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Abstract
Asymptotically Conical Metrics and Expanding Ricci Solitons
by
Patrick F Wilson
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor John Lott, Chair
In this thesis we first show, at the level of formal expansions, that any compact manifold
can be the sphere at infinity of an asymptotically conical gradient expanding Ricci soliton.
We then prove the existence of a smooth blowdown limit for any Ricci-DeTurck flow on
R™, starting from possibly non-smooth data which is asymptotically conical and sufficiently

L*>-close to an expanding soliton on R™. Furthermore, this blowdown flow is an expanding
Ricci-DeTurck soliton coming out of the asymptotic cone of the initial data.
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1 Introduction

On a fixed Riemannian manifold M, a family of metrics (M, g(t))ico,r)is said to evolve by
the Ricci flow if

59(t) = —2Ric(g(t)). (1)

The Ricci flow has become an important tool in geometric analysis. When looking at the
Ricci flow on noncompact manifolds, the asymptotically conical geometries are especially
interesting. Before defining an asymptotically conical geometry, we recall that the cone over
a manifold Y is topologically given by Y x (0,00) U {x}, where x denotes the cone point.
The manifold Y is called the link. If the link is a compact Riemannian manifold (Y, gy') then
the Riemannian cone over Y, denoted C(Y), is a Riemannian manifold away from its cone
point. Let r denote the coordinate on (0, 00), where r = 0 corresponds to the cone point *.
Then the cone metric is given by goyy = dr? + r?gy.

More generally, a Riemannian manifold, (M, g), is said to be asymptotically conical if there
exists a cone manifold (C(Y'), gc(y)) such that

lim (M, p, 1) = (C(V), % gc0)

A—00 A

in the pointed Gromov-Hausdorff sense, and there is smooth Cheeger-Gromov convergence
on compact sets away from the cone point. The cone manifold C(Y') is called the asymptotic
cone of (M, g). This rescaling limit is closely related to another limit, called the parabolic
blowdown, often studied in Ricci flow on noncompact manifolds.

The parabolic blowdown can be defined as follows. Suppose that the Ricci flow (M, g(t))
on a noncompact manifold M exists for all positive time, ¢ > 0, i.e. is an immortal Ricci
flow. Let {\;} be a sequence of real numbers such that A\; — 0o as i — 0o. Define a sequence
of flows by g;(t) := A\, 'g(\it). Finally, let {p;} be a sequence of points on M. Then the
behavior of the flow at large times and near spatial infinity can be studied by taking the
pointed Hamilton-Cheeger-Gromov limit

lim (M, gi(t), pi) = (X, 9o (1), Do) (2)
called the parabolic blowdown of (M, ¢(t)). This limit flow, g (t), is called the blowdown
limit of (M, g(t)). This limit may depend on the choice of sequences {\;} and {p;}.

The blowdown limit is not guaranteed to exist. However, if (M, g(¢)) is an immortal Ricci
flow on a noncompact manifold, and the initial metric is asymptotically conical, then Lott
and Zhang proved there is a subsequential blowdown limit flow g..(¢) that is defined at least
on the subset of C(Y') x [0, 00) given by {(r,6,t) € (0,00) X Y x [0,00) : t < er?}, for some
¢ ([LZ]). Furthermore, if the initial metric is asymptotically conical then each time slice of
the Ricci flow is asymptotically conical with the same asymptotic cone ([LZ]).

Since the original flow is asymptotic to the same cone C(Y) for all time, the simplest
scenario is that g (t) is a gradient expanding Ricci soliton coming out of C(Y). Recall that
an expanding Ricci soliton is a self-similar solution to the Ricci flow that can be written
g(t) = toy(go) where gg is the initial metric and ¢, is a family of diffeomorphisms generated
by V/t. Here V is a time-independent vector field.



When this vector field can be expressed as the gradient of a function, Vf = V' the
flow is called a gradient expanding soliton. The function f is called the potential function.
Alternatively stated, a gradient expanding Ricci soliton is specified by a triple (M, go, f)
such that

2Ric(go) + 2 Hessy, f + go = 0. (3)

There are many examples of gradient expanding solitons. Schulze and Simon showed that
the Ricci flow starting from a Riemannian manifold (M, gy) with a nonnegative, bounded
curvature operator, and positive asymptotic volume ratio, exists for all positive time. Fur-
ther, there exists a subsequential blowdown limit, and this blowdown limit flow is a gradient
expanding Ricci soliton coming out of the asymptotic cone of the initial metric (M, go) ([SS]).
This leads to the question of which cones admit an expanding Ricci soliton structure,
i.e. which Riemannian manifolds are admissible links. Deruelle showed in [Der| that if
the link (Y] gy) is a smooth, simply-connected, compact Riemannian manifold with strictly
positive curvature operator, then there is a unique expanding Ricci soliton asymptotic to
(C(Y),dr? + r?gy,r0,/2). Both of these results rely heavily on the nonnegative curvature
assumption. However, recall that the Ricci curvature of a Riemannian cone is given by

Ric(gowr)) = Ric(gy) — (n — 1)gy

where the link is (Y, gy ). Hence, any link with negative Ricci curvature would heuristically
seem to correspond to an expanding solution of the Ricci flow. Unfortunately, negative
curvature assumptions are not in general preserved by the Ricci flow. This thesis will be
dedicated to trying to prove results about expanding Ricci solitons and asymptotically conical
manifolds without any assumption on the curvature.

The first main result of this thesis can now be stated.

Theorem 1. Given a compact Riemannian manifold (Y, gy), there is a formal solution to
equation[3 on (0,00) X Y of the form

= dT‘z+T29Y+h0+7’72h2+"'+T72ih21+"' (4)
1 .
I Ty 5)

where hy; is a symmetric 2-tensor field on 'Y and fop € C°(Y). The solution is unique up
to adding a constant to fo. [

In other words, on the level of formal asymptotic expansions, any compact manifold,
(Y, gy), can be the link of the asymptotic cone of an asymptotically conical, gradient ex-
panding Ricci soliton, i.e. the sphere at infinity. In particular, no assumptions are made
about the dimension of Y or about the curvature of gy. This result was shown in the Kahler
case by Lott and Zhang [LZ]. The same argument used to prove Theorem [l| also shows the
existence of a shrinking soliton structure on the level of formal asymptotic expansions. This
result will be discussed in section [2.

!The proof of this theorem was published by the author and Professor John Lott in PROCEEDINGS
OF THE AMERICAN MATHEMATICAL SOCIETY Volume 145, Number 8, August 2017, Pages 35253529
http://dx.doi.org/10.1090/proc/13611 Article electronically published on April 28, 2017



To state the second main result of this paper, recall that the Ricci-DeTurck flow is a
parabolic flow closely related to the Ricci flow. The parabolic structure of this equation will
be used in place of any curvature assumptions to guarantee uniqueness and existence or the
flow. In particular, because Riemannian cones are often not C? at the cone point, the Ricci
flow coming out of a cone manifold is not a prior: defined.

On a fixed Riemannian manifold M, a family of metrics (M, g(t)):cjo,r) is said to evolve
by the Ricci-DeTurck flow if

Oig(t) = —2Ric(t) + V;V; + V,;Vi;  on M x (0,T) (6)

where V' is a 1-form given by V; = g; (gfé-k — 9F§.k) ¢’% for some background metric, §. Let
(R™,6) denote Euclidean space. On R”, we take § = ¢ and then V; = gy g7*.

Recent work by Koch and Lamm established the existence of Ricci-DeTurck flows on R”
coming out of rough initial data that is only in L*(R™) when the initial data is €,-close to
the Euclidean metric in L>*°(R™) ([KL]). Here ¢, is a fixed constant depending only on the
dimension. Moveover, these flows exist for all positive time and are unique in a weak Sobolev
space.

This result was extended by Deruelle and Lamm in [DL] to the case when an expanding
gradient Ricci soliton with positive curvature operator is used as the background metric,
rather than the Euclidean metric. That is, if a metric go € L>(R") is e-close to an expanding
gradient Ricci soliton with positive curvature operator, then there exists an immortal Ricci-
DeTurck flow coming out of gy and the flow is unique in a small ball in a Sobolev space. Note
that this € is not the same as in Koch and Lamm’s result and may depend on the particular
soliton used.

Several of the notions from above such as an expanding soliton, a blowdown limit, and
an asymptotic cone can be defined for the Ricci-DeTurck flow as well. Define an expanding
Ricci-DeTurck soliton to be a Ricci-DeTurck flow, g(¢), that satisfies

g(hz, \*t) = g(x,t)

for all positive times, ¢t > 0. Note that a Ricci-DeTurck soliton will correspond to a Ricci
soliton when correctly translated back into the Ricci flow setting.

The blowdown limit of an immortal flow can also be translated into the Ricci-DeTurck
flow setting. Suppose that a Ricci-DeTurck flow g(t) on R™ exists for all positive time. Then
for A € [1,00), define the rescaled metric,

ga(@, 1) = g(Az, A"t) (7)

The blow-down limit of the Ricci flow, ¢(¢), is the pointed Hamilton-Cheeger-Gromov limit
limy_,o gx. In general, this limit may not exist. However, the Ricci-DeTurck flows studied
in this thesis will satisfy the following bounds. For every k € Ny and for every multi-index
a € Nj, there exists a constant ¢, depending only on £ and the magnitude of the multi-index,
||, such that

OV g(x,1)] < ctF 5

These bounds are invariant under the parabolic rescaling defined by equation (7). This is
enough to imply subsequential convergence (possibly to the zero metric). Unfortunately,
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without further assumptions, this convergence likely depends on the subsequence taken and
on the choice of base point. The convergence shown in this thesis will be much stronger and
the limit will be shown to be nonzero.

Define a rough cone metric on R™ to be a cone over (S"!, g,_;) where g,_; € L>(S"™1).
Furthermore, in this thesis a metric go € L>°(R™) is said to be asymptotic to a rough cone
(C(S™1), gosn—1)) if there exists a non-increasing function 7 : [0,00) — [0,00) such that
n(r) — 0 as r — oo and

|gc(sn—1) = gol| e @m\Bor)) < 1(T).

Then (C(S™1), go(sn-1) is called the rough asymptotic cone of go. Notice that this definition
only requires the cone metric to be in L>*(R™) or, more precisely, for gcsn-1y to be in
L (Sm1).

Remark. Note that this definition of a rough asymptotic cone differs from the standard
definition of an asymptotic cone given above. The more technical definition used in this
thesis will be more useful for the problem at hand, but can be reconciled with the standard
definition when the limit manifold is replaced by a conic metric space. Then the limit is
taken only with respect to the pointed Gromov-Hausdorff metric.

The second main result of this thesis can now be stated.

Theorem 2. Let €, be as in Koch and Lamm’s result (Theorem 4.3 of [KL], stated precisely
in the next section). Let gy € L®(R™) be a metric on R™ asymptotic to a rough cone,
(C(S™1), gosn-1)), and satisfying

||90 - 5||L00(Rn) S €n.

Koch and Lamm showed the existence of immortal Ricci-DeTurck flows g(t) and gsei(t), with
initial conditions g(0) = go and gsi(0) = gesn-1y, respectively.

Then the blowdown limit of (R, g(t),0) is (R", gsa(t),0) with convergence in C;2(R™ X
(0,00)). Furthermore, gso is an expanding Ricci-DeTurck soliton.

In other words, in the setting of Ricci-DeTurck flows on R"™, there exists an infinite class of
metrics that are L°°-close to the Euclidean metric and have smooth continues convergence
to their blowdown limits, and the blowdown limit is an expanding Ricci-DeTurck solitons.
In particular, this class includes some metrics with some negative sectional curvatures. This
result comes from reinterpreting stability results about the Ricci-DeTurck flow proved by
Kock and Lamm [KL] (and Deruelle and Lamm [DL]).

2 Formal Asymptotic Expansions

Section [2 will be organized as follows. In Section the proof of Theorem [1f will be reduced
to solving three partial differential equations (PDEs) simultaneously. Two of these PDE’s
will be used to define the expansions for the metric g and the potential function f, while the
third equation will function as a constraint equation. The major difficulty of the proof of
Theorem [I| will be to show that this constraint equation is satisfied whenever the other two
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are. In section 2.2 two of PDEs will be used to find the first few terms in the expansion for
the metric and the potential function. In section [2.3] it will be shown explicitly that these
first few terms of the expansions do satisfy the constraint equation. In section [2.4]the general
argument to prove Theorem [I] will be given. In section [2.5] the calculations in section
will be compared to the expanding Bryant soliton equations [B].

2.1 Equations
First, let’s fix notation. Define the following 2-tensors as
H(r)=r%gy + ho+ 71 2hg+ -+ 17 % hy + - - - (8)
and
Hy(r) = ho+ 1 2hg + -+ 1 % hg + -+ - (9)

Then the expansion for the metric is Theorem [1| can be written g = dr? + H(r) and g =
dr® + r’gy + H,(r). By orthogonality, g™ = (dr?)~' + H~'. Let H,," := H,7 gy ;5. H,” and
similarly for H,oo, Hoooo, €tc. Similarly, define hég = ho¥ gyjkthl and similarly for hos, hoo,
etc. Then, the formal inverse of H is

Hz‘l — 7"_29” _ 7,—4[_[21 + T_6Hgf) _ T—SHil + ,r,—lOHz'l .

= % —rthi 40 (_hzzl + hélo) +r® (_hil + hily + hiy — hgoo)
+r 710 (=h{ + hiy + hily + hiy — hily, — iy — Moo + hilge) + - -

In local coordinate calculations in this thesis, commas (,) will denote partial derivatives
and bars (|) denote covariant derivatives. Define, for any 2-tensor T;;

Tijw = Tirj + Tiri — Tij
and
Tlsjiy = Tinij + Limji — Ligie-

Throughout section[2] all covariant derivatives are with respect to the Levi-Civita connection
of gy unless otherwise stated or denoted.

Using this notation, the Christoffel symbols of H can related to the Christoffel symbols of
gy through the following equation.

20T 5" = 2T " + H" Hopjayy (10)

Now, we can write equation [3|in terms of H and its formal inverse. Let x4, -- , x, be local
coordinates for Y. Then the expander equation splits into three cases.

2Ricg,r +2Hess, frp +1 = 0 (11)
2Ricgy +2Hess, fu = 0 (12)
2 Ric ik + 2 Hessg f]’k + H]’k =0 (13)



Then these three equations can be written in terms of H and dr?. First, equation simplifies
to

— HHype — GH oy 4+ 2f 0 +1=0 (14)
Second, equation [12] simplifies to
H™ ("N Hupr — "N Himy) +2f 0 — H Hy o f i + 0 =10 (15)
where the covariant derivative with respect to the metric H is denoted, V. Third, equation
simplifies to
YRic(H) i~ Hytrr — 5 H' Ha Hyy + H'Hy
2Hessy fix + H" Hojryfi + Hjpr f.r + Hjp =0 (16)

Further, the Ricci tensor of H can be written using equation [10] as
2 Ric(H);x = 2Ric(gy)u + H" [Hojuwi + Howji — Hojrjit — Hoji)
1 1, nm
+ S HH" (Hofjtin Hofitpm = Hofitim Hofjm)) - (17)

and the mixed term of the Ricci tensor of g can also be made more explicit
QRIC(g)rl =H (Hml,r|i - Him,r|l) - §H Ho[im|y}H nyl,T - §H ,rHoim\l (18)

Equation is used to define f in terms of H. Then equation is used to define the
metric H in terms of the original metric, gy. The mixed term equation [15]is a constraint
equation. It must be shown that these definitions for f and H satisfy this third constraint
equation. First, let’s look at the first few terms of these expansions.

Solving for f in terms of H using equation (14| gives the leading term, —%17’2. Equation
does not say anything about fy,. The lower order terms are given by

1

f2 = étl"yho (19)
1

fi = 1 (3try ho — (ho, ho)) (20)
5 11 1

fo = ﬁtry hy — E<h0’ ha) + 11 try hooo (21)
7 11 5 1 1

f8 = E trY h/6 - %<h0a h4> - %<h27 h2> + Z trY h002 + 1_8 trY hOOOO <22)

The leading term of f has the general form of

f  2m+1
22T 9(2m + 3)

Then, using equation H can be written in terms of the link metric, gy, as follows
ho = —2(Ric(gy)jx — (n — 1)gy;r) = —2Ric(dr* + rgy) (24)
1 4
hy = —ApRj+ 3 Hessy Rj, — 4Rj; + 3 [R—(n—1)(n—3)]gvu (25)

tl”y hgm + - (23)
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1 2 2 2
h4jk = —gA%R]k + 1—5 HeSSy(AR)jk - g(n + 9)ALRJk - E(lgn - 55) HGSSY Rjk

16 28 38
—Rj R.* + _ny|ijy|k + _nyny\jk

8
S (5n — 13) Ry —
+3(On = 13) R — 3 15 15

4 8 . 8 8
+ [gAR + 5] Ric|? — B(Qn —25)R + 1—5(n —1)(2n —5)(3n — 11)} 9y jk

1

: (RiekRs* + RiagBi = 2R Ry — 2R Ruggs + 3R Ry

—2R y<ij|yk + Rkw\yj) = 1" Bipaty) — 3867\ Rijaly

4
+§Rzy (ijzy — Rjo Ryt — RiaR" 3y + 2Ryszjkz>

Then using these equations, f can also be written in terms of gy as follows.

1

fo = —g[R_(”_Dn}
1

fr o= 5[—AR—2\Ric|2+2(3n—5)R—4n(n—1)(n—2)]
1 4 2

fo = o —A2R+§(2n—17)AR—%(19n2—73n—l—72)R

L6V Ric[? + 16(2n — 5)| Ric [ ~ 2| VR + -

16

3

40 .
(Ric, A Ric) — EleyRiylw — 2(Ric, Hessy R)
8
—8R™ R R",," + 4—5n(n — 1)(118n% — 421n + 375)

In the next section, these calculations will be explained in more detail.

2.2 Calculations
2.2.1 dr ® dr-terms define f

In this section, we will show in detail how to derive the equations stated in the previous
section. First, look at how to derive equation |14{from equation The Ricci term, Ric(g),,



can be simplified as follows

2R,, = 2 (Frri,i — Firi,r + i — T ™)
= - [HilHu,r} s %Hil,rHil,r
= —H'Hy, — 1H" Hy,
The Hessian of f simplifies to

2 Hessg frr = Qf,rr - QFrrif,i = 2f,rr

because I, = 0.
Therefore, 2f,, = =1 + H"Hy,, + H" Hy,. Now expand each of these terms out and

equate the coefficients of the same powers of r. The Hessian of f expands to

2Hess, frr = > 2(2m)(2m + 1)r "2 fo,

m>1

The two terms of the Ricci tensor expand out to be

HilHil’M = 2 (Qn) + T_4< — 2try ho) + T’_6<4 try ho + 2<h0, ho))
-+ 7'_8<18 try hy — 2<h0, h2> — 2try hooo)
+ r—10 (40 try hg — 16<h0, h4> — 4<h2, hg) + 2try h0000> + O(?"_12)

and

TH' Hy, = r‘2< — 2n> +r~4(4try ho) + 176 (8 try ho — 6{hy, h0>>
—+ r—8 (12 try hy — 20<h0, h2> + 8try hooo)
+ r—10 <16t1"y h6 — 28<h0, h4> — 16<h2, h2>

+ 36 try hgga — 10 try hoooo) +O(r"?)



Hence, the Ricci tensor expands to

—2R,, = H'Hy,, +i1H" Hy,
= 4 2try ho) +77° (12 try hy — 4(ho, h0>)
+ r8 <30 try hy — 22(hg, ho) + 6 try hooo)
+ r*10<56 try he — 44(ho, ha) — 20(ha, h)

+ 36 try hgge — 8try hoooo) +O(r12)

Therefore, the leading order term for f in equation |5 comes from integrating the —1, while
the lower order terms come from the dr A dr coefficients of the Ricci tensor. This gives
equations [19H22] Notice that f; is not defined by these equations.

2.2.2 di’ @ dr*-terms define H,

Look at the da/ @ dz* coefficients in equation [3| to define H,, i.e. equation . First, derive
equation [16| from equation [13] The Hessian of f can be expressed as follows.

Hess, fi = [fjn— gijif,i
= fau—"Tu'fi+ %ij,rf,r
= Hessy fir + %ij,rf,r
To write the Hessian of H in terms of the link metric, look at the Christoffel symbol of H.
21T = H"Hpypy
= (r2gy" —r ™ HI + 7 SHL — ) (Pgyyng + Holjka)

= 2T +r2(g¥ Hopng — Ho' gvijnn) '
—r N H Hoji) — Hoo gy i) + -+ -

= QYiji + T_Q(gg/l'Ho[jk,l] - 2H0imrjkx> ' '
_T_4(HoZlHo[jk;,l] - 2Hoolmrjkx) + -

= 2Ty’ + r 29y Hopay — = Ho™ Hofjryy + -+
= 2YTy' + H' Hopup

This shows equation [10]



Hence,

Hessy fir = fa—"Ti'fa
_ YF i 1HZZH
= fjr— jk T 5 oljkly | fii

1
= Hessy fjr — EHZlHo[jk\l]f,i

These two equations give that the Hessian of f can be expanded to
2 Hessg fjk = 2 Hessy fjk; — HilHo[jku]fJ + ijmf,r (26)
as seen in equation [16| The Hessian of f can be written more explicitly as

2Hessy fix = 1 2(2Hessy foji) +r~*(2 Hessy faj, — gg/l'ho[jk:\l}fli)
+r 6 (2 Hessy fojrx — g%ﬁhoyku]fz;,i - [g¥h2[jk|l] - hélhO[jkll}] f2,i)
+r~8 <2 Hessy fsjix — gi-hopjrn fo.i — [g¢h2[jk|l] — hglho[jk|l}] Ja,

— [t haginn — Pitharim — Wi hoswn + Fighoen) fz..)

+O0(r=19)

Here, we have assumed that f; is a constant function on Y, so it’s derivatives are all zero.
In fact, this is a necessary condition in order for the expansions of f and H to satisfy the
constraint equation. This assumption will be justified in section bellow.

Finally, expand out Hjj, f, in terms or equation [ and

o0 1 P
ij‘ﬂ’f,’r’ = <2Tgyjk — Z(2m)7"_2m_1h2mjk> . (-57” _ Z(Zm)T_Qm_1f2m>

m=1 m=1
= r(—gvi) + P (thmjk - (4m)f2ngjk)
m=1
+y < > (QM)(QV)fmhwk)
m=2 p+rv=m

= *(=gvj) + 17 (haji — 4fagy i) + 17 (2hagi — 8fagy i)
+ T_6(3h6jk -+ 4f2h2jk — 12f69ij)

+ 17 (4hgji, + 8 fohaji + 8 fshajr — 16 fsgy ji) + O(r~'9)

10



Combining these two equations gives the first few terms in the expansion of 2 Hess, fjx.
Next, calculate the expansion of Ric(g);x. From the definition in terms of Christoffel
symbols,

2Ric(9)j = 2(Tp's =T’y + T Tim" — DT’
= 2(Ric(H)jk + T » + T Ty = DT = Ty Tt

1 1. 1.
= 2 (RIC(H)jk - éij,rr - ZHZlHil,rij:,r + §Hleij,7“Hkl,r>

Thus, the Ricci tensor can be expanded into

) . 1. . )
2 Ric(g)x = 2 Ric(H)jx — Hjrr — §H”HH7TH]-,€7T + H"Hyj, Hyr (27)

Combining equation [26{and equation [27] gives equation The Ricci tensor of H will involve
covariant derivatives, while the other terms can be expanded directly. Look at each of these
lower order terms first.

— ke = _29ij — 6T74h2jk — 20T76h4jk — 427’78h6jk + O(Tﬁlo)
Second,

—SH'"Hy Hie, = (—=2ngy ) + 1 2(2try ho)gy ji
4o <2nh2jk + [Atry hs — 2(ho, ho)] gyjk>
st (4nh4jk — (2try ho)haji
4 [6try hy — 6{ho, ho) + 2try hooo]gyjk)
. <6nh6jk — (4try ho)hagy, — [Atry ha — 2(ho, ho) haji
4 [8try h — 8lho, ha) — 4{ha, ho)

+8try hoga — 2try hoooo]Qij) +O(r17)
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Third,

HilHij;erl,r = gyt 7”72(_4h0jk) + 7”74< — 12hg;, + 4h00jk)
+ 7’_6( — 20h4jk + 8h20jk + 8h02jk - 4h000jk>
+ r—8< — 28hgji + 12hagjk + 12hoajr + 16ha2j

— 8haoojr — 8hoozjr — 4ho2ojk + 4h000jk> + O(r=19)
Thus, the lower order terms expanding out to be

1 il il
_ij,rr - §H1 Hil,rij,r + H* Hij,er:l,’r

— —2<n — 1)ngk —+ 7“—2([2 try ho} gy jk — 4h0jk)

+ (2(n — 9)hajk + dhook + [4 try ho — 2(ho, h0>]ngk)

+r6 <4(n —10)hajx — [2try ho| haji + 8hozjk + 8haojk — 4hooojk
+ [6 try hy — 6(hg, ho) + 2try hooo] 9ij>

+ r—8 <(6n — 7O)h6]k - [4 try hO] h4jk + [2<h07 h0> —4dtry h2:| thk

+ 12h04jk + 12h40jk + 16h22jk

— 8hoozjr — 8haoojx — 4ho205k + 4hoooo ik
+ [8try hg — 8(hg, ha) — 4(ho, ho) + 8try hooz — 2try hoooo] Qij)

+O(r=19)

Then calculate Ric(H); using 2H iji = 2Yiji +H ilHo[ij] where all covariant derivatives

12



("|”) are with respect to the gy metric.
2Ric(H)je = 2("Tu'; — 7Ty’ + AT Ty,  — A0y HT,,;0)
= 2Ric(gy);k
+ HY(Hy ki — Hopirn) + H iHopikg — H* jHopkpy
+ YT H Hofignpy) + ¥ Tin H™ Hojijn)
— Y™ H Hypmiip — ¥ Ton H™ Ho ik
+ g HH™™ (Ho[jujn) Hofirml) — Hofikln] Hopmil))
Notice that by definition of the covariant derivative
Hopjrgy (H™ i + " Ti H™) = Hopjpg (H™ i — T H'™)
Then using that H*;H,. = —H" Hy;
H™y = (HUH™ Hy)jp = —HUH™ Hypy,

Hence,

Hopnn <§HIH Hojimp + H 7,) = —§H "H™™ H o et Hofitm)

Therefore,

2Ric(H)e = 2Ric(gy)jn + H" [Hoprpi — Horpy)s]
+ GHH"™ (Hofjitn Hofitjm) — Hofitin Hofjtjm))
= 2Ric(gy)jrx + H" [Hojiki + Horji — Hojrpit — Houjjn]
+ GHH"™ (Hofjitn Hofitym) — Hofittn Hofjtim))
= 2Ric(gy)jr + r2gv" [hojuri + howiji — hojua — hoijk]
+ <9Yil [h2j1|ki + hawji — hojra — hzil\jk]
+ ho [hOlem' + hokiji — hojkla — houuk]
+ v oy ™ (Rogikatoim) — hofikai o))

+ O(r=%)
This shows equation [I7]

13



2.2.3 Calculating hg and hs

Now that we have calculated the first few terms in the expansion of
2 Ric(g);x + 2 Hessy fjx + Hj, = 0,

the terms can be plugged in and we can solve for the first few terms in the expansion of H
in terms of the metric gy.
First, look at the coefficients for 72. Only two terms are nonzero

gy ik + 129y jk = 0

Hence, f = —}17“2 + O(rY) is the correct leading term for the potential function, f.

Second, look at the coefficients for 7°. If ¢ is a power series in r, then introduce the
notation that (¢)(=2™ denotes the coefficient of =™ in the expansion of ¢. Then, using the
expansions of Hessy f and Hj, f, from above gives

(Hess, f1)® = (2Hessy fj + HilHo[ij]f,i)(O) + (Hjpp f.)©

= 0+0=0

Using the expansion equations for Ric(g);, above gives

1 . .
(Ric(9);x) @ = (2Ric(H)j)? + (—Hjppr — §H21Hil,'rij,r + H'"Hyj, Hyy )

= 2Ric(gy)jr — 2(n — 1)gvjx
Hence, the coefficients for r° give the equation
2RiC(gy)jk - 2(n - 1)ngk + ho = 0.

Therefore,
ho = —2 (Ric(gy )jx — (n — 1)gyjx) = =2 Ric(dr® + r’gy) i
Notice that this is the time derivative of running the Ricci flow on the cone metric dr?+12gy .
This shows equation [24]
Finally, look at the coefficients for r—2. Now, the equation for hg in terms of gy can used
as well.
First, look at 2 Ric(H ),p.

(2 RiC(H)jk) - 9y [hojuni + horigi — hojri — hoaji]
= —Aphoji + gv" [hojyie + howji; — hoijk]
= 2ALRjk — 29v" [Rjyik + Riajij — Rayjn]
= 2ALRj, — 2[Ryt + Rui'; — Ryji]
— 2ALR

14



where A denotes the Lichnerowicz Laplacian. Here the second line follows by commuting
the covariant derivatives of the first two terms in the brackets on the first line. This equality
is true for any 2-tensor and will be used in the next section. The last line follows from the

contracted Bianchi identity '

Notice that this means the expansion of the Ricci tensor is Ric(H) = Ric(gy )+ AL Rjx+- - -
where Ap Rj; the time derivative of Ric(gy ) under the Ricci flow.

. . 2)
Second, ( - ij,rr - %HZZHil,rij,r + HllHij,erl,r>

= [2try holgyjn — 4hojn
= —4[R— (n—)n]gyr +8(Rj — (n — 1)gy )

Next, plug in the equation for hy into the equation for f,. This gives

fQIétryh():—%[R—(n—l)n]

Third, look at the Hessian terms.

(2) . (2
(2 Hessy fjk) = <2 Hessy fjr + HZlHo[jkﬂ]f,i)

= 2Hessy foji

2
= -3 Hessy R

and
2)
(ij,rf,r> = hojr — 4f29vjk
4
hgjk + g [R — (TL — 1)'”} 9y jk
Plugging these four equations in:
QALRjk + SRjk - 4[R — (n - 1)(n — 2)} 9y jk

2 4
— § Hessy Rjk + h2jk + § [R — (Tl — 1)”} gy jk + h2jk =0

Therefore, we have shown equation
1 4
hgjk = —ALRjk + § HeSSy Rjk — 4R]k + § [R - (TL — 1)(n — 3)}gy]’k

Hence,
2 4 4
try hy = —EAR + g(n —3)R — gn(n —1)(n—3)

15



2.2.4 Calculate hy

Now, the equations start to become more complicated. The equation for hy; will involve 27
covariant derivatives of Ric(gy) with respect to gy and has nonhomogenous terms of order
i+1. Never the less, all the terms are very straight forward to calculate.

As an example, we will calculate hy. First, look at the Ricci tensor for H. Recall that

' @
(2 R1C(H)jk:> = gv" [hajyri + hatayji — hajuii — hoijn]
+ 1o [hojiks + ok — hogrin — hoayx]

]' ) nm
+ 29v "9y ™™ (Ro(jinyhoitim) — hofikin)hofim])

(28)

Then look at each of the lines separately. Use the metric property of gy,

1 ) nm
297 "9y ™™ (Ro(jkinyhofitim) — hofikin)hofim])

= 29y" 9" (Rihin) Riitim) — ki) Rijtim))

Then use the contractioned Bianchi identity, 2R,,Y = R),, to show,
gYilR[iHm] = g (Rmiu + Ry — Ril\m>

1 1
= R+ R —Rum=0
5 tm T 5 |

Hence, the last line of the equation [28| simplifies to

1 . .
§9Y”9Y"m (Roljkfn hofim) — hogkin hogjim)) = =29y 9y™™ Rk Rijijm)

Next, look at the second line of equation |28 and use the metric property again,

ho'" [hojuks + howsi = hojeiin = houisu]
=4(R" = (n = gy") [Rjmi + Rrgji — Rynjat — Rujjn]

= AR" [Rjyi + Ruyi — Rjka — Rujje] +4(n — 1) AL Ry,
Now look at the first line of equation

gv" [hajuki + harayji — hojuin — haaji]

16



and plug in
1 4
hojr = —ALRj; + 3 Hessy Rj, — 4R, + 3 [R—(n—1)(n—3)|gv.

Plug in §[R — (n — 1)(n — 3)] gy i gives

4 .
ggyd [Riigy st + Rijigy e — Rjugy ji — Rijkgya]

4 4
= —g(n — 2) Hessy Rji, — 3 (AR) gy jk

Next plugging in —4 R, gives —4(—ALR;;) = 4ALR;,. Then plug in %HessY Rjj, gives,

1 )
ggyll [Ruzm‘ + Ryji — Rk — R|iljk] .

Notice that by commuting the derivatives these terms will cancel out and leave only lower
order commutation terms. Calculate these commutation terms in two steps. First, turn
Ry’ into Rjj,;" by exchanging the inner two covariant derivatives.

R|jiki = R|jkii+[R|xRiij]li

= Ry’ + Ry R 1" — Ry, <Rl'kmlj + Rikijlx>
= Ry’ + Ry R — Rl Ri™|j + Rpp Ry
Second, turn Ry’ into Rj;'y;.
R|ikji = R|ikij + |:R|mkRjiix + Rjiy jikw]
= R+ [R|kaiﬁ] o Ria B R R

Ri'yj — Ry R* " + R Ri")j + R R™ + R R

Therefore,

1

3 <R\kaaj + R‘jaak — ALRUk — HeSSy(AR)jk)

1
=2 (RiekRy* + RigBi” + R Rypge ). (29)
Finally, plug in —ApRj; to get

A7 Rjj, + Hessy (AR) 5, — gy {(ALle)ik + (ALRkl)|ij:|

17



Notice, by commuting the derivatives of the last three terms and using the contracted Bianchi
Identity, 2R,V = R),, the only fourth order term is, A7 Rj;,. To calculate the commutation
terms, recall that the Lichnerowicz Laplacian of a 2—tensor, T}, is defined as

ATy = ATy — R Ty — T Ry + 2T, R Y.
Then look at the relationship of VA Ty and AViTy.
lej-ZLl = T'il\aia + Txl|aRaiix + 71im|a ail:r: + T‘il|anfiaiagC
= ﬂl\aia + ﬂx\aRailx
= Tuia® + TiaaF0" + TR + TR

= AvlT‘zl - Tmy\inily + [szTxl:| ‘Z - |:T1‘nyily:| |l

Hence,
VAL Ty = AV'Ty — Ty 'R*Y + [Riszz} ‘i - [Txszily] |i
- [Rf a:l:| |i — [Tixsz] Ii + Q[Txnyily} ‘i
:AW%—@%ﬁﬁJM%“
— AVT, — [TfRzl} |i — Ty [inyiu - inil\y}
= AV'Ty — TRy — T Rppy
Therefore,

V'ALTy = AV Ty — T iRy — T Ry (30)

Recall also that for any smooth function, ¢
AV;p = VA + ¢" Ry (31)
Now plug, T' = Ric(gy ), into equation
V'ALR;; = AV'R;; — R™;R,; — R Ryyy);

1 . 1
= §AVJR — §R|xij — nyR[zy\j}

xylj]

1_.
= SVAR-RVR

18



Therefore,

Hessy (AR)j; — (ALRij)|ik - (ALRH@)KJ' = [RzyR[xy\j]] + [nyR[wylk]]l (32)

|k J

Combining these equations and simplifying gives
. (4) , 4 4
(2Ric(H);) = AFRj+4nALRy — < (n —2) Hessy Ry — 5 (AR)gvie
1
5 (BurBy” + RugFa™ + R Ripga ) = 4R Ry
+6R™ (ijwk + Ryapy; — Rzyuk> + 2R Riapy) + 287" Ryjayy)

—4R™ <Rjk\xy - RjaRamyk - RkaRaxyj + 2Ryszjkz>

Second, look at the lower order terms of the Ricci curvature of H.
- ~ 4
(= Hjpr — SH g Hjpp + H iy Hyg o = —2(n — gy )"

= 2(n — 9)hoji + 4hooji + [4try ho — 2(ho, ho)] gy jk
2
= —Q(TL — Q)ALR]k + g(n — 9) HGSSY Rjk — 8(5n - 13)RJ]€ + 16ijka

8
+ [—gAR—8|Ric|§/+8(3n—7)R—8(n—1)(2n2—9n+11) 9y jk

Next, update f; using the equation for hgy and hy,

fy = %[3tryh2—<h0,h0>
_ %[—2AR+4(n—3)R—4n(n—1)(n—3)
—4|Ric|* +8(n — 1)R — 4n(n — 1)2}
_ 1—10[—2AR—4]Ric|2—|—4(3n—5)R—8n(n—1)(n—2)]
_ é[—AR—2|Ric\2+2(3n—5)R—4n(n—1)(n—2)}

Third, look at the Hessian of f.

A 4)
Hessy fjr = <2 Hessy fjr — HZlHo[jkﬂ]f,i)

= 2Hessy faji — gghO[jkll]fQﬂ'

2

2
- gHeSSY[—(AR)—2|Ric|2+2(3n—5)R -
J

5 1" Rjkia)
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Then lower order term simplifies to

(4)
(ij,rf,r> = 2hyjr — 8f19y ik
8
2hiji — = [ — AR —2|Ric|* + 2(3n — 5)R — 4n(n — 1)(n — 2)| gy ;x
Hence,

@) 2
(2Hessy fi1) = 2hui S B R
2 4 o 4
5 Hessy (AR)j; — = Hessy | Ric |5 + 5(371 — 5) Hessy Rjy,
8
— [ — AR —2|Ric|?> + 2(3n — 5)R — 4n(n — 1)(n — 2)| gy s

Then combining these equations and simplifying gives

1 2 2 2
hajk = _gA%Rjk + R Hessy (AR) i, — g(n +9)ALRj, — E(lSn — 55) Hessy Ry,
8 16 28 38
+§(57’L — 13)R] - gijka + BRLEylijwk + 1—5nyny“[€

4 8 .. 8 8
+ [gAR + 5] Ric|? — E(Qn —25)R + 1—5(n —1)(2n —5)(3n — 11)} 9y jk

1

S (BunBy” + RugBa® = 2R Ru — 2R Rogs + 3B Ry, )

—2R y<ij|yk + ka\yj> = 51" Bipaty) — 3857\ Rijaly

4
+§Rzy (ijzy — RjoR" sy — RiaR" 3y + 2Ryszjkz>

and
1., 4 8,
2 28 16
+ g(Ric, Ay Ric) + E(Ric, ARic) + E'V Ric |?

8 . 8 8
— gR”‘yRiW — §(Ric, Hessy R) + E(3n — 10)| Ric |?

1
- §|VR|2 + %n(n —1)(2n —5)(3n — 11)

Now we can write fg in terms of the link metric, gy. Recall that

11
fe 5try hy — §<h0, ha) + try hooo

T4
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First, calculate (hg, hs).

(ho, he) = —2[<Ric, ha) — (n— 1) try h2}
= =2 <Ric, —Ay Ric —I—% Hessy R — 4 Ric +§ R—(n—1)(n— 3)] gy>
2 -1 - §A1a+ %m )R- %n(n ~1)(n—3)]

2
= 2(Ric, AL Ric) — §<Ric, Hessy R) + 8| Ric |* — ng

- %l(n AR+ 1—36(n D —3)R— gn(n 12 —3)

Second, tI‘y ho()()
try hooo = —S(RzyRysz —3(n —1)|Ric|? + 3(n — 1)2R — n(n — 1)3)

Combining these equations gives. Then combine like terms.

1 4 32
fo = 77|~ AR+ §(2n —17)AR — 3(19n"’ —73n+T72)R
+16|V Ric | 4+ 16(2n — 5)| Ric|” — §]VR| + gR

1 40 .
+?6(Ric, ARic) — EOleyRiylz — 2(Ric, Hessy R)

8
—8R™ R, R"," + 4—5n(n — 1)(118n? — 421n + 375)

2.2.5 Highest Order Terms for General ho,,

From the calculations for hy, it can be seen that as m increases, hs,, becomes increasingly
complicated. However, it is fairly straightforward to calculate the leading order term of hsy,,
including its coefficient. First look at the coefficients of dr A dr in equation |3| to study the
leading term of fo,,.

) 1 ..
2f,7"7“ =—1+ HllHil,rr + §Hll,rHil,r
On the left hand side,

2f e +1 =2 (2m)(2m + 1)r > fo,

m=1

In this section, an ellipsis, (4 - - - ), will denote the omission of terms involving lower order
derivatives of Ric(gy). These lower order terms may vary from line to line.
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On the right hand side, the first term gives

HilHil,rr = Hil (TZQY + Z T2mh2m>
il,rr

m=0

= gt <ng + Z(Qm)(Qm + 1)r‘2m_2h2m>
il

m=1

= (r ¢ —rHl+--) <2gy + Z(2m)(2m + 1)7’2m2h2m>
il

m=1

= (2n)r 2+ Z(Qm)(Zm + 1) r 2 ey hgpy — 28 try Hy + -+

m=1

= QMT2+53KWMQmAJj—ﬂT2m4My@m+~'

m=1

The second term gives
lH“ +Hiy, = E (r_2g§£ —rtg 4 ) gy + i 2 hom
2 " 2 © i |

m=0

1 N :
= 3 (—27“_393 + Z(2m + 4)r~2m=Spil )
m=0

. (27’gy — Z(Qm)r‘Qm_lh2m>
il

m=0

= —(2n)r 2+ Z [(2m 4 4) + 2m] r 2™ * try oy + - -

m=0
Hence,
_2Rrr = Z<2m + 1)(2m + 2) try h2m7’72m74 + ...
m=0
Therefore, 2f,, + 1 = —2R,, implies that to the leading order
2m +1
g = 1y gy - -
f2 +2 2<2m+3) Iy N9 -+
For future use, let
o 2m +1
T (2m + 3)

Notice that this agrees with the equations for f. To rewrite this in terms of the gy metric,
further information about the leading terms of hs,, must be derived. Start by recalling the
dz? A dx® coefficients of equation (3)

2 Ric(g)jx + Hess, fir + Hjr = 0.
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First, find the leading term of 2 Ric(g). In terms of H,
: : Lo i
2Ric(g)je = 2Ric(H)je — Hjprr — 5 H "HipHjpp + H" Hijp Hy .

Taking a derivative in the r direction means less derivatives in the Y direction (or alterna-
tively, lower r power for the same number of derivatives). Hence, the leading order term will
only come from Ric(H). Recall the equation

2Ric(H);x = 2Ric(gy)j + H" [Hojuri + Howji — Hojrjit — Hoji)

1 il ;ynm
+ S HUH (Hofjrin Hofitpm) — Hofitin) Hojim))-

The term on the second line of this equation will produce nonlinear terms that are lower
order than the first line. This is because H'H™™ = r~tgyilgy™™ + O(r=%) and H? =
r~2gy® + O(r=*). Thus, in the expansion of the second line, the least negative power of r
that a derivative of hy,, will appear with is r—2"~%. However, in the expansion of the first
line the second derivative of hs,, will appear next to a power of r—2"2,

It is easy to see that ho(n1) has a leading order term of order 2 greater than the leading
order of hs,,. Therefore, the second line does not contribute any leading order terms. Now
focus on the first line and use an inductive argument with the calculations for h4 as the base
case.

Recall that the leading order terms of hy = —Ap R, + %HessY Rji + ---. Plugging this
into the first line initial gave

A? Ry + Hessy (AR) jx — gy {(ALle)ik + (ALRkl)|ij:|

and

]‘ 7
39y Y Ryjiws + Ryji — Ryjea — R|z‘zjk].

However, after commuting the derivatives, the only leading term was A? Rj.. Hence, we
have the base case for the following proposition.

Proposition 1. For any m > 0, if hs,, is of the form
Rom = Agm(AL)™ Ric + By, Hessy (A)" 'R 4 - -
for some constants As,, and Ba,,, then the leading order term of (Ricjk)(2m+2) 18
(Ric(H) ) *™? = — Ag (ALY Ry + -+
Proof. First, plugging in Bs,, Hessy (A)™ 'R into the expansion for Ric(H) gives
Bomgy™ [ (A" R) ki + (A" R)juaji — (A™ ' R) e — (A" R)jaji | -

After rearranging the derivatives all the highest order terms cancel out. Thus, the Hessian
term contributes nothing to the leading term of the Ric(H).
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Second, plugging in As,,(AL)™ Ric into the expansion for Ric(H) gives
—AL (Agm AT Ric) ;4 Agmgy ™ [ (AT Rit) jje — (AT Rjt) i — (AF Ry )i

The first term give
— Ag(AL)™ T Ry,

which is the only leading term that doesn’t cancel out.
To simplify the second term, recall the following fact about the Lichnerowics Laplacian
acting on a 2-form Tj;.

tr (ALT)ZZ = ftr [AT;Z — szTxl — T’ZxRxl + 2Txnyily]

= AtrT

Then second term simplifies in the following way
gy (AT Ra)jr = (g9v" AT Ri)jn
= (Agy" AT Ra)

= (A™R)jjk

Finally, the last two terms simplify by first commuting the ith covariant derivative with the
AT and then using the contracted Bianchi identity.

gy [ (AT Ry1)jak + (ATRM)W] = o {(A?viRﬂ)k + (ALViR); + -
= (A™V'Rj)ix + (A™V'Ry) ) + -+
1 m 1 m
= A"VR) + S(ATVRR); -
= (A"R)y -
Hence, to leading order,
gy |(AL Ra) i — (AL Rp)jiw — (AT Ria)jig | =0+

]
Next, look at the leading terms contributed by 2 Hess, f in the (jk)-equation. Recall that

2 Hess, fjx = 2Hessy fx — H'Hopp fio + Hijpr fr
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The second term will not contribute any leading terms because the H? will bump with
exponent of r down. However, the first and last terms will contribute. The last term gives

1 ) 0
ij,r‘f,r = ij,r (_57' + O(Td)) = _7~29ij + Z mr*th2m

m=1

For the first term, use the definition of f and the above calculations for f using the (rr)-
equation.

2Hessy fir = 2 Z 2™ (Hessy fam)jk
m=1

= 23220y, (Hessy try how)ji

m=0

Hence, if hs,, has the form,
hgm = Agm(AL)m Ric +B2m HeSSy(A)m_lR —+ .- s

then
(2 Hessy fjk)(2m+2) = 202m(A2m + BQm)(HeSSY(A)mR>j/€'

Thus,

(2 Hessg fjk)(2m+2) = 2C2m<A2m -+ Bgm)(HeSSy(A)mR)jk + (m + 1>(h2m+2>jk

Now plug these equation into (2 Ric(g) + Hess, f +¢g = 0) (@m+2) assuming that ho,, has
the form
hgm = Agm(AL)m Ric +B2m HGSSy(A>m_1R + -
This gives

(m + 2) (hom2)jk = Ao (AL)"™ T Rjt — 202 (Asm + Bop) (Hessy (A)™R) jy
Therefore, if ho,, has the form
Rom = Agm(AL)™ Ric + By, Hessy (A)" 'R+ - - |
then hg,, 1o also has the form

h2m+2 = A2m+2(AL)m+1 Ric +Bgm+2 HeSSy(A)mR +

where 4
Am — 2m
2m+2 mt 2
and 5
Bopio = ————C5,, (Aopy + Bayy).
2m+2 o om (Aam + Bam)
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Then these inductive equations can be made more explicit as

2
T (1)
and
ZAQM (1_{ (1/ +22) CQ”)

Then simplify B,

5 B -1 m—1 2,u+1
meo — 1/—1-2 2(2u+ 3)

3

=
Il
=)

N2 (e (2m — 1) (20 + 3)(2 + 1)
N “z%(ml)! (( D (m+1)(m)---(u+2)-(2m+1)(2m_1)..-(2ﬂ+3)>
= (S 2 m—pu+1 2M+1
= (m+1)!(_1) (2m+1>
T (m+ 1)!2(2m +1) Mo(_l)m_u+l(2ﬂ +1)
1 2m

(m+1)!'(2m+1)

Thus, the first several leading terms for H can easily be calculated.

1
H = rigy — 27’0(Ric(gy) —(n— 1)gy> 2 (—AL Ric(gy) + 3 Hessy R+ - - )
af 1o g. 2
+r —gAL RlC(gy) -+ 1—5 HeSSy(AR) + -

1 1
76 —_—— 2 1 —_— .« ..
+r < 12AL Ric(gy) + 58 Hessy (AR) + )

1
+r78 (——A2 Ric(gy) + IE Hessy (AR) + ) +0(™")

2.3 Constraint Equation Calculations

In this section, we use the first few terms in the expansions calculated above to check that
the constraint equation is satisfied. That is

2 RiC(g)rl +2 HGSSg frl =0

First, look at the Hessian of the potential function.

2Hess, fru=2fn— 2T fi =2fn — H*Hu, f
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Expanding this equation out gives

2Hessy fu = (= 2fop) +770 (= 64 ) + 70— 10fap + 2h0's )

+ 7"77 — 14f6|l + 2h0ilf4|i + (4h2il - 2h00il)f2i:|

+ | = 18fsy + 2ho" 1 fop; + (4ha'y — 2hoo"t) fays

+ <6h4iz — 4hgo'y — 2hag'y + 2hoooil> f2|i]
Second, look at the Ricci curvature.

2Ric(g)n = 290" — 905" + 9T, - 9Tt — 9T, ™ - 9T 1)
= [H™Hp,) i — [H™Hinglg + H™" Hyy " Tig' — H™ Hyi 7T
= AV, [H"H,,] — "V, [H"H;,,]
= H™ (HV«anz,r — HVsz,r)

Then use equation [10] to simplify this further.
2Ric(g)n = H"™ ("ViHpuy —"ViHim,)

im H T H T
= H (Hml,m' - Him,rl - Fzm zl,r + le Hz'm,'r)

. 1 . 1 .
= H"™ (Hml,r\i - Him,r\l) - §HzmH0[im\y]nyHrl,r - §Hzm,rH0im|l

Here the covariant derivatives in the third line are with respect to the link metric gy. Then
write out each term using equation {4 and equation ?77?.

H"™ Hpppii = 7’75< — 29Yimh2ml\i> + 7’77( — 49y "™ hapmyy; + Qhoimhzmuz‘)

+ 7"_9< - 6gYimh6ml\i + 4h0imh4ml|i — 2(ho"™ — h2im)h2ml|i> + -
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Next, —%HimHo[im‘y] szHa:l,r

= r’5< — gy hajimpy + hoith[z’mll])
+ 7‘_7( - gYimh4[im\l] + hOimh2[im|l] + [h2im - hOOim} hotimyi
—ho™ hofimpyho”t + gy Pafimyy hoyl)

+ 177 9y " he iy + ho"™ Pagimyy + [h2"™ — hoo™ ] Rajimyy

+[hs"™ = 2h02™ + hooo™ | Rofimy
+ <9Yimh4[z‘m|y} — hOith[im|y] + [ — hy'™ + hooim} hO[im|y]) ho;

+ (gYimh2[im|y} — hOith[im\y]> [hzim — hooim} + -

Here notice that the
gy"" hofimly) = 0,

so the leading order term is the coefficient for r=°. Finally,

1.
_éHzm,rHoimﬂ = r7(try hop) + 7’_5(try hay — (ho, ho>u>

+7”_7<tl"y hay — 2ho"™ hajmy + 3[ — hy"™ + hooim} homl)

+r77| try hop — 2ho" hugmp + 3| — ha"™ + hoo™™ | haimy

+4[ — hy"™ + 2hge"™ — hOOOim} hoimii
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Therefore, the first few terms of the Ric(g),; are

2Ric(g)y = T73<tryh0\l)

3

+r7? (4 try ho — 4haa” + 2ho™ homayi — 3

(hos ho) )
+r77 (6 try hay — 6hai’ — ho" " haimp — 4(ha, ho) + try hoooy:

. 1
+ ho'y [2h2im|m — try hai — 2ho™ hoig)y + §<h0, ho>\z‘]

+ 4h0imh2ml|i + 2h2imh0ml|i — hooimho[imu]) +oee

Notice that the leading term in the expansion for Ric(g),; is of order =3, while the leading
order term in the expansion of the Hess, f,; is of the order r~'. This leads to the equation

0=0-2V,f,

where [ can be any coordinate for Y. Thus, Vfy =0, i.e. fy is a constant. Notice that while
we assumed fo = const. in section 2.2 to calculate the first few terms of H, the leading order

term of the Ric(g),; would still be of order r=3. Thus, there is not circular logic here. In

order for the expansions of f and H to satisfy the constraint equation, fy must be a constant
function on the link Y.

(3)
Now we can use (2 Ric(g)r + 2Hess, fr = 0) to check the equation for hy. By the
equations above this is
(try ho)y — 6fap =0

This is exactly the [ covariant derivative of the equation derived for f, before, so the equation

for hg satisfies the constraint equation to order r—3.

(5)
Second, we can use (2 Ric(g). +2Hess, fr = 0> to check the equation for hy. From the

equations above, it is equivalent to show

3

0 = 4try hoy — 4h2il\i + Qhoimhom”i - §<h0, ho)y — 10 fa; + 2h0ilf2|i

Then plug in for f; and f4 in terms of H. This gives

) 1 ) 1. .
0 = try hop — 4hay" — §<h0, ho) i + 2ho"™ homui + gholl try hoj;
Look at each term: 5 4
tI"y hgu = —gleR + é(n — 3)R|l
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Next,

) 1 4 )
_4h2il|l — —4( — ARy + g Hessy R;; — 4R;; + 5 [R - (TL — 1)(n — 3>]gYil> |z
;4 i ;16 i
= 4ALRZ” — g HeSSy RZ” + 16RZ” — ? [R| :|gYil

1 1 1 16
— 4 [EVIAR + 5| Ric[? - QRWRW] -3 [VZAR + RﬁRxl} + (8 - —)Rl

3
2 L 4 8

= gV;AR + 2| Ric " — 8R™ Ry — §R|IRJ:1 + §R|l

Third,
_%<h0h0>l =2 {| Ric|?* —2(n — )R+ n(n — 1)2} |z = —2|Ric|f} + 4(n — 1) Ry,

Fourth,

2™ homif; = 8(3"” (- 1)gyim> R = 8R™ Rygs — 4(n — 1) Ry
Fifth,

%hoil try o = %Rﬁ(Rﬂ —(n— 1)gyﬂ) - gRﬁRﬂ - %(n ~ 1R,

Adding these five equations together gives 0 = 0, so the original equation is satisfied. Thus,
the equation for hy and hy satisfy the constraint to the order of r=2.

(7)
Finally, we can use (2 Ric(g). + 2 Hess, fr = 0> to check the equation for hy. We wish
to show that

0 = (2Hess, £ + (2Ric(g))”
= —1dfep + 6try hyy — 6h4il|i - hoimhmmu — 4(hy, h0>\z + try hooops
+ ho't|2f4i + 2h2im™ — try o — 2ho™ hoisy

1
+ =(ho, ho)ji — ghomi try hojm

N | —

) . . 2 .
+ 4ho"™ hapi + 2he" " homii — hoo™™ hofimy + §hzzz try hoji
Then use the equation

11
14f6 = 5try h4 — §<h0, h2> + tI‘y hOOO
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to cancel out terms in the first line; and use the equation

1 ) 1. .
0 = try hoyy — 4hoy)" — §<h0, ho)ii + 2ho"™ homii + ghozl try ho;

to simplify the second and third line.

0 = try hyp — 6hay)" — ho"™ haim — g(hz, o)y + 2ho"; [f4|i — h2im|m:|

, , , 2 .
+ 4ho"" hamii + 2R homugi — hoo"™ hofimy + ghQZl try hoy;

Now split this equation into four parts and simply each part.
—ho ™ haimi — 5 (h2, ho)

2
= 2[(Ric, Viha) — (n — 1)V, try ho] + Vi [(Ric, ko) — (n — 1) try ha)
1
= 2 [—(Ric, VA Ric) + g(Ric, V,Hessy R) — 4(Ric, V, Ric)

+§(Ric, ViRgy) — (n— 1)V, <—§VR + g(n - 3)R>]

2 1 4
+ gvl {— (Ric, ApRic) + g(Ric, Hessy R) — 4| Ric |* + §R2

_g(n —1)(n=3)R—(n—1) <—§AR + g(n — B)Rﬂ

2 4
= —2(Ric, V;Ar Ric) + g<Ric, V:Hessy R) — 4V;| Ric |* + gvl(Pﬁ)

2 2 8 8
_§<ch, A Ric) + §(Ric, Hessy R) — §| Ric|? 4+ - R?

g :

_g(n —1)(n—=3)R—(n— 1); (—%AR + g(n — S)R)]

2 2
=V, [—§<Ric, AL Ric) + §<Ric, Hessy R)

16 40 20 20
—(n—DAR— —(n—1)(n— — Z|Ric|]? + —=R?
+9(n JAR 9(n )(n—3)R 3‘R1C|+9R:|
2
—2(Ric, V;Ar Ric) + g(Ric, V, Hessy R)
For the next terms recall that

31



2ho' |:f4|z' — h2im|m:|
. 1 2 2
1

6

1 1 2

: 1 3 2 1 1
= 2hY, IVil —=——=AR+2(Zn—2)| R+ —|Ric]? ) — 2R®™R,,;, — —R™Rim
01 |: ( 30 + (5n 3) + 10| 1C| > |y 3 ‘ :|

, 2 3 16 2 4
_ % . —A . e e = 12 TY . T pDmp.
R,{vl(w R 8(5n+ S)R 5|Rlc|)—|—8R sz|y+3R\ le}

+Vi [—%(n —1DAR+8(n—1) (gn - ;) R+ %(n — 1)| Ric |2}

4
—8(n — 1)ng;‘way — g(n — 1)R|$Rxl
2 3 2 2
= ——(n-1A —D{=n-= Z(n — 1)| Ric|?
Vl{ 15(n JAR + 8(n )(5n 3)R+5(n )’RIC‘:|

. p 23 5 2
R, {vi (—AR —4 (—n - —) R — Z| Ric |2) + 8R”Rm|y}

4 .
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4ho" hamiji + 2he"™ homui

= —8R"™hoyi +8(n — Vhay)’ — 4Ryypyho™

, 1 4
= —8R"™ {—VZ‘ALle + §Vz’ Hessy Ry — 4R, + —ViRQlel

3
1 1 . 12 oy 1. 2
—|—8(n — 1) —gleR — §Vl| Ric | + 2R Rlx|y + §R| le - §R|l

1 4
—4Ryy)y [—ALR” + 3 Hessy R*™ — 4R™ + 3 [R—(n—1)(n—3)] gy;ty}

= 8nyvyALRxl — §<R1C, Vl HeSSy R) — §R|innyily + le|y [32ny}

32 1 1 2
Ry |-22V,R| +8(n— 1)V, |-=AR — =|Ric|*— =R
+l[ 3v}+(n )vl{6 | Ric| 3]

4Ry [16(n — 1)R™] + R [g(n — 1)V,-R]

1
—4 R,y [—ALR” + 3 Hessy R™ — 4R’3y} — gRl [R—(n—1)(n—3)]

=V, {—%(n —1)AR+ g(n —1)(n—5)R — %RQ — 4(n — 1)| Ric |2}

; 4
+RY E(n — 5)VZR1 + Rigly [4ALR“/ —3 Hessy R*™ 4 16(n + 2)R”91

+8nyVyALle — §<R1C, Vl HeSSy R> — §R|iRmnyily
— hoo™ hofimpy + 2ha’s try hoj;

= 8(R':R™™ —2(n — 1)R™)(2Rmyi — Rim)1)

4 . 1 4
_§R|Z (—ALRZ] 4+ g HQSSY Ril — 4Rzl + g |:R — (n — 1)(7’L — 3)] gYil>

1 2
_ v {56(71 ~1)(n = 3R +8(n ~ )| Ric]? ~ S|VR[ - 232 _ ngRysz

. |16 , 4 .
‘I'Rzl |:§VZR:| + Rlx|y [16RmiRzy — 32(n — 1)ny] + §R|ZALRZ'1

Therefore, the equation becomes
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A 4 .
0 = try h4|l — 6h4il|1 + 8nyVyALRxl — QnyVlALny + gR‘Z |:ARll — RnRxl]

14 22 20

+ Vl<—(n —1)AR+ %(n —1)(9n — 20)R + {E(n —1)— ?] | Ric |?

2 2 2 8
—Z|VR|? = Z(Ric, Ay Ric) + =(Ric, Hessy R) — —R"R,*R.,
9 3 9 3 v

(2 2 i 4 24
+ RY (EviAR - g| Ric [j; + 8R™ Ryy)y + {g(n -1) - gn} R|i>

4
+ Rz <4ALR‘W + 16R*;R"Y — §R|“y — 24(n — 3)R“y> — 2R™ Ry
Now look at the two terms involving hy. First, plug in try h4; to the above equation.
) 4 .
0 = —6hyy' +8R"V,ALRy — 2RV AL R,y + ng {ARH — Rmle}
1 1 8 . 28
+ Vi ( — SAQR + E6|V Ric|? — gR”|yRiy|x + E(Ric, A Ric)
2 8 1
— 29)AR — —(7n — 15)R — =|VRJ?
15(n+ 9)AR 5(7n 5R 3]V |
22 2 8
+ [671 —12 - E] | Ric|? — g(Ric, Hessy R) — gR‘”yRysz>
3 5

+ R, (1—5V,-AR — =| Ric [f; + 8R™ Riyy + [—(n —D- _”} Ri)

4
+ Riy <4ALRW +16RRY — SR — 24(n 3)R$y> — 2R™ Ry
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Finally, calculate _6h4il|i.

, 4 4
—6h4y" 207 Ry — g(AR)m +4(n+9)ALRy + 1—5(13” — 55) Ry

56 76
—16(5n — 13)Rzl + 32Rw¢Rxl - ngy‘iny“ — ngyRmyﬂl

2
+ 3 (RWR{T + R " — 2R)" Ryap — 2R)" Ry + BR\xRil\r>
F12R (Rijyt + Ruvigi) + 4B Riagy + AR " Risay

%

_8ny <R7,l|ggy - RiaRaxyl - RlaRaxyi + 2RyzRI’LlZ>
|

24 48 16

Now calculate VA2 R; by using equation . First, use Tj; = ARy and then use Ty = Ry;.
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2VAL Ry = 2AV'(ApRa) - 2Vi(ALRY) Ry — 2( ALR™) Ry

— 2A[AV Ry — ViR Ryt — B Ry |
) [AviRm ~ ViR"R,, — RabR[abM} R",
+Rigy[—AALR™) + 2R, AL R™

— A[AVIR = R Ry — 4R, B + Vi| Ric
~|AVLR = R Ryy — ARuqp R + V| Ric 2] B
+Rigy[—AALR™) + 2R, AL R™

— A [VZAR — 4Ry, R™ + V| Ric ﬂ
- [vaR — AR,y R + V| Ric ﬂ R,
+ Rigpy[—4ALB™] + 2R, AL R™

= Vi[A’R+ A|Ric|?] + RY[AR™ Riyy| + Riajy | — 4ALR™ — 4AR™]

+2R, AL R™ — AR™AV Ry — 8R™|' Ry

Then rewrite the term —4R*YAV, R, as follows.

36



—4RIyAVyR$l = —4RY™ |:R:cl|iy + RaZRyima + RmaRyila] |Z

— _4p™ [VyAR:cl + R Ry + Ruaji Ry + Rxl\aRyiia}
—4R™ (Ray' Ryia" + Raya)' Rya”)
+4R™ (Ral [Ryiix\a + Ryz‘aib:] + Raa [Ryiilla + Ryim”])
— —AR™V,ARy, + R, [2! Ric|f; — 4nyRiw\y}

4 .
—gvl(R”Rysz) + 8RRy R R ¥ — 8RRy R Y
Therefore,
. 4
2VIATRy =V, (NR +2(Ric, A Ric) + 2|V Ric|” — ngyRyZsz)
R |2/ Ric 2] + Ruy | — SAR™ + 8R*RY| + 2R,y AL R

—4R™V ARy — 8R™ ! Ryjny — 8Ry® Ray ' R” /"

Next, look at the other 4th order term, %Vi Hessy (AR);;.
4 __. 4
—EVZ HeSSy(AR)il = _EAVIAR

4 4
= VMR- CRIVAR

Next look at the second order terms.

An+9)V'ALR: = 4(n+9) [AviRﬂ _V,R"Ry,; — R”R[xym]

— 2n+9)V, [AR +|Ric[?| — 8(n + 9)R™ Ry,
and

4 ’ 4
E(lSn —55)V'Hessy R; = 1—5(1371 — 55)AV,R

4 4 ‘
= —(13n— A —(13n — 55)R" Ry;
15( 3n —55)V,AR + 15( n )RR,
Thus, the first line simplifies to.
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1 82 10
=V {EAQR + (En + 3 ) AR+ 2(n + 9)|Ric|* + A| Ric|?

4 X z 7 4 . 4
+ Ry { — 8AR™ + 8R™;RY — 8(n + 9)R™| + 2R,,uALR™

— 4RV ARy — 8R"”|yRi”xy - 8Rm“Ray‘inﬂy
Next look at the second line.

—16(5n — 13)Ry" = —8(5n —13)V,R

32V [ Ri R = 16R\Ry + 32, R

56 i [ ey 561 2 o prvi
—gv [R \szyll} T _nyuAR Y+ R y\Rmy\li]
a6 T Ty 1 . 2 TY i a
— —E _ny”AR -+ §V1’V RIC + 2R | Ry Rliza]
76 761 2 ;
5V R Ra| = 5 |39 VRic| + R”ny'”l]

76

2
- ——vl(vmc - ZRVVIAR,,

152 38
—TnyR Rlixa — gRll‘ Ric "22

Hence, the second line simplify to

- 16(5n — 13)Ril + 32R;. R*; — —Rx |szy\l - —R nym

56
=V, {—EG{IC ARic) — —| Ric |* — 8(5n — 13)3}

+RY, [—%\ Ric [% + 161%1} + 32Ry,, R™ — 4R*V,AR,,

Then look at the third line.
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(B By R Rias = 2R Ry — 2R R+ 3R Ry )

2/1 j
= 3 (§R|IR|:EI + RY Ry + RNAV R + Ry R™ — 2Ry B)™

—2R|1lei — 2Rl$‘yR|my — 2R|$ARzl + 3R|$Ril|xi + 3Rlx|yR|zy>
2 1 2 x X €T a
= 3 <1VZ|VR\ + 2Ry B™ = 2Ry Y™ + R™ [R\xyz + Rjo Riys }
+RY VAR + R R| + Rp [ = 2(Ra't + RuiRis" + Rea R’ ")
_2ARxl + 3(Rzl|2x + Raleiia + RiaRzila)‘| )
2 1 2 Ty Ty Ty T a b
= 3 ZV;WR\ + 2Ry R™ — 2Ry R™ + R™ Rjpy + R" Ry R%w
| 1
+RY|ViAR + R Ry, | + Rf { = 2( Rt = R R + Rt
1 b
_2ARSCI + 3(§R\ml + RxaRal - RabRaxl >
1 5 2, (2 4
= vl §|VR| + §<R1C, HeSSY R> + Rll ngAR + Rl$|y §R|$y
4 .
—2R" Ryyp — S R [ARy — R;* Ry

Next look at |12R™ <Rm‘yl + le|yi>

12R™ Ry’ = 12R™ [Rmyz + Ropy R + Riapy R’ + RmaRﬁy“]

= 6R™Rj;y, + 12R™ [RamRyiﬁ + RmRyix“] |
l

+ 12Ri1RmyRm‘y — 12nyRab|yRaxlb — 12Rmnya|bRbyla

= 6nyR\xyl + 12R™ [Rzszy - RabRamJb] I

+ 12RYR™ Ry — 12R™ Ry R + 12R,“ Ry R ¥
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and

12R" Ryt = 12R™AV,Ry
= 12RV,ARy + R - 6| Ric |} + 12R™ Ry
+ 4V (R™R,"R.;) — 24Ry, R R* " + 24R," Roy| ' R* "

Thus,

12R™ (Rix|yl + Rl:r\yi)

= 12 |:Rmyz (Rix|yl + Rl:c|yi> + R" (Rix|yli + Rlxyii):|
=V {GR"ﬂyRiw + 4RmyRyZsz} + R { — 6| Ric | + 24R”yRmy}
+ Ry [ — 24R™R* Y] + 6R™ Ryyy1 + 12R™ Y Ryjyy + 12R™V, ARy,

4 12R™ [R:CiRZ-y _ RabR“xyb} |~ 12RV Ry, R, 4 36R," Ry R

\
Next look at

4[Rix\yR[lm|y] + lelyR[ix\y]} '

= 4R;" "' Ritepy) + 4R:" Y Ragy)” + 4R)"\” Riiapy) + 4R1° | Riialy)’

Then simplify each term separately. First,
) 1 ) )
4Rim|le[lm‘y] = 4 |:§R|xy + RamRylia + RiaRylza‘| R[la:|y]

Reyt 2B + AR RY — AR R |
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Second,

AR Ryay)’ = AR [nylli + Ry’ — R“f‘yi]
= AR™PYRiye + AR™| Rijjwy — AR™)Y Rijjye
= 2V, (RiﬂyRiy‘x) + 4Rm|y [RayRma + Rialeyai|
FAR™| Rijay — AR | Rigey + Rut Ryai® + Ria Rt
= 2V, <Rix|yRiy‘x> + 4R Ryjyy — 4R™\Y Rty

+4Rix|y |:Rale:m‘a + RiaRlxya - RalRyma B RmRyﬂa]

Third,
ARV Riayy = 4RV [Rmyu + Riyjz — Rim|y]
= 4ny‘i {me + R%)Y; — leiy:|
= 4Rmy‘i [Rz'uxy + RY RV, + RIaRyila:|
Forth,

ARY By = AR ARuy + Rugs' — Ry |
= AR"Y [ARW + RoyRo'i* + RiaRy'y* — Ran R, — RmRyima}

— 4Ry, AR™

Hence, 4[Rf|yR[zx|y] + RzﬂyR[my]] |i

= 2V, <Rix|yRiy|x> + 8Rmy|iRil|3y — 4Rm|yRmmy + 4le|yARmy
Ry [2R[™ + ARTRY — ARV R ! | — SR | Ruyf* R
+ 4nyRab|a:Raylb - 4RxaRay\iR$ily + 8Rma|iRanyily
Therefore, line four simplifies to
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[HRW (Riff\yl + Rlxwz') AR Ry + 4sz|yR[ix\yJ ’

= Vi|2(Ric, Hessy R) + SR "Ry, + AR R, R.,|
R [ = 6] Ric [} + 24R™ Rigy, — 8By " R0i"| + 4R™ Riyy
Ry [AARY = 2RV 3] + Ry [ AR RY — ARV |

+8R™ Y Riyjyy + 8R™|' Ryyjyyy + 12R™V ARy + 12R™ [RziRiy - RabRaxyb} !

_8nyRab|a:Raylb + 32RazaRay|inily + 8R:L‘a|iRanyily

Then look at the fifth line.

i

— 8R™ <Ril|xy - RiaRaxyl - RlaRaa:yi + 2Ryszlz>

|
-8 [Rzymey} \i = —8R™|'Ryjsy — 8R™ Ry’
SR Ry, — SRRy,
—8R™ |:Ral|IRyi7ja + Rigja Ry + RillaRyixa]
= —Sny|iRil|:py — AR Rjjzy
_8R™ [Ra”ny“ — Ria|mRiyl“ — Ril|aRiwya]
SRR~ Rl ]
= —8R™|'Ryjuy — 4R™ [Rlzyl + R\alea}
—8R™ [RallzRya = Rigpe Ry — R“"ZRimya]
—8R™ [RazRf — Ria ixza} y

8[&“1@3%]@' - 4R"'nyR””ﬂy+8ny[RabRaxlb}

ly
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8| R Ry B30 © = SRy R ay? + SR Ry P oi? = SRy Ry | RS + R 01|

‘ lal ’L|a
SRy, R R + Ry [SRmyﬁR%iy — 8R™ Ry, + 4| Ric y@.]
16 [RmRawa] li — _16 [RmRay] l’R%ﬁ’ 4 16R,.RY, [szyi,l + Rxﬁ”y}
| | 16
_ 16 [RmRay] R+ 16Ru, BB — V(RVR, Re)

Therefore, line 5 simplifies to

— 8R™ (Ril\xy - RiaRaryl - RlaRazyi + 2Ryszilz>

16 i
= —Evl(nyRyszz) + Rzl |:4| Ric ||21 + SRmemeaiy]

+ Ruugy | 16R7RY + 16R™R" Y| — AR Ry — SR Ry,

+ 8R™ [ — R, R + QRGbR“xlb]l + 8R™Ryyu Rt — 16 [RmRay} R
Yy

Combining these equations shows that the equation is satisfied by hy.

2.4 Proof of Theorem 1

Now that the first few terms in the expansions of f and H have been calculated, we are
ready to prove Theorem 1. As the calculations in section show, for ¢ > 1, we can
determine fo; in terms of the quantities {gy, ho, ..., h2;_2} using equation ; and we can
determine hy; in terms of the quantities {gy,ho,...,hai_2, fo...., fo;} using equation [16]
Notice that the Hjyj, f,-term and the Hj,-term in equation (16| will combine to give a factor
of (i + 1)r=%(ha)jk, so in particular, it will always be nonzero. By this construction, the
expansions for f and H satisfy equation [I4] and [I6] Further, the calculations in section
show that equation [15|is of order no more that O(r~?). It remains to show that equation
is satisfied to all orders. First we will derive another formula involving the potential function
and the Ricci tensor. Then we will show how to argue using this formula that the mixed
term equation is satisfied to every order.

To derive this new equation, consider a general Riemannian manifold (M, ¢g) and a smooth
function f € C*°(M). Then consider the metric-measure space (M, g,e~/dvol,). The analog
of the Ricci tensor for a metric-measure space is the Bakey-Emery-Ricci tensor Ric 4+ Hess(f).
Looking for weighted analog of the contracted Bianchi identity V*R,, = %VbR leads to the
following equation

V(R + VaVif) — (V) (Ray + VaVof) = V(R4 207~ [VFP) . (39
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Notice, while this equation is motivated by the measure structure of (M, g,e~/ dvol,), this
equation does not use the measure. One recognizes the right hand of this equation as
Perelman’s weighted scalar curvature, R + 2Af — |V f|%.

This equation can be rewritten as

. 1 “ _ 1
v (RlC(g)ab + Hessy fap + §gab> — (V*f) (Rlc(g)ab + Hess, fab + §gab>

_ %Vb(R +OAF— V= f). (34)

From this equation one can see the known fact that if (M, g, f) is a gradient expanding Ricci
soliton then R+ 2Af — |V f|> — f is a constant. After modifying f by this constant, we can
assume that the soliton satisfies R +2Af — |[Vf|> — f = 0.

Returning to the setting of Theorem [I], equation [34] can be simplified. Recall that we use
coordinates {r,x!,... 2"}. By construction, the expansions in equations |4 and || satisfy

. 1
Ric(g)x + Hess, fir + §gjk =0
and

1
Ric(g),» + Hess, frr + 59rr = 0.

Let X;, = Ry, + ViV, f and S = R+ 2Af — [V f|> — f. Then substituting equation 4| and
[ into equation [34] gives

. . 1
V' Xy — (V)X = §8TS (35)
when the b coordinate is replaced with r; and

when the b coordinate is replaced with one of the coordinates on Y. We rewrite these
equations in terms of H(r) and the Levi-Civita connection of H(r). This gives

HY [V, — (V) Xo] = 50, (37)

and ] |
87'Xir - §ijHki,err - (8rf>X2r = éazs (38>

Now that we have these equations we can prove the following lemma

Lemma 3. If S vanishes to all orders in r=', then X, vanishes to all orders in r='.

Proof. We suppose not and show a contradiction. If X, does not vanish to all orders in r~1,

then X;, = rN¢ + O(r==1) for some integer N > 1 and some nonzero ¢ € Q'(Y). Using
the leading order terms form the asymptotic expansions for f and H, the left-hand side of
equation [38] becomes

%T_N_Hgbi 4 O(T_N)

However, the right-hand side of equation [38| vanishes to all orders, so ¢ must be zero. This is
a contradiction as we assumed ¢ was the leading nonzero term in the expansion of X;.. [J
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Now we can proof Theorem [I] It is enough to show that X;. vanishes to all orders.
Suppose, by way of contradiction, that X;, = r~V¢ + O(r~N~1) for some N > 1 and some
nonzero ¢ € Q(Y). From Lemma , S does cannot vanish to all orders in r=!. Thus,
S =r My + O(r~M=1) for some M > 1 and some nonzero ¢ € C*(Y). Using the leading
order terms of the asymptotic expansions for f and H, the left-handed side of [3§] is

%r‘N“qbi +0(r™").

The right-hand side of [3§]is
1
ET’_Maiw + O(T’_M_l).
Because ¢ is nonzero, this implies M < N — 1.
Next, look at equation [37] and plug in the leading order terms for f and H. The left-hand
side of B7 is )
rNT2RIN s+ O(r N,

while the right-hand of equation |37] becomes

—%MT_M_ll/J +O(r 72

Because 1 is nonzero, this implies M > N + 1. This is a contradiction and thus
Xip=Riy +V,V,.f =0

which proves Theorem [I]
This argument can also be used to construct asymptotic expansions for conical gradient

shrinking solitons. The leading order term for f becomes irQ.

2.5 Bryant Soliton Example

The Bryant Soliton is one example of an asymptotically conical expanding Ricci soliton.
Thus, if the above formal calculations are reflective of actual asymptotic behavior, then the
asymptotic behavior of the Bryant soliton should agree with the above, general calculations.
In this section, we will first recall the equations satisfied by the Bryant soliton and then
show that specializing equations [14] and from section [2.1] give the same system of
equations. Lastly, the asymptotic expansion of the Bryant soliton will be calculated and the
above calculations for H, in this thesis will be specialized to the Bryant soliton case to show
the two agree.
Start by recall the Bryant Soliton metric is of the form:

gps = dr* + a(r)do®

where o2 is the standard round metric on S* and a(t) is only a function of the radial parameter
r. (note in his paper the radial parameter is denoted as t.) Further, Bryant showed that
there exists a smooth function, a(r), that is odd in r and satisfies the Ricci soliton equation:

Ric(gps) = Hess,,. (f) — Agns.
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Notice that the expander equation considered in the rest of this thesis uses A = 1/2 and the
potential function has the opposite sign.

Bryant shows the metric, ggg, satisfies the Ricci soliton equation by showing that a(r) and
f(r) satisfy the system of ODEs (equation (2.4) in [B]).

—2a(r)a"(r) = a(r)’[f"(r) = A (39)
L—d(r)? —a(r)d"(r) = a(r)a'(r)f'(r) = Aa(r)? (40)
To compare these equations to equations and [16| from section [2.1] i.e. let
H = a(r)*do?

as in the Bryant soliton case. Then clearly, H™! = a(r) 2do* ® do*. Hence, equation
becomes

2a(r)? [ () — ﬂ — ona(r)a" ()

Setting A = 1/2, n = 2, and changing the sign of f gives the first equation in Bryant’s
system of equations. Notice that this equation shows that f is a function of r and not of any
coordinates on the sphere. Hence, the partials of f are all zero unless they are of the form
ork f for some k € N. Next, the mixed term equation vanishes identically as follows.

2Hess, fri =2f— H"Hy o fi =0
by the statement above. Then
O Hpr = [a(r)?] - %" Vido?, = 0
by the metric property. Finally,
Ric(H) = Ric(a(r)*do?) = Ric(do?) = (n — 1)do?

Plugging this into equation (16| gives

(n 1) ~ [a(r)?)" + a(r)a'(r)f'(r) + za(r)’ = 0.

Setting A = 1/2, n = 2, and changing the sign of f gives the second equation in Bryant’s
system of equations.

Now, calculate the first few terms in the asymptotic expansion of a(r). To get an equation
for a(r) without f, take the derivative of equation 40| and then plug in equation [39| for the
f"(r) term.

The derivative equation is

0= a(r)d'(r) [f'(r) = 2A1 + la(r)a'(r)] f'(r) + [a(r)d'(r)]"
Then plugging in for f'(r) and f”(r).

0=4d(r)*+a(r)a"(r) + Aa(r)*a’(r)
—d'(r)’a(r)a’(r) = d'(r)* — a(r)*a"(r)* + a(r)®a’(r)a” (r) (41)
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Then, Bryant showed that a(r) is an analytic, odd function of r such that there exists a
constant ¢ € R satisfying

lim |a(r) —cr| =0
r—00

Hence, the asymptotic expansion of a(r) should be of the form
a(r) ~er+oart +esr P Fesr ™ 4

for some constants ¢;. Notice, if ¢ = 1, then ggg is asymptotic to the standard flat metric

on R? and the lower order terms are clearly zero. In the following, assume that ¢ # 1. The

following calculations show that the lower order terms do in fact cancel out when ¢ = 1.
Then, look at the coefficients for 7°.

0=c?+2) ¢, —

_ 11
61_2)\ ¢ c

Next, look at the coefficients for r—2.

which implies

0= 6)\020% + 1203 c5 — 4Py

which implies

At —6Af 1 (e N 2 1
3 3¢

TS V- RV

Then, look at the coefficients for r—*.

0= 30% + 6ces + 6)\00‘;’ + 4202y + 300Ees — 14020% — 60ccs

L (g, 1B T 15
05_240)\3 ¢ c fec R

which implies

Then calculate a(r)?

1 1
a(r)? ~ At + X(CQ -1+ w(& —1)r?

B O S T g 6
+3)\3 <c 7 502)7’ +O0(r=°) (42)

Hence, the metric becomes

gss = dr*+a(r)’do?

1 4 1
2 2 1L _ I
dr +{r —1—2(1 c2)+3(1 62)7’

8 1 4\ 4 —ay| 27 2
+§<1—ﬁ——>r + O(r )}cda

c 5ct
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In particular, notice that plugging in ¢ = 1 gives exactly grg ~ dr? + r’do?.
Then the expansion of a(r) can be used to calculate the expansion of f(r). Recall that

a(r) f"(r) = Xa(r) — 2a"(r)
It is clear from this equation that f is an even function of . Hence, f has the form
F(r) ~br? 4 by + bor 2 4+ by~ +O(r )

or
f"(r) ~ 2b+ 6byr™* + 20,77 % 4+ O(r™®)

These terms expand to

a(r)f"(r) ~ 2ber + 2bcir™" + (2bcs + 6bac)r> + (20bsc + Gbacy + 2bes)r™°
—|—(42b6c + 20byc1 + 6baycs + 2b07)r77 +0(r™)
a(r) ~ Aer 4+ derr 4 Aesr ™ 4 Aesr T+ Aepr T

—2a"(r) ~ —4eir™? — 24esr™® — 60csr "

Now look at the coefficients for r!. This gives

2bc = Ac
which implies
A
b= —
2

Next look at the coefficients for r—!. This gives

2b61 = )\Cl
which also implies
A
b= —
2

Then look at the coefficients for 7=3. This gives

2bC3 + 6bQC = )\Cg — 401

—2c¢; -1 1
by = =—(1-=
2 3c 3A ( 02)

Then, look at the coefficients for »=°. This gives

which implies

20b4C + 66201 + 2bC5 = )\65 — 2403
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which implies

by = — =2 s
4 20c 52

Finally, look at the coefficients for r=7. This gives

—6b261 — 2403 -1 1 1
- 2 A
42666 + 20b401 + 6b263 = —6065

which implies

y | —B+8 4+3 8 —B+8 4+3
671\ 3 "3:2 34 6) 21\ 3 T32 34" 6

Then plug in A = 1/2, and the expansion for f becomes

f(r) = }17“2 + const. — ; (1 — l) r? — R (— - —) r 0

c2

Second, plug in gy = c*do? into the equations for hg, ho, hs, and f to check that they
coincide. Recall that

Rm(c?do?) sy = ERM(d0?)pyrw = *do?(0p N Oy, Dy N D)
Ric(c*do?) = Ric(do?) = (n—1)do?

R(c*do?) = ¢ ?R(do?) = n(n—1)c?
In particular, all derivatives of the curvatures are zero by the metric property. First, calculate
ho.
ho = —2[Ric(*do®) — (n—1)c*do?]
= —2[(n—1)do® — (n — 1)c’do”’]

= 2(n—1)(c* - 1)do?

= 2(c® — 1)do?
Next caleulate hs.
hy = —ARic(do®) + g[R(CQdO—Q) ~ (n—D(n—3)](Pdo?)
— d(n—1)do? + %[n(n “ e — (- 1)(n - 3)](Pdo?)
_ %(n ~1)(n —3)(1 — A)do®
= g(c2-1)d02
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Third, calculate hy.

1
h4 = §(5n—13)R] —;ijka

8 5. 8 8
+ [5| Ric|? — 1—5(9n —25)R + B(n —1)(2n —5)(3n — 11)} 9y ik

1
= g(fm — 13) Ric(c*do?) j — ;(C_Qdaw) Ric(c*do?);, Ric(c*do?)yu

+ [ §(C_2daab)(c_2d0“”‘y) Ric(c*do?),, RiC(C2dO'2)by:| (c*do?)

5
+% [~ (9 — 25)R(2do?) + (n — 1)(2n — 5)(3n — 11)] (do?)

= 0= )0~ 13)do — 3 (n — 1o’ + Snln — 1) do
+1—i [~ 00— 1)(9n — 25)c + (n — 1)(20 — 5)(3n — 11)] (Pdo?)

Therefore, the Bryant soliton metric (n=2) has the same asymptotic expansion as the formal
calculation.
Finally, calculation the potential function’s expansion in the Bryant soliton case. Recall

1
f(r) = _173 + const. + fgr_2 + f47"_4 + f67‘_6

Then
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and

[—2|Ric|* +2(3n — 5)R — 4n(n — 1)(n — 2)]

ol = ot

[—2 (c7?do™) (¢7*do™) ((n — 1)doas) ((n — 1)doy,)
+2(3n — 5)n(n — 1)c? — 4n(n — 1)(n — 2)]
[—2n(n —1)’c* 4+ 2n(n — 1)(2n — 5)c > — 4n(n — 1)(n — 2)]

o411
5|2

Therefore, the Bryant Soliton example agrees with the calculates done in section 2.1. In
particular, this provides an example where the formal expansion corresponds to a well defined
metric on the manifold.

O] =

3 Asymptotic stability for Ricci-DeTurck flows with
rough initial data and nice asymptotic cones

The layout of this section will be as follows. In section 3.2, the notation and background
needed in the proof of Theorem 2 will be introduced. In section 3.3, the structure of g, will
be discussed. In section 3.4, convergence will be shown in a weak Sobolev norm. In section
3.5, the full regularity of the convergence will be shown.

3.1 Background

The intent of this section is to fix notation and review several ideas and facts from [KL]
needed in this paper. Throughout this paper, all derivatives and distance-balls will be taken
with respect to the Euclidean metric unless otherwise stated. More precisely,

B(:L‘7T) = {y e R" ‘ d(s(l‘,y) - |I’ _y| < T}
The main result needed from [KL] is the following, which is Theorem 4.3 in [KL].

Theorem 4. There exists €, > 0, C,, > 0 such that for every metric go € L*(R") satisfying
g0 — 0| Loo(mn) < € there exists a global analytic solution g € 0 + Xo of the Ricci-DeTurck
flow with g(-,0) = go and [|g — 6||x.. < Cullgo — 6||zeo@n). The solution is unique in the ball
BX=(6,Cren) = {9 llg — dl|xo. < Cren}. (The space X will be defined in the proof below.)
More precisely, there exists R > 0, ¢ > 0 such that for every k € Ny and every multi-index
a € Nj we have the estimate
sup sup | () (18,)* (g — 8)(&,1)] < cllgo — 8|y RIZH) (o] + ).

z€R™ t>0

Moreover, the solution, g, depends analytically on go.
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Proof. This will only be an outline of the proof highlighting elements needed in the argument
of this paper. For a full proof of this theorem, refer to [KL].

First, perform a series of formal manipulations to reformulate the problem as follows.
Suppose that a family of metrics, g(t), solves the Ricci-DeTurck flow. Then define the
related symmetric 2-tensor h(t) := g(t) — ¢ and write down the Ricci-DeTurk flow equation
in terms of A(t). Through out the paper h(t) will be referred to as the related 2-tensor to
g(t). This equation can be manipulated to look like a non-homogeneous heat equation in
Buclidean coordinates.

(0, — A)h = RIh| (43)
The differential operator R acts on a one-parameter family of symmetric 2-tensors and has
the form: R[u] := VR;[u] + Ro[u]

VRl [U]” = Va<((5 + U)ab — 5ab) Vbuij)
1
RO [U]Z] = 5(5 + U)ab(5 + u)pq (Vz-upavjuqb + 2Vaujpvquib — QVGuﬂ,Vbuiq
—2Vjupavbuiq — ZVZ'upavajq + QVanqvpuij)

where all derivatives are taken with respect to the Euclidean metric.
Continuing these formal manipulations, let K denote the standard heat kernel on Euclidean

space

K(2,1) = ()35 (44)

Then the standard solution to the non-homogeneous heat equation with initial data, hg, is
of the form

h(z,t) := Slho|(z,t) + V R[h](x,t) (45)
where for uy € L*(R") and u € C?(R" x (0,0)).
Slug)(x,t) := - K(x —y,t)up(y)dy

V R[u|(z,t) := /0 - K(x —y,t — s)R[ul(y, s)dyds.

Thus, a solution to this equation will solve the Ricci-DeTurck flow. For fixed initial condition,
ho, define the operator

O[u)(z,t) := S[hol(x,t) + V R[u](z,t).

Then a fixed point of ® satisfies equation 43} and thus gives a solution to the Ricci-DeTurck
flow. However, the function space C?(R" x (0, 00)) is too restrictive to find a fixed point, so
expand the domain of definition of ® as follows.

For a family of symmetric two-tensors parametrized by t € [0, 00), defined a norm, X,
by

||| x.. = sup [[u(t)||pemny + sup sup R_%||vu||L2(B(x,R)><(O,R2))
>0 z€R™ R>0

_2
+ sup sup R7+3 ||Vl | pnta(B(z,r)x (72 /2,R72))
x€ER™ R>0
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Denote the space of such families with finite X -norm as X.,. This norm makes X, a
Banach space. Then define two norms Y2 and Y. so that Ry and R; naturally map X,
into a function space with finite Y2 and Y. norm respectively. The precise definitions are

= R " Rn+4 n )

lullve jgugb?zlip( el mxo.m + 1ll 252 (o myx (22 )
_n 2

[lullyy, := sup sup (R QIIUIIL%B(LR)x(o,RZ))+Rn+4|IuIILnH(B(I,R)X(R;,Rz)))-

Let Y, = Y2 +Y!. The precise meaning will be clear in context. Then Koch and Lamm
show that if R[h| € Y, then V maps R[h] back into X .

Hence, letting BX=(0,7) := {u € X! ||u||x. <7}, [KL] shows that for every v € (0, 1),
® maps B¥=(0,7) into X.

Further, for any two families of metrics hy, hy € BX>(0,7),

|@[hn] = @lho]llxo < cllhollo@n [[71 = hallx.

where c is a constant that depends only on the dimension coming from heat kernel estimates
and integral bound constants.

Hence, there exist constants €, > 0 and C,, > 0 such that if ||hg||fe@n) < €,, then the
operator, @, is a contraction on a ball B¥=(0, C,¢,). Note in particular that neither C,, > 0
nor €, > 0 depend on the initial data. (Note that this is the same ¢, as in the main result
of this paper.)

Thus, the Banach fixed point theorem implies there exists a unique fixed point h(t) €
B*=(0,Cyé,) such that

h(t) = B[h(t)] = Slhe] + V RIA()].

Hence, g(t) = h(t) + J is a solution to the Ricci-DeTurk flow for all positive time and is
unique in the ball BX=(4,Cpe,) := {u € Xo| |[u — d||x.. < Cpen}. Standard theory gives
that g(t) is in fact smooth for positive time. This completes the proof in [KL]. O

3.2 Structure of the Asymptotic Cones

The results in this section are straight forward applications of Koch and Lamm’s work. It
is unknown to the author if these propositions have been stated explicitly in the literature
before. However, it should be noted that Deruelle has shown stronger results under a positive
curvature assumption [Der].

Consider the cone metric, gosn-1y, from theorem . The cone metric, gosn-1y, is €,-close
to d in L>(R") because gy of theorem [2|is. Hence, Theorem 4.3 of [KL] applies to go(sn—1)
and there exists a flow, gs,(0) coming out of this cone.

Further, rescaling the initial data by gcse-1)(Az) corresponds to parabolic rescaling of the
flow metrics. Hence, if the initial metric is invariant under rescaling, i.e. a cone, then the
flow is invariant under parabolic rescaling. This is collected in the following two propositions.

Proposition 2. For initial data, go € L®(R™), such that ||go — 6||pmn) < €, define hy =
go— 90 and the rescaling h})(x) := ho(Ax). Then define the operators ®[u)(z,t) = Slho|(z,t) +
VR[u|(z,t) and ®y[u)(z,t) = S[h}](x,t) + V R[u)(z,t). If h(z,t) is the unique fired point of
® as in [KL], then h)\(x,t) = h(Axz, \%t) is the unique fized point of ®y.
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Proof. Notice that convergence back to the initial data would make this result trivial. By
the parabolic invariance of the X, norm,

[1hallxee = [[Pllxe < Cnén.

Hence, it is enough to show that hy € BX<(0,C,¢,) is a fixed point of the operator ®,. This
is a straight forward calculation. First, let g = y/A. Then

RTL
[Az—y|

= /(47T)\2t)_ge_ oz ho(y)dy
_ / (4mt) e Ry (y) A dy

= [ tamt) i )
= SR

Second, let 5§ = s/\%. Then, using that R involves two spacial derivatives in all of its terms,

VRIW (A, \2t) — / t [ KOw =y ) RIN . 5)duds

IAz—y|?

A%t
= / / (4m)\2t) "2 e 1079 R[R](y, s)dyds

le—y /A2

_ / t / (dort)~Ee K RIB (g, X¥5)d(y/ N5/ V)
— // (4rt)~3 e 55 Rihy] (7, 5)dgds
— VR (2)

Hence,
Olu)( Az, \2t) = Py[uy] (=, t)

where uy(x,t) = u(Az, A\*t). Then by the fixed point property of h
ha(z,t) = h(Ax, \*t) = ®[h](\z, \*t) = Dp[h)]
Thus, hy, is the unique fixed point with initial data hy). O

Proposition 3. If the initial metric as in Koch and Lamm’s theorem 4.3 is a rough cone,
go(sn-1y, then the flow, gsq, coming out of this rough initial data is invariant under the
pambolzc rescaling defined in equation[7, i.e.

G A (T, )i = Gsot (AT, N1)ij = Gt (2, 1) (46)

Further, this flow is an expanding Ricci-DeTurck soliton.
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Proof. The initial data is a rough cone metric, i.e. gy = gosn—1) := dr? 4+ r?g,_; for some
rough metric g,_1 € L®(S"1). Let hgo(x,t)i; := gsor(@,t) — . The goal is to show that

ol (AL, N*8)ij = oo (2, )i
Because §(xz,t) = §( Az, \%t), this is equivalent to showing that
hsol,)\(xat) = hsol<)\$a )\Qt)ij = hsol<x>t)ij-

First, look at the rescaled cone metric. Using polar coordinates (r,6) € (0,00) x S*~1, the
rescaling g3 (z) := go(A\x) can be written gé(Sn,l)(r, 0) = gcsn-—1y(Ar,0). Then

gc(gn—l)()\’l”, 9) = d()\?’)2 + ()\7”>29n—1 = )\QQC(Sn—l)(T, 9)

Thus, gé(Sn,l)(r, 0) = XNgcsn—1)(r, 0). Further, let hogn-1) = gogn-1y — 0. Then, because &
is also a cone metric,

heyn1y (1, 0) == hegn-1)(Ar, ) = Nhegn-1)(r, 0).

Second, turn attention back to the flows hyy, and hgy x. By assumption, gy is the unique
fixed point of
Dyoi[u](z,t) = Shogn-))(z,t) + VR[u](x, ).

Then, by the previous proposition, the rescaled flow, A4y, 5, is the unique fixed points for the
operator
Do [u](z,t) = S[hé(an)](x, t) + VR[ul(x,t).

By the above calculation for the initial cone metric,
Sheen-1))(@,t) = A2S[heen1))(2, 1)
Then by the fixed point property of hgy z,
hsoix(x,t) = S[hé(sn,l)}(:ﬁ, t) + VR[hsoi)|(2,1)

By the equation above,

hsoir(z,t) = N2S[hen-n)(z,t) + V R[hso x| (2, 1)
Then divide by A2,

A 2 hgn(T,t) = Slhen—](z,t) + VRIA ?hen](2,t) = @t N 2 haoin] (2, 1)

Hence, A 2hgox(,t) is a fixed point on ®,. Further,

A2 hsoral| X0 = A7 M Psoral | x0e = A7 ol || -

Thus, for all A > 1, if hyy € B*=(0,Cpe,), then A2hg € B*=(0,Cphe,). On the other
hand, A,y is the unique fixed point of @,y in B¥=(0, Cy¢,). Therefore,

h501($, t) = )\_thol()\iﬂ, )\Qt)
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and hence,
Gsol(T,t) = A2 gsor(Az, N*1).

Rewriting this for t = 1 and letting A\?> become the time parameter gives

Gsol (t) = tgsol (1)

for all times ¢ > 0. Thus, this solution is an expanding Ricci-DeTurck soliton.
This may seem to contradict equation 46 However, notice that when the two flows are
calculated using the same basis of 1-forms, they are the same. Let & := Ax. Then

hsol(ﬂf, t)mdl'l X dl‘j = )\_thol()\I, )\Qt)”dfl X dfj
= hsol(/\I, /\2t)23dl’l X dl’j

Subscripts will be used to denote that the same basis is used on both sides of an equation.
Hence, the above equation will be written

hsol(LE, t)ij = hsol<)\l', )\Qt)ij. (47)
This equation implies equation [46] directly. ]

Remark. One would like to translate this result back into the Ricci flow setting as follows.
Take a cone metric, gy, on R™ sufficiently close to the Fuclidean metric but with angle greater
than /2, i.e. with negative curvature. This metric will not be smooth at the cone point, so
the Ricci flow coming out of this metric s not a priori defined. However, the result of Koch
and Lamm says that there is an immortal Ricci-DeTurck flow, g(t), stating from g(0) = go.
By the argument above it is an expanding Ricci-DeTurck soliton. Take the time slice at
t = 1 of this Ricci-DeTurck flow, (R™, g(1)). This will be a smooth manifold, so it can be
translated back to the Ricci flow setting and will be an expanding Ricci soliton, (R™, §(t))i>1-
Then taking the flow back in time is just a matter of rescaling the metric. The limiting
metric at time t = 0 is just the asymptotic cone of a later time slice (see [Der]). By Lott
and Zhang’s work, this asymptotic cone must be the same cone as the initial metric for the
Ricci-DeTurck flow, §(0) = go.

Unfortunately, it is not clear to the author how to make this argument rigorous. In par-
ticular, it is not clear that the Ricci-DeTurck flow nor the diffeomorphism that translates
between the Ricci flow and Ricci-DeTurck flow preserve the asymptotic cone.

3.3 Proof of Convergence

With the preliminaries set, turn back to proving theorem [2| of this paper. In this section,
let g(t) be the metric from theorem [2) i.e. ¢(0) = go is €,-close to the Euclidean metric
and asymptotic to a rough cone, gon-1). Let gin be the Ricci-DeTurck flow coming out
of geosn-1y and define the 2-tensor, heon-1y 1= gen-1y — 0 and the family of 2-tensors
hsor(t) := gsot(t) — 0. (Recall that Koch and Lamm'’s result is need to ensure that g, exists
because go(sn-1y is not C? at the cone point unless it is the flat metric.) To study the blow
down of g, define the family of flows

ax(z,t) == gz, \*t) (48)

and the related families of symmetric 2-tensors h(t) := g(t) — § and hy(t) := ga(t) — 6. The
goal of this section will be to show that hy — hgy as A — oo on R™ x (0, 00) in a weak sense.
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3.3.1 Reduction of Problem

To begin, establish two basic properties of the rescaled flows, g,(t). First, the Ricci-DeTurck
flow is invariant under the parabolic rescaling defined by equation [7l Hence, for each A\ €
(0,00), the family of metrics, g(t), is also a solution to the Ricci-DeTurck flow.

Second, the X ,-norm is also invariant under parabolic rescaling, so the following lemma

holds.

Lemma 5. Let hy, be the related 2-tensor of a Ricci-DeTurck flow coming out of a rough
cone as described in section[3.9. Let h(t) be the related 2-tensor of a Ricci-DeTurck flow as
in Koch and Lamm’s result. Then, for every 1 < X < oo,

||h')\ - hsol”Xoo - ||h - hsol”Xoo

and in particular,
[l xe = (17 x-

Proof. Notice, the asymptotic assumptions are not used in this lemma at all. Hence, the
second equation is just a special case of the first equation when the rough cone metric is the
Euclidean metric, go(gn-1) = 9, i.e. when hy, = 0. The proof is a simple calculation.

Recall that by definition,

|hx = hsotl | xoo. = sup|| (ha — hsor) (t)||L°°(R")
>0

+ sup sup R3[|V (ha — hsot) || 22(B(om)x (0,52))
z€R™ R>0

+ sup sup R4 ||V (hy — hao)|
x€R™ R>0

L’IL+4(B(I7R)><(R2/27R2))

Further, recall that hy(y,s) = h(A\y,A%s) by definition and hey(y,s) = he(Ay, A%s) by
proposition 2 in sectionﬁ (equation. Define the coordinates § := My, 5 := \%s, T := Az,
and £ := A\?t. Also let R := AR. Then look at each term in the X, -norm.

First,

up || (1 = hoot) () [y = 5D | (b = hrat) O2)] [0
>0 >0
= Sup || (h - hsol) <)‘2t)||L°°(Rn)

A2t>0

= sup || (h = Psor) (QHL"O(R")

t>0
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Second,

R2
Hv(h)\_hsol)HLQ(B(a:,R)X(O,R2)) = / / (V(hx = hsor)(y, )) dyds)
0 B(z,R)
R , 2
- / / (AV(h = heot) (Ay, Ns))” dyds
0 B(z,R)
R? 2
- ([ [ 0= b)) A?dyds>
0 B(z,R)
A2R? )
- ([ [ - ha)@) A—”d<Ay>d<A23>>
0 B(Az,\R)

(/R/ B V(h — o) (7, §>>2dyd§>2

= A72||V(h— hso)ll2(B(z,R)x (0,R2))

o=

[NIE

|
ols

Hence,

sup sup B2 ||V (hx — hea)|| 12(5(0.1)x (0,52)
z€R™ R>0

= sup sup R 2[|V(h — hyo)|| 2(Bz.2)x (0.52))
ZER™ R>0

Third,

[V (hx = hsot)|| L4 (B, r)x(0,R2) =

R i
/ / (Vo = hoor) (3, 5))" dyds)
0 B(z,R)

nt4a
/ (AV(h — heot) Ny, A25))" ™ dyds
B(z,R)

1

/0R2 / (V(h = hsa)(5.5)""" )‘n+4dyds> o

_1

/B (V0= b5 A?d(@)d(vs)) n

72 =
. / / (V(h = ha)(5,5))" dgds
0 B(z,R)

_2
= X[V (h = heo)|| Lra(B(a, Ry (0,52))
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Hence,

2
sup sup R+ ||V (hy = hsor) || Lnt4(B(2,R) < (R2/2,R2))

2€R" R>0
= 2
= sup sup B+ ||V (h — hso) || pn+1(B(z, 7)< (R2/2.72))
ZER™ R>0
Therefore,
|hx = hsotl | xoo. = sup|| (ha — hsor) (t)||L°°(R”)
>0

+ sup sup R ||V (h = hsot) || 1250, 1)x (0.52))
z€R™ R>0

2
+ sup sup Ro+1 ||V (hy — heot)| | Lrta (B, R)x (B2 /2,82))
xeR™ R>0

= sup || (h = hsor) ()] oo (n)
t>0
+ sup sup R 2||V(h — hea) || 2(Bz,R)x (0,72))
TER™ R>0

— 2
+ sup sup R7+1||V (h — heot) || po+a Bz, R)x (B2 /2,R2))
ZER™ R>0

= Hh - hsolHXoo

Note, while these two properties are true for all positive A, the only important values of A
when studying the blowdown are A\ > 1. O]

Next, define the operator ®,, on X, such that for u € X
(I)sol [U] = S[hc(gnfl)] + VR[U]
Then lemma [5[ can be used to show the following.

Lemma 6. 7 [h)] = hso in Xoo as m — oo uniformly for all 1 < X\ < oo. (Here the

superscript m denotes applying the map m times.)

Proof. By [KL], @, is a contraction on BX><(0,C,¢,) which has a unique fixed point hgy
(see section . Hence, for any u € BX>=(0,Cy¢,), ™ [u] — he in Xy as m — oo. This
convergence is allowed to depend on u.

More precisely, @, is a contraction on BX><(0, Cye,), so there exists a constant 0 < y < 1
such that for any wuy,us € BX<(0,Cye,)

||(I)sol[u1] - q)sol[UZ]HXoo S 7”“1 - uQHXoo
and hence,
|10 [ua] — D [ualllxe < 7™ [Jur — vzl x.-

Then because 0 < v < 1, ™ — 0 as m — 00. Let uy = hyy and use that @y [hse] = hsol-
Hence,

[ @i [u1] = Psotr| | x0o <A™ [|U1 — Psor]|xoe -
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By the assumptions on the initial metric, ||go — 0||L=(®n) < €,, and Theorem 4.3 of [KL],
ha(B)llx = 17D xe < Cullgo = 0ll@n) < Cren.
Thus, for any fixed A, plugging in u; = h) gives
| DLoilA] = Psarl | xoe <A™ [l = Prsor] | xec -

sol
Moreover, by lemma
[17x = hsotllxoo = 1A = Psa] | x
Therefore,
[ @5ula] = Trsatl | xoe < ™2 = hsotl[x

Thus, there exists a bound independent of A that goes to zero as m — oo. O

Remark. Lemmal5 and lemmald do not make use of the asymptotic assumptions on go, and
all the statements above hold for any flow coming out of initial data, go, that is €,-close to
§ in L=(R™) and any flow coming, gso, coming out of a rough cone, gesr-1y.

Unfortunately, lemma [5| also shows that h, does not converge to hg, in the X .-norm.
Thus, define a weaker norm as follows

ullxs oy == sup |u[+ sup t_%HVUHme,\/Z 0,t
(z,t)¢Q(r) (z,t)¢Q(r) (B(z,Vt)x(0,t))

+ osup ||Vl s
(x’t)gg(r) [IVul| ot (B(z,vE)x(t/2,t))
where Q(r) := B(0,7) x (0,7%) C R™ x (0,00). Notice in particular, that convergence in
Xoo implies convergence in X/ (r) for every r > 0. (see section for a more detailed
discussion of this bound.) Then the following will be shown.

Lemma 7. For every € > 0, every r > 0 and each fited m € N, there exists a constant
A € R such that for all X > A

6/

173 = Palhalllxe e < 5-
To see why this lemma is enough to imply convergence, argue as follows. First, by lemma

[6] for every € > 0, there exists M € N (independent of \) such that for all m > M,

E/

[[@Lor[rA] = Psatl|xr ) S | PU[PA] = hsot] | x00 < 5

Pick m = 2M and fix this choice of m. Second, by lemma [7] for every r > 0, there exists
A € R such that for all A > A

6/

[17x = Palmalllxe o < 5
Therefore, by the triangle inequality, for any ¢ > 0 and any r > 0, there exists A such that

for all A > A
[1ha = Bsal | xr o) < [ha — @i lhall I xe, ) + || @[] = Posarl|xr o) < €.

Therefore, hy — hgy in X/ (r) for each r > 0.
The proof of Lemma [7] will be given in the next three subsections. The proof will follow
by induction on m.
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3.3.2 Base Case

For the base case, let m = 1 and study h) — ®s,[h,]. Recall that hy can be written
ha(x,t) = S[ha(-,0)](z,t) + VR[h)](z, 1)
t
— [ K@y 0ha0dy+ [ [ K- gt - R @ s)dyds (19
Rn 0 Rn

Then from the definition of ®,,,

h)\ - (bsol [h)\} = S[g)\ - gsol] = K(l‘ - Y, t)(g/\ - gsol)(ya O)dy
Rn
which is the standard solution to the heat equation on R"™ with initial data (gx — gso)(+,0).
Recall the following bounds on the Fuclidean heat kernel. For any integer k£ € Ny, multi-
index a € Nj, and ¢ > 0, there exists a constant, ¢, such that

||8£€VQK(-, t)“Ll(Rn) < Ct_k_‘a|/2

Moreover, for any x € R"
& 1 —n—2k—|af
PV K (2,1)] < ¢ (ﬁ + m)

Then, for any time ¢ > 0, any integer k£ € Ny, any multi-index o € Njj and any real number
r >0,
vaaﬂh}\ — (I)sol [h)\] | ((E, t)

= /H(Vaaf[()(:c — ¥, t)(9x — gso) (¥, 0)dy

< 1(gn = gsot) (5 )| Lo @\ B0y - VOO K (-, 1) L2 e\ B0.))
+[1(gr = gsot) (- )l oo B0 - [IVOFK (8)]| 1 (B(0.ry) - vOL(B(0, 7))

—n—|al—2k
< ) et L 26 ¢ (té + inf |y|) - ear”
yeB(z,r)

where here ¢; and ¢y are from the above heat kernel bounds and c3 is a geometric constant that
only depends on the dimension, n. Take r = A~'/2. Then for each fixed pair (x,%,) € R" x
(0, 00), there exists a neighborhood, U around (xg, tg) such that this bound goes uniformly
to zero in U as A — oco. Thus, as A — 00, |hy — Psu[hn]| = 0 in CP2(R™ x (0, 00)).
Further, let Q(r¢) := B(0,7r9) x (0,72) and consider hy — ®,,[h,], i.e. let & = 0 and
o = 0. Then note that for any fixed 7o > 0, this bound converges uniformly to zero for every
(x,t) € R" x (0,00)\Q(ro), i.e. for all ro > 0, 3 ¢ depending only on the dimension such that

sup ‘h,\ — (IDSOZ[h,\H(x, t)<c (77 ()\1/2) + /\_”/2)
(z,1)¢Q(ro)

which converges to zero as A — oo. In particular, |hy — ®sy[ha]| = 0 in X/ (r) for every
r > 0. However, notice that hy does not approach ®,[h,] in the X -norm precisely because
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X is invariant under parabolic rescaling and the bad behavior near (0,0). More precisely,
the L*°(R™)-norm does not improve under rescaling even though it may be zero in the limit,
SO

1ha = Psarlla]l|xo = [[P(0) = Pocr[A](0) ]| 2o @n)-
For example, take gy to be gs,(0) perturbed by a smooth bump function with compact
support around 0. The next section will that the X/ (r)-norm fixes this problem.

3.3.3 Modified Norms

To motivate this section, notice that for any i > 1,

sol sol sol sol
t
= [ K= gt ) (RO - RO (0. 5)dyds
0o JR”»

is the standard solution for the non-homogeneous heat equation with initial data identically
zero. From [KL], the composition of the operators V and R are a contraction on X.,. Hence,

[[hx — @[]l xee < mf|hx — Poai[Pa][|xo0

sol

©yp (1] = Poulha] =V (R[®,1[ha]] — B[P [ha]])

However, as seen in the last section, the X ,-norm of the initial step does not improve as

A — o0o. Nevertheless, it was enough to have convergence on the complement of any open set

containing (0,0). This section will be devoted to replacing the X.,-norm with the X _(r)-

norm in the above bound. Then the next section will show that this bound goes to zero as

A — oo and implies convergence on the complement of any open set containing (0, 0).
Define the following norm (first seen in section

l[ul|x ) == sup |u|+ sup t_%||vu||L2(B(x,\/f)><(0,t))
(z,)¢Q(r) (z,1)¢Q(r)

+ osup ||V s
(m)gég(r) [[Vul|pnr (B(z, V) x(t/2,1))
where Q(r) := B(0,7) x (0,7%) C R™ x (0,00). To clarify, the supremums are taken over
pairs where ¢ > 0 because the initial data only has finite essential supremum. Compare this
to the X -norm stated in section with t = R%. Notice in particular, that convergence in
X implies convergence in X/ (r) for every r > 0. However, the converse is false as seen in
the previous section where hy — ®yy[h,] in X/ (r) for every r > 0 but not in X..
Similarly, define the norms

_n _2
gy = sup (¢ Hlullsqota o + 0570l 258 s )

_n 1
||u||Yéo!1(r) ‘= sup : (t 4 ||U||L2(B(x,\/2)x(o,t)) +tn+4||u||L"+4(B(z,\/f)><(t/2,t))>

(z,1)¢Q(r
which correspond to the Y-norms in [KL]. Following Koch and Lamm’s notation, denote
Y (r) = Y o(r) + Y, ,(r). The precise meaning will be clear in context. The following is
a simple adaptation of the arguments in [KL] Lemma 4.1 and Lemma 4.2. By the above
definitions for X! (r) and Y. (r) and the definition of the differential operator R = Ry+V R;
from section [3.1 we have the following.
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Lemma 8. For every 0 < v < o < 1, the operators VR[] : X (r) — Y[ ,(r) and
Ro[-] : XL (1) = Y o(r) are analytic with the estimates

for all h € BX=1(0,7) N BX=(0,0) and
1R[] = Bla]llvz,0 < e, ) (Wl + 1Al ) 1 = Pl

for all hy, hy € BX=((0,7) N BX=(0,0).
Then use the heat kernel estimates from section to prove the following.

Lemma 9. Let R = Ry + VR, € Y. (r1) NYy. Then for any ro > 2ry, VR is in X! (1)
and we have the estimate

1

IV Rllxe oo < ClIRIlyeon + ClIR] v (—)

Proof. Divide up the space R" x (0,¢) over which we will integrate as follows. Let @y :=
B(0,71) x (0,7%) be a small cylinder around (0,0) where we only have Y, bounds for R. Let
Q2 := B(x,75) x (t — r2,t) be a small cylinder around (z,t) where K becomes unbounded.
Finally, by definition of X/ (r9), we only need to consider (z,t) & Qo := B(0,r9) x (0,73).
Look at the integral over ()1, @2, and R™ x (0,¢)\ (@1 U @Q)2) separately.

First, consider the integral over Q;. Let Q' := B(x,r1) X (t —r?,t] and let ¢; be constants
depending only on n. Then

le K- -Ry+ VK - Ridé

< 1Klzeer) - 1ol zran + IV K ieion - 11 z2n - 11 Ballzzan
< o (\/(t—r%)++(!x|—ﬁ)+) 7 Rollye

—n—1
o ( (t—r2), + (|| - >) ) Ryl
r\" r
< allF. (7)) (142
,r n
< Rl (—)

Second, ()2 corresponds to () in Koch and Lamm’s paper, and the integral over (), is
bounded using the same argument as they use for I. Third, the integral over the region
R™x (0,t)\(Q1UQ2) corresponds to I in [KL] and also follows the same argument. Similarly,
the L? and L™ bounds on the derivatives follow from the argument in Koch and Lamm as
well. This completes the proof of Lemma [0 ]
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3.3.4 Induction Step

Now that the correct norms has been chosen, the induction step can be carried out. Applying
the two lemmas and the modified norms for i > 1

@2 (ha) = DL (R |z (o)
= ||V (R[®L7(hx)] = RI®L (ha)]) e o)

sol sol

i i )"
<l RO )]~ RO Bl +cxeo (2

< a0~ 0 )l + cxen ()
0

Here the third line follows from Lemma [9] and the bound

1RID7 (h)] = RIPy (Ml < e5l1P (ha) — @35 ()l |xe < €5 - 2Cnen.

sol sol sol sol

The fourth line follows from Lemma [

This completes the induction for an appropriate choice of ry and r;. The only complication
is that at each step r; becomes ry. To show this isn’t a problem, fix m € N and ry > 0. Let
a € R., be a constant to be determined later. For each integer, i from 1 to m, let r; = ro/a’.
Then the following holds.

[[(hn) — @52, (M)l x7 o)

< D RG () — i (m)llxg )
i=1

m—1 m—1 n
. Tq
< e 1) — Bl oy + a6 3 — ) <r, )
i=0 i=1 -1
< ¢ E N(AT) + caen E (m—i+1) <Tri )
i=1 i=1 i1

< eymn(Ary,) + csepmPa™

where the constants ¢; depend on the dimension, n, and the constants m, and ry. Then there
exist @ and X large enough so that cymn(Ar,,) + cse,m?a™" is arbitrarily small.

More precisely, fix 7o > 0. Then for every ¢ > 0 and for each m € N, there exists A € R
such that for all a > A,

6/

cse,miat < 1

Pick a = 2A and fix this constant. Then there exists A € R such that for all A > A,

rA _ €
cam — —
AT 1) o 1

Thus, for every rg, ¢ > 0 and for each m € N, there exists A € R such that for all A > A,
. €
[1(72) = @5 (M)l o) < camn(Arm) + cseqm®a™ < <.
This proves lemma . Therefore, hy — hgy in X! () for each 7 > 0. The next section will
be devoted to increasing the regularity of this convergence.
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3.4 Regularity of Convergence

This section will focus on replacing convergence in X/ (r) for each r > 0 with convergence
in Cp°(R™ x (0,00)). First, notice that convergence in X/ (r) for each r > 0 directly

loc

implies CP_(R"™ x (0,00)). To see this take (xg,ty) € R™ x (0,00). Let g = to/2 > 0

loc

and Q(ro) = B(0,79) x (0,73). Then
sup |h>\ - hsol| < ||h>\ - hsol“X(’,O(ro)
(z,t)¢Q(r0)

which converges to zero as A — oo.
Note that both gy and g, are smooth for all ¢ > 0, with scale invariant bounds given by

sup sup|(£2V)*(19,)" (g — ) (w, )] < Cley (50)

z€R™ t>0

where C' is a constant depending only on «, k, and n (see section . In particular, this

derivative bound on g, does not depend on A. Hence, it make sense to ask if their derivatives

converge as A — oo. Notice, this is the same as asking about the derivatives of hy and h,.
Define the two-parameter family of symmetric two-tensors

ux(z,t) = hy(z,t) — hso(z,t) = ga(x,t) — gsor(, 1) (51)
for t > 0 and A > 1. Similarly, define
falz,t) = Rlhy](z,t) — Rlhso](z,t). (52)

Note that f) is a perfectly well-defined smooth function for all A because h, and h,, are
both smooth functions. Hence, uy, and f satisfy

(O — A)ur(z,t) = fa(x,t)
for the initial condition uy(+,0) = (gx — gsot)(+,0). Then, uy can be written
ur(a,t) = Slua(-0)l(z, 1) + VIfi](x, 1)

= K(.CE -, t) (g)\ - gsol) (ya O)dy
Rn

t
4[] K=yt = ) dyds
0 R»

Now we can state the following lemma.

Lemma 10. With uy and fy as above, if equation[5]] holds for uy and uy converges to zero
in X! (r) for all v > 0, then uy and fy converge to zero in C2(R™ x (0,00)).

loc

Proof. The idea is then to show Sfuy(-,0)](z,t) goes to zero smoothly because the initial
condition goes to zero; and then V|[f\](z,t) goes to zero smoothly because f\ goes to zero.

It is not yet clear that f) goes to zero because it requires C? convergence of uy.

Look at S{ux(-,0)](x,t). Recall, from section that hy converges to @y [hy] in CP2(R™ X

(0,00)). It is worth noting that a stronger induction argument is probably possible. However,
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because @7, [h,] only converges to hsy in X, no stronger statement could be made about
the convergence of hy to hg, directly.
Nevertheless, notice

S[“A('a O)KI’, t) = K(l’ - Y, t) (g)\ - gsol) (ya O)d?/ = (h)\ - q)sol[hk]) (l‘, t)
RTL
Hence, by the argument of section [3.3.2) for all ¢ > 0, for all integers £ € Ny and all
multi-indexes o € N,

‘OkVO‘S [ur(+,0)](z, )] = 0 as A = o0
Therefore, S[uy(-,0)] — 0 in C2(R™ x (0,00)).

loc
Now focus on the non-homogeneous part, V f\. To bound the space derivatives of V fy,
divide up the integral and change coordinates. Then take the spacial derivative. For a € N,

Vav.f)\(l',t) VQK(I -yt S)f)\(y7 S)dyds

B /R"X(O,t)\(B(x,r)x(tr2,t))
+/ K(y,s)V*fa(r —y,t — s)dyds
B(0,r)x(0,r2)
— T4+

Look at each of the integrals separately. The derivatives of the heat kernel act similar to
the heat kernel away from the point (0,0). Using this similarity, the same argument as in
Lemma |8 above shows that for any fix » > 0, the integral I goes to zero as A — oo. However,
the same argument does not work for integral I1. The change of variables avoids the bad
behavior of the derivatives of the heat kernel near (0, 0).

Fortunately, the derivative bounds for u, are enough to gain control in this region.

1”2
I1 g/ (-, 5)|| 22 mmyds - sup IV fa(y, s)]
0 (y,5)€B(z,r) x (t—r2,t)
<r?ce,(t — 7’2)_‘“%

For every ¢t > 0, this goes to zero as r goes to zero. Thus, by first picking r small enough
and then picking A\ big enough, both [ and I7 can be made arbitrarily small. Thus, all the
spacial derivatives of V f), and hence all the spacial derivatives of uy, converge to zero as
A — oo. In particular, f\ converges to zero because it only involves space derivatives.

Finally, the time derivatives of V f, will be bounded using the same method as the space
integral. However, the boundary terms of V involve ¢, so the time derivatives add extra
terms. Consider the first time derivative.

UV f(z,t)] = / DK (& — gyt —s) - faly, s)dyds
R x (0,t)\(B(0,r)x (t—7r2,t))

// K(y,s) - O falx —y,t — s)dyds
B(0,r)

/ K(x—y,r*) - faly, t —1*)dy
B(z,r)
= ]1—{—[]1—|—][]1
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Here, the terms I; and I1; are controlled in the exact same way as the spacial derivatives.
The only new term is I11;. However, I11; goes to zero as A goes to infinity because f) does.
Taking the spacial derivative of Iy, 11y, and I1I; shows that all spacial derivatives with
one time derivative converge to zero. For [; and I use the same arguments as in the case
of no time derivative. For 11, use that r > 0, so the L'-norm of VK (-,7?) is bounded and
f converge to zero as before. In particular, 9, f\ converges continuously to zero.
Now the rest of the time derivatives are shown through induction. To illustrate, look at

0;

GV falw, )] = 0K (x —y,t —s) - faly, s)dyds

/Rn x (0,t)\(B(0,r)x (t—r2,t))

+/ K(y,s) -0} frlz —y,t — s)dyds

0o JBOr)

+/ Kz —y,r%) - 0 f(y,t —r*)dy
B(z,r)

+ / O (2 — y,72) - Faly.t — 1%)dy
B(z,r)

= L+ I1L+I11,+ 1V,

The first three terms are all bound exactly as in the first case. Notice that the first two
bounds work for all derivatives of time, while the third uses the induction hypothesis, i.e.
Oifa(z,t) — 0 for all t > 0 as A — oo. All that remains is the derivative of the boundary
term from I; in the previous derivative, integral IV,. Here use that for all 72 > 0, the
L'(R™)-norm of the all space and time derivatives of the heat kernel are bounded at time r2.
Then use that f) goes to zero as A — oo as before. Lastly, take the spacial derivatives of
each term and use the same argument to show they all converge to zero. In particular, this
shows that 02 f\ goes to zero as A goes to infinity.

Continuing this process shows that all time and space derivatives converge in a locally
controllable way. Therefore, h) converges to hsy in C/2(R™ x (0,00)). Equivalently, g

converges to gso in CP2(R™ x (0, 00)). O

loc

Remark. The argument in this paper can be used to show a similar result in the setting of
[DL]. The only major difference would be in the regularity argument.
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