 .499 .001 N/A
URM .391 1.076 .300 .002 N/A
FirstGen .714 1.967 .162 .006 N/A
Biology Major .158 .437 .509 .001 N/A
STEM/Non-STEM .951 2.633 .105 .005 N/A
Class Status** .350 .965 .306 .002 N/A
Term 1.743 1.204 .308 .009 N/A
*Bonferroni correction applied (p < .05/7)
**Sig. value adjusted based on robust standard error due to violation of Levene’s test

Val ANCOVA: No Statistically Significant Demographic Variations. Levene’s test
showed homogeneity of variance was met for all covariates except STEM/Non-STEM
(Supplement 3-Table S7). As a result, the STEM/Non-STEM ANCOVA was conducted using
robust standard errors to account for this violation. Testing H1, there were no significant
differences based on Gender, URM status, or FirstGen Status. Testing H2, there were no
significant differences based on Biology Major, Class Status, and Term (Figure 4; Table 8).
Applying the robust standard errors method to the STEM/Non-STEM ANCOVA resulted in an
adjusted significance value of .030, which was greater than the Bonferroni corrected critical
value of p < .05/7. Thus, there was no statistically significant difference between STEM and
Non-STEM on the Val ANCOVA.
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Figure 4
Dot Plots of Scientific Community Values (Val) ANCOVA Results

Note. The plots display estimated marginal means for groups based on nondominant identity demographics (Gender,
URM Status, FirstGen Status) and academic path demographics (Biology Major, STEM/Non-STEM, Class Status)
separated by a dashed line. Bonferroni correction applied (p < .05/7) to all analyses. Error bars represent 95%
confidence intervals. Likert scale range 1 (not like me at all) to 6 (very much like me). Comparisons between
demographic groups showed no statistically significant differences.

Table 8
Val ANCOVA Results

Variable

Type III
Sum of
Squares F Sig.*

Partial Eta
Squared Effect Size

Gender .050 .092 .761 .000 N/A
URM .507 .924 .337 .002 N/A
FirstGen .080 .150 .699 .000 N/A
Biology Major .173 .322 .570 .001 N/A
STEM/Non-STEM** 3.050 5.633 .030 .009 N/A
Class Status 1.715 3.152 .076 .006 N/A
Term 1.926 .880 .475 .007 N/A
*Bonferroni correction applied (p < .05/7)
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**Sig. value adjusted based on robust standard error due to violation of Levene’s test
A summary of all ANCOVA results across each social influence construct—SciID, Eff,

Val—is shown in Table 9 (excluding Term, see Chapter 1). Overall, 19 out of 21 ANCOVA tests
showed no statistically significant differences based on demographic groups. Viewed
collectively, both the results from the RM ANOVAs (no statistically significant differences in all
7 multivariate tests and all 21 univariate tests) and these ANCOVA results align with our Equity
hypothesis.

Table 9
Summary of ANCOVA Results for SciID, Eff, and Val
Construct Variable Group 1 (M, SE) Group 2 (M, SE) F Sig.* ηp

2

SciID Gender Male (4.56, 0.068) Female (4.62, 0.056) 0.607 .436 .001
URM URM (4.54, 0.139) Non-URM (4.61, 0.046) 0.189 .664 .000
FirstGen FirstGen (4.59, 0.143) Non-FirstGen (4.60, 0.059) 0.002 .962 .000
Biology Major Bio (4.60, 0.081) Non-Bio (4.58, 0.051) 0.049 .825 .000
STEM/Non-STEM STEM (4.78, 0.056) Non-STEM (4.40, 0.067) 23.331 <.001 .043
Class Status Lower (4.49, 0.057) Upper (4.70, 0.069) 8.547 .004 .016

Eff Gender Male (3.82, 0.034) Female (3.85, 0.028) 0.458 .499 .001
URM URM (3.89, 0.068) Non-URM (3.83, 0.023) 1.076 .300 .002
FirstGen FirstGen (3.92, 0.071) Non-FirstGen (3.82, 0.029) 1.967 .162 .006
Biology Major Bio (3.82, 0.040) Non-Bio (3.85, 0.025) 0.437 .509 .001
STEM/Non-STEM STEM (3.87, 0.026) Non-STEM (3.80, 0.037) 2.633 .105 .005
Class Status** Lower (3.82, 0.028) Upper (3.86, 0.033) 0.965 .306 .002

Val Gender Male (4.86, 0.046) Female (4.88, 0.037) 0.092 .761 .000
URM URM (4.95, 0.092) Non-URM (4.86, 0.030) 0.924 .337 .002
FirstGen FirstGen (4.91, 0.093) Non-FirstGen (4.87, 0.039) 0.150 .699 .000
Biology Major Bio (4.89, 0.053) Non-Bio (4.85, 0.033) 0.322 .570 .001
STEM/Non-STEM** STEM (4.93, 0.034) Non-STEM (4.81, 0.049) 5.633 .030 .009
Class Status Lower (4.82, 0.037) Upper (4.92, 0.044) 3.152 .076 .006

*Bold indicates significant difference; Bonferroni correction applied (p < .05/7)
**Sig. value adjusted based on robust standard error due to violation of Levene’s test

Discussion

This chapter expanded on our initial growth findings from Chapter 1 by exploring how
the development of science connection (SciID, Eff, and Val) potentially varies across different
demographic groups within our Bioinspired Design course. We also sought to understand if a
course based on a CBL perspective could mitigate previously observed disparities in these
measures and promote equitable outcomes across diverse student populations. During this
process, we examined how specific demographic variables interacted with the development of
SciID, Eff, and Val in the context of our unique CBL environment. By investigating these critical
areas, we aimed to provide a comprehensive assessment of equity within our course framework.
Our analysis focused on both nondominant identities (gender, URM status, FirstGen status) and
academic paths (major, class status, enrollment term), allowing us to explore potential
differences across a wide spectrum of student backgrounds and experiences.

The results of our multiple analyses in this chapter revealed equitable outcomes across
these diverse student groups, suggesting that our CBL approach may offer a promising model for
inclusive STEM education. In the following discussion, we explore the specific components of
our course that may have contributed to these equitable results, focusing on how the CBL
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structure and intentional design elements created an environment where all students could
meaningfully connect with science, regardless of their background or intended career path. We
structure the discussion around the two aims posed earlier, connecting the equitable results with
specific course components that may have been especially influential in driving the outcomes.
By understanding these mechanisms, we can better inform the design of future STEM education
initiatives that prioritize equity and inclusion.

Equitable Development of Science Connection Across Demographic Groups Through a CBL
Approach

We first examined the effect of demographic groups on the development of science
connection (SciID, Eff, and Val) in our CBL course (Aim 1). Our analysis showed that our
Bioinspired Design course promoted equitable outcomes in science connection for students
across a variety of key demographic groups. This is a notable finding, as lack of differences in
SciID, Eff, and Val development between historically dominant and nondominant groups are not
typically observed and undergraduate STEM courses may even exacerbate differences between
demographic groups (Cole & Beck, 2022; Estrada et al., 2019; Shortlidge et al., 2024). In
contrast, our Bioinspired Design course showed no significant group differences in SciID, Eff,
and Val across all the Demographic RM ANOVAs (Tables 2 and 3), suggesting effective and
equitable development of science connection.

Our results could be connected to our Bioinspired Design course’s emphasis on
interdisciplinary collaboration and its structured support to promote inclusive teamwork (Full et
al., 2021). Students engaged in a series of team-based design projects culminating in a final
project where demographically diverse teams extracted a biological principle, created a
bioinspired design, and presented their work in a public showcase. During this process, we
initially formed interdisciplinary teams of students balanced across major/class year/design
experience. Students then engaged in team building activities and collaboration training designed
to highlight strategies for inclusive teamwork. Following team formation and training, students
completed a scaffolded set of design projects ranging from guided to open-ended. This workflow
allowed all students to build skills and confidence over time, while the open-ended final project
gave teams autonomy to leverage their unique mix of disciplinary expertise. Throughout this
process, we required reflection on team dynamics to continuously improve collaboration,
encouraging teams to leverage their diverse strengths. Lastly, the public showcase of final
projects was a culminating experience where all students could see themselves and their
teammates as legitimate members of the scientific learning community.

These intentional team formation, training, and reflection activities created an inclusive
environment where student contributions were valued, potentially mitigating differential
outcomes in SciID, Eff, and Val development throughout the semester. For example, the course
structure may have promoted SciID as students worked in diverse teams, mirroring the
collaborative, interdisciplinary nature of the scientific community, and helping all students see
themselves as valid contributors regardless of background. For Eff development, various teaming
activities provided all students with strategies to effectively contribute, potentially supporting
individual self-efficacy. Instructional strategies like these to promote equitable Eff growth are
crucial considering the enhancing effects of Eff development on SciID development based on
gender and URM status (Cole & Beck, 2022). For Val alignment, interdisciplinary teamwork
embodied the scientific value of considering diverse perspectives to enrich discovery and
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innovation. This approach may have contributed to equitable Val development, an especially
noteworthy outcome considering recently observed differences in Val (decreases) even after
intervention based on URM and FirstGen status (Cole & Beck, 2022; Shortlidge et al., 2024). By
making scientific work a collaborative, interdisciplinary endeavor, the course validated students’
potential to meaningfully contribute, regardless of nondominant identity status or academic path
status.

Interactions Between Demographic Variables and Science Connection Development

While our analysis showed a wide array of equitable outcomes, we did observe some
notable interactions between specific demographic variables and the development of science
connection constructs. These interactions related to Aim 2: “Evaluate the effectiveness of our
CBL approach in promoting equitable science connection outcomes across seven key
demographic variables.” We focus our discussion of this aim on the ANCOVA results (Figures
2-4; Tables 6-8). The majority of the ANCOVA results matched the Demographic RM ANOVA
findings supporting equitable outcomes. Five out of seven demographic variables showed no
significant differences in post-survey scores after controlling for pre-survey scores. However,
two findings emerged that warrant further discussion—statistically significant differences in
SciID between STEM/Non-STEM majors and lowerclassmen/upperclassmen (Figure 2; Table 6).
The detected differences were specific to only SciID and did not extend to Eff or Val measures,
which showed equitable development across all groups. Importantly, this result demonstrates that
our methods were indeed capable of detecting differences where they existed, thereby increasing
confidence in the equitable outcomes observed across other variables and constructs.

The significant difference in SciID between STEM and Non-STEM majors (F(1, 522) =
23.331, p < .001, ηp² = .043) (Figure 2) suggests that while both groups experienced growth,
STEM majors may have developed a comparatively stronger SciID by the end of the course. This
could be due to STEM students’ prior exposure to scientific practices and communities, which
may have allowed them to more readily integrate the course experiences into their existing
SciID. Non-STEM students, starting from a potentially lower baseline, may have shown growth
(as evidenced by the RM ANOVA analysis) but not to the same extent as their STEM
counterparts. The significant difference in SciID based on class status (F(1, 523) = 8.547, p =
.004, ηp² = .016) (Figure 2) may reflect the cumulative effect of college experiences on students’
SciID formation. Upperclassmen, with more exposure to scientific coursework and perhaps even
undergraduate research experiences, may have been better positioned to integrate the CBL course
experiences into their developing SciID. Lowerclassmen, while still benefiting from the course,
may require more time and experiences to fully develop their SciID. These results align with
previous research suggesting that SciID development is a complex process influenced by
multiple factors including prior experiences and academic stage (Estrada et al., 2011; Hamilton,
2004; Hazari et al., 2013). These results also underscore the importance of considering students’
diverse starting points when designing interventions to foster science connection. Future
iterations of the course could explore targeted support for Non-STEM majors and lowerclassmen
to reduce these gaps in SciID development, while maintaining the equitable growth observed in
Eff and Val across all groups.
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Science Connection as an Ongoing Process Needed for All Students

Based on the results of this and the previous chapter, we further support the notion that
developing a strong connection to science is critical for promoting student engagement,
persistence, and success in STEM (Estrada et al., 2018; Estrada et al., 2019; Hernandez et al.,
2020). The results of this chapter specifically also indicate that cultivating science connection is
a viable outcome in all students, including Non-STEM students (i.e., nonmajors). These students,
just like their STEM counterparts, participate in science contexts within and outside of the
classroom. We know that nearly all students participate in proximal science contexts such as
STEM course communities (e.g., science breadth courses), but these same students will also have
to engage in more distal science contexts after graduating, such as participation in science-related
legislation, public health decision-making, and consumer decision-making. These contexts
represent moments in which high levels of SciID, Eff, and Val can lead to informed participation
in the democratic process, pro-science behaviors, and critical evaluation of scientific claims
(Estrada et al., 2017; Ballen et al., 2017; Gormally & Heil, 2022). By fostering science
connection in all students, both STEM and non-STEM graduates can contribute to a more
scientifically literate society and make informed decisions across diverse aspects of their lives.

With our key results in mind, we propose a view of science connection as a continuous
process that undergoes ongoing development through participation in different types of scientific
communities, especially within courses that utilize CBL. Our results demonstrate that a
single-semester breadth course can effectively promote equitable science connection for a
diverse range of students, including Non-STEM majors, Non-biology majors, and students at all
class levels. This adapts the idea that the study of integration through the TIMSI
framework—and by extension, science connection—may require extensive time or is specific to
certain demographic groups. Therefore, we propose both integration and science connection be
studied not just as a long-term outcome, but as a continually developing process. Students’ levels
of science connection may increase or decrease due to their evolving personal conceptions of
what it means to be a scientist (SciID), their ability to do science (Eff), and their alignment with
the values of the scientific community (Val) as they progress through their educational
experience. A course itself can serve as a meaningful scientific community, and connection with
this proximal community is a valuable outcome that may spark further engagement with science
and proscience attitudes. By intentionally designing courses to promote science connection, we
can enhance retention for STEM students while also providing STEM-enriched experiences for
Non-STEM students.

Limitations and Future Research

While our analyses showed only two instances of statistically significant differences
between demographic groups (across roughly 50 tests and two different methodologies),
limitations in statistical power may have obscured other disparities. We also express caution
against conflating nondominant and dominant identities as being the “same” based on a lack of
statistical differences, given the negative impacts of this assumption (Estrada et al., 2018). Future
qualitative research should explore how specific course components uniquely impact and
leverage diverse cultural strengths (Yosso, 2005). Qualitative investigations of student
experiences could provide more granular insights that pinpoint differential impacts of key course
elements for certain demographic groups.
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Additionally, this study showcased short-term science connection outcomes within the
timespan of a single semester. Longitudinal follow-up studies could provide insight into the
persistence of these gains and whether the course influences future engagement with science and
proscience attitudes for both STEM and Non-STEM students. As students progress through their
educational journeys, each additional science or CBL course experience serves as a new
opportunity to reinforce and deepen their connection to science. Examining distal outcomes, such
as pursuing additional STEM courses or engaging in science-related civic behaviors, could help
show the lasting impact of CBL experiences.

The findings from Chapters 1 and 2 highlight a particularly intriguing aspect of our
CBLcourse—the significant and equitable development of Eff. Chapter 1 revealed the most
substantial gains in Eff among the TIMSI constructs, while Chapter 2 demonstrated that these
gains were equitably distributed across diverse student demographic populations. This consistent
and inclusive growth in Eff suggests that there may be unique elements within our CBL
approach that specifically foster self-efficacy development. To further examine this phenomenon,
we recognize the need to further explore the concept of self-efficacy as it relates to our course
context. Thus, Chapter 3 introduces a novel construct: Innovation Skills Self-Efficacy. In this
next chapter, we show that Innovation Skills Self-Efficacy is a critical construct to develop in all
students given the global imperative for innovation in addressing ever-evolving challenges.

Chapter 2 Conclusion

In the combined studies of Chapter 1 and 2, we investigated the impact of our Bioinspired
Design course on cultivating science connection amongst undergraduate students within a CBL
course environment. Using the TIMSI framework, we measured changes in SciID, Eff, and Val
across a diverse student population. Our results demonstrated that the course equitably promoted
science connection based on a pre/post survey analysis using RM ANOVAs, ANCOVAs, and
paired t-tests. Considering these results, we also described how our course expands what it
means to connect with science through CBL. We showed that self-reported science connection
can be achieved rapidly and equitably in the context of a single course for students from diverse
disciplinary and demographic backgrounds.

This inclusive view of science connection has important implications for broadening
participation in science. By demonstrating the potential for science connection across a wide
range of students in a short timeframe, breadth courses (like our Bioinspired Design course) offer
inclusive, scalable, and adaptable models of change to support reform in undergraduate STEM
education. As our world increasingly demands scientific literacy and interdisciplinary
collaboration, providing more opportunities for meaningful science connection will be crucial.
This then opens further possibilities for designing inclusive breadth courses that promote science
connection and invites future research on the short-term and long-term impacts of such
interventions. Ultimately, these efforts can then create more inclusive pathways for all students to
meaningfully connect with science, building a more STEM-enriched society in this ongoing
process.
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Chapter 3

Assessing Self-Efficacy Growth in Innovation Skills
Using a Developmental Perspective

Abstract

Future economic projections forecast the need for workers to pivot between professions
with significantly different skill sets. Thus, educators need to prepare all students for imminent
workforce redirections through pedagogy that promotes the development of transferable 21st
century skills. In the STEM education landscape, traditional assessments have lacked alignment
to skills-based learning outcomes, consequently leading to sparse measurement of students’
self-efficacy in skill development. Building on the significant and equitable growth in Science
Self-Efficacy observed in Chapters 1 and 2, this chapter introduces a novel construct, Innovation
Skills Self-Efficacy, to further explore self-efficacy development in our Challenge-Based
Learning (CBL) course context. We expand on the Tripartite Integration Model of Social
Influence (TIMSI) framework used previously by developing a more targeted measure of
self-efficacy aligned with the innovative thinking promoted in our Bioinspired Design course.

In this chapter, we present the application of a comprehensive assessment framework that
emphasizes a developmental perspective and provides meaningful interpretations of student
perceptions relative to intended growth outcomes. We utilized this framework to measure the
affective domain of student development, specifically student self-efficacy growth in Innovation
Skills as they participated in the Bioinspired Design course. We hypothesized that students would
develop greater self-efficacy in Innovation Skills as a result of this course and we tested this
through a survey-based methodology analyzed by item response theory. Our results showed
approximately one standard deviation of growth between the pre and post samples with an
especially large effect size in the context of educational interventions. These findings not only
corroborate the growth in Science Self-Efficacy observed in previous chapters but also
demonstrate the potential of CBL approaches to foster more specific, innovation-oriented
self-efficacy. Overall, we show how the use of a comprehensive assessment framework can
empower educators in measuring complex 21st century skills self-efficacy, particularly in CBL
environments. This framework can be utilized across subject and course contexts to develop
psychometrically robust assessments of skills-based constructs essential for advancing
undergraduate STEM education.
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Introduction

Chapters 1 and 2 of this dissertation demonstrated the effectiveness of our
Challenge-Based Learning (CBL) Bioinspired Design (Full et al., 2021) course in fostering
science connection through an adaptation of the Tripartite Integration Model of Social Influence
(TIMSI) framework. Notably, we observed the highest levels of equitable growth in the Science
Self-Efficacy (Eff) social influence construct. These findings suggested that our CBL approach
may be especially consequential for promoting students’ confidence in their scientific abilities.
To further investigate this outcome, we recognized the need to develop a more targeted measure
of Eff specifically aligned with the innovative thinking promoted in our course’s unique
interdisciplinary learning context. In this chapter, we introduce Innovation Skills Self-Efficacy as
a novel construct that builds upon the Eff measure. This new construct shares significant overlap
with Eff, as both focus on students’ confidence in their scientific abilities. However, Innovation
Skills Self-Efficacy provides a more granular view by specifically targeting students' belief in
their capacity to innovate within scientific contexts.

This progression from the general Eff measure to the more specific Innovation Skills
Self-Efficacy allows us to more precisely capture the unique outcomes of our CBL course in
preparing students for future STEM challenges. It enables us to build upon the TIMSI framework
while providing a more nuanced understanding of self-efficacy development in the context of
innovation-focused, interdisciplinary STEM education. Through this approach, we aim to more
effectively assess and understand the specific ways in which our CBL course is preparing
students to confidently tackle complex, real-world challenges that require innovative thinking.
By developing and validating a construct focused on self-efficacy in Innovation Skills, we
highlight a critical aspect of student learning that is particularly relevant to the goals of our CBL
course and the broader needs of 21st century STEM education.

Background

Preparing Students for the Known Jobs of Today and the Unknown Jobs of Tomorrow: The
Need for Innovation Skills

We live in a society where educators inevitably face the task of preparing students for
future careers that do not yet exist. In a 2022 working paper by the National Bureau of Economic
Research, Autor et al. concluded that 74% of employment amongst professionals in 2018 was
found in job titles that did not exist in 1940. Thus, educators at all levels of teaching are faced
with a pressing question—how do we prepare the students of today for the unknown jobs of
tomorrow? As science educators particularly, we must prepare all students, STEM and
non-STEM, for future workforce pivoting through pedagogy that promotes the development of
transferable STEM skills (National Academies of Sciences, Engineering, and Medicine
[NASEM], 2021). In addressing this challenge, CBL approaches, as explored in Chapters 1 and
2, offer a promising pedagogical framework. By engaging learners in real-world,
interdisciplinary challenges, CBL cultivates adaptability crucial for navigating the ever-evolving
job landscape of the future. In the previous chapters, we saw how CBL promoted greater science
connection among students, and in turn, fostered a learning environment where students
developed more confidence in an array of science-related skills (Eff).
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In this chapter, we specifically focus on innovation as a key skill needed for the future.
The ability to innovate has consistently been ranked as the most important skill for the future
workforce (World Economic Forum, 2020). Considering the current and future need for
innovation, we base this chapter on the crucial role of Innovation Skills in Undergraduate STEM
Education (USE)2. Various national reports on USE have called for fostering skills related to
innovation. In the National Academies Imagining the Future of Undergraduate STEM Education
report (2022), a series of forward-looking questions are asked about the world in 2040 including
“How will they [scientists and engineers] learn the skills, practices, and concepts they need to
contribute to innovation?” (NASEM, 2022, p. 1). Other reports describe innovation as “key to
economic success” (NASEM, 2018, p. 50), the ability to innovate as a “major differentiator”
(National Endowment for the Arts, 2017, p. 12), and call for “giving students broader repertoires
for critical thinking and creative innovation” to solve the complex problems of today and
tomorrow with creative solutions that are humane, technically robust, and elegant (NASEM,
2018, p. 54). These reports cohesively establish the importance of Innovation Skills for the future
workforce, the scientific enterprise, and the long-term goals of USE.

How do we define innovation? Innovation is a multifaceted concept that has been
differentially defined across various disciplines and contexts. A comprehensive analysis by
Singh and Aggarwal (2022) synthesized over 200 definitions to propose that innovation is “the
operationalization of creative potential with a commercial and/or social motive by implementing
new adaptive solutions that create value, harness new technology or invention, contribute to
competitive advantage and economic growth” (p. 177). This definition highlights the social and
technological aspects of innovation, which are particularly relevant to the educational research
context presented in this chapter. The Nature Index (2022) offers an additional definition that
also resonates with our pedagogical focus of translating scientific research into real-world
applications, describing innovation as “the practice of turning cutting edge basic research into
inventions with real world application.” These definitions collectively emphasize the importance
of viewing innovation as a process that can lead to research-based novelty and societally
impactful practical applications. Given the influential role of innovation in addressing complex
global challenges and driving economic growth, we now shift to a consideration of what specific
elements of Innovation Skills need to be fostered in USE.

The Need to Foster Constructs of Learning in the Affective Domain through Self-Efficacy
Development

In educational assessment, a construct is defined as a theoretical attribute of interest,
typically elicited and measured through instruments such as tests or surveys. Innovation Skills
represent a construct within both the cognitive and affective domains of learning (Bloom et al.,
1956). In the cognitive domain, Innovation Skills are the capabilities needed to innovate, such as
creativity, critical thinking, and problem-solving. In contrast, our research aims to establish
Innovation Skills as a construct within the affective domain. Krathwohl et al. (1964) initially
defined this domain to encompass objectives that “emphasize a feeling tone, an emotion, or a
degree of acceptance or rejection.” Birbeck and Andre (2009) further explained that the affective
domain is the gateway to learning, influencing students’ motivation and willingness to engage in

2 STEM represents science, technology, engineering, and mathematics. However, we also recognize other commonly
used acronyms to aggregate disciplines such as STEAM (arts), STEMM (medicine), and S&E (science and
engineering). Additionally, our definition of USE matches the NASEM definition (2018).
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their coursework. Additionally, understanding student affect can even help adjust teaching to
improve student learning and reduce STEM attrition (McConnell & van der Hoeven Kraft, 2011;
NASEM, 2015). Taken together, this literature supports the need to develop and assess affective
constructs made up of the emotional and attitudinal components that underpin intended
behaviors.

The specific affective component of interest for our research was the development of
self-efficacy in Innovation Skills. Self-efficacy, as defined by Bandura (1997), refers to “beliefs
in one’s capabilities to organize and execute the courses of action required to produce given
attainments.” The importance of developing self-efficacy is widely recognized throughout
education research, as it plays a crucial role in students’ persistence and performance. According
to social cognitive theory, students with higher self-efficacy are more likely to persevere through
challenges and apply their skills in novel situations, making it a critical factor in educational
outcomes (Bandura, 1997; Zimmerman, 2000). When applied to our specific context of STEM
education, self-efficacy represents a student’s confidence in their ability to succeed in a field of
science (Koballa & Glynn, 2013) alongside their belief in their ability to successfully perform
scientific tasks and achieve scientific goals (Estrada et al., 2011). Building on this understanding,
Chemers et al. (2011) noted that confidence in one’s ability to perform specific behaviors or
accomplish specific tasks is predictive of performance beyond what can be predicted by
objective measures of ability alone. This suggests that self-efficacy plays a crucial role in student
success in combination with their actual skill level. Furthermore, Estrada et al. (2011) concluded
that self-efficacy consistently predicts students’ interest, goals, and persistence in pursuing
careers in STEM disciplines. This underscores the importance of fostering self-efficacy in STEM
education, as it not only affects immediate academic performance but also influences long-term
career choices and persistence in STEM fields. Further research by Ballen et al. (2017) found
that increases in science self-efficacy mediated positive effects on student performance in
introductory biology courses. Importantly, this effect was observed across many different student
demographic groups, highlighting the universal importance of self-efficacy in USE.

By focusing on self-efficacy in Innovation Skills, we address a critical affective construct
that underpins students’ capacity to innovate. Strong self-efficacy in Innovation Skills is
foundationally needed for students to engage effectively in actual innovation processes. As
discussed by Birbeck and Andre (2009), affective attributes enable the transference of cognitive
skills between contexts, such as between university and the workplace. This suggests that
developing self-efficacy enhances students’ confidence in their Innovation Skills while also
improving their ability to apply those skills in real-world settings requiring the cognitive domain.

Despite the importance of assessing the affective domain, measuring aspects of affect
(e.g., students’ attitudes, beliefs, and expectations) is less prevalent in science education research
compared to measuring student learning and cognition (Koballa & Glynn, 2013; Maric et al.,
2023). A key hallmark of measuring student affect is the use of self-reported measures related to
self-efficacy and confidence, which are known to influence motivation, persistence, and
achievement in STEM (NASEM, 2012; Trujillo & Tanner, 2014). However, there remains a need
for more comprehensive assessment approaches that address both cognitive and affective
domains, as called for in recent reports on science education (NASEM, 2021). Our focus on
self-efficacy in Innovation Skills bridges the gap between affective development and cognitive
performance in innovation assessment. We recognize that while cognitive skills are necessary for
innovation, they are insufficient without the accompanying belief in one’s ability to apply those
skills effectively. By fostering and measuring self-efficacy in Innovation Skills, we aim to
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empower students with the confidence and motivation necessary to fully utilize their cognitive
capabilities in tasks requiring innovation.

Defining the Construct: Measuring Self-Efficacy in Innovation Skills, a Critical 21st Century
Skill Needed for the Future

Here, we introduce a novel Innovation Skills self-efficacy construct derived from
assessment in the affective domain. We initially developed this construct by linking the CBL
activities students complete in the course with broader skills frameworks used throughout K-16
that emphasize 21st Century Skills (21CS). There have been widespread efforts to foster “deep
learning” through the implementation of curricula that develops 21CS such as innovation,
creativity and creative problem-solving (Bellanca & Brandt, 2010; Griffin & Care, 2015;
NASEM, 2012). These 21CS skills are characterized using “transferable knowledge that can be
applied to solve new problems or respond effectively to new situations,” which resonated well
with the CBL activities embedded throughout the course (Pellegrino, 2017, p. 228). For a
comprehensive review and comparison of major 21CS frameworks, see Chu et al. (2017).
Though there are differences between each of these 21CS frameworks, most frameworks are
broadly consistent with each other (Voogt & Roblin, 2012) and agree on the need to develop
Innovation Skills. However, the inherently multifaceted nature of these skills makes their
measurement complex (Geisinger, 2017) and most scholars agree that current assessment
instruments do not adequately measure 21CS due to insufficient reporting of reliability evidence
and validity arguments (Siddiq et al., 2017).

The development of Innovation Skills as a specific class of 21CS has also been studied.
In the area of Innovation Skills assessment, current instruments recognize the importance of
measuring innovation competencies, especially in the context of business and economic
advancement (Luke, 2013; Chirazi et al., 2019). The development of previous self-report surveys
supports the need to measure the affective domain related to Innovation Skills, particularly
students’ self-efficacy beliefs (Carberry et al., 2018; Gerber et al., 2012b; Nelson et al., 2009).
As a result, innovation self-efficacy, defined as an individual’s belief in his or her ability to
accomplish tasks necessary for innovating (Gerber et al., 2012a; Gerber et al., 2012b), has
emerged as a construct of focus in the context of engineering education. In our study, we present
a more inclusive context that enhances previous assessments of Innovation Skills self-efficacy by
including students from diverse backgrounds and disciplines to better reflect the interdisciplinary
nature of innovation in real-world contexts. While Innovation Skills have been highlighted as
increasingly essential in business, economics, and design fields (Durand et al., 2015; Keinänen et
al., 2018; Luke, 2013), the development of assessments to measure self-efficacy in Innovation
Skills in CBL contexts that encompass a wide range of disciplines and student backgrounds
remains sparse. Additionally, there is significant potential to advance prior survey instruments by
situating them within a comprehensive assessment framework that utilizes more robust
psychometric techniques. Previous efforts have predominantly used factor analysis methods
(Gerber et al., 2012b; Keinänen et al., 2018; Carberry et al., 2018) which represent an important
first step that can be enhanced with modern test theory perspectives like item response modeling.
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Defining the Context: Measuring Self-Efficacy in Innovation Skills within a Bioinspired
Design Course

Considering the national, scientific, and educational importance of innovation, how can
we empower undergraduate students to think and act innovatively now, in the classroom, so that
they can become the innovators we need in the future? To address this question, we developed an
undergraduate course centered on bioinspired design (also referred to as biomimicry or bionics).
Tasking students to engage in a self-efficacy construct based on Innovation Skills requires a CBL
course context that fosters the application of innovative thinking. Our 180-student Bioinspired
Design course—open to all majors, all years, with no prerequisites—represents an especially
appropriate context because of the inherent nature of the discipline (Full et al., 2021).
Bioinspired design is a process that can be viewed as a problem solving approach, an innovation
paradigm for creative thinking, and a methodology for knowledge transfer between disciplines
(Rovalo et al., 2020; Wanieck et al., 2020). The interdisciplinary nature of bioinspired design,
which combines biology and technology to solve practical problems, makes it a valuable context
for fostering innovative thinking and problem-solving skills in students (Jacobs et al., 2022). A
recent 2023 “Dear Colleague Letter” by the National Science Foundation even regarded
bioinspired design as a powerful means of addressing the need for the United States to do more
to ensure that discoveries are translated into innovations (as outlined in the National Science
Board’s [2020] Vision 2030 report).

From a learning perspective, students’ confidence in their abilities can influence their
persistence to engage in the bioinspired design process as they attempt to solve problems within
CBL. Thus, high levels of self-efficacy in Innovation Skills may be crucial to effectively
translate biological principles into novel solutions. Considering this context, there is a lack of a
comprehensive, integrated system for assessing, interpreting, and monitoring student
performance at the intersections of CBL, 21CS acquisition, and Innovation Skills self-efficacy
development. This study directly addresses several needs for assessment in each of those spaces
to ultimately help answer Songer and Ruiz-Primo’s (2012) question: “How can we develop
assessments in science that tap adaptability, complex communication and social skills,
non-routine problem solving, self-management, and system thinking?”

This question is especially relevant to the advancement of assessment that measures
learning outcomes in the bioinspired design education space. For example, Wanieck et al. (2020)
connected 18 learning objectives of bioinspired design with Bloom’s taxonomy, but these
connections were not followed by assessments to measure reliability and validity, making it
difficult to support any claims regarding the successful completion of the learning objectives.
Other key aspects of bioinspired design education include discussions by Gvili et al. (2016) and
Fried et al. (2020) regarding the importance of teaching cross-cutting concepts like
structure-function relationships. Additionally, Nagel and Pidaparti (2016) summarized various
engineering competencies of the 21st century engineer and how these relate to bioinspired design
education. In each of these educational overviews, the inclusion of self-efficacy assessment
evidence explicitly connected to the intended learning outcomes would have improved the
overall understanding of student growth within bioinspired design education.
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Assessment Framework: The Berkeley Evaluation & Assessment Research System (BAS) and
the Four Building Blocks

Considering the need to align assessment with evidence-based educational practices, one
method is to develop new instruments that measure purported changes in students as they
progress through a course, curriculum, or program (NASEM, 2018). How do we develop these
instruments to address the call for more holistic, practices-aligned affective assessment in USE?
Here, we present an initial step toward more comprehensive assessment based on practices
aligned with robust psychometric standards (American Educational Research Association
[AERA] et al., 2014). We build on previous efforts to implement assessment frameworks in
USE, such as the three-dimensional learning assessment protocol by Laverty et al. (2016), which
was developed based on an approach to assessment as an evidentiary argument, or
Evidence-Centered Design (Mislevy et al., 2003). Through this study, we advance this approach
by utilizing a comprehensive assessment framework based not only on (1) evidentiary argument,
but also (2) a developmental perspective, (3) a match between instruction and assessment, and
(4) management by instructors to promote iteration (Wilson & Scalise, 2006). All four of these
principles result in the Berkeley Evaluation & Assessment Research Assessment System (BAS),
an integrated approach to developing assessments that provide meaningful interpretations of
student work relative to the cognitive and developmental goals of a curriculum (Wilson &
Sloane, 2000). Assessment centered on developmental progressions provides critical insights into
differentiated learner growth over time, enabling responsive instruction tailored to varied skill
levels. This comprehensive approach moves beyond static assessments to gain robust
understanding of student advancement along multiple dimensions, empowering educators to
promote equitable outcomes. For example, this assessment framework enhances the pre/post
assessment approaches used in Chapters 1 and 2 by tracking student growth through tiered levels
of development. While the previous chapters assessed overall measures of growth in science
connection, the developmental perspective within this assessment framework better
accommodates the multiple levels of development inherent to Innovation Skills Self-Efficacy
(see Building Block 1: Construct Map; Figure 1).

In the present research, we specifically show how a developmental perspective to
assessment, realized through the Four Building Blocks of assessment (Wilson, 2023), allows
educators to gain novel insights on student growth—insights that would otherwise not be
possible to see without the application of this comprehensive assessment framework. We explain
how each of the Four Building Blocks—1) Construct Map, 2) Items Design, 3) Outcome Space,
and 4) Wright Map—connect to our assessment of students in the subsequent sections. Figure 1
summarizes this approach.
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Figure 1
Utilizing the Four Building Blocks in the BEAR Assessment System to Measure the Innovation Skills Construct

Note. A) The Construct Map for the Innovation Skills construct contains three subdomains—Scientific Discovery &
Translation Process, Interdisciplinary Thinking, and Interdisciplinary Collaboration. Each of these subdomains is
hypothesized to develop across five qualitatively distinct, ascending ability levels (Required, Technical, Participant,
Active, Leader); B) The Items Design procedures resulted in the development of a 26 item pre/post Likert-type
survey to measure the Innovation Skills construct. Each of the 26 items is mapped onto a level within a Construct
Map as shown in Table 1; C) The Outcome Space translates survey responses into scores that map directly back to
levels of the Construct Map. In this study, the Outcome Space includes the distinct Likert categories ranging from
“Strongly Disagree” to “Strongly Agree.” The items mapped onto the highest levels (“Leader”) are the most difficult
to agree with on the Likert scale whereas the items mapped onto the lowest levels (“Required”) are the easiest to
agree with on the Likert scale; D) The Wright Map involves relating the scored survey responses back to the
Construct Map by translating the scores into “locations” on the construct’s continuum (Wilson, 2023). This process
is visualized as item-person Wright maps. These Wright maps represent a visualization of the construct based on
student data and responses. See Figure 3 for more details.

Building Block 1: Construct Map. The first building block, the Construct Map, is a
construct definition tool that relies on a developmental perspective to assess student achievement
and growth (Wilson, 2023). In a Construct Map, this developmental perspective manifests
through qualitatively different levels of performance on the latent construct. A latent construct
represents a theoretical attribute, and, in our assessment, we considered Innovation Skills as an
overall latent construct, or variable of measurement, consisting of three subdomains—Scientific
Discovery & Translation Process (SDTP), Interdisciplinary Thinking (IT), and Interdisciplinary
Collaboration (IC). These subdomains were adapted from a previously validated Construct Map
for interdisciplinary research skills developed in the context of a learning laboratory course on
organismal biomechanics (Full et al., 2015).

Each of the subdomains (SDTP, IT, and IC) were aligned to a developmental perspective
ranging from “Required” (lowest level) to “Leader” (highest level), resulting in three Construct
Maps hypothesized to encompass the development of student self-efficacy in Innovation Skills
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(Figure 2). We considered how self-efficacy might manifest differently at each level. For
instance, at the “Required” level, students might have confidence in following course
requirements, while at the “Leader” level, they confidently endorse taking on leadership roles in
tasks requiring innovative thinking. We encourage readers to first observe the contrast between
the lowest and highest level of each subdomain and then notice the stepwise development in the
various intermediate levels. As part of the variable clarification process necessary for this first
building block (Wilson, 2023), we explain the purpose of each subdomain below.
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Figure 2
Construct Maps for A) Scientific Discovery & Translation Process (SDTP), B) Interdisciplinary Thinking (IT), and
C) Interdisciplinary Collaboration (IC). (Adapted from S17 in Full et al., 2021)

Note. Upward arrow represents an ascending continuum of ability levels. Levels in the Construct Map range from
low (Required) to high (Leader) and correspond to perceived self-efficacy in the subdomain.

Scientific Discovery & Translation Process (SDTP). The bioinspired innovations of the
future will require students to develop skills related to both scientific discovery and translation.
Regarding scientific discovery, we recognize that “the work of science is complex: it is a
process, a product, and an institution. As a result, engaging in science—whether using
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knowledge or creating it—necessitates some level of familiarity with the enterprise and practice
of science” (NASEM, 2016, p. 11). Our course aims to illuminate the black box of the scientific
process that leads to original discoveries and furthermore, the process that leads to the successful
translation of those discoveries (Full et al., 2021). To this end, by situating student learning
through the researcher’s frame (Lave & Wenger, 1991), we task students to use a solution-driven
approach to bioinspired design (Helms et al., 2009). In this approach, the design process begins
with finding inspiration based on an original scientific discovery from primary literature.
Students then use our Discovery Decomposition tool (Figure S1) to “decompose” their selected
publication into its core components and extract the fundamental principles behind the scientific
discovery. After breaking down the publication and extracting the fundamental principles,
students then engage in the translation process. Students use our Analogy Check tool (Figure S2)
to create an analogy to solve a human problem by actively comparing the fundamental principles
from the publication with a proposed design problem. Students compare various elements
between the design solution from their publication and the design problem they want to solve
such as function, structure, operating environment, size, mechanisms, specification, performance
criteria, and constraints. By utilizing both the Discovery Decomposition and Analogy Check
tools multiple times throughout the semester, we hypothesize that students develop self-efficacy
in the skills related to the SDTP subdomain (Figure 2A) of the Innovation Skills construct.

Interdisciplinary Thinking (IT) and Interdisciplinary Collaboration (IC). In addition to
SDTP, Innovation Skills require both IT (Figure 2B) and IC (Figure 2C). The American
Association for the Advancement of Science Vision and Change (2011) report classified “the
ability to tap into the interdisciplinary nature of science” and “the ability to communicate and
collaborate with other disciplines” (p. 15) as core competencies within any undergraduate
biology course. Why does interdisciplinarity matter, particularly in the context of innovation? We
view IT and IC as a means of achieving scientific convergence, an integrative approach spanning
across multiple disciplines that “stimulates innovation from basic science discovery to
translational application” to tackle scientific and societal challenges (NRC, 2014, p. 1).
Additionally, skills related to IT and IC promote integrative learning, or the “ability to connect,
apply, and/or synthesize information coherently from disparate contexts and perspectives, and
make use of these new insights in multiple contexts” (Barber, 2012, p. 593). This type of
learning aligns with the aforementioned skills-based frameworks (e.g., 21CS). Most importantly,
regarding the Innovation Skills construct, integrative learning is necessary because “innovation
today requires integrative thinking and collaboration, while technology development decreases
the need to perform repetitive tasks and leaves more time for innovation and interdisciplinary
collaboration among colleagues and occupations” (Carnevale et al., 2011; NASEM, 2018, p. 51).
Overall, fostering self-efficacy in IT and IC skills leads to the integration of knowledge from
multiple disciplines (i.e., across over 40 different majors), thereby promoting the innovative
thinking needed to develop significant scientific breakthroughs (i.e., societally impactful
bioinspired designs) (NASEM, 2018).

The Construct Maps for IT and IC follow the same ascending continuum as the SDTP
Construct Map. These constructs differentiate the interdisciplinary skills needed for “thinking”
and those needed for “collaboration.” IT skills refer to the knowledge, concepts, and
methodologies a student uses when engaging in interdisciplinary work while IC skills refer to the
varying levels of student participation in interdisciplinary teams. Both are necessary, alongside
SDTP, to participate in the inherently interdisciplinary process of bioinspired design.
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Overall, this developmental perspective embedded within the Construct Map represents a
hypothesis of growth in students’ Innovation Skills self-efficacy. As students move through the
levels of our Construct Map, we expect to see corresponding increases in their self-efficacy
beliefs. Importantly, we must rigorously test this developmental hypothesis to verify our
assumptions related to the levels within the Innovation Skills construct. This testing can be done
by analyzing item responses from students mapped to locations within our hypothesized
construct. Thus, the next step in the assessment cycle is to develop items that offer us a way to
observe the variables underlying the Innovation Skills construct. This leads us to the second
building block, Items Design (Figure 1).

Building Block 2: Items Design. The second building block, the Items Design, focuses
on the match between instruction and the types of assessment, often determined by the match
between assessment tasks and levels within the Construct Maps. The purpose of this building
block is to develop a causal link (the transduction) between the construct underlying the
Construct Map (Innovation Skills) and the responses to items within an instrument. This causal
link requires a conscious and purposeful design of items because items represent a way to reveal
a particular construct within a respondent (i.e., student in the course). As stated by Wilson
(2005), “the measurer needs to build a structure that links the construct closely to the items—one
that brings the inferences as close as possible to the observations” (p. 8). Establishing this linking
structure embodies the “design” feature of this building block, which includes designing (1) a
procedure that allows observations to be made under a set of standard conditions that span the
intended range of the item contexts, and (2) a procedure for classifying those observations into a
set of standard categories (Bhatti et al., 2023; Wilson, 2023).

In developing our items, we also drew upon Bandura’s (2006) guidelines for constructing
self-efficacy scales. We ensured content validity by crafting items that accurately reflect the
specific Innovation Skills targeted in our construct. Following the principle of domain
specificity, our items were tailored to Innovation Skills within the context of interdisciplinary
STEM education. Furthermore, we incorporated gradations of challenge in our items, aligning
with our Construct Map’s levels from “Required” to “Leader,” to capture the full range of task
demands within each subdomain of Innovation Skills. The results of these design procedures are
discussed in the Methods (See Survey Instrument and Administration). We further explain the
item mapping procedure in the next building block, the Outcome Space.

Building Block 3: Outcome Space. The third building block, the Outcome Space, refers
to a procedure for classifying or mapping responses to survey items. Recognizing the cyclical
nature of the assessment cycle using Four Building Blocks, the Outcome Space represents the
first step in the inference process because it begins to tie together the hypothesis (the Construct
Map), observation (the responses), and the measurement (the scores or ordered categories)
(Bhatti et al., 2023; Wilson, 2023). In other words, through this building block, we can translate
survey responses into quantitative data or scores that map directly back to levels of the Construct
Map. Our Innovation Skills survey is a Likert scale instrument in which the Outcome Space
includes the distinct Likert categories ranging from “Strongly Disagree” to “Strongly Agree.”
The items mapped onto the highest levels (“Leader”) are the most difficult to agree with on the
Likert scale whereas the items mapped onto the lowest levels (“Required”) are the easiest to
agree with on the Likert scale. Seven items map to the “Leader” level, six items map to “Active,”
five items map to “Participant,” three items map to “Technical,” and five items map to
“Required.” Together, the mapped Likert items form the basis of the Outcome Space for our
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Innovation Skills instrument. This leads us to the fourth and final building block of our
assessment framework, the Wright Map (Figure 1).

Building Block 4: Wright Map. The final building block, the Wright Map
(Measurement Model) involves relating the scored survey responses back to the Construct Map
by translating the scores into “locations” on the construct’s continuum (Wilson, 2023). This
process is typically visualized as item-person Wright maps3. These Wright maps represent a
visualization of the construct based on student data and responses. We further elaborate on the
details of this building block and its connection to our survey response data in the Results and
Discussion.

Research Question and Hypothesis

Building on the findings of Chapters 1 and 2 (significant growth in Eff across diverse
student groups), our research question for this chapter centered on developing and assessing a
specific form of self-efficacy relevant to the CBL environment of our Bioinspired Design course.
Based on the previously described assessment framework and the motivations outlined in our
definitions of the construct and context, our guiding research question was: How does the
Bioinspired Design course affect students’ self-efficacy in Innovation Skills?We hypothesized
that, through engagement with learning activities in the Bioinspired Design course, students’
self-reported measures of self-efficacy in Innovation Skills would increase across each
subdomain of the construct. We assessed this hypothesis through both a general Likert scale
analysis and an anchored pre/post analysis using Rasch modeling. We predicted support for our
hypothesis from both analyses, with the general Likert scale analysis resulting in an initial means
of data-based support followed by more psychometrically robust support from the pre/post Rasch
analysis.

Methods

Study Design: Utilizing BAS and the Four Building Blocks to Conduct a Pre/Post Survey

In this study, we implemented the BAS framework to design and deliver a pre/post
survey instrument that asked students to self-report their beliefs related to their self-efficacy in
Innovation Skills. This pre/post design allowed us to analyze potential development of students’
self-efficacy in Innovation Skills over time. This design was similar to what was done in
Chapters 1 and 2 but extends the methodology by incorporating the Four Building Blocks. We
used the Four Building Blocks as an interconnected and iterative cycle of assessment to ground
our analysis of the Innovation Skills construct (See Figure 1).

Survey Instrument and Administration

This survey instrument originated in the context of a learning laboratory course on
organismal biomechanics where we developed and validated an interdisciplinary research skills
construct using the BAS framework (Full et al., 2015). The original survey consisted of 32
Likert-type items that measured students’ self-efficacy in interdisciplinary research skills.

3 For more information, see “Some Notes on the Term: ‘Wright Map.’” by Mark Wilson at
https://www.rasch.org/rmt/rmt253b.htm
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Utilizing the iterative nature of our assessment framework, we adapted this survey into 26
Likert-type items specifically targeting self-efficacy in Innovation Skills. This resulted in a new
survey instrument with 26 items mapped onto a specific subdomain and level, as shown in Table
1. We administered this pre/post Innovation Skills survey to students enrolled in Bioinspired
Design before and after the course. Students voluntarily completed the survey for one point of
extra credit. This study was IRB reviewed and approved (Protocol ID: 2017-12-10602).

Table 1
Innovation Skills Instrument with Subdomains and Levels

Item Subdomain Level

1. I read scientific publications to extract specific facts. SDTP Technical

4. I read scientific publications when they are required. SDTP Required

6. I can understand the logic of scientific publications when discussed by experts. SDTP Participant

8. I can translate fundamental principles from scientific publications to create novel
designs. SDTP Leader

13. I can understand how experts have translated principles from scientific publications
into novel designs. SDTP Participant

19. I can extract fundamental principles from scientific publications. SDTP Leader

22. I can suggest fundamental principles from scientific publications that could translate
into novel designs. SDTP Active

25. I can critically evaluate scientific publications. SDTP Active

2. I use interdisciplinary concepts and methodologies to advance my own discipline. IT Leader

9. I am aware of concepts and methodologies across disciplines. IT Participant

11. I seek concepts and methodologies from other fields. IT Active

12. I recognize the benefits from interacting with other disciplines. IT Participant

15. I seek information from other disciplines when required. IT Required

16. I can apply concepts and methodologies across disciplines. IT Leader

17. I seek information from my own discipline to solve problems. IT Required

20. I attempt to apply concepts and methodologies across disciplines. IT Active

21. I primarily use technical knowledge in my own discipline. IT Technical

24. I contribute to advancements in other fields with knowledge from my discipline. IT Leader

3. I take a leadership role in interdisciplinary teams. IC Leader

5. I take an active role in interdisciplinary collaborations. IC Active

7. I seek interdisciplinary collaborations to attain technical or factual knowledge outside
my discipline. IC Technical

10. I prefer collaboration among members of my discipline. IC Required
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14. I contribute to and benefit from interdisciplinary collaborations. IC Leader

18. I seek opportunities outside my discipline. IC Active

23. I participate in interdisciplinary teams when required. IC Required

26. I participate in diverse teams because I recognize the benefits of interdisciplinary
knowledge. IC Participant

Items grouped based on three subdomains of Scientific Discovery & Translation Process (SDTP), Interdisciplinary
Thinking (IT), and Interdisciplinary Collaboration (IC). Each item level is also noted (Required to Leader).
(Adapted from S16 in Full et al., 2021)

Demographics and Sample Characteristics

The demographics of our survey population was a broadly representative sample of
undergraduate students at the university because of the inclusive nature of the course (i.e., open
to all majors, all years, no prerequisites, satisfies a breadth requirement). Table 2 contains a
demographic breakdown of our survey population and shows notable trends such as a diverse
distribution of class standing, ethnicity, and major. In terms of class standing, survey respondents
came from a well spread population of freshmen through seniors (Year 1: ~33%, Year 2: ~22%,
Year 3: ~25%, Year 4+: ~20%). Regarding ethnicity, the majority of the respondents were
non-White (~76%). Additionally, a large portion of the student population at this university
would be categorized into what is typically labeled as “Asian,” but in our efforts to recognize the
expansive within-group diversity of this category (Bhatti, 2021; Nguyen et al., 2017; Vue et al.,
2023), the Asian ethnicity was disaggregated into various sub-populations (Supplement 4). With
regard to major, the survey respondents came from over forty different majors throughout the
spectrum of STEM (~68%) and non-STEM (~32%). Regarding gender, the majority of survey
respondents identified as female (~59%), breaking the traditional trend of STEM
courses—particularly those with engineering and design components—being taken mostly by
students who identify as male. Lastly, the majority of survey respondents indicated that their
current/intended major was not biology (~74%).
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Table 2
Demographics and Sample Characteristics of Survey Population

Demographic Category Percentage (%)

Class standing Year 1 32.67
Year 2 22
Year 3 25
Year 4+ 20.33

Ethnicity* White 23.87
Non-white 76.13

STEM major STEM
Non-STEM

68.07
31.93

Gender Female 58.73
Male 40.17

Non-binary/Other 1.10

Biology major Yes
No

26.33
73.67

*See Supplement 4 for disaggregated distributions

Data Collection and Analysis: Likert and Rasch Approaches

We collected course survey data each Spring semester from 2016 to 2020 resulting in 514
pre- and 432 post-survey responses. Our pre/post survey instrument remained consistent
throughout that time. Item responses were coded 1-5, with 1 representing “Strongly Disagree”
and 5 representing “Strongly Agree.” We compiled two separate datasets that represented the pre
(N = 514) and post-survey (N = 432) responses. Each dataset contained pre/post responses to all
items. We obtained matched student data across some years (2016-2018), but attrition in the later
years (2019-2020) led to some unmatched pre/post survey responses as shown in Table 3. We
opted to include all pre/post responses to ensure a large sample size for analysis. See S4 for
further details on the difference in pre and post sample sizes. We considered all the pre responses
as one large collection of data to compare with the post responses, a separate collection of data.
Therefore, any changes from pre to post served as a proxy for changes in students’ self-efficacy
in Innovation Skills resulting from completing the Bioinspired Design course. In other words, we
considered the Bioinspired Design course to represent an “intervention” through which we could
compare students’ self-efficacy in Innovation Skills before and after the intervention (i.e., before
and after the course).
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Table 3
Pre- and Post-Survey Responses

Year Pre Post
2016 38 38
2017 85 85
2018 32 32
2019 173 142
2020 186 135
Total 514 432

We conducted two types of analyses on the pre- and post-survey responses—a general
Likert scale analysis and a follow-up Rasch analysis using ACER ConQuest (Adams et al.,
2020). For the general Likert scale analysis, we calculated the mean Likert rating for each of the
26 items in the pre and post-survey datasets. We then calculated a delta value to measure the
difference between the mean ratings in the pre- versus post-survey responses. We also calculated
the Standard Deviation (SD) of each of the pre/post delta values across the 26 items. We
conducted item level paired t-tests for a subset of the sample that included matched pairs
(Supplement 5-Table S8). After conducting this general Likert scale analysis, we conducted a
follow-up Rasch analysis to address the limitations of analyzing raw scores on self-reported
Likert instruments (Chimi & Russell, 2009). We explain the added value of this follow-up Rasch
analysis in the section below.

Advancing Assessment: Utilizing Item Response Theory and Rasch Analysis to Improve Likert
Survey Research

The use of Likert-type survey instruments often results in the collection of qualitative
ordinal data (e.g., “Strongly Disagree” to “Strongly Agree”) that are subsequently converted into
quantitative interval data (e.g., 1-5). This conversion assumes the scored data are interval level
and allows for parametric statistical analyses. In turn, the interval data can then be used to
calculate common Likert survey statistics such as the mean score and SD of individual items.
Though there is widespread use of these procedures in survey research, literature within the field
of measurement has cautioned the inherent assumptions tied to these analyses (Boone, 2016;
Wilson et al., 2022). Harwell and Gatti (2001) classified such ordinal-to-interval conversion
procedures as an appeal to Classical Test Theory (CTT), a measurement method with widely
recognized limitations as compared to more robust psychometric methods like Item Response
Theory (IRT; Wang, 1999). For a summative comparison of CTT and IRT, see Embretson (1996).
Through IRT, ordinal data (e.g., Likert response data) can be “rescaled” to an interval scale
(Harwell & Gatti, 2001). In other words, raw nonlinear response data can be converted to a linear
scale, which can then be analyzed using parametric statistics (Boone, 2016).

This rescaling is critical in the analysis of Likert response data because the presumed
“distance” between each response category on the Likert scale may differ within a single item
and between several items (Boone, 2016). For example, in a single Likert-type item, the distance
any one individual respondent considers between “Strongly Disagree” and “Disagree” may not
be the same as the distance they consider between “Agree” and “Strongly Agree” even though
both sets of distances are theoretically equal (i.e., one step distance). This complication is further
compounded when considering the distance judgements made by a multitude of respondents
across multiple items throughout a survey (Wang et al., 2006). Thus, it becomes necessary to
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utilize a measurement model like IRT that can accommodate these complications. In our
analysis, we use the Rasch model (a specific subclass of IRT models) as a scaling model that can
transform survey responses to an estimated score on a latent variable. Importantly, estimates
based on the Rasch models are interval-level and do not have to assume any type of distribution
(Wang, 1999). As summarized by Boone (2016), “Rasch analysis allows researchers to use a
respondent’s raw test or scale scores and express the respondent’s performance on a linear scale
that accounts for the unequal difficulties across all test items. Rasch techniques involve
corrections for several psychometric issues (e.g., rating scales are ordinal, not all survey items
mark the same part of the variable) so that accurate person measures can be computed” (p. 3).

To conduct our Rasch analysis, we fit the Innovation Skills survey data to various Rasch
models using a computer program (ACER ConQuest v5.29). This analysis included a
comparison of both unidimensional and multidimensional Rasch models as well as a comparison
of the Rating Scale Model (RSM) and the Partial Credit Model (PCM). For purposes of brevity,
the Rasch analysis results henceforth assume a unidimensional PCM. We plan to elaborate on
this methodological decision in a future publication that compares the use of unidimensional and
multidimensional Rasch analyses, as well as factor analysis, when analyzing the Innovation
Skills survey data. Additionally, the main findings from our Rasch analysis focus on an anchored
pre/post comparison. Item difficulty estimates of the same items from separate administrations
were anchored to establish a common metric. Specifically, for the pre-survey, the item
parameters were calibrated by anchoring the items to the estimates obtained from post-survey
calibration. As a result, both pre- and post-survey were put on the common scale. This approach
to analyzing the pre- and post-survey provides a strong factorial measurement invariance
(Millsap, 2012).

Results

Survey Analysis Shows Strong Reliability Evidence

Reliability is a measure to show whether an instrument has demonstrated sufficient
consistency to be useful. Here we present reliability evidence from an internal consistency
perspective, or in other words, the consistency of item responses across the set of items in the
instrument (Wilson, 2023). We report measures of reliability for the whole instrument rather than
each subdomain based on the aforementioned assumption of a unidimensional PCM. The
reliability of our Innovation Skills instrument is supported by a high Weighted Likelihood
Estimates (WLE) person separation reliability (.93), a high expected a posteriori/plausible value
(EAP/PV) reliability (.90), and a high coefficient (Cronbach’s) alpha (.92).

General Likert Scale Analysis: Initial Support for Growth Hypothesis

The general Likert scale analysis consisted of a pre to post comparison of the mean Likert
ratings for each of the 26 items on the Innovation Skills instrument. These results signify a first
step of inquiry leading to a first line of empirical evidence that tests our hypothesis of student
growth due to participation in the course. As shown in Figure 3, the mean Likert ratings for all
26 items were greater in the post-survey as compared to the pre-survey.
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Figure 3
Pre/post Mean Likert Ratings Show Growth Across All Items for Each Subdomain of Innovation Skills Construct

Note. X axis shows survey item number for pre (light colored bar) and post (dark colored bar). Y axis shows mean
Likert rating from 0-5.
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In other words, there was an increase in the overall “agreeability” for each item. This initial
analysis showed the mean Likert rating for each of the 26 items on the survey increased from pre
to post, resulting in a positive delta value for each item. After completing the Bioinspired Design
course, students showed growth in their self-efficacy for all Innovation Skills in every year of
our analysis, including the overall combined analysis across the four-year dataset. The results
from this general Likert scale analysis are summarized in Table 4. Even though many assessment
studies utilize self-reported Likert data, we previously described the psychometric limitations
and potentially problematic statistical procedures associated with this analysis (See Advancing
Assessment section). We next present the results to our follow-up Rasch analysis.

Table 4
General Likert Scale Analysis Results Arranged in Descending Order of Delta (∆)

Item Subdomain Level Pre Post ∆ SD

8. I can translate fundamental principles from
scientific publications to create novel designs. SDTP Leader 3.11 3.99 0.88 1.26

22. I can suggest fundamental principles from
scientific publications that could translate into
novel designs. SDTP Active 3.21 3.99 0.79 1.23

1. I read scientific publications to extract specific
facts. SDTP Technical 3.3 3.91 0.61 1.39

25. I can critically evaluate scientific publications. SDTP Active 3.36 3.94 0.58 1.3

9. I am aware of concepts and methodologies
across disciplines. IT Participant 3.46 4.02 0.56 1.19

13. I can understand how experts have translated
principles from scientific publications into novel
designs. SDTP Participant 3.65 4.2 0.54 1.13

24. I contribute to advancements in other fields
with knowledge from my discipline. IT Leader 3.54 4.07 0.53 1.22

19. I can extract fundamental principles from
scientific publications. SDTP Leader 3.67 4.13 0.46 1.13

3. I take a leadership role in interdisciplinary teams. IC Leader 3.69 4.13 0.44 1.22

7. I seek interdisciplinary collaborations to attain
technical or factual knowledge outside my
discipline. IC Technical 3.77 4.15 0.38 1.19

5. I take an active role in interdisciplinary
collaborations. IC Active 3.96 4.28 0.32 1.11

16. I can apply concepts and methodologies across
disciplines. IT Leader 3.82 4.14 0.31 1.05

14. I contribute to and benefit from
interdisciplinary collaborations. IC Leader 3.99 4.3 0.31 1.08

6. I can understand the logic of scientific
publications when discussed by experts. SDTP Participant 3.59 3.89 0.3 1.23

2. I use interdisciplinary concepts and
methodologies to advance my own discipline. IT Leader 3.88 4.17 0.29 1.14
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20. I attempt to apply concepts and methodologies
across disciplines. IT Active 3.86 4.15 0.29 1.05

18. I seek opportunities outside my discipline. IC Active 3.87 4.16 0.29 1.16

21. I primarily use technical knowledge in my own
discipline. IT Technical 3.53 3.81 0.27 1.39

11. I seek concepts and methodologies from other
fields. IT Active 3.9 4.15 0.25 1.09

17. I seek information from my own discipline to
solve problems. IT Required 4.12 4.29 0.18 1

26. I participate in diverse teams because I
recognize the benefits of interdisciplinary
knowledge. IC Participant 4.3 4.46 0.17 0.99

23. I participate in interdisciplinary teams when
required. IC Required 4.26 4.42 0.16 0.97

4. I read scientific publications when they are
required. SDTP Required 4.17 4.32 0.15 1.01

15. I seek information from other disciplines when
required. IT Required 4.23 4.38 0.15 0.94

10. I prefer collaboration among members of my
discipline. IC Required 3.41 3.48 0.07 1.42

12. I recognize the benefits from interacting with
other disciplines. IT Participant 4.57 4.59 0.03 0.93

Delta was calculated based on the difference in mean Likert scale rating between the post-survey and pre-survey.
(Adapted from S17 in Full et al., 2021).

Rasch Analysis: Cross-Validating and Deepening Support for Growth Hypothesis

The following Rasch analysis results provide validity evidence for the Innovation Skills
instrument by demonstrating that the data fit the Rasch model, an IRT approach that assesses
psychometric properties at both item and person levels. These results support the validity of the
instrument, indicating that the instrument measures the intended construct and that the items
function as expected. The validity evidence gained from this approach complements traditional
factor analysis methods of validation.

For example, in our Rasch analysis, we compared the results from the anchored
pre-analysis with the results from the calibrated post-analysis, producing the pre- and
post-Wright maps in Figure 4.

67



Figure 4
Wright Maps Based on Innovation Skills Pre/Post Survey Results

Note. Different sets of item steps are shown in these two Wright Maps. This is due to differing rates of response to
the items in the two samples and does not affect the validity of the common scale. A) Growth from pre to post
(+0.97 logits) visualized through overlaid Wright maps; B) Pre-survey Wright map, each 'X' represents 1.2 cases
(persons), the labels for thresholds show the levels of item and category, respectively; C) Post-survey Wright map,
each 'X' represents 1.0 cases (person), the labels for thresholds show the levels of item and category, respectively

The Wright maps show item responses and persons on a logit scale in which the more positive
responses map to higher levels of the construct. Item parameter thresholds show the average
difficulty (in logits) of the item thresholds relative to the other item thresholds. The distribution
of the item parameter thresholds on a logit scale is displayed as the item number and threshold
level (e.g., 10.4) on the right-hand side of the Wright map. The larger the item parameter
threshold (or the higher on the Wright Map), the more difficult the item is to agree with, and
therefore, less likely for a student to strongly agree with the item statement. The left-hand side of
the Wright map displays the distribution of student abilities as X’s. As a student’s location
increases, that student is more likely to agree with the item statements, indicating greater
self-efficacy in Innovation Skills.

The Wright maps in Figure 4 indicate that there is strong quantifiable growth from pre to
post in overall student ability, consistent with the results from the general Likert scale analysis.
Additionally, because of the anchored nature of this Rasch analysis, a comparison of the constant
in the anchored pre and in the post results in a difference that represents the “anchored”
difference between the pre and post on the logit scale. This anchoring links the entire ability
distribution between two time points—the post (0.00) and the anchored pre (-0.97). The
difference between these two values indicates that the ability distribution of the anchored post
was about 1 logit above the pre.

Overall, our Rasch analysis comparison of pre and post results showed an approximately
1 logit gain (0.97) in student ability as a result of completing the Bioinspired Design course. This
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increase is roughly equivalent to a one “step” increase in the Likert scale across all items (i.e.,
“Agree” to “Strongly agree”). Put differently, this logit gain translates to approximately 0.89
standard deviations of growth between pre and post. The logit gain can also be converted to a
pooled standard deviation between the pre and the post, resulting in a Cohen’s d effect size value
of 0.75. This effect size is nearly a “large” effect (>0.8) based on Cohen’s (1988) standards and
an especially large effect in the context of educational interventions (>0.2) (Kraft, 2020).

Discussion

Connecting Innovation Skills Self-Efficacy to CBL and Science Connection

This study on Innovation Skills Self-Efficacy builds upon and extends the findings from
the previous two chapters, offering a more comprehensive understanding of student development
in our CBL Bioinspired Design course. In Chapter 1, we observed significant growth in science
connection measures, with highest gains in Eff. The current study’s findings corroborate and
refine these previous results. The observed growth of approximately one standard deviation in
Innovation Skills Self-Efficacy corresponds with the Eff gains while also providing a more
refined understanding of the specific skills in which students are developing confidence. This
growth suggests that our CBL approach enhances general scientific confidence alongside
self-efficacy in the specific competencies needed for innovative thinking and problem-solving in
STEM fields. The development of Innovation Skills Self-Efficacy also complements the growth
in Science Identity (SciID) observed in Chapter 1. As students gain confidence in their ability to
innovate within scientific contexts, they may increasingly see themselves as capable practitioners
of science. This connection between Innovation Skills and SciID underscores the potential of our
CBL approach to foster a more holistic development of students as future STEM-enriched
professionals.

Chapter 2 showed that the growth in science connection measures, including Eff, was
equitably distributed across diverse demographic groups. While this chapter’s study did not
explicitly examine demographic factors, the substantial overall growth in Innovation Skills
Self-Efficacy suggests that our CBL approach may have the potential to foster these skills across
a broad student population. This aligns with our course’s inclusive design, which is open to
students from all majors and backgrounds. Collectively, the findings across all three chapters
demonstrate how a CBL environment can foster comprehensive student development. From
broader science connection measures to specialized innovation-related self-efficacy, our
Bioinspired Design course contributes to multiple constructs of student growth in the affective
domain of learning. These outcomes align with the needs of 21st century STEM education, which
emphasize both content knowledge and confidence in the skills necessary to apply that
knowledge in challenge-based scenarios. Below, we further discuss the key outcomes from this
chapter focused on Innovation Skills Self-Efficacy.

Outcomes of Measuring Innovation Skills Self-Efficacy through a Comprehensive Assessment
Framework

Considering the intersecting areas for advancement in 21CS, bioinspired design, and
Innovation Skills assessment, we utilized a comprehensive assessment framework (BAS and the
Four Building Blocks) to develop and validate a survey instrument that more effectively shows
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student self-efficacy growth along developmental progressions. This framework enabled the
alignment of instruction, assessment, and measurement tools to a clearly defined construct
(self-efficacy of Innovation Skills) and a corresponding learning progression. This alignment
yielded critical insights into stratified learner progress that traditional self-efficacy assessments
may not capture. We structured this approach by implementing domain-specific self-efficacy
measures (Bandura, 1997) that addressed the need for more robust assessment of affective
constructs in STEM education (Koballa & Glynn, 2013; Maric et al., 2023).

We implemented our assessment framework in a large enrollment Bioinspired Design
course open to all students. This is unlike many other discovery-based STEM courses that often
have disciplinary barriers to entry (i.e., introductory prerequisites such as general biology),
especially for students from non-STEM backgrounds. This course explicitly tasked all students
to be innovators as they worked in interdisciplinary teams engaging in the bioinspired design
process. Collectively, the course activities required students to use Innovation Skills. We set out
to measure students’ self-efficacy development in these skills based on a pre/post survey design
analyzed through the Four Building Blocks of assessment. Our focus on self-efficacy in
Innovation Skills builds upon previous work on innovation self-efficacy (Carberry et al., 2018)
by extending it to a broader, interdisciplinary learning context. Crucial to our study was the
development of a Construct Map used to test our hypothesis of student growth, further discussed
below.

Utilizing the Construct Map to Foster a Developmental Perspective of Growth in Innovation
Skills

In this study, we hypothesized that Innovation Skills form a continuum in which
hierarchical levels of innovation connect with certain skills related to innovation. This resulted in
a hypothesized Construct Map, which meaningfully tracks changes by situating measurement
within developmental progressions. This approach tied closely with Bandura’s (1997) social
cognitive theory, particularly his concept of self-efficacy development through mastery
experiences. In testing our hypothesis, both the pre- and the post-Wright maps showed expected
banding patterns consistent with leveled thresholds. This revealed that the ordered levels of
responses (“Strongly Disagree” to “Strongly Agree”) were consistent with the hypothesized
Construct Map levels (“Required" to "Leader”). This progressive growth is supported by
Bandura’s (1997) notion that self-efficacy development involves not just the acquisition of skills,
but also the belief in one’s ability to use these skills effectively across various situations. This is
particularly relevant in the context of Innovation Skills, where students must develop confidence
in their ability to apply their knowledge and skills to novel, complex problems.

Additionally, since self-efficacy in Innovation Skills were hypothesized to develop
throughout the course, students likely began the course with more limited preexisting
self-efficacy. Self-efficacy is a malleable construct that can be influenced by environmental
factors and learning experiences (Bandura, 1997). The observed growth from pre to post survey
suggests that our course activities may have promoted mastery experiences, a key source of
self-efficacy development (Bandura, 1997). The survey itself represents a tool to reveal and
shape this developing self-efficacy in Innovation Skills. By mapping self-reported perceptions of
growth on this novel construct, we have achieved an important first step in the eventual goal of
developing an assessment that directly measures Innovation Skills.
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Iterating on the Items Design to Expand Measurement of Self-Efficacy Development

Considering the cyclical nature of the Four Building Blocks, an important next step
would be to iterate on the Items Design building block. This can be done by refining the
instrument at the item level (i.e., developing new items that more effectively measure the
Innovation Skills latent construct). For example, as compared to the pre-survey Wright map, the
distribution of student abilities in the post-survey Wright map indicates that more items are
needed to assess the higher end of the ability scale. In other words, the pre shows the distribution
of student abilities appropriately mapped to more difficult items, but the post shows a large set of
student abilities on the higher end of the logit scale well above any item thresholds (Figure 5).

Figure 5
Pre- and Post-Survey Wright maps on Logit Scale Vertical Axis (-6 to 6)

Note. Central dividing line separates persons (left side of central line) from item thresholds (right side of central
line). Circled area in the post-survey Wright map indicates student abilities on the higher end of logit scale above
item thresholds. This comparison shows growth in ability from pre to post, but also suggests more
difficult-to-agree-with items are needed in the post-survey to accurately assess the higher end of the student ability
distribution.

Bandura (2006) noted that effective self-efficacy scales should include items representing
different levels of task demands, which corresponds to our Construct Map progression from
“Required” to “Leader” levels. Our findings suggest an opportunity to further differentiate the
upper end of the scale, allowing for more comprehensive measurement of high self-efficacy
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levels. More difficult-to-agree-with items are needed to accurately assess the higher end of the
student ability distribution in the post. We interpret this to be a result of the Bioinspired Design
course contributing to significant growth in students’ self-efficacy in Innovation Skills. Future
iterations on the Items Design, guided by this finding, will refine our instrument to better unveil
the full spectrum of growth, particularly at the higher levels of ability.

Elevating Affective Assessment to Better Showcase Growth in Innovation Skills Self-Efficacy

Student voices are pivotal in understanding the ways our instruction impacts their
development in the affective domain of learning. Gaining such insights requires strong
measurement practices. As illustrated through the development of an assessment for Innovation
Skills self-efficacy in our interdisciplinary Bioinspired Design course, the BAS framework
centered student perceptions within an overarching developmental continuum spanning novice to
expert abilities. This approach yielded key insights into stratified learner progress that static
assessments fail to showcase. For instance, our Wright maps revealed a shift in student abilities
towards the higher end of the logit scale post-course, indicating substantial growth in
self-efficacy that might be missed by traditional pre-post comparisons. Students’ self-efficacy
growth was particularly pronounced in areas related to translating scientific principles into novel
designs, a key aspect of innovation in STEM fields.

Overall, it is critical that students engage with courses that develop their Innovation
Skills. At the same time, it is just as important to develop valid and reliable assessments of
Innovation Skills to measure self-efficacy development in these skills. There is a need for a
careful measurement approach that better differentiates the strengths and weaknesses of future
STEM practitioners beyond just the STEM content they know or do not know. We need to better
understand students’ skills and their development of self-efficacy in those skills to improve USE.
Our results, showing growth in self-efficacy across all items of our instrument, underscore the
potential of targeted coursework to foster these crucial abilities. Additionally, our application of
the BAS framework to assess gains in perceived innovation abilities represents an initial step
toward more reliable and valid assessment. Future work must also expand beyond self-reports to
include interviews, observations, and detailed mappings of student work products to evaluate
alignment with survey responses.

Limitations and Future Research

In earlier years of our data collection, administrative challenges prevented us from
matching pre and post-survey data for each individual respondent. Thus, we were unable to
conduct paired analyses comparing pre/post survey responses for statistically significant
differences (e.g., paired t-tests). In Table S8 of Supplement 5, we show a specific subset of
paired analyses that corroborate with the conclusions from the overall Rasch analysis. Future
studies should prioritize the collection of matched-pair data to analyze individual student
development. Additionally, self-reported data may be subject to various biases (e.g., social
desirability or response bias), potentially influencing validity. Despite this, numerical measures
of non-cognitive variables, including those based on self-report, still provide scientifically useful
data that accurately reflect respondents’ inner emotional states (Kaiser & Oswald, 2022).
Nonetheless, we plan to investigate how biases may be impacting item interpretations through
cognitive interviews in future work. Further, while self-reported data provides valuable insights
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into students’ own perceptions, our study did not include objective measures of students’
Innovation Skills, such as direct assessments of their performance or products. In a future study,
we plan to assess already collected course products alongside self-reported measures for a more
comprehensive understanding of students’ Innovation Skills development. Lastly, our study was
conducted within the specific context of one course at a single university. Future research could
explore the generalizability of the Innovation Skills construct in alternative educational contexts.

Chapter 3 Conclusion

We wish to conclude by emphasizing the importance of self-efficacy in Innovation Skills
with the following thought experiment. Consider two job candidates for a STEM-centric position
within a technology company. Both candidates have identical technical skills and identical
background experiences. However, one of the candidates exemplifies far superior confidence in
her ability to apply “soft” skills. She believes strongly in her capacity to communicate effectively
within disciplinarily and demographically diverse teams, she is confident in her ability to
integrate ideas from her non-technical peers in ways that enhance technical products, and she
feels capable of solving interdisciplinary problems through effective team collaborations. The
candidate’s strong belief in her innovative capabilities is likely to differentiate her from other
technically savvy colleagues. In today’s knowledge-driven economy, this self-efficacy in
Innovation Skills may drive her to attempt more innovative approaches, persist in the face of
challenges, and ultimately contribute more effectively to her field. This robust sense of
self-efficacy in innovation-related tasks also reflects a strong science connection, enhancing her
potential for success in STEM-related fields.

We hope that all undergraduate courses integrate opportunities to develop self-efficacy in
Innovation Skills because they represent a critical affective component underlying the
transferable skills needed for both the known jobs of today and the unknown jobs of tomorrow.
By fostering this self-efficacy through CBL approaches and measuring its development using
comprehensive assessment frameworks, we can better prepare students to confidently tackle the
complex, interdisciplinary challenges they will face in their future careers. This focus on
self-efficacy in Innovation Skills represents a crucial step in bridging the gap between technical
knowledge and the belief in one’s ability to apply that knowledge innovatively in real-world
contexts that enhance society.
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Dissertation Conclusion

As Songer & Ruiz-Primo (2012) remarked, “What is measured, why and how it is
measured, whose achievement is measured, what type of inferences are made, and the kinds of
evidence supporting such inferences—all remain enduring issues in assessment development in
science education (p. 688).” This dissertation addressed these enduring questions through three
interconnected studies, each building upon the last to provide a substantive assessment of student
development in a CBL environment. We began by establishing the overall effectiveness of CBL
in cultivating science connection, then demonstrated the equitable nature of this development
across diverse student populations, and finally introduced a novel construct and robust
assessment framework to measure a specific skill set fostered by this learning environment. The
progression through these three studies illustrated a comprehensive approach to assessment in
USE, particularly within CBL environments.

The first chapter of this dissertation focused on measuring science connection, defined
through an adaptation of the TIMSI framework and its three social influence constructs: SciID,
Eff, and Val. We assessed these constructs in a diverse population of undergraduate students from
over 40 majors participating in a single-semester Bioinspired Design course. Our aim was to
evaluate the impact of a CBL intervention on fostering science connection in this
interdisciplinary group of students. Using pre/post surveys analyzed through repeated measures
ANOVAs and paired t-tests, we found significant increases in SciID and Eff, while Val remained
stable. These findings demonstrated the effectiveness of CBL in promoting science connection
within the span of a single semester.

Building on these initial results, the second chapter investigated the equity aspect of our
findings. We examined the same TIMSI constructs but with a focus on potential differences
across demographic groups. Our analysis encompassed several demographic variables, namely
gender, underrepresented minority status, first-generation status, intended/declared major, class
status, and term of enrollment. This investigation aimed to determine whether our CBL
environment could promote equitable outcomes in science connection. We expanded our
statistical analyses to include RM ANOVAs with demographic variables as between-subjects
factors and ANCOVAs to control for pre-survey scores. The results showed equitable
development in science connection across the majority of demographic groups, with differences
in SciID development based on STEM/Non-STEM and class status.

The third chapter of this dissertation introduced a novel construct: self-efficacy in
Innovation Skills. This construct was developed specifically for the CBL environment of our
Bioinspired Design course, addressing the need to assess critical 21st century skills necessary for
tackling complex global challenges. We measured this construct in the same diverse
undergraduate student population, employing a comprehensive assessment framework known as
the BAS. This framework utilized the Four Building Blocks approach and Rasch analysis to
provide a more thorough evaluation of our research question. Our findings revealed significant
growth in Innovation Skills self-efficacy, with students showing approximately one standard
deviation of improvement between pre and post measurements.

Throughout these studies, several overarching themes emerged. The CBL framework
consistently proved effective in promoting science connection and Innovation Skills across a
diverse student population, demonstrating its potential as a scalable and adaptable model for
USE reform. The use of TIMSI provided valuable insights into how students develop a
connection to science, especially as it relates to growth in SciID and Eff. The equitable outcomes
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observed across demographic groups positively expands notions of who can succeed in STEM
and highlights the potential of inclusive pedagogy. By focusing on constructs within the affective
domain, particularly self-efficacy, this research highlights the importance of developing students’
beliefs in their abilities alongside their cognitive skills. The development and assessment of
Innovation Skills self-efficacy responds to a crucial need in preparing students for future
workforce demands. The progression from the statistical analyses in earlier chapters to the BAS
demonstrates the value of comprehensive assessment methods in capturing 21st century skills. By
integrating instruction with evaluation tools like BAS, this research empowers educators to
develop, refine, and validate assessments that capture complex competencies essential for
student success. The Four Building Blocks approach, in particular, provides a powerful tool for
creating assessments aligned with developmental progressions, offering deeper insights into
student growth.

In conclusion, this dissertation contributes to USE by demonstrating how CBL can foster
equitable development of science connection and self-efficacy in Innovation Skills. It also
provides a model for deeper assessment that addresses the enduring issues mentioned above by
Songer & Ruiz-Primo (2012). As we strive to cultivate the skills needed in our future workforce,
integrated assessment frameworks will be more necessary than ever to promote STEM-enriched
learning. By understanding not just what students know, but also how they perceive their abilities
and connect with science, we can better prepare all students to take on the challenges of our
rapidly changing world. This research lays a foundation for future studies that can further
explore the intersection of innovative pedagogical approaches, equitable outcomes, and robust
assessment methodologies in USE.
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Appendices

Supplement 1

Further Explanation of Effect Size Interpretation based on Recommendations by Kraft (2020)

In line with recent discussions in educational research (Kraft, 2020), we aimed to
interpret our effect sizes within the specific context of our short-term educational intervention.
This approach involved considering factors such as the duration of the intervention, the nature of
the outcome measures, and typical effect sizes observed in similar educational studies. By
contextualizing our effect sizes in this way, we sought to provide a more nuanced and
meaningful interpretation of the practical significance of our results, acknowledging that even
relatively small effect sizes can be meaningful in educational settings, particularly for brief
interventions.

We obtained and evaluated effect sizes (partial eta squared [ηp²] values for ANOVA
results and Cohen’s d values for t-tests) to assess the practical significance of the observed
changes. For partial eta squared, we maintained the generally accepted field guidelines of .01
(small effect), .06 (medium effect), and .14 (large effect) (Cohen, 1988). We retained these
benchmarks as they are more encompassing than Cohen’s d, providing flexibility for our context,
while still offering a familiar point of reference. Importantly, we also interpret these benchmarks
relative to our short-term intervention and diverse student sample, factors which typically yield
smaller effects.

For Cohen’s d, we adapted the generally accepted benchmarks to better fit our specific
context. While the generally accepted values for small, medium, and large effects are 0.2, 0.5,
and 0.8 respectively, we adjusted these to < 0.1 for small, 0.1 to < 0.3 for medium, and ≥ 0.3 for
large effects. These values fall between Cohen’s benchmarks and recently proposed benchmarks
for educational interventions by Kraft (2020) (small < 0.05, medium = 0.05 to < 0.20, large = ≥
0.20). We justify this adaptation based on several factors specific to our study below.

First, our intervention was relatively short-term (one semester) and involved a large,
demographically diverse sample of students, which typically results in smaller effect sizes
compared to longer-term or more targeted interventions. Second, we used broad measures of
science connection (SciID, Eff, and Val) rather than narrow, specialized tests. These broader
measures typically yield smaller effect sizes compared to more focused, intervention-specific
assessments. Third, our intervention targeted undergraduate students across various disciplines.
At this educational stage, students’ attitudes, identities, and self-efficacy related to science are
likely more established and potentially resistant to change compared to those of K-12 students.
Consequently, even relatively small shifts in these constructs may represent meaningful
developments in students’ science connection.
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Supplement 2

Further Explanation of Reliability based on Recommendations by Maric et al. (2023)

Based on a range of Cronbach’s alpha (α) values from 0.894 to 0.927 (see Table 2 in main
text), we labeled the overall internal consistency of our instrument as “good to excellent.” This
labeling was based on other commonly cited thresholds and their subsequent qualitative
descriptors (Maric et al., 2023), although the choice of threshold and descriptor is somewhat
arbitrary (Taber, 2018). Some sources suggest α > 0.7 is “acceptable,” while others argue for a
higher standard of α > 0.9 for “excellent” consistency. Given the evaluation purposes of this
instrument and the measurement of TIMSI constructs in previous studies, we set a threshold of α
> 0.8 and compared each of our values to that threshold, thus our qualitative labeling of “good to
excellent.”

Considering this context, the high α values (all α > 0.89) obtained for each subscale and
the overall instrument indicate that the items are measuring the same underlying construct in a
consistent way. If the instrument lacked sufficient internal consistency, (i.e., low alpha values; α
< 0.7), it would suggest the items are not reliably measuring the intended constructs of SciID,
Eff, and Val (and the overall construct of science connection). This could occur if some items
were poorly written, misinterpreted, or not actually relevant to the construct. Inconsistent
responses across items would reduce confidence that the instrument can dependably assess
students’ SciID, Eff, Val, and, by extension, science connection.

To further examine reliability and align with suggestions by both Maric et al. (2023) and
Taber (2018), McDonald’s omega (ω) was calculated to supplement and verify Cronbach’s alpha
results. McDonald’s omega makes fewer assumptions (e.g., equal item loadings) that are often
violated in practice (Dunn et al., 2014). Omega values were comparably high: 0.912 and 0.923
for the pre and post-surveys respectively, supporting the internal consistency of the instrument.
Overall, the reliability evidence collected through Cronbach’s alpha (pre α = 0.916, post α =
0.925) and McDonald’s omega (pre ω = 0.912, post ω = 0.923), together with the instrument’s
grounding in previously validated measures, provides confidence the survey consistently
measures SciID, Eff, and Val among this population of students.

Table S1
Reliability of Survey Constructs (McDonald’s Omega [ω])

Construct N of Items N (pre) N (post) ω (pre) ω (post)

SciID 5 966 554 0.926 0.929

Eff 8 958 546 0.906 0.909

Val 6 956 540 0.894 0.905

Overall 19 944 529 0.912 0.923
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Supplement 3

Results for RM ANOVA Assumptions Tests

In RM ANOVA, when adding between-subjects factors such as demographic group
variables, Box’s test results are obtained to test the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups. Box’s test assumptions are not met
when significance values are < .001. In our analysis, Box’s test assumptions were not met for the
Biology Major and STEM/Non-STEM variables as shown in Table S2.

Table S2
Box’s Test Results for Demographic Variables

Variable Box’s M F df1 df2 Sig. Assumptions
Gender 10.920 .513 21 616089 .967 Met
URM 20.730 .941 21 24236 .536 Met
FirstGen 19.311 .873 21 22163 .627 Met
Biology Major 54.321 2.542 21 259438 <.001 Not met
STEM/Non-STEM 59.125 2.773 21 411735 <.001 Not met
Class Status 35.596 1.672 21 679655 .027 Met
Term 120.055 1.389 84 309721 .011 Met

Given Box’s test’s high sensitivity to departures from normality and unequal group sizes (Field,
2024), we supplemented our analysis with Levene’s test. Levene’s test evaluates the equality of
variances for each dependent variable individually and is recognized as a more robust test for
this assumption. Levene’s test assumptions are not met when significance values are < .05.
Levene’s test results for Biology Major and STEM/Non-STEM are shown in Tables S3 and S4,
respectively. For the Biology Major group, Levene’s test assumptions were not met for the Val
construct in the pre-survey. For the STEM/Non-STEM group, Levene’s test assumptions were
not met for the Val construct in both pre and post surveys.

Table S3
RM ANOVA - Levene’s Test - Biology Major

Construct Levene Statistic Sig. Assumptions
SciID_pre 2.391 .123 Met
SciID_post 1.109 .293 Met
Eff_pre 3.528 .061 Met
Eff_post 3.035 .082 Met
Val_pre 8.075 .005 Not met
Val_post .391 .532 Met

Table S4
RM ANOVA - Levene’s Test - STEM/Non-STEM

Construct Levene Statistic Sig. Assumptions
SciID_pre .092 .762 Met
SciID_post .063 .803 Met
Eff_pre .683 .409 Met
Eff_post .993 .319 Met
Val_pre 13.640 <.001 Not met
Val_post 12.860 <.001 Not met
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These findings suggest that although there are differences in covariance matrices across
groups (as indicated by Box’s test), the assumption of equal variances is upheld for the vast
majority of constructs and time points, excluding the Val construct in comparisons involving
Biology Major and STEM/Non-STEM groups. Considering these assumption test results, we
present both multivariate tests (Pillai’s Trace, Wilks’ Lambda) and univariate tests in the main
text. Multivariate tests are typically more resilient to violations of homogeneity assumptions
(Field, 2024). For univariate tests, results related to the Val construct may be less reliable,
particularly for the Biology Major and STEM/Non-STEM comparisons.

Results for ANCOVA Assumptions Tests

Table S5
Levene’s Test Results for SciID ANCOVA

Variable F df1 df2 Sig. Assumptions
Gender .044 1 511 .834 Met
URM 2.492 1 512 .115 Met
FirstGen .002 1 320 .961 Met
Biology Major .503 1 522 .479 Met
STEM/Non-STEM .529 1 522 .468 Met
Class Status 2.984 1 523 .085 Met
Term 1.569 4 520 .181 Met

Table S6
Levene’s Test Results for Eff ANCOVA

Variable F df1 df2 Sig. Assumptions
Gender .014 1 503 .905 Met
URM 1.217 1 505 .271 Met
FirstGen 1.406 1 317 .237 Met
Biology Major .000 1 514 .991 Met
STEM/Non-STEM 1.817 1 514 .178 Met
Class Status 6.187 1 515 .013 Not met
Term .275 4 512 .894 Met

Table S7
Levene’s Test Results for Val ANCOVA

Variable F df1 df2 Sig. Assumptions
Gender .027 1 493 .869 Met
URM .055 1 496 .814 Met
FirstGen 1.960 1 313 .163 Met
Biology Major .388 1 504 .534 Met
STEM/Non-STEM 7.723 1 504 .006 Not met
Class Status .000 1 505 .990 Met
Term .513 4 502 .726 Met
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Supplement 4

Detailed Demographics of Innovation Skills Survey Respondents

Class standing:

2018 2019 2020

First year 26% 27% 45%

Second year 25% 19% 22%

Third year 26% 34% 15%

Fourth year 21% 20% 19%

Gender:

2018

Female 55.5%

Male 43.9%

Other or declined
to respond

0.6%

2019

Female 57%

Male 41%

Other 1%

Non-binary 1%

2020

Female 63.7%

Male 35.6%

Non-binary 0.7%

Ethnicity:

2018:
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Participants were able to choose more than one option.

2019 (as counts):

Participants were able to choose more than one option. Responses in the “Other” category
included: Nepali, Pakistani, Taiwanese, Basque, Cambodian, Middle Eastern, and Persian.

Majors:
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Distribution of majors (2018):

The “Other” category included: Social Sciences, Economics, Political Science, Architecture,
Business, Art, City Planning, Cognitive Studies, Environmental Economics and Policy,
Interdisciplinary Studies, International Relations, Media Studies, Political Economics,
Sociology/Legal Studies, and Sustainability

Distribution of majors (2019, as counts):

The “Other” category included: Cognitive Science, French/Linguistics/Education, Social
Science, Data science, Business, Economics, Public Health, Environmental Economics and
Policy, Political Economy, Architecture, Comparative Ethnic Studies, and Political Science
Distribution of majors (2020):
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The “Other” category included: English, Linguistics, Social Science, Global Management,
Business, Economics, Data Science, Bioethics, Public Health, Political Science, Legal Studies,
Architecture, Art Practice, and History

Is your current/intended major biology?

2018 2019 2020

Yes 31% Yes 23% Yes 25%

No 69% No 77% No 75%
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Supplement 5

Paired Comparisons

Table S8
Item Level Paired t-Tests for Matched Pairs Subset of Survey Respondents

Item (Post-Pre)
Mean

Difference SD

Std.
Error
Mean

95% CI
t df

Sig.
(2-tailed)Lower Upper

Item1_SDTP .356 1.131 .059 .240 .473 6.016 364 <.001

Item2_IT .110 .889 .047 .018 .201 2.355 364 .019

Item3_IC .266 .908 .048 .173 .360 5.601 363 <.001

Item4_SDTP .047 .767 .040 -.032 .126 1.160 364 .247

Item5_IC .143 .871 .046 .053 .233 3.134 362 .002

Item6_SDTP .204 .903 .047 .111 .297 4.303 362 <.001

Item7_IC .163 .920 .048 .068 .258 3.372 361 <.001

Item8_SDTP .679 .989 .052 .577 .781 13.084 363 <.001

Item9_IT .413 .997 .052 .310 .516 7.895 362 <.001

Item10_IC .028 1.129 .059 -.089 .144 .465 362 .642

Item11_IT .157 .842 .044 .070 .245 3.557 361 <.001

Item12_IT -.044 .719 .038 -.118 .030 -1.168 362 .244

Item13_SDTP .507 .916 .048 .413 .601 10.575 364 <.001

Item14_IC .144 .826 .043 .058 .229 3.307 361 .001

Item15_IT .030 .752 .039 -.047 .108 .768 362 .443

Item16_IT .262 .842 .044 .175 .349 5.928 361 <.001

Item17_IT .083 .844 .044 -.004 .171 1.874 359 .062

Item18_IC .150 .904 .048 .056 .243 3.145 360 .002

Item19_SDTP .465 .906 .048 .372 .559 9.754 360 <.001

Item20_IT .168 .858 .045 .079 .257 3.730 362 <.001

Item21_IT .254 1.056 .056 .145 .363 4.579 361 <.001

Item22_SDTP .634 .981 .051 .532 .735 12.308 362 <.001

Item23_IC .080 .868 .046 -.010 .169 1.754 362 .080

Item24_IT .389 .964 .051 .289 .489 7.655 359 <.001

Item25_SDTP .511 .972 .051 .411 .611 10.030 363 <.001

Item26_IC .052 .799 .042 -.030 .135 1.246 363 .214

*Bold indicates significant difference between post item mean and pre item mean (p < 0.05)
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Supplemental Figures

Figure S1
Discovery Decomposition tool used to decompose Autumn et al. (2000) paper read as part of class assignment.
(Retrieved from S2 in Full et al., 2021).
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Figure S2
Analogy Check tool used to create an analogy based on a design solution from nature. (Analogy based on
discoveries in Jayaram & Full, 2016; Retrieved from S2 in Full et al., 2021).
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