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Abstract

Purposes: To provide early and localized glioblastoma (GBM) recurrence prediction, we 

introduce a novel post-surgery multi-parametric MR-based support vector machine (SVM) method 

coupling with stem cell niches (SCN) proximity estimation.

Methods: This study utilized post-surgery MRI scans ~2 months before clinically diagnosed 

recurrence from 50 patients with recurrent GBM. The main prediction pipeline consists of 

a proximity-based estimator to identify regions with high risks of recurrence (HRR), and an 

SVM classifier to provide voxel-wise prediction in HRR. The HRRs were estimated using the 

weighted sum of inverse distances to two possible origins of recurrence – SCN and tumor cavity. 

Subsequently, multi-parametric voxels (from T1, T1ce, FLAIR, T2, ADC) within the HRR were 

grouped into recurrent (warped from the clinical diagnosis) and non-recurrent subregions, and fed 

into the proximity estimation coupled SVM classifier - SVMPE. The cohort was randomly divided 

into 40% and 60% for training and testing, respectively. The trained SVMPE was then extrapolated 

to an earlier time point for earlier recurrence prediction. As an exploratory analysis, the SVMPE 

predictive cluster sizes and the image intensities from the five MR sequences were compared 

across time to assess the progressive subclinical traces.

Results: On 2-month pre-recurrence MRIs from 30 test cohort patients, the SVMPE classifier 

achieved a recall of 0.80, a precision of 0.69, an F1-score of 0.73, and an average boundary 

distance of 7.49 mm. Exploratory analysis at early time points showed spatially consistent but 
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significantly smaller subclinical clusters and significantly increased T1ce and ADC values over 

time.

Conclusion: We demonstrated a novel voxel-wise early prediction method, SVMPE, for GBM 

recurrence based on clinical follow-up MR scans. SVMPE is promising in localizing subclinical 

traces of recurrence 2-month ahead of clinical diagnosis and may be used to guide more effective 

personalized early salvage therapy.
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GBM; SCN; Localized recurrence prediction; SVM

1 Introduction

Glioblastoma (GBM) is a deadly primary brain cancer that recurs in nearly all 

patients despite aggressive interventions, including maximal safe surgical resection, 

chemoradiotherapy, and tumor treating fields. Radiotherapy (RT), following surgery, offered 

improved survival and has long been an essential component of high-grade glioblastoma 

treatment [1–3]. However, RT ultimately fails to control GBM locally [4]. The unsatisfactory 

treatment outcome is partly because most GBMs are diagnosed in the advanced stage 

with tumor infiltration into the brain parenchyma that precludes a complete resection. The 

biological drivers of GBM resistance to treatment are not fully understood [5]. They are 

likely due to a combination of GBM’s intrinsic radioresistance [6], its diffusely infiltratuve 

nature [7–8], and tumor stem cell niche [9–10]. Overcoming tumor radioresistance requires 

a high radiation dose, which is contraindicated by the need for a large margin and treatment 

volume to encompass the diffuse tumor and stem cell niches. The predicament is further 

complicated because current GBM diagnosis and prognosis methods are not suited to 

precisely map the disease infiltration for recurrence prediction and personalized initial 

treatment target volume definition.

Cancergenesis analyses on tumor tissue provide a pathological snapshot of tumor cells and 

allow for patient profiling at the genomic and proteomic levels. However, while pathological 

subtyping dictates tumor aggressiveness and prognosis, it yields limited insights on the 

location of the recurrence for image-guided RT planning. A few radiologic efforts, including 

functional imaging (i.e. 18F-fluoro-ethyl-tyrosine positron emission tomography (18F-FET 

PET)) [11], diffusion MRI [12], CEST [13], and MR spectroscopy [14], and the new 

image postprocessing method [15] (i.e. radiomics analysis in peritumoral edema), have been 

made to predict GBM recurrence. Advanced PET and MR images taken before RT may 

reveal the tumor volumes inadequately covered by the RT field, but they suffer from two 

limitations. First, a sufficient number of cancer cells are needed to generate the imaging 

signal-to-noise ratio for detection. These modalities are unable to detect subclinical cancer 

infiltration. Second, the snapshot images at a single time may not reflect the dynamic 

progression of disease due to local and distal factors. Radiomics extracted features in the 

edema to help identify recurrence adjacent to initial tumors. However, this method cannot 

identify the substantial portion of the recurrence distal to the initial location. Alternatively, 

algorithms probing into the cell of origin and enabling early and localized detection of 

subclinical recurrence may offer the opportunity to treat the recurrence volume at an earlier 
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time and to a greater radiation dose. Emerging evidence has associated the pathogenesis of 

GBM recurrence with the involvement of stem cell niche (SCN), providing a potential new 

direction for prediction [16–21]. Aiming to clarify the weak or controversial correlation 

between SCN and patient survival [22], a comprehensive inverse geometrical metric 

was developed, which revealed the statistical significance of SCN involvement in GBM 

recurrence and patient survival [23]. Although increasing SCN-directed studies succeeded 

in progression and survival risk stratification, they did not directly translate into localized 

recurrence prediction for salvage RT planning.

This study introduces a quantitative proximity-based support vector machine (SVMPE) 

for localized recurrence prediction. We hypothesize that peritumoral infiltration and SCN 

migration collectively contribute to the GBM recurrence and an integrated proximity 

estimation to both locations provides comprehensive profiling of regional recurrence risk. 

Within high-risk regions (HRR) narrowed down by proximity estimation, we trained an 

SVM model for voxel-wise recurrence prediction on postoperative follow-up MRIs. We 

evaluated the performance of SVMPE on MR scans obtained two months before recurrence 

and then extrapolated the model on scans acquired at earlier time points for further advanced 

recurrence localization.

2 Methods

2.1 Data and preprocessing

Multi-parametric MRI scans of 50 patients with recurrent GBM were retrospectively 

solicited from multiple databases: 9 patients from the publicly available Cancer Imaging 

Archive (TCIA) dataset [24] and 41 patients from two institutional databases (USC IRB 

#HS-19–00888 and UCLA IRB#12–001882, aged from 18–73 years (50.5 ± 13.4 years), 

10 female and 31 male). Patients were selected according to the following criteria: 1) had 

surgical resection at initial diagnosis; 2) had clinically diagnosed recurrence; 3) received at 

least one follow-up MR scans within three months ahead of clinically diagnosed recurrence, 

as well as one diagnostic MR scan at the time of recurrence. 4) follow-up scans were taken 

at least one week after surgery and three months post-RT (or shown no signs of pseudo-

progression). 5) MR scans consisting of 5 standard clinical MR sequences as detailed below. 

Additional eligible follow-up scans from 25 of the 50 subjects were included in the study 

for exploratory analyses. Dataset consisted of multicenter, multi-vendor MR scans with 

field strengths of 1.5T or 3T, and slice-thickness from 1 – 6mm. The five standard clinical 

sequences for each scan set included T1-weighted (T1), T1 contrast-enhanced (T1ce), T2-

weighted (T2), T2 Fluid-Attenuated Inversion Recovery (FLAIR), and diffusion-weighted 

echo-planar imaging sequence derived apparent diffusion coefficient (ADC) map. Primary 

tumor volumes, defined as resection cavities in this study, and recurrence volumes were 

segmented by an experienced radiologist mainly on T1ce images and FLAIR, with other 

sequences for complimentary assessments. SCN zones, including bilateral subventricular 

zone extending from the wall of each lateral ventricle and subgranular zone residing at the 

interface between the hilus and the granular layer of each hippocampus, were manually 

delineated on a common T1-weighted Montreal Neurological Institute (MNI) template 
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[23,25]. The intra-rater variability Dice score of SCN identification was 0.95, by one 

radiation oncology trainee spanning two weeks.

To minimize the individual variance of brain size and ventricular anatomy and thus 

facilitate subsequent population-based statistical analysis, we performed the following image 

processing. Each MRI scan was preprocessed for skull stripping, N3 bias correction, and 

linear alignment to the corresponding first pre-recur T1 scan [26–28]. All MR scans were 

resampled into the isotropic 1×1×1 mm3 resolution, and deformably registered to the MNI 

space using pathology adaptive deformable registration in advanced normalization tools 

(ANTs) [25, 29]. Specifically, the MNI template was deformably aligned to each T1 

MR scan using the state-of-art Symmetric Normalization diffeomorphic registration. The 

noncorresponding tumor regions (i.e., cavities and recurrences) were excluded from the 

registration cost function. The resultant inverse transformations were then propagated onto 

other MR sequences and primary and recurrent tumor volumes [26, 28].

2.2 Overall pipeline

A diagram of the training scheme of the proximity-based SVM classifier, SVMPE, is shown 

in Figure 1. The classifier consists of two main steps: proximity-based calculation to identify 

regions with a high risk of recurrence and SVM classifier training to leverage voxel-wise 

prediction in the high-risk areas. The SVMPE training was conducted in the follow-up 

MRI scans acquired immediately before clinically diagnosed recurrence (Figure 1(ii)) when 

subclinical recurrence likely had started but was not discernible from clinical MRIs. The 

whole cohort was randomly divided into a 40% (20 subjects) training cohort and a 60% (30 

subjects) testing cohort. The involved data centers were proportionally balanced for both 

cohorts to reduce institutional variations. As an exploratory investigation (Figure 1(ii)), the 

trained SVMPE classifier was then applied on the scans acquired one time-point earlier (on 

average four months before recurrence) to test the feasibility of further earlier recurrence 

prediction.

2.3 Proximity estimation and High-risk region-of-interest (HRR)

We initially estimated the recurrence risks based on proximity to two hypothesized origins, 

SCN [23, 30–31] and original tumor (PT) [32–33], respectively. The degree of proximity to 

the SCN (PS) is estimated based on the normalized sum of inverse distances:

PS(x) =
D(x) − Dmin
Dmax − Dmin

, if x ∉ S

1, if x ∈ S
(1)

where

D(x) = ∑
i = 1

N 1
d x, si

2 (2)

Si with i ∈ [1, N] denotes an observation in SCNs, with x being an interpolated voxel in the 

region of interest. d(x, Vi) represents the squared Euclidean distance between x and a given 
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observation in S. Dmax and Dmin are the maximum and minimum inversed distances D(x)
within S for a given subject, respectively.

Similarly, proximity estimation, PT, to the original tumor Ti with i ∈ [1, M], is defined as:

PT(x) =
D(x) − Dmin
Dmax − Dmin

, if x ∉ T

1, if x ∈ T
(3)

The high-risk region-of-interest (HRR) was estimated by the aggregated recurrence risks 

from the SCN and the primary tumor through a combination of PS and PT, as:

αPT + PS ≥ c (4)

where α adjusts the weighting between PT and PS, and c thresholds the aggregated risk 

to create a final ROI. α and c were selected using grid search to maximize the inclusion 

of recurrence through a weighted mean of sensitivity and precision (maximize[Recall*2 

+ Precision, (ROI, Recurrence)]) on the training set. Figure 2 shows 3D renderings of 

calculated HRRs in 4 example subjects.

2.4 SVM classifier and performance evaluation

A radial basis function (RBF) kernel SVM classifier [34–35] was used to isolate recurrent 

subregions in previously defined HRRs further. Specifically, multi-dimensional voxels (T1, 

T1ce, FLAIR, T2, ADC) within HRRs were fed into SVM, with recurrent subregions (green 

in Figure 3) being class 1 and non-recurrent subregions excluding original tumors (blue 

in Figure 3) being class 2. We normalized all MR scans using the z-score method with 

a center of 0 and a standard deviation of 1 [36] to reduce the intensity variations due 

to heterogeneous acquisition protocols and scanners. To maintain a balance between the 

two training classes, we limited non-recurrence inputs to 30,000 voxels, randomly selected 

from the HRR, for each subject. An RBF kernel scale γ = 2 and a box-constraint C = 

100 were selected based on the performance from a validation subset of 10 subjects from 

the training cohort. Due to the nature of voxel-wise prediction, the original outputs from 

SVM may be geometrically unrealistic (i.e., noisy and sparse), which can be alleviated 

by morphological postprocessing [37]. Specifically, a Gaussian kernel was applied on the 

binarized raw predictions from SVM, followed by distance-based clustering with minimal 

Euclidean distance of 1 voxel, to remove small, isolated regions whose sizes are smaller in 

a cutoff percentage. Kernel sizes 3×3, 5×5, 7×7, and cutoff values of 30%, 50%, 70% were 

investigated, and the 5×5 kernel and 50% cutoff were selected based on the performance of 

the training cohort.

The SVMPE model was first evaluated by comparing the binary classification outputs with 

the warped recurrence and the non-recurrence region within the HRRs, shown in Figure 1(i) 

as the green and light blue regions, respectively. Specifically, the performance was assessed 

using recall (a measurement of the classification sensitivity), precision (a measurement of 
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the positive prediction rate), and F1 score (the harmonic mean of precision and recall). The 

mathematical definitions are:

Recall = true positive
true positive + false negative (5)

Precision = true positive
true positive + false positive (6)

F1 = 2 * Recall * Precision
Recall + Precision (7)

In addition, while the warped recurring ROI affords a higher probability of later recurrence, 

its specific boundaries do not necessarily dictate the demarcation of the subclinical traces. 

As a result, we also calculated the average boundary distance (ABD), a metric assessing 

the degree of spatial disagreement between the 3D surfaces, as a more generalized 

evaluation of the’ relevance’ of predictions [38–39]. Specifically, given a surface vertex 

set SP = SPi, i ∈ 1, NSP , on the 3D surface generated from a binarized prediction, and the 

corresponding surface vertex set SR = SRj, j ∈ 1, NSR , generated from the recurring ROI, 

ABD was obtained using:

ABD = 1
NSP + NSR

∑
i = 1

NSP
minSRj ∈ SRd SPi, SRj

+ ∑
j = 1

NSR
minSPi ∈ SPd SRj, SPi

(8)

Where d(SPi, SRj) represents the Euclidean distance between a surface vertex SPi in the 

prediction and a surface vertex SRj in the corresponding recurring ROI, thus the ABD has a 

unit of mm.

2.5 Extrapolation to longitudinal data

To test the feasibility of early subclinical tumor tracking at a further upstream time point, we 

applied the trained SVMPE model on the 25 subjects with additional MRI scans on average 

four months (±1.3 months) before recurrence (t-2 time point in Figure 1(ii), orange icons). 

Pairwise student t-tests were used to compare the SVMPE predictive cluster sizes from two 

pre-recur (t-1 and t-2) time points to test detectable subclinical progressions.

As an exploratory analysis, to investigate the underline subclinical anatomical changes, 

normalized imaging intensities from the 5 MR sequences (T1, T1ce, T2, FLAIR, ADC) 

were extracted from both pre-recur time points, using the warped recurrence regions as 

region-of-interests. Pairwise student t-tests were then performed between the two pre-recur 

time-points in terms of the mean of the five extracted imaging indices.
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3 Results

3.1 Two-month advanced predictions

To maximize the inclusion of recurrence in HRR, as stated in section 2.3, α = 3.5 and c = 

0.9 were selected based on the training set. Metrics assessing the performance of SVMPE 

for both the training and testing cohorts on 2-month pre-recur MR scans are summarized 

in Table. 1. Performance on the training cohort were obtained with 10-fold cross-validation. 

Compared to binarized recurring and non-recurring ROIs within HRR, SVMPE resulted in 

averaged predictive recall of 0.81 and 80, averaged precision of 0.68 and 0.69, and averaged 

F1 score of 0.73 and 0.73 for the training and the testing cohort, respectively. Group-wise 

t-tests revealed no significant performance differences between the two cohorts. Similar 

performance between the two cohorts was also confirmed by the distance-based metric 

ABD, indicating good generalization of SVMPE onto the test set. Figure 3 shows SVMPE 

predictions for two example subjects and the corresponding 5 MR scans in the same view. 

For both subjects, the demarcation of T1 contrast-enhanced regions greatly underestimated 

the regions with later recurrence (red, warped, and overlaid on T1ce images). At the same 

time, intensity enhancements in T2, FLAIR, or ADC maps were less specific in revealing 

subclinical traces. In contrast, the SVMPE predictions corresponded well with later clinical 

diagnosed recurrence in both cases.

3.2 Longitudinal subclinical changes

Results of longitudinal predictions and intensity comparisons across time are shown in 

Figures 4 and 5. As we can see from Figure 4, compared to the prediction from the 

immediate pre-recur (2 months prior) time point, the predicted clusters from 4-month apart 

were located in similar locations but generally smaller in size. This pattern can be evidently 

visualized in Figure 5(a), where the majority of the subjects presented an enlargement in 

subclinical regions as approaching the recurrence. The pairwise t-test revealed a significant 

size difference between the two time points, with p = 0.004. Besides, comparisons of image 

indices on T1ce and ADC maps between these two time points revealed significant intensity 

enhancements over time, while comparisons on T1, T2, and FLAIR signals failed to reach 

group-wise significance.

4 Discussion

In the study, we showed the feasibility of predicting the subclinical recurrence locations 

based on post-RT longitudinal MR images and biology-driven geometrical features. The 

novel therapeutic implication and voxel-wise recurrence prediction method are distinctly 

different from existing efforts of recurrence prediction.

Existing research for recurrence prediction is intended for modification of the initial 

treatment volume. For this reason, the studies are focused on the pretreatment images. 

Peritumoral infiltration of tumor cells has been considered one of the primary sources of 

GBM recurrence, with edema areas having the highest probability of infiltration [32]. Based 

on this assumption, Rathore et al. performed a radiomics analysis on peritumoral edema 

using pre-operative traditional and perfusion MRI and achieved decent prediction in local 
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recurrence [15]. Nonetheless, although pre-operative local infiltration may contribute to later 

recurrence, especially the ones that recurred within a few months following treatment, it is 

not the only resource of recurrences, as a substantial portion of the recurrence spread into 

regions distant (> 2cm) from the initial location [30]. Without the peritumoral assumption, 

Harat et al. prospectively investigated the possibility of using 18F-fluoro-ethyl-tyrosine 

(18F-FET) PET to predict the recurrence location [11], as the MR-defined target volume 

insufficiently covered the PET avid volume. Although the FET avid volumes showed 

improved overlap with the recurrent volumes, they suffer from two limitations. First, the 

number of cells (i.e., 10E6 cells) required to produce sufficient PET signals prevents it from 

detecting microscopic infiltration [40]. Second, the pretreatment snapshot cannot capture the 

morphological and pathological alterations during and after initial treatments [41]. Other 

advanced imaging methods for recurrence prediction, including diffusion MRI [12], CEST 

[13], and MRS [14], suffer from similar limitations. Unlike these studies aiming to modify 

the initial treatment volume, we designed our study to improve the recurrent treatment by 

fully utilizing the longitudinal imaging information for patients under frequent imaging 

surveillance following their initial treatment. Early GBM recurrence prediction provides a 

second avenue for the personalized therapeutic design, which may be implemented at an 

earlier time point to maximally delay recurrent disease progression with safe radiation dose 

escalation to a smaller target volume.

Regarding the prediction method, beyond what can be captured in images of the tumor 

and its periphery, recent cancerogenesis analyses have suggested the role of SCN in the 

pathogenesis of GBM recurrence, providing a new direction for localizing subclinical 

trace of recurrence [16]. For example, recurrence has been demonstrated to have a 

higher tendency to spread closer to SCN, regardless of the initial tumor location [3, 23, 

42]. However, the radiologic definition of SCN is inconsistent among studies [3,18,42]. 

The proximity to SCN has been ineffectively characterized by the semi-quantitative 

measurements adopted by most of the SCN derived studies. For the same reason, the role of 

SCN in GBM formation and progression has not been translated into localized voxel-level 

recurrence prediction.

Our localized GBM recurrence prediction model is based on the interplaying contribution 

of peritumoral infiltration and SCN migration, thus providing comprehensive profiling 

of regional recurrence risk. On clinical follow-up MRI, the proximity to the SCN and 

primary tumor was quantitatively characterized using inverse distance mapping. The 

GBM localization was consecutively narrowed down by integrated proximity estimation 

and voxel-wise SVM classification. On 2-month pre-recur scans, our model successfully 

delineates subclinical pathologies that are consistent in the location with later radiologically 

confirmed recurrences, albeit not clearly defined from either single MR sequence (Figure 

3). The performance comparison between the training and testing sets suggests the good 

generalizability of the SVMPE model (Table 1). Since our SVM model is based on standard 

clinical MR sequences, the proposed method will be easily implemented as an add-on to 

current clinical practice without additional sophisticated imaging scans.

In extrapolation analysis to an earlier time point (4 months before recurrence), the trained 

SVMPE model predicted significantly smaller cluster size in similar locations, indicating 
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a potential trend of subclinical progression and the possibility of using SVMPE for more 

advanced subclinical trace localization. The existence of progressive subclinical changes is 

further evidenced by the exploratory analysis of MR signals between two pre-recur time 

points (Figure 5). In particular, as the current gold standard of clinical tumor recurrence 

diagnosis, T1ce signals presented a small but significant increase from 4 to 2 months 

before recurrence. On top of it, the considerable rise of ADC values, which are inversely 

proportional to tumor cellularity, may indicate a decreased microstructural neurite density 

[43]. These are in line with the findings from Jin et al., where neurite density loss, 

represented by changes in fractional anisotropy and neurite density indices, was also 

observed at two months before recurrence on 30 GBM patients [44]. Our novel method 

captures the SCN and MR information more comprehensively for early recurrent location 

prediction.

We evaluated our model using both volume and average boundary distance agreement 

between the prediction and the actual recurrence. The performance indicates the ability 

to locate future recurrence, but the factor of tumor progression between the time points 

needs to be considered. A lower recall is expected, particularly for further upstream 

analysis where the predicted tumor volume is smaller than recurrence at a later time point. 

Besides performance evaluation, the distance agreement can help define the target volume in 

radiotherapy planning.

Our study has several notable limitations. First, the use of generic-lesion-based registration 

and the MNI template for brain alignment. Although being the current state-of-the-art 

method for pathological brain registration, lesion-based ANTs cannot fully adapt to specific 

challenges in GBM brain alignment, i.e., mapping excessive edema that constantly changes 

across the follow-up period. On top of it, the MNI brain template based on healthy subjects 

inadequately captures anatomy characteristics in GBM brains, such as degenerated white 

matter and enlarged lateral ventricles. These differences may introduce further errors in 

the manual identification of SCN, especially the areas in ventricular vicinity. In the future, 

an advanced pathological-adaptive registration algorithm and a brain template specific to 

the GBM population are needed to facilitate more accurate intra- and inter-patient image 

alignment [41]. Second, the generation and testing of the SVMPE were based on a limited 

dataset without screening on confounding factors, such as genomic subtypes initial tumor 

sizes, and treatment regimens. The moderate standard deviation on prediction performance 

(Table. 1) may suggest a non-negligible population heterogeneity, possibly due to the 

underlying divergent recurrent patterns and speeds. Whether the performance differences 

dictate pathological or therapeutic subtypes and whether the current model can be further 

refined according to these subtypes need to be explored in a larger dataset. Third, the 

MR datasets were obtained through multi-scanners on multi-sites. While normalized using 

a standard protocol [36], the remarkable variations in tissue intensity due to acquisition 

protocol and scanner differences can not be disregarded. In the future, we will prospectively 

acquire quantitative MR images to minimize the impact of inter-scan variations on SVM 

predictions [45]. Fourth, the SVMPE model was trained and tested on scans sparing the 

3-month time window after RT to avoid the complications of pseudo-progression. However, 

pseudo-progression is commonly seen in 20–30% of patients following RT and remains a 

critical factor in interfering with clinical decisions [43, 46]. Therefore, although the current 
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model yield localized early recurrence prediction two months before clinical diagnosis, 

an advanced prediction model capable of identifying the distinctive trace of recurrence 

over concurrent treatment-related pseudo-progression are needed in the future, to achieve 

clinically robust recurrence prediction and monitoring in the entire clinical course after 

treatment [47].

5 Conclusion

In the presented study, we introduced a novel voxel-wise early prediction method for brain 

GBM recurrence based on clinical follow-up MR scans using an SCN proximity estimation 

coupled SVM framework- SVMPE. The result shows promise in localizing subclinical traces 

of recurrence 2-month ahead of clinical diagnosis. The proposed method could be easily 

implemented as an add-on to current clinical practice without additional imaging scans. 

The derived voxel-wise prediction may serve as a target volume for advanced dosimetric 

planning that maximally includes invisible infiltrative cancer cells in the recurrent treatment 

at an earlier time to delay cancer progression.
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Figure 1: 
Diagram of the proximity-based SVM training pipeline (i) and the timeline of postoperative 

scans and the training scheme (ii). In subplot (i): (a) Generation of proximity maps to 

stem cell zones (PS) and the original tumor (PT). (b) Calculation of high-risk region-of-

interest (HRR) based on (PS) and (PT). (c) Using non-recurrence and recurrence subregions 

within HRR for feature extraction on multi-parametric MRIs. (d) Training a nonlinear 

multi-dimensional SVMPE using the extracted voxels. (e) The expected output of voxel-

wise recurrence prediction. In subplot (ii), the SVM classifier was trained using MRI 

scans acquired immediately before clinically diagnosed recurrence (green icon, on average 

2-month apart. Named as t-1 time point, t being the recurrence time.). The trained classifier 

was then tested on the further upstream follow-up scan (orange icons, on average four 

months before recurrence. Named as t-2 time point.) as an exploratory analysis.
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Figure 2: 
3D rendering of the SCN proximity estimated HRR from step 1 for 4 example subjects. The 

HRRs (light blue) reflect patient-specific initial tumor location (red) and SCN proximity and 

effectively cover the regions with later recurrence (green), especially for patients with distal 

recurrences (S3 and S4.).
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Figure 3: 
Visualization of voxel-wise prediction results from SVMPE for two subjects from the 

testing cohort. Subject A demonstrates a good prediction (ABD = 1.47 mm), and subject 

B exemplifies a typical prediction (ABD = 8.88 mm). For both patients, the pre-recur T1ce 

scans overlaid with warped recurring ROI are shown on the top left, followed by the SVMPE 

predictions on the bottom left, and the other four sequences (T1, T2, FLAIR, and ADC) on 

the right. Colors from blue to red encodes an increased pseudo recurrent risk from 0 to 1.
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Figure 4: 
Visualization of SVMPE predictions on the 4-month (two columns on the left) and 2-month 

(two columns on the right) pre-recur time points for 4 example subjects. SVM predictions 

are shown next to the corresponding T1ce scan from the same time point for all patients. 

Warped recurrences are shown in red and overlaid on the T1ce scans. Colors from blue to 

red encodes an increased pseudo recurrent risk from 0 to 1.
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Figure 5: 
Results of exploratory comparisons between two pre-recur time points on SVMPE predictive 

cluster size, as well as 5 MR image intensities within recurrence ROIs. Statistically 

significant (p < 0.05) differences between the two time points were detected in cluster sizes, 

T1ce intensities, and ADC values.
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Table 1:

Performance evaluation metrics of SVMPE on the 2-month pre-recur dataset. For both the training and testing 

datasets, four metrics (Recall, Precision, F1 score, and ABD) are presented, along with their corresponding 

group-wise comparison p-values. No statistically significant (p < 0.05) differences were detected on the four 

metrics between the discovery and testing sets.

Training* Testing
P-values

Mean SD Mean SD

Recall 0.81 0.13 0.80 0.10 0.591

Precision 0.68 0.14 0.69 0.14 0.684

F1 0.73 0.12 0.73 0.10 0.978

ABD (mm) 8.14 6.33 7.49 6.19 0.722

*
For the training dataset, performance scores are reported after 10-fold cross-validation.
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