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Greater Temperature and Precipitation Extremes Intensify Western
U.S. Droughts, Wildfire Severity, and Sierra Nevada Tree Mortality

JOSEPH L. CROCKETT AND A. LEROY WESTERLING

University of California, Merced, Merced, California

(Manuscript received 18 April 2017, in final form 21 August 2017)

ABSTRACT

Extensive drought in the western United States (WUS) during the twenty-first century and associated

wildfire and tree mortality incidence has highlighted the potential for greater area of severity within

widespread droughts. To place recentWUS droughts into a historical context, the authors analyzed gridded

daily climate (temperature, precipitation, and climatic water deficit) data to identify and characterize the

spatiotemporal evolution of the largest WUS droughts of the last 100 years, with an emphasis on severe

cores within drought extents. Cores of droughts during the last 15 years (2000–02 and 2012–14) covered a

greater area than in earlier droughts, driven by greater temperature and precipitation extremes. Com-

paring fire extent and severity before, during, and after drought events using the monitoring trends in burn

severity dataset (1984–2014), the authors found fire size and high-severity burn extent were greater during

droughts than before or after. Similarly, recent Sierra Nevada forest mortality was greatest in cores im-

mediately after the drought. Climate simulations anticipate greater extremes in temperature and pre-

cipitation in a warming world; droughts and related impacts of the last 15 years may presage the effects of

these extremes.

1. Introduction

Western U.S. (WUS) droughts may intensify with

increasing temperatures andmore variable precipitation

as climate changes (Diffenbaugh et al. 2015; Ault et al.

2014). Presaging this future, the 2012–14 (and to a lesser

extent 2000–03) droughts were characterized by tem-

perature and precipitation extremes, with severe con-

sequences for vegetation, water supplies, agriculture,

and wildfire risk (Guarín and Taylor 2005; Howitt et al.

2014; Parks et al. 2016). Although 2012–14 conditions

were unprecedented in the instrumental climate record,

severe droughts occur periodically in the WUS (Griffin

and Anchukaitis 2014). However, comparisons of spa-

tiotemporal climate patterns over the formation, pro-

gression, and termination of regional, multiyear WUS

droughts remain scarce. Recent work offers substantive

comparisons of droughts and effects, but these and

similar studies can be spatially or temporally limited or

use indicators unsuited to assessing ecological impacts

or long-term trends (Bachmair et al. 2016; Robeson

2015; Ge et al. 2016; Asner et al. 2016).

Large-scale circulation patterns linked to global

climate phenomena (e.g., ENSO, PDO, and AMO)

drive drought severity and extent, while local fac-

tors like topography modulate drought signatures

(McCabe et al. 2004). In the west, highly variable

climate, particularly precipitation, produces periodic

interannual to decadal droughts (Cook et al. 2007;

Routson et al. 2016; Griffin and Anchukaitis 2014).

Large interannual droughts can arise when conditions

redirect storm paths over an extended period, with

large ecosystem effects. For example, during the

2012 California drought, ENSO precursors developed

into a persistent pressure ridge that redirected pre-

cipitation northward (Wang et al. 2014), resulting in

progressive canopy water loss in 101 million ha of

forest (Asner et al. 2016). In the southwestern United

States in the 1950s and 2000s, high temperatures and

disruption of summer precipitation exacerbated atmo-

spheric moisture demand during droughts (Weiss et al.

2009), accompanied by greater rates of piñon pine mor-

tality (Mueller et al. 2005) and bark beetle outbreaks

(Shaw et al. 2005).

While ecosystems adapt to and arise from local long-

term climate averages and variability, tolerance of sea-

sonal drought in the arid West does not ensure survival
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during prolonged events (McDowell et al. 2008). Species

adapted to mesic environments tend toward greater

mortality during droughts, but survival of drought-

tolerant species also decreases under severe and

lengthy droughts (McDowell et al. 2008). Tree

mortality due to drought stress, particularly during

warmer periods, may result from hydraulic failure

or carbon starvation, or indirectly through increased

susceptibility to wildfire or biotic attack. Growing

consensus indicates that greater tree mortality is oc-

curring globally during ‘‘hot droughts’’ (Allen et al.

2010; van Mantgem et al. 2009; Williams et al. 2013;

Cook et al. 2014; Donat et al. 2016). These conditions

are also conducive towildfire.While there is considerable

diversity in climate–wildfire interactions across western

U.S. forests, high spring and summer temperatures

coupled with previous-year or year-of drought com-

monly drive regional variations in large wildfire in-

cidence and extent through fuel effects (Westerling

et al. 2003; Westerling et al. 2006; Heyerdahl et al.

2008; Morgan et al. 2008; Littell et al. 2009;

Westerling 2016). However, commonly used drought

indicators pose challenges to assessing the temperature–

severity relationship (Williams et al. 2013).

Limitations in drought metrics are unavoidable:

severity is subjective beyond ‘‘dry’’ (Alley 1984;

Bachmair et al. 2016). Stakeholder-specific thresholds

identifying extreme aridity must be established, as

drought indicators useful for one application may

not be relevant to another (Steinemann et al. 2005;

Stephenson 1998; Steinemann 2014; Bachmair et al.

2015). Optimal definitions of drought duration can be

subjective (Ge et al. 2016): short durations may fail to

differentiate seasonal climatological drought occur-

rence that ecosystems are adapted to from prolonged

events with ecological significance. Alternatively, fil-

tering for long duration may register ‘‘megadroughts’’

with decadal-scale duration but obscure shorter

droughts characteristic of the twentieth century

(Cook et al. 2007).

Development of quantitative drought metrics that

1) capture the spatial scale of interannual droughts,

2) adjust for regional climate, topography, and demand,

and 3) can be applied by a wide range of stakeholders

is ongoing (Steinemann 2014). Indicators attempt to

characterize the water balance of a location or region

using available moisture supply and demand relative

to a base period. The standardized precipitation index

(SPI), standardized precipitation evapotranspiration

index (SPEI), Palmer drought severity index (PDSI),

and others are widely used indicators (Bachmair et al.

2016) thatwork over large regions and can be calculated

using fewvariables.However, their reliance onprecipitation

to dictate moisture supply may reduce their usefulness

when considering ecological effects (Stephenson 1998;

Crausbay et al. 2017). Consequently, a full accounting

of the water balance is necessary to assess ecological

effects (Stephenson 1990, 1998; Lutz et al. 2010;

Crausbay et al. 2017).

Drought indicators are commonly classified by

drought type: streamflow- or water-level-based in-

dicators for hydrological drought; precipitation and

related water balance indicators for meteorological

droughts; crop moisture or measures of greenness for

agricultural droughts; and municipal water shortage in-

dicators for socioeconomic droughts. Among the mul-

titude of indicators, selection of an indicator depends on

the investigator and available data.

For the work reported here, we wanted to employ an

ecologically meaningful index that integrates pre-

cipitation and temperature effects on available mois-

ture and to compare the relative contributions of

temperature and precipitation to the formation, per-

sistence, and severity of major western U.S. droughts.

Commonly used drought indicators are not well suited

to this purpose. SPI does not incorporate temperature.

PDSI does use temperature, but it is still primarily a

precipitation index. SPEI addresses some of the in-

adequacy of SPI by calculating an index based on

the difference between precipitation and potential

evapotranspiration. The difference between pre-

cipitation and potential evapotranspiration has been

shown however to have less power to predict spatial

patterns in the occurrence of ecosystem types than

climatic water deficit and actual evapotranspiration

(Stephenson 1990, 1998).

Ecological drought has recently been proposed as

a fifth drought metric classification, though discussion

of its boundaries is ongoing (Crausbay et al. 2017).

In contrast to other drought classifications, ecological

drought metrics attempt to describe abnormal de-

partures from moisture conditions when accounting for

local ecosystems without a human-specific viewpoint of

drought effects. Ecological drought metrics identify

droughts on longer time and larger spatial scales that

have the potential to shift ecosystems—as well as human

systems—past their adaptive capacity (Crausbay et al.

2017). Addressing the prevalence of ecologically sig-

nificant droughts in the twentieth and twenty-first cen-

turies requires a metric suited to addressing long-term

ecosystem trends.

Cumulative standardized climate water deficit

(CWD) is a suitable metric to assess ecological drought

because of its strong links to vegetation distribution and

temperature, applicability across spatial scales, and

interpretability (Stephenson 1998; Lutz et al. 2010).
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CWD measures water imbalance and indicates cumu-

lative unmet evaporative demand. Prolonged anoma-

lous CWD can be interpreted as accumulated abnormal

drying (as in Stephenson 1998). CWD incorporates

soil, vegetation, temperature, precipitation, relative

humidity, and preceding conditions; thus, it is in-

terpretable by stakeholders concerned with available

precipitation (meteorological drought), moisture

available for transpiration (agricultural drought), and

moisture available as runoff (hydrological drought).

CWD is sensitive to temperature, allowing assessment

of effects of low precipitation coupled with rising

temperatures during prolonged droughts (Stephenson

1998).

Use of CWD as an ecologically meaningful drought

indicator is also supported by strong links between

CWD and ecological disturbance. Van Mantgem

et al.(2009) found increasing background tree mor-

tality in western U.S. forests, and van Mantgem and

Stephenson (2007) associated Sierra Nevada tree

mortality with increasing CWD due to warming.

Westerling (2009) showed that cumulative stan-

dardized climatic water deficit is an indicator of fire

risk that varies with vegetation type. Changes in

CWD explain more than 90% of the spatial vari-

ability in changes in large forest fire occurrence as-

sociated with recent changes in timing of western U.S.

spring snowmelt (Westerling 2016). Increased moun-

tain pine beetle populations were determined by

Creeden et al. (2014) to coincide with droughts de-

fined in terms of CWD in the WUS. Westerling et al.

(2011a,b), Liang et al. (2017a,b), and Keyser and

Westerling (2017) tested multiple statistical model

specifications using a variety of climate and land sur-

face variables to predict wildfire occurrence, size, and

severity, with CWD the primary common climatic

predictor for fire activity across these modeling

efforts.

We ask here if the incidence of severe and extremely

severe drought area within larger regional droughts has

changed between 1918 and 2014. To address this and to

place recent WUS drought in a long-term context, we

compare areas of severe drought across the last cen-

tury, examining trends in drought severity measured by

CWD. To illustrate how temperature and precipitation

contributions to droughts vary over time, we disag-

gregate their influences on CWD over the course of six

large droughts of the past century, with a specific focus

on regions of extreme drought severity. Finally, we

examine the effects of drought on wildfire size/severity

and recent California tree mortality to understand

relationships between severe drought and secondary

effects.

2. Methods

a. Data

1) LAND COVER AND GRIDDED HYDROLOGICAL

DATA

We obtained 1/88 gridded daily climate data (temper-

ature and precipitation over 318–498N and 1028–1258W)

derived from historical observations (1915–2014) using

the index station method from the National Hydrologic

Prediction System (NHPS) (Wood and Lettenmaier

2006). NHPS also provided daily simulations from the

Variable Infiltration Capacity hydrologic model (VIC-

3L) in water balance mode forced with gridded tem-

perature and precipitation, fractional North American

Land Data Assimilation System vegetation and topog-

raphy, and climatological winds from NCEP reanalysis

(Liang et al. 1994; Mitchell et al. 2004). VIC-3L simula-

tions returned actual evapotranspiration (AET). We

estimated potential evapotranspiration (PET) from

daily maximum and minimum temperature via the

Penman–Monteith equation with the same forcing data

(Penman 1948; Monteith 1965) and calculated CWD 5
PET2AET (Stephenson 1990).Monthlymeans (sums)

were calculated for temperature (CWD and precipita-

tion). We calculated October–September aggregates of

each variable to capture the seasonality of water in the

western United States.

NHPS data end in 2014. To capture the full time series

of the 2012 drought evolution, both before and after the

drought, we obtained 2015 and earlier temperature and

precipitation from the Livneh daily 1/168 meteorological

dataset (Livneh et al. 2015) in order to extend our

dataset by 1 year. We aggregated these to monthly

values at the resolution of the VIC-3L variables (1/88).
The CWD was simulated using the generalized additive

model (GAM) discussed below. Correlations were

strong between historical 1/88 VIC and rescaled Livneh

data for monthly precipitation (0.920), temperature

(0.995), and CWD (0.939). The data for our analysis use

the NHPS andVIC-3L data through 2014 and the values

derived from Livneh for 2015.

Palmer and others (e.g., Andreadis et al. 2005) note

the importance of standardizing or normalizing vari-

ables over time and space to facilitate comparisons

between distinct time periods and locations. Normali-

zation ensures that locations and times with distinct

climatologies are comparable as standardized anoma-

lies. We normalized variables at each voxel using its

1918–2014 mean and standard deviation (z score):

z5
X2m

s
, (1)
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where z is a voxel’s value X reported in terms of stan-

dard deviations s away from the mean m. We used R,

version 3.4.0, with the dplyr, ggplot2, raster, sp, rgdal,

and reshape2 packages to conduct analysis and plot

figures (Bivand et al. 2017; Hijmans 2016; Pebesma and

Bivand 2005; R Development Core Team 2011;

Wickham and Francois 2016; Wickham 2009, 2007).

2) FIRE SEVERITY DATA

Fire records between 1 January 1984 and 31December

2014 were accessed from the Monitoring Trends in Burn

Severity (MTBS) project (MTBS 2016). MTBS assesses

burn area and severity from pre- and postdisturbance

satellite imagery (Eidenshink et al. 2007) for large

(.400ha) wildfires. The semiautomated program iden-

tifies fire perimeters, assigns a location based upon

available records or central mass, and calculates the dif-

ferential normalized burn ratio (dNBR) between imag-

ery prior to and up to a year later. Fires are designated by

type: wild, prescribed, or wild land use. We excluded the

latter two classes as these are controlled burns whose

perimeter is more strictly defined by fire management.

The resultant dataset included 7742 fires between 1984

and 2014. We assigned each fire to the grid cell with

greatest burned area coverage per fire to develop a 1/88
gridded fire history (Keyser and Westerling 2017).

Severity classifications are ‘‘increased greening,’’ ‘‘no

change,’’ ‘‘low severity,’’ ‘‘moderate severity,’’ ‘‘high

severity,’’ and ‘‘no value.’’ We excluded pixels of in-

creased greenness, no value, and no change, instead

focusing on the three remaining severity designations.

We calculated each as a percentage of the burned area.

3) TREE MORTALITY DATA

We obtained 2.5-min aerial detection survey (ADS)

counts of tree mortality (2004–16) processed by Preisler

et al. (2017) for California. ADS surveys tree mortality

from bark beetles, wood borers, and drought annually

by air (Young et al. 2017). We aggregated tree mortality

to our 1/88 grid. We compared mortality before, during,

and after the 2012–14 drought using the nonparametric

Kruskal–Wallis (KW) test by ranks between groups to

determine significant shifts in distributions and ex-

tremes. Subsequently, we conducted post hoc pairwise

multiple comparisons between groups using Dunn’s test

of multiple comparison by ranks using the dunn.test

package in R (Dinno 2017).

b. Drought analysis

1) SELECTION OF SEVERITY AND DURATION

THRESHOLDS FOR DROUGHT CORE

IDENTIFICATION

We hypothesized that within larger regional drought

exist ‘‘cores’’ of persistent greater severity. To distinguish

cores from larger drought affected areas, we compared

combinations of duration and severity. Standardizedwater-

year CWD (1 October through 30 September) was used to

classify pixels as a drought core if they met or exceeded a

threshold (0.5, 1, and 2 standard deviations above the 1918–

2014 mean CWD) for a specified duration (2, 3, and

5 years). A combination of duration and severity was se-

lected that reduced years of small drought core area while

retaining a core centered on California beginning 2012.

2) MODELED INFLUENCE OF TEMPERATURE AND

PRECIPITATION

We developed a GAM to analyze effects of temper-

ature and precipitation on CWD. GAMs are a non-

parametric extension of generalized linear models. They

are particularly useful in characterizing nonlinear re-

lationships between response and covariates. Models

were built using the BAM function of the mixed

GAM computational vehicle (MGCV) package in R

(RDevelopment Core Team 2011;Wood 2011) such that

g[E(CWD)]5b
0
1 f

1
(precipitation)1 f

2
(temperature)

1 f
3
(lat, lon, month),

(2)

where b0 is the model coefficient and g[E(CWD)] de-

notes the link function relating the expected value of CWD

to the predictor variables f1(precipitation), f2(temperature),

and f3(lat, lon, month), with fk representing nonparametric

TABLE 1. Generalized additive models utilize a variety of subroutines to estimate smoothing as models are fit to terms. The MGCV

package, developed and maintained by Simon Wood, uses as default a penalized maximum likelihood to select smoothing parameters,

though users can designate specific smooths. Smoothing functions are iteratively generated as the model is built. In contrast to linear

functions, a matrix of coefficients is created rather than a single coefficient per term. REML indicates a restricted maximum likelihood

method.

Variable Description Smoothing term Method

Temperature Monthly mean temp Thin plate regression spline Fast REML

Precipitation Monthly cumulative precipitation Thin plate regression spline Fast REML

Lon, lat, month Interaction term between

location and time of year

Tensor product smooths with Duchon

spline (lon, lat) and cubic cyclic spline (month)

Fast REML
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smooth functions estimated by restricted maximum likeli-

hood (REML) (Table 1). The model was fit to 75% of the

data, leaving the remaining 25% for validation. A number

of smoothing functions representing tradeoffs between a

selected level of smoothing andalloweddegrees of freedom

are available. A tensor smoother was applied to the spatial

term as suggested by Aalto et al. (2013) and Wood (2006),

while a cubic cyclic spline fit to month accounted for

seasonality. Because CWD is calculated from precipitation

and temperature, we expected explained variance to be

high and did not include other terms. We selected a

GAM (r2 5 0.89; correlation coefficient 5 0.944) with

separated terms to distinguish the influence of tem-

perature versus precipitation on monthly CWD during

droughts (Wood 2006). To show accumulated effects,

we cumulated temperature and precipitation influences

FIG. 1. Spatial footprints of droughts are plotted by duration/threshold combination, 1918–2014. The location and frequency of drought

occurrences are indicated by the color gradient. Area covered by drought (expressed as a fraction of WUS area) is shown in the bottom-

left corner of the panels. Our intention was to determine a combination of duration and threshold severity that reveals low drought

frequency while retaining spatially extensive signals. This was best represented by a 3-yr duration and one-standard-deviation threshold,

shown by the center panel.
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over 36 months. To identify severe drought regions, we

calculated the cumulative sums of CWD over 36 months

(CWD36). We set an additional extreme severity

threshold as the 95th percentile of the CWD36 over

the six largest droughts. To avoid confusion, we refer

to pixels identified by the initial drought threshold as

‘‘drought cores’’ or ‘‘cores’’ and this second, extreme

threshold as ‘‘extreme drought locations.’’

3) HIGH-SEVERITY FIRE MODELS

MTBS classifies 30-m pixels within fire perimeters into

six severity classes: unburned to low, low,moderate, high,

increasing greenness, and cloud cover/error. We catego-

rized fires as ‘‘before,’’ ‘‘during,’’ or ‘‘after’’ if they 1)

occurred within a drought core and 2) occurred in the

preceding three years, during the 3-yr drought window, or

in the following three years, respectively. The ‘‘after’’

class does not include post-2014 fires. We included fires

from all drought grid cells (1984–2014) to extend the

dataset. We compared fire size and fractions of fires that

burned at low, medium, and high severity using KW tests

followed by post hoc Dunn’s tests between groups to

determine significant shifts in distributions and extremes.

3. Results

It is important to note that drought cores are not

bound by strict delineations but are rather surrounded

by decreasing levels of moisture deficit/stress. Here, we

identified core areas within larger continuous droughts

that were continuously dry for multiyear periods. We

found no cores at the most severe/longest duration

[2 standard deviations (5 yr)21], while cores occurred in

the entire spatial domain at the lowest severity/shortest

duration [0.5 standard deviations (2 yr)21] (Fig. 1). We

searched for spatial continuity in cores that balanced the

signal (condensed cores) to noise (widely distributed

cores) ratio. At lower thresholds, core areas were larger

and more numerous interannually. As thresholds rose,

core area concentrated and fewer years experienced

cores within larger drought areas. Our preferred

threshold balanced core area with number of years with

identified cores. The ideal parameters would be selec-

tive while balancing large enough cores to generate cli-

mate statistics. This selective threshold highlights the

spatial and temporal complexity of extreme droughts

within larger continuous regions of droughts (Fig. 3,

below). In doing so, we note that greater area of extreme

drought occurred in 2012 to 2014.

We selected parameters of one standard deviation and

3-yr duration for further analysis (Fig. 2). The six severe

droughts cores identified represent different ecoregions

and time periods, although some overlap occurred: the

Pacific Northwest, 1929–31; northern Rockies, 1934–36;

Southwest, 1954–56; interior, 1959–61; southern Rock-

ies, 2000–02; and Great Basin and California, 2012–14

(Fig. 3). The 3-yr drought core area was greatest in 2012–

14 (7% of the WUS), followed by 1929–31 (6.1% of the

WUS) and 1934–36 (5.39% of theWUS). While drought

cores could be spatially distinct (Fig. 3, panel labeled

‘‘1959 to 1961’’), they were linked by extensive regional

droughts.

FIG. 2. Drought area by year using a 3-yr duration and one-standard-deviation severity

threshold is plotted by the third year identity. The x axis is in years and the y axis indicates

drought cover for a given year (fraction of region). Bars are positioned on the third year of the

drought window. Six droughts were selected for further analysis from three distinct periods:

the 1930s, the 1950s, and the 2000s. Drought areas for these six droughts are indicated by the

fraction above the colored bars.
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Patterns across drought cores included depressed

precipitation relative to preceding and/or following

years (Figs. 4a,c). The first drought year was often

characterized by elevated temperatures, which sub-

sequently declined, excepting the 2012–14 drought,

which started high and rose through 2015 (Fig. 4b).

Parts of the 1934–36 and 2012–14 droughts appeared to

extend into a fourth year: nearly 54% of both drought

cores exceeded one standard deviation CWD fol-

lowing the drought (in 1937 and 2015, respectively).

Furthermore, 1937 is characterized by depressed pre-

cipitation, though temperature fell below the long-

term average from a significantly high first drought

year. In contrast, 2015 is characterized by near-normal

precipitation and a continuing high temperature trend

that began in the first drought year. In 2003, 37% of the

2000–02 drought core area was as severe as 2002 and

characterized by depressed precipitation and high

temperature. Table 2 summarizes atmospheric drivers

associated with drought variability and strength during

the selected drought cores.

Precipitation contributions to CWD were similar

between drought cores, though median values differed

(KW test; p value , 0.01; Fig. 5a). Temperature con-

tributions were more variable and roughly comparable

to the mean temperature experienced in droughts; that

is, high temperatures corresponded with high temper-

ature contribution to CWD (Figs. 4 and 5a). Both

temperature and precipitation contributions in 2012–14

exceed other drought cores, especially considering the

number and range of outliers (KW test; p , 0.01; p ,
0.01) (Fig. 5a). Note that the spread of temperature and

precipitation contributions to CWD differs signifi-

cantly between droughts, from a near-neutral accu-

mulated temperature contribution during 1929–31 to

wider spreads in conditions across the 1934–36, 2000–

02, and 2012–14 droughts. These differences are mag-

nified in the most severe regions of each drought core

FIG. 3. Spatial footprints of selected drought cores (gray) are plotted against annual climatic water deficit anomalies accumulated for

three years. Blue (yellow) show areas that grewwetter (dryer) by the third year. Drought cores are identified by pixels in which the annual

climatic water deficit anomaly exceeded one standard deviation above the 1918–2014 mean for three consecutive years.
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(Fig. 5b). Imposing an even stricter threshold upon the

selected drought cores consequently establishes ex-

treme drought locations within the larger drought core.

Though similar in spatial extent (Fig. 3), earlier ex-

treme drought locations are characterized by smaller

variance of temperature and precipitation contribu-

tions (Fig. 5a) as well as smaller area, relative to 2012–

14 (Fig. 5b). The extreme 2012–14 drought locations

have median temperature (precipitation) contributions

35% (102%) greater than earlier extreme droughts

locations, with extreme locations affecting a much

larger area (Figs. 5b,c). The most severe instances were

seen in the Sierra Nevada and Wasatch Range, high-

lighting the impact of sustained severe drought in

watersheds (Cayan et al. 2001; Udall and Overpeck

2017) (Figs. 3 and 5b).

TABLE 2. Relationships between local conditions and global circulation patterns are indicated as drivers of regional drought occurrence.

This table describes external drivers of droughts from the literature during periods covering the selected droughts shown in Fig. 3.

Drought period Driver Sources

1930s Sea surface temperature anomalies and dust

interactions, positive Pacific decadal

oscillation (PDO)/positive North Atlantic

Oscillation (NAO), natural weather

variability, and weakening of Great Plains

low-level jet stream.

Cook et al. (2011), McCabe et al. (2004),

Brönnimann et al. (2009), Cook et al. (2008),

Schubert et al. (2004), and Hoerling et al. (2009)

1950s Sea surface temperature anomalies (cool

east Pacific/warm west Pacific) and negative

PDO/positive AMO.

Seager and Hoerling (2014), Hoerling et al. (2009),

Rajagopalan et al. (2000), and McCabe et al. (2004)

2000s Sea surface temperature anomalies (cool

east Pacific/warm west Pacific)

associated with increased temperature

in intermountain west/southwest,

decreased precipitation in intermountain

west/central Pacific coast, and negative

PDO/positive NAO.

Seager and Hoerling (2014), McCabe et al. (2004),

Hoerling and Kumar (2003), and Rajagopalan et al.

(2000)

2010s Atmospheric pressure anomalies along WUS

coastline associated with ENSO precursors and

atmospheric internal dynamics.

Teng and Branstator (2017), Hoerling et al. (2014), and

Wang et al. (2014)

FIG. 4.Water year standardized (a) CWD, (b) temperature, and (c) precipitation in drought

footprints are plotted before, during, and after selected drought events. Year23 on the x axis

corresponds to three years before the beginning of the drought, while year13 corresponds to

the third year following the end of the drought. Box plots describe the 25th–75th percentile

withmedians shown by black horizontal lines and colored by drought.Whiskers are within 1.5

times the interquartile range (IQR). The 2012–14 box (orange) in year11 indicates the added

values from the Livneh meteorological dataset described in the text.
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Total and high-severity burned areas were greater

during droughts than before or after. Of 1932 large

wildfires between 1984–2014 in cells affected by

drought, 868 occurred in the three years preceding a

drought, 820 occurred during, and 244 in the three

years following. Fire size in drought pixels ranged up to

228 687 ha, compared to maximum size of 66 919 and

10 790 ha before and after, respectively. The 95th per-

centile of low- and moderate-severity burn fraction did

not significantly differ from each other (KW test; p .
0.05; p . 0.05), while drought fires accounted for a

26.97% and 61.32% increase at the 95th percentile of

high-severity and total burn areas, respectively (KW

test; p, 0.01; p, 0.1) (Fig. 6a). Fires in years following

drought had greater moderate-severity area, while

years prior to drought had greater low-severity area

(Fig. 6a).

The 2009–16 tree mortality observations included

coverage of all forested land within California. Half of

California forests were included in drought cores for the

2012–14 period. Cores were concentrated within the

higher elevations of the interior ranges with some ex-

tensions to the coastal ranges and Northern California

redwood forests. Tree mortality was greater across

California following 2014 (KW test; p , 0.05) (Fig. 6b).

In the periods before, during, and after the 2012–14

drought, mortality was greater in drought-affected areas

than other forest areas of the state (Dunn’s test; p ,
0.05; p , 0.05; p , 0.05).

4. Discussion

Our results present current ecologically significant

droughts in the context of similar events of the past

century. Though average standardized precipitation

anomalies were similar across all droughts (Fig. 3),

there were more and greater precipitation extremes

and temperature extremes in 2012–14 (Fig. 5a).

Among the largest and most severe of the last century,

the 2000–02 and 2012–14 droughts may be early ana-

logs for climate-change-enhanced droughts of the

twenty-first century, particularly in regions with his-

torically greater snowpack (Cook et al. 2015). Physi-

cal topography could explain patterns of separated

cores within a larger watershed, evident in the Great

Basin between 2012 and 2014 (Fig. 3). Snow drought,

in which substandard snowpack occurs as a result of

less precipitation, or greater percentages of winter

FIG. 5. The accumulated relative monthly contributions of precipitation and temperature to CWD are plotted at the final month of

drought. (a) Box-and-whisker plots of the 36-month precipitation contributions (PI36), temperature contributions (TI36), and CWD

(CWD36) in selected droughts. Box plots describe the 25th–75th percentile with medians shown by black horizontal lines and colored by

drought. Whiskers are within 1.5 3 IQR. The dashed horizontal line indicates a single extreme severity threshold, calculated as the 95th

percentile of the CWD36 from the six selected droughts. (b) The extreme drought area, with 2012–14 extreme severity outlined in red and

other droughts outlined in black. (c) Box-and-whisker plots of PI36 and TI36 in the extreme drought areas with colors corresponding to box

plot colors in (a).
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precipitation falling as rain, has been presented as a

concern in future hot droughts (Cooper et al. 2016). In

conjunction with the analysis presented in Fig. 5, it

appears that lower winter precipitation in particular

increased the severity of the drought cores in

this region.

Of critical concern to land managers are recent in-

creasing fire size and severity and tree mortality linked

to increasing temperatures and aridity (Miller and

Safford 2012; vanMantgem et al. 2013; Westerling 2016;

Keyser and Westerling 2017; Young et al. 2017). Our

results support multiyear severe drought as a factor

FIG. 6. (a) Recent drought effects on fire between 1984 and 2014 in the westernUnited States

and (b) California tree mortality between 2009 and 2016. Shown in (a) are fire size and severity

fraction of fires in 3-yr periods before, during, and after droughts between 1984 and 2014, with

the 95th percentile indicated by vertical lines. Severity is expressed as the fraction burned at

a given severity in a fire and fire size is expressed as log-transformed burn acreage. Only

nonmanagement fires that burned larger than 1000 acres were included. In (b), box plots are

divided into period (colors) and drought/nondrought areas (x axis). The before period covers

2009–11, the during period covers 2012–14, and the after period covers 2015–16. The y axis is

expressed in terms of log- transformed counts of tree mortality.
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in increasing fire size and severity, as well as tree mor-

tality. Increased prevalence of dead or desiccated fuels

from direct and indirect drought effects (Mueller et al.

2005; Shaw et al. 2005; McDowell et al. 2008) is condu-

cive to crown fires, which require ladder fuels to move

from volatile grasses to the less volatile midlevel forest

to the dry and volatile canopy cover (VanWagner 1977).

In nondrought years, firesmay be smaller and less severe

because midlevel vegetation does not ignite and spread

into the canopy cover as easily as following multiple

years of desiccation. Temporal limitations of the MTBS

record require conclusions be drawn from a period with

increased fire size and frequency (Westerling 2016), but

recent droughts encompassed the largest WUS fires

during the last 30 years.

Tree mortality in California forests is a visual in-

dicator of drought to the public. The forests included

here were fully within the larger regional 2012–14

drought area (e.g., elevated accumulated CWD shown

in Fig. 3), though the drought cores predominantly af-

fected interior forests. Consistent with global trends

(Allen et al. 2010; van Mantgem et al. 2013; Anderegg

et al. 2016), greater severity and, consequently, greater

accumulated CWD in cores resulted in diverging mor-

tality between core and noncore drought areas. Of in-

terest is the lagged temporal relationship in both core

and noncore areas (Fig. 6b). Because the fly-over ob-

servations used to generate these data did not differen-

tiate between bark beetle mortality and mortality from

hydraulic failure, we cannot confidently attribute this

fully to a specific mechanism. However, the lagged

temporal relationship between drought and tree mor-

tality seen in Fig. 6 has been noted in other drought

events, with mortality possible decades later (Bigler

et al. 2007).

5. Conclusions

Here we employed an ecologically significant drought

metric to characterize areas of intense drought in the

WUS in the twentieth and twenty-first century. In

summary, such droughts of the past 15 years were more

intense than early to mid-twentieth-century droughts,

with greater temperature and precipitation extremes

contributing to extreme CWD over larger areas. Within

areas of intense drought stress, wildfires were larger and

more severe and were followed by extensive tree mor-

tality. Climate projections anticipate warming temper-

atures for the next century, and although less certainty is

attributed to projected changes in WUS precipitation,

extreme high precipitation events may be separated by

longer periods of aridity (Wuebbles et al. 2014). Land

managers should anticipate droughts in the future

similar to recent events and prepare for larger, more

severe fires and greater tree mortality.
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