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Abstract

Analyzing, Mining, and

Predicting Networked Behaviors

by

Minh Xuan Hoang

Network structure exists in various types of data in the real world, such as online and

offline social networks, traffic networks, computer networks, brain networks, and countless

other cases where there are relationships between different entities in the data. What are the

roles of network structures in these data? First, the network captures inherent characteristics

of the data themselves. This is clear from the definition of the network, which represents the

relationship between entities: e.g., the social links among people in a social network describe

how they interact with each other; a road network summarizes how the roads are laid out

geographically; a brain network obtained from fMRI images represents pairs of brain regions

that are active at the same time; a computer network constrains the paths via which internet

packages and thus information or viruses can spread. Second, the network structures affect

the evolution of the data over time. For example, new friendship links in an online social

network are frequently created between friends of friends. Similarly, the current road network

structure is without a doubt taken into consideration when roads are added or temporarily

closed. As we grow, our brains also grow, including the additions of useful links or the clean

up of unnecessary links between brain regions. Third, the network structures act as guidance

for many different processes happening in the data. For instance, the links between users on

social network dictate how gossips can spread; the roads influence how traffic flows in a city;

the links between brain regions affects the way we think and how effectively we do things; the

connections between computers route the transfer of any information on the internet.

viii



In this thesis, I studied the network effect in various networked behaviors, including analyz-

ing such effect, finding its patterns, and predicting future networked behaviors. First, I gained

insights into the data by analyzing the accompanied network structures as well as its evolution.

Second, I proposed algorithms for mining different network patterns that help summarize the

effect of the network structures on different networked behaviors. Finally, I proposed mod-

els to predict the evolution of networked behaviors over time. Toward these tasks, I explored

a wide variety of network data, including protein-protein interaction networks, online social

networks, collaboration networks, chemical compounds, and traffic networks. Overall, I tack-

led these network data in different aspects and developed a number of methods for effectively

mining and forecasting networked behaviors in data.
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Chapter 1

Introduction

Thanks to the advance in technologies, data in general and network-based data in particular

are being collected with unprecedented speed and volume. In contrast to traditional relational

databases, network-based data also come with rich information integrated in the nodes, edges,

and various processes happening in the networks.

The first and most popular example of large-scale network data are online social networks,

such as Facebook, Twitter, Youtube, LinkedIn, among others. These networks have reached

the sizes of millions to billions nodes and edges, basically changing the ways human interact

with each other, search, and share information. Facebook, Twitter, and Youtube, are no longer

just a technology framework, but have become news outlets, where many people find breaking

and relevant news instead of traditional media, such as website, newspapers, or televisions.

As a result, social networks are now one important channel of advertising, spreading news,

and even influence people’s opinion in presidential elections. LinkedIn, on the other hand, has

become the major tool that 94% of recruiters use to find job candidates, instead of the more

traditional job boards or just word of mouth. Besides their huge sizes, these social networks

also introduce a myriad of interactions and detailed information of users and their behaviors.

These rich data poses exciting challenges as to how we can understand and make use of them
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in a scalable manner due to their large size.

Network-based data is also prevalent in bioinformatics and chemistry. For example, the

protein-protein interaction networks summarize the way different proteins interact with each

other, which dictates many biological processes in a living body. Due to these interactions,

when a protein behaves abnormally, it affects other proteins in its neighborhood, leading to

diseases such as cancer. Understanding how a disease progresses via these protein interactions

is thus essential to finding its cures and designing drugs. In chemistry, each chemical com-

pound can also be represented as a graph, where nodes are atoms, and edges are their chemical

bonds. If two chemical compounds have similar graph structures, it’s likely that they also have

similar chemical and physical characteristics. Therefore, studying their structures is useful for

managing and exploiting these compounds based on their characteristics.

Another example is traffic networks, where nodes can be road intersections, public trans-

portation stations, or city regions, and edges indicate if two nodes are adjacent. Clearly, these

traffic networks affect the efficiency of city planning by influencing the flows of traffic. Specif-

ically, since the structures of these networks constrain the traffic, a traffic jam in a road inter-

section can cause traffic jams in a number of nearby roads. Analyzing these traffic networks to

find patterns and predict traffic flows is thus of paramount importance to effective management

of the bloodline of cities. For example, we can answer questions such as how to plan future

roads to facilitate a certain goal, how to distribute resources such as fire stations, polices, shop-

ping malls to meet the demand of different residential areas, and how to block or regulate the

traffic in advance to avoid traffic jams or stampede in overcrowded areas.

Other examples of data with inherent network structures include, but not limited to, brain

networks, computer networks, web networks, and other cases where there exist relationships

among different entities in the data.

There are a number of challenges in dealing with network data. First and foremost, the in-

herent network structures require new methods for mining, modeling, and forecasting in stead
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of traditional methods for data without structures. In fact, most problems in graphs are NP-

hard, leading to the need for approximate solutions, whose quality is not always guaranteed.

The subgraph search space is also exponential in the size of a graph, posing another scalability

challenge, especially with the scale of millions to billions nodes nowadays. In particular, this

subgraph search space cannot be stored or computed in its entirety due to its size. As a conse-

quence, enumerating this space to find a subgraph of interest is also infeasible, thus requiring

either sampling for some heuristic to prune the search space.

1.1 Thesis statement and contributions

In this thesis, I show that: “Exploiting the network structures allows more meaningful and

accurate analyzing, mining and predicting of networked behaviors.”

As network structures exist everywhere, it is important to develop effective methods to

understand the network effect and employ it for other useful purposes. In this thesis, I tackle

all three steps in dealing with network data: (i) analyzing networked behaviors, (ii) mining

patterns of networked behaviors, and (iii) predicting networked behaviors. In particular, this

thesis is organized into three main parts accordingly.

• Analyzing networked behaviors. In Part I, I analyze to gain insights into the evolution

of dynamic collaboration networks. In Chapter 2 and Chapter 3, I represent a collabora-

tion network as a simplicial complex, which captures the group dynamics instead of the

pairwise relationships among people. Based on this new representation, I track the evolu-

tion of collaboration networks with qualitative metrics to discover missed collaboration

in Chapter 2, and to evaluate the collaborative performance of team science networks

in Chapter 3. In Chapter 4, I propose the novel concept of “rising stars” in a dynamic

graph—nodes whose features change suddenly and significantly in time, compared to

recent history of both themselves and other nodes. Next, I investigate these rising stars
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in three real-world datasets and uncover valuable insights into how these stars evolve and

interact with each other.

• Mining patterns in networked behaviors. To understand and model complex net-

worked behaviors, the first challenge is to discover patterns in such complex data. Thus,

in Part II, I propose three novel mining problems for networked behaviors, which help

extract insights and further facilitate other useful tasks such as modeling and predict-

ing. In Chapter 5, I find the top-k network patterns to best summarize a set of network

processes. Each network pattern represents a local community of connected nodes fre-

quently participating in the same network processes. In Chapter 6, given a function that

classifies a data object as relevant or irrelevant, I select top-k objects that best represent

all relevant objects in the underlying database. Since both of these problems are NP-hard,

I propose greedy solutions that are effective and scalable. In Chapter 7, I mine discrimi-

native subgraphs from global-state networks. These are the influential sub-networks that

have maximum impact on the global state and unearth the complex relationships between

the local entities of a network and their collective behavior. To deal with the exponential

subgraph search space in Chapter 5 and Chapter 7, I utilize Monte Carlo Markov Chain

sampling.

• Predicting networked behaviors. After I have verified the network effect and found its

patterns in the earlier two parts, in Part III, I aim at modeling and forecasting complex

network phenomena – such as information cascades in online social networks or traffic

flows in a city. In Chapter 8, I predict the movement of crowds in a city based on big

data, including the road network, the region graph, and weather information. This prob-

lem is strategically important for traffic management, risk assessment, and public safety.

I combine the network structure with other signals in the data to propose a scalable and

accurate method. In Chapter 9 and Chapter 10, I forecast the spread of information in
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online social network. In particular, I predict the popularity of online content in so-

cial networks in Chapter 9, which is important in many applications, ranging from ad

campaign design, web content caching and prefetching, to web-search result ranking.

Finally, in Chapter 10, I propose a model-free approach to forecasting network processes

based on relationships of statistical equivalence using two general axioms and historical

data. To the best of our knowledge, SED is the first method that can perform axiomatic,

model-free forecasts of complex stochastic processes.

In summary, in this thesis, I tackle three main problems in dealing with network-based data:

analyzing, mining, and predicting. I propose solutions that are effective and scalable, using a

wide range of techniques and properties such as Monte Carlo Markov Chain sampling, sub-

modularity, tensor decomposition, statistical hypothesis testings, and other machine learning

techniques. Extensive experiments on real-world datasets demonstrate excellent accuracy and

running time of our proposed methods, as well as meaningful patterns and models.
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Part I

Analyzing Networked Behaviors in

Collaboration Networks
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Before exploiting the network structures for mining and predicting tasks, we first need to

verify if the network structures do impact different behaviors in the data. Therefore, in this

section, I analyze different types of network data and gain insights into their characteristics

and evolution. In particular, I work with collaboration networks, including the IMDB movie

network, the DBLP bibliography network, the Enron email network, and two team science

networks.

In Chapter 2, I study the nature of missed collaboration opportunities in evolving collabo-

ration networks. I define a k-way missed collaboration as one in which every (k− 1)-subset of

the k persons has collaborated but the set of k has not. Representing a collaboration network as

a simplicial complex, I model a missed collaboration as a Minimal Non Face (MNF). Focusing

on 2-dimensional and 3-dimensional MNFs, equivalent to 3-way and 4-way missed collabo-

rations respectively, I analyze the DBLP publication network and the IMDB movie network.

Our key findings are as follows. A large number of missed collaborations arise, but only a few

persist for long. Specifically, the persistence time appears to be exponentially distributed for

both 2-MNFs and 3-MNFs. Nodes with higher degree centrality are more likely to be part of

2-MNFs but little correlation was found with 3-MNFs. Considering the network of missed col-

laborations, the number of components as of today appears to be power law distributed across

MNF types and data sets, but its evolution shows a divergence between DBLP and IMDB. I

identify specific missed collaborations, and observe interesting patterns in the occurrence of

names in pairs and triplets. Our results can help in developing random generative models of

collaboration networks, cue researchers in on potential fruitful collaborations, and predict new

collaborations.

In Chapter 3, I further apply the concept of simplex into team science. Team science

is a collaborative approach to research, typically with researchers drawn from different dis-

ciplines. Team science networks have certain unique characteristics in their conception and

intent that set them apart from other commonly studied social and collaboration networks. I
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study the structural properties, and present metrics for collaborative performance assessment

in two real-world team science networks initiated by the Army Research Lab. I model a team

using a higher-order generalization of an edge called a simplex. A simplex captures group

relationships distinct from the union of pair-wise relationships. Our evaluation using a rig-

orous methodology reveals that the distributions of vertex and facet degrees (the number of

maximal groups that a vertex belongs to) follow a power law, but with exponential cut-off at

the tail in most cases. I propose metrics for quantitatively assessing the extent of intra-team

and extra-team collaborations, and compare their effectiveness vis-a-vis our intuitive notions.

Our work can be used as the basis for generative models, and for evaluating the collaborative

performance of team science networks.

In Chapter 4, I look into dynamic graphs, which are widely used to model time-evolving

interactions between entities in many types of networks. In such networks, each node can be

characterized by the topological features extracted from its 1-hop neighborhood (its egonet)

and the evolution of these features over time. I propose the novel concept of “rising stars” in a

dynamic graph—nodes whose features change suddenly and significantly in time, compared to

recent history of both themselves and other nodes. A unique aspect of our work is that even if a

node has a sudden behavioral change with regards to its own history, it is not a rising star if the

change in its evolutionary pattern is the same as a global trend affecting all nodes in a network.

Using Chernoff bounds, I leverage the definition of rising stars to define “star creators”—nodes

that contribute to the emergence of many neighboring rising stars. I investigate the relationship

among rising stars as well as their relationship with the star creators and “super stars”—nodes

that stand out with highest level of activity. Case studies on three real-world datasets show

that our proposed concepts can be applied to find meaningful rising stars in their early stages,

and pinpoint interesting nodes or events in dynamic networks. Further, our empirical analysis

uncovers valuable insights into how these stars evolve and interact with each other.
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Chapter 2

Structure and Evolution of Missed

Collaborations in Large Networks

2.1 Introduction

A social collaboration network is a set of actors (e.g. researchers) who interact with each

other by means of certain collaborative acts (e.g. co-authored publications) [8]. The value of

strong collaborations in making an impact cannot be questioned [9, 10]. Many collaboration

networks are formed largely autonomously, without any centralized control on collaboration.

In such networks, do all fruitful collaborations come to bear? Or are there collaborations that

appear natural and potentially fruitful, but do not come to pass even after a large number of

years?

We investigate the nature of such missed collaborations in large collaboration networks.

A missed collaboration is one where the participants are close enough in their skills that a

k-collaborative act makes sense, but did not happen. We use a purely structural way of de-

termining “close enough", based on the participants’ existing collaborations. Specifically, we

say that there exists a k-way missed collaboration if every (k − 1)-cardinality subset of the k
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actors have collaborated, but the k actors as a set have not. For example, if (A,B), (B,C) and

(C,A) have co-authored three different publications, but there is no publication where A, B,

and C are joint co-authors, we say that there is a 3-way missed collaborations. In this example,

the fact that A, B and C have pair-wise collaborated is considered sufficient evidence that their

areas are close enough, yet they have missed collaborating on a paper together. The concept

can similarly be extended to 4-way, 5-way and general k-way missed collaborations.

Collaboration networks are traditionally modeled by graphs (see [11] and references therein),

but such a representation does not capture collaboration as a group. For example, consider a

complete co-authorship graph on 4 vertices that represent four authors. Does this graph repre-

sent a single paper with four authors, four 3-author papers, or six 2-author papers? In particular,

for the purposes of this paper, four 3-author papers is a missed 4-way collaboration, whereas

a single 4-author paper is not – but a graph representation cannot distinguish between the two.

While some researchers have suggested the use of bi-partite graphs with edges between actor

vertices and collaboration vertices, the analysis itself almost always is done on a “one-mode

projection” of these graphs [8]. What we really need is an abstraction where higher-order

aggregations can be represented distinctly from the union of pair-wise collaborations.

In this paper, we use the abstract simplicial complex to represent and analyze collaboration

networks. An abstract simplicial complex consists of a set V and a set of subsets of V closed

under the subset operation. A simplicial complex is a generalization of a graph and therefore

admits any analysis or metric based on graphs, but additionally provides analytical possibilities

not possible with a graph-based representation. In section 2.2.1 we provide a brief background

on simplicial complexes as necessary for understanding this paper. Prior works [12–14] have

established the usefulness of simplicial complexes for analyzing collaboration networks1. We

capture a missed collaboration as a well known feature of simplicial complexes called a Mini-

1The hypergraph [15] is another possible abstraction, but as argued in [13], a simplicial complex is a better fit
as it is closed under subsets, capturing the subset closure property of the collaboration relationship.
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mal Non Face (MNF). In particular, a k-way missed collaboration translates into a (k−1)-MNF

in the associated collaboration complex. We focus on 2-MNFs (3-way missed collaborations)

and 3-MNFs (4-way missed collaborations) as they are the only non-trivial MNFs occurring

frequently enough for statistical analysis.

Our analysis has uncovered some key properties that cut across the two data sets. The

persistence (number of years a missed collaboration lasts) is exponentially distributed for both

MNF types. In other words, a vast majority of missed collaborations happen naturally in a few

years after they form. The number of components of the MNF-induced network is power-law

distributed for both MNF types. The number of MNFs a vertex is part of has a high correlation

with the vertex and facet degrees for 2-MNFs, but not for 3-MNFs.

Some other features are remarkable in their differences across DBLP and IMDB. Whereas

MNFs grow exponentially with time in DBLP, we can discern no clear pattern for IMDB, and

in fact, the MNF increase in IMDB is surprisingly not even monotonic. Further, the growth

of the number of components in the MNF-induced network slows in the latter years for DBLP

(indicating an increase in connectivity growth), whereas it is just the opposite for IMDB. We

discuss possible explanations for these phenomena in section 2.3.2. We have also created a

list of all missed collaborations and their persistence. We present a sample, and discuss some

informal observations. For instance, names that figure at the top of the 2-MNF list tend to

combine as the most frequent pairs as well.

Our statistical observations can be useful in constructing new generative models of evolving

collaboration networks, and our technique for identifying specific missed collaborations can

be useful in recommending potentially fruitful new collaborations. The observation that most

MNFs have low persistence can help in models that predict future collaborations.
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2.2 Preliminaries

2.2.1 Simplicial Complex

An abstract simplicial complex2 is denoted by ∆= (V, S), where V is a set of vertices, S

is a non-empty set of subsets of V closed under the subset operation, i.e., for any Sk ∈ S, all

subsets of Sk are also in S. A simplex or a face of a simplicial complex ∆= (V, S) is any subset

s ∈ S. The dimension of a simplex is one less than the number of vertices in it. The dimension

of a simplicial complex is the maximum dimension of the simplices in it. A graph is a special

case of a simplicial complex, i.e., a simplicial complex of dimension 1. A facet of a complex

is a maximal face, i.e., a face that is not a subset of any other face. The facet degree of a vertex

is the number of facets that the vertex is a part of.

Figure. 3.1 shows a simple example simplicial complex. The facets are (0, 1, 2), (2, 3,

4), and (1, 4, 5, 6), and the faces (simplices) are the subsets of the facets, including the facets

themselves. The dimension of this simplicial complex is 3. The vertex degree of vertex 1 is 5,

whereas its facet degree is 2. The facet degree of node 3 is 1.

A minimal non-face (MNF) is a set of vertices M in a simplicial complex such that every

subset of M except M itself is a simplex. If an MNF has k+1 vertices, it is called a k-minimal

non-face (k-MNF), or an MNF of dimension k. For example, in Figure 3.1(a), (1, 2, 4) is a 2-

MNF. A 1-MNF is a missing edge and represents an un-interesting trivial missed collaboration.

In the complex {(1,2,3),(2,3,4),(1,2,4),(1,3,4)}, the set (1,2,3,4) is a 3-MNF, or a 4-way missed

collaboration.

We have only given the minimum background required for understanding the rest of the

paper. Readers interested in learning more about simplicial complexes and algebraic topology

in general are referred to [16].

2We will henceforth drop the word “abstract" for brevity.
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Figure 2.1: Example simplicial complex

2.2.2 Datasets

The DBLP Computer Science Bibliography

The DBLP Computer Science Bibliography is an online reference for bibliographic in-

formation on major computer science publications [17]. We extract all of the papers in this

database from 1936 until September 2013 to create a dataset of 3,625,017 papers and 1,302,447

authors.

IMDB - The Internet Movie Databases

The Internet Movie Database (IMDB) is an online database of information related to films,

television programs and other productions [18]. The database includes information regarding

actors, actresses, directors, year of release, and other film-related information from year 1894

to 2013. We extract all films and the cast whose credits are less than or equal to 5 (the most

important actors/actresses) to create a dataset with 488,238 cast members and 1,057,991 film

titles.

13



Structure and Evolution of Missed Collaborations in Large Networks Chapter 2

2.2.3 Representation as a simplicial complex

We represent each member in a data set as a vertex, and each collaborative act (movies,

papers), as a facet of vertices comprising the collaborative act. Facets may share vertices.

Thus, in the DBLP complex, each vertex represents a researcher and each simplex represents

a collaboration relationship amongst the researchers (vertices) on one or more papers. Note

that the number of facets may be less than the number of papers – for example, if there is

a paper P1 by (A,B,C), and P2 by (A,B), we only have facet (A,B,C). The closure property

of simplicial complexes means that (A,B) is automatically part of the complex. We note that

the “collaboration" relationship is similarly closed under subsets, and therefore well-suited for

modeling using simplicial complex. Similarly, in the IMDB simplicial complex, each vertex

represents a cast member and each simplex represents a collaboration relationship amongst the

cast members on one or more productions.

The evolution of collaboration is captured as a cumulative simplicial complex. Let SC(y)

represent the simplicial complex using data from only year y, and SC(1) the first available year

complex. Then, the evolving simplicial complex EvoSC(i) = ∪iy=1 SC(y). The persistence of

an MNF is the number of consecutive years it is present in EvoSC.

The persistence of an MNF M that first appears in EvoSC(j) is the number of consecutive

years Y such that M is in EvoSC(j + k) for every 0 ≤ k ≤ Y , and M is not present in

EvoSC(j + Y + 1). For example, if an MNF appears in the evolving 1943 complex and is

present in 1944, 1945 and 1946, but not in 1947, then the persistence of the MNF is 3.

Some of our studies pertain to the network of MNFs. An MNF network or MNF complex of

a simplicial complex has a vertex set equal to the union of vertices comprising the MNF and a

facet corresponding to each MNF. In other words, it is the sub-complex induced by the MNFs

of the complex.
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Figure 2.2: Vertex degree (VD), facet degree (FD) and component size distributions of the
2-MNF-induced networks (DBLP 2013), log-log scale

2.3 Missed Collaborations: Structure and Evolution

We present a number of findings relating to the structure of MNFs in the DBLP and IMDB

networks, and their evolution and persistence over time. Below, we use 2-MNF synonymously

with a 3-way missed collaboration, and 3-MNF synonymously with a 4-way missed collabo-

ration. The number of k-MNFs for k > 3 are too few to draw conclusions from and therefore

we do not consider them in our study. We thus have four combinations of {DBLP, IMDB}

x {2-MNF, 3-MNF} studies in each section below. Note that, as stated in section 2.2.3, the

simplicial complex referred to for year i for all of the below is the evolving complex which

contains all collaborations up to that year i.

2.3.1 Structure as of 2013

We consider the MNF complex in the DBLP and IMDB, and study the question: What

is the distribution of the vertex and facet degrees, and number of components? In particular,

given the preponderance of power law in network science, are these also power law?

Figure 2.2 shows the distribution of vertex degree, facet degree and number of compo-

nents for DBLP 2-MNF on a log-log scale. Visually, this appears to be power law distributed.

However, visual analysis can be deceptive, hence, we analyze the distribution using Clauset’s
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Table 2.1: Power-law fit for distributions of degree and component size P [x = k] ∝ k−α for x ≥ xmin

Feature 2-MNF induced network 3-MNF induced network
xmin α p-value xmin α p-value

DBLP Facet deg. 72 2.83 0.17 11 3.3 1
Vertex deg. 144 2.85 0.11 30 3.58 1

#Comps 3 3.55 0.82 8 3.01 0.93
IMDB Facet deg. 440 2.69 0.04 118 2.51 0.68

Vertex deg. 880 2.69 0.04 354 2.51 0.66
#Comps 4 2.62 1.0 14 2.01 1

methodology [19]. The results are shown in Table 2.1 for DBLP 2-MNFs as well as the other

three combinations. A p-value < 0.05 rejects the power-law hypothesis, and a higher xmin

value dilutes it. From the table, it appears that power law is indicated as a good fit for compo-

nent count distributions for all 4 combinations, and for vertex and degrees of DBLP-3-MNF.

Vertex and facet degrees of IMDB-2-MNF do not follow a power law, while the vertex and

facet degrees of IMDB-3-MNF and DBLP-2-MNF show a somewhat weak fit to power law.

Thus, MNF network is structurally different in terms of degree distributions, with DBLP

MNF networks having more of the well-known scale-free properties. However, surprisingly,

from a global perspective of connectivity, they are similar, displaying strong power law prop-

erties.

Are higher degree vertices more likely to be part of more MNFs? Table 2.2 summarizes

the Pearson correlation between the vertex/facet degree of a node and the number of MNFs it

belongs to, for each of the four combinations. We observe that vertex and facet degrees for

both IMDB and DBLP are correlated fairly strongly with number of 2-MNFs, but only very

weakly with number of 3-MNFs. Thus, it appears that actors with high degree centrality are

more at risk for missing 3-way collaborations. This is intuitive because the density around a

node generates more collaborations overall and hence more missed, but the fact that this is not

true for 4-way collaborations is somewhat surprising.
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Table 2.2: Pearson correlation of vertex degree and the number of MNFs that vertex belongs
to (Year 2013).

2-MNF 3-MNF
IMDB FD 0.7098 0.4828

VD 0.7892 0.1946
DBLP FD 0.7398 0.1100

VD 0.7810 0.1494
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Figure 2.3: Number of 2-MNFs over the years

2.3.2 Evolutionary Characteristics

In this section, we study the following questions; (a) How does the number of MNFs evolve

over time? and (b) Do the MNFs get more connected or less connected over time?

Figures 2.3 and 2.4 plot the number of MNFs as a function of years, in a semi-log plot.

DBLP clearly shows exponential growth for both 2- and 3-MNFs. The 3-MNFs, not surpris-
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Figure 2.4: Number of 3-MNFs over the years
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Figure 2.5: Number of connected components of the 2-MNF induced network over the years

ingly, start appearing at a much later date due to the required density and are fewer in number,

but increase exponentially nonetheless.

On the other hand IMDB doesn’t show a clear pattern, and in fact the number of 2- and 3-

MNFs dips multiple times. This might have to do with the connectivity behavior of the original

network (vice the MNF complex) as the MNFs can only form when there is good connectivity

in a region.

Figure 2.5 plots the number of connected components as a function of the years for 2-MNF

network. We observe an interesting divergence between the behavior in DBLP and IMDB –

whereas the growth in the number of components tapers off for DBLP during the latter years, it

actually increases for IMDB toward the latter years. The behavior for 3-MNFs is a more muted

version of the same behavior, and not shown here for space constraints. We believe this might

also be a direct consequence of the increasing and decreasing connectivity of original network

(vice the MNF complex) for DBLP and IMDB respectively. The increasing connectivity of

DBLP is supported by the “densification" observations in [20]. Our own analysis of the average

vertex degree evolution or the original network (not shown here due to space constraints), also

shows an increase in growth rate for DBLP and a decrease for IMDB which further supports

our hypothesis.

Why would the IMDB network get less dense with time? One reason for this could be that,
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Figure 2.6: Persistent time length of 2-MNFs over the years
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Figure 2.7: Persistent time length of 3-MNFs over the years

unlike DBLP, IMDB consists of not only movies, but also documentaries and other productions,

and from a number of different countries. Since each genre of production and each country

tends to have its own largely disjoint community, and the diversity of genre and nationality has

increased in the last few decades, the network is likely to have more components in the latter

decades. Using only movies, and only from Hollywood could show smooth trends paralleling

DBLP, but is left for future work.

2.3.3 Persistence Properties

In this section, we study the question: How long does a missed collaboration persist? What

is the distribution of this persistence time?

Based on the ubiquity of power law in network science, one might conjecture – as we
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did – that the distribution might be a power law. Figure 2.6 and 2.7 show, respectively, the

distribution of the persistence of 2-MNFs and 3-MNFs plotted on a semi-log scale. The figures

show that the persistence length of MNFs is not power law, but appear to be exponentially

distributed. This means that the majority of MNFs that arise get closed quite soon, and only

a few tend to last very long. For example, 72% of 2-MNFs and 84% of 3-MNFs have a

persistence time ≤ 5 years. IMDB 2-MNF persistence is much longer compared to DBLP,

in particular 9.12 years vs 4.37 years. This is likely due to the fact that IMDB history starts

earlier. The fact that most MNFs tend to close soon means that we can use MNFs to predict

future collaborations.

Unlike the two previous studies in sections 2.3.1 and 2.3.2, there is no significant difference

in the behavior of MNF persistence between DBLP and IMDB. Thus it appears that insofar

as individual MNF evolutionary features are concerned (Figures 2.6 and 2.7), there is more

uniformity whereas if network-wide features are concerned (Figures 2.3, 2.4, and 2.5), there

is a marked difference. This is probably related to the difference in the whole (vice MNF-

induced) network. An interesting open question is if the exponential distribution of MNFs

holds for other kinds of collaboration or other social networks, and if it might be the result of

some natural process (similar to preferential attachment resulting in power law distribution).

2.3.4 Example Missed Collaborations

In section 2.3.3 we noted that a vast majority of MNFs closed in a few years. However,

those that did last long are of particular interest, especially if they still remain open as of

today. Enabling such collaborations by identifying them might be useful, especially since it is

looking like they are not going to form naturally. In this section, we ask: What are some actual

long-persisting 3-way and 4-way missed collaborations? Are there any salient features of such

examples?
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Table 2.3: Some example high-persistence 3-way missed collaborations
Missed 3-way Collaborations Yrs

DBLP John W. Carr III, Walter F. Bauer, Alan J. Perlis 54
John E. Hopcroft, Jeffrey D. Ullman, Richard M. Karp 42
Robert E. Tarjan, Shimon Even, M. R. Garey 37
David Peleg, Amotz Bar-Noy, Cynthia Dwork 26
Alok N. Choudhary, Donald F. Towsley, David M. Nicol 19

IMDB Judy Garland, Lucille Ball, Bert Lahr 68
Angela Lansbury, Elizabeth Taylor, Janet Leigh 64
Bing Crosby, Frank Sinatra, Debbie Reynolds 54
Jane Fonda, Susannah York, Michael Caine 41
Hema Malini, Amitabh Bachchan, Vinod Khanna 39

Table 2.3 and 2.4 show, respectively, some specific examples of 3-way and 4-way missed

collaborations that are open as of 2013, and their persistence in number of years. The first line

in each of the four combinations is the missed collaboration with the longest persistence. The

other examples are chosen by the authors as a sample with an eye toward well known names.

We note that some of the missed collaborations cannot be closed as the person no longer exists

(e.g. Judy Garland3)

In looking at the top several thousand 2-MNFs and 3-MNFs we have observed some in-

teresting patterns. Names that figure at the top of the 2-MNF list tend to combine as the most

frequent pairs. For example, in the DBLP 2-MNF list (Noga Alon (149)4, Paul Erdos (123))

also combine as the most frequent edge in missed 2-MNFs. Similarly, names that figure at the

top of the 3-MNF list tend to combine as the most frequent pairs and triplets. For example,

in the DBLP 3-MNF list (Manish Gupta (99), Valentina Salapura (66)) are the most frequent

edge in missed 3-MNFs, and also figure as part of the top triplets. We have also noted that

there is very little intersection in the set of names in 2-MNFs and 3-MNFs in DBLP or IMDB.

For example, Noga Alon figures just once and Paul Erdos never figures in the 3-MNF list. A

3Although we only considered an MNF if the person was active in the database over the past 5 years, Judy
Garland is credited on certain recent films about her and therefore figures in the database!

4The number in parentheses is the number of times a person appeared in the top 10,000 MNFs.
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Table 2.4: Some example high-persistence 4-way missed collaborations
Missed 4-way Collaborations Yrs

DBLP H. J. Bowlden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster 38
Y. Sagiv, J. D. Ullman, A. O. Mendelzon, D. Maier 27
M. Charikar, A. Tomkins, J. M. Kleinberg, P. Raghavan 13
S Ramaswami, F. Hurtado, E. D. Demaine, G. T. Toussaint 11

IMDB T. Leblanc, A. Landa, L.Valenzuela, C. Velasco 42
J. Belushi, P. Simon, G. Morris, J. Curtin 33
J. Karlen, G. Hall, D. Selby, J. Bennett 26
D. Malone, M. Farrow, E. Nelson, J. Douglas 25

Table 2.5: Summary of observations
2-MNF 3-MNF

DBLP #Comps is strongly power law #Comps is strongly power law

VD/FD weak power law VD/FD power law
High correlation w/ VD/FD No/weak correlation w/ VD/FD
#MNFs grow exponentially #MNFs grow exponentially

#Comps growth slows in tail #Comps slows in tail

Persistence exponentially distr Persistence exponentially distr.

Top singles also in top pairs Top singles in top pairs & triplets

IMDB #Comps is strongly power law #Comps is strongly power law

VD/FD not power law VD/FD weak power law
High correlation w/ VD/FD No/weak correlation w/ VD/FD
#MNFs growth non-monotonic #MNFs growth non-monotonic

#Comps growth faster in tail #Comps growth faster in tail

Persistence exponentially distr. Persistence exponentially distr.

Top singles also in top pairs Top singles in top pairs & triplets

more rigorous analysis of these and other patterns is left for future work.

Our list of missed collaborations could form the basis of a recommendation system for new

multi-way collaborations, especially in conjunction with a filtering system based on profiles

such as in [21].

2.3.5 Discussion

Table 2.5 summarizes the observations from the previous subsections in the order they were

presented. The observations that appear to hold across all four combinations of data sets and
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MNF types are in bold. Those that differ markedly across DBLP and IMDB are shown in

italics. Within each of DBLP and IMDB, other than the correlation of vertex and facet degrees

to number of MNFs, observations largely hold across 2-MNFs and 3-MNFs.

The exponential distribution of persistence and the power law distribution of the number of

MNF-network components appear to be interesting properties that merit further investigation

to judge universality. Further, for DBLP, we also see other properties such as the exponential

growth of MNFs, and a clear slowing of growth in the latter years, although that might be

an artifact of the overall network evolution. The differences between DBLP and IMDB are

interesting, but may be explained to some extent by the nature of the communities: DBLP,

being more uniform and closer-knit in terms of acquaintance; IMDB, having not only movies

but also documentaries and TV programs, and from diverse countries, is more disconnected

and does not display the smooth trends seen in DBLP.

Some caveats are in order in interpreting our results. First, the identified missed collab-

orations may have happened outside of DBLP or IMDB. Second, names of the same person

may differ, or different people may have the same name in the database. Finally, our trim-

ming of the IMDB database by considering only the top credited actors/actresses may not be a

representative sample of the whole.

2.4 Related Work

The last decade has seen a spurt in the study of collaboration networks [8, 11, 22–24]. In

[11,22], structural properties of publicly available scientific publication networks are analyzed,

with the latter also investigating evolutionary aspects. Movie actor and the DBLP networks are

analyzed in [24]. Self-organization and classification into different kinds of small-world net-

works appear in [8, 24]. The quest to discern power laws in the distribution of social networks

has been the subject of much work in the literature [19, 25]. Visual and other simplistic meth-
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ods, however, may be misleading [19, 26]. A rigorous method for verifying if a distribution

follows power law is given in [19], which we apply in this paper.

Well established in mathematics, in particular algebraic topology [16], simplicial com-

plexes have been used as a part of Q-analysis in the 1970s to analyze general structure [12],

which have been applied into specific social network problems [27].

The application of simplicial concepts to collaboration networks appears to varying extents

in [13,14]. In [14], 2-MNFs were briefly studied, but for much smaller collaboration networks.

There has been some work on recommendation systems for collaboration (e.g. [21,28,29]), but

these works are focused on recommending one other individual, utilize profile information to

make a match, do not consider the evolutionary information, and do not study the statistical

properties.

To our knowledge, ours is the first work that investigates the structure and evolution of

multi-way missed collaborations in large, autonomous networks using a simplicial model.

2.5 Concluding Remarks

We have studied the structure and evolution of missed collaborations in DBLP and IMDB

by modeling it as a Minimal Non Face (MNF) in the corresponding simplicial complex. We

have discovered that some properties – e.g. distribution of MNF persistence – is exponential

across 2- and 3-MNFs and DBLP/IMDB; and some properties – e.g. connectivity evolution

– show some remarkable differences. Our statistical results can be used to create or validate

random generative models of collaboration networks, and our techniques for identifying missed

collaborations can be used as a recommender system for multi-way collaborations, or predict

new collaborations.

There are a number of interesting avenues for further exploration: a more in-depth analysis

of the results, and better support for our explanations; a similar study of other data sets (e.g.
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ArXiv, PubMed, SourceForge); an efficient generalized algorithm for computing k-MNFs and

persistence across time; and relationships with other features of simplicial complex, for e.g

Betti numbers.
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Chapter 3

Structural and Collaborative Properties of

Team Science Networks

3.1 Introduction

A social collaboration network is a set of people who interact with each other by means

of certain collaborative acts. Examples include publication co-authorship, movie collabo-

rations and teams in organizations. The analysis of the structural and evolutionary prop-

erties of collaboration networks has been the subject of considerable research over the past

decade [8, 11, 22–24, 30].

We consider a specific type of collaboration network called a team science network. Ac-

cording to [31], “Team science has been described as a collaborative and often cross-disciplinary

approach to scientific inquiry that draws researchers who otherwise work independently or as

co-investigators on smaller-scale projects into collaborative centers and groups”. Increasingly,

the hardest problems today require the combined effort of scientists from different fields. Thus,

there has been a surge of interest and investment in team science programs by several public

agencies such as NIH, NCI, NCCR, ARL, and other private foundations. It is therefore imper-
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ative that we understand the structural and collaborative aspects of team science networks.

Team science networks have certain unique features that set them apart from the more typ-

ical and well-studied collaboration networks such as co-authorship and movie networks. First,

unlike the latter networks which are formed by independent decisions of the actors without

an overarching management, team science networks are almost always created by an agency.

Second, team science networks are often lightly managed to encourage collaboration between

researchers of specific backgrounds, which constrains team formation, but is not as rigid as in

business organizational teams. Finally, the structure of actual collaboration in terms of, say,

papers co-written, may be different from the team structure.

We investigate two broad questions regarding team science networks: Do topological prop-

erties such as degree distribution carry over from other studied collaboration networks (such

as co-authorship or movie networks) to team science networks? Given that the main reason

for team science is the cross-disciplinary interaction, is there a quantitative way to measure

whether such interaction is happening?

Collaboration networks are typically modeled by graphs [32]. However, as recently argued

in [13], graphs can only capture pairwise relationships, but are ill-equipped to capture group

aspects underlying teams and other other collaborations. For example, consider a complete

graph on 4 vertices that represent four people. Does this graph represent a single team of four,

four 3-member teams, or six 2-member teams? For such situations, we need an abstraction

where higher-order (group) aggregation is a primitive.

In this paper, we represent each collaborator (team member) by a vertex. A set of members

who are in the same team is called a simplex. A simplex represents the relation “is in the

same team" and thus every team, as well as every possible sub-team, is a simplex. Thus, a

team science network is a set of possibly overlapping simplexes (or simplices). A simplex

generalizes the notion of an edge, which is a set of cardinality 2, to arbitrary cardinality sets.

Similar to the way a weight can be attached to an edge in graphs to represent, say, the strength
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of a tie, a simplex may be weighted to denote some aspect of the larger aggregation. We provide

more detailed and formal definitions in section 3.2.

Using traditional graph-theoretic metrics as well as those based on the higher-order sim-

plices, we present an investigation along two broad lines: (i) structural properties of team

science networks; and (ii) ways to measure the extent of collaboration within a team science

network. Our analysis is based on two team science networks, both initiated by the Army Re-

search Laboratory (ARL): the Network Science Collaborative Technology Alliance (NS-CTA),

and the Communications and Networking Collaborative Technology Alliance (CN-CTA). Our

contributions are as follows:

1. Using rigorous techniques developed in [19], we investigate the fit of power law to the

distributions of vertex and facet degree (defined later) in the NS-CTA and CN-CTA, and

show that a majority of them follow a power law with exponential cut-off.

2. We propose a metric called the independence ratio to measure the amount of simplex

overlap, and compare the independence ratios of NS-CTA and CN-CTA.

3. We devise metrics to evaluate the collaboration level, both within a team, and between a

team and other researchers. We apply these metrics to CN-CTA and NS-CTA to examine

the effectiveness of these metrics, and provide an assessment of when and which metric

to use.

The remainder of the paper is organized as follows. After introducing the terminologies

and the datasets, in section 3.4, we study two structural aspects of the NS-CTA and CN-CTA.

Section 3.5 presents metrics for assessing collaboration in team science networks and evaluates

them on our two data sets. Related work is discussed in section 3.6, and we conclude in

section 3.7.
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3.2 Representing Groups

The use of graphs for representing collaboration networks in general and team science

networks in particular does not capture the notion of groups, that is, a set of people working

together. We therefore turn to using higher-order aggregations. A team science network is

represented as (V, S), where V is a set of vertices and S is a set of subsets s of V such that all

elements of s collaborate in the same team. Each such subset s is called a simplex1. Any subset

of a simplex is also a simplex. This captures nested sub-teams in a natural fashion, an aspect

that will come in handy for assessing intra-team collaboration as a function of the output of

sub-teams (section 3.5.1).

A non-empty subset of a simplex s is called face of s. The dimension of a simplex is one

less than the number of vertices in it. Since these simplices can overlap or contain each other,

we use the term facet to refer to a maximal simplex, i.e. a simplex that is not a subset of

any other simplices. The facet size of a facet is the number of vertices comprising that facet.

Similar to vertex degree, which is the number of edges incident to a vertex, the facet degree of

a vertex is the number of facets that the vertex is a part of. For example, in a social network,

the facet degree of a person is the number of maximal groups this person is in. In addition,

a minimal non-face (MNF) is a set of vertices such that every subset except the set itself is a

simplex. If an MNF has k + 1 vertices, it is called a k-minimal non-face (k-MNF). The use

of these mathematical terminologies allows us to use other related concepts such as “face" and

“MNF", eases the description in section 3.5.1, and facilitates future work building upon this

paper that might leverage other metrics from the field of algebraic topology.

Figure 3.1 shows a simple collaboration network with three teams: {0, 1, 2}, {2, 3, 4},

and {1, 4, 5, 6}. The facet (team) sizes are 3, 3 and 4 respectively, and their dimensions

are 2, 2, and 3 respectively. All subsets of the facets, including the facets themselves, are

1We borrow this and related terminologies later on from mathematics where it is used in a number of contexts
to capture higher-order aggregations.
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Figure 3.1: An example of collaboration network.

simplices and are shaded. The facet degree of vertex 4 (number of teams it belongs to) is 2

and that of vertex 5 is 1. Note that {1, 2, 4} is not a simplex even though {1, 2}, {1, 4} and

{2, 4} are simplices. Instead, {1, 2, 4} is a 2-MNF. MNFs may be used to identify “missed”

collaborations. Vertices 1, 2 and 4 are all collaborating pair-wise, which suggests a possible

match in their interests. However, they miss an opportunity to combine their skills in a 3-way

collaboration. A traditional graph-based model will fail to discern MNFs.

Finally, each simplex in a collaboration network can be assigned a label, indicating certain

properties depending on specific problems. An example will be illustrated in the datasets we

examine in the next section.

3.3 Datasets

We study two real-world team science networks provided by the Army Research Labora-

tory:

1. NS-CTA: The ARL Network Science Collaborative Technology Alliance (NS-CTA) is

an ongoing program studying multi-genre networks [33]. The program is currently in its

fourth year. In this paper, we work with data from the first three years of this program,

including 599 publications from 631 authors. This paper itself is based on work that is
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part of the NS-CTA.

2. CN-CTA: The ARL Communications and Networking Collaborative Technology Al-

liance (CN-CTA) was a research consortium for the purposes of developing advanced

communications for the military. The program ran from fiscal year 2002 to 2009 and

produced a total of 960 publications by 518 authors.

In each of these networks, researchers were organized into official teams. Teams were

created to form self-defined tasks and submitted proposals, and managers selected a subset

of the proposals. People in each team may work in sub-groups on different research topics,

instead of working only together as a whole team in a single project. Futher, they typically

publish papers with both researchers in their teams and other CTA and non-CTA collaborators.

We extract two collaboration networks from each of the above team science networks: a

team network, and a paper co-authoring network. More specifically the team network captures

the organization of researchers into the official teams. Each researcher is represented as a

vertex, and a set of vertices forms a simplex if and only if the corresponding researchers are

in the same team. On the other hand, the paper co-authoring network reflects the collaboration

in terms of publishing. In this case, each researcher is still a vertex, but a set of vertices forms

a simplex if and only if the corresponding researchers were co-authors on a published paper.

Additionally, for the team network, each simplex is assigned a weight, which is the number of

papers that the corresponding researchers co-authored together. From this point, we refer to the

team network and paper network extracted from NS-CTA and CN-CTA as NSTeam, NSPaper,

CNTeam and CNPaper respectively.

In the team networks, the facet degree of a vertex is the number of maximal teams that the

corresponding researcher is a part of. For the paper networks, this is the number of distinct

publication collaborations that the researcher participates in. Note that the facet degree for the

paper network does not simply count the total number of papers written by the author, i.e., we
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Table 3.1: Statistics for NS-CTA and CN-CTA team science networks.
GC* stands for Giant Component.

NS-CTA CN-CTA
Metrics Team Paper Team Paper

Number of vertices 109 631 148 518
Number of edges 871 2133 1536 1248
Max vertex degree 50 143 76 68
Average vertex degree 15.98 6.76 20.76 4.82
Num Components 2 11 1 16
%vertices in GC 96.3 87.0 100.0 87.5
Diameter of GC* 5 9 5 12
Number of facets 77 324 56 341
Max facet size 16 11 22 10
Average facet size 5.45 4.38 9.77 3.31
Max facet degree 13 66 22 62
Average facet degree 3.85 2.25 3.70 2.18
Number of 2-MNFs 789 139 577 51

don’t add up the weights.

3.4 Structural Properties

As mentioned in section 7.1, team science networks are unique in the way they are orga-

nized and evolve, such as the incentivization for diversity and light management. These factors

are likely different for the team network and the paper network. In this section, taking the NS-

CTA and CN-CTA as case studies, we investigate the structural properties of team and paper

networks.

3.4.1 Overview of metrics for NS-CTA and CN-CTA networks

Table 3.1 summarizes the statistics of the NS-CTA and CN-CTA team and paper networks.

The first set of rows shows traditional graph theoretic metrics and the second set of rows shows

group-based metrics in terms of facets and MNFs.
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In both CTAs, the paper networks are 5-6 times larger than the corresponding team net-

works. This is because the paper networks also include non-CTA collaborators who are not

part of the team networks. It appears that the paper networks are far more “spread out” than the

team networks. This is indicated by significantly lower average vertex and facet degrees in the

paper network, indicating less clustering, as well as significantly higher diameters and numbers

of components. This could be due to the fact that the paper network has a bigger element of

self-organization, and a large number of non-CTA members, bringing in a flavor of a general

co-authorship networks like DBLP.

Recall that a 2-Minimal Non Face (2-MNF) is a set of vertices s of cardinality 3 such that

every subset of s except s itself is a simplex. One interesting question is if the number of

2-MNFs are more dependent on network size, vertex degree or facet degree. Evidence from

Table 3.1 indicates more support for the latter two. If we compare the 4 sets (NSTeam vs.

CNTeam), (NSPaper vs. CNPaper), (NSTeam vs. NSPaper), and (CNTeam vs. CNPaper), we

see that the number of 2-MNFs increases with increasing size for only one of them. Whereas,

the number of 2-MNFs increases with increasing average vertex degree for 3 of them and with

average facet degree for all four. It appears that the more tightly packed a network is, the more

chances exist for a 2-MNF.

From the above, it appears that the team and paper networks, while comprising many same

researchers, are somewhat different in their collaborative phenomena. One reason could be

that the team networks were formed with some amount of management and incentivization,

whereas the paper networks are drawn from pre-existing informal relationships prior to the

team formation.

33



Structural and Collaborative Properties of Team Science Networks Chapter 3

100 101 102

Vertex Degree

10-3

10-2

10-1

100

C
C

D
F

(a) NSTeam VD

100 101 102

Facet Degree

10-3

10-2

10-1

100

C
C

D
F

(b) NSTeam FD

100 101 102 103

Vertex Degree

10-3

10-2

10-1

100

C
C

D
F

(c) NSPaper VD

100 101 102

Facet Degree

10-3

10-2

10-1

100

C
C

D
F

(d) NSPaper FD

100 101 102

Vertex Degree

10-3

10-2

10-1

100

C
C

D
F

(e) CNTeam VD

100 101 102

Facet Degree

10-3

10-2

10-1

100

C
C

D
F

(f) CNTeam FD

100 101 102

Vertex Degree

10-3

10-2

10-1

100

C
C

D
F

(g) CNPaper VD

100 101 102

Facet Degree

10-3

10-2

10-1

100

C
C

D
F

(h) CNPaper FD

Figure 3.2: Vertex degree (VD) and facet degree (FD) distributions of NS-CTA and CN-CTA
paper and team networks

3.4.2 Vertex and Facet Degrees: Power Law?

A remarkable feature of many natural phenomena is that the vertex degrees are power law

distributed [19]. We now investigate if this property holds for team science networks, and

whether it extends to facet degrees.

We adopt the rigorous method proposed by Clauset et al. [19] to decide if a distribution

follows power law. Given a variable x, this method fits the complementary cumulative dis-

tribution function (CCDF) of the data to the Pareto cumulative distribution P [X ≥ x] ∝ xγ ,

which is analogous to power law distribution. If plotted in a log-log scale, this distribution

will appear as a straight line. We will report two parameters of the fitting obtained by their

method: the exponent γ, and xmin. Since the power-law distribution often does not hold for

the entire range of data, in particular not for smaller values, xmin is the smallest values of the

corresponding variable x upon which the straight line power-law form still asserts itself.
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The method proposed in [19] returns one of four judgments for a given data set: “none”

indicates it is probably not power-law distributed; “moderate” indicates that the power law is a

good fit but there are other plausible alternatives as well; “good” indicates that the power law

is a good fit and that none of the alternatives considered is plausible; “with cut-off” indicates

that the power law with exponential cutoff is clearly favored over the pure power law. Note

that a power law distribution with an exponential cutoff has the following form:

P (z) ∝ x−γe−x/xc ,

where γ and xc are constants, and x is the variable in consideration, i.e., vertex or facet degree

in our case.

The distributions of vertex degree (VD) and facet degree (FD) of NS-CTA and CN-CTA

networks vis-a-vis a power law distribution are depicted in Figure 7.4(a). The fitting param-

eters for power law and the likelihood ratio test to compare power law distribution with other

distributions are shown in Table 3.2. p-values are bolded in cases the corresponding tests are

considered statistically significant: p-values greater than 0.1 for power law fitting, and less than

0.1 for log likelihood ratio tests [19]. If the log-likelihood ratios are positive, then the power-

law model is favored over the alternatives. The last column lists judgment of the statistical

support for the power-law hypothesis. Of the 8 combinations of {vertex-degree, facet-degree}

× {team, paper} × {NS-CTA, CN-CTA}, 7 combinations can be deemed as power law with

exponential cut off in the tail. One of them, the vertex degree of NSTeam, is a power law fit

without cut-off.

For the vertex degree distributions of both NSTeam and CNTeam, the values of xmin are

very high (23 ± 4 for NSTeam and 19 ± 3 for CNTeam) reducing the dependability of this

assessment. However, the facet degree distributions display a power law with cut-off even with

our strict methodology. Finally, we note that the two team science networks are quite similar
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Figure 3.3: Cumulative Distribution Function (CDF) of average facet size per vertex and
independence ratio for Team Science Networks.

to each other in terms of vertex and facet degree distribution.

3.4.3 Facet Degree and Size

The fact that vertex degrees and facet degrees show somewhat different distribution behav-

ior above leads us to investigate the overlap among groups that a person participates in. Note

that if there were no overlaps, and all facets were of equal size, then the vertex and facet de-

grees would correlate almost perfectly. Further, if there were overlaps but all facet sizes were

the same, the ratio between the vertex and facet degrees would be a measure of the overlap.

Since in real networks, facet sizes are clearly not single-valued, we construct the following new

metric to measure the overlap:

Definition 3.4.1 The independence ratio I(v) of a vertex v is defined as the ratio between its

vertex degree and sum of the sizes of all facets that contain v.

Intuitively, the lower I(v) is, the more facets incident to v overlap, i.e., the less independent

the collaborating groups are. This measure is also technically valid for a graph, in which all

simplices have dimension of at most one, but is trivial, namely 1
2

for all vertices.

Figure 3.3 shows the cumulative distribution function (CDF) of the average facet size per

vertex and the independence ratio for NS-CTA and CN-CTA networks, which clearly show that

the two team science paper networks are similar to each other.
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3.5 Metrics for Assessing Collaboration

While team science networks are formed with the goal of cross-fertilizing ideas from dif-

ferent fields, this in and of itself does not ensure that the members actually work together.

Quantifying the level of collaboration within each team to assess if the team is functioning as

intended would be valuable for managing team composition and network structure. In order

to assess the level of interaction, we need to have an objective measure of the team’s collab-

orative performance. For team science networks that are the focus of this paper, namely the

NS-CTA and the CN-CTA, the number of publications jointly authored by the team members

is a reasonable measure of their interactions.

Papers are seldom written by a team as a whole, but more typically by different sub-teams

along topics of interest to the particular sub-team. Thus, we need a way to combine the col-

laborations between arbitrary subsets in the team into an overall assessment of a team’s collab-

orative performance and, similarly, to assess the collaboration between a team and non-team

members. In the remainder of this section, we devise metrics for evaluating the extent of col-

laboration of a team, both within itself – intra-team collaboration, and with other non-team

members – extra-team collaboration.

3.5.1 Intra-Team Collaboration

We model each team as a simplex – in particular a facet – with the subset closure prop-

erty implicit in the definition of the simplex elegantly capturing the sub-team collaborations.

Recall that a non-empty subset of a simplex is termed the face of the simplex. To model the

amount of collaboration, each face is assigned a non-negative weight indicating the collabora-

tive performance, e.g., the number of papers published together by people in the face, termed

the collaborative performance output (CPO) of the face. A higher CPO indicates more collab-

oration. Note that the CPO is assigned to both facets (teams) as well as non-facet simplices
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Table 3.3: Five sample tasks in the NS-CTA, their CPO’s (published paper counts) and the
scores by each of the four proposed metrics.
Team Members Collaborative Faces and CPO’s lw(s) ew(s) dw(s)

T1 M01, M02, M03 {M02, M03 : 5} 2.5 5 2.5
T2 M04, M05, M06 {M04, M06 : 4} {M04, M05, M06 : 3} 5 10 5
T3 M07, M08, M09 {M09, M08 : 1} {M09, M07, M08 : 2} 2.5 5 2.5
T4 M10, M11, M12 {M11, M12 : 7} {M10, M12 : 3} 7 14 7

{M11, M10, M12 : 2}
T5 M13, M14, M15, M16 {M18, M13 : 1} {M17, M18 : 2} 3.83 9 0.84

M17, M18, M19 {M16, M15 : 1} {M19, M18 : 3}
{M14, M16, M15 : 2}
{M19, M18, M13 : 4}

{M14, M16, M19, M18, M15 : 1}

(subsets of teams). If a face of dimension greater than 0 has a positive CPO, we call it a col-

laborative face. The collaborative faces with largest dimension in a simplex are termed the

largest collaborative faces. Figure 3.4 shows two example facets: s1 ={A, B, C, D, E} with

5 vertices and s2 ={M, N, P, Q} with 4 vertices. The CPO’s of their collaborative faces are

shown in the adjacent top right table. {E,C}, for instance, is not a collaborative face. The

largest collaborative faces are {A, B, C, D} with a CPO of 1 for s1, and {M, N} with a CPO of

6 for s2.

We quantify the collaboration among any subset of individuals comprising a team as the

collaborative score of the corresponding simplex. The collaborative score of a simplex is

defined as a function of the CPO’s of its faces. Although the concept of a collaborative score is

applicable to any non-facet simplex (sub-team), we are primarily interested in the collaborative

score of a facet (team as a whole). In what follows, we consider the definition of collaborative

score.

Let s denote the target simplex whose collaborative score needs to be evaluated. In our

case, the simplices being scored are teams from the team datasets, while the paper datasets

provide the CPO’s of their faces. Denote by F (s) the set of all collaborative faces, by dim(s)

the dimension of s. Let c(k) denote the CPO of a simplex k ⊆ s. We use the following general

rules of thumb to devise our metrics. Aspects that merit a higher score include:
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1. A higher dimension of the largest collaborative faces in relation to the dimension of the

target simplex.

2. The magnitude of collaboration, i.e., the CPO’s of the faces within the target simplex.

We now describe the formulation of our proposed metrics. Each of the metrics biases one

aspect over the others, and thus results in different assessment of the collaboration level. Note

that the 0-dimensional faces, i.e., faces with a single vertex, do not affect the collaborative

score of a simplex. For all metrics, simplices with higher collaborative scores exhibit a higher

level of collaboration.

Definition 3.5.1 The linearly weighted collaborative score lw(s) of a simplex s is defined as:

lw(s) =

∑

k∈F (s) dim(k) ∗ c(k)
dim(s)

Here, the CPO’s of the collaborative faces are weighted by their corresponding dimensions

and normalized by the dimension of the target simplex.

One might argue that larger collaborations require more effort and should be suitably “re-

warded” in the score. In the following two metrics, instead of linearly weighting the faces, we

weight them by an exponential2 function of the dimensions.

Definition 3.5.2 The exponentially weighted collaborative score ew(s) of a simplex s is de-

fined as:

ew(s) =

∑

k∈F (s) 2
dim(k) ∗ c(k)

dim(s)

One problem with ew(s) defined above is that the normalization is still linear in dim(s),

which tends to favor larger simplices. The following formulation “damps” the score exponen-

tially using a function of the dimensions.

2We chose exponential based on our sense that for typical teams the difficulty of collaboration increased quite
rapidly with the number of researchers. However, other functions, e.g. quadratic, are possible as well, and are a
topic for future work.
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Definition 3.5.3 The exponentially damped collaborative score dw(s) of a simplex s is defined

as:

dw(s) =
∑

f∈F (s)

2dim(f)−dim(s) ∗ c(f)

For the example in Figure 3.4, we have: dim(s1) = 4 and dim(s2) = 3. As can be seen

from the bottom right table of Figure 3.4, the scoring functions differ on which simplex is

deemed the more collaborative. While dw(s) deems (M,N,P,Q) to be more collaborative,

ew(s) deems (A,B,C,D,E) to be so, and lw(s) assesses them to be equal. Each metric re-

flects a different emphasis on the CPO’s – the number of papers – vesus the largest collaborative

sub-team and the simplex dimension. We now evaluate these metrics on the team networks of

NS-CTA and CN-CTA. While understanding the collaboration within these team science net-

works is certainly of interest, we also seek to answer the following questions: Which of these

metrics match “intuition"? How do these metrics correlate with each other? Are all of the

three metrics useful? Which is the best metric for team science networks?

We first assign collaborative performance outputs to the team simplices in each of NS-CTA

and CN-CTA. The CPO’s of a simplex in the team network is the number of papers published

together by exactly the corresponding members in that team simplex. By “exactly", we mean

that the highest-cardinality matching face is used. In other words, each paper is counted only

once, for the maximal intersecting simplex between the paper simplex and the corresponding

team simplex. For instance, if A, B, and C publish a paper together, it will only affect the CPO

of the simplex {A, B, C}, but not the CPO of any subset or superset of {A, B, C}, such as {A,

C}, {B, C}, {A, B}, and {A, B, C, D}. We now compute the three metrics defined above for

each team as the target simplex.

Table 3.3 illustrates each of the metrics for five anonymized sample teams within the NS-

CTA. The second column contains the identifiers of the team members and the third column

shows the CPO of each collaborative face in the team. The fourth column contains the largest
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A 

B 

C 
E 

Face f 
Collabora,ve 

Performance Output c(f) 

{A, B}  1 

{E, C, D}  2 

{A, B, C, D}  1 

{M, N}  6 
D 

M 

N 

P 

Q 

Simplex s  lw(s)  ew(s)  dw(s) 

s1 = {A, B, C, D, E}  2  4.5  1.125 

s2 = {M, N, P, Q}  2  4  1.5 

Figure 3.4: Example of two weighted simplices. The collaborative faces and their CPO’s are
given in the top right table. Other faces have CPO’s equal zero. The CPO in this case is
the number of papers published jointly by members of that face. The proposed collaborative
scores are in the bottom right table.
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Figure 3.5: Collaborative scores across teams for each of the metrics, with a view to discern
correspondence in behavior.

collaborative dimension, followed by the three metrics lw(s), ew(s), and dw(s). For each

metric, we look at the rankings of the teams and consider if it matches our “intuition". All

three metrics rank T4 and T2 as the most and second-most collaborative respectively. However,

dw(s) differs sharply in its evaluation of T5, which it rates last. This is because T5 is a high-

dimensional group, and thus is penalized by dw(s).

A complete picture of the relative values of the collaborative scores for all teams in NS-

CTA and CN-CTA is shown in Figure 3.5. The teams on the x-axis are sorted in increasing

order of lw(s). Comparing the metrics, it can be seen that lw(s) and ew(s) “track” together,
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more or less, in the NS-CTA as well as CN-CTA. For the sample teams in Table 3.3, the

rankings based on these two metrics are also the same (modulo tie breaking). To confirm this,

we run a Spearman’s correlation evaluation on these metrics. We observe a clear similarity

between ew(s) and lw(s) with correlation coefficients of 0.99 (NS-CTA) and 0.84 (CN-CTA).

Whether ew(s) or lw(s) is “better” depends upon how much value we give to higher-order

collaborations. In our experience with team science research, the difficulty of collaboration

between scientists (who are typically strongly opinionated!) does increase quite rapidly with

size of the team. Thus, we recommend ew(s) over lw(s), i.e., we want to super-linearly reward

higher-order collaborations.

In summary, we propose that ew(s) and dw(s) be used for evaluations. If the researchers

have a lot of latitude in forming teams, and the alliance coordinators want to dissuade having

members who are part of the team but hardly collaborate in papers, then dw(s) should be used.

On the other hand if the teams have been intentionally put together by the alliance coordinators,

it does not make sense to penalize larger teams. Hence, ew(s) should be preferred.

3.5.2 Extra-team Collaboration

A healthy collaboration profile should balance the number of collaborations with an indi-

vidual, and the number of individuals with whom one has collaborated. In order to devise a

metric for this purpose, we borrow from the popular concept of H-index [34], which is defined

as follows: an author has an H-index of h if he/she has published h papers, each of which has

been cited in other papers at least h times. In a similar way, we define the collaboration index,

or c-index as follows:

Definition 3.5.4 A simplex T has a c-index c if there are at least c non-simplex members, each

of whom have collaborated with at least one member of T at least c times.

The above definition easily instantiates to the case of an individual, which we shall refer
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to as vertex c-index. In other words, an individual has a vertex c-index c if there are at least c

other individuals each of whom have collaborated with the individual at least c times.

We now evaluate these metrics on the NS-CTA and CN-CTA networks. Instead of all

possible simplicies (sub-teams), we focus on the vertex (individual) and the team as organized

officially in these two organizations. To compute the c-index of a vertex, we create an induced

network from the paper dataset while using only the people present in the team dataset, i.e. only

people officially in the NS-CTA and CN-CTA. For each person, we sort all of his/her neighbor

vertices who have published at least a paper with him/her in decreasing order of the strength of

collaboration between them–the edge weight–which is literally the number of common papers.

The c-index of the corresponding vertex will be computed based on this sorted list of edge

weights with respect to definition 3.5.4. The c-index of a team is computed similarly. Further,

we normalize each team’s c-index by the team size because c-index counts the collaborations

with at least one member and hence by definition would be higher for larger team sizes.

Figure 3.6 shows the distribution of vertex c-index and normalized team c-index for NS-

CTA and CN-CTA. These distributions are remarkably similar between the two networks.

Given such similarity between two team science networks, we wonder if it might be that

extra-team collaboration in team science networks has a certain “signature" in the way the

collaborations are distributed. More data sets need to be analyzed to confirm this, but if so, it

would provide a way to distinguish “anomalous" team science collaborations.

Finally, while there is a clear relationship between the vertex and facet degrees with Spear-

man’s correlation coefficients greater than 0.82, there is no clear indication of such relationship

between c-index and either vertex or facet degree. However, we observed that the person who

ranks the highest in the number of collaborations also ranks the highest in vertex c-index, in

both the NS-CTA and CN-CTA.
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Figure 3.6: Cumulative Distribution Function (CDF) of (a) vertex c-index and (b) team
c-index in NS-CTA and CN-CTA networks.

3.6 Related Work

The last decade has seen a spurt in the study of collaboration networks. In [11, 22], struc-

tural properties of publicly available scientific publication networks are analyzed, with the

latter also investigating evolutionary aspects. Self-organization and classification into different

kinds of small-world networks appear in [8, 24]. The quest to discern power laws in the distri-

bution of social networks has been the subject of much work in the literature [19, 25]. Visual

and other simplistic methods, however, may be misleading [19, 26]. A rigorous method for

verifying if a distribution follows power law is given in [19], which we apply in this paper.

The scientific study of team science networks have recently received attention under the

banner of ScITs (Science of Team Science) [31, 35]. Team formation has been studied in [36].

A study of the impact of the network structure on the performance of leaders and teams has

been reported in [37, 38]. Results suggest that team performance is positively correlated with

network density and team centrality. However, to our knowledge, the structural properties and

quantitative collaboration performance metrics have not been studied.

Related to our work on collaboration levels is the concept of cohesion in social sciences

literature, such as [39]. In contrast to these works, our goal is to assess whether and how well a

team is collaborating based on its collaborative output, e.g., by joint analysis of team and paper

networks.
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Alternate representations for social collaboration networks to capture higher-order relations

include the bipartite graph and hypergraph [32]. Our choice of the simplex representation is to

reflect the natural closure property in the relation “is in the same team", and to facilitate future

work building upon this paper that might leverage other metrics from the field of algebraic

topology.

3.7 Concluding Remarks

We have studied two real-life team science networks: the ARL NS-CTA and CN-CTA.

Using a more general representation than graphs – the simplex – we have analyzed metrics

such as facet degree, facet size, independence ratio and minimal non-face in addition to the

traditional graph-theoretic metrics. We have shown that the distributions of vertex and facet

degrees resemble a power law with exponential cut-off.

We have investigated the problem of assessing intra-team and extra-team collaboration in

team science networks and presented metrics for both intra-team and extra-team collaboration

assessment. Evaluating these metrics on the NS-CTA and CN-CTA, we have examined and

discussed these results vis-a-vis our intuition. Our analysis has helped provide recommenda-

tions on the situation under which each metric would be useful. Moreover, we have seen that

the extra-team collaboration profile is remarkably similar in both networks.

The structural properties uncovered in this paper can be used as the basis for generative

models of team science networks. Further, our proposed collaborative metrics can be applied

to performance evaluation and improvement plan in team science networks.
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Chapter 4

On Rising Stars in Dynamic Graphs

4.1 Introduction

Dynamic graphs can be used to represent many different types of networks in which the

network entities are modeled as nodes and the relationships among them are modeled as time-

varying links. Examples include online social networks, communication networks, and finan-

cial transactions. Mining and tracking the evolutionary patterns in such dynamic graphs is a

problem of practical importance.

In this paper, we investigate nodes that behave anomalously in dynamic graphs, but with

the important subtlety of looking at their evolutionary patterns with respect to their own and

other nodes’ trends. In general, this task can be done by tracking the evolution of each node’s

feature values on the graph over time. In particular, we propose the novel concept of rising star

nodes, which simulaneously exhibit the following characteristics (formal definition is given in

Section 4.2.1):

• C1: There is a sudden increase in the level of activities of the node.

• C2: Node properties change significantly with respect to the history of the node itself.
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• C3: The change in node properties deviates significantly from the global trend of the

network.

• C4: Node behaves differently from other nodes with similar history.

Characteristic C1 states that we are only interested in nodes that suddenly become more

active than usual. In particular, we are concerned with finding rising stars in their early stages,

that is nodes with low historical activity but quickly becoming very active. The early detection

of such nodes can be useful in many ways. For example, the propagation of problematic

events in a computer network can be detected and possibly isolated early before they become

widespread. It must be noted that a very active node that suddenly becomes inactive might

also be interesting. However, the type of nodes whose activities suddenly increase are more

important and often require more attention from the analysis point of view. Thus, we focus on

this type of rising stars with a sudden increase in activities.

Characteristic C2 asserts that a node’s history must be taken into account when deciding

if it is anomalous or not. This requirement sets our definition apart from the outlier detection

techniques developed for static graphs [40–43]. A node might be extremely active at a specific

time compared to other nodes in the network, but if it has always been that active, it would

not be considered a rising star. Only if the change in node properties is unexpected given its

history, would this node be a rising star.

C3 establishes that if the whole network has a global trend of increasing activities, then the

bar for deciding if a node is a rising star should be raised as well. We thus propose to pinpoint

a node as a rising star only if its behavior deviates significantly from this global trend. This

characteristic distinguishes our definition from the common event detection problem in time

series that only tracks the evolution of a single object—a node in our case.

C4 captures the fact that different groups of nodes may have different evolutionary patterns.

Comparing a set of low-active nodes against a set of high-active nodes with regards to their

recent changes will be unfair and possibly mask the true outliers within the low-active set. For
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Figure 4.1: Example of a rising star: Each line is the evolution of node feature for a node over
time. The red line is detected as a rising star at t = 4 but not at t = 8 when it is a global
outlier.

example, in the DBLP bibliography dataset, it would be unfair to compare a professor with a

prolific publication record with a new Ph.D. student. Such a new student should be matched

against similar peers. Therefore, forcing a single unified gold standard on the whole population

would not suffice. Instead, a rising star definition that differentiates nodes based on their similar

recent history is required.

A specific yet simple example is shown in Figure 4.1, where the values of a fictional graph-

feature (e.g., node degree) are tracked over time for 8 different nodes, resulting in the 8 lines in

the figure. The six blue-plus lines have similar ranges of values and evolutionary patterns, and

thus are not rising stars (inliers). On the other hand, the red-diamond line—the type of rising

star we are interested in—has a distinctive evolutionary trend at t = 4. More specifically, it has

a humble starting point among the objects with smallest feature values and is thus compared

against the evolution of these nodes (Characteristic C4). After a short period of time, it quickly

advances to be among the objects with highest feature values (Characteristic C1). Further, the

node corresponding to the black-circle-dashed line is constantly more active than most other

nodes and will always be identified as an anomaly from t = 0 to t = 4 by a traditional outlier

detection technique (a global outlier). However, when the temporal aspect is considered, this

node should not stand out as an entity of anomalous behavior since its evolutionary pattern

does not have any sudden change and is very similar to that of the nodes with blue-plus lines
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(Characteristic C2). Finally, the red-diamond line has another surge at t = 8, but it would not

be a rising star at that time since such a surging behavior is also observed at all other nodes in

the network at t = 8 (a global trend, Characteristic C3).

Our contributions in this paper are four-fold:

• We define a novel concept of “rising stars” in dynamic graphs that captures global net-

work temporal behavior and compares nodes’ temporal activity against others with sim-

ilar historical patterns.

• We define “star creators” as nodes that significantly influence the emergence of many

rising stars, and propose a Chernoff bound based approach for finding them.

• We empirically explore and analyze rising stars in three real-world dynamic graph data

sets, using the nodes’ features in their 1-hop neighborhoods (egonet). The empirical

analysis demonstrates that our definitions of rising stars and star creators can effectively

capture meaningful nodes with anomalous temporal behavior, which cannot be detected

by snapshot-based outlier detection methods.

• We further analyze the topological and evolutionary patterns of the rising stars and star

creators (and their relationship) detected in these graph data sets, drawing additional

insights on how they evolve in real networks.

The remainder of paper is organized as follows: Section 4.2 gives the formal definition

of rising stars and star creators. Section 4.3 studies the rising stars in real-world networks.

Section 4.4 explores the evolutionary relationship among rising stars, star creators and “super

stars”. Section 4.5 discusses other subtleties of our proposed concepts. Finally, Section 4.6

covers related work and Section 4.7 concludes the chapter.
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4.2 Rising stars and star creators in dynamic graphs

4.2.1 Definitions

We consider a dynamic graph G as a series of graph snapshots. Nodes and egdes can

be added or deleted at each timestamp, and may have evolving weights. Edges are either

undirected or directed. Denote a graph snapshot at time t as Gt = (Vt, Et), where Vt and Et

are the sets of nodes and edges at t.

Given a graph feature x, a node v ∈ Gt, we denote by xt(v) the value of feature x at

timestamp t for v. Note that any structural and non-structural features can be used for our

general notion of rising stars and star creators. In this paper, we use the egonet feature in our

empirical analysis in Sections 4.3 and 4.4. Specifically, we track the egonet Egovt = (N v
t , E

v
t )

around v, where N v
t = {v}∪{u ∈ Vt|(u, v) ∈ Et or (v, u) ∈ Et} and Ev

t = {(u1, u2)|u1, u2 ∈

N v
t ; (u1, u2) ∈ Et}, that is all nodes within v’s one-hop neighborhood (including v itself) and

all edges among these nodes. Table 4.1 lists five egonet features we investigate in this paper.

Table 4.1: Egonet features studied in this paper
Egonet feature Explanation

Degree Number of neighbors of the ego node
Weighted degree Sum of edge weights between

the ego node and its neighbors
Node weight Weight of the ego node

Number of triangles Number of triangles in the egonet
Egoweight Sum of edge weights in the egonet

We now present the definition of rising stars, beginning by the temporal vector of the node

feature.

Definition 4.2.1 HISTORY VECTOR: Given a feature x, the history vector of a node v over a

time window [t1, t2] is define as:

hx
t1,t2

(v) = [xt1(v), xt1+1(v), ..., xt2(v)]
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where xt(n) is the value of x at timestamp t for node v.

Definition 4.2.2 EQUIVALENT NODES: Two nodes u and v are said to be equivalent with

regards to a feature x, a time window [t1, t2], a distance function δ(., .) operating on two

history vectors, and a user-defined distance threshold Ω if δ(hx
t1,t2

(u), hx
t1,t2

(v)) ≤ Ω. Then, we

denote u ≡x,Ω,δ
t1,t2 v, or u ≡t1,t2 v for short when x, δ and Ω are given.

Intuitively, two nodes u and v are equivalent if they have similar history of changes in

feature values over the given time period. Our assumption is that if two nodes are equivalent

during a time window [t1, t2], they are expected to be similar at timestamp t2 + 1.

Thus, we define the “rising stars” as follows:

Definition 4.2.3 RISING STARS: Given a time window size W and a user-defined parameter

Θ, a node v is a rising stars at time t if

xt(v) > Q3(S) + Θ ∗ IQR(S)

where Q1(S), Q3(S) and IQR(S) = Q3(S) − Q1(S) are the first quartile, the third quartile

and the inter-quartile range of the reference feature value set St = {xt(u)|u ≡t−W,t−1 v; u ∈

Vt} respectively.

In essence, we compare the feature value of v at time t against the reference set S of feature

values of all nodes that are equivalent to v during the history time window [t−W, t− 1]. If the

feature value of v is in the upper outlier range, i.e., xt(v) > Q3(S) + Θ ∗ IQR(S), we call it a

rising star, whose feature value increases suddenly and deviates significantly from the trend of

equivalent nodes. In practice, Θ ≥ 1.5, where larger values are used for detecting rarer events.

In our emprical study, we use Θ = 3.

Critical for this definition is the selection of the distance function δ(., .), such that it lead to

nodes’ equivalence in terms of capturing characteristics C2, C3, and C4, that is, nodes being
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compared against its own history, other nodes with similar history, and global trends (Since we

only care about feature value in the upper outlier range, C1 is also met). We discuss this issue

in depth in Section 4.2.2.

Next we define “star creators”, whose influence in the emergence of rising stars is much

more significant than other nodes’.

Definition 4.2.4 STAR CREATORS: Given a small user-defined probability threshold q ∈

(0, 1] and a user-defined deviation ∆ > 0, a node v is called a star creator if

P [NR
t (v) > (1 + ∆)µv

t ] ≤ q

where NR
t (v) and µv

t are the number of rising star neighbors and the expected number of rising

star neighbors of v at time t respectively.

Intuitively, the star creators are the nodes whose number of rising star neighbors deviates

too far from its expected value. To use this definition, we need to clarify how the parameters

shall be chosen for the expected number of rising star neighbors µv
t , the probability thresholds

q, and the deviation ∆. These are discussed in Section 4.2.3.

4.2.2 Equivalent nodes

To decide if two nodes are equivalent, any reasonable choice of the distance function δ(., .)

that captures the similarity of two history vectors can be used. A simple approach would be

to use Euclidean or Manhattan distance in the space of R
W , where W is the width of the

history window. However, both Euclidean and Manhattan distances are too sensitive to noise

in the history h and oblivious to recency of events. For example, consider three vectors h1 =

[1, 2, 1, 1, 1, 1, 1], h2 = [1, 1, 2, 1, 1, 1, 1], and h3 = [1, 1, 1, 1, 1, 2, 1], which are the numbers

of new scientific papers published by three different authors over a period of seven years.

Clearly, h1 should be considered to be more similar to h2 than to h3, since the differences
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between h1 and h2 happened in a more distant past. However, both Euclidean distance δL2 and

Manhattan distance δL1 do not take this fact into consideration and produce the same distance

values for δ(h1, h2) and δ(h1, h3), that is δL2(h1, h2) = δL2(h1, h3) =
√
2, and δL1(h1, h2) =

δL1(h1, h3) = 2. Thus, we need to design a better distance function, which abides by the

following principles:

• Principle A: δ should incorporate the recency of events, i.e., changes at timestamps

closer to the current timestamp should be more important.

• Principle B: δ should capture the global trend of the whole network (to satisfy charac-

teristic C3 in Section 4.1). If there is a sudden change in the feature values of all nodes

in the network (a global trend), δ should adapt to this change.

Towards this task, we propose a mapping function that projects the space of history vectors

onto a new 1-dimensional space, which satisfies the above principles, and the distance between

history vectors to be computed as the difference between two mapped values.

Definition 4.2.5 MAPPED HISTORY DISTANCE: Given a mapping function f : RW → R,

and two history vector h1 and h2 over the same time window of size W , the mapped history

distance between them is defined as:

δm(h1, h2) = |f(h1)− f(h2)|.

where f(h1) and f(h2) are called the mapped history. h1 and h2 are considered equivalent

if δm(h1, h2) < Ω, where Ω is a small distance threshold. For a given node v, the tuple

(f(ht−W,t−1(v)), xt(v)) is called the instant vector of node v at time t.

For the mapping function f , one may consider a local prediction model, such as an autore-

gressive model (AR, ARMA, ARIMA) or CUSUM, on the history vector of each node, as it

can satisfy Principle A. More specifically, if the history vector ht−W,t−1(v) of a given node v

is treated as a time series, we can learn an autoregressive model to predict the next timestamp
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xt(v) in the series. However, this class of models is learned only on a single time series for

each node v (hence we call it a local model), and is oblivious to the evolution of other nodes.

If there are N = |Vt| nodes in the network, we need to build N local models. Therefore, such

models fail to capture the global trend of the network and do not satisfy Principle B.

Due to the above reasons, we propose to build a single global model for the whole set of

nodes as the mapping function f instead. This global model still predicts xt based on ht−W,t−1

for each node, but is learned on the training set containing all pairs of (ht−W,t−1(v), xt(v))

∀v ∈ Gt. Similar to a local model, a global model also automatically learns appropriate weights

for each element of ht−W,t−1, and thus captures the recency of events. However, different from

N local models for N nodes, only one single global model is built for all nodes in the network

to capture the global trend at timestamp t, and thus helps the definition of rising stars satisfy

Principle B and Characteristic C3.

A side-effect of using a global prediction model as a mapping function is that the mapped

history is interpretable: it is the expected value of the feature value given that the model is

correct. If two nodes have similar history vectors, they are likely to have similar mapped

history.

Note that any prediction model with good accuracy can be used as the global model. Thus,

we opt for a general definition in this section, and discuss a specific example of a global model

in our empirical study in Section 4.3.2.
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Figure 4.2: Number of active nodes and edges at each timestamp for our datasets
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4.2.3 Chernoff-bound detection of star creators

In this section, we decide µv
t , q and ∆ for Definition 4.2.4.

To compute the expected number of rising star neighbors µv
t of a node v at t, we assume

nodes in the network become rising stars independently of each other. This assumption is a

simplification of real-life situation and enables us to isolate neighborhoods with high number

of rising stars compared to their density. Then, the probability that a random node in the

network becomes a rising star at time t is pt =
|V R

t |

|Vt|
, where Vt and V R

t are the set of nodes and

the set of rising stars in the network snapshot Gt at time t. Now, for the egonet of a node v,

each node u in its 1-hop neighborhood N v
t will have the chance of becoming a rising star of

pt. Denote Xv
t as a random variable that is the number of rising stars in N v

t . We can treat Xv
t

as the sum of |N v
t | independent Bernoulli random variables (each variable for a neighbor of v),

each having probability pt of being equal to 1 (a neighbor is a rising star). Thus, its expected

value is µv
t = E[Xv

t ] =
∑

u∈Nv
t
E[u is a rising star] = |N v

t |pt.

As per Chernoff bounds, the number of rising stars Xv
t in the neighborhood of v satisfies:

P [Xv
t > (1 + ∆)µv

t ] ≤ e−
∆2µvt
2+δ (4.1)

where ∆ ≥ 0 is a user-defined constant.

By setting the right hand side of Equation. 4.1 equal to the threshold q, that is e−
∆2µvt
2+∆ = q,

we can find the corresponding value of ∆. In particular,

∆∗ =
− log q +

√

log q2 − 8µv
t log q

2µv
t

(4.2)

What Chernoff bounds gives us is that the number of rising stars Xv
t in the egonet of v at

time t will exceed (1 + ∆∗)µv
t with a probability less than q. Thus, for a small value of q, if

NR
t (v) > (1+∆∗)µv

t = (1+∆∗)
|V R

t |

|Vt|
|N v

t |, we will mark v as an influential node, who happens

to have too many rising stars in its neighborhood. We call such nodes the star creators since
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nodes who are connected to it tend to become rising stars much more than average.

To summarize, we can pick a small user-defined value for the probability threshold q, com-

pute the corresponding ∆∗ by Equation 4.2, and check if NR
t (v) > (1+∆∗)

|V R
t |

|Vt|
|N v

t | to decide

if v is a star creator.

4.3 Rising stars in real-world networks

In this section, we explore the rising stars as defined in Definition 4.2.3 in three real-world

datasets.

Algorithm 1 Finding stars at time t

Input: W ; Ω; q; Gi = (Vi, Ei), i ∈ [t−W, t];
Function Fx that computes egonet feature x;

Output: Set of rising stars V R
t , set of star creators V C

t

1: for v ∈ Vt do

2: xt(v)⇐ Fx(Egovt )
3: ht−W,t−1(v)⇐ [Fx(Egovt−W ), ..., Fx(Egovt−1)]
4: end for

5: lm⇐ LinearRegression(xt ∼ ht−W,t−1) ∀v ∈ Vt

6: fv ⇐ lm(ht−W,t−1(v))∀v ∈ Vt

7: [m1,m2]⇐ [minv∈Vt(fv),maxv∈Vt(fv)]
8: V R

t ⇐ ∅
9: for i = 0 to m2−m1

ǫ
do

10: Bi ⇐ {v ∈ Vt|fv −m1 ∈ [iǫ, (i+ 1)ǫ]}
11: S ⇐

{

xt(v)|fv −m1 ∈
[

iǫ− Ω
2
, (i+ 1)ǫ+ Ω

2

]}

12: V R
t ⇐ V R

t ∪ {v ∈ Bi|xt(v) > Q3(S) + 3 ∗ IQR(S)}
13: end for

14: pt ⇐ |V R
t |

|Vt|

15: V C
t ⇐ ∅

16: for v ∈ Vt do

17: µv
t ⇐ pt × |N v

t ∩ Vt|
18: if |N v

t ∩ V R
t | >

(

1 +
− log q+

√
log q2−8µv

t log q

2µv
t

)

µv
t then

19: V C
t ⇐ V C

t ∪ {v}
20: end if

21: end for

22: return V R
t ,V C

t
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4.3.1 Datasets

We study three different datasets1: the bibliography database DBLP, the Internet movie

database IMDB, and the Enron email dataset. For DBLP and IMDB, we track the evolution

of the co-authoring and co-starring networks over time, with a timestamp for each year. For

Enron, we look at the email network with a timestamp per month. Each node is a researcher in

DBLP, an actor or actress in IMDB, or an employee in Enron. The DBLP and IMDB networks

are undirected: there is an edge between two persons if they collaborated in the same paper or

movie. The edge weights are the number of times two corresponding persons worked together.

The Enron email network, on the other hand, is directed: each email creates edges from the

email sender to all receivers. Edge weights are the number of emails between two involving

persons. Figure 4.2 summarizes the number of nodes and edges of the datasets over time.

4.3.2 Detection Procedure

We consider the egonet features listed in Table 4.1 and adopt a linear regression model

lm(xt ∼ ht−W,t−1) as our mapping function f(h) that predicts xt given ht−W,t−1, since it has a

similar spirit as that of an autoregressive model for time series: x′t = α0+
∑t−1

i=t−W αixi, where

αi are constants to be learned. In this case, our distance function becomes:

δlm(h1, h2) = |lm(h1)− lm(h2)|

where lm is a linear regression model, taking a history vector h as input, and predicting the

feature value x at the immediate next timestamp. Such a linear model can be learned efficiently

and in a scalable manner for large datasets.

We discretize the prediction values of lm into bins of size ǫ = 10−5 to reduce computational

overhead. In addition, W = 5 and q = 0.01. If δlm(h1, h2) < Ω = 5, h1 and h2 are equivalent.

1Code and data for this paper are available online at http://www.cs.ucsb.edu/~mhoang/release/
risingstars/
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Figure 4.3: top-5 rising stars for different egonet features in DBLP, year 1980.

(a) Lawrence Rowe, 1979 (b) Lawrence Rowe, 1980

Figure 4.4: Egonets in 1979 and 1980 of Lawrence A. Rowe, who became a rising star in
1980. Edge weights are the number of co-authored papers between researchers.

Finally, Algorithm 1 summarizes the procedure for finding rising stars and star creators.

4.3.3 DBLP

The top-5 rising stars of DBLP in 1980 are reported in Figure 4.3 for different egonet

features. We pick the year 1980, so that we can check if the detected rising stars have become

“stars” today. Indeed, it can easily be verified that these people are now well-known computer

scientists. Many of them are detected as rising stars across different egonet features. For

example, Patrick J. Hayes, who has been an influential figure in Artificial Intelligence for

over five decades, is detected in 1980 as a top-5 rising star for degree (Figure 4.3(a)) and

weighted degree (Figure 4.3(b)). Similarly, our algorithm also found Lawrence A. Rowe (the

60



On Rising Stars in Dynamic Graphs Chapter 4

20
07

20
08

20
09

20
10

20
11

20
12

Year

0

20

40

60

80

100

120

140

160

180

D
e
g
re

e

Allen, Woody

Paikin, Steve

Hutcherson, Josh

Eastwood, Clint

Travolta, John

(a) Degree

20
07

20
08

20
09

20
10

20
11

20
12

Year

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
e
ig

h
te

d
 D

e
g
re

e

1e3

Tozzi, Ricardo

Camil, Jaime

Diaz, Gloria

Guerra, Blanca

Seguerra, Aiza

(b) Weighted degree

20
07

20
08

20
09

20
10

20
11

20
12

Year

0

50

100

150

200

250

300

350

400

450

N
u
m

. 
T
ri

a
n
g
le

s

Allen, Woody

Eastwood, Clint

Fox, Liam

De Niro, Robert

Travolta, John

(c) Num Triangles

Figure 4.5: top-5 rising stars for different egonet features in IMDB, year 2012.

founding director of the Berkeley Multimedia Research Center in 1995, Figure 4.3(a)), Michael

Hammer (named by TIME as one of America’s 25 most influential individuals, Figure 4.3(a)

and Figure 4.3(c)), Andrew Yao (famous for the Yao’s minimax principle, Figure 4.3(a)) and

other famous scientists.

Mapping back to the graph, we provide in Figure 4.4 the egonets of one rising star in DBLP

in 1980 (Figure 4.3(a)): Lawrence A. Rowe. As can be seen, there was a significant increase

of activities in Rowe’s egonet from 1979 to 1980.

4.3.4 IMDB

Figure 4.5 shows the top-5 rising stars in a single year 2012 for IMDB with respect to

different features. It is obvious that these rising stars made a big “jump” in the year 2012 for

the corresponding features.

For example, Steve Paikin (Figure 4.5(a)), who hosts a Canadian TV series The Agenda

with Steve Paikin is spotted as a degree-rising star. This show started since 2006, but suddenly

surged in 2012 after being restructured and became a hit. In this show, Steve Paikin is the host

and interacts with many guest actors and actresses, leading to a sudden increase in his degree

in the co-starring network. However, he did not work with the same people multiple times

and thus is not in the top-10 rising stars of weighted degree. On the other hand, actress Aiza

61



On Rising Stars in Dynamic Graphs Chapter 4

Apr-2000
Jul-2000

Oct-2
000

Jan-2001
Apr-2001

Jul-2001
Oct-2

001
Jan-2002

Time

100

101

102

103

104

Co
un

t Executives knew
of the problem
Apr-May, 2001

Enron scandal
Oct-Nov, 2001

Out-degree rising stars
In-degree rising stars
Number-of-email outliers

Oct-
2000

Jan-2001

Apr-2
001

Jul-2
001

Oct-
2001

Jan-2002

Year

0

50

100

150

200

250

In
-d

e
g
re

e

Jeffrey Skilling

Kenneth Lay

Richard Causey

Jeffrey McMahon

Mike McConnell

John Lavorato

Oct-
2000

Jan-2001

Apr-2
001

Jul-2
001

Oct-
2001

Jan-2002

Year

0

200

400

600

800

1000

O
u
t-

d
e
g
re

e

Jeffrey Skilling

Kenneth Lay

Richard Causey

Jeffrey McMahon

Mike McConnell

John Lavorato

Figure 4.6: Rising stars in Enron: (a) Number of rising stars based on in-degree/out-degree vs.
outliers based on email count over time; (b-c) In-degree/out-degree of some Enron executives
over time. They had surging activities in (b-c) during the two turning points in (a).

Seguerra (Figure 4.5(b)), who was also on a TV series–Be Careful with My Heart–co-starred

repeatedly with other people in the same series and thus stood out as a “weighted degree” rising

star.

While the degree and weighted degree of a node show how well the corresponding person

is connected with other people, the number of triangles and the egoweight indicate how often

his or her collaborators interact with each other. Woody Allen (Figure 4.5(c)) is a very famous

writer, director and actor, who has collaborated with many other people during his long and

successful career. With his influence, he has also provided the opportunities for his collabora-

tors to know each other, and open up future collaboration. The year 2012 marked a big increase

in the activities in his egonet, showing that his influence helped create new connections in the

co-starring network. Similar analyses are also true for other rising stars shown in Figure 4.5.

4.3.5 Enron

For the Enron email dataset, we know the timeline of the Enron scandal, which was re-

vealed in October, 20012. Therefore, the list of people who were responsible for this scandal,

especially the Enron executives as listed in Table 4.2, can be used as a ground truth for ris-

ing stars. Specifically, we are interested in whether these people can be spotted as rising stars

during the critical events for this scandal.

2http://en.wikipedia.org/wiki/Enron_scandal
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Name Rising stars (Year 2001)
Jeffrey K. Skilling Mar, Apr, May

Kenneth L. Lay May, Aug, Sep
Mike S. McConnell May, Oct

John J. Lavorato May
Jeffrey McMahon May, Oct
Richard A. Causey Jan, May, Jul, Oct, Dec

Table 4.2: Some Enron executives and when they are detected as rising stars based on in-
-degree/out-degree. May and October, 2001, were the two turning points (see Figure. 4.6(a)).
Skilling and Lay were the two most responsible for Enron scandal and were among the earliest
rising stars around the turning points.

To begin with, we look at the number of rising stars over time. Since our framework tries

to find rising stars, the number of rising stars would likely surge when a big change is affecting

the network, causing a sudden increase in the activities of many people. This phenomenon is

confirmed in Figure 4.6(a). Two peaks in the number of outliers for the in-degree (number

of email senders) and out-degree (number of email recipients) can easily be seen from this

figure in May, 2001, and October, 2001. Based on the timeline of the Enron scandal, these two

peaks correspond to two important events: (i) the executives knew of the problem but decided

to “cook the books” during the period of April to May, 2001; and (ii) the Enron scandal was

revealed in October, 2001.

A closer look at the two peaks in the number of outliers reveals an interesting story. Fig-

ure 4.7 shows the instant vectors for the in-degree of nodes in the Enron email network at the

peaks (the Enron executives listed in Table 4.2, as well as other executives, are marked as yel-

low stars). The second column in Table 4.2 also shows the months in which the executives

are detected as rising stars. In addition, Figure 4.6(b) and 4.6(c) report the evolution of the

in-degree and out-degree of some Enron executives who are identified as rising stars.

Two months prior to the first peak—March and April, 2001—Jeffrey Skilling suddenly

stood out as a rising star although his activities were normal before that, as seen in Table 4.2

and Figure 4.6(b). On the other hand, most of other executives were still deemed normal.

Note that Skilling is not identified by our method as a rising star before April, 2001. This
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observation indicates that Skilling was the first executive to know of the accounting problem in

the company, leading to a significant increase in his email exchange. Indeed, he (as the CEO at

this time) and Kenneth Lay (the new CEO after August, 2001) were the two most responsible

persons for the scandal. After that, at the peak of May, 2001, most of the other executives also

learned about this issue and became rising stars as well (Figure 4.7(a) and Table 4.2).

At the second peak in October, 2001 (Figure 4.7(b)), the highest executives (Skilling and

Lay) already knew of the upcoming scandal and made necessary financial arrangement for

themselves. While they still had high level of activities, they were not rising stars anymore

because our method targets nodes with sudden increase in activities given low levels of activity

before that. The rising stars now were other employees in the company, who learned about it

later as the scandal was unfolding in October 2001, causing a big increase in email activities of

many people, shown as the big group of red diamonds in Figure 4.7(b). Last but not least, as

time goes by from May to October 2001 (Figure 4.7), the prediction f(h) increased, suggesting

that in general the volume of emails in the Enron network increased. However, the rising stars

detected in these two months are very different, showing that our approach is effective as it

does not merely look at volume of changes. To summarize, our definition of rising stars shows

its strength in both detecting important events and capturing the initiators of such events.

(a) May, 2001 (b) October, 2001

Figure 4.7: Rising stars in Enron during the peaks in Figure 4.6(a) for number of senders
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(a) Degree (b) Weighted Degree (c) Node weight (d) Num. Triangles (e) Ego weight

Figure 4.8: Induced subgraphs of rising stars in DBLP (Year 2000).

4.4 Characterizing Rising stars and star creators

In this section, we provide further analyses on the graphical properties of the rising stars

and the evolutionary relationship among the rising stars, star creators and super stars, the last

of which is defined as:

Definition 4.4.1 TOP-K SUPER STARS: The top-k super stars at time t for feature x are the

top-k nodes with the highest values for x at t.

4.4.1 Induced subgraphs of rising stars

Due to the collaborative nature of the nodes in DBLP and IMDB networks, an “event” (the

appearance of a movie or a paper) affects the features of all nodes involved, especially when

the event involves many individual nodes. Under that circumstance, we suspect that, for certain

features in the egonet, there is a strong relationship between the rising stars in terms of their

graph-topological positions. In particular, the question of interests is: Are the set of rising stars

more closely knit than a random subset of people of the same size?

To investigate whether there is a strong coupling effect among the discovered rising stars,

we first look at the induced subgraphs formed by the detected rising stars and examine their

connectivity. Figure 4.8 shows the induced subgraphs of rising stars for five egonet features in

DBLP network in the year 2000. Except for “node weight”, the rising stars for all the other
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four features (degree, weighted degree, number of triangles, and ego weight) indeed exhibit

strong clustering among them. This is because these four features are structural properties, and

the structural changes introduced by rising stars affect these features of other nodes in their

egonets as well. On the other hand, node weight is not a structural feature of an egonet and

may not necessarily correlate with an emergence of rising stars in the egonet–the collaborators

of a productive researcher with high node weight are not necessary productive as well. With

this observation, we next evaluate this clustering effect quantitatively.

4.4.2 Clustering effect among rising stars

We use the decayed hitting time (DHT) [44] to quantitatively measure the extent to which

the rising stars cluster and form small communities, by comparing the average DHT among the

rising stars against that among a random subset of nodes in the same networks. More specif-

ically, given a set of considered nodes in the network, multiple random walks are performed

from each of these nodes, with a bound for the maximum number of steps, until another node

in this set is visited. Intuitively, if the set of rising stars are more clustered than a random set

of nodes, the average length of such random walks should be significantly lower for the set of

the rising stars.

Given a set of nodes B, and a node v /∈ B, [44] quantifies this effect by the decayed hitting

time (DHT) defined by:

DHT (v, B) =
∞
∑

t=1

e−(t−1)Pr(TB = t|xo = v)

where Pr(TB = t|xo = v) is the probability that a random walk starting from v will hit a node

in B after t step. The greater DHT (v,B) is, the more likely that v will hit B.

What we are interested in, given a set of nodes V , is the average value of DHT (v, V \{v})

over all nodes v in V , defined as follows:
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Figure 4.9: z-score of average delayed hitting time of rising-star-induced subgraphs against
random subgraphs of same sizes for each year 2000-2012.

ρ(V ) =

∑

v∈V DHT (v, V \ {v})
|V | (4.3)

With this definition, we would like to verify if the average DHT of a subset of rising stars V R is

significantly higher than that of a random subset of nodes V rand such that |V rand| = |V R|. We

use the approximation algorithm in [44] to compute the z-score of ρ(V R) against ρ(V rand):

z-score(V R) =
ρ(V R)− E[ρ(V rand)]
√

V ar[ρ(V rand)]

If ρ(V rand) follows a Gaussian distribution, a z-score of 1.65 corresponds to a p-value < 0.05,

signifying that ρ(V R) deviates significantly from the expected value of ρ(V rand).

Figure 4.9 shows the z-scores for the rising stars in each year from 2000 to 2012 in DBLP

and IMDB. As can be seen, the z-scores are in general much higher than 1.65, confirming our

intuition that the rising stars often cluster together in the network. It must be noted that there is

one big difference between DBLP and IMDB: the clustering effect is strongest for degree, and

weakest for node weight in DBLP, while the reverse is true for IMDB. Node weight, however,

is an exception because it is not a topological feature, and therefore the higher z-scores for

node weight in IMDB are likely due to some other reason—perhaps a financial one: in order
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Figure 4.10: z-score of average delayed hitting time of rising-star-induced subgraphs in DBLP
2014, and IMDB 2012 against random subgraphs of same sizes in years 2000-2014

for a movie/TV series to be popular and have a high expected return, actors/actresses that are

growing into stardom (i.e., the rising stars, literally) are often cast together in it.

4.4.3 Evolution of the clustering effect

Given the fact that these rising stars are more tightly-knit than average, the next question is

how such relationship evolves over time. To answer it, we investigate the evolution of z-score

given a fixed set of rising stars. In particular, the evolutions of z-scores for the set of rising

stars detected in 2014 for DBLP and 2012 for IMDB against random subgraphs of same sizes

extracted from the corresponding network snapshots during the period 2000 to 2014 are shown

in Figure 4.10.

Similar to Figure 4.9, the z-scores of the rising stars in the last years (2014 for DBLP, and

2012 for IMDB) in Figure 4.10 are very high. More importantly, the z-scores for these features

increase over time until reaching their highest values in the years they are detected as rising

stars. At first, the set of rising stars were just as clustered as a random subgraph in the network

(year 2000). As time goes by, the future rising stars are gradually attracted to each other more

so than other random nodes on their way to becoming ones. In other words, the rising stars
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Star creators Nt(v) NR
t (v) Super stars Nt(v) NR

t (v) Top PageRank Nt(v) NR
t (v)

Ian T. Foster 75 12 HongJiang Zhang 74 4 HongJiang Zhang 74 4
Nicholas Ayache 56 9 Thomas S. Huang 33 1 Ming-Yang Kao 40 0
Miguel Toro 34 6 Lajos Hanzo 23 0 Kang G. Shin 42 4
Hans-Peter Meinzer 34 7 Ming-Yang Kao 40 0 Ian T. Foster 75 12
Ya-Qin Zhang 33 7 Hong Yan 27 0 Alberto L. Sangiovanni-Vincentelli 54 3
Shih-Fu Chang 32 7 Mario Piattini 30 1 Ching Y. Suen 36 0
Stefan HaÃ§feld 32 9 Ian T. Foster 75 12 Heung-Yeung Shum 48 4
Robert Krempien 31 9 Mahmut T. Kandemir 28 0 Hong Yan 27 0
Marc Engels 31 6 Mario Gerla 41 4 Vladik Kreinovich 43 3
Heinz WÃűrn 30 9 Vladik Kreinovich 43 3 Ron Kikinis 58 3

Table 4.3: Top-10 star creators, super stars and PageRank nodes for feature node weight in
DBLP, year 2001, and the number of rising stars in their egonet NR

t (v).
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Figure 4.11: Star creators have more rising star neighbors than the top super stars and top–
PageRank users in 2013.

evolve together over time.

4.4.4 Star creators

In this section, we evaluate the star creators in DBLP by comparing them with two other

types of influential nodes: (1) nodes with high PageRank [45] and (2) super stars. Note that

nodes with high PageRank likely have high degree.

First, as defined in Section 4.2.3, star creators are nodes with much more rising star neigh-

bors than other nodes in the network. Thus, we study the distributions of the number of rising

stars within the 1-hop neighborhood for star creators, top super stars and top PageRank nodes.

The results are shown in Figure 4.11 as violin plots (a box plot combined with a kernel density
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Figure 4.12: Number of star creators and new star creators (not a creator in the past) in each year.
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Figure 4.13: Rising stars in 2000, and who they became after that. Total number of rising
stars: (a) 1521, (b) 4401, (c) 4475
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Figure 4.14: Star creators in 2013, and who they were before.

70



On Rising Stars in Dynamic Graphs Chapter 4

2000
2003

2006
2009

2012

Year

0

200

400

600

800

1000

C
o
u
n
t

Star creators

Rising stars

Super stars

(a) Degree

2000
2003

2006
2009

2012

Year

0

200

400

600

800

1000

C
o
u
n
t

Star creators

Rising stars

Super stars

(b) Node Weight

2000
2003

2006
2009

2012

Year

0

200

400

600

800

1000

C
o
u
n
t

Star creators

Rising stars

Super stars

(c) Ego Weight

Figure 4.15: top-1000 super stars (2013), and who they were before.

estimate of the probability density function). It can easily be seen that the star creators on

average have more rising star neighbors across all five egonet features compared to both the

super stars and top influential nodes based on PageRank. Additionally, the top-10 star creators,

super stars and PageRank nodes for feature node weight in year 2001 of DBLP are shown in

Table 4.3. As can be seen, while all three types of nodes cover prominent researchers, star

creators have significantly more rising stars neighbors (NR
t (v)) in year 2001 than super stars

and top PageRank nodes. This observation suggests that influential nodes (super stars with

highest feature values or top PageRank nodes with relatively highest number of neighbors) at

each timestamp are not necessarily nodes that create many stars in their neighbors at that time.

Second, we ask if star creators are persistent in time, i.e., how likely a star creator at time

t continues to create more rising stars in its neighbors at time t′ > t. Figure 4.12 shows the

number of star creators per year, as well as how many of the creators were not a creator ever

before that (new star creators). As can be seen, while there are some persistent star creators

over time, most star creators are indeed new. This observation suggests that there are some

very prolific creators, but most of them are only temporarily active.

We next explore the evolution of rising stars and star creators with two questions: (1) How

many nodes became star creators and super stars after they were detected as rising stars?; and
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(2) What types of nodes became star creators?

For the first question, we track the set of rising stars in year 2000, and count how many of

them became star creators, top super stars, or both, from 2000 to 2013. Figure 4.13 shows that

a number of rising stars continued to be active and became more influential over time, that is

they became super stars and star creators. However, most of the rising stars did not develop

into stardom, which naturally reflects real life.

For the second question, we find the star creators in year 2013, and track their evolution

from 2000 to 2013 to see who they became as time went by. As seen in Figure 4.14, there is

a turning point right at the year 2013 when these star creators came into being. In this year,

a large number of star creators were also rising stars and super stars. However, while some

creators were also active in the past (past rising stars, super stars or creators), most of them

only recently developed into stardom in 2013, which echos the observation in Figure 4.12.

Similarly, we look at the top-1000 super stars in 2013, and track their evolution from 2000

to 2013 in Figure 4.15. It can be seen that many super stars were also very active in the past.

In addition, once a node became a super star, it likely continued to be a super star, as shown

by the progress of the red circles over time in Figure 4.15. In other word, super stars likely

persists over time.

To conclude this section, we note that a majority of star creators and super stars (>50% of

each year) were rising stars at some point in the past.

4.5 Discussion

4.5.1 Comparison between quartile-based and density based approach

We compare our quartile-based definition of rising stars against Local Outlier Factor (LOF) [46],

a density-based outlier detection that can be used to find outliers in the instant vector space
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(a) LOF-based (b) Quartile-based

Figure 4.16: Top-50 outliers in the instant vector space (f(h), x) for node weight using Local
Outlier Factor (LOF) v.s. quantile-based approach (DBLP, node degree, year 2012).

(f(ht−W,t−1), xt) at time t. Figure 4.16(a) plots the distribution of node degree against the

mapped history using a linear regression model f = lm for all nodes in DBLP (year 2000),

and the top-50 LOF outliers (yellow diamonds in the figure). On one hand, many of the out-

liers have very small feature values, and thus are not rising stars as per Characteristic C1. On

the other hand, many other nodes have high feature values, but these values do not deviate

much from the predicted value. Thus, they do not satisfy Characteristic C2 and C3. Besides

LOF, any outlier detection approach that merely focuses on the density in the instant vector

space also has this problem, and therefore, is not a good candidate for finding rising stars.

Figure 4.16(b) illustrates the same example as in Figure 4.16(a), but uses our quartile-based

definition for rising stars. Now the outliers are true rising stars: true feature values deviate and

are much higher than predicted feature values.

4.5.2 Comparison between history-based rising stars and feature-value-

based outliers

Our rising star definition only compares egonets with similar history h. To better support

this choice, we compare our rising stars with a simpler definition: outliers are the egonets
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with abnormally high feature values at a specific timestamp (feature-value-based definition).

In particular, we look at the number of emails a person had during each month in the Enron

datasets. A person is regarded as an outlier at a timestamp if the number of emails is more than

Q3+3∗IQR, where Q3 and IQR are the third quartile and the interquartile range. We compare

these two different approaches in Figure 4.6(a). While there is a big overlap between the set

of outliers identified by the two approaches, the number of outliers for the feature-value-based

definition is significantly higher, making its utility significantly less. This definition does not

take into account the different history of people. Therefore, people with high level of activity

are always considered as outliers at each timestamp while they should not be identified as

outliers over time. In this aspect, our method performs better, since it only compares objects

with similar histories.

4.5.3 Capturing recent trends

Comparing an instant vector with other instant vectors within the same windows already

captures the evolutionary trend at the last timestamp in the given time window. However, it

does not capture the recent trend in the whole given time window. Capturing such a trend will

have several benefits. First, not all nodes in the network follow the global shift in evolutionary

pattern. Ignoring the recent past trend will likely lose this information. Second, since we only

compare nodes with similar history vector, nodes in the sparse region of the instant vector space

will have few equivalent nodes to be compared against. Consequently, the results for rising star

detection in such regions will be less stable. Adding the recent past instant vectors to the pool

for comparison will give us more reference points, leading to more stable results. Thus, in our

empirical analysis, instead of merely comparing among the instant vectors at timestamp t over

the time windows [t −W, t], we also add to the reference pool the past instant vectors from

timestamp t−W to timestamp t−1. The reference feature value set at time t in Definition 4.2.3
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Figure 4.17: The power law between the number of nodes, edges and rising stars for feature
node degree in DBLP. Each plus sign is for one year. α and β are fitting parameters for red
solid lines.

now becomes:

Ŝt = {xti |t−W ≤ ti ≤ t− 1;m ≡ti−W,ti−1 n;m ∈ Vti}

4.5.4 Evolution of number of rising stars

Claim 1 POWER LAW OF RISING STARS: The number of rising star rt, the number of nodes

nt, and the number of edges et at time t in a dynamic network follow a power law as the

network evolves: rt ∝ n
βn,r

t and rt ∝ e
βe,r

t .

Claim. 1 is validated by empirical results in Figure 4.17, which contains the fitting results

for rising stars based on node degree. The numbers of rising stars show clear growth patterns

according to power laws, albeit with varying degrees in terms of growth rate. This observation

is only a preliminary result and deserves more future research effort.

4.5.5 Computational Complexity

Our method for detecting rising stars can be divided into two steps: (1) Computation of

egonet features for all nodes in a graph and (2) quartile-based outlier detection. As proved
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Figure 4.18: Running time vs. number of nodes over time. The inset plot in Figure 4.18(a)
shows the feature computing time vs. number of nodes for clearer visualization.

in [47], the computation of egonet features takes O(N), where N is the number of nodes, for

real-wolrd graphs. The linear regression model can be learned in O(W 2N) ≈ O(N), where W

is the width of the time windows. After that, all nodes are sorted to find the quartiles for rising

star detection, which takes at most O(N logN). Thus, in total, for each time step, the com-

plexity is O(N logN), and our solution is thus scalable for large datasets. Figure 4.18 shows

the running time of our framework (feature computation and rising star detection) against the

number of nodes over time for two datasets DBLP and IMDP. As can easily be seen, the run-

ning time is within the bound of O(N logN). It is noteworthy that the running time of our

method can be reduced further since the outlier analysis can be split and performed in parallel

for each bucket.

4.6 Related Work

Our work can be put in the general theme of outlier detection in graphs. In [40], authors

establish several laws governing the relation between different features of an egonet in static

graphs, and uses them for outlier detection. Another body of work pays more attention to the

structural pattern of the network, including [41–43]. If one applies methods designed for static
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methods in dynamic graphs, however, an egonet that is an inlier in a certain snapshot of the

graph may stand out as an outlier if its evolutionary pattern over time is taken into account.

For dynamic graphs, a body of work deals with finding events in the evolution of the whole

graph [48–50], i.e., time points when the structure of the graph changes significantly. As a

by-product, the nodes or edges that possibly account for the event may also be found. [51]

looks at individual edges in a network and compares them against the average behavior of

all edges to find outliers, yet overlooking the graph aspects of the problem. [52] facilitates

reservoir sampling to find abnormal edges by constructing a probabilistic model based on the

connectivity pattern among nodes.

Most similar to our work is the detection of node outliers from dynamic graphs by tracking

their egonet features [49, 53]. The main focus of these papers, however, is not the definition of

outliers, but rather how to compute a set of features that capture the evolution patterns of nodes

in a dynamic network. Our work, on the other hand, defines the novel concepts of rising stars

and star creators. The features used in [49, 53] can be plugged into our framework and used

for the detection of rising stars as well. Furthermore, we focus on the next step of empirically

analyzing the evolutionary behavior of rising stars, star creators and super stars over time,

instead of just finding outliers as in these papers.

4.7 Conclusion

In this paper, we define two novel concepts in dynamic graphs: rising stars and star creators.

In particular, rising stars are nodes that suddenly become very active, compared to the history

of both itself and other nodes, and often signify critical events in the graphs. By empirically

studying three real-world networks (DBLP, IMDB and Enron emails), we find meaningful

rising stars in their early stage of emergence. Furthermore, we perform deep analysis of the

evolution of rising stars, star creators and the relationship among them in the dynamic graphs.
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We discover interesting topological evolutionary patterns of these rising stars and star creators,

opening up possible future research directions.
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Part II

Mining Network Patterns to Summarize

Network Processes
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After having verified that the network structures do impact different networked behaviors,

the next step is to mine network patterns that best summarize such an impact.

In Chapter 5, I summarize different processes in a networks by a small yet interpretable

set of network patterns, each of which represents a local community of connected nodes fre-

quently participating in the same network processes. I formulate this problem as a Binary

Matrix Factorization with a network constraint, which I prove to be NP-hard. I then propose a

greedy algorithm that incrementally adds the best patterns and make it more scalable with two

further improvements. First, to decide which network processes contain which network pat-

terns, I introduce two mapping algorithms with linear costs. Second, to systematically mine the

exponential subgraph search space for good patterns, I devise two sampling algorithms based

on Monte Carlo Markov Chain sampling. Experimental results on both synthetic and real-

world datasets show that our solutions are scalable and find network patterns that effectively

summarize network processes.

In Chapter 6, given a function that classifies a data object as relevant or irrelevant, I con-

sider the task of selecting k objects that best represent all relevant objects in the underlying

database. This problem occurs naturally when analysts want to familiarize themselves with the

relevant objects in a database using a small set of k exemplars. In this paper, I solve the prob-

lem of top-k representative queries on graph databases. While graph databases model a wide

range of scientific data, solving the problem in the context of graphs presents us with unique

challenges due to the inherent complexity of matching structures. Furthermore, top-k repre-

sentative queries map to the classic Set Cover problem, making it NP-hard. To overcome these

challenges, I develop a greedy approximation with theoretical guarantees on the quality of the

answer set, noting that a better approximation is not feasible in polynomial time. To further op-

timize the quadratic computational cost of the greedy algorithm, I propose an index structure

called NB-Index to index the θ-neighborhoods of the database graphs by employing a novel

combination of Lipschitz embedding and agglomerative clustering. Extensive experiments on
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real graph datasets validate the efficiency and effectiveness of the proposed techniques, which

achieve up to two orders of magnitude speed-up over state-of-the-art algorithms.

In Chapter 7, I extract discriminative subgraphs from global-state networks. Global-state

networks provide a powerful mechanism to model the increasing heterogeneity in data gen-

erated by current systems. Such a network comprises of a series of network snapshots with

dynamic local states at nodes, and a global network state indicating the occurrence of an event.

Mining discriminative subgraphs from global-state networks allows us to identify the influen-

tial sub-networks that have maximum impact on the global state and unearth the complex re-

lationships between the local entities of a network and their collective behavior. In this paper,

I explore this problem and design a technique called MINDS to mine minimally discrimina-

tive subgraphs from large global-state networks. To combat the exponential subgraph search

space, I derive the concept of an edit map and perform Metropolis Hastings sampling on the

map to compute the answer set. Furthermore, I formulate the idea of network-constrained de-

cision trees to learn prediction models on a subgraph without compromising on the underlying

network structure. Extensive experiments on real datasets demonstrate excellent accuracy in

terms of prediction quality. Additionally, MINDS achieves a speed-up of at least four orders

of magnitude over baseline techniques.
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Chapter 5

Summarizing Network Processes with

Network-constrained Binary Matrix

Factorization

5.1 Introduction

Network structures exist in many different types of real-world data and play an important

role in guiding various processes happening in the data. Some example network processes

are: explicit and implicit information spreads in social networks, a cascade of function calls

triggered by a program in a distributed system, congestion in traffic networks, the firing of brain

regions in a brain network when a person performs a task, and the spread of failures in computer

networks. In all of these scenarios, the network processes are affected by two main sources:

(i) exogenous factors, and (ii) the network structure. For example, within the Twitter social

network, a user will be exposed to a piece of news either by reading an external news website,

or by reading the tweets of his/her friends. It must be emphasized that the information source

and the direction of a process within a network are not always available explicitly. Specifically,
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we can determine without a doubt from who a user retweets in Twitter. However, this is not

the case for the spread of a hashtag. If multiple friends of a user have used this hashtag before

he/she does, we cannot attribute exactly from who this user learns about this hashtag.

In order to understand and analyze the network effect, the first step is to isolate repeated

network patterns in the complex network processes. Each such network pattern represents a

local community of connected nodes with similar dynamic behaviors. Identifying these pat-

terns is helpful for understanding, controlling and predicting the behaviors of future network

processes. Table 5.1 outlines the patterns we can mine from different network processes and

their potential usage for various management, optimization, and analysis tasks.

In this paper, we find the top-k network patterns to best summarize a set of network pro-

cesses. We define a network pattern as a connected subnetwork to capture the effect of the

network structure on the progress of network processes. A pattern is essentially a local com-

munity of nodes who strongly and repeatedly affect each other’s behaviors in various network

processes due to their network connections. Such a pattern looks beyond individual active

nodes and pinpoints the different impacts of different parts of the network on a network pro-

cess. Fig. 5.1 shows an example network pattern in Twitter and the spreads of 6 Iran-related

hashtags within this pattern. Here, users that participated earlier in the spread are coded as red-

der and bigger nodes; the directed edges point from earlier to later participating nodes. While

the network structure guides the spread of the hashtags, it is clear from Fig. 5.1 that the order

of infection and thus the edge directions are vastly different among different hashtags. Such

an observation is prevalent in real-world data due to the randomness in user behaviors, such as

when a user is active online or what external websites a user visits. Thus, if the exact order

of infection and the edge directions of infection are included in the pattern definition, it would

lead to small or infrequent patterns. Moreover, the edge directions are not available in many

scenarios: e.g., implicit information spreads and brain network examples in Table 5.1.

Random node behaviors also make it harder for exact matching of network patterns into
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#Iran #Iran88 #16Azar

#Iranelectio #Amnesty #IranElection

(a) A naive 

pattern 

(subnetwork)

in Twitter

(b) The spread of six hashtags in the subnetwork in (a)

Figure 5.1: The spreads of 6 Iran-related hashtags in a Twitter’s subnetwork. Bigger/redder
nodes (users) participated earlier in the spread. Edges are directed from ealier to later partici-
pating nodes.

#Fonts

#Inspiration #tutorial#Free #font

#HTML#CSS #Illustrator

#icons

#Logo

#CSS3

Approximate 

pattern

Figure 5.2: An approximate pattern in Twitter and the spreads of design-related hashtags in
this pattern. Bigger/redder nodes (users) participated earlier in the spread. Edge directions
are omitted for clarity.
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Examples 1) Explicit informa-
tion spreads

2) Implicit information
spread

3) Function call anal-
ysis

4) Traffic network
analysis

5) Brain network 6) Computer network

Nodes Users Users Functions Road segments Brain regions Computer servers
Edges Friendship Friendship Call relationship Intersections Correlations Connections
Network
process

Explicit information
spreads (known source
and target nodes), e.g.,
retweets on Twitter.

Implicit information
spreads (unknown source
nodes), e.g., hashtag
usage on Twitter.

Function calls Spread of traffic jam Activity of brain re-
gions during a task.

Spread of failure or
overload

Network state
at time t

Directed graph among
infected nodes

Set of infected nodes Directed graph of func-
tion calls

Set of jammed road
segments

Set of active regions Set of failed, overloaded
servers

Network
pattern

A frequent path of
spread.

A local connected com-
munity that frequently re-
acts to the same content.

A frequent function call
path.

A set of frequently
jammed connected
road segments.

A set of brain regions
active together during
a task.

A set of connected
servers that often fail
together.

Pattern usage Target and control in-
formation spread.

Target and control infor-
mation spread.

Optimize frequent
paths to reduce latency.

Redesign the patterns
to reduce traffic jams.

Understand and opti-
mize brain activity.

Redesign network to
avoid the failed patterns.

Table 5.1: Example applications of network-constrained patterns.

network processes. A single mismatched node can cause the network process not to contain

the pattern, which is understandably common in real-world data, especially in social media data

and brain network data (it is not easy for a subject to focus on a single task when his/her brain

activity is recorded, leading to noisy data). As a result, it is reasonable to adopt an approximate

matching scheme that allows some nodes in a pattern to be missing in the network processes,

as shown in the example in Fig. 5.2.

From the above observations, we aim to find network patterns that represent connected

local communities that often react to the same stimuli with the following six characteristics:

• C1. Best summarize the network processes.

• C2. Correspond to connected subgraphs of G.

• C3. Appear frequently in the network processes.

• C4. Have considerable sizes (number of nodes).

• C5. Robust to noise in which nodes get infected.

• C6. Robust to noise in the order of infection.

Here, C1 naturally targets our summarizing goals, C2 captures the network effect, C3 and

C4 guarantee that the obtained patterns are significant: i.e., they are large and connected sub-

networks that appear frequently in different network processes. Finally, C5 and C6 deal with

the fact that network processes in real life are highly stochastic: seldom do the exact same

set of nodes get infected repeatedly and in the exact same order. In summary, we restrict our
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patterns to be big, frequent, connected, and undirected subnetworks.

Our contributions are as follows:

• We introduce network-constrained Binary Matrix Factorization (netBMF) as a novel data

mining challenge to find top-k network patterns to summarize complex network processes.

• We prove that netBMF is NP-hard and then propose a greedy solution. We next improve

the greedy algorithm into four scalable variants by solving two sub-problems as shown in

Fig. 5.7. First, we propose two linear algorithms to efficiently map network patterns to

network processes. Second, we design two MCMC sampling algorithms to cope with the

exponential subgraph space of a network.

• Extensive experimental results on both synthetic and three real-world datasets indicate that

our proposed solutions are scalable and achieve a good trade-off between interpretabil-

ity and accuracy compared to other baselines. Code and data are available at https:

//tinyurl.com/yae6s36s.

Outline: Section 5.2 presents baseline approaches. Section 5.3 formally defines the prob-

lem. Section 5.4 discusses the computational challenges. Section 5.5 presents our solutions.

Section 9.5 shows experimental results. Finally, Section 5.7 discusses the related work and

Section 5.8 concludes the paper.

5.2 Three baseline approaches

Consider the undirected network G in Fig. 5.3a. The spread of a disease—a network pro-

cess—in G can be represented as a directed and possibly disconnected graph among the in-

fected nodes. A node can get infected by an external source or a neighboring node. Fig. 5.3b

shows 10 network processes in G. We define the final set of infected nodes at the end of a

disease spread as its network state. We now discuss 3 approaches to finding network patterns

from this set of network states.
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Figure 5.3: Network, network processes, and final network states (final set of participating nodes)

Binary Matrix Factorization (BMF): If we ignore the network structure, the final network

states of these network processes can be described by a binary state matrix S (which states

contain which nodes, Fig. 5.3c). Using BMF techniques such as ASSO [1], we can summarize

S by a binary pattern matrix B (which nodes belongs to which patterns), and a binary mapping

matrix M (which network states contain which patterns) (Fig. 5.4a). Denote S∗ = M ⊙ B as

the recovered state matrix, where⊙ is binary matrix multiplication. The summarization error is

||S ⊕ S∗||2F , where ⊕ is logical XOR and the squared Frobenius norm ||.||2F counts the number

of different bits between S and S∗. For the example in Fig. 5.4, the error of ASSO is 10. While

ASSO succeeds in summarizing S (S∗ in Fig. 5.4a is similar to S in Fig. 5.3c), ignoring the

network leads to infrequent or disconnected patterns. Fig. 5.4b shows the induced subgraphs in

G of the obtained patterns: the first and fourth patterns are disconnected subgraphs; the third

one is a single node with high frequency (f = 7); the second one is a huge subgraph with low

frequency (f = 1, only matches P1 in Fig. 5.3b) and is unlikely to fit unseen data. Thus, ASSO

(and BMF in general) satisfies C1, C5, and C6, but not C2, C3, and C4.

Frequent subgraph mining: To capture network effect, we can find frequent subgraph

patterns in the network processes using gSpan [2], a popular tool for frequent subgraph min-

ing. Fig. 5.5a shows the top-5 frequent connected and undirected subgraphs from Fig. 5.3c.
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Figure 5.4: Finding top-5 binary patterns in S with ASSO [1]

Unfortunately, the top-5 frequent subgraphs only have one or two nodes (the most active nodes)

and do not capture any network effect. An obvious improvement is to rank the subgraphs by

their coverage, i.e., the products of their frequencies and sizes, as shown in Fig. 5.5b. While the

obtained subgraphs are bigger, they overlap significantly and thus are not powerful in summa-

rizing networked behaviors. Besides, gSpan uses exact matching (a pattern must lie completely

within a network process). Consequently, both of these approaches lead to remarkably higher

summarization errors compared to ASSO (39 and 38 compared to 10). In summary, gSpan

achieves C2, C3, C4, and C6, but not C1 and C5.

Network-constrained BMF: This paper introduces netBMF, which incorporates all char-

acteristics C1-C6 to yield the result in Fig. 5.6 (frequency and size thresholds are 2 and 3) with

only a small compromise in summarization error (14) compared to ASSO (10), while obtain-

ing frequent and connected local communities that constitute the network processes. netBMF

features an elegant trade-off between BMF (accuracy) and frequent subgraph mining (inter-
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Figure 5.5: Finding top frequent subgraphs using gSpan [2].

pretability). It is generic, scalable and can be applied to the problem of BMF when the dataset

is huge and has network constraints.

5.3 Problem Definition

Let us denote a network as G = (V,E), where V = {v1, . . . , vn} is the set of nodes, and E

is the set of edges. A network process is an infection process over time on a network G. Each

node can get infected from an external source outside G or a neighboring infected node in G.

The network state s ⊆ V of a network process is its final set of infected nodes.

Definition 5.3.1 (State matrix) The state matrix of a set of network states S = {s1, . . . , sm}

is S ∈ {0, 1}m×n, where Si,j = 1 iff vj ∈ si, i.e., node vj is infected in the network process

corresponding to si.

Fig. 5.3c shows the state matrix for the processes in Fig. 5.3b.

Problem 5.3.1 (netBMF) Given a network G = (V,E), where V = {v1, . . . , vn}, a state

matrix S ∈ {0, 1}m×n, the number of patterns k, a frequency threshold minf , and a size

threshold minSize, network-constrained Binary Matrix Factorization (netBMF) finds a basis

(pattern) matrix B ∈ {0, 1}k×n, and a mapping matrix M ∈ {0, 1}m×k s.t.:

1. Summarization error g(S,B,M) = ||S⊕(M⊙B)||2F is minimized, where⊕ is logical XOR,

⊙ is binary matrix multiplication, and ||.||F is the Frobenius norm. g counts the number of
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Figure 5.6: Top-5 patterns for the example in Fig. 5.3 by our method netBMF with minimum
frequency 2 and minimum size 3.

different bits between S and M ⊙ B.

2. The induced undirected subgraph in G of each row of B is connected, i.e., Gq = (Vq, Eq)

is connected ∀q = 1, . . . , k, where Vq = {vj ∈ V |Bq,j = 1}, Eq = {(vj, vj′) ∈ E|vj, vj′ ∈

Vq}.

3. Frequency: f(q) =
∑m

i=1 Mi,q ≥ minf , ∀q = 1, . . . , k.

4. Size: |Vq| =
∑n

j=1 Bq,j ≥ minSize, ∀q = 1, . . . , k.

Denote B = {Gq|q = 1, . . . , k} as the net-basis corresponding to B. Each Gq is called a basis

subgraph (a network pattern). We use B and B interchangeably in the rest of the paper.

The four conditions in Problem 5.3.1 aim at the six characteristics of network patterns

discussed in Section 5.1. Specifically, condition (1) helps us satisfy characteristics C1 and

C5 since both negative and positive errors are allowed in the mapping of basis subgraphs to

network states, i.e., both 0s and 1s in S can be flipped in M ⊙B. Condition (2) ensures that C2

is met. Furthermore, since the connectivity of a pattern is checked on the original network G

instead of the directed graphs of the network processes, characteristic C6 is also met. Finally,

conditions (3) and (4) guarantee C3 and C4 respectively.

Fig. 5.6 shows the result of netBMF for the example in Fig. 5.3 (minf = 2 and minSize =
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Figure 5.7: Overview of four solutions for netBMF.

3). Each row of B corresponds to one connected subgraph in G, while each column of M

indicates which network states (approximately) contain that subgraph. The approximated state

matrix S∗ in Fig. 5.6b closely resembles S in Fig. 5.3c, suggesting low summarization error

(g(S,B,M) = 14). Moreover, all obtained patterns are connected subgraphs with at least

3 nodes (sum of each row in B ≥ minSize), and are contained in at least 2 network states

(sum of each column in M ≥ minf ). In conclusion, all four conditions in Problem 5.3.1 are

satisfied.

We solve Problem 5.3.1 by solving two sub-problems (see Fig. 5.7): Problem 5.3.2 finds

M when S and B are fixed, while Problem 5.3.3 finds B, assuming that M can be found for

each given B and S using a solution to Problem 5.3.2.

Problem 5.3.2 (Optimal net-basis mapping) Given a state matrix S ∈ {0, 1}m×n and a ba-

sis matrix B ∈ {0, 1}k×n, find the optimal mapping matrix πo
B,S ∈ {0, 1}m×k such that the

summarization error is minimized, i.e.,

πo
B,S = argmin

M∈{0,1}m×ks.t.
∑m

i=1 Mi,q≥minf,∀q

g(S,B,M) (5.1)

Problem 5.3.3 (Optimal net-basis) Given a state matrix S ∈ {0, 1}m×n, find a valid basis

matrix B or a net-basis B as in Problem 5.3.1, to minimize the summarization error, i.e.,

B = argmin
B′∈{0,1}k×n s.t. B′ is a valid basis matrix

g(S,B′, πo
B′,S) (5.2)

Theorem 5.3.1 Problem 5.3.1 is equivalent to Problem 5.3.3.
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Intuitively, given a net-basis B, i.e., a set of network patterns, Problem 5.3.2 decides which

network processes contain which network patterns to minimize the summarization error. Since

Problem 5.3.3 is equivalent to Problem 5.3.1, it directly outlines a solution to netBMF, which

we will use later in Section 5.5.

5.4 Properties of netBMF problem

5.4.1 NP-hardness

Theorem 5.4.1 Problem 5.3.1 (thus Problem 5.3.3) is NP-hard.

Proof: BMF (Problem 5.3.1 without conditions 2-4) is NP-hard [1]. Given any instance

of the BMF problem, we can always construct an equivalent netBMF problem in polynomial

time, where G is a full graph with nodes corresponding to columns of S, minf = minSize =

1.

5.4.2 Non-submodularity

Theorem 5.4.2 Problem 5.3.3 (thus Problem 5.3.1) is not submodular.

Proof: Denote h(B) = −g(S,B, πo
B,S). Since Problem 5.3.3 minimizes g, it maximizes

h. We prove that h (thus Problem 5.3.3) is not submodular by a counter example. Consider

a full graph with V = {1, 2, 3, 4, 5, 6}, S = {s}, where s = {1, 2, 3, 4}, and four patterns

G1 − G4, whose node sets are V1 = {1, 2, 5}, V2 = {2, 3}, V3 = {1, 6}, V4 = {2, 4, 6}.

Hence, S = [1, 1, 1, 1, 0, 0]. Choose A = {G1} ⊆ B = {G1, G2, G3}. It is easy to show that

πo
A,S = [1, 0, 0], πo

A∪{G4},S
= [1, 0, 0, 0], πo

B,S = [0, 1, 1] or [1, 1, 0], and πo
B∪{G4},S

= [0, 1, 1, 1].

Thus, h(A ∪ {G4}) = h(A) = −3, h(B) = −2, and h(B ∪ {G4}) = −1. Therefore,

h(A∪{G4})− h(A) < h(B ∪ {G4})− h(B) even thoughA ⊆ B. Thus, h is not submodular.
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5.4.3 Computational challenges

Since Problem 5.3.3 is NP-hard but not submodular, we cannot bound the quality of a

greedy algorithm as proved in [54]. Instead, we need to perform the following costly steps:

(1) enumerate all possible connected subgraphs of G, (2) enumerate all possible sets of k

subgraphs, and (3) solve Problem 5.3.2 for each set of k subgraphs. Because the number of

subgraphs of a network grows exponentially with its size, both step 1 and step 2 are infeasible.

Moreover, given a net-basis B of size k, to find the optimal mapping in step 3, we need to check

all 2k possible subsets of B for each network state, leading to a total cost of O(2knm) time,

where n is the number of nodes, and m is the number of network states. Clearly, this exponen-

tial cost is also not scalable for large k. Thus, netBMF presents us with three computational

challenges D1-D3:

• Challenge D1: How to find the best set of k subgraphs without checking all possible sets of

k subgraphs?

• Challenge D2: Can we approximate the optimal net-basis mapping with an algorithm linear

in k?

• Challenge D3. Can we find good candidate subgraphs without enumerating the entire sub-

graph search space?

5.5 Solution to netBMF problem

We will address the challenges in Section 5.4.3 to devise a scalable solution for Prob-

lem 5.3.3. Section 6.5 targets challenge D1 with a general greedy algorithm. Section 5.5.2

copes with challenge D2 using two linear variants of Problem 5.3.2. Finally, Section 5.5.3

deals with challenge D3 by exploring the exponential subgraph search space, which cannot be

computed or stored in its entirety, with two sampling algorithms.
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5.5.1 Greedy Algorithm

To tackle challenge D1, we avoid checking all possible sets of k subgraphs by sequentially

adding the basis subgraph with the highest marginal gain to B, as shown in Algorithm 6. The

marginal gain ∆(B, b) is defined as follows.

Definition 5.5.1 (Marginal Gain) Given a state matrix S and a net-basis B, the marginal gain

∆(B, b) ≥ 0 of a new basis subgraph b is the reduction in summarization error when b is added

to B, i.e.:

∆(B, b) = g(S,B ∪ {b}, πo
B∪{b},S)− g(S,B, πo

B,S) (5.3)

Algorithm 2 Greedy_Algorithm(G,S, k,minf,minSize)
1: B := ∅
2: while |B| < k do

3: best := argmaxb{∆(B, b)||b| ≥ minSize, f(b) ≥ minf, b is a connected subgraph of G}
4: B := B ∪ {best}
5: end while

6: return B

Unfortunately, Algorithm 6 is still not scalable. The bottleneck lies in Line 3, where we per-

form two costly tasks corresponding to challenges D2 and D3: (i) iterating over all connected

subgraphs b of G, and (ii) mapping all network states in S into the net-basis B∪{b} to compute

the marginal gain. For the former task, we propose to use sampling in Section 5.5.3. For the

latter task, we propose two linear variants (w.r.t. k) of Problem 5.3.2 in Section 5.5.2.

5.5.2 Linear net-basis mapping

We cope with challenge D2 by proposing two variants of Problem 5.3.2 that can be solved

in linear time w.r.t. k: naïve mapping only allows exact matching, while incremental mapping

allows missing nodes. Both variants incrementally update M (add one more column) when a

new basis subgraph (one more row) is added to B.
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Naïve net-basis mapping

The first variant maps a basis subgraph b to a network state s only if s contains all nodes of

b, or more formally:

Problem 5.5.1 (Naïve net-basis mapping) Given a basis matrix B ∈ {0, 1}k×n and a state

matrix S ∈ {0, 1}m×n, a naïve mapping matrix is defined as πnaive
B,S = M ∈ {0, 1}m×k, such

that Mi,q = 1 iff Si,j = 1 ∀j s.t. Bq,j = 1, and Mi,q = 0 otherwise, i.e., Vq ⊆ si.

Theorem 5.5.1 netBMF problem with naïve net-basis mapping, namely netBMFn, is NP-hard

but monotonic and submodular.

Proof: The NP-hard proof is similar to that for netBMF. Monotonicity and submodularity

come from the fact that given two net-basis A ⊆ B, if a basis subgraph b ∈ A is mapped to

some network state s, then b ∈ B and will also be mapped.

Incremental net-basis mapping

The naïve mapping does not allow both positive and negative errors in mapping, reducing

the frequencies of basis subgraphs. We next introduce the second variant that incrementally

maps basis subgraphs in the row order of B to a network state s as long as this mapping

reduces summarization error, leading to a linear cost. Fig. 5.8 provides a visual explanation of

incremental mapping.

Problem 5.5.2 (Incremental net-basis mapping) Given a basis matrix B ∈ {0, 1}k×n and a

state matrix S ∈ {0, 1}m×n, an incremental mapping matrix is defined as πincre
B,S = M (k) ∈

{0, 1}m×k, where M (0) is empty and M (q) ∈ {0, 1}m×q is the mapping matrix for the first q

rows of B ∀q ≤ k. Here, M (q) is computed incrementally by adding one new column to M (q−1)

such that:

M (q) = argmin
M∈{0,1}m×qs.t.Mi,j=M

(q−1)
i,j ,∀i,∀j<q

g(S,B,M), ∀q ≤ k
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Theorem 5.5.2 netBMF with incremental net-basis mapping, namely netBMFi problem, is

NP-hard but not submodular.

Quality Guarantee: Due to Theorems 5.4.2 and 5.5.2, we do not have any guarantee on the

quality of Algorithm 6 for the optimal netBMF and netBMFi. However, from Theorem 5.5.1,

Algorithm 6 guarantees an approximation of
(

1− 1
e

)

or better for netBMFn. In particular:

g(S,Bgreedy, π
naive
S,Bgreedy

) ≥ (1− 1

e
)g(S,B∗, πnaive

S,B∗ ) (5.4)

where B∗ is the optimal solution of netBMFn, and Bgreedy is the greedy solution by Algo-

rithm 6 that iteratively adds the basis set with the maximum marginal gain [54]. Moreover,

no other polynomial time algorithm can achieve an approximation guarantee better than 1− 1
e

unless P = NP , as proved in [55].

Running time: The running time of both net-basis mapping variants is O(mnk), where m,

n, k are the number of states, nodes, and net-bases respectively.

Algorithm 3 netBMF(G,S, k,minf,minSize, numSeeds,maxIter)
1: B ← ∅
2: while |B| < k do

3: best := ∅
4: seeds :=Get_Seed_Nodes(G,S,B, numSeeds)
5: for seed ∈ seeds do

6: Vq := Sample_Basis(G,S,B,minf,minSize, seed,maxIter)
7: V ∗

q := Improve_Basis(G,S,B,minf,minSize, Vq)
8: if ∆(B, V ∗

q ) > ∆(B, best) then

9: best := V ∗
q

10: end if

11: end for

12: B ← B ∪ {best}
13: end while

14: return B
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Figure 5.8: Incrementally map B = {G1, . . . , Gk} to network state s.

5.5.3 Incremental sampling of net-basis

To deal with the exponential subgraph space in challenge D3, we sample this space to find

subgraphs with high marginal gains. We first introduce the high-level sampling-based netBMF

algorithm in Section 5.5.3. After that, we propose two sampling methods used by this high-

level algorithm: a Metropolis-Hasting (MH) algorithm in Section 5.5.3, and a faster Monte

Carlo Markov Chain (MCMC) algorithm in Section 5.5.3. Finally, Section 5.5.3 describes how

to choose good seed nodes from which to start the sampling.

Sampling-based netBMF algorithm

Algorithm 3 is the high-level sampling-based netBMF algorithm which incorporates sam-

pling into Algorithm 6. We start with an empty net-basis B in Line 1, and then greedily add

the basis subgraphs with the highest marginal gains to B until we obtain k basis subgraphs in

Lines 2-10. In each iteration, we first get a list of seed nodes for sampling in Line 4 (detailed

in Section 5.5.3), then perform sampling from these seed nodes in the subgraph search space

to get a good candidate subgraph in Line 6, and further improve this candidate in Line 7 (Al-

gorithms 4 and 5 in Section 5.5.3). The best sampled subgraph is recorded in Lines 8-9, and

later added to B in Line 10.

Sampling goal: In Line 6 of Algorithm 3, we need the undirected connected subgraphs of

G with the highest marginal gain (Equation 5.3). However, we cannot guarantee that this exact

subgraph will be sampled due to the random nature of sampling. Alternatively, we can sample
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subgraphs with probability proportional to their marginal gains, and visit the best one while

doing so. Denoting τb as the probability of visiting a subgraph b, we need τb ∝ ∆(B, b), where

B is the current net-basis in an iteration of Algorithm 3. We can achieve τ with MH algorithm

in Section 5.5.3.

Sampling space—Edit Graph (EG). Before discussing the detailed sampling methods,

we formally design a way to navigate the subgraph search space using the concept of an edit

graph, which represents all possible edits that can be performed on any basis subgraph b. We

denote b → u and b ← u as the new connected subgraphs obtained by removing and adding

node u to a connected subgraph b respectively.

Definition 5.5.2 (Edit Graph) The edit graph of a network G = (V,E) is a directed edge-

weighted graph G = (V , E ,F), where V = {b|b is an undirected connected subgraph of

G} ∪ {∅}, E = {(b, b′)|b′ = b← u or b′ = b→ u, u ∈ V, b ∈ V , b′ ∈ V}, and F : E → R is a

function that assigns weights to edges in E .

Fig. 5.9 shows an example EG. The EG is simply a graph whose vertices are undirected

connected subgraphs of G or the empty subgraph. For clarity, we use the term “node” for the

network G, and “vertex” for the EG. An edge between two vertices in the EG indicates that

we can edit the corresponding subgraphs into each other by adding or deleting one node. The

edge weights reflect the potential impact of the edits on the marginal gain and are explained in

Section 5.5.3. Since G is finite, the EG is also a finite space. Its size is exponential w.r.t. the

size of G, making it infeasible to be computed or stored in its entirety. More importantly, the

EG is a connected graph, thanks to the inclusion of the empty subgraph ∅. As a result, we can

start at a random basis subgraph and, after a finite series of local edits, reach any other desired

basis subgraph. We next exploit this property to perform sampling in the EG.
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Figure 5.9: (a) An example network G and (b) its Edit Graph G.

MH-sampling on the edit graph

We now utilize the MH algorithm to sample basis subgraphs in the EG with probability

proportional to their marginal gains.

Metropolis-Hastings (MH) sampling: Given a state space Ω = {a1, a2, ...}, let wi ≥ 0 be

the value of state ai. The MH algorithm samples state ai with probability proportional to wi,

i.e., the target visit probability distribution is τ , where:

τi =
wi

∑

ai∈Ω
wi

(5.5)

The denominator in the above equation is infeasible to compute when Ω is large. MH

algorithm simulates τ by converting the state space into a Markov chain with an arbitrary

transition matrix Q called the proposal distribution matrix. If the current state Xt at time step

t is ai, MH algorithm finds the next state Xt+1 as follows:

• Draw a random state aj with probability Qij .

• Compute the acceptance probability αij:

αij = min

{

1,
τjQji

τiQij

}

= min

{

1,
wjQji

wiQij

}

(5.6)
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• Xt+1 =















aj with probability αij

ai with probability 1− αij

The Markov chain as described above is reversible, ergodic, and satisfies the detailed bal-

ance property. Thus, the stationary distribution of this Markov chain has been proved to be

unique and to converge to the target distribution τ in Eqn. 5.5.

To apply MH algorithm to sample the EG, we next specify the state values wi and the

proposal distribution matrix Q.

State space: Each vertex (basis subgraph) in the EG is a state in Ω. Since we are only

interested in basis subgraphs with high marginal gain, particularly the best one, we set the target

distribution to be approximately proportional to the marginal gains (Equation 5.3). Therefore,

the state values wb of basis subgraph b is computed as:

wb = ∆(B, b) + 1 (5.7)

Here, the addition of 1 is to avoid division by zero in Eqn. 5.6.

Proposal distribution matrix: The proposal distribution matrix Q contains the edge weights

in the EG, which reflects the “quality” of the edits on any given basis subgraph b. An edit is

“good” if it increases our chance of finding basis subgraphs with high marginal gains. Since it

is costly to compute the exact marginal gains for all neighbors of a basis subgraph b in the EG,

we approximate the quality of edits by a potential vector y.

Given the current net-basis B, basis matrix B, mapping matrix M , and the current candidate

basis subgraph b to be added to B, we define Ŝ as the part of the state matrix S that has not

been covered by any basis subgraphs in B, i.e.,

Ŝi,j =











0 if (M ⊙ B)i,j = 1

Si,j otherwise
(5.8)
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In addition, denote x ∈ {0, 1}m×1 as the mapping of b to S, i.e., x is the last column of πB∪{b},S:

xi = 1 iff state si is mapped to b. Finally, we define the potential vector y ∈ {0, 1}1×n as

follows:

y = xT × Ŝ (5.9)

Intuitively, yj counts how many times a node vj in G is contained in the network states that b

is mapped to, without counting the portion of S that has been covered by the current net-basis

B. If yj is high, vj belongs to the same network states with b many times. In this case, adding

vj to b potentially increases the marginal gain, while removing vj from b (if vj ∈ b) potentially

decreases the marginal gain. Denote A and D as the sets of connected basis subgraphs that can

be obtained by adding and removing one node from b respectively:

A = {b′ = b← vj|vj ∈ V } (5.10)

D = {b′ = b→ vj|vj ∈ V } (5.11)

We now define the proposal distribution matrix Q as follows:

Qbb′ =











β 1
CA

(yj + ǫ) if b′ = b← vj ∈ A

(1− β) 1
CD

1
yj+ǫ

if b′ = b→ vj ∈ D
(5.12)

where β ∈ [0, 1] is the probability of addition, 0 < ǫ≪ 1 is a small constant to avoid division

by zero, CA and CD are two normalization constants defined as CA =
∑

b′=b←vj∈A
(yj + ǫ)

and CD =
∑

b′=b→vj∈D
1

yj+ǫ
. Based on Eqn. 5.12, we perform an addition with probability

proportional to the potential of the added node, while a deletion with probability inversely

proportional to the potential of the removed node. The role of β is to account for the fact that

the number of supergraphs of a basis subgraph b (which is equal to the number of neighbors

in G of the nodes in b) is likely significantly larger than the number of its subgraphs (which is
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at most its size |b|). Thus, without β, it is unlikely for a deletion to be chosen in the sampling

process. Note that the sampler would also explore some “bad” edits to avoid being stuck in

local optimums.

Final MH algorithm in the EG: The MH algorithm for sampling the next basis subgraph

with high marginal gain is shown in Algorithm 4. Here, the sampler starts at a given seed

node, performs sampling in this node’s neighborhood for at most maxIter steps, and returns

the visited basis subgraph with the highest marginal gain. Due to the randomness of sampling

and the limitation of maxIter, it is likely that the basis subgraph returned by Algorithm 4 can

still be further improved locally. Hence, we propose to greedily perform the best possible local

edits on this basis set until no more good edits can be found, as shown in Algorithm 5.

Faster MCMC algorithm

Since we only care about a single basis subgraph with the highest marginal gain, there is

no need to sample subgraphs based on the exact target distribution in Eqn. 5.5. Therefore, to

reduce running time, we adopt a new acceptance probability instead of Eqn. 5.6:

αij = min {1, wj/wi} (5.13)

Here, we always accept a good move that increases marginal gain. Otherwise, the acceptance

probability is equal to the ratio of the marginal gains of two basis subgraphs. As a result, we

avoid computing QbXt in Line 10, saving considerable computational cost, and replace Line 11

with Eqn. 5.13 in Algorithm 4. More importantly, the modified MCMC algorithm is still finite,

reversible, ergodic, and thus converges to a unique stationary distribution even though we do

not have a closed form of this distribution as in Eqn. 5.5 for MH.
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Algorithm 4 Sample_Basis(G,S,B,minf,minSize, seed,maxIter)
1: t := 0
2: Xt := {seed}
3: Compute πB∪{Xt}(S) and ∆(B, Xt)
4: best := Xt

5: while t < maxIter do

6: A := {Xt ← u|u /∈ Xt, ∃u′ ∈ Xt, (u, u
′) ∈ E}

7: D := {Xt → u|u ∈ Xt, u is not a cut-vertex}
8: Compute QXtb, ∀ b ∈ A ∪D based on Eqn. 5.12
9: Choose a neighbor b from proposal distribution QXtb

10: Compute wXt
and wb based on Eqn. 5.7 and QbXt

based on Eqn. 5.12

11: α :=
wbQbXt

wXtQXtb

12: if uniform(0, 1) ≤ α then

13: t := t+ 1
14: Xt := b
15: if ∆(B, Xt) > ∆(B, best) & |b| ≥ minSize & f(b) ≥ minf then

16: best := Xt

17: end if

18: end if

19: end while

20: return best

Choosing seeds for sampling

In practice, we cannot run the MH or MCMC algorithm for an infinite number of iterations

to converge to the stationary distribution. As a consequence, it is more practical to start the

sampler where we are more likely to find basis sets with high marginal gains. We sample seed

nodes with probability proportional to their frequencies in Ŝ in Section 5.5.3, i.e., the number

of nonzeros in the corresponding columns of Ŝ.

Running time

A conservative upper bound for Algorithm 4 (for both MH and MCMC) is O(mnkI+ d̂I2),

where I is maxIter, and d̂ is the maximum node degree in G.
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Algorithm 5 Improve_Basis(G,S,B,minf,minSize, b)

1: Compute A+ and D+ for b
2: while A+ ∪D+ 6= ∅ do

3: b := argmaxb′∈A+∪D+,|b|≥minSize,f(b)≥minf∆(B, b′)
4: Update A+ and D+ for b
5: end while

6: return b

5.6 Experiments

We compare four variants of netBMF algorithm to other baselines in four datasets. In

summary, netBMFi with fast MCMC sampling (netBMFi-MC) achieves the best results in

terms of summarization errors, quality of net-bases, and running time. NetBMF provides better

net-bases than BMF (ASSO and TMF) and better accuracy than frequent subgraph mining

(gSpan). NetBMF runs in linear time w.r.t. its parameters, and thus is more scalable than

ASSO and gSpan. Finally, MCMC sampling is much faster than MH sampling.

5.6.1 Settings

Synthetic data: We generate a network of 1000 nodes (average degree = 10) using the

Barabasi-Albert algorithm [56]. We sample 20 random ground-truth network patterns. For

each pattern, we create 5 network states by deleting or adding 5 random nodes, leading to 100

network states in total.

Real data: We use three real world datasets extracted from two social networks with di-

rected follower-followee relationships among users: Twitter.com [57,58] and Behance.net [59].

A network process is the spread of a hashtag via users’ tweets on Twitter.com, or a creative

Dataset SmallBehance BigBehance Twitter Synthetic
#nodes (n) 1K 85K 22.3K 1K
#edges (|E|) 14K 13.5M 576K 39.2K
#states (m) 500 1326 1015 100
||S||2F 45.7K 376K 49.3K 2.1K

Table 5.2: Statistics of datasets
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project via users’ likes Behance.net. In both cases, we have implicit information spreads (un-

known source nodes). Table 5.2 shows the statistics of datasets.

Baselines: We compare netBMF with two groups of baselines: (i) top-k frequent subgraph

mining with best frequency (gSpan-Freq) or coverage (gSpan-Cover) among the top-1000 fre-

quent subgraphs returned by gSpan [2] as explained in Section 5.1; (ii) Binary Matrix Factor-

ization, including ASSO [1] and TMF [60]. We study four variants of netBMF based on pat-

tern mapping approach (incremental or naïve) and sampling approach (MH or faster MCMC):

netBMFi-MH, netBMFi-MC, netBMFn-MH, and netBMFn-MC.

Parameter settings: We set the default parameters as: β = 0.7, numSeeds = 10,

maxIter = 100, minSize = minf = 1 or 2 for error and quality evaluations. For Small-

Behance and Twitter, k = 100. For BigBehance, k = 30. For running time experiments,

n = 1000 and k = 10. To test a parameter, we keep the others fixed. Note that the provided

code for the baseline TMF does not handle k > 30. The result of each experiment is averaged

over 5 runs of netBMF. Experiments were run on an Ubuntu machine with Intel Core i7-5930K

CPU, 3.50GHz. Code was written in Python.

Evaluation metrics: We use the relative summarization error to evaluate the accuracy of

the decomposition:

RelativeError(Q,B) =
||S⊕(Q⊙B)||2F
||S||2F

× 100% (5.14)

To check the stability of sampling, we use Jaccard index to compare the similarity of two

different groups of patterns. In particular, given two net-bases B1 and B2, denote n11 as the

number of node pairs that are in the same basis subgraphs in both B1 and B2, n10 as the number

of node pairs that are in the same basis subgraphs in B1 but not in B2, n01 as the number of

node pairs that are in the same basis subgraphs in B2 but not in B1. Then, the Jaccard similarity
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coefficient (or Jaccard index) between B1 and B2 is defined as:

J(B1,B2) = n11

n01+n10+n11
(5.15)

Clearly, J(B1,B2) ∈ [0, 1]. J(B1,B2) = 1 means B1 and B2 are identical, while J(B1,B2) = 0

means they do not overlap.

5.6.2 Convergence and stability of sampling

Convergence of sampling: Theoretically, all of our sampling algorithms converge to some

unique stationary distribution (Section 5.5.3), which is confirmed experimentally in Fig. 5.10a.

Here, the Jensen-Shannon (JS) divergence compares the visit distribution at every 200 iterations

with the previously computed one. All variants of netBMF appear to converge quickly after

2000 iterations.

Recovering ground-truth synthetic patterns: Our algorithms consistently recover the 20

ground-truth patterns in the synthetic dataset at k = 20, with comparable or better accuracy

than other baselines as reported in Fig. 5.10b. This figure shows the Jaccard index between

the obtained net-bases and the ground-truth patterns in the synthetic dataset after 10 runs of

netBMF, in comparison with other baselines. While our solutions are based on sampling, they

produce similar net-bases between different runs, as confirmed by the small error bars for all

netBMF variants (Fig. 5.10b). We observe similar results for the relative errors in Fig. 5.10c.

Overall, netBMFi-MC is the best at recovering the ground truth.

Stability of sampled net-bases in real data: Our algorithms produce reasonably stable

results despite the huge exponential search space with many different subgraphs having the

same marginal gains. Fig. 5.10 shows the distributions of Jaccard index between all pairs of

net-bases found in 10 different runs of our algorithms on the SmallBehance dataset. netBMFi

allows both positive and negative errors, leading to more stable (and also bigger as shown later)
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Figure 5.10: (a-c) Synthetic dataset (minSize = 2, minf = 2): (a) Convergence of sam-
pling; (b) Jaccard index between obtained patterns and the 20 ground-truth patterns; (c) Sum-
marization error. (d) Stability of sampled net-bases

net-bases than those found by netBMFn. netBMFi-MH is the most stable with Jaccard index

around 0.6. Both variants of naïve mapping are much less stable, which is understandable

because the high level of noise in real world data causes exact patterns to be small while many

small patterns have the same marginal gains.

5.6.3 Summarization error

Variants of netBMF: Our results show that netBMFi-MC is the variant with the highest accu-

racy. All variants provide stable accuracy among five different runs as minSize, minf and k

vary in Fig. 5.11. Obviously, the errors decrease as k increases. When minf = minSize = 1

(no thresholds, Fig. 5.11a, c), the errors of all variants are almost identical. However, as the

thresholds increase (minf = minSize = 2 in Fig. 5.11b, d), netBMFi and netBMFn di-

verge. Higher size and frequency thresholds make it harder to find exact patterns, leading to

higher errors for netBMFn. Since MH sampling has a higher rate of rejection (Lines 11, 12 in

Algorithm 4), it explores a “smaller” subspace of the subgraph search space, causing higher er-

rors than MCMC. Fig. 5.12m, l further confirm that the errors increase as minf and minSize

increase.

netBMF v.s. other baselines: Fig. 5.13 shows that our best variant (netBMFi-MC) is a
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Figure 5.11: Comparing netBMF variants with minf = minSize = 1 in (a, c) and
minf = minSize = 2 in (b, d)
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Figure 5.12: Impact of minSize and minfreq

good trade-off between BMF (ASSO, TMF) and frequent subgraph mining (gSpan) in terms of

accuracy for various values of k. When size and frequency thresholds are 1, netBMFi-MC-1

produces comparable errors to the best baseline ASSO for SmallBehance. Since ASSO and

TMF ignore the network structure, they achieve remarkably smaller errors than netBMF and

gSpan, but attain subgraphs with extremely high number of connected components (see Sec-

tion 5.6.4). Each disconnected pattern returned by ASSO or TMF is effectively a unions of

hundreds of connected patterns returned by netBMF or gSpan. As expected, both versions of

gSpan perform poorly since they retrieve very small subgraphs of high frequencies. On the

contrary, both netBMFi-MC-1 and netBMFi-MC-2 obtain more diverse network patterns, and

therefore have lower errors than gSpan.

Clearly, there is a trade-off between accuracy (characteristics C1, C5, C6) and connect-

edness (C2-C4) of patterns. Bigger patterns that capture longer infection paths in network

processes are harder to find, and including such patterns needs a higher noise tolerance. We
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spectively.

thus continue to analyze the quality of net-bases in Section 5.6.4.

5.6.4 Quality of net-bases

We evaluate the quality of the basis subgraphs (or induced subgraphs for ASSO and TMF)

with two types of metrics: (i) size, i.e., the average number of nodes; and (ii) connectedness,

including the average number of connected components and clustering coefficients. Overall,

netBMF obtains densely connected, large, and highly frequent basis subgraphs.

Fig. 5.14(a-c) report the results averaged over 100 basis subgraphs from different baselines.

NetBMF variants outperform all other baselines w.r.t. the above metrics, i.e., the obtained basis

subgraphs are big (high number of nodes), connected (only one connected component), and

dense (high clustering coefficients). On the contrary, TMF and ASSO find big (high number of

nodes in Fig. 5.14a) but disconnected patterns (high number of connected components within

each pattern in Fig. 5.14b, and extremely low clustering coefficients in Fig. 5.14c). This is

expected since both TMF and ASSO are oblivious to the network structure. On the other

hand, gSpan cares more about connectivity of basis subgraphs than their coverage, yielding

connected but mostly smaller subgraphs. While not plotted, the average frequencies of patterns

returned by all netBMF variants are greater than 6 for Twitter, and 60 for both Behance datasets.

As a result, netBMF is superior to all other baselines in summarizing network processes.
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Figure 5.15: Word clouds of the tags on mapped projects for 8 different patterns in Behance.

Among our netBMF variants, the choice of MH or MCMC sampling does not affect the

quality significantly, whereas netBMFi generally obtains bigger basis subgraphs than netBMFn,

which is natural given that netBMFi allows more error in basis mapping. Note that in Fig. 5.14c,

the clustering coefficients of the net-bases obtained by netBMFn are higher than those by

netBMFi because netBMFn returns notably smaller subgraphs, as shown in Fig. 5.14a.

Fig. 5.1 and 5.2 show one naive and one approximate patterns from Twitter with their

mapped network states (hashtags). The associated hashtags clearly belong to the same topic

for each pattern. Fig. 5.15 also shows the 8 word clouds from mapped projects (network states)

for 8 patterns in Behance. Clearly, there is a consistent topic in each word cloud, i.e., each

pattern corresponds to a tightly connected local community that are interested in the same

topic. Note that two different patterns (local communities) can be mapped to the same network

states, leading to two similar word clouds such as the two rightmost word clouds in Fig. 5.15. In

other words, the same topic may entail various different local communities across the network.

5.6.5 Running time

All four variants of netBMF have linear running time in k, n, m, and numSeeds, as shown

in Fig. 5.14 (e-h). We further evaluate the speed of three different net-basis mappers on a single
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process state as the number of patterns k increases in Fig. 5.14d. As discussed in Section 5.4.3,

the running time increases linearly in k for netBMFi and netBMFn, but exponentially in k for

netBMFopt, making the optimal solution not scalable. Fig. 5.14i shows that the running time is

quadratic in maxIter as discussed in Section 5.5.3. A higher number of iterations likely leads

to bigger visited subgraphs, which potentially have more neighbors in the EG and cause more

computational cost for the transition probability Q in Lines 8 and 10 of Algorithm 4. Finally,

MH sampling clearly costs more than MCMC sampling due to the computation of the transition

probability QXtb in Line 10 of Algorithm 4. MCMC sampling discards this computation and

uses α = wb/wXt instead in Line 11, reducing computational cost significantly. To put this into

perspective, ASSO took more than 1 day, while netBMFi-MC took 38 minutes and netBMFi-

MH took 50 minutes to find 100 patterns in the Twitter dataset. Finally, gSpan was very slow

when the required frequency threshold (which is dependent on datasets) is low.

5.7 Related Work

First, our work is related to finding frequent subgraphs from a database of graphs [2,61–64].

However, we would like the frequent subgraphs to be “diverse” so as to minimize the summa-

rization error. Therefore, the classic frequent subgraph mining solutions cannot be applied

directly to our netBMF problem. Works on graph motifs [65] also find repeated network pat-

terns but at different places in the same graph, instead of in different graphs as in our problem.

Another similar direction is Boolean Matrix Factorization (BMF) [1, 66–73]. BMF is sim-

ilar to netBMF without conditions (2-4) in Problem 3. The most popular baseline for BMF,

ASSO [1], has quadratic time complexity in m, making it not scalable. gDBMF [68] solves a

naïve version of BMF, where M ⊙ B must not contain any extra nonzeros compared to S. To

deal with noise and unknown values, Minimum Description Length principles has been used,

such as MDL4BMF [72], Nassau [73], PANDA [74], and PANDA+ [75]. Ternary matrix fac-
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torization (TMF [60]) also considers unknown values and runs in linear time w.r.t. m. TMF

has been shown to outperform both ASSO and PANDA+, and is thus chosen as a baseline in

our paper. FastStep [76] is a scalable BMF, which relaxes M and B to be real-valued matrices.

More recently, [77] performs BMF via message passing to achieve smaller error than ASSO.

S and G can be incorporated together in coupled matrix factorization for real-valued data [78,

79]. For example, denoting D as the adjacency matrix of G, we can factorize matrices S ∈

B
m×n and D ∈ B

n×n together, i.e., S ≈M×B and D ≈ C×B, where M ∈ R
m×k, B ∈ R

k×n,

and C ∈ R
n×k is shared. However, this factorization is different from our problem, where the

factor matrices must be binary.

Finally, netBMF is also related to finding frequent patterns based on their shapes or the

most influential users in information cascades [80–83] and modelling information cascades

(e.g., [84–86]). However, we focus on finding patterns on real data to reduce the summarization

errors instead of building a theoretical cascade model.

5.8 Conclusion

In this paper, we proposed a novel problem of summarizing network processes by mining

coherent subsets of connected users who often engage in similar network processes. To cope

with the NP-hardness of this problem, we designed a greedy algorithm and four scalable vari-

ants that incrementally find the best network patterns by sampling the exponential subgraph

space. Extensive experiments demonstrate our solution to be efficient in mining relevant and

accurate patterns of information spreads in both synthetic and real datasets. Possible future

research includes investigating the temporal aspect of network processes, using directed sub-

graphs as network patterns, and predicting the evolution of network processes based on the

obtained patterns.
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Answering top-k representative queries on

graph databases

6.1 Introduction

Top-k queries play a critical role in various domains such as e-commerce, social networks,

and multimedia and scientific databases. In traditional top-k formulations [87], given a func-

tion to quantify object relevance, the goal is to identify the k most relevant objects. However, if

multiple objects in the answer set are highly similar to each other, the information content em-

bedded in these objects is significantly diminished. For example, in drug design, chemists often

want to extract from a molecular database only a small subset of molecules that exhibit high

binding affinity toward certain protein targets while preserving other desirable properties such

as low toxicity. More importantly, this subset should be compact and informationally dense to

be manageable for a human-centric analysis and inexpensive assay. Traditional top-k frame-

work would return the k best molecules according to a scoring function on the desired proper-

ties of the molecules. A hypothetical answer set under this framework is shown in Fig. 6.1(a),

which contains two molecules: chloro-benzene and bromo-benzene. Even if both molecules
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(a) (b)

Figure 6.1: (a) An example of redundant information in traditional top-k answer sets. (b) A
sample metric space where two objects are similar if they are located close to each other. Red
objects denote those that are relevant.

are scored high by the top-k query function, a chemist is likely aware of the fact that replac-

ing the chlorine with any other halogen would result in a molecule with similar properties.

Therefore, to maximize the utility of the answer set, it is desirable to identify molecules that

are high-scoring, structurally diverse, and representative of the different structural groupings

in the database.

The possibility of information redundancy in traditional top-k formulations has ignited

much interest in diversification of search results [88–95]. While different models of diversity

exist, at their core, all models penalize the relevance of an object if it is not diverse enough

with regard to the objects that have already been added to the answer set. Focusing on diversity

however, is not enough to maximize the information content. Consider the metric space in

Fig. 6.1(b), where red-filled objects denote those that are relevant. Assume g1 has already been

added to the answer set and g3 and g4 are equi-distant to g1. In a diversity-aware model, both

g3 and g4 have the same score since they are equally relevant and diverse. However, it is clear

that g3 is representative of a cluster of other relevant objects, whereas g4 is a relevant outlier.

In other words, a diverse cluster center such as g3 encodes more information than a diverse

outlier like g4 and should therefore be preferred. Thus, to combat information redundancy, we

address the following problem: Given a budget k, which are the k relevant objects that best

represent the underlying database? More specifically, let D be a database, and each object

o ∈ D is tagged with a feature vector −→o . Users provide a query function q : −→o → {−1, 1}
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to categorize o as relevant (1) or non-relevant (-1). In addition, an object o is representative of

another object o′ ∈ D if d(o, o′) ≤ θ, for some distance function d and a user-provided distance

threshold θ. Our goal is now to identify the k objects that are relevant and most representative

of the remaining relevant objects in the database.

In this paper, we focus on the setting where each object is a graph. Such graphs can be used

to model a wide range of scientific data such as chemical compounds [96], system call graphs

[97], communication graphs [98], social networks [99] and gene interaction networks [100],

as demonstrated in Table 6.1. Example 1 in Table 6.1 formalizes the problem for molecular

libraries discussed earlier. Example 2 identifies the spectrum of information cascade patterns

under a set of user-provided topics. A traditional top-k query is prone to identifying cascades

from a single community of highly active users. For example, cascades arising out of populous

countries such as USA, China or India are likely to eclipse remaining communities. This

effect can be negated by being aware of the representative power of each cascade and favor

those that are active and remain to be represented. Example 3 computes a summary of the

most diverse set of bugs that occurred recently in software bug analysis. A traditional top-

k query here is likely to identify function call graphs that share the same core bug-inducing

subgraph. By rewarding representativeness and diversity, we can identify the entire spectrum

of subgraphs that induce bugs. Finally, in social or collaboration networks such as DBLP [101]

(example 4), each node (or user) can be described by a collection of tags to represent his/her

interests or expertise areas. Given a set of expertise areas as query, we can identify the most

knowledgeable groups, where each group is based on the neighborhood of a node. A traditional

top-k query in this case is likely to return groups with large overlaps among them. In contrast,

a top-k representative query finds neighborhoods that are relevant as well as non-overlapping.

In a nutshell, the combination of feature vectors with graphs, as well as the need to maximize

information content within a budget k, positions the proposed problem in a unique space, which

has not been studied before. Our main contributions are as follows:
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Table 6.1: Example applications with the combination of feature vectors and graphs. The
properties of each graph gi in the database is characterized by a feature vector −→gi . A graph is
relevant if q(−→gi ) is higher than some relevance threshold.

Property
Example 1: Molecular

Library

Example 2: Information

Cascades

Example 3: Bug

Analysis

Example 4: Social Net-

works

Graph object gi
A molecule in the
database

An information cascade
structure

A function call graph
d-hop neighborhood of an
expert in a social network

Feature vector

~gi =(vi,1, vi,2, · · · , vi,m)

Binding compatibility
against m different
proteins

Set of topics covered in the
cascade

Count frequency over
m days

Expertise areas of the so-
cial or collaboration group
gi

Target
Molecules with the most
desirable properties

Most relevant cascades on a
given topic set T

Frequently occurring
bugs

Most knowledgeable
groups of users on exper-
tise areas E

Query function q(~gi) q(~gi) =
∑m

j=1 vi,j q(gi, T ) =
|~gi∩T |
|~gi∪T |

q(~gi) = wT ~gi, q(~gi, E) = ~gi ∩ E

• We propose a flexible and intuitive model for diversity to reward the representative power

of the answer set. The flexibility is achieved by allowing users to define relevance at

query-time and controlling the answer set size through a budget. While we focus on

graphs, the proposed algorithm is generalizable to all metric spaces.

• We prove that top-k representative query is NP-hard and propose a technique to compute

a constant factor approximation of the optimal answer set. We also show that no other

polynomial time algorithm can provide a better approximation unless P = NP .

• We develop an index structure called NB-Index to index the θ-neighborhoods of graphs.

Our proposed index structure employs a novel combination of Lipschitz embedding

[102] and agglomerative clustering to expedite the answer set computation. In addi-

tion to fast answering of top-k representative queries, NB-Index also allows interactive

refinement of θ to reach the optimal zoom level, while incurring minimal overhead cost.

• Empirical results on real graph datasets demonstrate higher information density in an-

swer sets and a superior performance by up to 2 orders of magnitude speedup over state-

of-the-art techniques.
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6.2 Problem formulation

We assume a graph database D = {g1, · · · , gn}, where each graph gi is tagged with a

feature vector −→gi = [gi,1, · · · , gi,m] to characterize its properties. Based on a user-provided

query function q : −→g → {−1, 1}, which operates on the feature vector −→g , g is classified as

either relevant (1) or irrelevant (-1). Our goal is to maximize the representative power of the

answer set within a budget k.

Definition 6.2.1 TOP-k REPRESENTATIVE QUERIES: Given a query function q(−→g ), distance

threshold θ and a budget k, compute the set of graphs A, such that

A = argmax
S

{πθ(S) | S ⊆ Lq, |S| = k} (6.1)

where Lq = {g ∈ D | q(−→g ) = 1} is the set of relevant graphs with respect to q, and πθ(S) is

the representative power of S.

To quantify the representative power of a graph or a set of graphs, we first define the θ-

neighborhood of a graph.

Definition 6.2.2 θ-NEIGHBORHOOD. The θ-neighborhood of a graph g, denoted as Nθ(g),

contains all relevant database graphs within a distance threshold θ from g.

Nθ(g) = {g′ ∈ Lq | d(g, g′) ≤ θ} (6.2)

where d(g, g′) is the classical graph edit distance [103,104] and θ is a user provided thresh-

old. In other words, g is a structural representative of all graphs in its θ-neighborhood Nθ(g).

Consequently, it is not desirable to have two graphs with a large overlap between their θ-

neighborhoods in the answer set. By combining these intuitions, the representative power
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πθ(S) of a set of graphs S is defined as the proportion of relevant graphs represented by S.

πθ(S) =

∣

∣

∣

⋃

g∈S Nθ(g)
∣

∣

∣

|Lq|
(6.3)

The proposed model captures as much of the various relevant structural groupings as pos-

sible within the provided budget. As a natural consequence of maximizing the representative

power, the answer set also favors structural diversity. For brevity’s sake, hereon, we denote the

representative power πθ({g}) of a graph g as πθ(g). Additionally, the notations π(g) and N(g)

are used to denote the representative power and θ-neighborhood, respectively, for arbitrary θ’s.

Our notation is summarized in Table 6.2.

6.3 Existing diversity models

As discussed in Sec. 7.1, a number of models exist to favor diversity in the top-k answer

set. In this section, we discuss two recent models that are closest to ours.

6.3.1 DisC

DisC [88] approach recognized the need to go beyond diversity and focus on the representa-

tive power of the answer set. Given the set of relevant objects S, DisC attempts to find the small-

est set of objects that represent all relevant objects. Mathematically, DisC computes an answer

set A, such that ∀o1 ∈ S, ∃o2 ∈ A, where d(o1, o2) ≤ θ and ∀o2, o3 ∈ A, o2 6= o3, d(o2, o3) > θ.

There are two main differences between our approach and DisC.

1. Static set of relevant objects: DisC assumes that the set of relevant objects in a given

database is static. At times, the set of relevant objects are query-dependent even though the

underlying database may be static. For example, in a database of information cascade graphs,
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one might be interested in only those that discuss a certain topic, such as sports. Owing to

this assumption, the index structure proposed in DisC needs to be rebuilt whenever the relevant

objects change. In this paper, we focus on a dynamic setting where the relevant objects are

defined at query time by the user through a query function q(·).

2. Coverage of answer set: DisC requires the coverage of all relevant objects while

we quantify the coverage of an answer set and seek to maximize it. DisC’s requirement to

represent all relevant objects can make the answer set too large. Such scenarios occur when

a dataset contains some objects that are relevant but not clustered together with other relevant

objects. Graph g4 in Fig. 6.1(b) is an example of such objects. These relevant outliers have low

representative power. Consequently, their presence in the answer set dilutes the compression

ratio
|S|
|A|

, which is the average number of relevant objects represented by each object in the

answer set.

To study this phenomenon empirically, we examined the answer set produced by DisC in

a graph database representing the DUD molecular repository [105]. On average, the graphs

contain 26 vertices and 28 edges. We use the classical graph edit distance [103, 104] for this

experiment under a distance threshold θ = 10 to define if a graph g1 represents graph g2. First,

we identify the set of relevant molecules that are active against the enzyme Acetylcholine

ezterase (AChE), a key component for curing Alzheimer’s disease [106]. Next, we plot the

growth rate in the answer set size as the number of relevant objects is varied. Fig. 6.2(a)

presents the results. The growth rate is almost linear and on average, the answer set is one third

of the number of relevant molecules. Clearly, a higher compression ratio is desirable and this

is compromised due to the presence of relevant outliers. More critically however, there is no

control over the answer set size. This is especially true under the constraints of a small budget.

Such kind of top-k scenarios routinely arise where either a manual analysis is required on the

answer set objects, or higher level analytics of the identified objects is an expensive procedure.

In essence, the top-k representative query problem is similar to that of dimensionality reduction
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Table 6.2: Summary of the notations used.
Notation Explanation

q(·) User-provided relevance function that maps each object to {-1,1}.
Lq The set of relevant graphs with respect to relevance function q(·).
θ User-provided distance threshold to quantify if two graphs are similar.

N(g) All graphs that are within distance θ of g, and therefore represented by g.
π(S) The representative power of a set of graphs as defined in Eq. 6.3.
d(g, g′) The edit distance between graphs g and g′.
dv(g, g

′) The vantage distance between graphs g and g′ as defined in Def. 6.6.2.
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Figure 6.2: (a) The growth rate of DisC answer set size against the number of relevant objects.
(b) The growth rate in the running time of the DisC model in the presence of graphs.

in high-dimensional spaces. In both tasks, the goal is to make the dataset more manageable

by operating on a smaller subset of a desirable size and yet capture as much information as

possible. The key in both these tasks is to allow the user to control the size (or dimensionality)

of the subset. Accordingly, given a budget k, our goal is to select the k exemplars that best

represent the relevant objects.

6.3.2 Tuning diversity models to reward representativeness

One of the most generic diversity models is proposed in [7]. Let us refer to this technique as

DIV. Given a database of objects D, the goal is to identify the subset S ⊆ D of k objects, such

that
∑

g∈S score(g) is maximized and ∀g1, g2 ∈ S, d(g1, g2) > θ. score(g) denotes the value

of an object (or graph) g. In our problem, the goal is to maximize representativeness. Thus,

by assigning π(g) as the score of graph g, we can attempt to maximize the representativeness
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of the answer set. However, in this model, score(g) of a graph g is assumed to be static and

independent of other objects in the answer set. In contrast, in our model, π(g) is dependent on

other graphs that are already in the answer set. More formally, for DIV, when π(g) is used as

the score, even in the presence of the constraint ∀g1, g2 ∈ S, d(g1, g2) > θ, the maximization

function score(S) =
∑

∀g∈S score(g) =
∑

∀g∈S π(g) 6= π(S). Consequently, the model cannot

be used to solve our problem. To ensure score independence, we need to enforce the stricter

constraint of ∀g1, g2 ∈ S, d(g1, g2) > 2θ. This constraint, however, poses the risk of ruling out

highly representative graphs from inclusion in the answer set and therefore will not maximize

π(S).

From the indexing perspective, three different schemes are proposed in DIV. However, all

of them rely on an upper bound computation framework, which assumes scores of graphs in the

answer set to be mutually independent. As a result, the proposed indexing techniques cannot be

used in our problem. Beyond the independence assumption, DIV constructs a diversity-graph

where each node is a graph in the database and two nodes are connected if d(g1, g2) ≤ θ. Since

θ is provided at query-time in our model, the diversity-graphs need to be computed online, a

compute bottleneck. As a result, the flexibility of the model is compromised. We analyze the

impact of mutual independence assumption on answer set quality and the non-scalability of the

approach when applied to our problem in Sec. 6.8.

6.4 Properties of top-k representative queries

In this section, we analyze the complexity of the proposed problem and investigate the

theoretical guarantees that can be achieved.

6.4.1 NP-hardness

Theorem 6.4.1 Top-k representative query is NP-hard.
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PROOF: We reduce the Set Cover problem to the problem of answering top-k representative

queries. The Set Cover problem is defined as follows: Given a universe of elements U =

{e1, e2, · · · , en} and a collection of subsets S = { S1, S2, · · · , Sm}, the Set Cover problem

seeks to determine whether there exists a collection S ′ ⊆ S of k subsets, such that
⋃

Si∈S′
Si =

U .

Given an arbitrary instance of the Set Cover problem, we construct a graph database con-

taining three sets of graphs: D1, D2, and D3 all of which are relevant. D1 contains graph

si corresponding to each set Si ∈ S, and D2 contains graph uj corresponding to each ele-

ment ej ∈ U . Graph uj ∈ N(si) if and only if ej ∈ Si. From symmetry of graph edit

distance, the θ-neighborhoods of all graphs in D2 can be computed analogously. Now, let

x = max{π(u)|u ∈ D2}. D3 contains |S| disjoint groups of graphs, such that each group Gi

contains x graphs and all graphs in Gi are in the θ-neighborhood of graph si ∈ D1. In other

words, D3 contains x|S| graphs and it ensures that any graph in D1 has a higher representative

power than graphs in D2 or D3. We now perform top-k representative query on this database.

It is easy to see that there is a set cover of size k if and only if there exists an answer set

A where π(A) = |D2|+k(x+1)
|D1|+|D2|+|D3|

. From our construction, no graph from either D2 or D3 will

be selected in A. Additionally, the number of graphs added to π(A) from D3 is a constant

number kx. As a result, π(A) is maximized when, in addition to the k answer set graphs and

their corresponding kx neighbors from D3, all graphs in D2 are in π(A). On the other hand, if

subsets Si1 , Si2 , · · · , Sik form a set cover, then including the corresponding graphs in answer

set A results in π(A) = |D2|+k(x+1)
|D1|+|D2|+|D3|

. �

6.4.2 Submodularity

A function f(.) is submodular if the marginal gain from adding an element to a set S is at

least as high as the marginal gain from adding it to a superset of S. Mathematically, it satisfies:
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f(S ∪ {o})− f(S) ≥ f(T ∪ {o})− f(T ) (6.4)

for all elements o and all pairs of sets S ⊆ T . For submodular and monotone functions, the

greedy algorithm of iteratively adding the element with the maximum marginal gain approxi-

mates the optimal solution within a factor of (1− 1
e
) [107]. We omit the proof of monotonicity

for Eqn. 6.3 due to space limitations.

Theorem 6.4.2 Eqn. 6.3 is submodular.

PROOF BY CONTRADICTION: Assume,

π(T ∪ {g})− π(T ) > π(S ∪ {g})− π(S) (6.5)

where S and T are sets of graphs, such that S ⊆ T , and g ∈ D is the graph being added. From

Eqn. 6.5, we can say:

N(g)\N(T ) > N(g)\N(S)

or, S 6⊆ T (6.6)

which contradicts the assumption that S ⊆ T . �

Thus,
π(Agreedy) ≥ (1− 1

e
)π(A∗) (6.7)

where Agreedy is the answer set computed using a greedy algorithm and A
∗ is the optimal

answer set. Since the scoring function is normalized, i.e., π(∅) = 0, no other polynomial time

algorithm can provide a better approximation guarantee than (1− 1
e
) unless P = NP , as proved

in [108].
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Algorithm 6 Baseline-greedy(q(·), θ, k)
1: Compute Lq

2: A← ∅
3: while |A| < k do

4: g∗ ← argmaxg{π(A ∪ g)− π(A) | g ∈ Lq}
5: A← A ∪ g
6: for ∀g ∈ Lq\A do

7: N(g)← N(g)\N(g∗)
8: end for

9: end while

10: return A

6.5 The simple greedy approach

Alg. 6 presents the pseudocode for the baseline greedy approach. From Theorem 6.4.2,

Alg. 6 guarantees an approximation of (1 − 1
e
) or better. Unfortunately, in the presence of

graphs, this approach is not scalable. The bottleneck lies in the neighborhood update step

(lines 6-7), which is performed at each iteration and requires O(n2) edit distance computations

in the worst case. Computing the edit distance between two graphs is NP-hard [104]. As a

result, Alg. 6 is not scalable to large databases. To mitigate this bottleneck, we need to index

the neighborhood update step. More precisely, given the θ-neighborhoods of two graphs, we

need to compute their overlap without incurring a quadratic computation cost with respect to

the neighborhood sizes.

Indexing graph edit distance has been studied in the context of top-k nearest neighbor

queries [103, 104]. The demands of indexing θ-neighborhoods, however, are different.

1. Overlap quantification: Instead of identifying the k nearest neighbors to a query graph, our

goal is to compute the extent of the overlap between θ-neighborhoods of two graphs without

incurring a quadratic computational cost. This ensures an efficient update of their representa-

tive power at each iteration.

2. Order independence: In our problem, ordering neighbors based on distance is not nec-

125



Answering top-k representative queries on graph databases Chapter 6

essary; just detecting containment within the θ-neighborhood is sufficient. In top-k similarity

queries, the ordering is central to solving the problem.

To establish the scalability challenge in the presence of graphs, we study the running time

growth rate of Alg. 6 against database size. Furthermore, we also investigate the impact of two

index structures that are both built for indexing nearest neighbor queries: the state-of-the-art

graph indexing technique C-tree [103] and the index structure proposed by DisC, which is an

adaptation of M-tree [109]. Fig. 6.2(b) shows the results. Regardless of the underlying index-

ing technique, it takes more than 35 minutes to compute the answer even on a small dataset

containing only 5000 objects. This result highlights the need to go beyond traditional graph

indexing techniques, which optimize nearest neighbor queries. To scale our problem, we need

to index θ-neighborhoods. One could consider pre-computing and storing the θ-neighborhoods

of each relevant graph. This approach avoids the need to compute edit distance at query time.

However, since both θ and q(·) are given at query time, such a strategy degenerates to storing

the entire distance matrix of the graph database, resulting in O(n2) storage.

6.6 Indexing θ-neighborhoods

Equipped with the insights derived from Sec. 6.5, we proceed toward analyzing the prop-

erties of graph edit distance, and then design an index structure called NB-Index.

6.6.1 Triangular inequality based pruning

The graph edit distance satisfies triangular inequality when the individual vertex and edge

distances are metric. Mathematically, d(g1, g2) + d(g2, g3) ≥ d(g1, g3) for any three graphs g1,

g2, g3. Based on this property, we can easily derive the following theorem.

Theorem 6.6.1 For any two graphs g1 and g2, if d(g1, g2) > 2θ, N(g1) ∩N(g2) = ∅.

Theorem 6.6.1 highlights the property that, once the graph providing the highest marginal
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gain is added to the answer set, only the θ-neighborhoods of those relevant graphs within a

distance of 2θ from that new graph will need to be updated. While this property does reduce

the computational cost, scalability cannot be guaranteed. First, its efficiency depends on the

value of θ. The smaller the value of θ is, the more efficient this property becomes. More

importantly, to have a significant impact on the scalability, a technique must be designed to

efficiently update the θ-neighborhoods of graphs which are within the 2θ boundary. Thus, to

further improve scalability, we employ a Lipschitz embedding [102] of the metric space and

design the concept of Vantage Ordering.

6.6.2 Vantage Ordering

Vantage Orderings (VO) perform a Lipschitz embedding of the metric space to speed up

the indexing of the θ-neighborhoods.

Definition 6.6.1 VANTAGE POINT AND VANTAGE ORDERING: Given a metric spaceM :

{D, d : (D,D) → R+}, let v ∈ D be a randomly selected graph. ∀g ∈ D, M is embedded

into a 1-dimensional feature space Fv, where the feature vector of a graph g is [d(v, g)]. The

1-dimensional ordering of graphs in Fv is termed the Vantage Ordering ofM with respect to

the vantage point v.

As defined above, VO captures a feature space representation ofM from the viewpoint of

the vantage point (VP) v. To disambiguate the resultant feature space of Lipschitz embedding

from the feature vector representation of a graph on which the query function operates, hereon,

we use the term vantage space to denote Fv. Now, to quantify the distance between two graphs

from a VP’s viewpoint in Fv, we introduce the concept of Vantage Distance.

Definition 6.6.2 VANTAGE DISTANCE dv(g, g
′): Given a vantage point v, the vantage dis-

tance dv(g, g
′) between any two graphs g, g′ ∈ D is |d(v, g)− d(v, g′)|.

Now, we observe the following.
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Theorem 6.6.2 Given a VP v, if dv(g, g
′) > θ, g′ /∈ N(g).

PROOF: From triangular inequality, d(g, g′) ≥ |d(v, g) − d(v, g′)| = dv(g, g
′) > θ. Thus,

g′ /∈ N(g). �

Theorem 6.6.2 provides a mechanism to bound the maximum vantage distance between any

two graphs g, g′, where g′ ∈ N(g). It is straightforward to see that the information retained in

the vantage space can be boosted by employing a set of VPs V rather than a single one. We

denote this vantage space as FV. In FV, we can deduce the following theorem.

Theorem 6.6.3 Let N̂(g)={g′|dv(g, g′)≤ θ ∀v∈ V}. N̂(g) ⊇ N(g).

Theorem 6.6.3 allows us to compute an upper bound on the actual θ-neighborhoods based

on the VOs. The VOs can be pre-computed as part of indexing procedure, and thus, computing

N̂(g) only requires |V| linear scans. Furthermore, since the entire computation is performed

on the vantage space, the expensive NP-hard computations of edit distances are required only

on graphs g′ ∈ N̂(g).

Choosing VPs

The performance gain achieved due to VPs is directly proportional to the False Positive

Rate (FPR), which is the probability of a graph being in N̂(g) but not in N(g). FPR is quan-

tified as follows under the simplifying assumption that the distances d(g, g′) and d(g, g′′) are

independent.

FPR = P (g′ ∈ N̂(g)\N(g))

= P (d(g, g′) > θ)
∏

v∈V

P (dv(g, g
′) ≤ θ) (6.8)

It is clear from Theorem 6.6.3 that the higher the number of VPs, the better the tightness of

N̂(g). On the other hand, both the computational cost of N̂(g) and the storage footprint of the
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VOs increase with |V|. It is therefore critical to have a deep understanding of the relationship

between the FPR and |V|. Towards that goal, given the number of VPs |V|, we derive theo-

retical bounds on the FPR. The FPR is dependent on the underlying distribution of the graph

distances. We thus choose the two most commonly encountered distributions, Gaussian and

Uniform, and derive the bounds below.

1. Normally distributed metric space: Let us assume that the distance between any

two randomly chosen graphs is distributed normally where d(g, g′) ∈ N (µ, σ2) and mθ is the

diameter of the metric spaceM. Under this assumption,

P (d(g, g′) > θ) = P

(

d(g, g′)− µ

σ
>

θ − µ

σ

)

= P

(

Z >
θ − µ

σ

)

= 1− φ

(

θ − µ

σ

)

(6.9)

where Z = N (0, 1) is the standard normal variable and φ(x) is the cumulative distribution

function of Z.

The next step in computing the FPR is to compute P (dv(g, g
′) ≤ θ) ∀v ∈ V. With respect

to a vantage point v, if d(g, v) = x, then P (dv(g, g
′) ≤ θ) = P (x − θ ≤ d(g′, v) ≤ x + θ).

Therefore,
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P (dv(g, g
′) ≤ θ)

=

∫ mθ

0
P (d(g, v) = x)P

(

x− θ ≤ d(g′, v) ≤ x+ θ
)

dx

=

∫ mθ

0
P (d(g, v) = x)P

(

x− θ − µ
σ

≤ Z ≤ x+ θ − µ
σ

)

dx

≤
∫ mθ

0
P (d(g, v) = x)P

(

µ− θ − µ
σ

≤ Z ≤ µ+ θ − µ
σ

)

dx

=

(

φ

(

θ

σ

)

− φ
(−θ
σ

))
∫ mθ

0
P (d(g, v) = x) dx

= 2φ

(

θ

σ

)

− 1 (6.10)

Combining Eq. 6.9 and Eq. 6.10, the FPR for |V| vantage points can be expressed as:

FPR ≤
(

1− φ

(

θ − µ

σ

))(

2φ

(

θ

σ

)

− 1

)|V|

(6.11)

2. Uniformly distributed metric space: Let us assume that d(g, g′) ∈ U(0,mθ) where m is

the diameter of the metric space. Now, since the VPs are selected randomly, for any graph g,

each dimension d(v, g) is distributed uniformly. The FPR can therefore be quantified as:

FPR =
mθ − θ

mθ

∏

v∈V

θ

mθ

=
m− 1

m

1

m|V|
(6.12)

Eqns. 6.11 and 6.12 allow us to select the appropriate number of VPs for a desired FPR.

What is particularly attractive is that the number of VPs required is independent of the dataset

size as long as the distance distribution remains the same.

130



Answering top-k representative queries on graph databases Chapter 6

6.6.3 Updating representative power based on clusters

Sec. 6.6.2 provides an upper bound on the θ-neighborhood of a graph based on a vantage

space analysis. In this section, we analyze the structural space directly and develop techniques

to update the representative power of a graph in the presence of clusters. The technique de-

veloped in this section allows batch updates: a single calculation to compute upper bounds on

the representative power of a cluster of similar graphs. Here, a cluster is a set of structurally

similar graphs. Fig. 6.3 shows a sample structural space of graphs with four clusters, c1-c4,

depicted as shaded circles. Clusters c1 and c2 are contained within c3. Consider two relevant

graphs g1 and g2, where g2 is contained within cluster c3. The two dashed rings centered on g1

with radii of θ and 2θ represent N(g1) and the space of graphs whose θ-neighborhoods overlap

with N(g1). g2 represents one such graph.

Now, assume that g1 has been added to the answer set in the last iteration, and the θ-

neighborhoods of the rest of the relevant graphs need to be updated. Since c4 is more than 2θ

away from g1, neighborhoods of all graphs in c4 are unaffected and don’t need to be updated.

In contrast, the neighborhoods of all graphs in clusters c1, c2 and c3 are affected and need

updating. Moreover, both c1 and c2 are fully contained within the θ-neighborhood of g1. Thus,

for any graph in c1, their updated θ-neighborhoods must not contain any of the graphs in c1.

The same rule applies for c2 as well. Whereas, this rule does not work for c3 because it is not

fully contained within the θ-neighborhood of g1. However, graphs in c3, such as g2, could be

affected. More specifically, N(g2), depicted using the dashed ring centered on g2, needs to be

reduced by its overlap with N(g1), depicted as the ring of radius θ centered on g1. Furthermore,

since c1 and c2 are completely contained within this overlap region, N(g2) must at least be

reduced by the combined “area” of c1 and c2.

The above analysis gives us insights into how upper bounds can be computed on θ-neighborhoods

based on the location of clusters. To formalize these insights, we first introduce the definitions
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Figure 6.3: A representation of the structural space in the presence of clusters.

of cluster radius and cluster diameter with respect to a metric space. Since a cluster is es-

sentially a set of graphs, we use set notations in the following definitions and proofs. Let

centroid(c) denote the centroid graph of a cluster c.

Definition 6.6.3 CLUSTER RADIUS AND DIAMETER: The radius of a cluster is the maximum

of all the pairwise distances between the centroid and other constituent graphs in the cluster.

Similarly, the diameter is the largest of all the pairwise distances.

radius(c) = max {d(centroid(c), g) ∀g ∈ c}

diameter(c) = max {d(g, g′) ∀g, g′ ∈ c} ≤ 2× radius(c)

Now, given a cluster c, we can derive the upper bound dub(g, c) and lower bound dlb(g, c)

for the distance between a graph g and ∀g′ ∈ c using triangular inequality.

dub(g, c) = d(g, centroid(c)) + radius(c)

dlb(g, c) = max {0, d(g, centroid(c))− radius(c)}

Now, let g represent the latest graph added to the answer set, c be a cluster, and π(g′)∗ and

π(g′) be the representative power of graph g′ after and before g is added to the answer set

respectively. Additionally, let cq = c ∩ Lq be the subset of relevant graphs in c. Using the
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distance bounds stated above, we have the following theorems:

Theorem 6.6.4 If dlb(g, c) > 2θ, then ∀g′ ∈ c, π(g′)∗ = π(g′).

PROOF: We omit the proof for its simplicity. �

Theorem 6.6.5 If dub(g, c) ≤ θ and diameter(c) ≤ θ, then ∀g′ ∈ c, π(g′)∗ ≤ π(g′)− |cq |

|Lq |
.

PROOF: Since diameter(c) ≤ θ, for any graph g′ ∈ c,

N(g′) ⊇ c.

Since dub(g, c) ≤ θ, N(g) ⊇ c. Thus,

N(g) ∩N(g′) ⊇ c.

or, π(g′)∗ ≤ π(g′)− |cq||Lq|
�

Theorem 6.6.6 Let c be a cluster and C = {c′ | c′ ⊆ c, c′ satisfies

Theorem 6.6.5} be the set of sub-clusters of c that satisfy Theorem 6.6.5. Additionally, all clus-

ters in C are disjoint, i.e., ∀ci, cj ∈ C, ci∩cj = ∅. If θ ≤ dub(g, c) ≤ 2θ and diameter(c) ≤ θ,

then ∀g′ ∈ c, π(g′)∗ ≤ π(g′)−∑c′∈C

|c′q |

|Lq |

PROOF: Since diameter(c) ≤ θ, for any graph g′ ∈ c,

N(g′) ⊇ c.

Now, N(g) ⊇ ⋃c′∈C N(c′). Thus,

N(g) ∩N(g′) ⊇
⋃

c′∈C

N(c′).
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Since clusters in C are disjoint,

π(g′)∗ ≤ π(g′)−
∑

c′∈C

|c′q|
|Lq|

�

The three theorems above allow us to obtain tight upper bounds on the representative power

of a graph by performing a small number of distance computations. More specifically, instead

of computing the actual θ-neighborhood via pairwise distance computations with all database

graphs, an upper bound can be computed by leveraging the presence of clusters in a database.

The clusters can be precomputed while indexing and thereby facilitating fast computation of

upper bounds during query time. Besides, the efficiency is further magnified since Theorems

6.6.4-6.6.6 provide bounds on an entire cluster of similar graphs by performing a single com-

putation operation.

An important constraint that drives the efficiencies of Theorems 6.6.5 and 6.6.6 are the

diameters of clusters. If the diameter of any cluster is above θ, then it cannot be used to

estimate the overlap between the θ-neighborhoods of two graphs. Therefore, the lower the

value of θ, the less effective Theorems 6.6.5 and 6.6.6 become. Fortunately, the efficiency of

Theorem 6.6.4 is inversely proportional to θ. As a result, the combined efficiency is elastic

in nature; for a small θ, Theorem 6.6.4 is effective, whereas for a large θ, Theorems 6.6.5

and 6.6.6 are effective.

6.6.4 NB-Index

Secs. 6.6.2 and 6.6.3 provide us with two efficient mechanisms to compute upper bounds

on the representative power of the database graphs: one based on VO and the other based on

clusters. In this section, we develop the index structure called NB-Index, which unifies the two

different approaches into one coherent framework.
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NB-Index contains two components:

1. Vantage Points: A set of VPs, V, is chosen to capture a feature space representation of

database graphs. For each VP, NB-Index maintains the VO of the entire database.

2. NB-Tree: A hierarchical clustering is performed on the database to group structurally sim-

ilar graphs into disjoint sub-spaces. In our clustering procedure, disjoint clusters are formed

in a top-down, recursive manner to form a tree. In this tree, each leaf node is a graph and

non-leaf nodes are clusters of its children. As a result, two clusters can overlap only if one is

a descendant of the other. Each non-leaf node stores the centroid, radius, and diameter of the

corresponding cluster. At leaf nodes, only the feature vectors of the corresponding graphs are

stored. While building the tree, we ensure that each non-leaf node contains at most b children.

The fan-out controls the desired depth of the tree. For an on-disk implementation, b should

be chosen based on the disk-page size for optimizing the cost of node look-ups. On the other

hand, in a memory-resident implementation, a small b yields better performance.

The clustering procedure starts at the root node, which contains the entire database. First, b

graphs are chosen as pivots to partition the dataset. The first of the b pivots is chosen randomly.

For the second pivot, we choose the graph that is farthest from first one. Continuing in the same

manner, in each iteration, the pivot is the graph whose minimum distance to the already chosen

pivots is the highest. The process is repeated through b iterations. Next, the pivots are assigned

as cluster centroids, and all remaining graphs in the database are assigned to the cluster with

the closest centroid. Finally, the process is repeated recursively on each of the clusters till the

size of a cluster drops below b.

As already discussed, computing edit distance is NP-hard, and the indexing procedure re-

quires a large number of pairwise edit distance computations. Although indexing is an offline

procedure, it is desirable for it to be as efficient as possible. Towards that goal, the VPs are

computed first and are utilized to expedite NB-Tree construction. More specifically, to deter-

mine if pivot p is the closest pivot to a graph g, we first compute the VP-based distance ∀v ∈ V,
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max{dv(g, p)}, which is a lower bound on the actual edit distance d(g, p). If the lower bound

is larger than the currently closest edit distance between g and any of the already evaluated

pivots, then p is discarded from consideration. Similarly, to compute the radius of a cluster

from the centroid p, if the upper bound ∀v ∈ V, min{d(v, p) + d(v, g)} is smaller than the

current radius, then g is ignored. As a result, expensive edit distances are computed on a small

minority of pairs. The diameter of a cluster is set to the summation of the two largest distances

from the centroid.

Example 6.6.1 Fig. 6.4 demonstrates the NB-Tree built on the corresponding graph database

at b = 2. Although we do not compute the entire edit distance matrix during index construction

due to its quadratic computation cost, it is shown in the figure to help guide the readers. For

simplicity, we use a 1D feature vector, denoted as ~gi, to characterize each graph, and these

are chosen arbitrarily. The explanation of π̂-vectors (highlighted in red), which are computed

during query time, is discussed in the next section.

Storage Cost: The storage cost for maintaining the VO of the entire database is O(|V||D|),

where V is the set of VPs, and D is the graph database. The second component of the in-

dex is the NB-Tree. Assuming a balanced branching factor of b, the height of NB-Tree is

bounded within logb |D|. Since the number of nodes at each level of NB-Tree follows a geo-

metric progression, the storage cost is bounded by O( b|D|−1
b−1

). The total storage cost is therefore

O( b|D|−1
b−1

) + |V||D|).

Index Construction Time: For each VP, we need to compute its distance to all graphs in

the database. Thus, the cost of constructing the VO is O(|V||D|). For NB-Tree, at each level,

each graph is compared to b pivots to identify the closest one. Since the height of the tree is

bounded by O(logb |D|), a graph is compared to b pivots logb |D| times. Thus, the computation

cost is O(|D| × b logb |D|). Combining the costs of both VPs and the NB-Tree, the total index

construction time is O (|D| × (|V|+ b logb |D|)).
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Figure 6.4: The NB-Tree built on the shown 5 graphs at b = 2. The π̂-vectors, highlighted in
red, are maintained only during query time. For simplicity, we assume all graphs are relevant.

6.7 Query processing

The goals of the query processing algorithm are two-fold:

1. Flexibility: Maximize flexibility by allowing query time definitions of the relevance func-

tion q(·) and the distance threshold θ.

2: Interactive Refinement: While domain scientists have a crude idea on the appropriate θ

for the task at hand, the optimal one might often be reached through a series of trials. This op-

eration is similar in nature to finding the optimal “zoom” level in Google Maps. In other words,

fine-tuning θ is an interactive procedure and a good index structure should adapt to those needs

by performing refinements faster than a brand new query with a new relevance function.

To achieve the above outlined goals, the query processing algorithm runs in two phases:

the initialization phase and the search-and-update phase. The initialization phase is performed

only once as long as q(·) remains unchanged. For any subsequent refinements of θ, only the

search-and-update phase needs to be repeated.

1. Initialization phase: VPs drive the initialization phase. First, VOs are used to compute

a π̂-vector for each relevant graph.

Definition 6.7.1 π̂-VECTOR. The π̂-vector of a graph g is a vector of π̂θi(g) computed at
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multiple distance thresholds θi, where π̂θi(g) ≥ πθi(g) is an upper bound on the representative

power of g computed using Theorem 6.6.3. Mathematically,

−−→
π̂(g) = [π̂θ1(g), · · · , π̂θn(g)] (6.13)

where θ1 < θ2 < · · · < θn−1 < θn are n different thresholds.

The π̂-vector allows us to compute an upper bound on the representative power for any

given distance threshold θ. More specifically, a binary search can be performed on the indexed

thresholds in the π̂-vector to find the smallest θi ≥ θ and an upper bound π̂θi(g) can be derived

to guide the searching process. We discuss which θs to index in Sec. 6.7.1.

Once the π̂-vector is computed for all leaf-nodes (or graphs), the information is propagated

upwards on NB-Tree by recursively computing and storing the ceiling of the π̂-vectors of all

children of a non-leaf node. Owing to this initialization procedure, an upper bound on the

marginal gain in representative power of any graph g can be computed from any of its ancestor

nodes. More specifically, for any non-leaf node n, and any set of graphs S, the following

property can be guaranteed.

π(S ∪ {n}) ≥ π(S ∪ {c}) for any child c of n (6.14)

Note that in the absence of interactive refinement, the π̂-vector is not required since the

input θ is already known; π̂θ(g) can be computed directly. However, if the threshold is refined

to θ′, then πθ′(g) needs to be recomputed. More importantly, the information contained in

any of the previously used θs cannot be leveraged. Thus, we pre-compute the representative

powers at a series of distance thresholds in the initialization phase and use them as required for

refinements. In other words, the initialization phase is insulated from refinements of θ.

Example 6.7.1 Fig. 6.4 demonstrates how π̂-vectors are constructed and propagated upwards

in the tree through the ceiling operation. For simplicity, we assume all graphs are relevant.
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Algorithm 7 nextGraph(q(·), θ, k)
1: PQ← priority queue containing NB-tree.root
2: lb← 0
3: best← null

4: while PQ is not empty do

5: entry← PQ.dequeue()
6: if entry.gain<lb then

7: return best
8: end if

9: if entry is a graph then

10: Compute N̂θ(entry) using VOs
11: Nθ(entry)← {g | g ∈ N̂θ(entry), d(entry, g) ≤ θ}
12: gain← π(A ∪ entry)− π(A)
13: if gain> lb then

14: best← entry
15: lb← gain
16: end if

17: else

18: for each child c ∈ entry and q(entry) ≥ η do

19: gain← π(A ∪ c)− π(A)
20: if gain> lb then

21: PQ.insert(gain,c)
22: end if

23: end for

24: end if

25: end while

26: return best

The π̂-vector is computed on θ1 = 1 and θ2 = 3.

2. Search and Update: The second phase can be divided into two subcomponents: search and

update, which are performed iteratively k times.

2a. Search: Alg. 7 presents the pseudocode. First, a search is performed to identify the

graph providing the highest marginal gain in representative power. The search starts from the

root node (line 1). When a node is explored (line 5), each of its children is added to a priority

queue where the nodes are ordered based on their marginal gains in representative power (lines

15-18). Since the marginal gain at any non-leaf node provides an upper bound on the marginal
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gains of all graphs in its subtree, they are used to prioritize the exploration of the unexplored

nodes. The process is repeated iteratively till a graph is found whose actual marginal gain

is higher than all candidates in the priority queue (lines 6-7). Only for such a graph, its θ-

neighborhood is computed using graph edit distance to compute the exact marginal gain in

the representative power (lines 8-14). As a result, expensive edit distance computations are

reserved for only strong candidates and the computational cost is drastically reduced.

2b. Update: The cluster based bounds identified in Sec. 6.6.3 drive the update step. At the

addition of a graph g to the answer set, the π̂-vectors of nodes in NB-Tree are impacted. Now,

instead of accurate re-computations of π̂-vectors, a search is initiated from the root to identify

clusters (or non-leaf nodes) that are within a distance of 2θ from g and consequently, affected

(Theorem 6.6.4). For such clusters, using Theorems 6.6.5-6.6.6, the π̂-vectors are updated. To

identify the relevant graphs in a cluster, only graphs in its subtree need to be scanned. As noted

earlier, Theorems 6.6.4-6.6.6 provide the benefit of computing a single upper bound for a group

of structurally similar graphs that are located in the same cluster. Finally, the ceilings of the

changed π̂-vectors are propagated upwards, as in the initialization step, to reflect the “current

state” of the search algorithm.

To summarize, the initialization phase customizes the index for the query function. The

’Search and Update’ phase then takes over. The ‘Search’ procedure iteratively retrieves the

graph with the highest representative power, and ‘Update’ computes its impact on the repre-

sentative power of the remaining relevant graphs. In the entire query processing algorithm,

expensive edit distance computations are performed only on strong candidates in the search

step and with cluster centroids in the update step. All remaining neighborhood computations

are performed using VOs and thus, the entire algorithm is computationally efficient.
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Table 6.3: Graph datasets used for evaluation
Dataset Avg. # of nodes Avg. # of edges # of graphs

DUD 26 28 128332
DBLP 55 263 11362

Amazon 29 189 9120

6.7.1 Choosing thresholds to index in the π̂-vector

A bad choice of thresholds in the π̂-vector would produce loose upper bounds which in

turn would reduce the efficiency of the search-and-update procedure. Therefore, to make a

more informed selection, the following factors need to be considered: domain knowledge, the

history of previous queries, and the memory budget. Note that the selection of thresholds to

index is an offline procedure and is decided by the index designer. The user who issues the

query needs no prior information.

The number of thresholds to index can easily be decided based on the memory budget. For

example, in an index with 1 million nodes, a π̂-vector of size 10 would consume 4×10×106

106
=40MB.

For the more critical decision of choosing the thresholds, depending on the information and re-

sources available, one of the following schemes can be adopted.

1. Query log: If the distribution of distance thresholds on previous top-k queries is avail-

able, then the thresholds to index can be sampled (without replacement) from that distribution.

2. No information is available: When no prior information is available, the distribution

of π(g) across θ can be computed from a small sample of graphs in the database. Next, the

thresholds to index can be chosen proportional to the slopes in the distribution. More specif-

ically, a higher number of thresholds should be indexed for the θ intervals where the slope is

high since such intervals indicate regions where the upper bounds vary steeply even for a small

difference in θ’s.
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6.8 Experiments

This section summarizes experimental results that examine the quality and the scalability

of our approach:

1. Information Density: The proposed model has a higher information density than DisC [88]

and a diversity-based model [7].

2: Scalability: By indexing θ-neighborhoods of graphs instead of their nearest neighbors,

NB-Index ensures scalability in answering top-k representative queries on graph databases.

6.8.1 Datasets

We use three different graph datasets to benchmark our techniques. Table. 6.3 summarizes

the various properties of the datasets.

1. DUD: The DUD [105] dataset contains 128,332 molecules that were assayed against 10

different protein targets. Consequently, each molecule is tagged with a 10-dimensional feature

vector that represents its binding affinity to each of the targets. In the graph representation of a

molecule, each vertex corresponds to an atom, and the edges represent atom-atom bonds. Our

goal is to identify molecular structures that are compatible with the structure of the protein

targets. The DUD dataset allows us to assess the natural correlations that exist between the

feature and the structural space, and their resultant effects on top-k queries.

2. DBLP: In the DBLP network [101], each node corresponds to an author, and two

authors are connected if they have at least one paper together. Furthermore, each author is

tagged with the community he/she belongs too. For our evaluation, the goal is to understand if

the most active groups collaborate within the community or span across multiple communities.

For that purpose, we replace the author in each node label with the person’s community. Next,

we extract the complete 2-hop neighborhood subgraph around each node to construct our graph

database. Finally, the combined activity level of each graph, denoting a collaboration group, is
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characterized with a one-dimensional feature vector.

3. Amazon: The Amazon network [101] is structured in a manner similar to DBLP. Each

node corresponds to an item, and two items are connected if they are frequently co-purchased.

In addition, each item is classified under a category. Our goal is to understand if cross-category

coupling exists among items that are popular. Thus, similar to the processing in the DBLP

dataset, we replace the node labels with the category of the item and then extract its 2-hop

neighborhood subgraph. As in the DBLP dataset, a feature vector is used to characterize the

popularity of each co-purchase graph.

6.8.2 Experimental setup

Our algorithms are implemented in Java 1.6.0 and benchmarked on an Intel i7 2.67GHz

quad core processor PC with 12GB of main memory running Ubuntu 12.10. We refer to our

proposed model as REP, and the diversity model in [7] is termed DIV.

1. Quality Evaluation: To evaluate the quality of the answer set produced REP, we

compare its representative power with the full DisC answer set, and the top-k answer sets of

DIV.

2. Scalability Evaluation: We benchmark the performance of NB-Index against the

‘Grey-Greedy-DisC(Pruned)’ algorithm of DisC [88], the ‘div-cut’ approach in DIV [7] and

C-tree [103]. For DisC, we stop the computation as soon as it attains a size of k. For DIV,

we use C-Tree to compute the ‘diversity-graph’, which is subsequently used by the ‘div-cut’

algorithm, to speed up processing.

Due to the extremely slow running times of DisC, DIV and C-tree on the entire DUD

database, we select a random sample of 25, 000 graphs. Nonetheless, for scalability experi-

ments against dataset size, we use the entire DUD database. For DBLP and Amazon, we use

the entire dataset for all experiments.
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Query Arguments

1. q(·): One primary goal in REP is to support query time definition of relevant graphs.

DisC assumes that the set of relevant graphs is static and known apriori. To model this re-

quirement, in DUD, we select a random subset of d dimensions where 1 ≤ d ≤ 10, and the

feature-space score is quantified as
∑d

1
gi
d

. Both the DBLP and Amazon datasets are character-

ized using 1D feature vectors, which act as their feature space scores. For all three datasets, a

graph is considered relevant if its feature-space score falls within the first quartile. For example,

a graph in the DBLP dataset is relevant if its activity level is within the top-25%.

2. θ: Our goal is to select a θ that is realistic and yet poses a significant scalability chal-

lenge in answering top-k representative queries. Towards that goal, we study the cumulative

distribution of the graph distances in each dataset (Figs. 6.5(a)-6.5(b)). While the distributions

are similar for DUD and DBLP, distances between graphs in the Amazon dataset are much far-

ther apart. Based on these observations, for DUD and DBLP we set θ = 10 and for Amazon,

θ = 75. For DBLP and DUD, addition of a graph to the answer set impacts the π(g) of any

graph g within a distance of 2θ = 20; for Amazon, graphs within a distance of 150 are affected.

Thus, across all three datasets, each addition to the answer set affects one-tenth of the entire

database on average, and for all these affected graphs, their representative power needs to be

recomputed. Consequently, the chosen θs present a significant scalability challenge.

3. k: The default k is set to 10.

Parameters

1. π̂-vector: The π̂-vector is chosen based on the cumulative distance distributions in

Figs. 6.5(a)-6.5(b). Given the high slope between θ = 10 and θ = 40 for both DUD and DBLP,

we index 10 different distance thresholds at 5, 12, 16, 20, 25, 30, 35, 40, 75, 100. We index at

θs beyond 40 just for the sake of completeness so that a query on any θ can be supported. For
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Figure 6.5: (a-b). The cumulative distance distributions. (c-e) The distance distributions.
(f-h) Observed FPRs, and FPR Upper Bounds (FPR UB) with θ. (i-k) Growth rates of query
times against θ and (l) distance to the closest indexed threshold θi.146
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amazon, we adapt π̂-vector using the same strategy. Owing to the high slope between θ = 50

and θ = 200, we index at 20, 60, 90, 120, 150, 180, 200, 300, 400, 500. We intentionally do

not index at the default query θs of 10 and 75 to mirror a realistic scenario.

2. Number of VPs: The number of VPs is chosen based on Eqn. 6.11. The distance

distributions in the three datasets (Figs. 6.5(c)-6.5(e)) are approximated as a Gaussian of their

means and standard deviations. To limit the FPR below 5% at the realistic zone of 5 ≤ θ ≤ 20

for DUD and DBLP, and at 50 ≤ θ ≤ 200 for Amazon, we choose 100 VPs. We perform a

detailed analysis on the performance of VPs in Sec. 6.8.3.

3. Branching Factor: The maximum branching factor in NB-Index is set to 40.

6.8.3 Quantitative analysis

In this section, we quantify the performance of the proposed techniques over the current

state of the art.

Efficacy

One of our primary motivations in this work is to allow users to control the size of the

answer set, so that a smaller set of exemplars can be identified and investigated in further detail.

Towards that goal, we compare the compression ratios (CR) of REP, with the ones achieved by

DisC and DIV. The CR of an answer set A is defined as |Nθ(A)|
|A|

, which is simply the ratio of the

number of relevant objects represented to the answer set size. In this experiment, for DUD, we

consistently use the same subset of feature vector dimensions since it is essential to capture the

natural correlations between the feature and structural space, which in turn affects the CR.

Table 6.4 presents the results. The CRs in REP are significantly higher than both DisC

and DIV. This result establishes the utility of operating in a budgeted setting as well as the

advantage of a representative-aware model over a diversity-aware model. For DIV, we compute

147



Answering top-k representative queries on graph databases Chapter 6

the result at two different settings. In the first setting, DIV(θ), we use the original model

in [7], which ensures all answer set objects are at least θ apart. However, this model assumes

that the scores of graphs are mutually independent. In reality, the representative powers of

the graphs are dependent on each other. Therefore, to also study the performance when the

independence assumption is followed, we enforce the stricter condition of ∀g1, g2, d(g1, g2) >

2θ. The produced answer set is denoted as DIV(2θ). As can be seen, DIV(2θ) further lowers the

CRs since the stricter condition to guarantee score independence rules out many representative

graphs from inclusion in the answer set.

To further analyze the representation of relevant objects, we also compute the growth of

π(A) with k. As shown in Table 6.4, REP covers close to a quarter of the relevant objects

using just 10 exemplars. As k increases beyond 100, it is futile to try to represent relevant

objects using exemplars, since either the remaining non-represented objects are outliers or

their θ-neighborhoods have large overlaps with already represented objects. Consistent with

the results observed while analyzing the CRs, DIV(θ) and DIV(2θ) have up to 6 times lower

representative powers due to relying on an indirect maximization approach. Overall, DIV

is unable to model the semantics of representativeness, and consequently, the quality of the

answer set is compromised.

A detailed theoretical analysis on the optimal number of VPs is performed in Sec 6.6.2 to

predict an upper bound on the False Positive Rate (FPR). We now verify how well the empirical

results conform to the theoretical analysis. Figs 6.5(f)-6.5(h) present the results. The FPR is

highest in the DUD dataset, due to the low standard deviation of the distances. Intuitively, if all

graphs are similar to each other and clustered together, the performance of VPs deteriorates.

For this reason, on DBLP and Amazon, which are not as densely clustered, the FPR is much

lower. At low θs in DBLP and DUD, the FPR Upper Bound (≈ 0.01) is slightly lower than the

observed FPR. This results from the fact that the distance distribution in DBLP and Amazon

slightly deviates from a normal distribution.
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Scalability

First, we evaluate the performance of NB-Index against the distance threshold θ. Figs. 6.5(i)-

6.5(k) show the growth rates of query times as θ is varied. NB-Index is up to two orders of

magnitude faster than existing techniques. Due to the enormous running times of DisC, C-

tree and DIV on DUD, we do not show their results beyond θ > 20. The growth rates of

existing techniques are similar since they all index nearest neighbor queries through triangular

inequality; while DisC and C-tree propose their own index structures, in DIV, we use C-tree

as the underlying graph indexing technique to construct the ‘diversity-graph’, on which DIV

performs further processing. A bulk of the computation time is spent in initializing the θ-

neighborhoods of relevant graphs. This operation needs to be performed online since both

θ and the relevance function are query parameters. DIV assumes the representative powers

of graphs to be mutually independent, and thus does not re-compute them after each answer

set update. Consequently, at the cost of quality, it is faster than both DisC and C-tree. In

NB-Index, majority of the computations happen in the feature space through VPs. As already

shown in Figs. 6.5(f)-6.5(h), the FPRs in VPs are low. Furthermore, beyond VPs, the cluster

based bounds outlined in Theorems 6.6.4-6.6.6 index the θ-neighborhoods in structural space

itself and allows batch updates of representative power.

To further evaluate our performance, we also compare its running time to the scenario

where the distance matrix of the entire graph database is pre-computed. Due to the fast run-

ning times of both the approaches, the inset in Fig. 6.5(i) presents a zoomed-in view to better

compare the two approaches. As discussed in Sec. 6.5, pre-computing the distance matrix is

not advisable since it incurs a huge storage cost. Nonetheless, we benchmark our performance

against the best-case scenario from the running time perspective. Except at θ = 20, the perfor-

mance of NB-Index is 1.5 to 2 times higher than storing the distance matrix. Another important

property that is emphasized in the inset of Fig. 6.5(i) is that NB-Index is most efficient at the
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Figure 6.6: Growth rate of query times with (a) difference between user-provided distance
threshold θ and closest indexed threshold θi, (b-d) dataset size, (e-g) k and (h) number of
dimensions. (i) Running times for incremental zoom-in and zoom-out. (j) Growth rate of
incremental zoom-in and zoom-out query time with dataset size. Growth rate of (k) index
construction time and (l) indexing memory footprint against dataset size.150



Answering top-k representative queries on graph databases Chapter 6

two extreme ends of the θ range. When θ is large, Theorems 6.6.5 and 6.6.6 are more effective

in pruning the search space. On the other hand, Theorem 6.6.4 is more efficient at low θs. Thus,

mid-range θs present the most challenging scenario, which results in a bell shaped growth rate

of the query time.

Next, we analyze the performance deterioration as the difference between the user-provided

distance threshold θ and the closest higher indexed threshold θi in NB-Tree increases. This

analysis shows how sparsity in the π̂-vector affects the performance of NB-Index. Note that

a non-indexed θ only affects the performance of the structural bounds. The performance of

VOs remain unaffected. Figs. 6.5(l), 6.6(a) show the growth rates of running times. Even when

the difference is as high as 10 for DUD and DBLP, and 300 for Amazon, NB-Index consumes

less than 25 seconds of additional time. As evident from Figs. 6.5(a)-6.5(b), the slopes are

extremely steep between 10 ≤ θ ≤ 20 for DUD and DBLP and 50 ≤ θ ≤ 200 for Amazon.

Thus, upper bounding π10 with π20 (in DUD and DBLP) provides a particularly tough setting.

However, even in such cases, the performance of NB-Index is significantly better thanks to the

efficiency of the VOs and the fast upper bounds derived using Theorems 6.6.5 and 6.6.6.

Figs. 6.6(b)-6.6(d) demonstrate the growth rate of running time against dataset size. For

DUD, we vary the size from 5, 000 to the entire database containing 128, 332 graphs. NB-Index

scales significantly better than all three existing techniques and achieves a performance that is

more than an order of magnitude faster. This result stems from indexing the θ-neighborhoods

of graphs, which negates the need to perform O(n2) nearest neighbor queries. Figs. 6.6(e)-

6.6(g) further establish the superiority of NB-Index as k is varied from 5 to 100. The growth

rate of query time with k is much lower for NB-Index due to the same reason of indexing the θ-

neighborhoods of graphs. The running time of DIV is almost constant across k since it assumes

the representative powers of graphs to be mutually independent. Thus, after the diversity-graph

is constructed, all remaining computations occur in the feature space, which is minuscule when

compared to the cost of constructing the diversity-graph.

151



Answering top-k representative queries on graph databases Chapter 6

Fig. 6.6(h) investigates the performance as the number of dimensions in feature vectors is

varied between 1 and 10 in the DUD dataset. A feature vector of dimension d is constructed

by randomly choosing a subset of d dimensions from the overall 10. The query time is almost

identical across different numbers of dimensions for all three techniques since the cost of oper-

ating in the feature space is negligible compared to the cost of computing graph edit distances

while updating θ-neighborhoods. The minor variation in running times results from the corre-

lations between feature and structural space where a higher correlation results in faster query

times.

Fig. 6.6(i) compares query times in the interactive θ refinement scenario. DIV is not in-

cluded in this experiment since it assumes θ to be an offline parameter. In this experiment, first,

a query is performed on the default θ outlined in Sec. 6.8.2. Next, a new θ is selected, which

is either 10% smaller or larger, and the answer set is re-computed. This process is repeated 20

times and the average computation time is reported. NB-Index tackles refinements of θs within

10 seconds across all three datasets. On the other hand, although a lot faster than a new query,

DisC and C-tree takes up to 160 seconds to adapt to a new θ. To further study the response

times in an interactive setting, we analyze its growth rate against dataset size in Fig. 6.6(j). We

only use the DUD dataset since for the other two datasets, a query refinement can be answered

within 5 seconds. Similar to the previous scalability results against dataset size, NB-Index is

more than an order of magnitude faster.

Finally, we analyze the computation and storage costs of the proposed index structure.

Fig. 6.6(k) presents the growth rate of the index construction time against dataset size. While

the main plot compares the construction time of NB-Index with that of computing the entire

distance matrix in the DUD database, the inset shows the construction times across all three

datasets. In DUD, which contains a total of ≈ 130, 000 graphs, the index construction com-

pletes within 20 minutes. Compared to the cost of computing the entire distance matrix, we

are more than two orders of magnitude faster. This efficiency is achieved through VP-based
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Figure 6.7: Answer sets computed using traditional top-k query (first row) and top-k repre-
sentative query (second row). In the top row, the subgraph in red occurs in four of the five
molecules, indicating the core structure of a single class of molecules.

pruning in pivot and radius computations where actual edit distances are computed for less than

1% of the candidate pairs. The scalability of NB-Index also extends to its storage cost. As ex-

pected from the theoretical analysis, a linear growth rate is observed in Fig. 6.6(l) and less than

300MB is required to store the index for the entire DUD dataset. The reported result includes

the memory consumption from storing the π̂-vectors, which are computed at query-time.

6.8.4 Qualitative analysis

In this section, we highlight the utility of a representative model over the traditional top-k

framework. Towards that goal, we perform a top-k query and a top-k representative query

using the same scoring function and compare the two answer sets. To construct the database,

we extract molecules from the DUD repository that are active against the enzyme Acetyl-

choline ezterase (AChE). Extracted molecules are characterized based on their binding affinity

to AChE, which is one of the primary targets for drugs treating Alzheimer’s disease [106]. A

molecule is considered relevant, if its binding affinity, denoted as BA, is within the top quartile.

Fig. 6.8.4 shows the two top-5 answer sets. As illustrated in Fig. 6.8.4 using color cod-

ing, all molecules in the traditional answer set are structurally similar to each other. Although

they exhibit high binding affinity toward AChE, the traditional answer set represents just one
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structural family of high scoring molecules. On the other hand, the representative answer set

contains molecules that are all structurally diverse, high scoring, and representative of other

high-scoring molecules in the dataset. The efficacy of the proposed model is well highlighted

in the shown result where the entire class of molecules in the traditional answer set is summa-

rized by the top molecule in the representative answer set. In the context of drug discovery,

the traditional answer set provides only one class of molecules that can be further optimized

to develop drugs. Whereas, the representative answer set provides five different classes of

molecules, each of which can be studied further for drug discovery.

6.9 Related Work

A large body of work exists on result-set diversification [89–95, 110]. A detailed compari-

son with DisC [88] and [7] has already been performed. A closely related query, called top-k

typicality queries is formulated in [111,112]. An object o is considered “typical” if its distances

to other objects in the database are small. More formally, the probability density of o is used

as its typicality score. While the typicality score is conceptually similar to the proposed idea

of representative power, the paper does not explore the coverage maximization aspect. Con-

sequently, the typicality scores of two objects are independent and there is no penalty when

highly typical objects from the same cluster are included in the answer set. As a result, the

problem in [111] is not NP-hard, whereas ours is. In addition, instead of high-dimensional

objects, we focus on graphs where computing the distance itself is NP-hard. Consequently, the

scalability challenges faced are unique to our problem.

The idea of representativeness has been explored in the context of skyline queries [113].

An object in a database is a skyline point if it is not dominated by any of the database objects.

The representativeness of a skyline point is the number of point it dominates. The goal in

this work is to identify the k skyline points that dominates the maximum number of database
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points. Thus, while in our work, an object represents another object if their distance is within

a threshold, in [113], an object o1 represents object o2 if o1 dominates o2. Consequently, the

modeling requirements and the proposed indexing techniques are different. In addition, we

focus on graphs whereas [113] focuses on high-dimensional points.

Existing work on diversification of graph-based searches [94, 95, 110] are limited to single

large networks. In the single graph setting, an answer set constitutes of graph nodes, whereas

in our problem, the answer set contains actual graphs. Due to this fundamental difference in

problem formulation, existing diversification techniques on graphs cannot be applied to our

problem.

Beyond diversification of results, indexing graphs for similarity queries [103,104,114,115]

is related to our problem. As shown in our experimental results, indexing graphs for nearest

neighbor queries is not enough to scale top-k representative queries. Consequently, our work

takes a more direct approach by indexing the θ-neighborhoods of graphs, which lies at the

core of updating graph representative powers. Embedding graphs into a feature space has been

explored by Zou et. al. [116]. Their goal is to index shortest part queries between nodes

by embedding nodes in a feature space. In our work, instead of a single large graph, we

have multiple graphs each of which is embedded in a feature space. Additionally, instead of

indexing shortest paths, our goal is to index their θ-neighborhoods, which is a function of graph

edit distance. Due to this basic difference in the entities being embedded and their associated

indexing goals, the technique, the bounds derived from the techniques, and the error guarantees

do not transfer.

6.10 Conclusion

In this work, we formulated the problem of top-k representative queries on graph databases.

By allowing online definitions of object relevance and answer set budget, the proposed formu-

155



Answering top-k representative queries on graph databases Chapter 6

lation provides a higher degree of flexibility to users. We showed that the problem is NP-hard

and submodular. Based on this result, we designed a greedy constant factor approximation of

the optimal answer set. To achieve scalability, we designed an index structure called NB-Index

that indexes the θ-neighborhoods of database graphs by employing a novel combination of Lip-

schitz embedding and agglomerative clustering. NB-Index not only facilitates fast answering

of queries, but also allows interactive refinement of θ to reach the optimal zoom level. Empiri-

cal evaluations on real graph datasets demonstrate significantly higher information density and

a performance improvement of up to two orders of magnitude over the state of the art.
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Chapter 7

Mining Discriminative Subgraphs from

Global-state Networks

7.1 Introduction

The ability to capture multiple snapshots of a network leads to a “global state” network in

which the snapshots share the same structure but have different values on nodes and/or edges.

Furthermore, the network-guided evolution of the local states jointly determines the global

network state in each snapshot. Such global-state networks (GS-network) can model a myriad

of domain specific features such as traffic congestion in transportation networks [117], evolu-

tion of opinions and sentiments on social networks [118], gene expression levels on protein-

protein interaction networks [119] and scaffolds in molecular libraries [120]. For example, in

protein-protein interaction networks, the expression levels of individual proteins encode logi-

cal functions that determine the presence or absence of a disease. In social networks, opinion

expressed on a movie by a certain user affects the opinions of his/her friends which in turn sets

off a word-of-the-mouth cascade that ultimately decides the global consensus. How do local

node labels govern the evolution of the global network state? Can we save cost by monitoring
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Figure 7.1: A GS-network based modeling of protein-protein interaction data on eight dif-
ferent humans (snapshots). The GS-network models the occurrence of cancer. A protein
expression level of 1 denotes abnormal activity, whereas 0 indicates normal expression levels.

only a discriminative subgraph and still be able to predict the global network state accurately?

In this paper, we investigate these questions.

Consider the problem of inferring biological outcomes from the human protein-protein

interaction network (PPI). A hypothetical example is shown in Fig.7.1. In a PPI, each node

corresponds to a protein and two proteins are connected by an edge if they are known to interact

while regulating a common biological process. As a result, abnormality in the expression level

of a certain protein directly impacts only its neighbors. As evident in Fig.7.1, the expression

level of a protein varies from person to person. Research in systems biology has shown that

clinical outcomes, such as susceptibility to cancer, depend not only on the expression level

of a single protein, but on pathways or network modules [119]. Modeling this phenomenon,

therefore, requires us to have a network with dynamic node labels and a global dynamic state;

the node labels indicate the protein expression levels in a human and the global state indicates

the presence or absence of the disease. To predict the biological outcome, we need to find the

sub-networks whose local states accurately predict the global network state.

As illustrated above, GS-networks can model aspects of data that are beyond the scope

of static networks. A line of work that closely resembles GS-networks is the idea of time-

evolving dynamic networks. A dynamic network consists of a series of networks whose prop-

erties change with time. However, dynamic networks lack a global network state and existing

techniques on analyzing dynamic networks primarily focus on studying time-evolving recur-
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rent patterns [117, 121, 122]. In contrast, the goal of our problem is to learn the network-

encoded logic functions from the local states, and then predict the global network state. For

that purpose, we develop a technique called MINDS (MINing Discriminative Subgraphs) to

mine discriminative subgraphs from large GS-networks.

The problem of mining discriminative subgraphs has been studied. However, all exist-

ing techniques [123–126] target small graph databases such as chemical compound reposi-

tories. Consequently, the following question arises: Are their challenges that are unique to

GS-networks? The answer to the question lies in the basic fundamentals of the processes being

modeled. In contrast to GS-networks, small graph databases contain multiple graphs, each of

which models a database object (such as a chemical compound) and is associated with a class

label. A subgraph is considered discriminative if it is statistically “over-represented” in graphs

belonging to any one of the classes. Consequently, existing techniques focus on minimizing

the cost of subgraph isomorphism and efficient computation of subgraph frequencies. On the

other hand, a GS-network models the evolution of a process through a network and its impact

on the local network entities as well as the global network state. Thus, the focus is on mining

discriminative subgraphs whose local states jointly encode the global network states.

Learning discriminative subgraphs from GS-networks is key to understanding the complex

relationship that exists between the local and the global states. Consider the problem of mon-

itoring environmental sensor networks and learning regression models to predict the intensity

of climatic conditions. In an environmental network, each sensor represents a node and mea-

sures environmental properties such as pressure, temperature, etc. Two sensors are connected

if changes in environmental factors directly influence each other. Now, research in meteoro-

logical science has established that climatic conditions in a region depend not only on local

factors, but also on environmental conditions across the globe. For example, the intensity of

Indian monsoon is linked to El Niño [127]. While limited success has been achieved in making

short-term forecasts based on local environmental factors, long-term forecasts based on global
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factors remain a challenge. Mining discriminative subgraphs from environmental sensor net-

works would help us identify such global factors and forecast onsets of extreme conditions to

minimize the resulting damage.

While optimizing prediction quality is important, it is also essential to learn local models

that are consistent with the network structure. Additionally, the mined sub-networks should

regularize the GS-network by applying a bias of network constraint towards shrinking the

hypotheses space. Compactness of discriminative sub-networks is key to both network reg-

ularization as well as real time monitoring. Consider the scenario in sentiment analysis on

social networks to predict stock market momentum. [118]. The global behavior of users in the

network is shaped through their individual opinions and the resulting cascading effects within

their social circles. Given the scale of social networks such as Facebook or Twitter, monitoring

the entire user base to provide real-time updates on the global consensus is not feasible. Mining

the most compact discriminative subgraphs promises to penetrate this scalability bottleneck by

identifying smaller groups of influential users that maximally predict the global behavior.

Clearly, mining discriminative subgraphs from GS-networks is a powerful mechanism for

identifying network components that are influential in determining the global state. However,

given the fact that decades of research has already been performed on learning classification

models, an obvious question arises: How is the problem of mining discriminative subgraphs

different from training classifiers? To answer this question, we highlight the key aspects of

our problem that are beyond the scope of a traditional classifier. 1. Semantics: Learn lo-

cal prediction models that are sensitive to the underlying network structure. In our problem,

each feature (or node) is constrained within a structure and the network event being modeled

evolves through that structure. On the contrary, a traditional classifier operates on unstructured

data where each feature represents an axis in a high-dimensional space. Consequently, any

model learned lacks semantic meaning.

2. Level of abstraction: Mine discriminative subgraphs, each of which is self-sufficient in
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explaining the evolution of the global network state and modeling a coherent event. For ex-

ample, in PPI, such a subgraph corresponds to a biological process, whereas in environmental

networks, a subnetwork represents a region. The local models can further be combined to de-

sign ensemble learning algorithms. On the other hand, a traditional classifier is only capable

of mining discriminative nodes with the sole focus on prediction quality. Consequently, the

learned patterns are of a low-level and do not capture the higher-level structure.

3. Beyond Classification: Mine discriminative subgraphs that not only provide the platform

for learning classification models, but also network regularization, regression and monitoring.

To achieve the properties highlighted above, we design a technique called MINDS to mine

minimally discriminative subgraphs from large GS-networks without compromising the under-

lying network structure. To summarize:

• We formulate the problem of mining minimally discriminative subgraphs from large GS-

networks. To learn local prediction models and quantify the discriminative potential of a

subgraph, we introduce the concept of network-constrained decision tree that learns network-

encoded logic functions to predict the global network state.

• To tackle the exponential subgraph search space, we formulate the idea of an Edit Map, on

which we perform Metropolis-Hastings sampling algorithm and leverage the memoryless prop-

erty of Markov chains to drastically reduce the computation cost.

• We perform extensive experiments on real GS-networks to evaluate the efficiency and ef-

fectiveness of MINDS. Our results show that the proposed algorithm achieves an accurate

approximation of the optimal answer set. Furthermore, MINDS outperforms the current state-

of-the-art classifiers developed for PPIs.
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7.2 Problem Formulation

A network/graph G = (V,E) is composed of a set of nodes V = {v1, v2, · · · , vn} mod-

eling the entities of the network and a set of edges E = {(vi, vj) | vi, vj ∈ V } modeling

the relationships between these entities. A network snapshot N = (V,E, L, S) contains two

additional parameters: a labeling function L : V → R and the global network state S. While

L operates on the node IDs and models the local states, the global state function S quantifies

the success of the event being modeled. For simplicity, we assume edges to be undirected and

S ∈ {−1, 1}. However, all of the theory developed in this paper is easily generalizable to

variants such as edge-weighted graphs, directed edges, multi-class states, or continuous valued

states.

Definition 7.2.1 GLOBAL-STATE NETWORK: A GS-network is a set of network snap-

shots N = {N1, · · · , Nn | Ni = (Vi, Ei, Li, Si)}. We alternatively use the notation N =

(VN , EN , Li, Si) to denote a GS-network where VN =
⋃

∀Ni∈N
Vi and EN =

⋃

∀Ni∈N
Ei.

Example 7.2.1 Fig.7.1 demonstrates a hypothesized GS-network modeling the occurrence of

cancer. The global state encodes the presence or absence of cancer and the local states indicate

the protein expression levels. All snapshots in this GS-network share the same structure. For

snapshots with different structures, the null value is used to denote the state of a missing node.

A graph G = (V,E) is a subgraph of a GS-network N = (VN , EN , Li, Si), denoted by G ⊆ N,

if V ⊆ VN and E ⊆ EN . A stronger constraint is enforced by the relationship of induced

subgraphs.

Definition 7.2.2 INDUCED SUBGRAPH: G = (VG, EG) is an induced subgraph of GS-

network N = (VN , EN , Li, Si), denoted as G ⊆ N, if and only if VG ⊆ VN , EG ⊆ EN ,

and ∀(u, v) ∈ EG where u ∈ VG and v ∈ VG, (u, v) ∈ EN .
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A supergraph is defined analogously.

In this paper, we focus on mining only connected induced discriminative subgraphs of a

GS-network. Consequently, any reference to a subgraph is assumed to be a connected induced

subgraph.

Given a training dataset, our goal is to mine subgraphs that accurately predict the global

state S of any snapshot N ∈ N. Furthermore, the mined subgraphs should be as compact

as possible to ensure network regularization. Towards that goal, we first define the notion of

discriminative subgraphs.

Definition 7.2.3 DISCRIMINATIVE SUBGRAPHS: Given a GS-network N = (VN , EN , Li, Si),

let f(G,L) be a structure-sensitive prediction function that predicts the global state of a net-

work. If C = {Ni = (VN , EN , Li, Si)|Ni ∈ N, f(G,Li) = Si} is the set of correctly predicted

networks, then the discriminative potential of subgraph G ⊆ N is:

φ(G) =
|C|
|N| (7.1)

G is discriminative if φ(G) ≥ θ for a user-provided threshold θ.

Due to our assumption of binary valued global states, f(G,L) is essentially a classification

model. For continuous valued global states, f(G,L) would be a regression function. We

elaborate on how to learn the prediction function f(G,L) in Secs. 7.3 and 7.4.

While one could mine all discriminative subgraphs in the network for a given threshold θ,

such an answer set is likely to be informationally sparse. More specifically, given a subgraph

G that is discriminative, all of G’s supergraphs are discriminative as well. This result follows

from the fact that any prediction function f(G,L) learned from G = (VG, EG) can be learned

from a supergraph G′ = (VG′ , EG′) ⊇ G as well since the feature set VG′ ⊇ VG contains all the

information embedded in G. Therefore , to mitigate this potential issue of information sparsity,

our goal is to extract the set of minimally discriminative subgraphs.
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(a) (b) (c)

Figure 7.2: The optimal traditional decision tree (a) and the optimal network-constrained de-
cision tree (b) for the GS-network shown in Fig.7.1. (c) Demonstrates how infection spreads
in the network. The infected nodes are highlighted in red.

Definition 7.2.4 MINIMALLY DISCRIMINATIVE SUBGRAPHS: A subgraph G is minimally

discriminative if φ(G) ≥ θ and the set {G′|G′ ⊆ G, φ(G′) ≥ φ(G)} = ∅.

As can be seen, minimally discriminative subgraphs correspond to the smallest possible

subnetworks within a GS-network that are influential enough to determine its global state.

Consequently, mining minimally discriminative subgraphs allows us to maximize the informa-

tion density in the answer set and avoid overfitting.

7.3 Network-constrained decision trees

Sec. 7.2 formalizes the discriminative potential of any graph G. However, we still need to

learn a structure-sensitive prediction function f(G,L) so that φ(G) can be quantified. From

Defn. 7.2.3, φ(G) is directly proportional to the probability P (f(G,Li) = Si) for any network

Ni ∈ N. Without the constraints of the structure, the problem is essentially that of learning

a classification/regression model on the GS-network N using only nodes in G as features.

However, as already discussed in Sec. 7.1, such an approach lacks semantic meaning and

the level of abstraction required to gain meaningful insights from the mined network features.

To concretize the importance of structure in our problem further, consider the hypothe-

sized GS-network in Fig.7.1 and the local events where protein p1 over-expresses (i.e., samples

where p1 has node label 1). From the network structure, it is evident that an abnormality in p1
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has a direct impact only on p2. As a result, out of the five human samples where p1 = 1, p2

behaves abnormally on four of them. Now, through p2, the abnormality in p1 has a cascading

effect on the expression levels of p3, p4 and p5. A deeper analysis of the example reveals that

whenever both p1 and p5 behave abnormally, the corresponding human samples are suscepti-

ble to cancer. Clearly, p1 and p5 are statistically the most informative nodes and this fact is

reflected in Fig.7.2(a) which shows the optimal decision tree (DT) for Fig.7.1. Notice that the

learned model is completely oblivious to the fact that the process evolved from p1 to p5 through

p2. Even though p2 is not statistically informative, structurally, it is the “bridge” between p1

and p5, and thus, plays a key role in determining the global network state. From a biological

viewpoint, if p2 can somehow be shielded from abnormal behaviors in p1, then the risk of the

disease is greatly diminished. Clearly, the importance of p2 must be recognized and the failure

of traditional local learners in capturing this key structural aspect highlights their limitations in

mining structured data such as graphs. To capture the importance of network structure within

the framework of a traditional classifier, we introduce the concept of network-constrained de-

cision trees (NCDT).

Similar to the goals of a DT, an NCDT also learns the optimal boolean function that best

predicts the global states using the local node labels. However, an NCDT also models the

evolution of a process through the network and imposes additional constraints on nodes that

can be used to split the training dataset. For the first split, an NCDT is free to choose any node.

After the first split node n1 is selected, an NCDT considers n1 as “infected”. Furthermore, the

infection spreads from n1 to all of n1’s neighbors, and an NCDT can select only one of the

infected nodes to decide the next split. Based on this constraint, once the second split node

n2 is selected, n2’s neighbors in turn get affected and this process repeats recursively, like in

a DT, till leaf nodes are reached. The additional constraint of splitting only through infected

nodes ensures that “structural bridges” are captured and we do not overfit the learned models.

Note that the proposed NCDT can easily be employed for learning a regression function as well

165



Mining Discriminative Subgraphs from Global-state Networks Chapter 7

by incorporating the same strategies used for learning regression DTs. Formally, an NCDT is

defined as the following:

Definition 7.3.1 NETWORK-CONSTRAINED DECISION TREES: A decision tree is also an

NCDT if all nodes in the tree form a connected component in the GS-network.

Example 7.3.1 Fig.7.2(b) shows the optimal NCDT for the GS-network in Fig.7.1. Fig.7.2(c)

demonstrates how the “infection” spreads in the network. In the optimal NCDT, p5 is selected

as the first split node. As a result, p5 and p2 get infected. Among the infected nodes, p2 is

selected for the next split, which results in the infection spreading to p1, p3 and p4. p1 is

selected for the third split to produce the optimal NCDT. On the other hand, the DT in 7.2(a)

is not an NCDT since p5 and p1 do not form a connected component.

Certainly, DT is not the only classifier than can be adapted to learn a structure sensitive

prediction function. We choose NCDTs since it forms a natural and intuitive extension to DT.

Additionally, as shown later in Sec. 8.6, the linear construction cost of NCDTs make it highly

efficient when compared to other state-of-the-art classification techniques.

7.3.1 Computational Challenges

With the formalization of NCDTs, we now have a mechanism to quantify the discriminative

potential of any graph. In this section, we analyze the computational challenges faced while

mining minimally discriminative subgraphs.

Claim 2 Computing the optimal NCDT is NP-hard.

PROOF: Learning the optimal DT is known to be NP-complete [128]. Given any dataset D =

{d1, · · · , dn} where di = (x1, · · · ,

xk, yi) with yi being the class label, the decision tree problem is to determine whether there

exists a decision tree of size (i.e., number of nodes in the tree) less than s that classifies each
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di correctly. Given an arbitrary instance of the problem, we construct a clique with all features

(or nodes) 1, · · · , k connected to each other. It is easy to see that a DT of size less than s exists

if and only if an NCDT of size less than s exists. In other words, learning an NCDT on a clique

is equivalent to learning a DT. �

NP-hardness of computing the optimal NCDT is not the only computational challenge. To

mine minimally discriminative subgraphs, we need to first enumerate all possible subgraphs of

the GS-network, and then compute their discriminative potentials. Unfortunately, the number

of subgraphs in a network grows exponentially with its size and as a result, enumerating all pos-

sible subgraphs is not feasible. Consequently, the proposed problem presents us with a unique

challenge: how can we mine minimally discriminative subgraphs even without enumerating the

entire search space?

7.4 Mining Discriminative Subgraphs

Sec. 7.3.1 outlines the two computational challenges in mining discriminative subgraphs

from large GS-networks. In this section, we address these two challenges. First, we devise

a strategy to compute NCDTs greedily. Next, to combat the exponential search space, we

impart an ordering on the candidate subgraphs in the form of an edit map, and then perform

Metropolis-Hastings [129] sampling on the map to compute an accurate approximation.

7.4.1 Greedy computation of NCDT

As in greedy learning of traditional DTs, the first node to split the training dataset is selected

greedily by choosing the one with the highest statistical importance. The statistical importance

can be quantified using any of the existing attribute value tests such as information gain or gini

index. For our implementation, we use information gain which is defined as the following

167



Mining Discriminative Subgraphs from Global-state Networks Chapter 7

IG(N, u) = E(N)−
∑

l∈L∗(u)

|Nl|
|N| E(Nl) (7.2)

where N is a GS-network, L∗(u) is the set of all possible labels for node u, Nl = {N =

(VN , EN , L, S)|N ∈ N, L(u) = l} is the set of networks where node u has label l and E(·)

is the entropy of a set. The first split divides N into |L∗(u)| subsets. Next, the set of infected

nodes is computed, and each of the subsets is split recursively by choosing the infected node

with the highest information gain for that subset. As in a DT, this process completes when leaf

nodes are reached where either the global states of all snapshots belong to a single class or no

feature exists to split further.

7.4.2 Searching greedily in the subgraph space

A greedy learning of the NCDT tackles the NP-hardness challenge outlined earlier. Now,

we focus on the second challenge of exploring the exponential search space„ which cannot be

computed or stored due to its sheer size. Our current capabilities only allow us to compute

the discriminative potential of a given subgraph and evaluate local modifications to further

improve its discriminative power. Thus, our only hope to reach the globally optimal solution is

through locally optimal choices. Towards that goal, a greedy approach could be adopted. First,

the node with the highest information gain can be identified as the seed, and an NCDT can

be constructed greedily around that seed node. The corresponding subgraph would therefore

be the nodes spanning the NCDT. If the subgraph is discriminative, then it is added to the

candidate set, otherwise discarded. To continue populating the candidate subgraph set, the

process is restarted from the seed node with the second highest information gain. Once all

nodes have been explored, the answer set can be computed by identifying only the minimally

discriminative subgraphs from the candidate set.

While a greedy strategy is computationally efficient, the discriminative potential of the
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Figure 7.3: The top three levels and the bottom two levels of the edit map of the GS-network
in Fig.7.1. We just show the set of nodes in each vertex of the edit map since the edges can
be concluded from the definition of an induced subgraph.

subgraph is highly restricted by the choice of the initial seed node. If the seed lies in a neigh-

borhood where the rest of the nodes provide low information gain, then the resultant subgraph

will be non-discriminative as well. More importantly, a greedy algorithm is constrained to

continue expanding the NCDT in the low informative region even after realizing that the initial

seed is an informative outlier. What is therefore critical to the success of any local optimiza-

tion based approach is being sensitive to back-tracking and negating any of the wrong choices

already made. MINDS builds upon this intuition by converting the subgraph search space into

an Edit Map, and then performing MH sampling on the map to mine minimally discriminative

subgraphs.

7.4.3 Edit Map

The edit map (EM) of a GS-network represents all possible edits that can be performed on

any subgraph G ⊆ N in the form of an edge-weighted partial-order graph.

Definition 7.4.1 EDIT MAP: The edit map of a GS-network N = (VN , EN , Li, Si) is a directed

edge-weighted graph M = (VM , EM), where VM = {G|G ⊆ N}, EM = {(G = (V,E), G′ =

(V ′, E ′)) | either G′ ⊇ G, V ′ = V ∪{u}, u /∈ V, u ∈ VN or G′ ⊆ G, V ′ = V \{u}, u ∈ V },

and fM : EM → R is a function that assigns a weight to each edge in EM .
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As can be seen, the EM structures the search space into an edge-weighted graph where

each vertex corresponds to a distinct subgraph G ⊆ N. Besides, G is connected to all of its

subgraphs with one less node, denoted as G → u, and supergraphs with one additional node,

denoted as G ← u. Each edge in the EM, incident on some vertex G, G ⊆ N, corresponds

to an edit which either inserts or deletes a node from G. By performing a series of edits, G

can be transformed to any subgraph G′ ⊆ N. The edge weights quantify the impact of the

edits on the discriminative potential. We elaborate on how to compute these edge weights in

Sec. 7.4.5. Hereon, we use the term node to denote an entity in the GS-network, and vertex

to denote a candidate subgraph in the EM. The topmost vertex in the EM represents the null

graph, and the bottom vertex represents the entire network structure. Fig.7.3 shows the EM of

the GS-network in Fig.7.1. The EM is always connected.

As noted earlier, the size of the EM is exponential with respect to the GS-network size

and thus cannot be computed or stored in its entirety. However, given any subgraph, we can

make local edits to enhance our chances of finding the minimally discriminative subgraphs.

We formalize this idea by initiating a Metropolis-Hastings sampling on the EM to guide us

towards discriminative subgraphs.

7.4.4 Metropolis-Hastings Sampling

The Metropolis-Hasting (MH) algorithm is a Monte Carlo Markov Chain sampling al-

gorithm whose goal is to sample from a target distribution τ . Given a state space Ω =

{s1, · · · , sn}, let vi ≥ 0 be the value of item si ∈ Ω. Our goal is to draw state si from τ ,

where

τi =
vi
C

(7.3)

C =
∑n

i=1 vi is a normalizing constant. For large n, C is difficult to compute and thus,

computing τ directly is not feasible. MH allows us to simulate τ by converting the state space
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into an n-state Markov chain with an arbitrary transition matrix Q. Let the current state, Xt, at

time step t be i. The MH algorithm performs the following three steps to determine Xt+1:

• Draw a random state j with probability Qij

• Compute the acceptance probability αij , where

αij = min

{

1,
τjQji

τiQij

}

= min

{

1,
vjQji

viQij

}

(7.4)

•
Xt+1 =















j, with probability αij

i with probability 1− αij

(7.5)

In this formulation, the transition matrix Q is called the proposal distribution matrix and

αij is termed as the acceptance probability. The optimal proposal distribution is the one that

best approximates the target distribution, and the acceptance probability should model how

precise the approximation is. The proposal distribution and the acceptance probability can be

combined to define the following one-step transition matrix T :

Tij =















Qijαij if i 6= j

1−∑k 6=i Qijαij if i = j

(7.6)

The Markov chain with transition matrix T is reversible and ergodic. Additionally, the station-

ary distribution π of the Markov chain converges to the target distribution τ .

7.4.5 MH sampling on the Edit Map

Sec. 7.4.4 describes how the MH algorithm can be used to sample from a target distribu-

tion. In this section, we utilize the MH algorithm to sample discriminative subgraphs from the

exponential subgraphs search space. In our problem, each subgraph (or vertex) in the EM is
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a state. The target is to approximate the answer set by sampling only a small subset of highly

discriminative subgraphs from the entire search space. Clearly, the quality of the sampled set

is critical to the accuracy of our approximation. In MH algorithm, the quality of the station-

ary distribution depends on two key parameters: the proposal distribution and the acceptance

probability. We thus focus on defining these parameters to best approximate the answer set of

minimally discriminative subgraphs.

The proposal distribution matrix Q is a function of the edge weights in the EM. The edge

weights reflect the quality of the edits on a given subgraph G. An edit is “good” if the newly

constructed subgraph increases our chances of finding a minimally discriminative subgraph.

While an increase in the discriminative potential can be observed only when nodes are added,

Q should allow node deletions so that the sampler does not converge to local optimums. Fur-

thermore, since our goal is to mine minimally discriminative subgraphs and maximize infor-

mation density, deletions should be preferred over “bad” additions that do not increase the

discriminative potential. Thus, to summarize, given a subgraph G, we group all possible edits

on G into three classes:

1. Good addition: φ(G) increases due to addition of a node.

2. Bad addition: φ(G) does not increase.

3. Delete: Delete nodes to avoid converging to local optimums.

We next formalize these intuitions.

First, we focus on quantifying the edge-weights corresponding to additions. As can be

seen, the impact of a node addition on the discriminative potential can be computed only after

the NCDT is constructed on the new subgraph following the edit. Consequently, if G has m

supergraph neighbors, we need to build m NCDTs. On dense networks, m can be significantly

large. Furthermore, this operation needs to be repeated for each graph that we sample in the

EM. As a result, an accurate computation of the edge weights is computationally expensive.

To reduce this computational burden, we compute an approximation of the actual edge weight
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based on information gain. Assuming the current state Xt = G = (VG, EG), first, the NCDT

on G is built. Next, we construct the set M = {Ni = (VN , EN , Li, Si)|Ni ∈ N, f(G,Li) 6= Si}

of misclassified networks, where f(G,L) is the prediction function. For each node u ∈ VN

that can be added to G to construct a supergraph G′ = G← u ∈ Gsup, we group them into two

sets based on their information gain:

A− = {u|IG(M, u) ≤ 0 | G′ = G← u ∈ Gsup}

A+ = {u|IG(M, u) > 0 | G′ = G← u ∈ Gsup}

A− and A+ represent the “bad” and “good” additions respectively. The quality of performing

an addition is now quantified as follows:

A(u) =















∆
|A−|

if, u ∈ A−

(1−∆) IG(M,u)
∑

v∈A+
IG(M,v)

if, u ∈ A+

(7.7)

where ∆ is a small probability distributed evenly among the “bad” additions. As can be seen,

the sampler is most likely to select one of the “good” additions based on its information gain.

However, since information gain is only an approximation of the actual increase in discrimina-

tive potential, with a small probability ∆, the sampler would explore “bad” additions as well.

Furthermore, as in the case of deletions, being open to “bad” additions avoids convergence to

local optimums. We discuss how to select ∆ in Sec. 7.4.5.

Next, we focus on quantifying the utility of deletions. As discussed earlier, deletions are

necessary to maximize the information density in the sampled subgraphs, and ensure that the

sampler does not explore non-minimally discriminative subgraphs. To achieve this property,

the need for deletions on a subgraph G should be dependent on φ(G). If φ(G) is low, additions

are preferred so that the sampler adds more information and moves to discriminative subgraphs.
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On the other hand, if φ(G) is high, it is preferable to delete nodes and explore other regions

of the subgraph search space. We model these requirements using the following proposal

distribution:

QGG′ =















β
|Gsub|

if G′ = G→ u ∈ Gsub

(1− β) A(u)
∑

G←v∈Gsup
A(v)

if G′ = G← u ∈ Gsup

(7.8)

where β models the need for deletions based on φ(G) and is quantified as the following:

β =
eKφ(G)

eK
(7.9)

and K is some large constant. As φ(G) increases, most of the probability is distributed among

deletes, whereas at a low φ(G), additions are preferred.

The definition of β completes the formalization of the proposal distribution matrix Q. We

next focus on defining the acceptance probability αGG′ . Since our goal is to sample discrimi-

native subgraphs, vG in Eq. 7.4 can be set to φ(G). However, with such a score assignment,

any supergraphs of G′ ⊇ G where φ(G′) = φ(G) ≥ θ will be considered as a “good” state

even though from Definition 7.2.4, G′ will never be part of the answer set. Therefore, to model

this property, we compute vG as follows:

vG =































ǫ ≈ 0 if ∃G′ = G→ u ∈ Gsub, φ(G
′) = φ(G)

ǫ ≈ 0 if ∃G′ = G← u ∈ Gsup, φ(G
′) > φ(G)

φ(G) otherwise

(7.10)

Eq. 7.10 ensures that transitions from non-minimally discriminative states are always accepted

(cases 1 and 2). If no such conclusion can be drawn from the current state and its neighbors,

then transitions are accepted based on their discriminative potentials.
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Parameters

Although the proposed model contains two parameters, ∆ and K, none of them have a

profound impact on the results as long as the parameters are set within an appropriate range.

∆ is a small probability that allows exploration of locally “bad” node additions in hope of a

globally optimal solution. The results are consistent for any values in the range [0.001,0.005].

In our experiments, we set ∆ = |A−|
|VN |

. For K in Eq. 7.9, any large value in the range [100, 300]

would produce consistent results.

7.4.6 Implementation details

Algorithm 8 MINDS(N, θ)
1: A := ∅
2: t := 0
3: Xt := A randomly selected subgraph G = (VXt , EXt) ⊆ N

4: Build NCDT on Xt

5: while t < maxiter do

6: if Xt is minimally discriminative then

7: A := A ∪ {Xt}
8: A := A\{G′ ∈ A|G′ ⊇ Xt, φ(Xt) = φ(G′)}
9: end if

10: Xtsub := {Xt → u|u ∈ VXt , u is not a cut-vertex}
11: Xtsup := {Xt ← u|u /∈ VXt , ∃v ∈ VXt , (u, v) ∈ EN}
12: Compute QXtG′ , ∀G′ ∈ Xtsub ∪Xtsup

13: Choose neighbor G′ from proposal distribution QXtG′

14: Update NCDT for G′

15: α :=
vG′QG′Xt

vXt
QXtG

′

16: t := t+ 1
17: if uniform(0, 1) ≤ α then

18: Xt := G′

19: end if

20: end while

21: return A

In this section, we discuss the implementation details of MINDS. Alg. 8 presents the

pseudocode. At time step t = 0, a random subgraph of the GS-network N is selected as state
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Xt and the NCDT on Xt is built (lines 2-4). Since the EM is guaranteed to be connected, the

random selection of the graph does not impact the algorithm performance. Next, Xt is checked

for minimal discriminativeness, and the answer set A is updated accordingly (lines 6-8). By

leveraging the memoryless property of the MH sampling algorithm, Alg. 8 constructs only the

local neighborhood of Xt in the EM (lines 9-10). To further reduce computation cost, only

those entries of Q that involve graph Xt are computed (line 11). A neighbor G′ is then selected

from this proposal distribution and the NCDT is updated accordingly to incorporate the edit

operation (lines 12-13). After that, based on α, the state Xt+1 is selected and the process

is repeated for time step t + 1 (lines 14-17). Finally, after a high number of iterations, the

approximated answer set of minimally discriminative subgraphs is returned.

As can be seen in Alg. 8, MINDS is extremely efficient in both storage and computation.

Even though the search space is exponential, at any time step, MINDS maintains only two

copies of NCDTs in memory: one for the current state and the other for the proposed state.

Similarly, the EM or the probability distribution matrix Q is never computed in its entirety.

Only the local neighborhood of the current state is computed and stored. As a result, MINDS

achieves both of the desired goals: accurate simulation of the target distribution through MH

sampling, and computational efficiency through memoryless property of Markov chains.

7.5 Experiments

The objectives of our evaluation procedure are the following:

• Evaluate the sampling quality and scalability of MINDS.

• Investigate the importance of network structure. Towards that goal, we perform MH sampling

with Support Vector Machines (SVM) instead of NCDTs and compare the performance.

• Study the impact of noise in GS-networks on the mined patterns. Furthermore, based on

the observed results, quantify the statistical significance of the results obtained in the cleaned
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Table 7.1: Summary of the GS-networks used. The ‘Event’ column denotes the event being modeled.
Dataset #Nodes #Edges #Events Event

D1 11203 57235 371 Breast Cancer
D2 9673 39240 183 Liver Metastasis
D3 1321 5227 35 Embryonic Origin

datasets.

• Analyze the power of minimally discriminative subgraphs on predicting network states.

7.5.1 Datasets

To benchmark MINDS on real GS-networks, we use three different PPIs. Each of the PPIs

represents the human protein interaction network. Although all three networks are drawn from

the same species, they are curated by three different agencies and differ in the various cellular

processes being modeled. Consequently, no mapping exists between nodes across networks.

Table 8.4 summarizes the GS-networks. D2 is obtained from [130], whereas D1 and D3 are

obtained from [119]. Fig.7.4(a) shows the degree distribution of each of these networks. As

expected, they display a scale-free behavior. D1, D2 and D3 model the events of breast cancer,

liver metastasis, and embryonic origin of human tissues respectively. The “#Events” column

denotes the number of network events/snapshots observed. Each event is associated with local

node labels and a global state. The local node labels represent the protein expression levels

and the global state indicates the clinical outcome of the event being modeled. To discretize

the protein expression levels, we follow the standard procedure from systems biology [130].

First, the expression levels of each protein are standard normalized so that the mean and the

standard deviation is 0 and 1 respectively. Next, the expression levels of all proteins across all

events are sorted and the values in the top 25% are set to 1. The remaining values are set to

0. A node label 1 therefore indicates the corresponding protein to over-express and 0 indicates

normal behavior.
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7.5.2 Experimental Setup

For experiments evaluating quality of MINDS, we select the maximum possible subset of

network events from each dataset such that the distribution of the global states is balanced.

A balanced set ensures that a majority-class classifier can only achieve an accuracy of 0.5.

Otherwise, we use the entire datasets. Unless specifically mentioned, we iterate the sampler

for 100, 000 time steps. We set the default threshold for discriminative potential to 0.8. The

value of constant K in Eq. 7.10 is set to 100. Typically, K has minimal impact on the results

as long as K > 100.

MH with SVM

To highlight the importance of capturing the underlying network structure, we replace

NCDT with SVM as the learning methodology in the MH sampling step. More specifically,

at any subgraph G ⊆ N, φ(G) is computed based on SVM with linear kernel. The SVM is

not constrained by network connectivity as long as all features (nodes) are part of G. In MH

sampling with SVM, only the proposal distribution matrix is altered based on the feature rank-

ing mechanism outlined in [131]. Instead of information gain, the importance of a node u is

quantified based on its absolute weight value w(u) in the learned SVM model. Thus, at each

state with graph G, two SVM models are learned: SVM model MG on G, and SVM model

MGsup that uses all nodes in G in addition to the nodes that can be added to G on the EM.

w(u) ∈ MG quantifies the importance of deleting node u, and w(u) ∈ MGsup quantifies the

importance of adding node u to G. Thus,

QGG′ =















(β) |w(u)|
∑

G→v∈Gsub
|w(v)|

if G′ = G→ u ∈ Gsub

(1− β) |w(u)|
∑

G←v∈Gsup
|w(v)|

if G′ = G← u ∈ Gsup

The formulation of β (7.9) and α (7.10) remains the same.
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7.5.3 Performance analysis of sampling

First, we evaluate the quality of the subgraphs sampled from the EM. The quality of the

sampling procedure is the single most important aspect that affects the accuracy of the com-

puted answer set. To obtain an accurate approximation, the sampler should often visit graphs

that have high discriminative potential. Therefore, to analyze the desired correlation between

visit count and the discriminative potential of a subgraph, we plot the likelihood of a subgraph

being visited given its discriminative potential. Figs.7.4(b)-7.4(c) demonstrate the results on

two of the largest datasets D1 and D2. To set the baseline, we perform random sampling of

subgraphs. As can be seen, majority of the subgraphs visited by MINDS have 0.9 ≤ φ(G) ≤ 1.

On the other hand, if we select subgraphs randomly from the network, the visit count is uni-

formly distributed across all values of discriminative potential. During random selection, we

ensure that the subgraph sizes are drawn from the same distribution visited by MINDS. For

SVM-guided MH sampling, a trend similar to MINDS is also observed. However, the sam-

pler spends more time in the range 0.7 ≤ φ(G) ≤ 0.9. This result shows that the proposed

formulations of the proposal distribution matrix and the acceptance probability, for both SVM

and NCDT, are effective in separating out the discriminative subgraphs from those that are

non-discriminative.

The second important aspect of the sampling procedure that affects the quality of the an-

swer set is the size of the visited subgraphs. Recall that for subgraph G to be minimally dis-

criminative, none of G’s subgraphs can have a higher discriminative potential than G. Clearly,

that reduces to sampling small subgraphs but with high discriminative potentials. Thus, to an-

alyze how well the proposed technique conforms to this desired sampling property, we analyze

the distribution of the subgraph sizes that are sampled. First, we plot the distribution of the

subgraph sizes against the discriminative potential. As can be seen in Figs. 7.4(d)-7.4(e), the

information density in subgraphs sampled by MINDS is significant higher than in SVM for
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Figure 7.4: (a) Degree distribution in datasets D1, D2 and D3. (b-c) Growth rate of visit
count with discriminative potential for dataset D1 and D2. (d-e) Growth rate of subgraph size
with discriminative potential. (f) Distribution of sampled subgraph sizes. Growth rate of the
running time with (g) network size, (h) number of events, and (i) θ. (j) Quality of the answer
set against number of iterations. (k) Statistical significance of the patterns mined by MINDS.
(l) Impact of structural noise on discriminative subgraphs.
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subgraph sizes above 5. While the discriminative potential of subgraphs sampled by MINDS

saturates at sizes around 20, to achieve the same potential, SVM requires significantly larger

subgraphs. This result highlights the importance of capturing the network structure through

NCDTs. Since SVM is oblivious to network connectivity, it only utilizes the information en-

coded in the network nodes. On the other hand, the structural constraint in NCDT captures the

network through which the process being modeled evolves, and consequently, utilizes the infor-

mation encoded in both the nodes as well as edges. The importance of capturing the structure is

further established in Fig.7.4(f). Fig. 7.4(f) analyzes the sampled subgraph sizes and plots their

distribution against visit count. Since the information densities in SVM sampled subgraphs are

significantly lower than MINDS, much of the SVM sampling is restricted on large subgraphs

to achieve a high discriminative potential. Consequently, most of the subgraphs sampled by

SVM are not minimally discriminative. We further analyze the importance of structure in Sec.

7.5.4.

Next, we focus on analyzing the scalability of MINDS. First, we evaluate the growth rate

of the running time against network size in Fig. 7.4(g). To construct GS-networks of varying

sizes, we select subgraphs from D1. To set the baseline, we first attempt an exhaustive subgraph

exploration on a network containing only 60 nodes. However, due to the exponential subgraphs

search space, the exhaustive search failed to complete even after 12 hours. Given this context,

even on a network containing 10, 000 nodes, MINDS is more than three orders of magnitude

faster than an exhaustive exploration on a network of size 60. Compared to SVM, MINDS is

more than a magnitude faster than SVM. Fig. 7.4(h) analyzes scalability against the number of

events in the network. As can be seen, the running time of MINDS grows linearly and is more

than 10 times faster than SVM. Finally, we evaluate the growth rate of the running time against

the discriminative potential threshold θ. As expected from the formulation in Sec. 7.4.5, the

running time is constant since other than the randomness in the sampling procedure, θ does not

change the number of computations performed.
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Fig. 7.4(j) analyzes the quality of the answer set with the number of iterations. To quantify

quality, we verify whether the answer set captures the entire spectrum of the minimally dis-

criminative subgraphs. For that purpose, we use the metric of information density span. First,

we define information density of a graph G = (VG, EG) as φ(G)
|VG|

. The information density span

of the answer set is the difference between the highest and the lowest information densities

among all graphs in the answer set. The highest and the lowest information densities define the

boundaries of the answer set, and we consider the answer set to converge once the density span

stops expanding. As can be seen in Fig.7.4(j), after 100, 000 iterations, the increase in the span

is minimal. We use information density instead of discriminative potential, since graphs in the

answer set should be both discriminative and compact.

Although the above experiments indicate an excellent performance, an important question

remains to be answered: How accurate is our approximation? To answer this question, we

selected a sub-network of D1 containing 60 nodes and tried computing the ground truth answer

set. Unfortunately, the process could not be completed even after 12 hours during which it

analyzed more than 100×106 subgraphs. The projected time based on the number of subgraphs

that were left unprocessed was 200 hours. Due to this huge computational cost, computing the

ground truth even on miniature networks is not feasible. Thus, we use an alternative strategy

for constructing the ground truth. We synthetically implant NCDTs on the network structure

of D1 and generate a balanced set of network events ensuring that the implanted NCDTs have

an accuracy of 1. While generating the network events and the accompanying node labels,

we set the node labels according to the functions encoded by the implanted NCDTs. For

nodes that are not used by the NCDTs, we set the labels arbitrarily. Due to this controlled

construction, subgraphs spanning the implanted NCDTs have discriminative potentials of 1.0.

Now, to evaluate the accuracy, we execute MINDS on the constructed GS-network and verify

whether the discriminative subgraphs are extracted.

Table 7.2 presents the results as the sizes of the implanted subgraphs are varied (we explain
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the results for graph N = (VN , EN) in Sec. 7.5.4. In all of our experiments, MINDS is able

to identify a subgraph with a discriminative potential of 1. Interestingly, for |VI | ≥ 5, MINDS

is able to identify a smaller subgraph G and still achieve an accuracy of 1. Due to the human-

mediated construction of the implanted NCDTs, the trees are not always optimal. MINDS is

able to identify that non-optimality and construct a more complex and compact NCDT while

retaining the same accuracy. This result establishes that MINDS is efficient in both accurately

approximating the answer set and regularizing the network.

7.5.4 Impact of noise

What happens when the GS-network is noisy? How much of the signal is lost due to in-

accuracies in the network structure? In this section, we answer these questions. There are

three sources of noise: the network structure (SN), the local expression levels at nodes (LN),

and the global network class (GN). To understand the impact of noise, we perform permutation

tests [132]. More specifically, first, we create a null hypotheses by introducing noise in the PPI

and run MINDS on the noisy network. Due to the addition of noise, if the original network con-

tains any prediction signal, we expect to lose it. This process of introducing noise is repeated

one million times to compute the distribution of discriminative potentials for a subgraph of a

given size. Based on the null hypothesis, we compute the p-value for the distribution observed

in Fig.7.4(e). For example, in Fig.7.4(e), a subgraph of size 6 has an average discriminative

Table 7.2: Accuracy of MINDS against ground-truth answer set and the impact of noise
on network structure. I = (VI , EI) denotes the implanted discriminative subgraph,
G = (VG, EG) and N = (VN , EN ) denote the best subgraph discovered in the original
and noisy GS-networks respectively.

|VI | |VG| |VN | |VG ∩ VI | |VN ∩ VI | |VG∩VI |
|VG∪VI |

|VN∩VI |
|VN∪VI |

φ(G) φ(N)

3 4.93 10.02 2.59 2.31 0.64 0.28 1 1
5 5.08 8.53 3.42 3.41 0.57 0.38 1 1
8 6.52 8.02 4.61 4.61 0.48 0.42 1 1
10 8.02 8.47 5.38 5.26 0.43 0.4 1 1
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potential of 0.94 and our goal is to compute the statistical significance of this event. To in-

troduce structural noise (SN), we randomly construct edges between nodes while keeping the

total number edges in the original network, and the local and global labels intact. For LN and

GN, we adopt similar strategies by permuting the local node labels and global snapshot labels

respectively. As in SN, we ensure that the distributions of the noisy local and global states are

the same as in the original datasets.

Fig.7.4(k) shows the results for all subgraph sizes sampled by MINDS in dataset D2. As

can be seen, regardless of the noise introduction policy, the p-values for the majority of the

subgraph sizes are 0. The significance of the results decreases for sizes above 12 in the SN

and LN methods due to diminishing return of marginal gains. More specifically, in the original

dataset, the discriminative potential saturates for subgraphs above sizes 8. In the noisy dataset,

even after perturbing the local states, MINDS is able to identify discriminative subgraphs when

their sizes are above 12. However, due to the permutation, the saturation happens from size 12

onwards instead of 8.

To further understand the impact of noise, we analyze the information density of the dis-

criminative subgraphs as the amount of SN is varied. A noise level of 20% indicates that

20% of the edges are randomly constructed; the remaining edges are the same as in the orig-

inal network. Fig. 7.4(l) demonstrates the results. As expected, with increase in noise level

the structural signal is lost, and consequently, the average discriminative potential for a given

subgraph size decreases. Similar results are observed for LN and GN as well.

Finally, we investigate the impact of SN on discovery of the ground-truth answer set. As

in the verification procedure earlier, synthetic NCDTs are implanted on the GS-network. Next,

SN is introduced and we compare the discriminative subgraphs N = (VN , EN) identified in the

noisy network with the implanted ones. As can be seen in Table 7.2, although discriminative

subgraphs are still identified, they are significantly larger in size. This is in sharp contrast to the

results in original network where MINDS is able to identify subgraphs that are actually smaller
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Figure 7.5: (a-c) Growth rate of the AUC with number of trees for the events.

than the implanted ones. This is a direct consequence of the structural signal getting lost due

to shuffling of edges.

Overall, the analysis reveals the following:

1. The network structure contains discriminative information that should be captured in the

classifier for optimum performance.

2. If the network is noisy, the sizes of the discriminative subgraphs grow to compensate for

the missing information.

7.5.5 Analysis of prediction quality

In this section, we verify the predictive power of the mined subgraphs for network state

classification. To evaluate prediction performance, we perform 5-fold cross validation. First,

we compute the answer set on the training dataset. Then, from each of the minimally dis-

criminative subgraphs, we extract the learned NCDT and the state predicted on the testing set

by the majority of the NCDTs is considered as the collective predicted state. The accuracy is

quantified by the area under the ROC curve (AUC).

To benchmark our technique, we use the state-of-the-art classifier Network Guided Forests

(NGF) [119] designed specifically for PPIs, SVM. NGF employs a greedy sampling strategy
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similar to the algorithm outlined in Sec. 7.4.2. By sampling multiple times, NGF constructs a

random forest. Furthermore, NGF incorporates domain specific information, such as favoring

high-degree proteins, and a second round of clustering to identify decision modules to boost the

performance. In contrast, MINDS incorporates no domain specific information. Figs. 7.5(a)-

7.5(c) demonstrate the classification accuracy as the number of trees is varied for MINDS and

NGF. As can be seen, MINDS achieves a higher AUC across all network events that is up to

65% higher than NGF and SVM.

7.6 Related Work

While the idea of a GS-network has not been formalized before, the problem of mining

protein modules from PPIs has been studied. Prior work in systems biology has indicated

that the network structure is critical towards identifying discriminative protein modules and

have focused on network regularization [133,134] and classification [119,130]. However, with

the exception of [119], existing techniques assume homogeneous activity on entire protein

modules and are only capable of identifying simple logic functions such as the sum or the

multiplication of the expression levels. On the other hand, [119] employs a greedy strategy

by starting from the most informative node in the network and then building a tree within that

neighborhood. As illustrated in Sec. 7.4.2, a greedy strategy is susceptible to converging to

a local optima. Furthermore, as opposed to solving the problem only in the context of PPIs,

our work proposes a generalized algorithm for GS-networks. The features mined by MINDS

can not only be employed for classification, but also for regression, network regularization and

real-time monitoring.

As discussed earlier in Sec. 7.1, dynamic networks [117, 121, 122] and mining discrimi-

native subgraphs from graph databases [120, 123–126] are the two closest lines of work from

the computer science community. However, both fail to model the problem being proposed
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here. Dynamic networks do not contain global states and each snapshot is ordered temporally.

Mining discriminative subgraphs from graph databases, on the other hand, assume a database

of multiple graphs and mine subgraphs that are statistically “over-represented” in one of the

classes.

7.7 Conclusion

In this paper, we formalize the concept of a global-state network and design a technique

called MINDS to learn the network-encoded evolution rules that determine the global network

state. MINDS learns local prediction models by constructing network-constrained decision

trees on minimally discriminative subgraphs. The mined patterns regularize the network and

provide the platform for an array of higher level tasks such as classification, regression and

network monitoring. To tackle the exponential subgraph search space, MINDS structures the

space in the form of an Edit Map and performs MH sampling on the map to mine discrimi-

native subgraphs. MINDS aggressively leverages the memoryless property of Markov chains

and drastically scales up the mining procedure. Extensive experiments performed on real GS-

networks demonstrate MINDS to be efficient in mining patterns that are accurate and statisti-

cally significant. MINDS is up to 4 orders of magnitudes faster than baseline techniques. Over-

all, MINDS unleashes the potential of minimally discriminative subgraphs towards a myriad of

applications such as real time recommendation engines, cost-effective clinical treatments and

efficient designing of marketing campaigns.
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Part III

Predicting network processes
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Understanding and mining patterns from network data are important. However, the final

goal is to model and forecast networked behaviors in the future using the insights we have

gained. Thus, I next propose a number of models for predicting different network processes,

including traffic flow and online information spreads.

In Chapter 8, I predict the movement of crowds in a city, which is strategically important

for traffic management, risk assessment, and public safety. I propose predicting two types of

flows of crowds in every region of a city based on big data, including human mobility data,

weather conditions, and road network data. To develop a practical solution for citywide traf-

fic prediction, I first partition the map of a city into regions using both its road network and

historical records of human mobility. Our problem is different than the predictions of each

individual’s movements and each road segment’s traffic conditions, which are computation-

ally costly and not necessary from the perspective of public safety on a citywide scale. To

model the multiple complex factors affecting crowd flows, I decompose flows into three com-

ponents: seasonal (periodic patterns), trend (changes in periodic patterns), and residual flows

(instantaneous changes). The seasonal and trend models are built as intrinsic Gaussian Markov

random fields which can cope with noisy and missing data, whereas a residual model exploits

the spatio-temporal dependence among different flows and regions, as well as the effect of

weather. Experiment results on three real-world datasets show that our method is scalable and

outperforms all baselines significantly in terms of accuracy.

In Chapter 9, I predict the popularity of online content in social networks, which is impor-

tant in many applications, ranging from ad campaign design, web content caching and prefetch-

ing, to web-search result ranking. Earlier studies target this problem by learning models that

either generalize behaviors of the entire network population or capture behaviors of each in-

dividual user. In this paper, I claim that a novel approach based on group-level popularity

is necessary and more practical, given that users naturally organize themselves into clusters

and that users within a cluster react to online content in a uniform manner. I develop a novel
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framework by first grouping users into cohesive clusters, and then adopt tensor decomposi-

tion to make predictions. In order to minimize the impact of noisy data and be more flexible

in capturing changes in users’ interests, our framework exploits both the network topology

and interaction among users in learning a robust user clustering. The PARAFAC tensor de-

composition is adapted to work with hierarchical constraint over user groups, and I show that

optimizing this constrained function via gradient descent achieves faster convergence and leads

to more stable solutions. Extensive experimental results over two social networks demonstrate

that our framework is scalable, finds meaningful user groups, and significantly outperforms

eight baseline methods in terms of prediction accuracy.

Finally, in Chapter 10, I propose a novel model-free approach to forecasting complex net-

work phenomena – such as information cascades in online social networks. In forecasting, a

recent trend has been to forgo the use of parsimonious models in favor of models with increas-

ingly large degrees of freedom that are trained to learn the behavior of a process from historical

data. Extrapolating this trend into the future, eventually I would renounce models all together.

But is it possible to forecast the evolution of a complex stochastic process directly from the

data without a model? In this work I show that model-free forecasting is possible. I present

SED, an algorithm that forecasts process statistics based on relationships of statistical equiva-

lence using two general axioms and historical data. To the best of our knowledge, SED is the

first method that can perform axiomatic, model-free forecasts of complex stochastic processes.

Our simulations using simple and complex evolving processes and tests performed on a large

real-world dataset show promising results.
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Chapter 8

FCCF: Forecasting Citywide Crowd Flows

Based on Big Data

8.1 Introduction

Predicting the movement of crowds in a city is strategically important for traffic manage-

ment, risk assessment, and public safety. For example, 36 people died and 47 others were

injured during the stampede in the Shanghai Bund in 2015, turning a New Year Celebration

into a catastrophic accident. Massive flows of people streamed into a strip region which was

not designed to hold them to watch the New Year’s Eve Light Show, making the region over-

loaded and difficult for police to control. A similar stampede happened in the 2010 German

Love Parade. If we can predict the arrival of crowds in a region and know the crowd flows

would exceed the region’s safe capacity, we can launch emergency mechanisms (e.g., sending

warnings to people and conducting traffic controls) or evacuate people in advance.

Prior research on crowd movements has focused on the prediction of each individual’s

movement (e.g., [135, 136]), and traffic conditions on road segments (e.g., [137, 138]). While

these problems provide a detailed view of city traffic, they may have heavy computational
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costs due to the huge number of roads, vehicles, and people in a big city, and are also not

necessary from the perspective of public safety at a citywide scale. Furthermore, predicting

each individual’s movement is difficult to do given the diversity of individual life patterns and

the randomness of human behavior.

Given the above limitations, in this paper we investigate a macro-level view of crowd move-

ments by predicting two types of flows of crowds in every region of a city based on big data,

including human mobility data, weather conditions, and road network data. As shown in Fig-

ure 8.1a, a region (such as r1) is bound by major roads, and the two flows are: 1) new-flow, the

traffic of crowds originating from a region at a given time interval (e.g., people start driving

from a parking spot); and 2) end-flow, the traffic of crowds terminated in a region (e.g., people

stop driving and park their cars). Intuitively, new-flow and end-flow track the origins and final

destinations of the crowds. These two flows thus summarize the movements of crowds and are

enough for traffic management and risk assessment.

The two crowd flows can be measured individually by the number of vehicles driven on

roads, or the number of people traveling in public transportation systems, or the number of

pedestrians, or all together if data is available. The data representing human mobility can be

the GPS trajectories of vehicles, or the mobile phone signals of users, or card swiping data

in public transportation systems such as the subway or bike sharing systems. For example, in

Figure 8.1b, according to the GPS trajectories and measured by the number of vehicles, the

r3

r1

New-flow

End-flow

r1

(a) Two types of flow to be predicted (b) Illustration of measurement of flow

r2

r2

r3

Origin End

Figure 8.1: Crowd flows in a region
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new-flow and end-flow of r1 over the outlined 30 minutes are (2, 3) respectively. Likewise, the

two types of flows are (2, 2) in r2 in terms of mobile phone signals, measured by the number

of pedestrians. If both the GPS and phone signals are tracked, we can consider the crowd flows

of region r3 to be (1, 1). During a time interval, if a person starts and ends his/her trajectory in

the same region, s/he will be counted in both the new-flow and end-flow of that region. Note

that our proposed framework can also be applied as is to other definitions of crowd flows.

The challenges of our research are three-fold. 1) Multiple complex factors: There are

multiple complex factors affecting crowd flows, which can be captured thanks to the advent of

big data. For instance, the crowd flows in a region usually have a daily and weekly periodic

pattern, which might change over time, as well as instantaneous changes due to noise, weather

conditions, and other social events. 2) Flow dependencies: There are dependencies between

different types of flows in a region (intra-region dependence) and those among different regions

(inter-region dependence) over time. For example, the increase of end-flow in a region in the

current hour may raise its new-flow over the next hour. Similarly, the end-flow of a region

is influenced by the new-flows of its neighbors. 3) City-scale prediction: While we need the

prediction instantly, a city-scale prediction is computationally intensive. Therefore, an efficient

predictive model is needed. In addition, different regions could have different scales of crowd

flows. Sparse flow data in some regions will prevent us from learning a stable periodic pattern

inherent in crowd flows, thus reducing prediction accuracy.

To tackle these challenges, we decompose each type of flow in a region into three ingredi-

ents: seasonal, trend, and residual flows, proposing a three-step predictive method to capture

each of them. The contributions of our research:

• To deal with data sparsity and construct a practical citywide solution, we first divide a city

into low-level regions using its road network, and then group adjacent low-level regions

with similar crowd flow patterns using graph clustering. The obtained high-level regions

have more stable (thus easier to predict) crowd flows, and also provide a meaningful and
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more manageable representation of the citywide crowd flows.

• Based on the Intrinsic Gaussian Markov Random Field (IGMRF), we propose a seasonal

model to predict the periodic flow, and a trend model to predict the change of the seasonal

pattern over time. Our IGMRF models are robust to noisy and missing data, and scalable to

big data.

• We propose a spatio-temporal residual model to predict the instantaneous deviations from

the periodic patterns of flows, based on the historical flow data of a region and those of its

neighbors as well as weather information. The model uses a Bayesian network to capture

the transition probability among the regions. We combine the seasonal, trend, and residual

models to obtain our FCCF model (Forecasting Citywide Crowd Flows).

• Experiments1 on three real-world datasets (taxi and bike data) show that FCCF is scalable

and outperforms baseline approaches significantly in terms of accuracy.

The rest of this paper is as follows: Section 8.2 overviews our framework. Section 8.3 dis-

cusses the division of a city into regions. Section 8.4 proposes the seasonal and trend models.

Section 8.5 proposes the spatio-temporal residual model. Section 8.6 reports our experimental

results. Section 8.7 discusses related works and Section 8.8 concludes the section.

8.2 Overview

8.2.1 Preliminaries

Regions: There are many definitions of a location in terms of different granularities and

semantic meanings. In this study, we first partition a city into a number of low-level regions

by city roads, using a map segmentation method [139]. Consequently, each region is bound

1Our data and code are available at https://www.microsoft.com/en-us/research/

publication/forecasting-citywide-crowd-flows-based-big-data/
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by roads, carrying a semantic meaning of neighborhoods or communities, as illustrated in

Figure 8.1. These regions are low-level, that is, they can be very small and have very little data

for prediction. Therefore, we propose grouping adjacent low-level regions with similar crowd

flow patterns into high-level regions using a graph clustering approach. We will discuss the

clustering step in Section 8.3. We denote the set of high-level regions asR = {u1, u2, ..., um},

where m is the number of high-level regions. We then use the high-level regions as the minimal

unit of location in the following study, though a region can be a uniform grid or defined by the

governments in other applications.

Definition 8.2.1 (Crowd flows) The movement of an individual can be recorded as a spatial

trajectory T , which is a sequence of time-ordered points, T : p1 → p2 → ... → p|T |, where

each point pi = (ai, bi, ti) has a geospatial coordinate position (ai, bi) and a timestamp ti, and

|T | is the number of points in T . Likewise, the movement of crowds can be represented by a

collection of trajectories P. Specifically, for a region u, the two types of flows of crowd (crowd

flows) at timestamp t, namely new-flow and end-flow, are defined respectively as

xnew
u,t = |{T ∈ P : (a1, b1) ∈ u, t1 = t}|

xend
u,t =

∣

∣{T ∈ P : (a|T |, b|T |) ∈ u, t|T | = t}
∣

∣

where (ai, bi) ∈ u means that point pi lies within region u.

Problem 8.2.1 (Forecast Citywide Crowd Flows) For ∀u ∈ R and ∀θ ∈ {new, end}, given

the historical crowd flows xθ
u,t for t = 0, ..., n− 1, predict xθ

u,n.

8.2.2 A Case Study of Taxi Trajectories

We now analyze a case study of Beijing taxi GPS dataset BJ (detailed in Section 8.6.1).

First, we partition Beijing into 372 low-level regions based on its road network as done in [139]
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(Figure 8.4a). Since 372 regions are too many to monitor at city scale, we further cluster

the low-level regions into 26 high-level regions with comparable crowd flow volumes (Fig-

ure 8.4b). The region IDs are also provided in this figure.

We obtain crowd flows by tracking the trajectories of taxis using their GPS signals. For

example, Figures 8.2a shows the new-flow in region 22 during May 4th-17th, 2015, where each

timestamp is 30 minutes. Clearly, the flows have a periodicity of day and week—a seasonal

effect. Further, we can see a trend of change in this seasonal pattern over time, which may

differ per region and per time of day. For example, as the weather got warmer, new-flows at

6am of region 22 in Figure 8.2b clearly got bigger on average. Whereas, new-flows at 3pm in

this region (Figure 8.2c) got smaller possibly because it is less comfortable to travel outside

when the temperature is too high.

Neighboring regions can affect each other due to crowd flows among them. Figures 8.2d

and 8.2e show an example of two neighboring regions 1 and 3 at the top right corner of Fig-

ure 8.4a. The new-flow of region 3 and the end-flow of region 1 deviate from their seasonal

patterns at the same time and in the same direction (as marked by the blue and red arrows),

suggesting their dependence on each other.

8.2.3 Prediction Framework

We discuss the segmentation of a city map into regions in Section 8.3. We track and pre-

dict crowd flows in these regions. Based on the observations in Section 8.2.2, we propose a

prediction framework as shown in Figure 8.3.

Figure 8.3a shows the modelling framework for the crowd flows of a region. Specifically,

we decompose a crowd flow time series x = (x0, x1, ..., xn−1) over n timestamps into three

components: a seasonal component s capturing the periodic pattern, a trend component y

capturing the offset from the periodic pattern for each timestamp in a period, and a spatio-
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Figure 8.2: Beijing data (the regions are shown in Figure 8.4b). One timestamp is 30 minutes.
(a) new-flow of region 22 during two weeks of May, 2015. (b, c) Trend of new-flow at 6am
and 3pm for region 22 from March to June, 2015. (c, d) new-flow and end-flow of two
neighboring regions (regions 3 and 1) during June 03, 2015.
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Figure 8.3: Framework overview.

temporal residual component r capturing the instantaneous changes. Thus,

x = s+ y + r (8.1)

We use only temporal information to model s and y. The seasonal model s is learned on

the original flow x, and the trend model y is learned on the residual x − s. After that, the

residual r is learned for x− s− y.

Assume that the periodicity in x has a length of period F , that is, st = st mod F ∀t =

0, ..., n − 1, then we can divide x into a sequence of periods as shown in the first two lines of

Table 8.1 for n = 10 and F = 4. In general, x will contain ny = ⌊n/F ⌋ + 1 periods, where

period j contains timestamps in the range [jF, (j + 1)F − 1], for j = 0, ..., ny − 1.

Since the timestamps within a period may have different evolutionary trends over time

(see Figures 8.2b and 8.2c), we build a seperate trend model for each of them. Therefore, we

decompose x into three components as in Table 8.1:

xt = st mod F + yt mod F,⌊t/F ⌋ + rt (8.2)
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where:

• st mod F is the seasonal flow at the (t mod F )-th timestamp within a period.

• yt mod F,⌊t/F ⌋ is the offset from the seasonal flow of the (t mod F )-th timestamp in period

⌊t/F ⌋.

• rt is the residual flow at time t.

In particular, we model s as a time series of length F : s = (s0, s1, ..., sF−1). For each

i-th timestamp of a period (i = 0, ..., F − 1), we model its trend across different periods as a

time series yi of length ny: yi = (yi0, yi1, ..., yi,ny−1), where yij is the offset from the seasonal

pattern of the i-th timestamp in period j. Finally, the residual r is modeled as a time series of

length n: r = (r0, r1, ..., rn−1).

Period 0 Period 1 Period 2

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

s0 s1 s2 s3 s0 s1 s2 s3 s0 s1
y00 y10 y20 y30 y01 y11 y21 y31 y02 y12
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9

Table 8.1: Decomposed flow x = s+ y + r for n = 10, F = 4.

Both s and y are built based on IGMRFs (Section 8.4), scalable to big data, and robust to

noisy and missing data.

For the residual r (Section 8.5), we first propose a Bayesian network to model the transition

probability of crowds among regions. By applying this transition probability into r, we obtain

the residual transit flows among regions—the transit features in Figure 8.3a—which capture

the dependence among neighboring regions. Finally, we combine the transit features (inter-

region dependence), the history of all types of flows of a region (intra-region dependence), and

the weather data into a spatio-temporal residual model to predict r.

We use the trained models to make online predictions for crowd flows of regions as de-

scribed in Figure 8.3b.

For clarity, Table 8.2 lists the notations used in this paper.
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R = {u1, u2, ..., um} The set of all high-level regions
m, n Number of regions, and number of timestamps
xθ
u,t Crowd flow of region u at time t; θ ∈ {new, end}

x = (x0, ..., xn−1) Vector representing a flow time series
F Length of a period in x

ny = ⌊n/F ⌋+ 1 Number of periods in x

s = (s0, ..., sF−1) Seasonal component of x
yi = (yi0, ..., yi,ny−1) Trend component for the i-th timestamp in a period
r = (r0, ..., rn−1) Residual component of x
G = (V , E) The graph of an IGMRF

Q n× n precision matrix for an IGMRF of size n
κ Precision parameter of an IGMRF

dmax Maximum transit duration between two regions
L History length

Table 8.2: Symbols and notations.

8.3 Finding regions

We aim to divide a city into regions with two goals so that they are useful for high level

traffic management: (i) the regions are semantically meaningful, and (ii) the regions have

comparable traffic volumes.

For the first goal, we use the map segmentation method in [139] to partition the map of

a city based on its road network. For example, the map of Beijing city can be divided into

372 low-level regions as shown in Figure 8.4a. Such regions are bound by the roads and

thus naturally capture the division of human activities, making them semantically meaningful.

However, the number of low-level regions can be high, making it difficult to monitor all of

them. In addition, these regions have highly varying areas and traffic volumes. On one hand, it

is not straightforward for city managers to decide how to distribute their work force across the

city. On the other hand, it is hard to predict the crowd flows of a tiny region due to the sparsity

of data for such a small area. Many small regions are simply roundabounds, making their

existence less meaningful. As a result, we propose to further group the low-level regions into

bigger high-level regions that have comparable traffic volumes and contain low-level regions

with similar crowd flow patterns. To do this, we cluster the region graph as defined below.
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Definition 8.3.1 (Region graph) A region graph is denoted as G = (V,E,N,W ), where

• Node set V = {v1, v2, ...} is the set of low-level regions obtained using the map segmen-

tation method in [139]

• Edge set E = {(vi, vj)|vi and vj are adjacent on the city map}.

• Node weights N , where Nvi =
∑n−1

t=0 (xnew
vi,t

+ xend
vi,t

) is the sum of crowd flows in region

vi during the historical time period [0, n− 1].

• Edge weights W , where Wvi,vj is the similarity of crowd flow patterns between regions

vi and vj .

We want to merge low-level regions with similar rise-and-fall crowd flow patterns, i.e.,

the plots of their crowd flows over time have similar shapes. Thus, we define the edge weight

between two low-level regions vi and vj as the Spearman’s rank correlation coefficient between

their crowd flows during a historical time period. Specifically, each region can be represented

as a vector vi = (xnew
vi,0

, ..., xnew
vi,n−1

, xend
vi,0

, ..., xend
vi,n−1

). The correlation coefficients among the

regions are computed on these vectors.

Figure 8.4c shows a subgraph of the region graph for our Beijing dataset. Here, each

node represents a low-level region while its size represents the node weight. There is an edge

between two regions if they share a boundary road. The edge widths are proportional to the

edge weights.

Next, we cluster the region graph into m high-level regions R = {u1, u2, ..., um}, where

each high-level region ui is a set of adjacent low-level regions, with two goals:

• Edge cut minimization: minR
∑

vi∈uk;vj∈ul

uk 6=ul

Wvi,vj

• Cluster balancing:
∑

vi∈uj
Nvi

∑

vi∈V
Nvi

/m
< 1+ζ ∀uj ∈ R, where ζ > 0 is a predefined imbalance

factor.
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(a) Road-based 
map segmentation

(b) Region grouping 
using graph clustering
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Figure 8.4: Finding regions in Beijing: (a) low-level regions based on city roads, (b) high-
-level regions based on crowd flow patterns, (c,d) the adjacency graph and region grouping
for the red box in Figure 8.4a.

The first goal helps us group highly similar low-level regions together. The second goal

constrains the sum of node weights in each cluster to be close to the attainable average. In

other words, we want to balance the total traffic volumes among the clusters, which would be

helpful for city planning and traffic management.

We use the graph clustering algorithm in [140] to cluster the region graph since it supports

our two goals (we set ζ = 0.1). To choose the number of clusters m, we use the elbow

method [6] on the edge cut: m = 26 for the Beijing dataset and m = 15 for the NYC taxi

dataset. The NYC bike dataset has only 23 regions, thus there is no need to futher reduce the

number of regions. Figure 8.4d shows the resulting high-level regions for the corresponding
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Table 8.3: Temporal IGMRF models: G is the graph (n = 7) and Q is the precision matrix;
κ ∈ R is the precision parameter to be learned.
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subgraph in Figure 8.4c. The whole high-level region map for Beijing is shown in Figure 8.4b,

with the obtained region IDs. Further, Figure 8.5 summarizes the average daily crowd flows

of the 26 high-level regions in Figure 8.4b. Clearly, these regions have comparable total traffic

volumes. We can also see some distinctive traffic patterns, suggesting that the obtained clusters

are meaningful. Neighboring regions may have similar patterns due to their geographhical

proximity.

8.4 Temporal models

In this section, we build the seasonal model s and trend model y based on Intrinsic Gaus-

sian Markov Random Fields (IGMRF) by capturing the temporal information in the crowd

flows. We first give a brief introduction to IGMRF.

8.4.1 Temporal IGMRF Models

To model a time series x = (x0, x1, ..., xn−1) over n timestamps, we treat x as a temporal

IGMRF, that is, a random vector x having an improper Gaussian density. The IGMRF model

fits our city-scale prediction problem well since it is robust to noise and missing data and

scalable to big data.

The temporal IGMRF is specified by its precision matrix Q and undirected graph G =

{V , E}, where V and E are the node set and edge set respectively. In essence, the structure of G

visually summarizes the conditional dependence among timestamps, while the value of matrix

Q decides the specific probability density π(x) of the distribution of x. The second column

in Table 8.3 shows an example IGMRF with its G, Q, and π(x|κ), where κ is a parameter to

be learned. In particular, each timestamp is represented by a row and a column in Q, as well

as a node in V . Non-zero entries in Q correspond to edges between corresponding nodes in

E . Each zero entry in Q—or equivalently, the absence of an edge in G—signifies that two
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corresponding timestamps are conditionally independent given the other timestamps. While

the general form of Q is given in Table 8.3, we still need to learn the parameter κ ∈ R from

data to set a specific value for Q.

The formal definition of IGMRF [141] is given below. First, let us define a symmetric

matrix Q ∈ R
n×n as symmetric positive semi-definite (SPSD) iff xTQx ≥ 0 ∀x ∈ R

n,x 6= 0.

Definition 8.4.1 (IGMRF) Let Q be a SPSD precision matrix with rank n−k > 0. A random

vector x = (x0, ..., xn−1) is an IGMRF of rank n− k with parameters (µ,Q) iff x follows an

improper Gaussian distribution, that is, its probability density function π(x) has the form:

π(x) = (2π)−
n−k
2 (|Q|∗)1/2exp

(

−1

2
(x− µ)TQ(x− µ)

)

(8.3)

Further, x is an IGMRF wrt a labelled graph G = (V , E), where V = {0, ..., n− 1} and

Qij 6= 0⇔ (i, j) ∈ E ∀i 6= j

Here, |Q|∗ denotes the generalized determinant equal to the product of the n− k non-zero

eigenvalues of Q. The first condition states that x follows an improper Gaussian distribution,

the probabilistic nature of which makes the IGMRF robust to noise and missing data. Whereas,

the second condition (Qij 6= 0 only if i and j are neighbors in G) is the Markov property that

makes Q and G sparse, hence easier to store and faster to compute as shown in [141]. We next

design Q and G based on the forward differences:

Definition 8.4.2 (Forward differences) Given a time series x = (x0, ..., xn−1), the first-order

forward difference at time t is defined as

∆xt = xt+1 − xt, t = 0, ..., n− 2

Gaussian assumption: To make Q and G sparse, we impose the following assumption on x:

∆xt
iid∼ N (0, κ−1), t = 0, ..., n− 2 (8.4)
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where κ ∈ R is the precision parameter learned from data.

The graphs G for the Gaussian assumption is shown in the second column of Table 8.3 in

case n = 7. There is an edge in G for and only for pairs of consecutive timestamps.

The Gaussian assumption reduces the numbers of edges in G and non-zero entries in Q to

O(n), making them very sparse and our solution scalable. Further, it imposes a smooth change

between consecutive timestamps in the time series, making the IGMRF robust to noisy and

missing data. To find Q, we form the probability density π(x) as in Equation 8.3:

π(x|κ) ∝ κ(n−1)/2exp

(

−κ

2

n−2
∑

t=0

(∆xt)
2

)

= κ(n−1)/2exp

(

−κ

2

n−2
∑

t=0

(xt+1 − xt)
2

)

= κ(n−1)/2exp

(

−1

2
xTQx

)

(8.5)

where the n × n precision matrix Q is shown in the second column of Table 8.3 (zero entries

are not shown), and κ is the parameter to be learned.

Learning IGMRF: We learn the IGMRFs using the integrated nested Laplace approxima-

tions approach [142]. In essence, we find the parameter κ using maximum a posterior (MAP)

estimation given some prior distribution π(κ) of κ:

argmax
κ

π(κ|x) = argmax
κ

π(x|κ)π(κ) (8.6)

Note that the computation of an IGMRF can be sped up using the Cholesky factorization

Q = LLT , where L is a lower triangular matrix. With the Gaussian assumption, Q becomes

sparse with O(n) non-zero entries, reducing the factorization cost from O(n3) in general to

O(n) [141].
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8.4.2 IGMRF Seasonal Models

Gaussian properties of crowd flows: Figure 8.6a shows the histograms and the fitted normal

distributions using maximum-likelihood estimation for the forward differences of the square

root of new-flow in a region in BJ and BIKE (see Section 8.6.1 for dataset descriptions).

Visually, the fitted normal distributions closely match the histograms. Thus, we can use our

Gaussian assumption for BJ and BIKE to model the square root of new-flow. We note that

the square root of flows follow Gaussian distribution but the raw flows do not. We obtain

similar results for end-flows and other datasets and report the complete results in Section 8.6.1.

Therefore, we propose building an IGMRF seasonal model for the square-root of crowd flows.

Seasonal model: For a periodic time series with period length F , we design an IGMRF s =

(s0, s1, ..., sF−1) as a seasonal model, with an additional assumption on the smooth change

between sF−1 and s0. The graph G thus becomes circular: there is an additional edge between

the last timestamp and the first timestamp. Specifically, the circular graph G is shown in the last

column of Table 8.3. To impose the circular property of G, we modify the forward differences

for i = 0, ..., F − 1 as follows:

∆si = s(i+1) mod F − si

Here the Gaussian assumption is ∆si
iid∼ N (0, κ−1s ) ∀i = 0, ..., F − 1, and κs ∈ R is the only

parameter we need to learn. The corresponding circular precision matrix Q can be derived

similar to the case without the seasonal assumption, and is given in Table 8.3.

8.4.3 IGMRF Trend Models

Gaussian properties of trends: After the seasonal pattern is removed from the flows, we ob-

tain the raw residual x−s. Figure 8.6b shows the histograms and the fitted normal distributions
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for the forward differences of these residuals for the same flows in Figure 8.6a. Again, it is

clear that Gaussian distributions can be used to approximate these histograms. We have the

same observations for all flow types and datasets, as statistically shown in Section 8.6.1. Thus,

we can build an IGMRF trend model as follows.

Trend model: As discussed in Section 8.2.3, we propose adding a trend yi to capture the

change over time in the seasonal pattern of the i-th timestamp in a period. In particular, we

want to model a time series yi = (yi0, yi1, ..., yi,ny−1), where ny is the number of periods. The

temporal IGMRF model in Section 8.4.1 can be used directly for this purpose.
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Figure 8.6: Gaussian properties of new-flow of one region.

8.5 Spatio-temporal residual model

In this section, we utilize the (intra-region and inter-region) dependencies among different

flows and weather information to predict the residuals r = x − s − y. We denote rθu,t as

the residual flow of type θ at time t in region u, where θ ∈ {new, end}. We design our final

spatio-temporal residual model to predict rθu,t as a regression problem:

rθu,t = αT
u,θδu,t + βT

u,θzu,t + φθ
u,wt

+ σθ
u,ht

+ γθ
u (8.7)

where the inputs are:

• δu,t: Transit features of region u at time t, capturing the inter-region dependence among

flows (Section 8.5.1).
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Figure 8.7: (a) Bayesian network transit model: At hour h of day type η, an object takes d
timestamps to move from region R to region R′ on average. (b) Mapping timestamps into
2D-space based on transit patterns using PARAFAC. Each point is for one hour in a day.

• zu,t = (rnewu,t−i, r
end
u,t−i|i = 1, 2, ..., L)T : Historical residual flows of region u at time t, captur-

ing intra-region dependence among different flow types, where L is a chosen history length.

• wt: The weather condition wt at time t.

Model parameters (for region u and flow type θ): αu,θ and βu,θ are coefficient vectors for

δu,t and zu,t; φθ
u,wt

is a coefficient for weather condition wt; σθ
u,ht

is a coefficient for the hour

in day ht of time t; and γθ
u is an intercept.

Other factors: While we only consider weather and public holidays here, if more data

is available (e.g., local social events in each region, traffic accidents, or traffic jams), we can

easily and similarly include it in the residual model r.

We next explain in detail how to capture the inter-region dependence and the effects of

weather and holidays.
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8.5.1 Capturing Inter-region Dependence

Bayesian Network Transit Model

The flows of neighboring regions can affect each other due to the transition of objects

among them. This inter-region dependence can be naturally captured by a Bayesian network

transit model as shown in Figure 8.7(a). For an individual that is moving between regions,

when s/he gets out of a region R, we predict the next region R′ s/he will move to and the

time duration d that s/he will take to complete the transition. We assume that the next region

R′ depends on the current region R, different hours in a day h, and different types of days η.

Similarly, the transit duration d is dependent on R, h, η as well as R′, where she is traveling to.

Hour of day h can take any integer value between 1 and 24. Days with similar transit patterns

are grouped into one day type. We discuss how day types η are determined in Section 8.5.1.

Our Bayesian Network can be learned easily and fast by counting since it has known struc-

ture and full observability (R, R′, h, and η are all pre-defined). Denote ht and ηt as the hour in

day and the day type for timestamp t respectively. Once we have learned the conditional prob-

ability functions p(R′|R, ht, ηt) and p(d|R′, R, ht, ηt), we can compute the probability that an

individual getting out from R at time t will transit to R′ after d timestamps as:

gR,R′,t,d = p(R′|R, ht, ηt)× p(d|R′, R, ht, ηt) (8.8)

Transit Features

To capture the influences among regions with regard to their deviations from the expected

flows (s + y), we apply g from Equation 8.8 to the residual flow r = x − s − y. Here,

we assume that the transition probabilities g are the same for both the temporal components

(s+ t) and the residual component r. While this is a strong assumption, it eliminates the need

to model the flows between every pair of regions, which is costly and more susceptible to noise.
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With this assumption, we define the transit features in Equation 8.7 as δu,t = (δnewu,t , δendu,t )
T ,

where δnewu,t is the sum of crowd flows from other regions to u, and δendu,t is the sum of crowd

flows from u to other regions in the last dmax timestamps:

δnewu,t =
dmax
∑

d=1

∑

v∈R

(rnewu,t−d × gu,v,t−d,d) (8.9)

δendu,t =
dmax
∑

d=1

∑

v∈R

(rnewv,t−d × gv,u,t−d,d) (8.10)

We define a maximum transit duration dmax since most transitions take a bounded amount of

time in real life.

Choice of Day Type η

To decide the day type η, we group days with similar transit patterns using a data-driven

approach. We denote Y ∈ N
n×m×m×dmax as the (timestamp, source region, destination re-

gion, transit duration) tensor, where Ytuvd is the number of trajectories that leave region u

at timestamp t, and arrive at region v at timestamps t + d. To compare the transit patterns

at two timestamps t1 and t2, we compare the two sub-tensors Yt1��� and Yt2���, which are high-

dimensional and sparse. To avoid the curse of dimensionality, we perform dimension reduction

using PARAFAC tensor factorization [5]. In particular, Y can be factorized into four matrices

M ∈ R
n×q, H ∈ R

m×q, I ∈ R
m×q, and J ∈ R

dmax×q, where q is the number of lower

dimensions, such that:

Ytuvd =

q
∑

i=1

MtiHuiIviJdi (8.11)

Matrix M is the low-dimension representation of the timestamps (each row is one times-

tamp, and each column is one dimension). We can use this low-dimension representation to

compare the transit patterns at different timestamps.

Figure 8.7(b) shows the mapping result of timestamps into a 2D-space (q = 2) for dataset
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BJ-B (Section 8.6.1). Timestamps are separated into different weekdays and holidays. Each

point in a subfigure is for one hour in a day (marked as 1 to 24). From these figures, we

can visually put the daily transit patterns into five groups: (i) Monday to Friday, (ii) Saturday,

(iii) Sunday, and (iv) holidays. We thus use these four day types for BJ-B. Similar results are

obtained for other datasets but not shown due to space limitation.

8.5.2 Effects of Weather and Holidays

Weather and holidays can affect crowd flows. For example, Figure 8.8a shows that thun-

derstorms may increase the use of taxis while Figure 8.8b shows that heavy rain may reduce

crowd flows at a region compared to its seasonal pattern. Figure 8.8b also shows that crowd

flows during a holiday can be significantly different from the flows during normal days.
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Figure 8.8: Effects of weather and holiday in region 2 in Beijing.

We include weather and holidays into our models in two ways. First, we build a separate

seasonal model for holidays with the period of a day (Fholiday = 1 day). Second, we add

a coefficient φθ
u,wt

for each region u, flow type θ, and weather condition wt at time t in the

regression (Equation 8.7).
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8.6 Experiments

8.6.1 Settings

Datasets: We use three different sets of data as summarized in Table 8.4. Each dataset contains

three sub-datasets: trajectory, region map, and weather data, as detailed below.

BJ: The trajectory data is taxi GPS data for Beijing in 2015. We categorize weather data

into good weather (sunny, cloudy) and bad weather (rainy, storm, dusty). With our clustering

framework in Section 8.3, we partition Beijing into 26 high-level regions (Figure 8.4a). Using

Definition 8.2.1, we obtain two types of crowd flows. Data for 350 timestamps were missing

for all regions due to system glitches. We choose data from the last three weeks as testing data,

and all data before that as training data.

NYC: We partition NYC into 15 high-level regions using its road network and traffic data.

The trajectory data is generated by taxis in NYC in 2013. Trip data includes: taxi ID, pick-up

and drop-off locations and times. The new-flow and end-flow are thus the number of pick-ups

and drop-offs in a region respectively. Weather conditions include good weather (sunny, or no

available data) and bad weather (foggy, rainy, snowy). We pick the last-week data for testing,

and data before that for training.

BIKE: The trajectory data is taken from the New York City bike system in 2014. Trip

data includes: trip duration, start and end station IDs, start and end times. Following [143], we

group bike stations into clusters using their bipartitie clustering method, and treat each obtained

station cluster as a region, instead of using our own clustering framework in Section 8.3. For

each region, the new-flow is the number of checked-out bikes, and the end-flow is the number

of checked-in bikes. We use data from Apr. 1st to Sep. 10th for training and Sep. 10th to 30th

for testing.

Gaussian properties of crowd flows: To statistically verify if a data sample follows a Gaussian

distribution, we perform the Kolmogorov-Smirnov test (KS-test). If the KS-test returns a p-
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Dataset BJ NYC BIKE

Data type Taxi GPS Taxi pickup Bike rent
Location Beijing New York New York
Start time 3/1/2015 1/1/2013 4/1/2014
End time 6/28/2015 9/8/2013 9/30/2014
#holidays 10 20 9
Timestamp bin size 30 minutes 1 hour 1 hour

Trajectory data
#taxis/bikes 34K 33.6K 16K 6.8K
#trips/records 11.7M 206.6M 5.4M
#effective timestamps 2,753 5,880 4,392
#missing timestamps 350 0 0

Region map data
#roads/bike stations 193,663 193,663 32,210 344
#low-level regions 372 215 -
#high-level regions 26 15 23

Weather data
#good-weather timestamps 3,812 4,081 5,398
#bad-weather timestamps 1,208 358 448
#missing timestamps 486 53 34
Temperature [-7,34]◦C [32,90]◦F [10,97]◦F

Table 8.4: Datasets (holidays include adjacent weekends).

Dataset BJ NYC BIKE

Seasonal Trend Seasonal Trend Seasonal Trend

new-flow 0.96 1 0.93 1 1 1
end-flow 1 1 1 1 1 1

Table 8.5: Proportions of regions whose crowd flows satisfy the Gaussian assumption.
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value greater than 0.01, the Gaussian hypothesis is acceptable. Table 8.5 reports the proportion

of regions whose crowd flows follow Gaussian distributions for each dataset. Note that seasonal

models are tested on the square root of flows, while trend models are tested on the residual of

the corresponding seasonal models. We emphasize that, for the seasonal models, the Gaussian

assumptions are poorly satisfied by the raw crowd flows.

Parameter settings: Each timestamp corresponds to 1 hour for NYC and BIKE, and 30 min-

utes for BJ. Due to the differences in the crowd flows between weekdays and weekends, and

between different weekdays (e.g., see Figure 8.2), we choose F = 1 week for the seasonal

model sw during normal days, and F = 1 day for the seasonal model sh during holidays.

Log-gamma prior is used for the precision parameter κ in Equation 8.6 as suggested in [141].

Evaluation metric: For evaluation, we use the Root Mean Squared Error (RMSE), as defined

below:

RMSE(θ) =
1

n

n
∑

t=1

√

√

√

√

1

m

m
∑

u=1

(xθ
u,t − x̂θ

u,t)
2 (8.12)

where n is the number of regions, m is the number of timestamps, xθ
u,t and x̂θ

u,t are respectively

the true and predicted values of flow type θ in region u at time t.

Experiments are run on a Debian machine with Intel i7, 3.50GHz CPU and 15GB RAM.

The IGMRF models are implemented using the R-inla package [142].

Baselines: Table 8.6 lists all compared methods. FCCF is our final spatio-temporal model.

SARIMA is the seasonal ARIMA model, using only temporal data. We choose the best pa-

rameters for the SARIMA models using the “forecast” package in R language [144]. Lm-

Nei is a naive linear regression spatio-temporal model. VAR (vector auto-regressive model)

and STARMA (space-time auto-regressive moving average model) are more advanced spatio-

temporal models. VAR captures the pairwise relationships among all flows, and has heavy

computational costs due to the large number of parameters. STARMA [145] has fewer pa-

rameters thanks to the spatial constraints, but requires an ad hoc definition of the weight ma-
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trices capturing the relationships among flows from the same or neighboring regions. HP-

BC-MSI [143], the state-of-the-art prediction framework for bike-sharing systems, is the most

similar to our problem. HP-BC-MSI predicts the in/new-flows for clusters of bike stations in-

stead of the noisy individual station flows. Further, it first predicts the aggregated flow for the

whole city, and then distributes this flow into each cluster (hierarchical prediction). However,

it does not decompose the flows into three components as we do. To compare with HP-BC-

MSI, we also predict the flows for the same clusters of stations by treating them as high-level

regions. Finally, we break down our spatio-temporal model to investigate the contributions of

each component.

8.6.2 Results

Complete framework: Table 8.7 shows the RMSE of all methods. Our complete frame-

work consistently and significantly outperforms all baselines. Specifically, FCCF is 22% to

52% better than LmNei, 25% to 50% better than SARIMA, 10% to 30% better than VAR, and

27% to 70% better than STARMA. VAR exploits the relationship among flows and is clearly

better than other baseline methods. While both LmNei and STARMA use spatial information,

they are far worse than VAR, and even worse than SARIMA, suggesting that the ad hoc assign-

ments of the weight matrices in STARMA or the naive way of incorprating spatial information

in LmNei can actually hurt performance. Moreover, this observation also hints that the predic-

tion of a future crowd flow depends heavily on its own history. Finally, FCCF decreases the

error by 26% for new-flow and 37% for end-flow in BIKE compared to HP-BC-MSI, the state

of the art for prediction in bike-sharing systems, showing the clear benefits of our decomposing

flows into three components.

Temporal components: As seen in Table 8.7, the seasonal model SH that considers holi-

days is clearly better than the one without holidays (S). The accuracy is further increased when
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Method Description

Temporal models
SARIMA Seasonal ARIMA model, frequency = 24.
S x = sw, weekly seasonal model, where sw follows Sec-

tion 8.4.2 with F = 168.
SH x = s = sw + sh, where sw is a seasonal model (F = 128)

for normal days, sh is a daily seasonal model (F = 24) for
holidays (Section 8.4.2).

SHT x = s+ y, SH and trend model.
Spatio-temporal models

LmNei Linear regression of the historical flows of a region and its
neighbors, as well as weather information.

VAR(p) Vector Auto-Regressive model with lag p.
STARMA(p,q) Space Time Auto-Regressive Moving Average model [145],

p and q are the AR and MA lags.
HP-BC-MSI (BIKE only [143]) Hierarchical prediction + bipartite clus-

tering + multi-similarity-based inference.
SHT+intra x = s + y + r; r follows Equation 8.7 without transit

features αTδu,i and weather φθ
u,wt

.
FCCFnoWea x = s + y + r; r follows Equation 8.7, without weather

φθ
u,wt

.
FCCF x = s+ y + r; r follows Equation 8.7.

Table 8.6: Baselines

trend is added (SHT). Our seasonal models S and SH are better than LmNei and SARIMA

for the BJ and BIKE datasets, while worse for the NYC dataset. This is possibly due to the

different levels of noise in different datasets. Specifically, the region crowd flows in the BJ and

BIKE datasets are significantly smaller than those in BIKE, leading to noisier data. Thanks to

its probabilistic nature, our IGMRF models are robust to noise, and thus give better prediction

in the two more noisy datasets.

Spatial-temporal components: SHT+intra combines the intra-region dependence into

SHT, leading to an outstanding improvement in accuracy. The addition of transit features

(FCCFnoWea) further reduces RMSE, which is more significant for BIKE than for the other

three datasets, since bike trips are generally longer than taxi trips, and often take more than

one 1-hour timestamp to complete. In other words, the bigger the ratio between the average
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Model
BJ NYC BIKE

New End New End New End

SARIMA 21.20 18.85 132.82 142.27 20.50 19.38
lmNei 19.17 18.18 154.38 146.92 22.26 20.62
STARMA(3,1) 42.46 19.57 287.34 161.20 26.94 21.01
VAR(5) 15.83 15.83 106.81 101.32 15.36 13.05
HP-MSI-BC 14.70 15.60
S 17.54 16.38 192.77 190.56 18.27 18.09
SH 17.18 16.34 159.90 155.10 17.56 17.33
SHT 16.60 15.80 156.06 153.84 15.24 14.84
SHTIntra 14.63 14.28 89.04 84.84 11.55 10.92
FCFCNoWea 14.19 14.14 87.93 84.45 10.83 9.83
FCFC 14.17 14.14 87.18 83.89 10.79 9.80

Table 8.7: RMSE.

trip duration and the timestamp duration, the bigger the impact of inter-region dependence for

short-term flow predictions.

Weather effect: The addition of weather (FCCF) improves the accuracy for all datasets

except the end-flow of BJ, possibly due to the high number of timestamps with missing weather

data in BJ.

Multi-step-ahead prediction: To predict the crowd flows for multiple steps ahead, we

change the left hand side of Equation 8.7 from rθu,t to rθu,t+∆, for ∆ ∈ {1, 2, 3, 4}. Figure 8.9(a)

shows the results. Clearly, the farther in the future, the harder the prediction and the higher the

error.

Training period: Figure 8.9(b) shows the errors as we vary the length of the training period

from 1 month to all available months (4 months for BJ, 8+ months for NYC, and 5 months

for BIKE). While more training data generally leads to higher accuracy, the addition of more

training data after 3 months does not improve the results significantly.

Missing data: We evaluate the robustness of our framework against missing and noisy

data by making predictions when a proportion (20%, 50%, and 70%) of the timestamps is

randomly removed from the training datasets for all regions. As shown in Figure 8.9(c), even

when 50% of the training data is missing, the performance of FCCF is still exceptionally
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good. Specifically, FCCF with 70% missing data is still better than VAR with complete data,

and significantly outperforms SARIMA, LmNei, STARMA, and HP-BC-MSI with complete

data (as shown in Table 8.7).

Efficiency: Figure 8.9(d) shows the running times without any parallelization. As can be

seen, the total time for offline training is less than 10 minutes for all three datasets. More

importantly, online prediction takes less than 1 minute for all datasets, showing that our frame-

work is practical for real-time prediction of citywide crowd flows. In practice, we can train the

temporal models x and y in parallel for all flows.

8.6.3 Case Studies

Figure 8.10a shows the region map for lower Manhattan and Brooklyn, New York, for

BIKE in 2014. To show that our framework can capture the sudden deviations of crowd flows

from their usual patterns, we investigate two anomalous case studies: suddenly decreased and

suddenly increased flows.

During a rainy day (Figure 8.10b, region R9, Sept. 13th, 2014), the flows of bikers were

significantly reduced. From 1pm to 3pm, the weather turned from sunny to foggy with strong

wind, making people wary of traveling by bike. Thus, the true end-flow (red solid line) into

region R9 became smaller than its seasonal pattern (SHT, brown circles). From 4pm, it started

to rain, leading to a big decrease of flows and deviation from SHT. By including the recent

history of R9, SHT+intra (blue empty circles) better tracks the true flow but is still far from
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the truth. FCCF (diamonds) further notices the reduction of crowd flows from other regions

into R9 due to bad weather conditions, and improves the prediction significantly compared to

SHT+intra.

On Sept. 17th, 2014, an enormous flow of people traveled to Zuccotti Park in region R1

to celebrate the three-year anniversary of Occupy Wall Street protest at 8am. Figure 8.10a

shows the large crowd flows from different origins traveling to R1 before 8am. As a result, the

end-flow of R1 at 8am, as well as the new-flows of these origins (e.g., R2, R3, R5, R7) during

the previous hours were anomalously higher. For example, an increase in the new-flow of

region R2 at 7am (Figure 8.10c, red solid line) led to a later increase in end-flow of R1 at 8am

(Figure 8.10d, red solid line), as annotated by the arrows. Model SHT+intra (blue circles),

which only considers the history of region R1, fails to predict this sudden increase at 8am, as

pointed out by the red arrow in Figure 8.10d. Whereas, FCCF (diamonds) captures the sudden

increase in new-flows from other regions in the previous hours and thus much better tracks

the ground truth of R1. Note that there is still room for improvement; for example, if we had

known that Occupy Wall Street would happen, we might have included one more coefficient
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Figure 8.10: Crowd flow prediction for BIKE, in NYC, 2014.
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for local social events in the residual model r to further improve prediction.

8.7 Related Work

Human Mobility Prediction: Prior research [136, 146–148] has been done to predict an indi-

vidual’s movement based on their location history, in order to enable context-aware computing

that can facilitate the individual’s daily life, such as suggesting driving directions, pushing pro-

motion coupons, or predicting human mobility under disaster scenarios. Unlike such research,

we forecast the aggregated crowd flows in a region rather than millions of individuals’ mo-

bility traces. The latter is very difficult, computationally expensive, and not necessary for the

application scenario of public safety.

Traffic Condition Prediction on Roads: Another branch of research has been conducted to

predict travel speeds and traffic volume on road networks. The majority of such research [149–

152] focuses on the prediction on a single (or a few) road segment(s), rather than a city-scale

prediction. A number of works also use Bayesian network approach [153, 154] and Markov

Random Fields [155] for road traffic forecasting. Some recent studies [137,138] try to scale up

the prediction throughout an entire city, with a diversity of models, such as matrix factorization

and tensor decomposition. [156] presents research on developing models that forecast traffic

flow and congestion in a deployed traffic forecasting service.

Our method differs from the above problems in the following ways. First, we study the

crowd flows in a region rather than traffic conditions on a road segment. The region-based

flows provide a macro-level view of city traffic, which is important not only for traffic man-

agement but also for public safety. The four types of flows we consider are only meaningful

within a region setting. In addition, people can cross regions without being constrained by

road networks, for example, by walking or subway systems. Second, given the four types of

flows, our problem becomes more difficult, as there are dependencies between different types
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of flows in a region and dependencies between flows of different regions. Third, we cluster

regions into groups based on flow patterns, predicting the crowd flows in a cluster. The latter

can deal with the data sparsity and help adjust the flow in each individual region belonging to

the cluster. That is, we have flow prediction at both fine and coarse granularities.

Urban Computing: Recently, the proliferation of big data in cities has fostered new research

on urban computing [157], which aims to tackle urban challenges (such as traffic congestion

and air pollution) by using data science and computing technology. A branch of research also

partitions a city by major roads [139], and then studies the traffic flow between regions, for ex-

ample, detecting traffic anomalies [158] and problematic urban design [159], or understanding

the latent function of a region [160]. Our research is also a step towards urban computing, but

different in terms of problem setting. To the best of our knowledge, in the field of urban com-

puting, forecasting crowd flows has never been done at the scale of a city and in a data-driven

way.

8.8 Conclusion

In this paper, we propose predicting the flows of crowds in a city using big data, which is

strategically important for traffic management and public safety. We propose a scalable pre-

diction framework that exploits multiple complex factors affecting the crowds and decomposes

crowd flows into three components: seasonal, trend, and residual flows. Thanks to the IGMRF

models and the cluster-based adjustment, our framework is robust to both noise and missing

data. Experiments show that our approach is scalable and outperforms baselines significantly.

While we treat each type of trajectory data separately in our experiments due to the re-

striction of available data, the crowd flows can be measured as an aggregation of all types of

trajectories if available (e.g., phone signals, GPS data, and subway card swiping data). Our

framework still applies to such cases as is. Last but not least, if more information is avail-
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able (e.g., local social events, traffic jams, or traffic accidents in each region), it can be easily

incorporated into our residual model r to further improve prediction accuracy.
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Chapter 9

GPOP: Scalable Group-level Popularity

Prediction for Online Content in Social

Networks

9.1 Introduction

With the enormous amount of data generated on the Internet today, predicting the popularity

of online content, such as videos, news articles, or posts on social networks, is increasingly

important in many different applications. In particular, given the set of users who have reacted

(i.e., commented, liked, shared or retweeted) to a content from time t0 (when it was created)

to time t1, can we predict how many and which users will react to it until time t2 > t1? If

this question can be efficiently answered, we can filter information for users to cope with data

overload, or prefetch web content to reduce latency and improve user experience. We can also

design more effective ad campaigns to increase product popularity and maximize profit.

Several studies have focused on predicting the popularity of various online network-contents,

and they can be generally grouped into two categories: (i) user-level popularity [3, 161–164]
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that predicts (at a low level) which users will react to a content; (ii) population-level popular-

ity [4, 165–168] that predicts (at a high level) how many users in total will react to a content.

While each approach is reasonable to use in certain situations, we claim that a group-level

popularity approach, which predicts the popularity within user groups, is more practical given

the noise and the intrinsic heterogeneity in the network data. The user-level information cas-

cades, on one hand, are often susceptible to missing data, sensitive to users’ emotions, and also

often costly to learn [169]. The population-level popularity, on the other hand, is only able

to provide a very coarse view, losing most essential information on user behaviors, and thus

lacks flexibility in tailoring information for different users’ interests. We observe that in many

social networks (specifically Twitter.com and Behance.net in this paper) that users naturally

organize themselves into groups, reflecting their interests, communities or locations. Within

a group, users are fairly consistent in how they react to content. Thus, group-level prediction

provides a great trade-off between the cost in model learning and prediction quality. Compared

to the user-level, a group-level popularity is much less noisy and more compact, while it is

more detailed and cohesive than that at the population level. In addition, a group-level incurs a

significantly smaller computational cost than the user-level predictions.

Example 1. Behance.net is a social network where users share their creative projects for

others to see. The popularity of a project at a timestamp t can be defined as the total number

of users who have pressed the “appreciate” button on this project. In Fig. 9.1a, we show

the number of new reactions (appreciations) at each timestamp (a period of 4 hours each)

for one project, while Fig. 9.1b shows its cumulative form. Each color stripe corresponds to

one cohesive group of users (based on our later proposed solution). It can be seen that most

users who appreciated this project are from one group corresponding to the yellow stripe in

Fig. 9.1a-b, suggesting that the interests and behaviors of users are similar within each group

and different across different groups. Finally, given the observation over this project from time

0 to 18 (first 3 days), we predict its popularity from time 19 to 60 (the next 7 days). Fig. 9.1c-e
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Figure 9.1: An example project from Behance.net where each color stripe represents one
user group: (a) Number of new reactions per 4-hour time periods; (b) Cumulative number of
reactions; Predictions of popularity made at time t1 = 18 (marked by the vertical red line)
for (c) user level [3] (then aggregated by groups), (d) population level [4], and (e) group level
(our solution).

respectively show the prediction results of user-level [3], population-level [4], and group-level

popularity. Clearly, our group-level solution makes the best predictions for both the number of

appreciating users in total and within each individual group.

We develop in this paper a novel framework for predicting the group-level of online con-

tent: Given the set of users reacting to a content from time t0 to time t1, how many users in

each group will react to that content until time t2 > t1? We first group users into robust and

cohesive clusters, and then perform tensor decomposition coupled with a hierarchical structure

among groups to make predictions. Improvement in either of these two steps will lead to an

improvement in the overall prediction accuracy. The proposed framework not only ensures

scalability in dealing with large-scale social networks but also promises a high prediction ac-

curacy. In order to minimize the impact of noise and be more flexible in capturing the changes

in user interests, we exploit both the network topology among users and their interaction activi-

ties in learning a robust partition over all users. The PARAFAC tensor decomposition is further

adapted to work with the hierarchical constraint over user groups, and we show that optimizing

this constrained function via gradient descent achieves faster convergence and leads to more

stable solution, as compared to other matrix factorizations. Here are our contributions:

• We propose to combine users’ historical activities and the network structure into a network-

constrained popularity graph. By clustering this graph, we put users into robust and mean-
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ingful groups that capture the evolution of online content’s popularity over time.

• We add a novel hierarchical constraint to coupled tensor decomposition in order to simulta-

neously predict popularity at the group and population levels. We further prune data using

top-k similarity queries to improve accuracy and reduce computational cost.

• We evaluate our framework, which we name GPOP (Group-level POpularity Prediction), on

two real-world datasets collected from Twitter and Behance social networks: GPOP scales

linearly with its parameters, and outperforms all baseline methods significantly in terms of

accuracy. Our code and data are available online1.

9.2 Problem definitions

Let us denote G = (V,E) a network where V = {v1, v2, . . . , vn} is the set of nodes,

each representing a user, and E ⊆ V × V is the set of edges representing the (undirected)

connections among users. Let pi be a content (e.g. a hashtag in Twitter) being broadcast in the

network.

Definition 9.2.1 (User-level popularity) A user-level popularity of a content pi at time t is

defined by the vector sit = (Sit1, . . . ,Sitn), where Sitj ∈ [0,+∞) is the number of times user

vj has reacted to content pi after the first t timestamps since pi was created. We call Sitj the

state of user vj at timestamp t w.r.t. content pi.

In Definition 9.2.1, the popularity is a non-decreasing quantity over time: Sitj ≤ Sit′j ∀i, j and

t′ > t. If users are no longer interested in that content, its popularity will stay the same. We

define the popularity to be the cumulative number of reactions instead of the number of new

reactions at each timestamp since the latter in practice is very noisy, as visualized in Fig. 9.1a.

Additionally, all timestamps are relative to the creation time of each content.

1Code and data: http://cs.ucsb.edu/~mhoang/gpop.tar.gz
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Problem 9.2.1 (User Clustering) Given a network G, a set of contents P = {p1, p2, . . . , pm},

and the number of clusters l, find a partition of the users C = {C1, C2, . . . , Cl} that reflects

the spread of the popularity of contents in P , where Cj ∩ Cj′ = ∅, ∪l
j=1Cj = V .

Definition 9.2.2 (Group-level popularity) Given C as an optimal solution for Problem 9.2.1,

the group-level popularity of a content pi at timestamp t is the vector xit = (Xit1, . . . ,Xitl),

where Xitj is the total number of times users in group Cj have reacted to pi after the first t

timestamps since pi was created, that is, Xitj =
∑

vh∈Cj
Sith. For brevity, we call Xitj the state

of group Cj at timestamp t w.r.t. pi. Finally, in case C = {V }, we have the population-level

popularity.

Problem 9.2.2 (Group-level Popularity Prediction) Given a network G, a set of historical

contents P = {p1, p2, . . . , pm} (each content was observed over q timestamps), a set of user

groups C = {C1, C2, . . . , Cl}, and the group-level popularity of a new content pm+1 during

its first t1 timestamps (t1 < q), predict the group-level popularity of pm+1 during time period

[t1 + 1, q], that is, given {xm+1,1, xm+1,2, . . . , xm+1,t1}, predict {xm+1,t1+1, . . . , xm+1,q}.

We solve Problem 9.2.1 in Section 9.3 and Problem 9.2.2 in Section 9.4.

Example 2. For a project in Behance, we want to predict how many users in total and in

each user group would appreciate it. Fig. 9.2a shows the group-level popularity of the same

project in Fig. 9.1b (normalized by the total number of appreciating users at time t1). Fig. 9.2c

shows our popularity prediction for this project using its top-3 similar projects in Fig 9.2d. Our

prediction is very close to the ground truth.

9.3 User Clustering

For Problem 9.2.1, we first discuss the four goals, G1-G4, of clustering users, and then

propose how to achieve the goals.
228



GPOP: Scalable Group-level Popularity Prediction for Online Content in Social Networks

Chapter 9

0 20 40 60

Time

Top-1

0 20 40 60

Time

Top-2

0 20 40 60

Time

Top-3

0 20 40 60

Time

Top-1

0 20 40 60

Time

Top-2

0 20 40 60

Time

Top-3

Top-1 Top-2 Top-3Query

Top-1 Top-2 Top-3

Time Time Time

0 20 40 60

Time

0

1

2

3

4

N
o

rm
a

liz
e

d
 g

ro
u

p
-b

a
s
e

d
 s

ta
te

Querying process

0
0

1

2

3

4

N
o

rm
a

liz
e

d
 g

ro
u

p
-b

a
s
e

d
 s

ta
te

0
0

1

2

3

4

N
o

rm
a

liz
e

d
 g

ro
u

p
-b

a
s
e

d
 s

ta
te

(b) Top-3 similarity query without outlier penalization
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Figure 9.2: Example top-3 similarity query and prediction after the first 3 days (marked by
the vertical line at t1 = 18) for Behance. Popularity is normalized by the population-level
popularity at t1.

9.3.1 Clustering goals

G1: Group users with similar interests and behaviors. First, the behaviors and interests

of users should be similar within the same group and different across different groups, leading

to meaningful and useful groups for real-world applications. For example, an ad campaign may

choose to target only a few relevant groups, knowing that the users in these groups will react

to the advertised products instead of wasting money on other irrelevant groups. Similarly, web

content can be prefetched in batches to only groups of users that are more likely to react to that

content, avoiding unnecessary bandwidth and storage cost.

G2: Capture future changes in user interests. Using past user behaviors to cluster users

is prone to overfitting: the obtained groups are good for historical contents, but may fail to

capture a change of user interests on unobserved future content for two reasons. First, the
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spread of a content in a network is highly random and noisy, especially at the user level [169].

Fitting the clusters too tightly to the historical data would thus capture this noise. Second,

many users are not active and react to few contents. Such users can be put in any group without

incurring a significant cost in the clustering objective, making the cluster membership more

random and less powerful in modeling future events.

G3: Capture the paths of information spread. There are two main ways a user gets

exposed to a new content, which may in turn trigger him/her to react to that content: (i) via

the network structure, or (ii) via an external source. For example, on Twitter, a user can learn

about a new hashtag either (i) by reading his/her friends’ tweets, or (ii) via other websites.

Similarly, in Behance.net, a user will be exposed to a new project either (i) if his/her friends

have performed some actions on that project, or (ii) if s/he actively searches for the project

using some side information.

G4: Avoid imbalanced user groups. In clustering users, we may obtain groups of largely

varying sizes while still optimizing some clustering objective. For example, simply minimizing

the edge cut in a graph among users may lead to one group with almost all users and many tiny

groups with only a few users. Such a partition of the users is hardly useful for reducing cost in

a targeted ad campaign or group-based web-content caching/prefetching. Thus, we propose to

find groups with comparable sizes.

9.3.2 Clustering network-constrained popularity graph

For goal G1, users vi and vi′ should be more likely to be in the same group if they tend to

react to the same contents at the same times, i.e., ∃t, pj s.t. Sitj > 0 and Si′tj > 0. This is

equivalent to clustering the following popularity graph GS into separate groups of vertices to

minimize the edge cut.

Definition 9.3.1 (Popularity graph) Given a user set V = {v1, . . . , vn}, and the user-level
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popularity S over q timestamps of m historical contents P = {p1, . . . , pm}, denote the popu-

larity vertex set S = {s11, . . . , sit, . . . , smq} as the set of all combinations of m contents and q

timestamps. The popularity graph GS = (V S , ES , NS ,W S) is then defined as a weighted

undirected bipartite graph (see Fig. 9.3a) with vertex set V S = V ∪ S, edge set ES =

{(vj, sit)|Sitj > 0}, vertex weights NS , and edge weights W S , such that ∀vj, vj′ ∈ V ; sit, si′t′ ∈

S: NSvj = 1;NSsit = 0; W S
vj ,sit

= W S
sit,vj

= Sitj;W S
vj ,vj′

= 0; and W S
sit,si′t′

= 0.

GS captures past user behaviors but it does not help us with goals G2 and G3. Fortunately, even

if future user interests are different from those obtained from historical data, a new content must

still spread via the network structure G unless users actively approach this content via some

external sources. Thus, the network structure can be included in the clustering framework

to deal with this change. In other words, we claim that clustering the following network-

constrained popularity graph G∗, which is the union of G and GS , will help us satisfy both

goals G2 and G3.

Definition 9.3.2 (Network-constrained popularity graph) Given a graph G = (V,E) and

its popularity graph GS = (V S , ES , NS ,W S), we define the network-constrained popularity

graph (Fig. 9.3b) as G∗ = (V ∗, E∗, N∗,W ∗) with vertex set V ∗ = V S , edge set E∗ = ES ∪E,

vertex weights N∗ = NS , and edge weights W ∗, such that ∀vj, vj′ ∈ V ; sit, si′t′ ∈ S: W ∗
vj ,sit

=

W ∗
sit,vj

= Sitj; W ∗
vj ,vj′

= max(Ajj′ , Aj′j); and W ∗
sit,si′t′

= 0, where A is the adjacency matrix

of G.

By using G∗, the cluster membership of an inactive user can be decided more effectively:

s/he is more likely to be in the same cluster with her/his friends, rather than some random users

that are very far away in G but coincidentally active at the same time.

Finally, goal G4 will be satisfied if we cluster G∗ with a balancing criteria: we would like

to obtain a partition C = {C1, . . . , Cl} of V , such that |Cj| ≈ |Cj′ | ∀Cj, Cj′ ∈ C. However, in

clustering G∗, we actually obtain a partition C∗ = {C∗1 , . . . , C∗l } of V ∗, such that C∗j ∩C∗j′ = ∅,
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(a) GS (b) G*
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Figure 9.3: (a) Popularity graph GS and (b) network-constrained popularity graph G∗

∪jC∗j = V ∗. We can easily convert C∗ into C by choosing Cj = C∗j ∩V ∀1 ≤ j ≤ l. Moreover,

define the weight w(C∗j ) of each group C∗j as the sum of all vertex weights in C∗j , then:

w(C∗j ) =
∑

vi∈C∗j ∩V
N∗vi+

∑

sit∈C∗j ∩S
N∗sit = |Cj|

Thus, the balancing criteria on C can be translated into a balancing criteria on C∗, i.e., w(C∗i ) ≈

w(C∗j ) ∀C∗i , C∗j ∈ C∗.

Clustering objectives: Based on the above intuitions, we cluster G∗ with two objectives

to satisfy all goals G1-G4:

1. Weighted edge cut minimization:

minC∗
∑

u∈C∗i ,v∈C
∗
j ,i 6=j W

∗
u,v

2. Group balancing:
w(C∗j )

n/l
≤ 1 + β, ∀C∗j ∈ C∗ (9.1)

where β > 0 is a predefined imbalance factor.

The first objective assures that each user group is homogeneous since it tries to minimize

the amount of weighted edges between different groups. The second objective guarantees that

group sizes do not deviate too far from the average size n/l, where l is the desired number of
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Algorithm 9 Find-User-Groups
Input: Network G = (V,E). Number of user groups l

Historical contents P = {p1, . . . , pm}. Imbalance factor β
Output: C = {C1, . . . , Cl}

1: S ← Network state tensor of P
2: G∗ ← Network-constrained popularity graph(G,S)
3: C∗ ← Part-Graph-K-way(G∗, l, β)
4: C ← {C∗j ∩ V |j = 1, . . . , l}
5: return C

groups.

Clustering algorithm: We use the multilevel k-way partitioning algorithm [140] (Part-

Graph-K-way) for graph clustering since it is scalable and supports our two objectives. The

final clustering procedure is summarized in Algorithm 9. Example 3. Fig. 9.4a shows the

average group sizes over 5-fold cross validation clustering for our Behance data: the groups

clearly have similar sizes. Fig. 9.4b shows the group-level popularity of one example project

in the testing set (one fold) given three different partitions of users obtained by clustering G∗,

G, and GS on the training data (the other four folds). Clearly, combining G and GS to get G∗

makes the obtained user groups more homogeneous on testing data.

9.4 Hierarchical Prediction

For Problem 9.2.2, we find the top-k similar contents at group and population levels for

pm+1, and then perform coupled tensor decomposition on these top-k contents with a novel

hierarchical constraint to predict pm+1’s future popularity.

9.4.1 A baseline approach

Once the groups C = {C1, . . . , Cl} are defined, we can create a group-level popularity

tensor X for P ∪ {pm+1} as shown in the left hand side of Fig. 9.5, where Xitj is defined as in
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Figure 9.4: Behance data: (a) Group sizes (for G∗, 5-fold cross validation); (b) Group-level
popularity of an example project.

Definition 9.2.2, andXm+1,t,j is missing for all t > t1. We can perform tensor completion to fill

in these missing values and predict pm+1. In particular, we decompose X into three matrices

D ∈ R
(m+1)×R, J ∈ R

q×R, F ∈ R
l×R using PARAFAC [5] such that, for all observed entries:

Xitj =
∑R

r=1 DirJtrFjr (9.2)

or equivalently, X = [[D, J, F ]], where D is the factor matrix for contents in P ∪ {pm+1}, J is

the factor matrix for q timestamps, F is the factor matrix for l groups, and R is the number of

latent dimensions. To learn D, J , and F , we minimize this objective function using gradient

descent [78]:

L = 1
2‖M ∗ (X − [[D, J, F ]])‖2F + λ

2 (‖D‖2F + ‖J‖2F + ‖F‖2F ) (9.3)

where “∗” is the element-wise tensor product, ‖.‖F is the Frobenius norm, λ > 0 is a regular-

ization factor to avoid overfitting, andM is a mask tensor of the same size as X , indicating

observed entries in X , i.e.,Mitj = 0 iff i = m+ 1, t1 < t ≤ q, andMitj = 1 otherwise.

Drawbacks: (i) P can be large and contains contents vastly different from pm+1, causing

unnecessary computational cost and degrading accuracy. (ii)M is a dense tensor, leading to

huge memory and computational costs if X is large.
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9.4.2 Finding Top-k Similar Contents

Due to the drawbacks in Section 9.4.1, we claim that including only the top-k contents in

P that are similar to pm+1 in tensor X makes X smaller and more relevant.

In Equation 9.2, predicting pm+1 is equivalent to learning the (m + 1)th row of D. If J ,

F and the first m rows of D are fixed, this task is equivalent to representing row (m + 1)th

as a linear combination of the first m rows in D. Thus, the best candidate for predicting the

(m + 1)th row is some row i1 in D, if it exists, such that Dm+1,r = βDi1,r ∀1 ≤ r ≤ R for

some β ∈ R. This is because we then need to learn only a single parameter β to make a perfect

prediction for pm+1:

Xm+1,t,j =
∑R

r=1 βDi1rJtrFjr = βXi1tj

for ∀1 ≤ t ≤ q; 1 ≤ j ≤ l. Therefore, we propose to find top-k similar contents for pm+1 in a

normalized space: given the training time period [1, t1], we normalize each content in X by its

population-level popularity at time t1 as follows:

X̃itj = Xitj/
∑

j Xit1j ∀i, t, j (9.4)

We then define the distance at timestamp T between pm+1 and another content pi as the Eu-
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clidean distance:

δT (pi, pm+1) =
√

∑

t=1,...,T ;j=1,...,l(X̃itj − X̃m+1,t,j)2 (9.5)

The top-k similar contents are then the contents with the smallest distance to pm+1 at time

t1.

Outliers: The top-k contents may be similar to pm+1 at time t1, but very different from

pm+1 in the future due to some unforeseeable events after t1. For example, on Behance.net,

a project could be promoted by the website and becomes popular even though it was barely

noticed before. Similarly, in Twitter, some real-world events outside the social network may

boost the usage of some hashtags suddenly. Therefore, we reduce the impact of such a historical

outlier by including an outlierness score defined as the average distance at time q between it

and the rest of the historical contents. The new distance δoutT at time T is defined as:

δoutT (pi, pm+1) =
δT (pi,pm+1)

m−1
×∑j=1,...,m;j 6=i δq(pi, pj) (9.6)

Example 4. Fig. 9.2(b, d) show an example top-k query using δ and δout. Since δ does

not penalize outliers, it returns the top-k contents (Fig. 9.2b) that are very different from the
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querying content (Fig. 9.2a) after time t1. Whereas, δout gives us significantly better top-k

results (Fig. 9.2d).

Algorithm 10 summarizes the procedure for finding top-k similar contents given historical

data and user groups.

9.4.3 Tensor-based Hierarchical Prediction

Since the population level is less noisy, we borrow its strength to make better predictions

for the group level in a hierarchical prediction framework.

Algorithm 11 summarizes how to hierarchically predict a new content pm+1. First, in Lines

1-2, we use Algorithm 10 to find its top-k similar contents in P during time [1, t1] at group level

(P g) and population level (P a). The latter is a special case of the former, where C = {V }. In

line 3, we next build four tensors T , Y , Z , Q as shown in Fig. 9.6:

T ∈ R
k×q×l;Y ∈ R

k×q×1;Z ∈ R
1×t1×l;Q ∈ R

1×t1×1

Algorithm 10 Top-k
Input: Historical contents P = {p1, p2, . . . , pm}

Partially observed content pm+1

Maximum observed timestamp t1 < q
User groups C = {C1, C2, ...}. Number of top items k

Output: Top-k content IDs
1: Construct tensor X for P ∪ {pm+1} & C (Definition 9.2.2)
2: X̃ ← Normalize X at time t1 using Equation 9.4
3: for i := 1 to m do

4: di ← δoutt1 (pi, pm+1) {Equation 9.6}
5: end for

6: return Top-k indices with the smallest values in d
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Titj =
∑

vh∈Cj

Sith ∀pi ∈ P g; 1 ≤ t ≤ q; 1 ≤ j ≤ l (9.7)

Yit1 =
∑

v∈V

Sith ∀pi ∈ P a; 1 ≤ t ≤ q (9.8)

Z1tj =
∑

vh∈Cj

Sm+1,t,h ∀1 ≤ t ≤ t1; 1 ≤ j ≤ l (9.9)

Q1t1 =
∑

vh∈V

Sm+1,t,h ∀1 ≤ t ≤ t1 (9.10)

T and Y store the group-level and population-level popularity of contents in P g and P a re-

spectively. Z and Q store the group-level and population-level popularity of pm+1 during time

[1, t1] respectively. In line 4, we decompose these tensors into five factor matrices (Fig. 9.6) as

detailed here:

D ∈ R
k×R;H ∈ R

k×R;K ∈ R
1×R; J ∈ R

q×R;F ∈ R
l×R

T ≈ [[D, J, F ]] = T ∗ (9.11)

Y ≈ [[H, J,~1TF ]] = Y∗ (9.12)

Z ≈ [[K,MTJ, F ]] = Z∗ (9.13)

Q ≈ [[K,MTJ,~1TF ]] = Q∗ (9.14)

where R is the chosen number of latent dimensions; ~1 is an all-one column vector with l

elements; and M is a q × t1 mask matrix to extract the first t1 rows of matrix J , i.e.,

Mii = 1 ∀i and Mij = 0 ∀i 6= j (9.15)

To predict pm+1 (Lines 5-10), we use K, F , and the last q− t1 rows of J (corresponding to

time period [t1 + 1, q]).

Intuitively, the rows of D and H represent the contents in P g and P a respectively; the rows

of J represent the q timestamps; K has only one row representing the new content pm+1; and
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the rows of F represent l user groups in C. Additionally, ~1TF is the sum of the rows in F ,

representing the population-level popularity; while MTJ are the first t1 rows of J , representing

the observed time period [1, t1].

Equations 9.11 and 9.12 capture the latent representations at the group and population

levels using the historical contents respectively; whereas Equations 9.13 and 9.14 map pm+1 to

the same latent space as that of the historical contents by sharing the factor matrices for time J

and groups F . Since data for pm+1 is incomplete, only the observed part MTJ of J is shared.

Finally, by sharing factor matrix F in these four equations, we effectively learn a hierarchical

model at both the group and population levels simultaneously.

Why coupled tensor decomposition? While Y and Z can be represented as matrices, and

Q can be represented as a vector instead of tensors, we choose to use tensors in our formu-

lation because of two reasons. First, PARAFAC decompositions are often unique, leading to

more stable results and faster convergence compared to other matrix factorizations (which are

often not unique, except for SVD) [5]. Second, the hierarchical structure of the user groups are

naturally reflected in the decomposition when Y , Z and Q are represented as tensors. In par-

ticular, Y andQ are simply the collapsed versions of T and Z along the group (3rd) dimension

respectively. Thus, the factor along the 3rd dimension of Y and Q is also the sum of the rows

Algorithm 11 GPOP (Group-level POpularity Prediction)
Input: Partially observed content pm+1 during time [1, t1].

Historical contents P = {p1, . . . , pm}. User groups C = {C1, ..., Cl}. Number of latent
dimensions R

Output: Prediction of pm+1: {xm+1,t1+1, . . . , xm+1,q}
1: P g ← Top-k(P, pm+1, t1, C){group level}
2: P a ← Top-k(P, pm+1, t1, {V }){population level}
3: Create T ,Y ,Z,Q using Equations 9.7-9.10
4: D,H,K, J, F ← Factorize-Tensors(T ,Y ,Z,Q, R)
5: J∗ ← Rows (t1 + 1) to q of J
6: Q∗ ← [[K, J∗, F ]]
7: xm+1,t1+i ← {Q∗1,i,j|j = 1, . . . , l} ∀i = 1, . . . , q − t1
8: return {xm+1,t1+1, . . . , xm+1,q}
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in the factor for T and Z along the 3rd dimension.

Optimization solution: Algorithm 12 shows how to find the five factor matrices by using

gradient descent to minimize the following objective function:

L =
1

2
‖T − [[D, J, F ]]‖2F +

1

2
‖Y − [[H, J,~1TF ]]‖2F

+
1

2
‖Z − [[K,MTJ, F ]]‖2F +

1

2
‖Q − [[K,MTJ,~1TF ]]‖2F

+
λ

2
(‖D‖2F + ‖J‖2F + ‖F‖2F + ‖H‖2F + ‖K‖2F ) (9.16)

where λ > 0 is a regularization factor to avoid overfitting.

The gradients of L are:

∇DL =(T ∗(1) − T(1))(F ⊙ J) + λD (9.17)

∇HL =(Y∗(1) − Y(1))(~1
TF ⊙ J) + λH (9.18)

∇KL =(Z∗(1) −Z(1))(F ⊙ (MTJ))

+ (Q∗(1) −Q(1))(~1
TF ⊙ (MTJ)) + λK (9.19)

∇JL =(T ∗(2) − T(2))(F ⊙D) + (Y∗(2) − Y(2))(~1
TF ⊙H)

+M(Z∗(2) −Z(2))(F ⊙K)

+M(Q∗(2) −Q(2))(~1
TF ⊙K) + λJ (9.20)

∇FL =(T ∗(3) − T(3))(J ⊙D) + ~1(Y∗(3) − Y(3))(J ⊙D)

+ (Z∗(3) −Z(3))(M
TJ ⊙K)

+ ~1(Q∗(3) −Q(3))(M
TJ ⊙K) + λF (9.21)

where T(i) denotes the mode-i matricization of T , and “⊙” denotes the Khatri-Rao product as

defined in [5].
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Algorithm 12 Factorize-Tensors
Input: Tensors T ,Y ,Z,Q as in Equations 9.7-9.10

R: Number of latent dimensions
Output: Factor matrices D,H,K, J, F

Compute L using Equation 9.16
1: while not converged do

2: Compute step length α
3: Compute the gradients∇DL,∇HL,∇KL,∇JL, ∇FL using Equations 9.17-9.21
4: D ← D − α∇DL; H ← H − α∇HL; K ← K − α∇KL
5: J ← J − α∇JL; F ← F − α∇FL
6: Compute L using Equation 9.16
7: end while

8: return D,H,K, J, F

9.5 Experiments

9.5.1 Datasets

We use two real-world datasets for evaluation: Behance [59] and Twitter [57, 58] (see

Table 9.1). Behance.net is a social network where users can share their creative works (projects)

and appreciate each other’s projects. Twitter is a micro-blogging platform where users post

short messages (tweets) that may include hashtags. There is a directed following relationship

among users in both these social networks. Since we only care if two neighboring users are

active at the same time, we convert these networks into undirected networks. A content is a

project in Behance or a hashtag in Twitter. The popularity of a project is the number of users

who have appreciated it; whereas the popularity of a hashtag is the number of times it has been

tweeted by users. We only use contents with at least 100 reacting users, and also remove users

with less than 10 tweets on Twitter.

Comprehensive experimental analyses for both Twitter and Behance can be found in our

technical report [170].
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Table 9.1: Datasets
Datasets Behance Twitter
Data time range June, 2014 Sep-Dec, 2009
#Users 85092 22255
#Edges (follows) 13428465 575819
#Contents 1326 projects 1015 hashtags
#Timestamps 60 24
Timestamp bin size 4 hours 4 hours

Prediction task
History length t1 18 (3 days) 12 (2 days)
Future length (q − t1) 12 (2 days) 12 (2 days)

9.5.2 Quality of user clustering

We evaluate the quality of user groups in Problem 9.2.1 using entropy. A smaller entropy

means more homogeneous groups. Given a content pi, and a timestamp t, we define the active

probability of users in a group Cj as the proportion of users with non-zero states, i.e., pact =

|{vh ∈ Cj|Sith > 0)}|/|Cj|. Then, the entropy of C = {C1, . . . , Cl} w.r.t. a set of historical

contents P during a time period [1, q] is:

h(C) =
∑l

j=1
|Cj |

|V |
1
mq

∑

pi∈P ;1≤t≤q h(Cj, pi, t) (9.22)

where h(Cj, pi, t) = −pact log pact − (1− pact) log (1− pact)

Effect of network structure: Fig. 9.7(a, b) show the average entropy over 5-fold cross
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Figure 9.7: (a,b) 5-fold clustering results for Behance. The best number of clusters chosen
by the elbow method [6] is marked by a blue circle in figure (a). (b) Pearson correlation of
distances at time t1 and t2 v.s. (t2 − t1)
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Figure 9.8: Word clouds of project tags for 8 user groups (Behance).

validation as the number of groups varies when G, GS and G∗ are clustered for Behance.

Obviously, the higher the number of clusters, the smaller the entropy. More importantly, the

effect of overfitting can be seen clearly. Clustering the tensor graph GS provides the best groups

on the training sets; but the obtained groups fit the testing sets very poorly. On the contrary, the

qualities of groups obtained from the network G are similar for both the training and testing

sets, suggesting that the effect of the network structure is consistent across different contents.

Finally, groups obtained from G∗ have comparable quality to those from GS on training sets,

while superior to both the groups obtained from G and GS on the testing sets.

Number of user groups: We use the elbow method [6] to choose the best number of

clusters for each dataset: 12 for Behance (see Fig. 9.7a), and 11 for Twitter. Fig. 9.8 further

shows the word clouds of users’ topics of interest (the tags of appreciated projects) in 8 of the

12 user groups in Behance. Clearly, users’ interests are consistent within each group.
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9.5.3 Usability of top-k similarity queries

For the top-k prediction strategy in Section 9.4.2 to work, the distances between two con-

tents should be consistent over time. Fig. 9.7c shows the Pearson correlations between the dis-

tances computed at two different timestamps (t1 = 12, t2 ∈ [19, 60] for Behance, t2 ∈ [19, 24]

for Twitter). Though the correlations decrease as the time differences increase for both Be-

hance and Twitter, the correlations remain high (> 0.89). Using top-k for prediction is thus a

reasonable choice.

9.5.4 Quality of hierarchical prediction

Settings

Baselines: All compared methods are listed in Table 9.2 and divided into four groups: (i)

GPOP and its variants, (ii) other tensor decomposition approaches for popularity prediction,

(iii) hierarchical time series prediction, and (iv) population-level prediction only. We also note

in Table 9.2 at which levels the predictions are performed for each method (user, group, and

population levels).

Parameter setting: We set R as 50 for group-level and 100 for user-level predictions;

imbalance factor β = 0.03; k = 10; λ = 0.1 (chosen using cross validation). t1 and q

are chosen as in Table 9.1. To cope with the instability of random initialization for gradient

descent, we run each tensor decomposition three times, and choose the best results. Predictions

are done for 5-fold cross validation. Experiments are run on a Debian machine with Intel i7,

3.50GHz CPU and 15GB RAM. Codes are written in Matlab, using the Tensor Toolbox [171],

Poblano Toolbox [172] and METIS library [173].

Evaluation: We define the Relative mean Error for the group (REG) and population (REP)

levels as below:

REG = 1
m

∑

i

√

∑

t>t1,j
(Xitj−X̂itj)2√

∑

t>t1,j
X 2

itj

× 100%
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REP =
∑

i,t>t−1 |
∑

j Xitj−
∑

j X̂itj |
∑

i,t>t1,j
Xitj

× 100%

where X̂ contains the predicted group-level popularity.

Quantitative Performance

The prediction results for all compared methods are shown in Table 9.3: our GPOP frame-

work consistently outperforms all baselines. We next discuss the results in more details.

Choice of clustered graphs: The first three rows of Table 9.3 show the prediction errors

for user groups obtained from G∗, G, and GS respectively. Since the clusters from G∗ are the

most homogeneous, they produce the smallest errors for groups as well as smaller errors for

population.

Variants of GPOP: We verify the effectiveness of GPOP’s two components: top-k similar-

ity query, and tensor-based hierarchical prediction. As shown in Table 9.3, GPOP outperforms

GPOP-NoTop, which uses all historical contents instead of just the top-k similar contents,

proving the benefit of top-k prediction. GPOP is also better than GPOP-NoNorm, i.e., comput-

ing top-k on the normalized popularity X̃ (Equation 9.4) is better than on the raw dataX . Next,

GPOP is far superior to naively taking the average of the top-k similar contents (Group-Avg).

Predicting each group separately (GroupSep) and ignoring the relationship among groups is

also significantly worse than GPOP, confirming the advantages of hierarchical prediction. Fi-

nally, predicting at the group level is much easier than at the noisy user level, as shown by the

extremely high errors of GPOP-User.

Other tensor-based approaches: We test three different options. First, coupled matrix-

tensor factorization (CMTF [78]) uses both the tensor S and the adjacency matrix of G to

predict at user level. Here, we naively set the same weights for S and G in its objective function.

The noise and high number of latent dimensions to be learned lead to extremely high errors.

The network G thus actually makes it even more difficult for CMTF to converge to a good

solution. Second, we test a probabilistic tensor decomposition method named TriMine [3],
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Table 9.2: Baselines, with notes on three levels of prediction: (⋆) Group, (†) Population, (‡) User.
Methods Descriptions
GPOP ⋆† top-k + hierarchical prediction

Variants of GPOP
GPOP-NoTop ⋆† GPOP that uses all historical contents instead of top-k sim-

ilar content
GPOP-NoNorm ⋆† GPOP where top-k is computed on X instead of X̃ as in

Equation 9.4
Group-Avg ⋆ Weighted average of top-k similar content
GroupSep ⋆ top-k + separate predictions for each group using GPOP

with Y and Q
GPOP-User †‡ GPOP with each user as a group

Other tensor-based approaches
CMTF [78] ‡ Coupled matrix-tensor factorization (S & G)
TriMine [3] ‡ Co-evolving time-series prediction of S

CP-wopt [174] ⋆ PARAFAC tensor completion (Eqn. 9.3)
Hierarchical time series prediction [175]

ARIMA-COMB ⋆ ARIMA + optimal combination
ARIMA-BU ⋆ ARIMA + bottom-up
ETS-COMB ⋆ Exponential smoothing + opt. combination

ETS-BU ⋆ Exponential smoothing + bottom-up
Population-level popularity prediction only

MRBF [4]† Multivariate linear & Radial Basis Function

which is oblivious to the network G, and only uses the time period [1, t1] in tensor S for

learning and predicting. It also predicts at the user level, and thus is prone to noise, leading to

a much higher error compared to GPOP. Finally, we evaluate tensor completion for the group-

based tensor X using PARAFAC (CP-wopt [174]), as discussed in Equation 9.3. We only test

CP-wopt for X (group-level) because it does not scale for S (user-level)—the mask tensor

M in Equation 9.3 is huge and dense for our data. Our results show that CP-wopt is much

less stable than coupled tensor decomposition, and often gets stuck at sub-optimal solutions,

causing high errors.

Hierarchical time series prediction: We test two classic time series prediction approaches:

ARIMA, and Exponential Smoothing (ETS). We also use two different ways of combining their
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Table 9.3: Relative prediction errors (%). (*) marks experiments that did not finish after 1 day.
Behance Twitter

REP REG REP REG

G
P

O
P GPOP in G∗ 6.95 10.99 11.86 15.14

GPOP in G 6.92 11.21 12.14 16.73
GPOP in GS 6.95 10.99 12.04 15.47

O
th

er
b

a
se

li
n

es
fo

r
G
∗

GPOP-NoTop 7.81 12.57 12.57 33.38
GPOP-NoNorm 7.37 12.15 11.78 16.7

Group-Avg 7.48 11.44 12.05 15.73
GroupSep 12.15 68.13 12.26 15.29

GPOP-User (*) (*) 324.68 297.44
CMTF (*) (*) 13343 20787

TriMine 25.00 13.28 12.65 23.10
CP-wopt 73.47 53.92 19.51 23.26

ARIMA+COMB 9.52 16.70 34.72 37.54
ARIMA+BU 9.36 16.05 33.15 35.96
ETS+COMB 9.14 16.13 25.42 30.28

ETS+BU 8.44 15.60 24.22 29.60
MRBF 27.04 - 24.50 -

Table 9.4: Prediction errors (%) as q − t1 and k vary for Behance
q − t1 6 12 18 24 36 42
REP 3.91 6.95 9.49 11.62 15.09 16.7
REG 7.07 10.99 13.8 16.03 19.03 20.45

k 1 5 10 15 30 50
REP 7.75 7.07 6.95 6.91 6.94 6.97
REG 11.46 11.04 10.99 11.01 11.12 11.08
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Figure 9.9: GPOP predictions for 4 example projects p1-p4 in Behance at time t1 = 18 (3rd

day, marked by the vertical red lines).

predictions hierarchically, i.e., bottom-up and optimal combination [175], leading to 4 base-

lines for hierarchical time series prediction (see Table 9.2). Here each time series corresponds

to a user group. As shown in Table 9.3, GPOP outperforms all these 4 baselines significantly.

Population-level prediction only: MBRF [4] predicts the population-level popularity of

Youtube videos by learning a multivariate linear model. Clearly, GPOP is superior to MBRF,

both in terms of accuracy (Table 9.3) and the details of popularity at group level.

Future length and k: Table 9.4 shows the prediction errors of GPOP for Behance as the

future periods [t1, q] and k vary (t1 = 18). Clearly, the farther the future is, the harder it is to

predict, leading to higher errors. As k increases, accuracy initially increases, but when k is too

high, useless information is incorporated and increases the error.

Qualitative Performance

Fig. 9.9 shows the predictions of the next 7 days given the observations from the first 3 days

for 4 example projects in Behance. As can be seen, GPOP makes good predictions for a variety

of cases: typical projects p1 and p2 that are popular mostly in one user group; a project p3 that

are popular across all groups, possibly due to an unforeseen drift of users’ interests w.r.t. the
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Figure 9.10: Running time for Behance (seconds) as l, m, n, k vary.

training data; and a project p4 that ceased being popular after t1.

9.5.5 Running time

Fig. 9.10 further shows that the average running time of GPOP (clustering and predicting) is

linear in l, m, n, and k, making our solution scalable. On average, GPOP took 1.58 seconds for

Behance, and 1.53 seconds for Twitter to predict one content. CMTF took more than 4 hours

to finish one decomposition for Twitter, and did not finish after 1 day for Behance. TriMine

finished predicting all content within 5 minutes but with much worse accuracy compared to

GPOP.

9.6 Related Work

Popularity prediction: Since predicting the popularity of online content before publication

is prone to large errors [176, 177], most earlier works focus on predictions after publication.

Among these works, many papers simply use linear (or log-linear) regression to predict the

aggregate (population-level) popularity of different types of contents [4, 165, 178–182], which

often produces large errors [165, 183]. Thus, some papers adopt a classification approach to

obtain higher accuracy at the loss of details: predict the range of popularity instead of the exact

count [166,184]. [168] uses the average of top-k similar tweets to predict a new tweet in Twitter,

while [167] performs hierarchical prediction with ARMA model, obtaining good short-term
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but poor long-term predictions. [185, 186] combine data from different domains (websites) for

prediction. Instead of treating user equally, several works also model behaviors of individual

users (user-level popularity). For example, [161, 163] model users’ behaviors to classify if

a content would become popular; [162] proposes a probabilistic model based on Bayesian

inference to predict the popularity of Twitter messages; [164] uses survival theory to predict

the progression of an information cascade. These methods perform well for classification tasks

but create large error for popularity count. We instead hierarchically predict popularity at

group level, which is more fine-grained than the aggregate network level while less noisy than

the individual user level.

Group-level information cascades: [85] and [187] solve the influence maximization and

immunization problems for predefined groups respectively. [188] extracts community-level dif-

fusion of retweets on the Weibo network but does not focus on predicting the future. We instead

design the groups specifically for the task of predicting their future while also gaining insights

into the group-level spread of information.

Time series modelling: Auto-regression and SIRS models have been added to tensor de-

composition to model [189] and predict [3] time series (TriMine). Please see [175] for a survey

of hierarchical time series prediction where predictions at different levels are combined in dif-

ferent ways.

9.7 Conclusion

In this paper, we developed a novel framework that addresses the important problem of

online content prediction from a group-level popularity perspective. Our framework consists

of two steps that first group users into clusters and then predict content popularity via a novel

constrained tensor decomposition technique. Both network topology and interaction activities

among users are exploited to learn a set of user clusters. Such a clustering solution is imposed
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as the hierarchical constraint in the PARAFAC tensor decomposition and we showed that op-

timizing its constrained function via gradient descent achieves faster convergence and leads

to better prediction accuracy. Extensive empirical results demonstrate the effectiveness of our

framework against eight baseline methods not only in terms of effectiveness but also of pre-

diction accuracy, thus providing a better understanding about the spread of online content over

social networks.
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Chapter 10

Beyond Models: Forecasting Complex

Network Processes Directly from Data

10.1 Introduction

Complex network phenomena – such as information cascades in online social networks – are hard

to fully observe, model, and forecast. In forecasting, a recent trend has been to forgo the use of parsi-

monious models in favor of models with increasingly large degrees of freedom that are trained to learn

the behavior of a process from historical data. Extrapolating this trend into the future, eventually we

would renounce models all together. But is it possible to forecast the evolution of a complex stochastic

process directly from the data without a model? In this work we show that model-free forecasting is

possible. We present SED, an algorithm that forecasts process statistics based on relationships of sta-

tistical equivalence using two general axioms and historical data. To the best of our knowledge, SED

is the first method that can perform axiomatic, model-free forecasts of complex stochastic processes.

Our simulations using simple and complex evolving processes and tests performed on a large real-world

dataset show promising results.

Complex networked processes – such as information cascades and the spread of influence and

viruses over online social networks – are hard to fully observe, model, and forecast. Self-reinforcing
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and latent effects can drive random and deterministic amplifications that are hard to predict without ag-

gregate, large-population models. For instance, the way people react to social and monetary incentives

can affect how information cascades spread over online social networks [190]; individuals also have

evolving social interests [191, 192].

In our work we focus on forecasting statistics of complex network processes, such as the distribution

of sizes of an epidemic process over a network. Recently, the availability of large-sample historical data

– that details the evolution of similar processes in the past – has started a trend of forgoing parsimonious

models in favor of models with increasingly large degrees of freedom that are trained over this his-

torical data; these include latent Markovian infection models [191], auto-regressive models [193, 194],

distance-based models for time series [195, 196], and classification-based approaches such as logistic

regression [169] and naïve Bayes classifiers [197]. Hidden Markov models have also been proposed to

replace parsimonious population models in ecology research [198].

Extrapolating this trend into the future, eventually we could renounce models all together. But is

this possible? That is, can we forecast statistics of complex network processes directly from the data

without the help of models? Such forecasting algorithm would be the ultimate data-driven method.

Contributions

In this work, we propose SED (Statistical Equivalence Digraph algorithm), an algorithm to fore-

cast statistics of complex networked processes using general axioms that do not entail a model. Our

algorithm works by extracting statistical information contained in the historical data through two ax-

ioms that define relationships of statistical equivalence between stochastic processes. To the best of our

knowledge, our algorithm is the first that can perform (true) model-free forecast of network processes.

Using simulation results and also a large real-world dataset, we show that SED is able to accurately

forecast a variety of metrics under complex scenarios. We also show that accurate unbiased forecast-

ing is limited to time horizons less than twice of that of the training data for a class of seemly simple

infection processes. This proof further motivates our quest for forecasting directly from the data.

An important property of SED is its ability to adjust predictions according to the amount of evidence.
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Consider forecasting the distribution of sizes of hashtag cascades #A and #B on Twitter:

• We observe 20 hashtag seeds1 of #A: ten seeds get cascades of size one and ten get cascades of size

at least ten.

• We also observe two seeds of #B generating cascades of size one and of size greater than ten, respec-

tively.

Should we make the same forecast for #A and #B? As #B has less samples than #A we are more

uncertain about #B’s behavior. The lack of evidence prompts SED to assign greater uncertainty when

forecasting metrics of #B, automatically adjusting forecasts to the amount of evidence.

Outline

Section 10.2 provides some definitions used throughout the paper. Section 10.3 explains the SED al-

gorithm using the prediction of cascade statistics as an example. Section 10.4 presents the theory behind

our approach. Section 10.5 tests the accuracy of SED using simulated data and shows an application

of SED to forecast complex cascades over a large online social network dataset. Finally, Section 10.6

discusses the related work and Section 10.7 presents our conclusions.

10.2 Definitions

We first give a few definitions used throughout this work. In this paper we also often simplify

our exposition by describing what are really general stochastic processes as an infection process on a

network, a.k.a., a cascade process.

Definition 10.2.1 [Cascade Process] Ψ(i) ∈ Ω is a cascade process with ID i, i = 1, . . . , |Ω|. For each

cascade process Ψ(i) ∈ Ω we observe a set of sample paths. The random variable X
(i)
∆t is a measure

over the sample paths of Ψ(i) over relative time interval [0,∆t], where time zero is the time relative to

the beginning of the cascade process. For instance, X
(i)
∆t may be a random variable that gives the size

of a cascade of Ψ(i) over time window [0,∆t].

1Seeds are network nodes that are infected independently from other already infected nodes.
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The definition of X(i)
∆t allows us to be conservative and “mistakenly” merge two or more independent

cascades of process Ψ(i) into a single larger cascade. This property is particularly useful when there is

ambiguity to which independent cascade seed is responsible to infect a set of nodes.

Definition 10.2.2 [Forecasting] The process to forecast Ψ(0), has k0 observations x
(0,1)
∆t1

, . . . , x
(0,k0)
∆t1

∼

X
(0)
∆t1

over time window [0,∆t1], ∆t1 > 0, where time zero represents the time that the process starts. A

forecast is an estimate of an statistic of X
(0)
∆t2

where ∆t2 > ∆t1. A forecast assumes that all processes

in Ω have been observed for at least ∆t2 time.

For instance, if Ψ(0) is a viral marketing campaign we may want to forecast, using the observations of

the first day of the campaign, what will be the average number of infected nodes per infected seed after

a week, a statistic that predicts the performance of the campaign in the first week per user exposure.

Definition 10.2.3 [Historical Data] The historical data of process Ψ(i), i = 0, . . ., defined as X (i)
∆t =

{x(i,1)∆t , . . . , x
(i,ki)
∆t ∼ X

(i)
∆t}, is the set of all available observations of process Ψ(i) over time interval

length ∆t.

In what follows we illustrate the SED algorithm. The theory behind the algorithm is explained in

Section 10.4.

10.3 Algorithm

In this section, we present the SED Algorithm. Here we focus on the “how-to” solution. Our

description of SED focuses on cascade processes to simplify our exposition; the algorithm for general

networked processes is presented in Section 10.4, along with the justifications and the theory behind

SED.

The SED algorithm (Algorithm 13) takes as input the set of observations of each process Ψ(i), over

time interval lengths ∆t1 > 0 and ∆t2 > ∆t1 for i = 1, . . . , |Ω| and over interval length ∆t1 for the

process we want to forecast i = 0. The goal is to forecast a statistic of Ψ(0) over time interval length

∆t2. The algorithm also requires a parameter α that later we describe how to automatically optimize.
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Algorithm 13 The SED Algorithm

Input: Historical data X (i)
∆t , i = 1, . . . , |Ω|, ∆t = ∆t1,∆t2 and X (0)

∆t1
;

α: Probability amplifier parameter;
n: Bootstrap resample size;
m: Number of bootstrap resamples;
Stat: Statistic of interest of X(0)

∆t2
.

Output: Set of predicted observations of Stat(X(0)
∆t2

)
1: for i := 0 to |Ω| do

2: pi ⇐
∑|Ω|

j=0,j 6=i
PKuiper(X

(i)
∆t1

,X
(j)
∆t1

)

|Ω|

3: w(i⊲ 0)⇐ PKuiper(X
(i)
∆t1

,X
(0)
∆t1

)

pi
4: end for

5: ~W ⇐ [w(1⊲ 0)α, ..., w(|Ω|⊲ 0)α]

6: ~W ⇐ 1

‖ ~W‖1
~W

7: Ŷ ⇐ [ ]
8: for j = 1 to m do

9: Sample i with probability ~Wi, i ∈ {1, . . . , |Ω|}.
10: X̂ (0)

∆t2
⇐ BoostrapSampling(src = X (i)

∆t2
, size = n)

11: Ŷ [j]⇐ Stat(X̂ (0)
∆t2

)
12: end for

13: return Ŷ

For now it is enough to know that a large value of α indicates that the process to forecast behaves

like an outlier in our dataset. Two other parameters are related to bootstrap sampling, n and m, where

n = m = 100 should suffice for most applications but larger values always give more accurate results.

The final input is the statistic we wish to forecast.

Step 2 of Algorithm 13 applies a two-sample Kuiper’s test [199] to get the probabilities that the

observations of two processes i and j, i 6= j, come from the same underlying distribution. Step 3

of Algorithm 13 computes the equivalence score w(i ⊲ 0) between process Ψ(i) and the process to

forecast Ψ(0). We call this equivalence score the Equivalence Odds Ratio (EOR), described in details in

Section. 10.4.

With the EOR computed we build a weight vector ~W at step 5 of Algorithm 13, and normalize it

using its L1-norm at step 6. The probability amplifier α (step 5) is a real number that is chosen automat-

ically by another algorithm that we describe later. The next steps (9-11) forecast the statistic of interest
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using a two-step bootstrapping process with m and n resamples. These statistics may include, but are

not limited to, the Complementary Cumulative Distribution Function (CCDF), mean, standard deviation

and second moment of cascade sizes. We start by randomly sampling a process index i according to the

weight in ~W (step 9). At step 10 we perform bootstrap sampling from the long-term observation X (i)
∆t2

to obtain an estimate of the bootstrap resample of X (0)
∆t2

, where |X̂ (0)
∆t2
| = n. Finally, the statistics of the

estimated X̂ (0)
∆t2

, e.g., the mean of X̂ (0)
∆t2

, are computed and stored in the vector Ŷ (step 11). By repeating

steps 9 to 11 m times we obtain the bootstrapped statistics, which provide the forecast of the statistic of

interest over X(0)
∆t2

.

10.3.1 Choosing Amplifier α and Sample Size n

To complete the algorithm, we also need to choose the amplification factor α and the sample size n.

Larger values of n make the forecast more accurate, thus n is only limited by computational constraints.

In our forecasts, however, we would like to compare our prediction with the ground truth of X(0)
∆t2

, thus,

we set n = |X(0)
∆t2
| to make the comparison easy. Finally, we determine α heuristically by minimizing

the squared error in SED’s prediction of the value of Stat(X(0)
∆t1

), which we can easily get an estimate

with Stat(H(0)
∆t1

).

10.4 Theory

The framework of classical statistics, as developed by pioneers like R.A. Fisher [200], describes

stochastic processes using models as building blocks. For instance, a process can be a Galton-Watson

process, Markovian, auto-regressive, or a hierarchical combination of processes and non-parametric dis-

tributions. In 1933 Kolmogorov [201] laid the modern axiomatic foundations of probability theory that

eliminated the necessity of models, although models are still useful in Kolmogorov’s framework. To the

best of our knowledge, our SED method is the first method able to perform forecasting using axioms

rather than models.
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Roadmap: In what follows (Section 10.4.1) we detail our axiomatic forecast framework and our SED

method. Section 10.4.2 takes an in-depth look at the problem providing forecast accuracy bounds for

a class of stochastic processes, proving that in some scenarios even for the best model cannot make

accurate long-term forecasts of seemly simple processes.

10.4.1 SED: Axiomatic Forecasting

In what follows, we describe our SED method. SED performs forecasts using the following two

axioms in lieu of a model. For the sake of conciseness and clarity, the definition of dynamic networked

processes is given later in the text in Definition 10.4.1.

Axiom 10.4.1 The state of any dynamic networked process is unique at any time t ≥ 0.

Axiom 10.4.1 guarantees that at any given time t there is no ambiguity about the true state of the process,

even if this true state is not observable.

Axiom 10.4.2 Let Ω be a set of processes with historical data and let Ψ(0) be the process that we wish

to forecast. Each process Ψ′ ∈ Ω, where Ω′ = Ω ∪ {Ψ(0)}, with the exception of at most one process,

is equivalent to one and only one other process in Ω′ besides itself according to a measure λ : S → R,

where S is the appropriate σ-algebra.

Note that Axioms 10.4.1 and 10.4.2 do not entail a model. To illustrate the use of Axiom 10.4.2 in

our method consider the following example. Ω′ is the set of epidemic processes over the same graph

G = (V,E). We wish to forecast another epidemic Ψ(0) using multiple independent sample paths of the

processes in Ω′. Let λ(σ) as defined in Axiom 10.4.2 count the number of infected nodes in a sample

path σ ∈ S . The example also works if λ is another non-trivial metric, such as the cumulative number

of infected nodes, the Wiener index, the reproduction number at time t > 0. Axiom 10.4.2 guarantees

that the set of all observed infection processes Ω′ is such that for any process Ψ′ ∈ Ω′ there is one and

only one other process Ψ′′ ∈ Ω′ for which the distribution of the number of infected nodes is exactly

the same.
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Unless stated otherwise in what follows we simplify our exposition assuming that Ω′ has an even

number of elements. Our method also can be readily extended to support λ : S → R
n, n > 1, to

incorporate complex features of the process. As we see later, the scenario with n > 1 requires the use

of kernel two-sample tests [202] for the forecast. In what follows we consider λ : S → R unless stated

otherwise.

Intuition: Axiom 10.4.2 goes at the heart of what it means to forecast the evolution of a process us-

ing historical data. We can only predict the future if, somehow, the present mimics what has happened in

the past. When aided by models, there is a notion of behavior distance (e.g. likelihood function), which

helps us find which processes in the past look similar to the process we are trying to forecast and use

them to predict the future. Because models often have trouble assigning measures of similarity between

two significantly different processes, many modern methods only consider “close enough distances”,

creating a manifold that is then used in the forecast. One of the challenges in manifold learning is de-

termining a close enough distance where the model empirically works without being fooled by the data.

Axiom 10.4.2 makes this distance precisely zero, which brings some advantages. First, the forecast does

not need to learn parameters, often a computationally intensive task. Second, in a complex scenario it

is probably better to state ignorance about process behavior than being very wrong. Network processes

can be hard to forecast. In Section 10.4.2 we show that the statistical information used in the forecast of

a seemly simple process cannot be extrapolated by models beyond the time horizon of the dataset (∆t2).

Choice of λ: The measure λ can be thought of as a “fingerprint” of process behavior. With a

bad choice of λ, too many “unrelated” processes have similar (but not equivalent) statistics, which in

turn makes it hard to empirically distinguish them. In these cases SED assigns similar weights to most

processes, and forecasting is performed conservatively (large confidence intervals). If the process to

forecast has too few observations, SED also acts conservatively to reflect the uncertainty in the limited

number of observations.

Violating Axiom 10.4.2: If no process in the historical data is equivalent to the process we wish to

forecast (a reality in some scenarios), then one of two things can happen. If the process to forecast and

most processes in the historical data have similar processes but not an equal process, then Axiom 10.4.2
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provides a robust metric of process similarity. It is robust because it does not assume how processes

behave and cannot be fooled by data. This shows well in our experiments with a real dataset. If most

processes in the historical data are equal and the process to forecast is an outlier, SED will forecast in

an uninformative way with large confidence intervals. This outlier status is easy to spot and stating the

lack of confidence in the prediction is highly desirable.

Formal Definitions: In what follows, we use Random Marked Point Processes (RMPP) to formalize the

networked process. Note that RMPPs allow us to avoid describing how the process evolves and, thus,

no model is described. Let G = (V,E) be a directed graph with node set V and edge set E ⊆ V × V .

Let LV and LE denote an arbitrary set of node and edge labels that will be used to define the state of the

process at any time. As an example, in an epidemic process LV = {infected, susceptible} and LE = ∅.

The following generalization takes into account the complexity of real-world cascading processes.

Definition 10.4.1 [Cascade Process] Let Z
(i)
k ⊆ V ×LV ×E×LE denote the state of the i-th process

after k > 0 events. Let W
(i)
k > 0 be the time between the k-th and the k + 1-st events. A dynamic

networked process Ψ(i) is a simple Random Marked Point Process (RMPP) Ψ(i) = {(Z(i)
k ,W

(i)
k )}k∈Z⋆

operating over V × LV × E × LE , where Z
⋆ is the set of non-negative integers. By convention,

0 = T
(i)
0 < T

(i)
1 < · · ·

are the successive times at which the process evolves with W
(i)
k := T

(i)
k+1 − T

(i)
k , k ≥ 0.

Note that the dynamic networked process need not follow the edges ofG. RMPPs are versatile stochastic

models that allow arbitrary spatial and temporal correlations in process evolution. Also note that in real

life we only have a finite number of realizations of the processes and, thus, we may not be able to

distinguish some of them. In what follows, we define the measure λ precisely and introduce the notion

of λ-stochastic equivalence.

Definition 10.4.2 (λ-stochastic Equivalence) We define two stochastic processes Ψ(a) and Ψ(b) as

equivalent according to a Lebesgue measure λ : S → R at time window [0,∆t], ∆t ∈ (0,∞), if

X
(a)
∆t

d
=X

(b)
∆t , where X

(k)
∆t ≡ λ(σ

(∆t)
k ) is a random variable, σk = {(Z(k)

i ,W
(k)
i ) : 0 ≤ T (k)

i ≤ ∆t} is a
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sample path of the stochastic process Ψ(k), k ∈ {a, b}, S is the appropriate σ-algebra, and the operator

d
= defines the random variables are equal in distribution.

In what follows, we use Axioms 10.4.1 and 10.4.2 and the definition of λ-stochastic equivalence to

build an equivalence digraph representing the equivalence relationships between all processes in Ω′.

Stochastic Equivalence Digraph

Axioms 10.4.1 and 10.4.2 state that the cascade process Ψ ∈ Ω′ – e.g., the process of spreading a

Twitter hashtagover the Twitter network – has one and only one λ-stochastic equivalent process Ψ′ ∈ Ω′.

To create our forecast, all we need to do is to identify this process. This idea yields a simple statement

wherein lies the answer to our practical forecasting problem:

Theorem 10.4.1 Any two-sample hypothesis test can be used to determine whether two processes

Ψ(i),Ψ(j) ∈ Ω′ are λ-stochastic equivalent at time interval ∆t > 0.

Proof: Axiom 10.4.1 states that sample paths are simple and thus admit a stochastic equivalence

measure λ. From Axiom 10.4.2, we know that all processes in Ω′ have a λ-stochastic equivalent process

(except at most one process if |Ω′| is odd). The set of sample paths of Ψ(i) and Ψ(j) entail a set of

independent observations of X(i)
∆t and X(i)

∆t). Thus, λ-stochastic equivalence yields X(i)
∆t

d
=X

(i)
∆t. A two-

sample hypothesis test assesses whether independent observations of the random variables X(i)
∆t and

X
(i)
∆t are drawings of the same underlying distribution. Hence, a two-sample hypothesis test is a tool to

determine whether Ψ(i) and Ψ(j) are λ-stochastic equivalent at time ∆t > 0.

Interestingly, a test with low statistical power forces us to make conservative forecasts with large confi-

dence intervals. The forecast uncertainty reflects the lack of statistical information. In such case, we can

identify the problem as the test says that all processes in Ω′ have a similar p-value. An interesting con-

sequence of Axiom 10.4.2 and Theorem 10.4.1 is our ability to create a complete digraph whose nodes

are the processes in Ω′ and the weights represent the probability that they are λ-stochastic equivalent.

We call the weights of the edges in this digraph the Equivalence Odds Ratio (EOR), defined as follows.
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Definition 10.4.3 [Equivalence Odds Ratio (EOR)] The EOR, denoted wt(i ⊲ j), i 6= j, under n

observations

X (i)
∆t = {x

(i,1)
∆t , . . . , x

(i,n)
∆t } of X

(i)
∆t and m observations

X (j)
∆t = {x(j,1)∆t , . . . , x

(j,m)
∆t } of X

(j)
∆t is

wt(i⊲ j) = |Ω′| PKuiper(X (j)
∆t ,X

(i)
∆t )

∑

Ψ(h)∈Ω′\{Ψ(j)} PKuiper(X (i)
∆t ,X

(h)
∆t )

(10.1)

where PKuiper(·, ·) is the p-value of a two-sample Kuiper’s test [199, 203], X (h) are the observations of

process Ψ(h), and with Ω′ is as defined in Axiom 10.4.2 and X
(i)
∆t, X

(j)
∆t as in Definition 10.4.2.

The Equivalence Odds Ratio (EOR) wt(i⊲j) is the ratio between p(X (i)
∆t ,X

(j)
∆t ) and the average p-value

when i is compared to all other cascades in Ω′\{Ψ(j)}. The EOR is not to be confused with a likelihood-

ratio test, which compares the likelihood of two models given the data. In our framework there are no

models.

Definition 10.4.4 (Stochastic Equivalence Digraph) Let GX∆t
be a simple (no loops) complete di-

graph that connects all processes in Ω′ with directed edge weights. For any two cascade processes

Ψ(i),Ψ(j) ∈ Ω′, i 6= j, the weight of edge i→ j is the EOR wt(i⊲ j).

An EOR wt(i⊲ j) > 1 suggests that process Ψ(i) is wt(i⊲ j) times more likely to be λ-stochastic

equivalent to Ψ(j) than a random process selected from Ω′\{Ψ(j)}. Note that the equivalence odds ratio

is not symmetric, i.e., there can be processes Ψ(i) and Ψ(j) such that wt(i ⊲ j) 6= wt(j ⊲ i). Note

that Definition 10.4.4 does not impose the one-to-one equivalence required by Axiom 10.4.2. This is

because the one-to-one equivalence is unnecessary and computationally expensive if Ω′ is large, thus

we assume we can safely approximate it through probabilistic matching. The Kuiper test in PKuiper can

be also replaced by any two-sample hypothesis test such as Kolmogorov-Smirnov’s test or extend our

method to include Pkernel [202] that allows the use of a multi-dimensional λ through kernel two-sample

tests. In one dimension, we choose Kuiper’s test over Kolmogorov-Smirnov’s test because the former

gives equal importance to all domain values while the latter tends to be most sensitive around the median

value [199, 203].
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Next, we show how to use the stochastic equivalence digraph GX∆t
to make predictions of cascade

characteristics.

Forecasting Procedure in Time

Using the stochastic equivalence digraph GX∆t1
we can forecast Ψ(i) using an of estimate P [X(i)

∆t2
>

x], 0 < ∆t1 < ∆t2, obtained by the mixture

P [X
(i)
∆t2

> x] =

1

C

∑

Ψ(j)∈Ω′\{Ψ(i)}

w∆t1(j ⊲ i)P [X
(j)
∆t2

> x],

where C =
∑

j∈Ω′ w∆t1(j ⊲ i) is a normalization constant. The above equation gives the first itera-

tion of Sinkhorn’s algorithm that finds probabilistic pairwise matches in a weighted graph [204]. For

computational reasons we limit our matching to a single iteration. Sinkhorn’s algorithm converges to a

doubly stochastic matrix that defines the probability of pairwise matchings in a weighted graph, widely

used in soft matching problems [205]. If the SED adjacency matrix is irreducible then the probabilistic

matching is unique [204]. To increase estimation accuracy when Ω′ is large, we can add an exponential

amplification factor:

P [X
(i)
∆t2

> x] =

1

Cα

∑

Ψ(j)∈Ω′\{Ψ(i)}

w∆t1(j ⊲ i)αP [X
(j)
∆t2

> x],

where Cα =
∑

j∈Ω′ w∆t1(j ⊲ i)α and α is chosen as to minimize a regret function over the estimated

distribution P [X(i)
∆t′2

> x] for ∆t′2 ≈ ∆t1. Note that even for historical cascades Ψ(j) ∈ Ω′\{Ψ(i)},

we do not have the true function P [X(j)
∆t2

> x] that is used inside the sum. Therefore, we estimate

P [X
(b)
∆t2

> x] by bootstrapping the observations of X(j)
∆t2

in the historical cascades. In Section 10.5.2

we show that the estimates have good accuracy in practice.
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10.4.2 A Big Data Forecast Paradox

In what follows we present a seemly simple forecasting problem and prove that under conditions

common to large social networks, no model or procedure is capable of extrapolating accurate unbiased

cascade statistics beyond the time horizons of the historical data. This inability of models to extrapo-

late cascade statistics beyond what is already in the historical (training) data indicate that model-free

forecasts can do as well as forecasts with perfect models.

Moreover, we also show the following paradox: As a the size of a power law network scales and

increases both the historical data and the maximum cascade sizes, forecasts beyond the historical data

horizon get more inaccurate while forecasts within the horizon get more accurate. This paradox poses

a great challenge for big data analytics, where short-term forecasts can get increasingly better as the

system and the historical data grow while long-term forecasts get worse.

This paradox happens because the present is a biased view of the future. More precisely, in the his-

torical data we are more likely to see at least one infection from a cascade that will be larger in the future

than a cascade that will be smaller. This bias is related to the inspection paradox [206] and depends on

the observation window. The bias is so hard to correct for power law distributions that it denies us the

ability to forecast beyond historical data horizons, where we have not yet recorded the bias. Moreover,

our results are not confined to power laws; we consider all distributions (Type I, II, and III). The results

apply to statistics such as the unbiased average of cascade sizes and the cascade size distribution.

Model: We collect data during time interval [0, T ] and seek to forecast statistics for interval [0, cT ],

c > 1. Consider n independent cascades. Cascade infections arrive according to a constant-rate Poisson

process with possibly distinct rates in the interval [0, cT ]. The size of a cascade at time cT has distri-

bution Λ(cT ) ∼ θ, where θ is a distribution with support {1, . . . ,W}. Our initial goal is to estimate an

unbiased average of the cascade sizes over the interval [0, cT ], c > 1. At first inspection the forecasting

problem looks like a simple task and the impossibility results stated above seem surprising. We choose

the Poisson process in our illustration precisely because its simplicity allows us to clearly understand

why the forecasting problem is hard.
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Our use of the Poisson process is also of interest because it connects the axiomatic framework with

the classic model-based one. Poisson processes are arguably among the simplest and most widely used

stochastic processes. Let Nt be the number of events in the time interval [0, t]. A Poisson process

{Λ(∆t)} with constant rate β is defined as an arrival process that satisfies the following three axioms:

A1. limǫ→0 P [Λ(∆t)− Λ(∆t+ ǫ) = 1] = βǫ+ o(ǫ), and

lim∆t→0 P [Nt −Nt+∆t > 1] = o(∆t); that is, no two events can happen at the same time;

A2. for all t, s > 0, Nt+s −Nt is independent of the history up to t, {Nu, u ≤ t};

A3. for all t, s > 0, Nt+s −Nt is independent of t.

An equivalent constructive way to define the same process is: P [Nt ≥ k] = P [
∑k

i=1Xi < t], where

{X1, . . . , Xk} are independent and identically distributed (i.i.d.) exponential random variables with

parameter β.

Forecast Problem Definition. Let OT denote the set of indices of the cascades in the historical data

observed during interval [0, T ]. The forecasting problem is defined as follows: We observe the cascades

during time window [0, T ] and wish to forecast the average number of events we will observe in the

window [0, cT ], mcT =
∑n

i=1N
(i)
cT /n.

Forecast Accuracy Bounds

In the following theorem, we prove that forecasting the average number of events in our mixture

Poisson process is a hard problem.

Theorem 10.4.2 Let {N (i)
cT }ni=1, N

(i)
cT ∼ (θ1, . . . , θW ), be a set of observed events of a mixture of n

Poisson processes during time interval [0, cT ]. Let |OT | denote the number of processes with at least

one arrival in the interval [0, T ]. Assume we are given the best unbiased forecast function mcT |T of the

average number of events mcT , where mcT |T takes as input the observations over time interval [0, T ].

Then, the following conditions regarding the mean squared error MSE(mcT |T ) = E[(mcT |T −mcT )
2]

hold:
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1. If θW decreases faster than exponentially in W , i.e.,

− log θW = ω(W ), then MSE(mcT |T ) = Ω(1/|OT |).

2. If θW decreases exponentially in W , i.e., log θW =W log b+ o(W ) for some 0 < b < 1, then

(a) log[MSE(mcT |T )] = Ω(W − log |OT |), provided c > 1 + 1/b,

(b) MSE(mcT |T ) = Ω(W/|OT |), provided c = 1 + 1/b,

(c) MSE(mcT |T ) = Ω(1/|OT |), provided c < 1 + 1/b.

3. If θW decreases more slowly than exponential, i.e.,

− log θW = o(W ), then

(a) log[MSE(mcT |T )] = Ω(W − log |OT |),

provided c > 2,

(b) MSE(mcT |T ) = ω(1/|OT |), provided c = 2 and

∑W
j=1 j

2θj = ω(1),

(c) MSE(mcT |T ) = Ω(1/|OT |), provided either c < 2 or c = 2 and
∑W

j=1 j
2θj = O(1).

Proof of Theorem 10.4.2. Our proof of Theorem 10.4.2 shows that the forecasting mixtures of Poisson

processes can be mapped into the set size distribution estimation problem; we then use our results on

the hardness of estimating set size distributions from sampling [207] to prove the theorem. We start

by showing how to map the forecasting mixtures of Poisson processes into the set size distribution

estimation problem. Let P [N (i)
T = k|N (i)

cT ] be the probability that k events happen in the time window

[0, T ] given the number of events at time cT is N (i)
cT , c > 1. The distribution of P [N (i)

T = k|N (i)
cT ] is

given in the following lemma.

Lemma 10.4.1 If NcT is the number of events of a Poisson process at time cT and N ′T is the number of

events that happened between [0, T ], c > 1, then P [N ′T = k|NcT ] =
(

NcT

k

)

c−k(1− 1/c)NcT−k.

Proof: A Poisson process is defined as an arrival process that satisfies the three axioms listed

above. Axiom A3 states that ∀t, s > 0, Nt+s −Nt is independent of t. Thus, the counts of the number
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of events at a time interval [0, T ] is independent of the number of events at time interval (T, cT ] (axiom

A2). Our Poisson process is time-homogeneous and thus the probability that an event lands in [0, T ]

is proportional to T/(cT ) = 1/c (axiom A1). As the number of events between [0, T ] and (T, cT ] are

independent, we have P [N ′T = k|NcT ] =
(

NcT

k

)

c−k(1− 1/c)NcT−k.

In what follows, we show that the timestamps of the past events in the interval [0, T ] are not relevant in

the forecast.

Lemma 10.4.2 The event counts in the historical data provide all the statistical information collected

in the interval [0, T ] w.r.t. the counts {N (i)
cT }ni=1 in the interval [0, cT ].

Proof: Axiom A2 states that the exact timestamps of the events in the interval [0, T ] gives no

statistical information about future events in (T, cT ].

We are now ready for theorem that connects the forecast with an estimation problem that is known to be

hard.

Theorem 10.4.3 The problem of forecasting any function g({N (i)
cT }ni=1) of the mixture Poisson sample

paths described in Section 10.4.2 is equivalent to the set size estimation problem [207], where elements

are randomly sampled from a collection of non-overlapping sets and we seek to recover the original set

size distribution from the samples.

Proof: We prove the theorem by mapping the forecasting problem into the set size estimation

problem. Let {N (i)
cT }ni=1 be the sizes of n sets, whose elements are sampled independently with proba-

bility 1/c > 0, leading to sampled set sizes that are binomially distributed as in Lemma 10.4.1. Finally,

Lemma 10.4.2 shows that these non-zero sampled set sizes are the only information available to forecast

the process.

Theorem 10.4.3 shows that the present is a biased view of the future, as the set size problem suffers

from the inspection paradox [207]. In what follows we prove our main theorem.

Proof: [of Theorem 10.4.2] Using Theorem 10.4.3 we can construct a perfect map between the

forecasting problem and the set size distribution problem. Theorem 10.4.2 follows from using Theorem

4.3 of our previous work (Murai et al. [207]) to this mapping, where we analytically compute the inverse
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of the Fisher information matrix of the data, giving rise to the error bounds in the theorem (through the

Cramér-Rao bound).

Theorem 10.4.2 shows clear limitations of forecasting with models. In realistic scenarios, where event

sizes are large and have heavier-than-exponential distributions, no algorithm can obtain accurate unbi-

ased forecasts of the average number of events beyond time interval [T, 2T ] if the dataset is limited to

time horizon [0, T ]. Fortunately, SED is not impacted by this problem as it limits its forecasts to the

time horizons in the historical data. These results inspire the following apparent paradox.

A Big Network Data Paradox

When More Data Means Worse Forecasts. Theorem 10.4.2 creates an apparent paradox. The fore-

casting can become more inaccurate as the dataset OT grows. The forecasting is not just more inaccu-

rate, the forecast simply breaks down; as OT grows, and the data time horizon remains the same [0, T ],

there is nearly zero statistical (Fisher) information to forecast beyond horizon [T, 2T ].

To showcase the impact of this paradox, consider a growing network where the distribution of

the size of events (cascade sizes) is Pareto with parameter β > 1. Our results hold generally but for

illustration we use a scenario where the number of seeds increases proportionally with network size.

In this scenario the relationship between the maximum number of events per seed W and the number

of seeds |OT | ≫ 1 is E[W ] ≈ β
√

|OT | Γ(β − 1), a known result from extreme value theory [208].

Theorem 10.4.2 case 3(a) shows that the MSE error is lower bounded by log[MSE(mcT |T )] = Ω(W −

log |OT |). As E[W ] ∝ β
√

|OT | and |OT | increases, so does W . We can think of the MSE lower bound

growing roughly as exp( β
√

|OT |)/|OT |.

Thus, if the training data OT has time horizon [0, T ] and event (cascade) sizes have a power law

distribution, Theorem 10.4.2 cases 3(b-c) show that as the network grows the estimate in the interval

[T, 2T ] gets more accurate. However, Theorem 10.4.2 case 3(a) shows that as the network grows the

estimation error in the interval (2T, cT ], c > 2, grows exponentially with network size.
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10.5 Results

In this section we present our results. We start with our simulation results in Section 10.5.1. Sec-

tion 10.5.2 shows our results over a large Twitter dataset.

10.5.1 Forecasting Using Simulated Data

In this section, we test the forecasts of SED on synthetic datasets. We test the performance of

SED over two distinct models: the Poisson process and the Galton-Watson process. Recall that Ω′ =

Ω ∪ {Ψ(0)} is the union of the historical processes Ω and the process to forecast Ψ(0). SED forecasts

metrics of Ψ(0) at time interval ∆t2 using data from time interval ∆t1, ∆t1 < ∆t2 In addition to SED,

we also have two baseline naive predictors: uniformed prediction, and K-means prediction. Uninformed

prediction returns the bootstrapped statistics at time interval ∆t2 of a randomly selected process in Ω.

Whereas, K-means prediction first clusters the set of historical cascades using K-means algorithm and

Euclidean distances between the CCDFs of cascade metrics (probability density functions, PDFs, give

similar results). The number of cluster k is chosen using the elbow method, without making the clusters

too small (k equals 10 for the two synthetic datasets, and 20 for the Twitter dataset). After that, given

a new cascade Ψ(0), K-means prediction finds the cluster it belongs to, and returns the bootstrapped

statistics at time interval ∆t2 of a randomly selected process in that cluster.

For evaluation, we use violin plots to compare the predicted statistics with the bootstrap statistics

from the ground-truth empirical distribution of Ψ(0) at ∆t2. A violin plot is a box plot combined with

a kernel density estimate of the probability density function, giving a more detailed view of the data’s

variance. The box extends from the first quartileQ1 to the third quartileQ3 of the data, with a line at the

median. The whiskers extend from the box toQ1−1.5∗IQR andQ3+1.5∗IQR, where IQR = Q3−Q1

is the inter-quartile range. The violin plots show the spread.
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(c) ID 160

Figure 10.1: Prediction for mixture Poisson processes (Scenario 1) of the future CCDF, av-
erage, standard deviation, and second moment metrics. SED predictions match well the true
future distributions and clearly outperform uninformed predictions.
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Figure 10.2: Prediction for Galton-Watson processes (Scenario 2) of the future CCDF, aver-
age, standard deviation, and second moment metrics. SED predictions again match well the
future distributions and are clearly superior to uninformed predictions.

Scenario 1: Mixture Poisson Processes

Our mixture Poisson process is a Poisson process with random rate β that has support (0,W ],

W > 0.

Data Generation: The simulated historical dataH is generated through simulations from time zero until

∆t2 = 1 month from two sets of mixture Poisson processes. The first set has n1 = 100 processes with

rate distribution γ1 ∝ β−2 and the second set has n2 = 100 processes with rate distribution γ2 ∝ β−3.

Poisson rates are measured in number of events per month. Each process has 1, 000 infection seeds. The

process to forecast Ψ(0) belongs to one of two sets and was observed from time zero until ∆t1 = ∆t2/4,

approximately one week. In what follows we test how well SED can forecast Ψ(0). In Section 10.4.2
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we show that estimating the Poisson rates is hard due to observation bias.

Results: For conciseness, Figure 10.1 shows only the results for three processes, one per column: pro-

cesses 10, 60 (type 1), and 160 (type 2). Four forecasts are evaluated: forecasting the CCDFs, mean,

standard deviation, and second moment. For comparison baselines we use uninformed prediction –

uniform matching weights – and matching using K-means with Euclidean distances, as the latter have

been extensively and successfully used in mining and classifying time series [196]. For each process we

present the true statistics at ∆t1 (Present) and ∆t2 (Future), and the predicted statistics at ∆t2, including

SED, uninformed, and K-means predictions. The Figure 10.1 shows that SED is the method that better

represents, consistently, the true statistics at time ∆t2 under all scenarios (Future).

Scenario 2: Galton-Watson Process

The Galton-Watson process is a branching process {Xn} such that Xn+1 =
∑Xn

j=1 ψ
(n)
j , where

X0 = 1 and {ψ(n)
j ∼ Poisson(λ) : n, j ∈ N} is a set of i.i.d. natural number-valued random

variables [209]. Intuitively, ψ(n)
i is the number of male children of the j-th descendants, and Xn is

the number of descendants in the n-th generation. The total number of people with the considered

family name at time t would be
∑t

i=0Xt. A simple epidemic cascading on a network can be modeled

as a Galton-Watson process.

To make this model harder to forecast, we replace the Poisson distribution of the number of chil-

dren by a log-normal distribution. The purpose of the log-normal distribution is to skew the obtained

distribution of the number of children, mimicking real life situation where the degree of a node in a

network follows a heavy tail distribution. We call the values generated by the log-normal distribution

the descendant effect of a node. Here is the model we use Xn+1 =
∑⌊Xn⌋

j=1 ψ
(n)
j , where X0 = 1 and

{ψ(n)
j ∼ log-normal(µ, σ2) : n, j ∈ N}. The operation ⌊Xn⌋ is to get an integer-valued number of

descendants.

Cascade Process Evolution: For each information cascade, we use a birth rate γ to generate new seeds

over time. Given a single seed node (X0 = 1), the total descendant effect up to time t in a Galton-
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Parameters Temporal delta

Process Type IDs µ0 σ0 γ0 ∆µ ∆σ ∆γ

Small-inc 0..9
1.5 1 300

+0.2 +0.1 +30
Small-dec 10..19 -0.2 -0.1 -30
Small-const 20..29 0 0 0
Medium-inc 30..39

2 2 500
+0.2 +0.1 +30

Medium-dec 40..49 -0.2 -0.1 -30
Medium-const 50..59 0 0 0
Large-inc 60..69

3 2.5 700
+0.2 +0.1 +30

Large-dec 70..79 -0.2 -0.1 -30
Large-const 80..89 0 0 0

Table 10.1: Galton-Watson process simulation parameters.

Watson process, i.e.,
∑t

i=0Xi, will be used as the cascade size at time t for this seed. As a result,

we obtain a sample of the cascade size per seed. To add more complexity to the model, we allow the

parameters to change over time: µt = µ0 + t ∗∆µ, σt = σ0 + t ∗∆σ, γt = γ0 + t ∗∆γ , where µt, σt,

γt are the parameter values at time point t, and ∆µ, ∆σ, ∆γ are the amount of change at each time step.

Table 10.1 shows our parameter settings. We create 9 different cascade types, each one containing

10 cascades spanning a period of seven time units. These cascade types can be grouped into three big

groups – small, medium and large – based on their mean µ in the log-normal distribution. Larger cas-

cades have a larger variation (larger σ) and higher birth rate γ. For each of these big groups, we generate

three subgroups with different evolutionary trends: increasing in size (inc), decreasing in size (dec), and

constant size (const). Finally, we set ∆t1 = 2 time units and ∆t2 = 7 time units.

Results: Figure 10.2 shows the results of three processes: 0 (Small-inc), 10 (Small-dec) and 60 (Large-

inc). We get similar results in the other processes. Note that the statistics of Present and Future are

significantly different. Figure 10.2 shows that the uninformed and k-means forecasts are far from the

truth that the confidence intervals do not fit in our plot. Over the same scenario SED accurately forecasts

the mean, standard deviation and second moment as shown in the last three rows of Figure 10.2.
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10.5.2 Forecasting Twitter Cascades

We study the Twitter dataset collected by Yang et al. [58]2, which contains 467 million Twitter posts

from 20 million users covering a 7-month period from June 1st to December 31st, 2009. The underlying

Twitter follower-followee network is obtained from Kwak et al. [210]. The fact that this Twitter dataset

is only a sample of all tweets does not invalidate the dataset to test SED. SED is designed to make

predictions over general dissemination processes, including sampled cascading processes such as our

Twitter dataset.

Hashtag cascades

We are interested in the diffusion of a hashtag over the Twitter online social network. When an

individual uses a hashtag in her tweet at a given time, if neither she nor any of her followees have

tweeted the same hashtag for at least a week prior to the post timestamp, we consider her as a seed. The

timestamp of the first tweet is the timestamp of a node hashtag “infection”. Once the seed of a cascade

has been identified, we start tracking the cascade over time. Note that our definition of seed is stringent

and we may merge almost unrelated cascades into a single cascade. From our RMPP definition, metrics

over merged cascade processes are allowed and, thus, we can be conservative to define independent

cascades in our dataset.

If a hashtag was not been used for more than a week, we assume the cascade has ended. The first

occurrence of the same hashtag after that would mark the beginning of a new cascade. Due to this one-

week time window, hashtags appearing for the first time in the dataset during the first and last weeks

of the monitored time frame are ignored. The time difference between the first and the last posts of an

information cascade is defined as the duration of the cascade.

Cascade metric

In our case study, we are interested in the distribution of the number of infected descendants of

a seed node for each hashtag in Twitter. In particular, given an infected seed node, we quantify how

2http://snap.stanford.edu/data/twitter7.html
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Figure 10.3: An example induced subgraphs of infected nodes and cascade metric. Node
infection timestamps are shown in red.

many of its descendants are “infected” by a hashtag complying with temporal infection order (infected

children in the branching process must be infected after their parents). These quantities are obtained

from the induced subgraph of the infected nodes over the original follower-followee network. Note that

a user may have several followees who posted the same hashtag before she did. As a result, simply

counting the number of infected descendants of an infected user does not guarantee the independence

between samples required by our theory. To reduce the effect of these independence violations, we

assume that two infected parents of an infected node are evenly responsible for the infection. Under this

assumption we propose a normalized metric as follows.

Definition 10.5.1 Given a time window length T , the number of normalized infected descendants (NNID)

of a node v are defined as:

NNID(v) =
∑

w∈NT
des

(v)

δ(v → w)

where NT
in(v) and NT

des(v) are the set of infected parents, and infected descendants of node v within the

time window T respectively; δ(v → v) = 1; δ(v → w) is the amount of infection spread from node v to

w through all possible time-ordering paths, and is defined recursively as follows:

δ(v → w) =

∑

u∈NT
in(w)∩NT

des
(v) δ(v → u)

|NT
in(w)|

We assume that if a node v is infected at time point t, then after time point t + T , its effect on

other nodes will diminish to zero. Thus, the set of infected descendants of node v do not contains
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nodes infected after time t + T . To get a distribution of NNIDs for a cascade c at a given time point

t, we first extract the induced subgraph Gind = (Vind, Eind), where Vind is the set of infected nodes

of c up to time t. In addition, given two infected nodes u and v, if the edge (u → v) ∈ E and

tinfect(v) − tinfect(v) ≤ T , then (u → v) ∈ Eind, where tinfect(v) is the timestamp at which v is

infected in c. Next, for each seed node of the cascade, i.e., nodes with no infected parents within a time

window T , we compute its NNID in Gind using Definition. 10.5.1. In the end, we obtain a sample of

NNID values, each for a seed in c, giving us an empirical distribution of NNIDs of c.

Example 10.5.1 An induced subgraph of infected nodes is shown in Fig. 10.3. Given a time window

T = 7, the descendant set of C is {D,E,H}; the infected parent sets of D and E are {B,C} and

{C} respectively. Thus, δ(C → D) = 1
2 , and δ(C → E) = 1. The infection from C can spread

to H following two different paths: C → D → H , and C → E → H . Thus, δ(C → H) =

δ(C→D)+δ(C→E)
2 = 3

4 . Finally, the number of normalized descendants of C is NNID(C) = δ(C →

D) + δ(C → E) + δ(C → H) = 1
2 + 1 + 3

4 = 9
4 .

Similarly, the set of seed nodes with no infected parents within a time window T = 7 is {A, B, C,

F , I}, which gives a sample of NNIDs {1, 34 , 94 , 1, 1} accordingly.

Twitter Results

For our tests, we identify the Twitter hashtag cascades that last at least 8 weeks. Using this dataset,

we predict distribution of NNID (time window T = 1 week) at week 8 (∆t2) using data from the week 2

(∆t1). To guarantee that enough data is available for prediction, we only consider cascades that contain

at least 300 infected users after 8 weeks and at least 30 infected users after one week. In the end, we

are left with 1050 cascades split among the different hashtags. Similar to the simulations, besides the

CCDF plots, we use violin plots to compare the predicted statistics (SED prediction and uninformed

prediction) with the bootstrap statistics from the ground-truth sample at ∆t2. It is worth noting that the

uninformed prediction simply returns the average statistics of all cascades in Ω at time ∆t2.

The forecasting results for five Twitter hashtags are shown in Figure 10.4. SED forecasts frequently

outperform uninformed and k-means predictions. For example, all #FORASARNEY statistics differ
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Figure 10.4: Predictions of statistics of NNID for five example hashtags in Twitter.
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considerably from those of uninformed and k-means predictions. Whereas SED accurately forecasts the

average CCDFs and all three statistics, as observed by contrasting SED forecast violin plots against those

of the ground truth (Future). For #H1N1, #FIERFOX and #SOUNDCLOUD, the uninformed forecasts

are rather uncertain of the values of the mean, the standard deviation, and the second moment, leading

to significantly lengthened violin plots. On the other hand, the SED forecasts are, once again, close to

the ground truth. In the case of forecasting the mean of #JQUERY (last column, second row), the true

mean (Future) is so close to the future average statistics (uninformed prediction), that SED shows no

clear improvement over naive approaches. We include this #JQUERY example to show that in hard-

to-forecast cases SED does no worse than uninformed and k-means. Note, however, that for standard

deviation and the second moment of #JQUERY show SED superior to uninformed and k-means.

It must be noted that the hashtag Twitter dataset that we are using is noisy (cascades are not fully

independent), making our forecasting task very difficult. Moreover, for many of the cascades in this

dataset, the distribution at week 8 (∆t2) is very close to the average prediction (uninformed prediction).

Thus, more challenging datasets and further research are needed to further validate practical aspects of

our approach.

10.6 Related Work

Analyzing and predicting network processes in general, and information cascades in particular,

has attracted much attention in recent years. Multiple works focus on building theoretical models

(e.g., [211–213]) of dissemination processes. These models capture information diffusion at nodes

through network topology as well as user interests and the information content [211, 214, 215]. Wang

et al. [216] uses partial differential equations to predict information diffusion over both temporal and

spatial dimensions. One challenge in this line of research is the gap between empirical data and theory.

Building parsimonious models is a complex task and the resulting models are often not vetted against

real data.

Most relevant to this paper are the works that predict cascade popularity. Some of these works

predict the volume of aggregate activity, such as the number of votes on Digg stories [165], or Twitter
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hashtag usage [193]. A few works examine how information cascades grow in size depending on its

content [192,217] and user interests [218]. Other works make prediction using observations of a cascade

during a given fixed time interval [193,219,220]. The cascade size prediction task is seen as a regression

problem in a variety of works [165, 219–221]. Matsubara et al. [194] proposes a parsimonious model

that captures the rise and fall patterns in information diffusion. In lieu of predicting the exact cascade

sizes, many studies bin the cascades sizes and solve a binary classification problem of whether or not a

cascade becomes viral [166, 197, 219] or if it doubles in size [169]. Instead of modeling the diffusion

process, Najar et al. [222] directly predicts the final propagation state of the information given its initial

state. Outside cascade sizes, Cheng et al. [169] also predicts structural features of the cascade sample

paths. Our goal is different as we do not perform binary classification of the evolution of a sample path,

or just predict cascade sizes. We propose a general axiomatic forecasting framework that is not tied

to a specific set of cascade features or process and can be used off-the-shelf in any similar forecasting

scenario.

Since we predict cascade statistics, our work also relates to research on fitting empirical data to

parsimonious statistical models [223, 224]. While the empirical data can be readily fitted to many

known parsimonious models such as power laws, log-normal, or exponential, there is no guarantee that

the fitted model can be used to predict the tail of the distribution or how the distribution changes with

the observation window. Indeed, our experimental results using Twitter data show that cascade statistics

can significantly change over time. Thus, the need to go beyond parsimonious models to design a

data-driven statistical approach using axiomatic forecasting.

10.7 Conclusion

In this work we propose SED, a new algorithm for forecasting statistics of complex networked

processes. SED is the first of its kind, a (true) model-free approach that uses axioms rather than models

to extract statistical information from the data, pointing to a promising new direction of axiomatic

forecasting. More importantly, we provide the underlying theory behind SED’s model-free axiomatic
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forecasting approach. We test SED on two synthetic datasets and a large Twitter dataset, showing that

SED can forecast accurately a variety of statistics under complex scenarios.
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Chapter 11

Conclusions and future work

11.1 Conclusions

In this thesis, I studied the network effect in real-world data and utilize the network structures

for different mining and predicting tasks. Network structures exist in many types of data, and guide

different networked behaviors in these data, including the evolution of the data over time and various

types of network processes. The existence of the network structures require new metrics and methods

for analyzing, mining, and modeling networked behaviors.

Part I explored collaboration networks to gain insights into its structure and its evolution over time.

Specifically, I used simplicial complex as a new representation for networks, devised a number of new

metrics for evaluating the effectiveness of collaborations, and found insightful observations by tracking

these metrics over time. In addition, I studied the evolution of collaboration networks by investigating

the egonets and defined rising stars as those whose characteristics change suddenly compared to both

local and global trends. Again, I discovered many insights into how these rising stars interact with each

other over time. There are a number of interesting avenues for further exploration: a more in-depth

analysis of the results, and better support for our explanations; a similar study of other data sets; an

efficient generalized algorithm for computing k-MNFs and persistence across time; and relationships

with other features of simplicial complex, for e.g Betti numbers.
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In Part II, I mined different types of network patterns by proposing three mining problems for a

single large graph, a set of graph snapshots, and a database of graphs. The subgraph search space is

exponential in the size of the network, making it infeasible to be stored, or computed in its entirety.

Therefore, I employed sampling to navigate in this space and devised heuristics to prune the search

space. Furthermore, many mining problems become NP-hard in network settings, rendering it infeasible

to be solve in large scale. As a result, I proposed a number of approximated algorithms, both with and

without quality guarantees, for these mining problems.

Finally, in Part III, I utilized the network structures for three prediction tasks in a traffic network

and online social networks. Specifically, the traffic network are created based on the traffic patterns

between different regions of a city. After that, this network is used in a Bayesian network to predict the

instantaneous changes of traffic flows, in addition to the seasonal and trend patterns. For online social

networks, I predicted information spreads, such as the spread of hashtags on Twitter, and the spread of

likes on projects in Behance.net. I solved this prediction task using two approaches: with and without

models. Both of these approaches have their own strengths and outperformed other baselines in the

corresponding tasks.

All in all, I tackled all three steps in working with network-based data: analyzing, mining, and

predicting. Since this is a broad area, there are still many open questions that need answers.

11.2 Promising future directions

11.2.1 Analyzing and mining networked behaviors

Besides the three types of patterns proposed in this thesis, there are also other possibilities, includ-

ing probabilistic, evolutional, and sentiment-aware network patterns, among others. Such patterns can

provide a stronger modeling and predicting power.

• Probabilistic network patterns: Networked behaviors are often noisy. For example, the ac-

tivities of users in online social networks are subject to a lot of exogenous factors that are not

available to us, such as the randomness in users’ behaviors and real-life events. Therefore, in-
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stead of exact matching of network patterns, I can assign probability to different elements in a

pattern, indicating how likely a node or an edge will participate in a network processes. Such

a probabilistic definition would be more realistic and create more matches between patterns and

network processes.

• Evolutional network patterns: Networks change over time. Thus, finding patterns for a single

snapshot of a network at a certain time is not enough. These patterns should be allowed to change

over time as well, i.e., additions and deletions of nodes and edges. Mining these evolutional

patterns is key to modeling the evolution of a network over time.

• Sentiment-aware network patterns: Besides nodes and edges, networks may also have addi-

tional information on these nodes and edges. Including these information in the patterns is thus a

natural next step. For example, information spreads in online social networks are largely affected

by the sentiments coded in the messages being spread. Different sentiments corresponding to dif-

ferent topics intrigue different sets of users. As a consequence, the same network pattern might

be active or inactive in different scenarios.

11.2.2 Modeling and predicting networked behaviors

The new types of patterns in Section 11.2.1 opens opportunities to new models that utilize them. I

mention here a number of potential problems in this direction.

• Data-driven modeling: The patterns found in Section 11.2.1 can be used as basis subgraphs

for data-driven models, in lieu of parametric models. In particular, each network process can be

represented as a set of basis subgraphs, each of which can evolve over time, or include additional

side information on nodes and edges. Such an approach is feasible thanks to the availability of a

large amount of data today.

• Predicting unexpected events: All of the proposed methods for prediction in this thesis are

based on the assumption that new events are similar to some historical events. Thus, I can build a

model from historical data, and use it to predict the future. However, many events are unexpected
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in real life, leading to poor descriptive power if only past data is taken into account. Moreover,

data for rare events are sparse, making it even harder to model. In such case, one possible solution

is to make certain assumptions on the evolution of unexpected events. Nevertheless, this is an

open direction with many challenges.

• Manipulating networked behaviors: Besides mining patterns and modeling networked behav-

iors, another important task is to manipulate them. This task has applications in many real-world

scenarios, such as, controlling the spread of fake news online, maximizing the influence of a

targeted ad campaign, and designing networks (adding and deleting nodes and edges) to achieve

some optimization goals. The mined patterns and the models proposed in this thesis can be used

as the basis for these manipulating tasks.
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