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Abstract

Asymptotically Conical Metrics and Expanding Ricci Solitons

by

Patrick F Wilson

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor John Lott, Chair

In this thesis we first show, at the level of formal expansions, that any compact manifold
can be the sphere at infinity of an asymptotically conical gradient expanding Ricci soliton.
We then prove the existence of a smooth blowdown limit for any Ricci-DeTurck flow on
Rn, starting from possibly non-smooth data which is asymptotically conical and sufficiently
L∞-close to an expanding soliton on Rn. Furthermore, this blowdown flow is an expanding
Ricci-DeTurck soliton coming out of the asymptotic cone of the initial data.
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1 Introduction

On a fixed Riemannian manifold M , a family of metrics (M, g(t))t∈[0,T )is said to evolve by
the Ricci flow if

∂

∂t
g(t) = −2 Ric(g(t)). (1)

The Ricci flow has become an important tool in geometric analysis. When looking at the
Ricci flow on noncompact manifolds, the asymptotically conical geometries are especially
interesting. Before defining an asymptotically conical geometry, we recall that the cone over
a manifold Y is topologically given by Y × (0,∞) ∪ {?}, where ? denotes the cone point.
The manifold Y is called the link. If the link is a compact Riemannian manifold (Y, gY ) then
the Riemannian cone over Y, denoted C(Y ), is a Riemannian manifold away from its cone
point. Let r denote the coordinate on (0,∞), where r = 0 corresponds to the cone point ?.
Then the cone metric is given by gC(Y ) = dr2 + r2gY .

More generally, a Riemannian manifold, (M, g), is said to be asymptotically conical if there
exists a cone manifold (C(Y ), gC(Y )) such that

lim
λ→∞

(M, p,
1

λ
g) = (C(Y ), ?, gC(Y ))

in the pointed Gromov-Hausdorff sense, and there is smooth Cheeger-Gromov convergence
on compact sets away from the cone point. The cone manifold C(Y ) is called the asymptotic
cone of (M, g). This rescaling limit is closely related to another limit, called the parabolic
blowdown, often studied in Ricci flow on noncompact manifolds.

The parabolic blowdown can be defined as follows. Suppose that the Ricci flow (M, g(t))
on a noncompact manifold M exists for all positive time, t ≥ 0, i.e. is an immortal Ricci
flow. Let {λi} be a sequence of real numbers such that λi →∞ as i→∞. Define a sequence
of flows by gi(t) := λ−1

i g(λit). Finally, let {pi} be a sequence of points on M . Then the
behavior of the flow at large times and near spatial infinity can be studied by taking the
pointed Hamilton-Cheeger-Gromov limit

lim
i→∞

(
M, gi(t), pi

)
=
(
X, g∞(t), p∞

)
, (2)

called the parabolic blowdown of (M, g(t)). This limit flow, g∞(t), is called the blowdown
limit of (M, g(t)). This limit may depend on the choice of sequences {λi} and {pi}.

The blowdown limit is not guaranteed to exist. However, if (M, g(t)) is an immortal Ricci
flow on a noncompact manifold, and the initial metric is asymptotically conical, then Lott
and Zhang proved there is a subsequential blowdown limit flow g∞(t) that is defined at least
on the subset of C(Y )× [0,∞) given by {(r, θ, t) ∈ (0,∞)× Y × [0,∞) : t ≤ εr2}, for some
ε ([LZ]). Furthermore, if the initial metric is asymptotically conical then each time slice of
the Ricci flow is asymptotically conical with the same asymptotic cone ([LZ]).

Since the original flow is asymptotic to the same cone C(Y ) for all time, the simplest
scenario is that g∞(t) is a gradient expanding Ricci soliton coming out of C(Y ). Recall that
an expanding Ricci soliton is a self-similar solution to the Ricci flow that can be written
g(t) = tφt(g0) where g0 is the initial metric and φt is a family of diffeomorphisms generated
by V/t. Here V is a time-independent vector field.
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When this vector field can be expressed as the gradient of a function, ∇f = V , the
flow is called a gradient expanding soliton. The function f is called the potential function.
Alternatively stated, a gradient expanding Ricci soliton is specified by a triple (M, g0, f)
such that

2 Ric(g0) + 2 Hessg0 f + g0 = 0. (3)

There are many examples of gradient expanding solitons. Schulze and Simon showed that
the Ricci flow starting from a Riemannian manifold (M, g0) with a nonnegative, bounded
curvature operator, and positive asymptotic volume ratio, exists for all positive time. Fur-
ther, there exists a subsequential blowdown limit, and this blowdown limit flow is a gradient
expanding Ricci soliton coming out of the asymptotic cone of the initial metric (M, g0) ([SS]).

This leads to the question of which cones admit an expanding Ricci soliton structure,
i.e. which Riemannian manifolds are admissible links. Deruelle showed in [Der] that if
the link (Y, gY ) is a smooth, simply-connected, compact Riemannian manifold with strictly
positive curvature operator, then there is a unique expanding Ricci soliton asymptotic to
(C(Y ), dr2 + r2gY , r∂r/2). Both of these results rely heavily on the nonnegative curvature
assumption. However, recall that the Ricci curvature of a Riemannian cone is given by

Ric(gC(Y )) = Ric(gY )− (n− 1)gY

where the link is (Y, gY ). Hence, any link with negative Ricci curvature would heuristically
seem to correspond to an expanding solution of the Ricci flow. Unfortunately, negative
curvature assumptions are not in general preserved by the Ricci flow. This thesis will be
dedicated to trying to prove results about expanding Ricci solitons and asymptotically conical
manifolds without any assumption on the curvature.

The first main result of this thesis can now be stated.

Theorem 1. Given a compact Riemannian manifold (Y, gY ), there is a formal solution to
equation 3 on (0,∞)× Y of the form

g = dr2 + r2gY + h0 + r−2h2 + · · ·+ r−2ih2i + · · · (4)

f = −1

4
r2 + f0 + r−2f2 + · · ·+ r−2if2i + · · · (5)

where h2i is a symmetric 2-tensor field on Y and f2i ∈ C∞(Y ). The solution is unique up
to adding a constant to f0. 1

In other words, on the level of formal asymptotic expansions, any compact manifold,
(Y, gY ), can be the link of the asymptotic cone of an asymptotically conical, gradient ex-
panding Ricci soliton, i.e. the sphere at infinity. In particular, no assumptions are made
about the dimension of Y or about the curvature of gY . This result was shown in the Kähler
case by Lott and Zhang [LZ]. The same argument used to prove Theorem 1 also shows the
existence of a shrinking soliton structure on the level of formal asymptotic expansions. This
result will be discussed in section 2.

1The proof of this theorem was published by the author and Professor John Lott in PROCEEDINGS
OF THE AMERICAN MATHEMATICAL SOCIETY Volume 145, Number 8, August 2017, Pages 35253529
http://dx.doi.org/10.1090/proc/13611 Article electronically published on April 28, 2017
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To state the second main result of this paper, recall that the Ricci-DeTurck flow is a
parabolic flow closely related to the Ricci flow. The parabolic structure of this equation will
be used in place of any curvature assumptions to guarantee uniqueness and existence or the
flow. In particular, because Riemannian cones are often not C2 at the cone point, the Ricci
flow coming out of a cone manifold is not a priori defined.

On a fixed Riemannian manifold M , a family of metrics (M, g(t))t∈[0,T ) is said to evolve
by the Ricci-DeTurck flow if

∂tg(t) = −2 Ric(t) +∇iVj +∇jVi on M × (0, T ) (6)

where V is a 1-form given by Vi = gil
(
gΓljk − ĝΓljk

)
gjk for some background metric, ĝ. Let

(Rn, δ) denote Euclidean space. On Rn, we take ĝ = δ and then Vi = gil
gΓljkg

jk.
Recent work by Koch and Lamm established the existence of Ricci-DeTurck flows on Rn

coming out of rough initial data that is only in L∞(Rn) when the initial data is εn-close to
the Euclidean metric in L∞(Rn) ([KL]). Here εn is a fixed constant depending only on the
dimension. Moveover, these flows exist for all positive time and are unique in a weak Sobolev
space.

This result was extended by Deruelle and Lamm in [DL] to the case when an expanding
gradient Ricci soliton with positive curvature operator is used as the background metric,
rather than the Euclidean metric. That is, if a metric g0 ∈ L∞(Rn) is ε-close to an expanding
gradient Ricci soliton with positive curvature operator, then there exists an immortal Ricci-
DeTurck flow coming out of g0 and the flow is unique in a small ball in a Sobolev space. Note
that this ε is not the same as in Koch and Lamm’s result and may depend on the particular
soliton used.

Several of the notions from above such as an expanding soliton, a blowdown limit, and
an asymptotic cone can be defined for the Ricci-DeTurck flow as well. Define an expanding
Ricci-DeTurck soliton to be a Ricci-DeTurck flow, g(t), that satisfies

g(λx, λ2t) = g(x, t)

for all positive times, t > 0. Note that a Ricci-DeTurck soliton will correspond to a Ricci
soliton when correctly translated back into the Ricci flow setting.

The blowdown limit of an immortal flow can also be translated into the Ricci-DeTurck
flow setting. Suppose that a Ricci-DeTurck flow g(t) on Rn exists for all positive time. Then
for λ ∈ [1,∞), define the rescaled metric,

gλ(x, t) = g(λx, λ2t) (7)

The blow-down limit of the Ricci flow, g(t), is the pointed Hamilton-Cheeger-Gromov limit
limλ→∞ gλ. In general, this limit may not exist. However, the Ricci-DeTurck flows studied
in this thesis will satisfy the following bounds. For every k ∈ N0 and for every multi-index
α ∈ Nn

0 , there exists a constant c, depending only on k and the magnitude of the multi-index,
|α|, such that

|∂kt∇αg(x, t)| ≤ ct−k−
|α|
2

These bounds are invariant under the parabolic rescaling defined by equation (7). This is
enough to imply subsequential convergence (possibly to the zero metric). Unfortunately,
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without further assumptions, this convergence likely depends on the subsequence taken and
on the choice of base point. The convergence shown in this thesis will be much stronger and
the limit will be shown to be nonzero.

Define a rough cone metric on Rn to be a cone over (Sn−1, gn−1) where gn−1 ∈ L∞(Sn−1).
Furthermore, in this thesis a metric g0 ∈ L∞(Rn) is said to be asymptotic to a rough cone
(C(Sn−1), gC(Sn−1)) if there exists a non-increasing function η : [0,∞) → [0,∞) such that
η(r)→ 0 as r →∞ and

||gC(Sn−1) − g0||L∞(Rn\B(0,r)) ≤ η(r).

Then (C(Sn−1), gC(Sn−1)) is called the rough asymptotic cone of g0. Notice that this definition
only requires the cone metric to be in L∞(Rn) or, more precisely, for gC(Sn−1) to be in
L∞(Sn−1).

Remark. Note that this definition of a rough asymptotic cone differs from the standard
definition of an asymptotic cone given above. The more technical definition used in this
thesis will be more useful for the problem at hand, but can be reconciled with the standard
definition when the limit manifold is replaced by a conic metric space. Then the limit is
taken only with respect to the pointed Gromov-Hausdorff metric.

The second main result of this thesis can now be stated.

Theorem 2. Let εn be as in Koch and Lamm’s result (Theorem 4.3 of [KL], stated precisely
in the next section). Let g0 ∈ L∞(Rn) be a metric on Rn asymptotic to a rough cone,
(C(Sn−1), gC(Sn−1)), and satisfying

||g0 − δ||L∞(Rn) ≤ εn.

Koch and Lamm showed the existence of immortal Ricci-DeTurck flows g(t) and gsol(t), with
initial conditions g(0) = g0 and gsol(0) = gC(Sn−1), respectively.

Then the blowdown limit of (Rn, g(t), 0) is (Rn, gsol(t), 0) with convergence in C∞loc(Rn ×
(0,∞)). Furthermore, gsol is an expanding Ricci-DeTurck soliton.

In other words, in the setting of Ricci-DeTurck flows on Rn, there exists an infinite class of
metrics that are L∞-close to the Euclidean metric and have smooth continues convergence
to their blowdown limits, and the blowdown limit is an expanding Ricci-DeTurck solitons.
In particular, this class includes some metrics with some negative sectional curvatures. This
result comes from reinterpreting stability results about the Ricci-DeTurck flow proved by
Kock and Lamm [KL] (and Deruelle and Lamm [DL]).

2 Formal Asymptotic Expansions

Section 2 will be organized as follows. In Section 2.1, the proof of Theorem 1 will be reduced
to solving three partial differential equations (PDEs) simultaneously. Two of these PDE’s
will be used to define the expansions for the metric g and the potential function f , while the
third equation will function as a constraint equation. The major difficulty of the proof of
Theorem 1 will be to show that this constraint equation is satisfied whenever the other two
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are. In section 2.2, two of PDEs will be used to find the first few terms in the expansion for
the metric and the potential function. In section 2.3, it will be shown explicitly that these
first few terms of the expansions do satisfy the constraint equation. In section 2.4 the general
argument to prove Theorem 1 will be given. In section 2.5, the calculations in section 2.2
will be compared to the expanding Bryant soliton equations [B].

2.1 Equations

First, let’s fix notation. Define the following 2-tensors as

H(r) = r2gY + h0 + r−2h2 + · · ·+ r−2ih2i + · · · (8)

and
Ho(r) = h0 + r−2h2 + · · ·+ r−2ih2i + · · · (9)

Then the expansion for the metric is Theorem 1 can be written g = dr2 + H(r) and g =
dr2 + r2gY + Ho(r). By orthogonality, g−1 = (dr2)−1 + H−1. Let Hoo

il := Ho
ijgY jkHo

kl and
similarly for Hooo, Hoooo, etc. Similarly, define hil02 := h0

ijgY jkh2
kl and similarly for h04, h22,

etc. Then, the formal inverse of H is

H il = r−2gil − r−4H il
o + r−6H il

oo − r−8H il
ooo + r−10H il

oooo − · · ·

= r−2gilY − r−4hil0 + r−6
(
−hil2 + hil00

)
+ r−8

(
−hil4 + hil02 + hil20 − hil000

)
+r−10

(
−hil6 + hil04 + hil40 + hil22 − hil002 − hil020 − hil200 + hil0000

)
+ · · ·

In local coordinate calculations in this thesis, commas (,) will denote partial derivatives
and bars (|) denote covariant derivatives. Define, for any 2-tensor Tij

T[ij,k] := Tik,j + Tjk,i − Tij,k

and
T[ij|k] := Tik|j + Tjk|i − Tij|k.

Throughout section 2, all covariant derivatives are with respect to the Levi-Civita connection
of gY unless otherwise stated or denoted.

Using this notation, the Christoffel symbols of H can related to the Christoffel symbols of
gY through the following equation.

2HΓjk
i = 2Y Γjk

i +H ilHo[jk|l] (10)

Now, we can write equation 3 in terms of H and its formal inverse. Let x1, · · · , xn be local
coordinates for Y . Then the expander equation splits into three cases.

2 Ric grr + 2 Hessg frr + 1 = 0 (11)

2 Ric grl + 2 Hessg frl = 0 (12)

2 Ric gjk + 2 Hessg fjk +Hjk = 0 (13)
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Then these three equations can be written in terms of H and dr2. First, equation 11 simplifies
to

−H ilHil,rr −
1

2
H il

,rHil,r + 2f,rr + 1 = 0 (14)

Second, equation 12 simplifies to

H im
(
H∇iHml,r − H∇lHim,r

)
+ 2f,rl −H ixHxl,rf,i + 0 = 0 (15)

where the covariant derivative with respect to the metric H is denoted, H∇. Third, equation
13 simplifies to

2 Ric(H)jk −Hjk,rr −
1

2
H ilHil,rHjk,r +H ilHij,rHkl,r

2 HessY fjk +H ilHo[jk|l]f,i +Hjk,rf,r +Hjk = 0 (16)

Further, the Ricci tensor of H can be written using equation 10 as

2 Ric(H)jk = 2 Ric(gY )jk +H il
[
Hojl|ki +Hokl|ji −Hojk|il −Hoil|jk

]
+

1

2
H ilHnm

(
Ho[jk|n]Ho[il|m] −Ho[ik|n]Ho[jl|m]

)
(17)

and the mixed term of the Ricci tensor of g can also be made more explicit

2 Ric(g)rl = H im
(
Hml,r|i −Him,r|l

)
− 1

2
H imHo[im|y]H

xyHxl,r −
1

2
H im

,rHoim|l (18)

Equation 14 is used to define f in terms of H. Then equation 16 is used to define the
metric H in terms of the original metric, gY . The mixed term equation 15 is a constraint
equation. It must be shown that these definitions for f and H satisfy this third constraint
equation. First, let’s look at the first few terms of these expansions.

Solving for f in terms of H using equation 14 gives the leading term, −1
4
r2. Equation 14

does not say anything about f0. The lower order terms are given by

f2 =
1

6
trY h0 (19)

f4 =
1

10
(3 trY h2 − 〈h0, h0〉) (20)

f6 =
5

14
trY h4 −

11

42
〈h0, h2〉+

1

14
trY h000 (21)

f8 =
7

18
trY h6 −

11

36
〈h0, h4〉 −

5

36
〈h2, h2〉+

1

4
trY h002 +

1

18
trY h0000 (22)

The leading term of f has the general form of

f2m+2 =
2m+ 1

2(2m+ 3)
trY h2m + · · · (23)

Then, using equation 16, H can be written in terms of the link metric, gY , as follows

h0 = −2 (Ric(gY )jk − (n− 1)gY jk) = −2 Ric(dr2 + r2gY ) (24)

h2 = −∆LRjk +
1

3
HessY Rjk − 4Rjk +

4

3

[
R− (n− 1)(n− 3)

]
gY jk (25)
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h4jk = −1

3
∆2
LRjk +

2

15
HessY (∆R)jk −

2

3
(n+ 9)∆LRjk −

2

45
(13n− 55) HessY Rjk

+
8

3
(5n− 13)Rjk −

16

3
RjxRk

x +
28

15
Rxy

|jRxy|k +
38

15
RxyRxy|jk

+

[
4

5
∆R +

8

5
|Ric |2 − 8

15
(9n− 25)R +

8

15
(n− 1)(2n− 5)(3n− 11)

]
gY jk

− 1

9

(
R|xkRj

x +R|xjRk
x − 2R|

xRxj|k − 2R|
xRxk|j + 3R|

xRjk|x

)
−2Rxy

(
Rjx|yk +Rkx|yj

)
− 2

3
Rj

x
|
yR[kx|y] −

2

3
Rk

x
|
yR[jx|y]

+
4

3
Rxy
(
Rjk|xy −RjaR

a
xyk −RkaR

a
xyj + 2Ry

zRxjkz

)
Then using these equations, f can also be written in terms of gY as follows.

f2 = −1

3

[
R− (n− 1)n

]
f4 =

1

5

[
−∆R− 2|Ric |2 + 2(3n− 5)R− 4n(n− 1)(n− 2)

]
f6 =

1

14

[
−∆2R +

4

3
(2n− 17)∆R− 32

9
(19n2 − 73n+ 72)R

+16|∇Ric |2 + 16(2n− 5)|Ric |2 − 5

9
|∇R|2 +

88

9
R2

+
16

3
〈Ric,∆ Ric〉 − 40

3
Rix

|
yRiy|x − 2〈Ric,HessY R〉

−8RxyRabR
a
xy
b +

8

45
n(n− 1)(118n2 − 421n+ 375)

]

In the next section, these calculations will be explained in more detail.

2.2 Calculations

2.2.1 dr ⊗ dr-terms define f

In this section, we will show in detail how to derive the equations stated in the previous
section. First, look at how to derive equation 14 from equation 11. The Ricci term, Ric(g)rr,

7



can be simplified as follows

2Rrr := 2 (Γrr
i
,i − Γir

i
,r + Γrr

mΓim
i − Γir

mΓmr
i)

= −
[
H ilHil,r

]
,r

+ 1
2
H il

,rHil,r

= −H ilHil,rr − 1
2
H il

,rHil,r

The Hessian of f simplifies to

2 Hessg frr := 2f,rr − 2Γrr
if,i = 2f,rr

because Γrr
i = 0.

Therefore, 2f,rr = −1 + H ilHil,rr + 1
2
H il

,rHil,r. Now expand each of these terms out and
equate the coefficients of the same powers of r. The Hessian of f expands to

2 Hessg frr =
∑
m≥1

2(2m)(2m+ 1)r−2m−2f2m

The two terms of the Ricci tensor expand out to be

H ilHil,rr = r−2
(

2n
)

+ r−4
(
− 2 trY h0) + r−6(4 trY h2 + 2〈h0, h0〉

)
+ r−8

(
18 trY h4 − 2〈h0, h2〉 − 2 trY h000

)
+ r−10

(
40 trY h6 − 16〈h0, h4〉 − 4〈h2, h2〉+ 2 trY h0000

)
+O(r−12)

and

1
2
H il

,rHil,r = r−2
(
− 2n

)
+ r−4(4 trY h0) + r−6

(
8 trY h2 − 6〈h0, h0〉

)
+ r−8

(
12 trY h4 − 20〈h0, h2〉+ 8 trY h000

)
+ r−10

(
16 trY h6 − 28〈h0, h4〉 − 16〈h2, h2〉

+ 36 trY h002 − 10 trY h0000

)
+O(r−12)
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Hence, the Ricci tensor expands to

−2Rrr = H ilHil,rr + 1
2
H il

,rHil,r

= r−4(2 trY h0) + r−6
(

12 trY h2 − 4〈h0, h0〉
)

+ r−8
(

30 trY h4 − 22〈h0, h2〉+ 6 trY h000

)
+ r−10

(
56 trY h6 − 44〈h0, h4〉 − 20〈h2, h2〉

+ 36 trY h002 − 8 trY h0000

)
+O(r−12)

Therefore, the leading order term for f in equation 5 comes from integrating the −1, while
the lower order terms come from the dr ∧ dr coefficients of the Ricci tensor. This gives
equations 19-22. Notice that f0 is not defined by these equations.

2.2.2 dxj ⊗ dxk-terms define Ho

Look at the dxj ⊗ dxk coefficients in equation 3 to define Ho, i.e. equation 13. First, derive
equation 16 from equation 13. The Hessian of f can be expressed as follows.

Hessg fjk = f,jk − gΓjk
if,i

= f,jk − HΓjk
if,i +

1

2
Hjk,rf,r

= HessH fjk +
1

2
Hjk,rf,r

To write the Hessian of H in terms of the link metric, look at the Christoffel symbol of H.

2HΓjk
i = H ilH[jk,l]

=
(
r−2gY

il − r−4H il
o + r−6H il

oo − · · ·
) (
r2gY [jk,l] +Ho[jk,l]

)
= 2Y Γjk

i + r−2(gilYHo[jk,l] −Ho
ilgY [jk,l])
−r−4(Ho

ilHo[jk,l] −Hoo
ilgY [jk,l]) + · · ·

= 2Y Γjk
i + r−2(gilYHo[jk,l] − 2Ho

i
xΓjk

x)
−r−4(Ho

ilHo[jk,l] − 2Hoo
i
xΓjk

x) + · · ·

= 2Y Γjk
i + r−2gY

ilHo[jk|l] − r−4Ho
ilHo[jk|l] + · · ·

= 2Y Γjk
i +H ilHo[jk|l]

This shows equation 10.
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Hence,

HessH fjk = f,jk − HΓjk
if,i

= f,jk −
[
Y Γjk

i +
1

2
H ilHo[jk|l]

]
f,i

= HessY fjk −
1

2
H ilHo[jk|l]f,i

These two equations give that the Hessian of f can be expanded to

2 Hessg fjk = 2 HessY fjk −H ilHo[jk|l]f,i +Hjk,rf,r (26)

as seen in equation 16. The Hessian of f can be written more explicitly as

2 HessH fjk = r−2(2 HessY f2jk) + r−4(2 HessY f4jk − gilY h0[jk|l]f2,i)

+r−6
(

2 HessY f6jk − gilY h0[jk|l]f4,i −
[
gilY h2[jk|l] − hil0h0[jk|l]

]
f2,i

)
+r−8

(
2 HessY f8jk − gilY h0[jk|l]f6,i −

[
gilY h2[jk|l] − hil0h0[jk|l]

]
f4,i

−
[
gilY h4[jk|l] − hil0h2[jk|l] − hil2h0[jk|l] + hil00h0[jk|l]

]
f2,i

)
+O(r−10)

Here, we have assumed that f0 is a constant function on Y , so it’s derivatives are all zero.
In fact, this is a necessary condition in order for the expansions of f and H to satisfy the
constraint equation. This assumption will be justified in section 2.3 bellow.

Finally, expand out Hjk,rf,r in terms or equation 4 and 5.

Hjk,rf,r =

(
2rgY jk −

∞∑
m=1

(2m)r−2m−1h2mjk

)
·

(
−1

2
r −

∞∑
m=1

(2m)r−2m−1f2m

)

= r2(−gY jk) +
∞∑
m=1

r−2m
(
mh2mjk − (4m)f2mgY jk

)
+
∞∑
m=2

r−2m−2

( ∑
µ+ν=m

(2µ)(2ν)f2µh2νjk

)

= r2(−gY jk) + r−2(h2jk − 4f2gY jk) + r−4(2h4jk − 8f4gY jk)

+ r−6(3h6jk + 4f2h2jk − 12f6gY jk)

+ r−8(4h8jk + 8f2h4jk + 8f4h2jk − 16f8gY jk) +O(r−10)

10



Combining these two equations gives the first few terms in the expansion of 2 Hessg fjk.
Next, calculate the expansion of Ric(g)jk. From the definition in terms of Christoffel

symbols,

2 Ric(g)jk = 2
(
Γjk

i
,i − Γik

i
,j + Γjk

mΓim
i − Γij

mΓmk
i
)

= 2
(
Ric(H)jk + Γjk

r
,r + Γjk

rΓir
i − Γrj

mΓmk
r − Γij

rΓrk
i
)

= 2

(
Ric(H)jk −

1

2
Hjk,rr −

1

4
H ilHil,rHjk,r +

1

2
H ilHij,rHkl,r

)
Thus, the Ricci tensor can be expanded into

2 Ric(g)jk = 2 Ric(H)jk −Hjk,rr −
1

2
H ilHil,rHjk,r +H ilHij,rHkl,r (27)

Combining equation 26 and equation 27 gives equation 16. The Ricci tensor of H will involve
covariant derivatives, while the other terms can be expanded directly. Look at each of these
lower order terms first.

−Hjk,rr = −2gY jk − 6r−4h2jk − 20r−6h4jk − 42r−8h6jk +O(r−10)

Second,

−1
2
H ilHil,rHjk,r = (−2ngY jk) + r−2(2 trY h0)gY jk

+ r−4
(

2nh2jk + [4 trY h2 − 2〈h0, h0〉]gY jk
)

+ r−6
(

4nh4jk − (2 trY h0)h2jk

+ [6 trY h4 − 6〈h0, h2〉+ 2 trY h000]gY jk

)
+ r−8

(
6nh6jk − (4 trY h0)h4jk − [4 trY h2 − 2〈h0, h0〉]h2jk

+ [8 trY h6 − 8〈h0, h4〉 − 4〈h2, h2〉

+8 trY h002 − 2 trY h0000]gY jk

)
+O(r−10)
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Third,

H ilHij,rHkl,r = 4gY jk + r−2(−4h0jk) + r−4
(
− 12h2jk + 4h00jk

)
+ r−6

(
− 20h4jk + 8h20jk + 8h02jk − 4h000jk

)
+ r−8

(
− 28h6jk + 12h40jk + 12h04jk + 16h22jk

− 8h200jk − 8h002jk − 4h020jk + 4h000jk

)
+O(r−10)

Thus, the lower order terms expanding out to be

−Hjk,rr − 1
2
H ilHil,rHjk,r +H ilHij,rHkl,r

= −2(n− 1)gY jk + r−2
([

2 trY h0

]
gY jk − 4h0jk

)
+ r−4

(
2(n− 9)h2jk + 4h00jk +

[
4 trY h2 − 2〈h0, h0〉

]
gY jk

)

+ r−6

(
4(n− 10)h4jk −

[
2 trY h0

]
h2jk + 8h02jk + 8h20jk − 4h000jk

+
[
6 trY h4 − 6〈h0, h2〉+ 2 trY h000

]
gY jk

)

+ r−8

(
(6n− 70)h6jk −

[
4 trY h0

]
h4jk +

[
2〈h0, h0〉 − 4 trY h2

]
h2jk

+ 12h04jk + 12h40jk + 16h22jk

− 8h002jk − 8h200jk − 4h020jk + 4h0000jk

+
[
8 trY h6 − 8〈h0, h4〉 − 4〈h2, h2〉+ 8 trY h002 − 2 trY h0000

]
gY jk

)

+O(r−10)

Then calculate Ric(H)jk using 2HΓjk
i = 2Y Γjk

i+H ilHo[jk|l] where all covariant derivatives

12



(”|”) are with respect to the gY metric.

2 Ric(H)jk = 2
(
HΓjk

i
,i − HΓik

i
,j + HΓjk

mHΓim
i − HΓik

mHΓmj
i
)

= 2 Ric(gY )jk

+ H il(Ho[jk|l],i −Ho[ik|l],j) +H il
,iHo[jk|l] −H il

,jHo[ik|l]

+ Y Γjk
mH ilHo[im|l] + Y Γim

iHmnHo[jk|n]

− Y Γik
mH ilHo[mj|l] − Y Γmj

iHmnHo[ik|n]

+ 1
2
H ilHnm(Ho[jk|n]Ho[im|l] −Ho[ik|n]Ho[mj|l])

Notice that by definition of the covariant derivative

Ho[jk|l](H
in
,i + Y Γim

iHmn) = Ho[jk|l](H
in
|i − Y Γim

nH im)

Then using that Hab
|iHbc = −HabHbc|i

H in
|i = (H ilHmnHml)|i = −H ilHmnHml|i

Hence,

Ho[jk|l]

(
1

2
H ilHmnHo[im|l] +H in

|i

)
= −1

2
H ilHnmHo[jk|n]Ho[il|m]

Therefore,

2 Ric(H)jk = 2 Ric(gY )jk +H il
[
Ho[jk|l]|i −Ho[ik|l]|j

]
+ 1

2
H ilHnm

(
Ho[jk|n]Ho[il|m] −Ho[ik|n]Ho[jl|m]

)
= 2 Ric(gY )jk +H il

[
Hojl|ki +Hokl|ji −Hojk|il −Hoil|jk

]
+ 1

2
H ilHnm

(
Ho[jk|n]Ho[il|m] −Ho[ik|n]Ho[jl|m]

)
= 2 Ric(gY )jk + r−2gY

il
[
h0jl|ki + h0kl|ji − h0jk|il − h0il|jk

]
+ r−4

(
gY

il
[
h2jl|ki + h2kl|ji − h2jk|il − h2il|jk

]
+ h0

il
[
h0jl|ki + h0kl|ji − h0jk|il − h0il|jk

]
+ 1

2
gY

ilgY
nm
(
h0[jk|n]h0[il|m] − h0[ik|n]h0[jl|m]

))
+ O(r−6)

This shows equation 17.
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2.2.3 Calculating h0 and h2

Now that we have calculated the first few terms in the expansion of

2 Ric(g)jk + 2 Hessg fjk +Hjk = 0,

the terms can be plugged in and we can solve for the first few terms in the expansion of H
in terms of the metric gY .

First, look at the coefficients for r2. Only two terms are nonzero

−r2gY jk + r2gY jk = 0

Hence, f = −1
4
r2 +O(r0) is the correct leading term for the potential function, f .

Second, look at the coefficients for r0. If φ is a power series in r, then introduce the
notation that (φ)(−2m) denotes the coefficient of r−2m in the expansion of φ. Then, using the
expansions of HessH f and Hjk,rf,r from above gives

(Hessg fjk)
(0) = (2 HessY fjk +H ilHo[jk|l]f,i)

(0) + (Hjk,rf,r)
(0)

= 0 + 0 = 0

Using the expansion equations for Ric(g)jk above gives

(Ric(g)jk)
(0) = (2 Ric(H)jk)

(0) + (−Hjk,rr −
1

2
H ilHil,rHjk,r +H ilHij,rHkl,r)

(0)

= 2 Ric(gY )jk − 2(n− 1)gY jk

Hence, the coefficients for r0 give the equation

2 Ric(gY )jk − 2(n− 1)gY jk + h0 = 0.

Therefore,
h0 = −2 (Ric(gY )jk − (n− 1)gY jk) = −2 Ric(dr2 + r2gY )jk

Notice that this is the time derivative of running the Ricci flow on the cone metric dr2 +r2gY .
This shows equation 24.

Finally, look at the coefficients for r−2. Now, the equation for h0 in terms of gY can used
as well.

First, look at 2 Ric(H)jk.(
2 Ric(H)jk

)(2)

= gY
il
[
h0jl|ki + h0kl|ji − h0jk|il − h0il|jk

]
= −∆Lh0jk + gY

il
[
h0jl|ik + h0kl|ij − h0il|jk

]
= 2∆LRjk − 2gY

il
[
Rjl|ik +Rkl|ij −Ril|jk

]
= 2∆LRjk − 2

[
Rji|

i
k +Rki|

i
j −R|jk

]
= 2∆LRjk
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where ∆L denotes the Lichnerowicz Laplacian. Here the second line follows by commuting
the covariant derivatives of the first two terms in the brackets on the first line. This equality
is true for any 2-tensor and will be used in the next section. The last line follows from the
contracted Bianchi identity

R|x = 2Rxi|
i

Notice that this means the expansion of the Ricci tensor is Ric(H) = Ric(gY )+r−2∆LRjk+· · ·
where ∆LRjk the time derivative of Ric(gY ) under the Ricci flow.

Second,
(
−Hjk,rr − 1

2
H ilHil,rHjk,r +H ilHij,rHkl,r

)(2)

=
[
2 trY h0

]
gY jk − 4h0jk

= −4
[
R− (n− 1)n

]
gY jk + 8(Rjk − (n− 1)gY jk)

= 8Rjk − 4
[
R− (n− 1)(n− 2)

]
gY jk

Next, plug in the equation for h0 into the equation for f2. This gives

f2 =
1

6
trY h0 = −1

3

[
R− (n− 1)n

]
Third, look at the Hessian terms.(

2 HessH fjk

)(2)

=
(

2 HessY fjk +H ilHo[jk|l]f,i

)(2)

= 2 HessY f2jk

= −2

3
HessY Rjk

and (
Hjk,rf,r

)(2)

= h2jk − 4f2gY jk

= h2jk +
4

3

[
R− (n− 1)n

]
gY jk

Plugging these four equations in:

2∆LRjk + 8Rjk − 4
[
R− (n− 1)(n− 2)

]
gY jk

− 2

3
HessY Rjk + h2jk +

4

3

[
R− (n− 1)n

]
gY jk + h2jk = 0

Therefore, we have shown equation 25,

h2jk = −∆LRjk +
1

3
HessY Rjk − 4Rjk +

4

3

[
R− (n− 1)(n− 3)

]
gY jk

Hence,

trY h2 = −2

3
∆R +

4

3
(n− 3)R− 4

3
n(n− 1)(n− 3)

15



2.2.4 Calculate h4

Now, the equations start to become more complicated. The equation for h2i will involve 2i
covariant derivatives of Ric(gY ) with respect to gY and has nonhomogenous terms of order
i+1. Never the less, all the terms are very straight forward to calculate.

As an example, we will calculate h4. First, look at the Ricci tensor for H. Recall that(
2 Ric(H)jk

)(4)

= gY
il
[
h2jl|ki + h2kl|ji − h2jk|il − h2il|jk

]
+ h0

il
[
h0jl|ki + h0kl|ji − h0jk|il − h0il|jk

]
+

1

2
gY

ilgY
nm
(
h0[jk|n]h0[il|m] − h0[ik|n]h0[jl|m]

)
(28)

Then look at each of the lines separately. Use the metric property of gY ,

1

2
gY

ilgY
nm
(
h0[jk|n]h0[il|m] − h0[ik|n]h0[jl|m]

)
= 2gY

ilgY
nm
(
R[jk|n]R[il|m] −R[ik|n]R[jl|m]

)
Then use the contractioned Bianchi identity, 2Rxy|

y = R|x, to show,

gY
ilR[il|m] = gY

il
(
Rmi|l +Rml|i −Ril|m

)
=

1

2
R|m +

1

2
R|m −R|m = 0

Hence, the last line of the equation 28 simplifies to

1

2
gY

ilgY
nm
(
h0[jk|n]h0[il|m] − h0[ik|n]h0[jl|m]

)
= −2gY

ilgY
nmR[ik|n]R[jl|m]

Next, look at the second line of equation 28 and use the metric property again,

h0
il
[
h0jl|ki + h0kl|ji − h0jk|il − h0il|jk

]
= 4

(
Ril − (n− 1)gY

il
) [
Rjl|ki +Rkl|ji −Rjk|il −Ril|jk

]
= 4Ril

[
Rjl|ki +Rkl|ji −Rjk|il −Ril|jk

]
+ 4(n− 1)∆LRjk

Now look at the first line of equation 28,

gY
il
[
h2jl|ki + h2kl|ji − h2jk|il − h2il|jk

]
16



and plug in

h2jk = −∆LRjk +
1

3
HessY Rjk − 4Rjk +

4

3

[
R− (n− 1)(n− 3)

]
gY jk.

Plug in 4
3

[
R− (n− 1)(n− 3)

]
gY jk gives

4

3
gY

il
[
R|kigY jl +R|jigY kl −R|ilgY jk −R|jkgY il

]

= −4

3
(n− 2) HessY Rjk −

4

3

(
∆R
)
gY jk

Next plugging in −4Rjk gives −4(−∆LRjk) = 4∆LRjk. Then plug in 1
3

HessY Rjk gives,

1

3
gY

il
[
R|jlki +R|klji −R|jkil −R|iljk

]
.

Notice that by commuting the derivatives these terms will cancel out and leave only lower
order commutation terms. Calculate these commutation terms in two steps. First, turn
R|jik

i into R|jki
i by exchanging the inner two covariant derivatives.

R|jik
i = R|jki

i +
[
R|xRikj

x
]
|
i

= R|jki
i +R|xyR

x
jk
y −R|x

(
Rik

xi
|j +Rik

i
j|
x
)

= R|jki
i +R|xyR

x
jk
y −R|xRk

x
|j +R|xRjk|

x

Second, turn R|ikj
i into R|i

i
kj.

R|ikj
i = R|ik

i
j +
[
R|xkRj

i
i
x +R|ixRj

i
k
x
]

= R|i
i
kj +

[
R|xRk

i
i
x
]
|j

+R|kxR
x
j −R|xyRx

jk
y

= R|i
i
kj −R|xyRx

jk
y +R|xRk

x
|j +R|jxR

x
k +R|kxR

x
j

Therefore,

1

3

(
R|kα

α
j +R|jα

α
k −∆LR|jk − HessY (∆R)jk

)
=

1

3

(
R|xkRj

x +R|xjRk
x +R|

xRjk|x

)
. (29)

Finally, plug in −∆LRjk to get

∆2
LRjk + HessY (∆R)jk − gY il

[
(∆LRjl)|ik + (∆LRkl)|ij

]
17



Notice, by commuting the derivatives of the last three terms and using the contracted Bianchi
Identity, 2Rxy|

y = R|x, the only fourth order term is, ∆2
LRjk. To calculate the commutation

terms, recall that the Lichnerowicz Laplacian of a 2−tensor, Til, is defined as

∆LTil := ∆Til −Ri
xTxl − TixRxl + 2TxyR

x
il
y.

Then look at the relationship of ∇i∆LTil and ∆∇iTil.

∇i∆Til = Til|a
ia + Txl|aR

ai
i
x + Tix|aR

ai
l
x + Til|xR

ai
a
x

= Til|a
ia + Tix|aR

ai
l
x

= Til|ia
a + Tix|aR

ai
l
x +

[
TxlRa

i
i
x + TixRa

i
l
x
]
|
a

= ∆∇iTil − Txy|iRx
il
y +

[
Ri

xTxl

]
|
i −
[
TxyR

x
il
y
]
|
i

Hence,

∇i∆LTil = ∆∇iTil − Txy|iRx
il
y +

[
Ri

xTxl

]
|
i −
[
TxyR

x
il
y
]
|
i

−
[
Ri

xTxl

]
|
i −
[
Ti
xRxl

]
|
i + 2

[
TxyR

x
il
y
]
|
i

= ∆∇iTil −
[
Ti
xRxl

]
|
i + TxyR

x
il
y
|
i

= ∆∇iTil −
[
Ti
xRxl

]
|
i − Txy

[
Rx

i
yi
|l +Rx

i
i
l|
y
]

= ∆∇iTil − T ix|iRxl − T xyR[xy|l]

Therefore,
∇i∆LTil = ∆∇iTil − T ix|iRxl − T xyR[xy|l] (30)

Recall also that for any smooth function, φ

∆∇iφ = ∇i∆φ+ φ|
xRxi (31)

Now plug, T = Ric(gY ), into equation 30

∇i∆LRij = ∆∇iRij −Rix
|iRxj −RxyR[xy|j]

=
1

2
∆∇jR− 1

2
R|

xRxj −RxyR[xy|j]

=
1

2
∇j∆R−RxyR[xy|j]
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Therefore,

HessY (∆R)jk −
(
∆LRij

)
|
i
k −

(
∆LRik

)
|
i
j =

[
RxyR[xy|j]

]
|k

+
[
RxyR[xy|k]

]
|j

(32)

Combining these equations and simplifying gives(
2 Ric(H)jk

)(4)

= ∆2
LRjk + 4n∆LRjk −

4

3
(n− 2) HessY Rjk −

4

3

(
∆R
)
gY jk

+
1

3

(
R|xkRj

x +R|xjRk
x +R|

xRjk|x

)
− 4Rxy

|jRxy|k

+6Rxy
(
Rjx|yk +Rkx|yj −Rxy|jk

)
+ 2Rj

x
|
yR[kx|y] + 2Rk

x
|
yR[jx|y]

−4Rxy
(
Rjk|xy −RjaR

a
xyk −RkaR

a
xyj + 2Ry

zRxjkz

)
Second, look at the lower order terms of the Ricci curvature of H.(
−Hjk,rr − 1

2
H ilHil,rHjk,r +H ilHij,rHkl,r = −2(n− 1)gY jk

)(4)

= 2(n− 9)h2jk + 4h00jk +
[
4 trY h2 − 2〈h0, h0〉

]
gY jk

= −2(n− 9)∆LRjk +
2

3
(n− 9) HessY Rjk − 8(5n− 13)Rjk + 16RjxRk

x

+

[
− 8

3
∆R− 8|Ric |2Y + 8(3n− 7)R− 8(n− 1)(2n2 − 9n+ 11)

]
gY jk

Next, update f4 using the equation for h0 and h4,

f4 =
1

10

[
3 trY h2 − 〈h0, h0〉

]
=

1

10

[
− 2∆R + 4(n− 3)R− 4n(n− 1)(n− 3)

−4|Ric |2 + 8(n− 1)R− 4n(n− 1)2
]

=
1

10

[
− 2∆R− 4|Ric |2 + 4(3n− 5)R− 8n(n− 1)(n− 2)

]
=

1

5

[
−∆R− 2|Ric |2 + 2(3n− 5)R− 4n(n− 1)(n− 2)

]
Third, look at the Hessian of f .

HessH fjk =
(

2 HessY fjk −H ilHo[jk|l]f,i

)(4)

= 2 HessY f4jk − gilY h0[jk|l]f2,i

=
2

5
HessY

[
− (∆R)− 2|Ric |2 + 2(3n− 5)R

]
jk
− 2

3
R|

xR[jk|x]
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Then lower order term simplifies to(
Hjk,rf,r

)(4)

= 2h4jk − 8f4gY jk

= 2h4jk −
8

5

[
−∆R− 2|Ric |2 + 2(3n− 5)R− 4n(n− 1)(n− 2)

]
gY jk

Hence,(
2 HessH fjk

)(4)

= 2h4jk −
2

3
R|

xR[jk|x]

−2

5
HessY (∆R)jk −

4

5
HessY |Ric |2jk +

4

5
(3n− 5) HessY Rjk

−8

5

[
−∆R− 2|Ric |2 + 2(3n− 5)R− 4n(n− 1)(n− 2)

]
gY jk

Then combining these equations and simplifying gives

h4jk = −1

3
∆2
LRjk +

2

15
HessY (∆R)jk −

2

3
(n+ 9)∆LRjk −

2

45
(13n− 55) HessY Rjk

+
8

3
(5n− 13)Rjk −

16

3
RjxRk

x +
28

15
Rxy

|jRxy|k +
38

15
RxyRxy|jk

+

[
4

5
∆R +

8

5
|Ric |2 − 8

15
(9n− 25)R +

8

15
(n− 1)(2n− 5)(3n− 11)

]
gY jk

− 1

9

(
R|xkRj

x +R|xjRk
x − 2R|

xRxj|k − 2R|
xRxk|j + 3R|

xRjk|x

)
−2Rxy

(
Rjx|yk +Rkx|yj

)
− 2

3
Rj

x
|
yR[kx|y] −

2

3
Rk

x
|
yR[jx|y]

+
4

3
Rxy
(
Rjk|xy −RjaR

a
xyk −RkaR

a
xyj + 2Ry

zRxjkz

)
and

trY h4 = −1

5
∆2R− 4

9
(n+ 8)∆R− 8

15
(9n2 − 50n+ 65)R

+
2

3
〈Ric,∆L Ric〉+

28

15
〈Ric,∆ Ric〉+

16

5
|∇Ric |2

− 8

3
Rix

|
yRiy|x −

8

9
〈Ric,HessY R〉+

8

15
(3n− 10)|Ric |2

− 1

9
|∇R|2 +

8

15
n(n− 1)(2n− 5)(3n− 11)

Now we can write f6 in terms of the link metric, gY . Recall that

f6 =
1

14

[
5 trY h4 −

11

3
〈h0, h2〉+ trY h000

]
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First, calculate 〈h0, h2〉.

〈h0, h2〉 = −2
[
〈Ric, h2〉 − (n− 1) trY h2

]
= −2

〈
Ric,−∆L Ric +

1

3
HessY R− 4 Ric +

4

3

[
R− (n− 1)(n− 3)

]
gY

〉
+ 2(n− 1)

[
− 2

3
∆R +

4

3
(n− 3)R− 4

3
n(n− 1)(n− 3)

]
= 2〈Ric,∆L Ric〉 − 2

3
〈Ric,HessY R〉+ 8|Ric |2 − 8

3
R2

− 4

3
(n− 1)∆R +

16

3
(n− 1)(n− 3)R− 8

3
n(n− 1)2(n− 3)

Second, trY h000

trY h000 = −8
(
RxyRy

zRzx − 3(n− 1)|Ric |2 + 3(n− 1)2R− n(n− 1)3
)

Combining these equations gives. Then combine like terms.

f6 =
1

14

[
−∆2R +

4

3
(2n− 17)∆R− 32

9
(19n2 − 73n+ 72)R

+16|∇Ric |2 + 16(2n− 5)|Ric |2 − 5

9
|∇R|2 +

88

9
R2

+
16

3
〈Ric,∆ Ric〉 − 40

3
Rix

|
yRiy|x − 2〈Ric,HessY R〉

−8RxyRabR
a
xy
b +

8

45
n(n− 1)(118n2 − 421n+ 375)

]

2.2.5 Highest Order Terms for General h2m

From the calculations for h4, it can be seen that as m increases, h2m becomes increasingly
complicated. However, it is fairly straightforward to calculate the leading order term of h2m

including its coefficient. First look at the coefficients of dr ∧ dr in equation 3 to study the
leading term of f2m.

2f,rr = −1 +H ilHil,rr +
1

2
H il

,rHil,r

On the left hand side,

2f,rr + 1 = 2
∞∑
m=1

(2m)(2m+ 1)r−2m−2f2m

In this section, an ellipsis, (+ · · · ), will denote the omission of terms involving lower order
derivatives of Ric(gY ). These lower order terms may vary from line to line.
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On the right hand side, the first term gives

H ilHil,rr = H il

(
r2gY +

∞∑
m=0

r−2mh2m

)
il,rr

= H il

(
2gY +

∞∑
m=1

(2m)(2m+ 1)r−2m−2h2m

)
il

=
(
r−2gilY − r−4H il

o + · · ·
)(

2gY +
∞∑
m=1

(2m)(2m+ 1)r−2m−2h2m

)
il

= (2n)r−2 +
∞∑
m=1

(2m)(2m+ 1)r−2m−4 trY h2m − 2r−4 trY Ho + · · ·

= (2n)r−2 +
∞∑
m=1

[(2m)(2m+ 1)− 2] r−2m−4 trY h2m + · · ·

The second term gives

1

2
H il

,rHil,r =
1

2

(
r−2gilY − r−4H il

o + · · ·
)
,r

(
r2gY +

∞∑
m=0

r−2mh2m

)
il,r

=
1

2

(
−2r−3gilY +

∞∑
m=0

(2m+ 4)r−2m−5hil2m + · · ·

)

·

(
2rgY −

∞∑
m=0

(2m)r−2m−1h2m

)
il

= −(2n)r−2 +
∞∑
m=0

[(2m+ 4) + 2m] r−2m−4 trY h2m + · · ·

Hence,

−2Rrr =
∞∑
m=0

(2m+ 1)(2m+ 2) trY h2mr
−2m−4 + · · ·

Therefore, 2f,rr + 1 = −2Rrr implies that to the leading order

f2m+2 =
2m+ 1

2(2m+ 3)
trY h2m + · · ·

For future use, let

C2m :=
2m+ 1

2(2m+ 3)

Notice that this agrees with the equations for f . To rewrite this in terms of the gY metric,
further information about the leading terms of h2m must be derived. Start by recalling the
dxj ∧ dxk coefficients of equation (3)

2 Ric(g)jk + Hessg fjk +Hjk = 0.
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First, find the leading term of 2 Ric(g). In terms of H,

2 Ric(g)jk = 2 Ric(H)jk −Hjk,rr −
1

2
H ilHil,rHjk,r +H ilHij,rHkl,r.

Taking a derivative in the r direction means less derivatives in the Y direction (or alterna-
tively, lower r power for the same number of derivatives). Hence, the leading order term will
only come from Ric(H). Recall the equation

2 Ric(H)jk = 2 Ric(gY )jk +H il
[
Hojl|ki +Hokl|ji −Hojk|il −Hoil|jk

]
+

1

2
H ilHnm

(
Ho[jk|n]Ho[il|m] −Ho[ik|n]Ho[jl|m]

)
.

The term on the second line of this equation will produce nonlinear terms that are lower
order than the first line. This is because H ilHnm = r−4gY

ilgY
nm + O(r−6) and H il =

r−2gY
il + O(r−4). Thus, in the expansion of the second line, the least negative power of r

that a derivative of h2m will appear with is r−2m−4. However, in the expansion of the first
line the second derivative of h2m will appear next to a power of r−2m−2.

It is easy to see that h2(m+1) has a leading order term of order 2 greater than the leading
order of h2m. Therefore, the second line does not contribute any leading order terms. Now
focus on the first line and use an inductive argument with the calculations for h4 as the base
case.

Recall that the leading order terms of h2 = −∆LRjk + 1
3

HessY Rjk + · · · . Plugging this
into the first line initial gave

∆2
LRjk + HessY (∆R)jk − gY il

[
(∆LRjl)|ik + (∆LRkl)|ij

]
and

1

3
gY

il
[
R|jlki +R|klji −R|jkil −R|iljk

]
.

However, after commuting the derivatives, the only leading term was ∆2
LRjk. Hence, we

have the base case for the following proposition.

Proposition 1. For any m > 0, if h2m is of the form

h2m = A2m(∆L)m Ric +B2m HessY (∆)m−1R + · · ·

for some constants A2m and B2m, then the leading order term of (Ricjk)
(2m+2) is

(Ric(H)jk)
(2m+2) = −A2m(∆L)m+1Rjk + · · · .

Proof. First, plugging in B2m HessY (∆)m−1R into the expansion for Ric(H) gives

B2mgY
il
[
(∆m−1R)|jlki + (∆m−1R)|klji − (∆m−1R)|jkil − (∆m−1R)|iljk

]
.

After rearranging the derivatives all the highest order terms cancel out. Thus, the Hessian
term contributes nothing to the leading term of the Ric(H).
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Second, plugging in A2m(∆L)m Ric into the expansion for Ric(H) gives

−∆L (A2m∆m
L Ric)jk + A2mgY

il

[
(∆m

LRil)|jk − (∆m
LRjl)|ik − (∆m

LRkl)|ij

]
The first term give

−A2m(∆L)m+1Rjk

which is the only leading term that doesn’t cancel out.
To simplify the second term, recall the following fact about the Lichnerowics Laplacian

acting on a 2-form Til.

tr (∆LT )il = tr [∆Til −Ri
xTxl − TixRxl + 2TxyR

x
il
y]

= ∆ trT

Then second term simplifies in the following way

gY
il(∆m

LRil)|jk = (gY
il∆m

LRil)|jk

= (∆gY
il∆m−1

L Ril)|jk

= (∆mR)|jk

Finally, the last two terms simplify by first commuting the ith covariant derivative with the
∆m
L and then using the contracted Bianchi identity.

gY
il

[
(∆m

LRjl)|ik + (∆m
LRkl)|ij

]
= gY

il

[
(∆m

L∇iRjl)|k + (∆m
L∇iRkl)|j + · · ·

]
= (∆m∇iRji)|k + (∆m∇iRki)|j + · · ·

=
1

2
(∆m∇jR)|k +

1

2
(∆m∇kR)|j + · · ·

= (∆mR)|jk + · · ·

Hence, to leading order,

gY
il

[
(∆m

LRil)|jk − (∆m
LRjl)|ik − (∆m

LRkl)|ij

]
= 0 + · · ·

Next, look at the leading terms contributed by 2 Hessg f in the (jk)-equation. Recall that

2 Hessg fjk = 2 HessY fjk −H ilHo[jk|l]f|i +Hjk,rf,r
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The second term will not contribute any leading terms because the H il will bump with
exponent of r down. However, the first and last terms will contribute. The last term gives

Hjk,rf,r = Hjk,r

(
−1

2
r +O(r−3)

)
= −r2gY jk +

∞∑
m=1

mr−2mh2m

For the first term, use the definition of f and the above calculations for f using the (rr)-
equation.

2 HessY fjk = 2
∞∑
m=1

r−2m(HessY f2m)jk

= 2
∞∑
m=0

r−2m−2C2m(HessY trY h2m)jk

Hence, if h2m has the form,

h2m = A2m(∆L)m Ric +B2m HessY (∆)m−1R + · · · ,

then
(2 HessY fjk)

(2m+2) = 2C2m(A2m +B2m)(HessY (∆)mR)jk.

Thus,

(2 Hessg fjk)
(2m+2) = 2C2m(A2m +B2m)(HessY (∆)mR)jk + (m+ 1)(h2m+2)jk

Now plug these equation into
(
2 Ric(g) + Hessg f + g = 0

)(2m+2)
assuming that h2m has

the form
h2m = A2m(∆L)m Ric +B2m HessY (∆)m−1R + · · ·

This gives

(m+ 2)(h2m+2)jk = A2m(∆L)m+1Rjk − 2C2m(A2m +B2m)(HessY (∆)mR)jk

Therefore, if h2m has the form

h2m = A2m(∆L)m Ric +B2m HessY (∆)m−1R + · · · ,

then h2m+2 also has the form

h2m+2 = A2m+2(∆L)m+1 Ric +B2m+2 HessY (∆)mR + · · · ,

where

A2m+2 =
A2m

m+ 2

and

B2m+2 = − 2

m+ 2
C2m(A2m +B2m).
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Then these inductive equations can be made more explicit as

A2m =
−2

(m+ 1)!

and

B2m =
m−1∑
µ=0

A2µ

(
m−1∏
ν=µ

(
−2

ν + 2

)
C2ν

)
Then simplify B2m

B2m =
m−1∑
µ=0

−2

(µ+ 1)!

(
m−1∏
ν=µ

(
−2

ν + 2

)
2µ+ 1

2(2µ+ 3)

)

=
m−1∑
µ=0

2

(µ+ 1)!

(
(−1)m−µ+1 (2m− 1) · · · (2µ+ 3)(2µ+ 1)

(m+ 1)(m) · · · (µ+ 2) · (2m+ 1)(2m− 1) · · · (2µ+ 3)

)

=
m−1∑
µ=0

2

(m+ 1)!
(−1)m−µ+1

(
2µ+ 1

2m+ 1

)

=
2

(m+ 1)!(2m+ 1)

m−1∑
µ=0

(−1)m−µ+1(2µ+ 1)

=
1

(m+ 1)!

2m

(2m+ 1)

Thus, the first several leading terms for H can easily be calculated.

H = r2gY − 2r0
(

Ric(gY )− (n− 1)gY

)
+ r−2

(
−∆L Ric(gY ) +

1

3
HessY R + · · ·

)
+r−4

(
−1

3
∆2
L Ric(gY ) +

2

15
HessY (∆R) + · · ·

)
+r−6

(
− 1

12
∆2
L Ric(gY ) +

1

28
HessY (∆R) + · · ·

)
+r−8

(
− 1

60
∆2
L Ric(gY ) +

1

135
HessY (∆R) + · · ·

)
+O(r−10)

2.3 Constraint Equation Calculations

In this section, we use the first few terms in the expansions calculated above to check that
the constraint equation is satisfied. That is

2 Ric(g)rl + 2 Hessg frl = 0

First, look at the Hessian of the potential function.

2 Hessg frl = 2f,rl − 2gΓrl
if,i = 2f,rl −H ixHxl,rf,i
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Expanding this equation out gives

2 Hessg frl = r−1
(
− 2f0|l

)
+ r−3

(
− 6f2|l

)
+ r−5

(
− 10f4|l + 2h0

i
lf2|i

)
+ r−7

[
− 14f6|l + 2h0

i
lf4|i +

(
4h2

i
l − 2h00

i
l

)
f2|i

]

+ r−9

[
− 18f8|l + 2h0

i
lf6|i +

(
4h2

i
l − 2h00

i
l

)
f4|i

+
(

6h4
i
l − 4h02

i
l − 2h20

i
l + 2h000

i
l

)
f2|i

]

Second, look at the Ricci curvature.

2 Ric(g)rl = 2 (gΓrl
i
,i − gΓir

i
,l + gΓrl

m · gΓimi − gΓir
m · gΓmli)

= [H inHnl,r],i − [H inHin,r],l +HmnHnl,r
HΓim

i −HmnHni,r
HΓml

i

= H∇i[H
inHnl,r]− H∇l[H

inHin,r]

= H in
(
H∇iHnl,r − H∇lHin,r

)
Then use equation 10 to simplify this further.

2 Ric(g)rl = H im
(
H∇iHml,r − H∇lHim,r

)
= H im

(
Hml,ri −Him,rl − HΓim

xHxl,r + HΓml
xHix,r

)
= H im

(
Hml,r|i −Him,r|l

)
− 1

2
H imHo[im|y]H

xyHxl,r −
1

2
H im

,rHoim|l

Here the covariant derivatives in the third line are with respect to the link metric gY . Then
write out each term using equation 4 and equation ??.

H imHml,r|i = r−5
(
− 2gY

imh2ml|i

)
+ r−7

(
− 4gY

imh4ml|i + 2h0
imh2ml|i

)
+ r−9

(
− 6gY

imh6ml|i + 4h0
imh4ml|i − 2(h00

im − h2
im)h2ml|i

)
+ · · ·
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Next, −1
2
H imHo[im|y]H

xyHxl,r

= r−5
(
− gY imh2[im|l] + h0

imh0[im|l]

)
+ r−7

(
− gY imh4[im|l] + h0

imh2[im|l] +
[
h2

im − h00
im
]
h0[im|l]

−h0
imh0[im|y]h0

y
l + gY

imh2[im|y]h0
y
l

)

+ r−9

[
gY

imh6[im|l] + h0
imh4[im|l] +

[
h2

im − h00
im
]
h2[im|l]

+
[
h4

im − 2h02
im + h000

im
]
h0[im|l]

+

(
gY

imh4[im|y] − h0
imh2[im|y] +

[
− h2

im + h00
im
]
h0[im|y]

)
h0

y
l

+
(
gY

imh2[im|y] − h0
imh0[im|y]

)[
h2

im − h00
im
]]

+ · · ·

Here notice that the
gY

imh0[im|y] = 0,

so the leading order term is the coefficient for r−5. Finally,

−1

2
H im

,rHoim|l = r−3
(

trY h0|l
)

+ r−5
(

trY h2|l − 〈h0, h0〉|l
)

+r−7

(
trY h4|l − 2h0

imh2im|l + 3
[
− h2

im + h00
im
]
h0im|l

)

+r−9

[
trY h6|l − 2h0

imh4im|l + 3
[
− h2

im + h00
im
]
h2im|l

+4
[
− h4

im + 2h02
im − h000

im
]
h0im|l

]
+ · · ·
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Therefore, the first few terms of the Ric(g)rl are

2 Ric(g)rl = r−3
(

trY h0|l

)
+r−5

(
4 trY h2|l − 4h2il|

i + 2h0
imh0ml|i −

3

2
〈h0, h0〉|l

)
+r−7

(
6 trY h4|l − 6h4il|

i − h0
imh2im|l − 4〈h2, h0〉|l + trY h000|l

+ h0
i
l

[
2h2im|

m − trY h2|i − 2h0
xyh0ix|y +

1

2
〈h0, h0〉|i

]
+ 4h0

imh2ml|i + 2h2
imh0ml|i − h00

imh0[im|l]

)
+ · · ·

Notice that the leading term in the expansion for Ric(g)rl is of order r−3, while the leading
order term in the expansion of the Hessg frl is of the order r−1. This leads to the equation

0 = 0− 2∇lf0

where l can be any coordinate for Y . Thus, ∇f0 ≡ 0, i.e. f0 is a constant. Notice that while
we assumed f0 ≡ const. in section 2.2 to calculate the first few terms of H, the leading order
term of the Ric(g)rl would still be of order r−3. Thus, there is not circular logic here. In
order for the expansions of f and H to satisfy the constraint equation, f0 must be a constant
function on the link Y .

Now we can use
(

2 Ric(g)rl + 2 Hessg frl = 0
)(3)

to check the equation for h0. By the

equations above this is
(trY h0)|l − 6f2|l = 0

This is exactly the l covariant derivative of the equation derived for f2 before, so the equation
for h0 satisfies the constraint equation to order r−3.

Second, we can use
(

2 Ric(g)rl + 2 Hessg frl = 0
)(5)

to check the equation for h2. From the

equations above, it is equivalent to show

0 = 4 trY h2|l − 4h2il|
i + 2h0

imh0ml|i −
3

2
〈h0, h0〉|l − 10f4|l + 2h0

i
lf2|i

Then plug in for f2 and f4 in terms of H. This gives

0 = trY h2|l − 4h2il|
i − 1

2
〈h0, h0〉|l + 2h0

imh0ml|i +
1

3
h0

i
l trY h0|i

Look at each term:

trY h2|l = −2

3
∇l∆R +

4

3
(n− 3)R|l
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Next,

−4h2il|
i = −4

(
−∆LRil +

1

3
HessY Ril − 4Ril +

4

3

[
R− (n− 1)(n− 3)

]
gY il

)
|
i

= 4∆LRil|
i − 4

3
HessY Ril|

i + 16Ril|
i − 16

3

[
R|

i
]
gY il

= 4

[
1

2
∇l∆R +

1

2
|Ric |2 − 2RxyRlx|y

]
− 4

3

[
∇l∆R +R|

xRxl

]
+

(
8− 16

3

)
R|l

=
2

3
∇l∆R + 2|Ric |2|l − 8RxyRlx|y −

4

3
R|

xRxl +
8

3
R|l

Third,

−1

2
〈h0h0〉|l = −2

[
|Ric |2 − 2(n− 1)R + n(n− 1)2

]
|l

= −2|Ric |2|l + 4(n− 1)R|l

Fourth,

2h0
imh0ml|i = 8

(
Rim − (n− 1)gY

im
)
Rml|i = 8RimRml|i − 4(n− 1)R|l

Fifth,
1

3
h0

i
l trY h0|i =

4

3
R|

i
(
Ril − (n− 1)gY il

)
=

4

3
R|

iRil −
4

3
(n− 1)R|l

Adding these five equations together gives 0 = 0, so the original equation is satisfied. Thus,
the equation for h0 and h2 satisfy the constraint to the order of r−5.

Finally, we can use
(

2 Ric(g)rl + 2 Hessg frl = 0
)(7)

to check the equation for h4. We wish

to show that

0 = (2 Hessg frl)
(7) + (2 Ric(g)rl)

(7)

= −14f6|l + 6 trY h4|l − 6h4il|
i − h0

imh2im|l − 4〈h2, h0〉|l + trY h000|l

+ h0
i
l

[
2f4|i + 2h2im|

m − trY h2|i − 2h0
xyh0ix|y

+
1

2
〈h0, h0〉|i −

1

3
h0

m
i trY h0|m

]
+ 4h0

imh2ml|i + 2h2
imh0ml|i − h00

imh0[im|l] +
2

3
h2

i
l trY h0|i

Then use the equation

14f6 = 5 trY h4 −
11

3
〈h0, h2〉+ trY h000
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to cancel out terms in the first line; and use the equation

0 = trY h2|l − 4h2il|
i − 1

2
〈h0, h0〉|l + 2h0

imh0ml|i +
1

3
h0

i
l trY h0|i

to simplify the second and third line.

0 = trY h4|l − 6h4il|
i − h0

imh2im|l −
1

3
〈h2, h0〉|l + 2h0

i
l

[
f4|i − h2im|

m
]

+ 4h0
imh2ml|i + 2h2

imh0ml|i − h00
imh0[im|l] +

2

3
h2

i
l trY h0|i

Now split this equation into four parts and simply each part.
−h0

imh2im|l − 1
3
〈h2, h0〉|l

= 2
[
〈Ric,∇lh2〉 − (n− 1)∇l trY h2

]
+

2

3
∇l

[
〈Ric, h2〉 − (n− 1) trY h2

]
= 2

[
−〈Ric,∇l∆L Ric〉+

1

3
〈Ric,∇l HessY R〉 − 4〈Ric,∇l Ric〉

+
4

3
〈Ric,∇lRgY 〉 − (n− 1)∇l

(
−2

3
∇R +

4

3
(n− 3)R

)]
+

2

3
∇l

[
−〈Ric,∆LRic〉+

1

3
〈Ric,HessY R〉 − 4|Ric |2 +

4

3
R2

−4

3
(n− 1)(n− 3)R− (n− 1)

(
−2

3
∆R +

4

3
(n− 3)R

)]
= −2〈Ric,∇l∆L Ric〉+

2

3
〈Ric,∇l HessY R〉 − 4∇l|Ric |2 +

4

3
∇l(R

2)

+ ∇l

[
−2

3
〈Ric,∆LRic〉+

2

9
〈Ric,HessY R〉 −

8

3
|Ric |2 +

8

9
R2

−8

9
(n− 1)(n− 3)R− (n− 1)

8

3

(
−2

3
∆R +

4

3
(n− 3)R

)]
= ∇l

[
−2

3
〈Ric,∆LRic〉+

2

9
〈Ric,HessY R〉

+
16

9
(n− 1)∆R− 40

9
(n− 1)(n− 3)R− 20

3
|Ric |2 +

20

9
R2

]
−2〈Ric,∇l∆L Ric〉+

2

3
〈Ric,∇l HessY R〉

For the next terms recall that

h2im|
m = −1

6
∇i∆R−

1

2
∇i|Ric |2 + 2RxyRix|y +

1

3
R|

mRim −
2

3
R|i
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2h0
i
l

[
f4|i − h2im|

m
]

= 2h0
i
l

[
∇i

(
−1

5
∆R +

2

5
(3n− 5)R− 2

5
|Ric |2

)
+

1

6
∇i∆R +

1

2
∇i|Ric |2 − 2RxyRix|y −

1

3
R|

mRim +
2

3
R|i

]
= 2h0

i
l

[
∇i

(
− 1

30
∆R + 2

(
3

5
n− 2

3

)
R +

1

10
|Ric |2

)
− 2RxyRix|y −

1

3
R|

mRim

]
= Ri

l

[
∇i

(
2

15
∆R− 8

(
3

5
n+

16

3

)
R− 2

5
|Ric |2

)
+ 8RxyRix|y +

4

3
R|

mRim

]
+∇l

[
− 2

15
(n− 1)∆R + 8(n− 1)

(
3

5
n− 2

3

)
R +

2

5
(n− 1)|Ric |2

]
−8(n− 1)Rlx|yR

xy − 4

3
(n− 1)R|

xRxl

= ∇l

[
− 2

15
(n− 1)∆R + 8(n− 1)

(
3

5
n− 2

3

)
R +

2

5
(n− 1)|Ric |2

]
+Ri

l

[
∇i

(
2

15
∆R− 4

(
23

15
n− 5

3

)
R− 2

5
|Ric |2

)
+ 8RxyRix|y

]
+Rlx|y

[
− 8(n− 1)Rxy

]
+

4

3
R|

i
[
RixR

x
l

]
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4h0
imh2ml|i + 2h2

imh0ml|i

= −8Rimh2ml|i + 8(n− 1)h2il|
i − 4Rlx|yh2

xy

= −8Rim

[
−∇i∆LRml +

1

3
∇i HessY Rml − 4Rml|i +

4

3
∇iRgY ml

]
+8(n− 1)

[
−1

6
∇l∆R−

1

2
∇l|Ric |2 + 2RxyRlx|y +

1

3
R|

mRml −
2

3
R|l

]
−4Rlx|y

[
−∆LR

xy +
1

3
HessY R

xy − 4Rxy +
4

3
[R− (n− 1)(n− 3)] gY xy

]
= 8Rxy∇y∆LRxl −

8

3
〈Ric,∇l HessY R〉 −

8

3
R|

iRxyR
x
il
y +Rlx|y

[
32Rxy

]
+Ri

l

[
−32

3
∇iR

]
+ 8(n− 1)∇l

[
−1

6
∆R− 1

2
|Ric |2 − 2

3
R

]
+Rlx|y

[
16(n− 1)Rxy

]
+Ri

l

[
8

3
(n− 1)∇iR

]
−4Rlx|y

[
−∆LR

xy +
1

3
HessY R

xy − 4Rxy

]
− 8

3
R|l [R− (n− 1)(n− 3)]

= ∇l

[
−4

3
(n− 1)∆R +

8

3
(n− 1)(n− 5)R− 4

3
R2 − 4(n− 1)|Ric |2

]
+Ri

l

[
8

3
(n− 5)∇iR

]
+Rlx|y

[
4∆LR

xy − 4

3
HessY R

xy + 16(n+ 2)Rxy

]
+8Rxy∇y∆LRxl −

8

3
〈Ric,∇l HessY R〉 −

8

3
R|

iRxyR
x
il
y

− h00
imh0[im|l] + 2

3
h2

i
l trY h0|i

= 8(Ri
xR

xm − 2(n− 1)Rim)(2Rml|i −Rim|l)

−4

3
R|

i

(
−∆LRil +

1

3
HessY Ril − 4Ril +

4

3

[
R− (n− 1)(n− 3)

]
gY il

)
= ∇l

[
16

9
(n− 1)(n− 3)R + 8(n− 1)|Ric |2 − 2

9
|∇R|2 − 8

9
R2 − 8

3
RxyR

y
zR

xz

]
+Ri

l

[
16

3
∇iR

]
+Rlx|y

[
16Rx

iR
iy − 32(n− 1)Rxy

]
+

4

3
R|

i∆LRil

Therefore, the equation becomes
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0 = trY h4|l − 6h4il|
i + 8Rxy∇y∆LRxl − 2Rxy∇l∆LRxy +

4

3
R|

i

[
∆Ril −RixR

x
l

]

+ ∇l

(
14

45
(n− 1)∆R +

8

15
(n− 1)(9n− 20)R +

[
22

5
(n− 1)− 20

3

]
|Ric |2

−2

9
|∇R|2 − 2

3
〈Ric,∆L Ric〉+

2

9
〈Ric,HessY R〉 −

8

3
RxyRy

zRzx

)

+ Ri
l

(
2

15
∇i∆R−

2

5
|Ric |2|i + 8RxyRix|y +

[
4

3
(n− 1)− 24

5
n

]
R|i

)

+ Rlx|y

(
4∆LR

xy + 16Rx
iR

iy − 4

3
R|

xy − 24(n− 3)Rxy

)
− 2RxyR|xyl

Now look at the two terms involving h4. First, plug in trY h4|l to the above equation.

0 = −6h4il|
i + 8Rxy∇y∆LRxl − 2Rxy∇l∆LRxy +

4

3
R|

i

[
∆Ril −RixR

x
l

]

+ ∇l

(
− 1

5
∆2R +

16

5
|∇Ric |2 − 8

3
Rix

|
yRiy|x +

28

15
〈Ric,∆ Ric〉

− 2

15
(n+ 29)∆R− 8

5
(7n− 15)R− 1

3
|∇R|2

+
[
6n− 12− 22

5

]
|Ric |2 − 2

3
〈Ric,HessY R〉 −

8

3
RxyRy

zRzx

)

+ Ri
l

(
2

15
∇i∆R−

2

5
|Ric |2|i + 8RxyRix|y +

[4

3
(n− 1)− 24

5
n
]
R|i

)

+ Rlx|y

(
4∆LR

xy + 16Rx
iR

iy − 4

3
R|

xy − 24(n− 3)Rxy

)
− 2RxyR|xyl
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Finally, calculate −6h4il|
i.

−6h4il|
i =

[
2∆2

LRil −
4

5
(∆R)|il + 4(n+ 9)∆LRil +

4

15
(13n− 55)R|il

−16(5n− 13)Ril + 32RixR
x
l −

56

5
Rxy

|iRxy|l −
76

5
RxyRxy|il

+
2

3

(
R|xlRi

x +R|xiRl
x − 2R|

xRxi|l − 2R|
xRxl|i + 3R|

xRil|x

)
+12Rxy

(
Rix|yl +Rlx|yi

)
+ 4Ri

x
|
yR[lx|y] + 4Rl

x
|
yR[ix|y]

−8Rxy
(
Ril|xy −RiaR

a
xyl −RlaR

a
xyi + 2Ry

zRxilz

)]
|

i

+ ∇l

[
− 24

5
∆R− 48

5
|Ric |2 +

16

5
(9n− 25)R

]
Now calculate∇i∆2

LRil by using equation 30. First, use Til = ∆LRil and then use Til = Ril.
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2∇i∆2
LRil = 2∆∇i

(
∆LRil

)
− 2∇i

(
∆LR

ix
)
Rxl − 2

(
∆LR

xy
)
R[xy|l]

= 2∆
[
∆∇iRil −∇iR

ixRxl −RxyR[xy|l]

]
−2
[
∆∇iRix −∇iR

iyRyx −RabR[ab|x]

]
Rx

l

+Rlx|y[−4∆LR
xy] + 2Rxy|l∆LR

xy

= ∆
[
∆∇lR−R|xRxl − 4Rlx|yR

xy +∇l|Ric |2
]

−
[
∆∇xR−R|yRxy − 4Rxa|bR

ab +∇x|Ric |2
]
Rx

l

+Rlx|y[−4∆LR
xy] + 2Rxy|l∆LR

xy

= ∆
[
∇l∆R− 4Rlx|yR

xy +∇l|Ric |2
]

−
[
∇x∆R− 4Rxa|bR

ab +∇x|Ric |2
]
Rx

l

+Rlx|y[−4∆LR
xy] + 2Rxy|l∆LR

xy

= ∇l

[
∆2R + ∆|Ric |2

]
+Ri

l

[
4RxyRix|y

]
+Rlx|y

[
− 4∆LR

xy − 4∆Rxy
]

+2Rxy|l∆LR
xy − 4Rxy∆∇yRxl − 8Rxy

|
iRlx|yi

Then rewrite the term −4Rxy∆∇yRxl as follows.
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−4Rxy∆∇yRxl = −4Rxy
[
Rxl|iy +RalRyix

a +RxaRyil
a
]
|
i

= −4Rxy
[
∇y∆Rxl +Ral|iRy

i
x
a +Rxa|iRy

i
l
a +Rxl|aRy

i
i
a
]

−4Rxy
(
Ral|

iRyix
a +Rxa|

iRyil
a
)

+4Rxy

(
Ral

[
Ryi

i
x|
a +Ryi

ai
|x

]
+Rxa

[
Ryi

i
l|
a +Ryi

ai
|l

])
= −4Rxy∇y∆Rxl +Ri

l

[
2|Ric |2|i − 4RxyRix|y

]
−4

3
∇l

(
RxyRy

zRzx

)
+ 8Rlx|yR

abRx
ab
y − 8Rx

aRay|
iRx

il
y

Therefore,

2∇i∆2
LRil = ∇l

(
∆2R + 2〈Ric,∆ Ric〉+ 2

∣∣∇Ric
∣∣2 − 4

3
RxyRy

zRzx

)
+Ri

l

[
2|Ric |2|i

]
+Rlx|y

[
− 8∆Rxy + 8Rx

iR
iy
]

+ 2Rxy|l∆LR
xy

−4Rxy∇y∆Rxl − 8Rix
|
yRil|xy − 8Rx

aRay|
iRx

il
y

Next, look at the other 4th order term, 4
5
∇i HessY (∆R)il.

−4

5
∇i HessY (∆R)il = −4

5
∆∇l∆R

= −4

5
∇l∆

2R− 4

5
Ri

l∇i∆R

Next look at the second order terms.

4(n+ 9)∇i∆LRil = 4(n+ 9)
[
∆∇iRil −∇iR

ixRxl −RxyR[xy|l]

]
= 2(n+ 9)∇l

[
∆R + |Ric |2

]
− 8(n+ 9)RxyRlx|y

and

4

15
(13n− 55)∇i HessY Ril =

4

15
(13n− 55)∆∇lR

=
4

15
(13n− 55)∇l∆R +

4

15
(13n− 55)Ri

lR|i

Thus, the first line simplifies to.
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[
2∆2

LRil − 4
5
(∆R)|il + 4(n+ 9)∆LRil + 4

15
(13n− 55)R|il

]
|

i

= ∇l

[
1

5
∆2R +

(
82

15
n+

10

3

)
∆R + 2(n+ 9)|Ric |2 + ∆|Ric |2

−4

3
RxyRy

zRzx

]
+Ri

l

[
− 4

5
∇i∆R + 2|Ric |2|i +

4

15
(13n− 55)R|i

]
+ Rlx|y

[
− 8∆Rxy + 8Rx

iR
iy − 8(n+ 9)Rxy

]
+ 2Rxy|l∆LR

xy

− 4Rxy∇y∆Rxl − 8Rix
|
yRil|xy − 8Rx

aRay|
iRx

il
y

Next look at the second line.

−16(5n− 13)Ril|
i = −8(5n− 13)∇lR

32∇i
[
RixR

x
l

]
= 16Ri

lR|i + 32Rlx|yR
xy

−56

5
∇i
[
Rxy

|iRxy|l

]
= −56

5

[
Rxy|l∆R

xy +Rxyi
|Rxy|li

]
= −56

5

[
Rxy|l∆R

xy +
1

2
∇l

∣∣∣∇Ric
∣∣∣2 + 2Rxy

|
iRy

aRlixa

]
−76

5
∇i
[
RxyRxy|il

]
= −76

5

[
1

2
∇l

∣∣∣∇Ric
∣∣∣2 +RxyRxy|il

i

]
= −38

5
∇l

∣∣∣∇Ric
∣∣∣2 − 76

5
Rxy∇l∆Rxy

−152

5
RxyRy

a
|
iRlixa −

38

5
Ri

l|Ric |2|i

Hence, the second line simplify to[
− 16(5n− 13)Ril + 32RixR

x
l − 56

5
Rxy

|iRxy|l − 76
5
RxyRxy|il

]
|

i

= ∇l

[
−56

5
〈Ric,∆ Ric〉 − 66

5
|Ric |2 − 8(5n− 13)R

]
+Ri

l

[
−38

5
|Ric |2|i + 16R|i

]
+ 32Rlx|yR

xy − 4Rxy∇l∆Rxy

Then look at the third line.
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2
3

(
Ri

xR|xl +Rl
xR|xi − 2R|

xRxi|l − 2R|
xRxl|i + 3R|

xRil|x

)
|
i

=
2

3

(
1

2
R|

xR|xl +RxyR|xly +Ri
l∆∇iR +Rlx|yR|

xy − 2Rxy|lR|
xy

−2R|
xRix|l

i − 2Rlx|yR|
xy − 2R|

x∆Rxl + 3R|
xRil|x

i + 3Rlx|yR|
xy

)

=
2

3

(
1

4
∇l

∣∣∇R∣∣2 + 2Rlx|yR|
xy − 2Rxy|lR|

xy +Rxy
[
R|xyl +R|aRlyx

a
]

+Ri
l

[
∇i∆R +Rx

iR|x

]
+R|

x

[
− 2
(
Rix|

i
l +RaiRl

i
x
a +RxaRl

i
i
a
)

−2∆Rxl + 3
(
Ril|

i
x +RalRx

i
i
a +RiaRx

i
l
a
)])

=
2

3

(
1

4
∇l

∣∣∇R∣∣2 + 2Rlx|yR|
xy − 2Rxy|lR|

xy +RxyR|xyl +R|
xRabR

a
xl
b

+Ri
l

[
∇i∆R +Rx

iR|x

]
+R|

x

[
− 2
(1

2
R|xl −RabR

a
xl
b +Rx

aRal

)
−2∆Rxl + 3

(1

2
R|xl +Rx

aRal −RabR
a
xl
b
)])

= ∇l

[
1

3
|∇R|2 +

2

3
〈Ric,HessY R〉

]
+Ri

l

[
2

3
∇i∆R

]
+Rlx|y

[
4

3
R|

xy

]
−2R|

xyRxy|l −
4

3
R|

i
[
∆Ril −Ri

xRxl

]
Next look at

[
12Rxy

(
Rix|yl +Rlx|yi

)]
|

i

12RxyRix|yl
i = 12Rxy

[
Rix|y

i
l +Rax|yRl

i
i
a +Ria|yRl

i
x
a +Rix|aRl

i
y
a
]

= 6RxyR|xyl + 12Rxy
[
RaxRy

i
i
a +RiaRy

i
x
a
]
|l

+ 12Ri
lR

xyRix|y − 12RxyRab|yR
a
xl
b − 12RxyRxa|bR

b
yl
a

= 6RxyR|xyl + 12Rxy
[
Rx

iRiy −RabR
a
xy
b
]
|l

+ 12Ri
lR

xyRix|y − 12RxyRab|xR
a
yl
b + 12Rx

aRay|
iRx

il
y
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and

12RxyRlx|yi
i = 12Rxy∆∇yRxl

= 12Rxy∇y∆Rxl +Ri
l

[
− 6|Ric |2|i + 12RxyRix|y

]
+ 4∇l

(
RxyRy

zRzx

)
− 24Rlx|yR

abRx
ab
y + 24Rx

aRay|
iRx

il
y

Thus,

[
12Rxy

(
Rix|yl +Rlx|yi

)]
|

i

= 12

[
Rxy

|
i
(
Rix|yl +Rlx|yi

)
+Rxy

(
Rix|yl

i +Rlx|yi
i
)]

= ∇l

[
6Rix

|
yRiy|x + 4RxyRy

zRzx

]
+ Ri

l

[
− 6|Ric |2|i + 24RxyRix|y

]
+Rlx|y

[
− 24RabRx

ab
y
]

+ 6RxyR|xyl + 12Rix
|
yRil|xy + 12Rxy∇y∆Rxl

+ 12Rxy
[
Rx

iRiy −RabR
a
xy
b
]
|l
− 12RxyRab|xR

a
yl
b + 36Rx

aRay|
iRx

il
y

Next look at

4
[
Ri

x
|
yR[lx|y] +Rl

x
|
yR[ix|y]

]
|
i

= 4Ri
x
|
yiR[lx|y] + 4Ri

x
|
yR[lx|y]

i + 4Rl
x
|
yiR[ix|y] + 4Rl

x
|
yR[ix|y]

i

Then simplify each term separately. First,

4Ri
x
|
yiR[lx|y] = 4

[
1

2
R|

xy +Ra
xRyi

i
a +RiaR

yixa

]
R[lx|y]

= Rxy|l

[
2R|

xy + 4Rx
iR

iy − 4RabRx
ab
y
]
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Second,

4Ri
x
|
yR[lx|y]

i = 4Ri
x
|
y
[
Rxy|l

i +Rly|x
i −Rlx|y

i
]

= 4Rix
|
yRiy|lx + 4Rxy

|
iRil|xy − 4Rix

|
yRil|yx

= 2∇l

(
Rix

|
yRiy|x

)
+ 4Rix

|
y
[
RayRlxi

a +RiaRlxy
a
]

+4Rxy
|
iRil|xy − 4Rix

|
y
[
Ril|xy +RalRyxi

a +RiaRyxl
a
]

= 2∇l

(
Rix

|
yRiy|x

)
+ 4Rxy

|
iRil|xy − 4Rix

|
yRil|xy

+4Rix
|
y
[
RayRlxi

a +RiaRlxy
a −RalRyxi

a −RiaRyxl
a
]

Third,

4Rl
x
|
yiR[ix|y] = 4Rl

x
|
yi
[
Rxy|i +Riy|x −Rix|y

]
= 4Rxy|

i

[
Ril|

xy +Rx
l|
y
i −Rx

l|i
y

]
= 4Rxy|

i

[
Ril|

xy +Ra
lR

y
i
x
a +Rx

aR
y
il
a

]
Forth,

4Rl
x
|
yR[ix|y]

i = 4Rl
x
|
y
[
∆Rxy +Riy|x

i −Rix|y
i
]

= 4Rl
x
|
y

[
∆Rxy +RayRx

i
i
a +RiaRx

i
y
a −RaxRy

i
i
a −RiaRy

i
x
a

]
= 4Rlx|y∆R

xy

Hence, 4
[
Ri

x
|
yR[lx|y] +Rl

x
|
yR[ix|y]

]
|
i

= 2∇l

(
Rix

|
yRiy|x

)
+ 8Rxy

|
iRil|xy − 4Rix

|
yRil|xy + 4Rlx|y∆R

xy

+ Rxy|l

[
2R|

xy + 4Rx
iR

iy − 4RabRx
ab
y
]
− 8Ri

l

[
Rxy|

aRx
ai
y
]

+ 4RxyRab|xR
a
yl
b − 4Rx

aRay|
iRx

il
y + 8Rxa|

iRayR
x
il
y

Therefore, line four simplifies to
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[
12Rxy

(
Rix|yl +Rlx|yi

)
+ 4Ri

x
|
yR[lx|y] + 4Rl

x
|
yR[ix|y]

]
|
i

= ∇l

[
2〈Ric,HessY R〉+ 8Rix

|
yRiy|x + 4RxyRy

zRzx

]
+Ri

l

[
− 6|Ric |2|i + 24RxyRix|y − 8Rxy|

aRx
ai
y
]

+ 4RxyR|xyl

+Rlx|y
[
4∆Rxy − 24RabRx

ab
y
]

+Rxy|l

[
4Rx

iR
iy − 4RabRx

ab
y
]

+8Rix
|
yRil|xy + 8Rxy

|
iRil|xy + 12Rxy∇y∆Rxl + 12Rxy

[
Rx

iRiy −RabR
a
xy
b
]
|l

−8RxyRab|xR
a
yl
b + 32Rx

aRay|
iRx

il
y + 8Rxa|

iRayR
x
il
y

Then look at the fifth line.[
− 8Rxy

(
Ril|xy −RiaR

a
xyl −RlaR

a
xyi + 2Ry

zRxilz

)]
|

i

−8
[
RxyRil|xy

]
|
i = −8Rxy

|
iRil|xy − 8RxyRil|xy

i

= −8Rxy
|
iRil|xy − 8RxyRil|x

i
y

−8Rxy
[
Ral|xRy

i
i
a +Ria|xRy

i
l
a +Ril|aRy

i
x
a
]

= −8Rxy
|
iRil|xy − 4RxyR|lxy

−8Rxy
[
Ral|xRy

a −Ria|xR
i
yl
a −Ril|aR

i
xy
a
]

−8Rxy
[
RalRx

a −RiaR
i
xl
a
]
|y

= −8Rxy
|
iRil|xy − 4Rxy

[
R|xyl +R|aRlyx

a
]

−8Rxy
[
Ral|xRy

a −Ria|xR
i
yl
a −Ril|aR

i
xy
a
]

−8Rxy
[
RalRx

a −RiaR
i
xl
a
]
|y

8
[
Ri

aRxyR
x
al
y
]
|
i = 4R|

iRxyR
x
il
y + 8Rxy

[
RabR

a
xl
b
]
|y

42



8
[
Rl

aRxyR
x
ia
y
]
|
i = 8Rlx|yR

abRx
ab
y + 8Ri

lRxy|
aRx

ai
y − 8Rl

aRxy

[
Rx

i
i
a|
y +Rx

i
yi
|a

]
= 8Rlx|yR

abRx
ab
y +Ri

l

[
8Rxy|

aRx
ai
y − 8RxyRix|y + 4|Ric |2|i

]

−16
[
RxaR

a
yR

x
il
y
]
|
i = −16

[
RxaR

a
y

]
|
iRx

il
y + 16RxaR

a
y

[
Rx

i
yi
|l +Rx

i
i
l|
y
]

= −16
[
RxaR

a
y

]
|
iRx

il
y + 16Rlx|yR

xiRi
y − 16

3
∇l(R

xyRy
zRzx)

Therefore, line 5 simplifies to[
− 8Rxy

(
Ril|xy −RiaR

a
xyl −RlaR

a
xyi + 2Ry

zRxilz

)]
|

i

= −16

3
∇l(R

xyRy
zRzx) +Ri

l

[
4|Ric |2|i + 8Rxy|

aRx
ai
y
]

+ Rlx|y

[
16RxiRi

y + 16RabRx
ab
y
]
− 4RxyR|xyl − 8Rxy

|
iRil|xy

+ 8Rxy
[
− 2RxiR

i
l + 2RabR

a
xl
b
]
|y

+ 8RxyRab|xR
a
yl
b − 16

[
RxaR

a
y

]
|
iRx

il
y

Combining these equations shows that the equation is satisfied by h4.

2.4 Proof of Theorem 1

Now that the first few terms in the expansions of f and H have been calculated, we are
ready to prove Theorem 1. As the calculations in section 2.2 show, for i ≥ 1, we can
determine f2i in terms of the quantities {gY , h0, . . . , h2i−2} using equation 14; and we can
determine h2i in terms of the quantities {gY , h0, . . . , h2i−2, f0, . . . , f2i} using equation 16.
Notice that the Hjk,rf,r-term and the Hjk-term in equation 16 will combine to give a factor
of (i + 1)r−2i(h2i)jk, so in particular, it will always be nonzero. By this construction, the
expansions for f and H satisfy equation 14 and 16. Further, the calculations in section 2.3
show that equation 15 is of order no more that O(r−9). It remains to show that equation 15
is satisfied to all orders. First we will derive another formula involving the potential function
and the Ricci tensor. Then we will show how to argue using this formula that the mixed
term equation is satisfied to every order.

To derive this new equation, consider a general Riemannian manifold (M, g) and a smooth
function f ∈ C∞(M). Then consider the metric-measure space (M, g, e−fdvolg). The analog
of the Ricci tensor for a metric-measure space is the Bakey-Emery-Ricci tensor Ric + Hess(f).
Looking for weighted analog of the contracted Bianchi identity ∇aRab = 1

2
∇bR leads to the

following equation

∇a(Rab +∇a∇bf)− (∇af)(Rab +∇a∇bf) =
1

2
∇b(R + 2∆f − |∇f |2) . (33)
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Notice, while this equation is motivated by the measure structure of (M, g, e−fdvolg), this
equation does not use the measure. One recognizes the right hand of this equation as
Perelman’s weighted scalar curvature, R + 2∆f − |∇f |2.

This equation can be rewritten as

∇a

(
Ric(g)ab + Hessg fab +

1

2
gab

)
− (∇af)

(
Ric(g)ab + Hessg fab +

1

2
gab

)
=

1

2
∇b(R + 2∆f − |∇f |2 − f). (34)

From this equation one can see the known fact that if (M, g, f) is a gradient expanding Ricci
soliton then R+ 2∆f − |∇f |2− f is a constant. After modifying f by this constant, we can
assume that the soliton satisfies R + 2∆f − |∇f |2 − f = 0.

Returning to the setting of Theorem 1, equation 34 can be simplified. Recall that we use
coordinates {r, x1, . . . , xn}. By construction, the expansions in equations 4 and 5 satisfy

Ric(g)jk + Hessg fjk +
1

2
gjk = 0

and

Ric(g)rr + Hessg frr +
1

2
grr = 0.

Let Xir = Rir +∇i∇rf and S = R+ 2∆f − |∇f |2 − f . Then substituting equation 4 and
5 into equation 34 gives

∇iXir − (∇if)Xir =
1

2
∂rS (35)

when the b coordinate is replaced with r; and

∇rXir − (∂rf)Xir =
1

2
∂iS (36)

when the b coordinate is replaced with one of the coordinates on Y . We rewrite these
equations in terms of H(r) and the Levi-Civita connection of H(r). This gives

H ij [∇jXir − (∇jf)Xir] =
1

2
∂rS (37)

and

∂rXir −
1

2
HjkHki,rXjr − (∂rf)Xir =

1

2
∂iS (38)

Now that we have these equations we can prove the following lemma

Lemma 3. If S vanishes to all orders in r−1, then Xir vanishes to all orders in r−1.

Proof. We suppose not and show a contradiction. If Xir does not vanish to all orders in r−1,
then Xir = r−Nφ + O(r−N−1) for some integer N ≥ 1 and some nonzero φ ∈ Ω1(Y ). Using
the leading order terms form the asymptotic expansions for f and H, the left-hand side of
equation 38 becomes

1

2
r−N+1φi +O(r−N)

However, the right-hand side of equation 38 vanishes to all orders, so φ must be zero. This is
a contradiction as we assumed φ was the leading nonzero term in the expansion of Xir.
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Now we can proof Theorem 1. It is enough to show that Xir vanishes to all orders.
Suppose, by way of contradiction, that Xir = r−Nφ + O(r−N−1) for some N ≥ 1 and some
nonzero φ ∈ Ω1(Y ). From Lemma 3, S does cannot vanish to all orders in r−1. Thus,
S = r−Mψ + O(r−M−1) for some M ≥ 1 and some nonzero ψ ∈ C∞(Y ). Using the leading
order terms of the asymptotic expansions for f and H, the left-handed side of 38 is

1

2
r−N+1φi +O(r−N).

The right-hand side of 38 is
1

2
r−M∂iψ +O(r−M−1).

Because φ is nonzero, this implies M ≤ N − 1.
Next, look at equation 37 and plug in the leading order terms for f and H. The left-hand

side of 37 is
r−N−2hij∇jφi +O(r−N−3),

while the right-hand of equation 37 becomes

−1

2
Mr−M−1ψ +O(r−M−2)

Because ψ is nonzero, this implies M ≥ N + 1. This is a contradiction and thus

Xir = Rir +∇i∇rf = 0

which proves Theorem 1.
This argument can also be used to construct asymptotic expansions for conical gradient

shrinking solitons. The leading order term for f becomes 1
4
r2.

2.5 Bryant Soliton Example

The Bryant Soliton is one example of an asymptotically conical expanding Ricci soliton.
Thus, if the above formal calculations are reflective of actual asymptotic behavior, then the
asymptotic behavior of the Bryant soliton should agree with the above, general calculations.
In this section, we will first recall the equations satisfied by the Bryant soliton and then
show that specializing equations 14, 15 and 16 from section 2.1 give the same system of
equations. Lastly, the asymptotic expansion of the Bryant soliton will be calculated and the
above calculations for Ho in this thesis will be specialized to the Bryant soliton case to show
the two agree.

Start by recall the Bryant Soliton metric is of the form:

gBS = dr2 + a(r)dσ2

where σ2 is the standard round metric on S2 and a(t) is only a function of the radial parameter
r. (note in his paper the radial parameter is denoted as t.) Further, Bryant showed that
there exists a smooth function, a(r), that is odd in r and satisfies the Ricci soliton equation:

Ric(gBS) = HessgBS(f)− λgBS.
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Notice that the expander equation considered in the rest of this thesis uses λ = 1/2 and the
potential function has the opposite sign.

Bryant shows the metric, gBS, satisfies the Ricci soliton equation by showing that a(r) and
f(r) satisfy the system of ODEs (equation (2.4) in [B]).

− 2a(r)a′′(r) = a(r)2 [f ′′(r)− λ] (39)

1− a′(r)2 − a(r)a′′(r) = a(r)a′(r)f ′(r)− λa(r)2 (40)

To compare these equations to equations 14, 15 and 16 from section 2.1, i.e. let

H = a(r)2dσ2

as in the Bryant soliton case. Then clearly, H−1 = a(r)−2dσ] ⊗ dσ]. Hence, equation 14
becomes

2a(r)2

[
f ′′(r)− 1

2

]
= 2na(r)a′′(r)

Setting λ = 1/2, n = 2, and changing the sign of f gives the first equation in Bryant’s
system of equations. Notice that this equation shows that f is a function of r and not of any
coordinates on the sphere. Hence, the partials of f are all zero unless they are of the form
∂rkf for some k ∈ N. Next, the mixed term equation vanishes identically as follows.

2 Hessg frl = 2f,rl −H ixHxl,rf,i = 0

by the statement above. Then

H∇iHml,r = [a(r)2]′ · dσ2∇idσ
2
ml = 0

by the metric property. Finally,

Ric(H) = Ric(a(r)2dσ2) = Ric(dσ2) = (n− 1)dσ2

Plugging this into equation 16 gives

(n− 1)−
[
a(r)2

]′′
+ a(r)a′(r)f ′(r) +

1

2
a(r)2 = 0.

Setting λ = 1/2, n = 2, and changing the sign of f gives the second equation in Bryant’s
system of equations.

Now, calculate the first few terms in the asymptotic expansion of a(r). To get an equation
for a(r) without f , take the derivative of equation 40 and then plug in equation 39 for the
f ′′(r) term.

The derivative equation is

0 = a(r)a′(r) [f ′(r)− 2λ] + [a(r)a′(r)]
′
f ′(r) + [a(r)a′(r)]

′′

Then plugging in for f ′(r) and f ′′(r).

0 = a′(r)2 + a(r)a′′(r) + λa(r)3a′′(r)

− a′(r)2a(r)a′′(r)− a′(r)4 − a(r)2a′′(r)2 + a(r)2a′(r)a′′′(r) (41)
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Then, Bryant showed that a(r) is an analytic, odd function of r such that there exists a
constant c ∈ R satisfying

lim
r→∞

∣∣a(r)− cr
∣∣ = 0

Hence, the asymptotic expansion of a(r) should be of the form

a(r) ∼ cr + c1r
−1 + c3r

−3 + c5r
−5 + · · ·

for some constants ci. Notice, if c = 1, then gBS is asymptotic to the standard flat metric
on R2 and the lower order terms are clearly zero. In the following, assume that c 6= 1. The
following calculations show that the lower order terms do in fact cancel out when c = 1.

Then, look at the coefficients for r0.

0 = c2 + 2λc3c1 − c4

which implies

c1 =
1

2λ

(
c− 1

c

)
Next, look at the coefficients for r−2.

0 = 6λc2c2
1 + 12λc3c3 − 4c3c1

which implies

c3 =
4c3c1 − 6λc2c2

1

12λc3
=

1

8λ2

(
c

3
+

2

3c
− 1

c3

)
Then, look at the coefficients for r−4.

0 = 3c2
1 + 6cc3 + 6λcc3

1 + 42λc2c1c3 + 30λc3c5 − 14c2c2
1 − 60c3c3

which implies

c5 =
1

240λ3

(
35c− 13

c
− 7

c3
− 15

c5

)
Then calculate a(r)2

a(r)2 ∼ c2r2 +
1

λ
(c2 − 1) +

1

3λ2
(c2 − 1)r−2

+
1

3λ3

(
c2 − 1

5
− 4

5c2

)
r−4 +O(r−6) (42)

Hence, the metric becomes

gBS = dr2 + a(r)2dσ2

∼ dr2 +

[
r2 + 2

(
1− 1

c2

)
+

4

3

(
1− 1

c2

)
r−2

+
8

3

(
1− 1

5c2
− 4

5c4

)
r−4 +O(r−4)

]
c2dσ2
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In particular, notice that plugging in c = 1 gives exactly gBS ∼ dr2 + r2dσ2.
Then the expansion of a(r) can be used to calculate the expansion of f(r). Recall that

a(r)f ′′(r) = λa(r)− 2a′′(r)

It is clear from this equation that f is an even function of r. Hence, f has the form

f(r) ∼ br2 + b0 + b2r
−2 + b4r

−4 +O(r−6)

or
f ′′(r) ∼ 2b+ 6b2r

−4 + 20b4r
−6 +O(r−8)

These terms expand to

a(r)f ′′(r) ∼ 2bcr + 2bc1r
−1 + (2bc3 + 6b2c)r

−3 +
(
20b4c+ 6b2c1 + 2bc5

)
r−5

+
(
42b6c+ 20b4c1 + 6b2c3 + 2bc7

)
r−7 +O(r−9)

λa(r) ∼ λcr + λc1r
−1 + λc3r

−3 + λc5r
−5 + λc7r

−7

−2a′′(r) ∼ −4c1r
−3 − 24c3r

−5 − 60c5r
−7

Now look at the coefficients for r1. This gives

2bc = λc

which implies

b =
λ

2

Next look at the coefficients for r−1. This gives

2bc1 = λc1

which also implies

b =
λ

2

Then look at the coefficients for r−3. This gives

2bc3 + 6b2c = λc3 − 4c1

which implies

b2 =
−2c1

3c
=
−1

3λ

(
1− 1

c2

)
Then, look at the coefficients for r−5. This gives

20b4c+ 6b2c1 + 2bc5 = λc5 − 24c3
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which implies

b4 =
−6b2c1 − 24c3

20c
=
−1

5λ2

(
1

c2
− 1

c4

)
Finally, look at the coefficients for r−7. This gives

42cb6 + 20b4c1 + 6b2c3 = −60c5

which implies

b6 =
1

21λ3

(
−13

3
+

8

3c2
− 4

3c4
+

3

c6

)
=

8

21

(
−13

3
+

8

3c2
− 4

3c4
+

3

c6

)
Then plug in λ = 1/2, and the expansion for f becomes

f(r) =
1

4
r2 + const.− 2

3

(
1− 1

c2

)
r−2 − 4

5

(
1

c2
− 1

c4

)
r−4 +O(r−6)

Second, plug in gY = c2dσ2 into the equations for h0, h2, h4, and f to check that they
coincide. Recall that

Rm(c2dσ2)xyzw = c2Rm(dσ2)xyzw = c2dσ2(∂x ∧ ∂y, ∂w ∧ ∂z)

Ric(c2dσ2) = Ric(dσ2) = (n− 1)dσ2

R(c2dσ2) = c−2R(dσ2) = n(n− 1)c−2

In particular, all derivatives of the curvatures are zero by the metric property. First, calculate
h0.

h0 = −2
[

Ric(c2dσ2)− (n− 1)c2dσ2
]

= −2
[
(n− 1)dσ2 − (n− 1)c2dσ2

]
= 2(n− 1)(c2 − 1)dσ2

= 2(c2 − 1)dσ2

Next calculate h2.

h2 = −4 Ric(c2dσ2) +
4

3

[
R(c2dσ2)− (n− 1)(n− 3)

]
(c2dσ2)

= −4(n− 1)dσ2 +
4

3

[
n(n− 1)c−2 − (n− 1)(n− 3)

]
(c2dσ2)

=
4

3
(n− 1)(n− 3)(1− c2)dσ2

=
4

3
(c2 − 1)dσ2
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Third, calculate h4.

h4 =
8

3
(5n− 13)Rjk −

16

3
RjxR

x
k

+

[
8

5
|Ric |2 − 8

15
(9n− 25)R +

8

15
(n− 1)(2n− 5)(3n− 11)

]
gY jk

=
8

3
(5n− 13) Ric(c2dσ2)jk −

16

3
(c−2dσxy) Ric(c2dσ2)jx Ric(c2dσ2)yk

+

[
8

5
(c−2dσab)(c−2dσxy) Ric(c2dσ2)ax Ric(c2dσ2)by

]
(c2dσ2)

+
8

15

[
−(9n− 25)R(c2dσ2) + (n− 1)(2n− 5)(3n− 11)

]
(c2dσ2)

=
8

3
(n− 1)(5n− 13)dσ2

jk −
16

3
(n− 1)2c−2dσ2

jk +
8

5
n(n− 1)2c−2dσ2

+
8

15

[
− n(n− 1)(9n− 25)c−2 + (n− 1)(2n− 5)(3n− 11)

]
(c2dσ2)

=
8

3

[
1− 1

5c2
− 4

5c4

]
c2dσ2

Therefore, the Bryant soliton metric (n=2) has the same asymptotic expansion as the formal
calculation.

Finally, calculation the potential function’s expansion in the Bryant soliton case. Recall

f(r) = −1

4
r2 + const.+ f2r

−2 + f4r
−4 + f6r

−6

Then

f2 = −1

3

[
R(c2dσ2)− n(n− 1)

]
=

1

3
n(n− 1)

(
1− 1

c2

)
=

2

3

(
1− 1

c2

)
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and

f4 =
1

5

[
−2|Ric |2 + 2(3n− 5)R− 4n(n− 1)(n− 2)

]
=

1

5

[
−2
(
c−2dσab

) (
c−2dσxy

)
((n− 1)dσax) ((n− 1)dσby)

+2(3n− 5)n(n− 1)c−2 − 4n(n− 1)(n− 2)
]

=
1

5

[
−2n(n− 1)2c−4 + 2n(n− 1)(2n− 5)c−2 − 4n(n− 1)(n− 2)

]
=

4

5

[
1

c2
− 1

c4

]
Therefore, the Bryant Soliton example agrees with the calculates done in section 2.1. In

particular, this provides an example where the formal expansion corresponds to a well defined
metric on the manifold.

3 Asymptotic stability for Ricci-DeTurck flows with

rough initial data and nice asymptotic cones

The layout of this section will be as follows. In section 3.2, the notation and background
needed in the proof of Theorem 2 will be introduced. In section 3.3, the structure of gsol will
be discussed. In section 3.4, convergence will be shown in a weak Sobolev norm. In section
3.5, the full regularity of the convergence will be shown.

3.1 Background

The intent of this section is to fix notation and review several ideas and facts from [KL]
needed in this paper. Throughout this paper, all derivatives and distance-balls will be taken
with respect to the Euclidean metric unless otherwise stated. More precisely,

B(x, r) := {y ∈ Rn
∣∣ dδ(x, y) = |x− y| < r}

The main result needed from [KL] is the following, which is Theorem 4.3 in [KL].

Theorem 4. There exists εn > 0, Cn > 0 such that for every metric g0 ∈ L∞(Rn) satisfying
||g0 − δ||L∞(Rn) < εn there exists a global analytic solution g ∈ δ +X∞ of the Ricci-DeTurck
flow with g(·, 0) = g0 and ||g− δ||X∞ ≤ Cn||g0− δ||L∞(Rn). The solution is unique in the ball
BX∞(δ, Cnεn) = {g| ||g− δ||X∞ ≤ Cnεn}. (The space X∞ will be defined in the proof below.)

More precisely, there exists R > 0, c > 0 such that for every k ∈ N0 and every multi-index
α ∈ Nn

0 we have the estimate

sup
x∈Rn

sup
t>0
|(t

1
2∇)α(t∂t)

k(g − δ)(x, t)| ≤ c||g0 − δ||L∞(Rn)R
(|α|+k)(|α|+ k)!.

Moreover, the solution, g, depends analytically on g0.
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Proof. This will only be an outline of the proof highlighting elements needed in the argument
of this paper. For a full proof of this theorem, refer to [KL].

First, perform a series of formal manipulations to reformulate the problem as follows.
Suppose that a family of metrics, g(t), solves the Ricci-DeTurck flow. Then define the
related symmetric 2-tensor h(t) := g(t)− δ and write down the Ricci-DeTurk flow equation
in terms of h(t). Through out the paper h(t) will be referred to as the related 2-tensor to
g(t). This equation can be manipulated to look like a non-homogeneous heat equation in
Euclidean coordinates.

(∂t −∆)h = R[h] (43)

The differential operator R acts on a one-parameter family of symmetric 2-tensors and has
the form: R[u] := ∇R1[u] +R0[u]

∇R1[u]ij := ∇a

((
(δ + u)ab − δab

)
∇buij

)
R0[u]ij :=

1

2
(δ + u)ab(δ + u)pq

(
∇iupa∇juqb + 2∇aujp∇quib − 2∇aujp∇buiq

−2∇jupa∇buiq − 2∇iupa∇bujq + 2∇aubq∇puij

)
where all derivatives are taken with respect to the Euclidean metric.

Continuing these formal manipulations, let K denote the standard heat kernel on Euclidean
space

K(x, t) = (4πt)−
n
2 e−

|x|2
4t . (44)

Then the standard solution to the non-homogeneous heat equation with initial data, h0, is
of the form

h(x, t) := S[h0](x, t) + V R[h](x, t) (45)

where for u0 ∈ L∞(Rn) and u ∈ C2(Rn × (0,∞)).

S[u0](x, t) :=

∫
Rn
K(x− y, t)u0(y)dy

V R[u](x, t) :=

∫ t

0

∫
Rn
K(x− y, t− s)R[u](y, s)dyds.

Thus, a solution to this equation will solve the Ricci-DeTurck flow. For fixed initial condition,
h0, define the operator

Φ[u](x, t) := S[h0](x, t) + V R[u](x, t).

Then a fixed point of Φ satisfies equation 43, and thus gives a solution to the Ricci-DeTurck
flow. However, the function space C2(Rn× (0,∞)) is too restrictive to find a fixed point, so
expand the domain of definition of Φ as follows.

For a family of symmetric two-tensors parametrized by t ∈ [0,∞), defined a norm, X∞,
by

||u||X∞ := sup
t>0
||u(t)||L∞(Rn) + sup

x∈Rn
sup
R>0

R−
n
2 ||∇u||L2(B(x,R)×(0,R2))

+ sup
x∈Rn

sup
R>0

R
2

n+4 ||∇u||Ln+4(B(x,R)×(R2/2,R2))
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Denote the space of such families with finite X∞-norm as X∞. This norm makes X∞ a
Banach space. Then define two norms Y 0

∞ and Y 1
∞ so that R0 and R1 naturally map X∞

into a function space with finite Y 0
∞ and Y 1

∞ norm respectively. The precise definitions are

||u||Y 0
∞ := sup

x∈Rn
sup
R>0

(
R−n||u||L1(B(x,R)×(0,R2)) +R

4
n+4 ||u||

L
n+4

2 (B(x,R)×(R
2

2
,R2))

)
||u||Y 1

∞ := sup
x∈Rn

sup
R>0

(
R−

n
2 ||u||L2(B(x,R)×(0,R2)) +R

2
n+4 ||u||

Ln+4(B(x,R)×(R
2

2
,R2))

)
.

Let Y∞ = Y 0
∞ + Y 1

∞. The precise meaning will be clear in context. Then Koch and Lamm
show that if R[h] ∈ Y∞, then V maps R[h] back into X∞.

Hence, letting BX∞(0, γ) := {u ∈ X∞| ||u||X∞ ≤ γ}, [KL] shows that for every γ ∈ (0, 1),
Φ maps BX∞(0, γ) into X∞.

Further, for any two families of metrics h1, h2 ∈ BX∞(0, γ),

||Φ[h1]− Φ[h2]||X∞ ≤ c||h0||L∞(Rn) ||h1 − h2||X∞
where c is a constant that depends only on the dimension coming from heat kernel estimates
and integral bound constants.

Hence, there exist constants εn > 0 and Cn > 0 such that if ||h0||L∞(Rn) < εn, then the
operator, Φ, is a contraction on a ball BX∞(0, Cnεn). Note in particular that neither Cn > 0
nor εn > 0 depend on the initial data. (Note that this is the same εn as in the main result
of this paper.)

Thus, the Banach fixed point theorem implies there exists a unique fixed point h(t) ∈
BX∞(0, Cnεn) such that

h(t) = Φ[h(t)] = S[h0] + V R[h(t)].

Hence, g(t) = h(t) + δ is a solution to the Ricci-DeTurk flow for all positive time and is
unique in the ball BX∞(δ, Cnεn) := {u ∈ X∞| ||u − δ||X∞ ≤ Cnεn}. Standard theory gives
that g(t) is in fact smooth for positive time. This completes the proof in [KL].

3.2 Structure of the Asymptotic Cones

The results in this section are straight forward applications of Koch and Lamm’s work. It
is unknown to the author if these propositions have been stated explicitly in the literature
before. However, it should be noted that Deruelle has shown stronger results under a positive
curvature assumption [Der].

Consider the cone metric, gC(Sn−1), from theorem 2. The cone metric, gC(Sn−1), is εn-close
to δ in L∞(Rn) because g0 of theorem 2 is. Hence, Theorem 4.3 of [KL] applies to gC(Sn−1)

and there exists a flow, gsol(0) coming out of this cone.
Further, rescaling the initial data by gC(Sn−1)(λx) corresponds to parabolic rescaling of the

flow metrics. Hence, if the initial metric is invariant under rescaling, i.e. a cone, then the
flow is invariant under parabolic rescaling. This is collected in the following two propositions.

Proposition 2. For initial data, g0 ∈ L∞(Rn), such that ||g0 − δ||L∞(Rn) < εn define h0 =
g0− δ and the rescaling hλ0(x) := h0(λx). Then define the operators Φ[u](x, t) = S[h0](x, t)+
V R[u](x, t) and Φλ[u](x, t) = S[hλ0 ](x, t) + V R[u](x, t). If h(x, t) is the unique fixed point of
Φ as in [KL], then hλ(x, t) := h(λx, λ2t) is the unique fixed point of Φλ.
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Proof. Notice that convergence back to the initial data would make this result trivial. By
the parabolic invariance of the X∞ norm,

||hλ||X∞ = ||h||X∞ ≤ Cnεn.

Hence, it is enough to show that hλ ∈ BX∞(0, Cnεn) is a fixed point of the operator Φλ. This
is a straight forward calculation. First, let ȳ = y/λ. Then

S[h0](λx, λ2t) =

∫
Rn
K(λx− y, λ2t)h0(y)dy

=

∫
Rn

(4πλ2t)−
n
2 e−

|λx−y|2

4λ2t h0(y)dy

=

∫
Rn

(4πt)−
n
2 e−

|x−y/λ|2
4t h0(y)λ−ndy

=

∫
Rn

(4πt)−
n
2 e−

|x−ȳ|2
4t h0(λȳ)dȳ

= S[hλ0 ](x, t)

Second, let s̄ = s/λ2. Then, using that R involves two spacial derivatives in all of its terms,

V R[h](λx, λ2t) =

∫ λ2t

0

∫
Rn
K(λx− y, λ2t)R[h](y, s)dyds

=

∫ λ2t

0

∫
Rn

(4πλ2t)−
n
2 e
− |λx−y|

2

4(λ2t−s)R[h](y, s)dyds

=

∫ λ2t

0

∫
Rn

(4πt)−
n
2 e
− |x−y/λ|

2

4(t−s/λ2)R[h](λȳ, λ2s̄)d(y/λ)d(s/λ2)

=

∫ t

0

∫
Rn

(4πt)−
n
2 e−

|x−ȳ|2
4(t−s̄)R[hλ](ȳ, s̄)dȳds̄

= V R[hλ](x, t)

Hence,
Φ[u](λx, λ2t) = Φλ[uλ](x, t)

where uλ(x, t) = u(λx, λ2t). Then by the fixed point property of h

hλ(x, t) = h(λx, λ2t) = Φ[h](λx, λ2t) = Φλ[hλ]

Thus, hλ is the unique fixed point with initial data hλ0 .

Proposition 3. If the initial metric as in Koch and Lamm’s theorem 4.3 is a rough cone,
gC(Sn−1), then the flow, gsol, coming out of this rough initial data is invariant under the
parabolic rescaling defined in equation 7, i.e.

gsol,λ(x, t)ij := gsol(λx, λ
2t)ij = gsol(x, t)ij (46)

Further, this flow is an expanding Ricci-DeTurck soliton.
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Proof. The initial data is a rough cone metric, i.e. g0 = gC(Sn−1) := dr2 + r2gn−1 for some
rough metric gn−1 ∈ L∞(Sn−1). Let hsol(x, t)ij := gsol(x, t)− δ. The goal is to show that

gsol(λx, λ
2t)ij = gsol(x, t)ij.

Because δ(x, t) = δ(λx, λ2t), this is equivalent to showing that

hsol,λ(x, t) := hsol(λx, λ
2t)ij = hsol(x, t)ij.

First, look at the rescaled cone metric. Using polar coordinates (r, θ) ∈ (0,∞)× Sn−1, the
rescaling gλ0 (x) := g0(λx) can be written gλC(Sn−1)(r, θ) = gC(Sn−1)(λr, θ). Then

gC(Sn−1)(λr, θ) = d(λr)2 + (λr)2gn−1 = λ2gC(Sn−1)(r, θ).

Thus, gλC(Sn−1)(r, θ) = λ2gC(Sn−1)(r, θ). Further, let hC(Sn−1) = gC(Sn−1) − δ. Then, because δ
is also a cone metric,

hλC(Sn−1)(r, θ) := hC(Sn−1)(λr, θ) = λ2hC(Sn−1)(r, θ).

Second, turn attention back to the flows hsol and hsol,λ. By assumption, hsol is the unique
fixed point of

Φsol[u](x, t) = S[hC(Sn−1)](x, t) + V R[u](x, t).

Then, by the previous proposition, the rescaled flow, hsol,λ, is the unique fixed points for the
operator

Φsol,λ[u](x, t) = S[hλC(Sn−1)](x, t) + V R[u](x, t).

By the above calculation for the initial cone metric,

S[hλC(Sn−1)](x, t) = λ2S[hC(Sn−1)](x, t)

Then by the fixed point property of hsol,λ,

hsol,λ(x, t) = S[hλC(Sn−1)](x, t) + V R[hsol,λ](x, t)

By the equation above,

hsol,λ(x, t) = λ2S[hC(Sn−1)](x, t) + V R[hsol,λ](x, t)

Then divide by λ2,

λ−2hsol,λ(x, t) = S[hC(Sn−1)](x, t) + V R[λ−2hsol,λ](x, t) = Φsol[λ
−2hsol,λ](x, t)

Hence, λ−2hsol,λ(x, t) is a fixed point on Φsol. Further,

||λ−2hsol,λ||X∞ = λ−2||hsol,λ||X∞ = λ−2||hsol||X∞ .

Thus, for all λ ≥ 1, if hsol ∈ BX∞(0, Cnεn), then λ−2hsol,λ ∈ BX∞(0, Cnεn). On the other
hand, hsol is the unique fixed point of Φsol in BX∞(0, Cnεn). Therefore,

hsol(x, t) = λ−2hsol(λx, λ
2t)
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and hence,
gsol(x, t) = λ−2gsol(λx, λ

2t).

Rewriting this for t = 1 and letting λ2 become the time parameter gives

gsol(t) = tgsol(1)

for all times t > 0. Thus, this solution is an expanding Ricci-DeTurck soliton.
This may seem to contradict equation 46. However, notice that when the two flows are

calculated using the same basis of 1-forms, they are the same. Let x̄ := λx. Then

hsol(x, t)ijdx
i ⊗ dxj = λ−2hsol(λx, λ

2t)ijdx̄
i ⊗ dx̄j

= hsol(λx, λ
2t)ijdx

i ⊗ dxj

Subscripts will be used to denote that the same basis is used on both sides of an equation.
Hence, the above equation will be written

hsol(x, t)ij = hsol(λx, λ
2t)ij. (47)

This equation implies equation 46 directly.

Remark. One would like to translate this result back into the Ricci flow setting as follows.
Take a cone metric, g0, on Rn sufficiently close to the Euclidean metric but with angle greater
than π/2, i.e. with negative curvature. This metric will not be smooth at the cone point, so
the Ricci flow coming out of this metric is not a priori defined. However, the result of Koch
and Lamm says that there is an immortal Ricci-DeTurck flow, g(t), stating from g(0) = g0.
By the argument above it is an expanding Ricci-DeTurck soliton. Take the time slice at
t = 1 of this Ricci-DeTurck flow, (Rn, g(1)). This will be a smooth manifold, so it can be
translated back to the Ricci flow setting and will be an expanding Ricci soliton, (Rn, g̃(t))t≥1.
Then taking the flow back in time is just a matter of rescaling the metric. The limiting
metric at time t = 0 is just the asymptotic cone of a later time slice (see [Der]). By Lott
and Zhang’s work, this asymptotic cone must be the same cone as the initial metric for the
Ricci-DeTurck flow, g̃(0) = g0.

Unfortunately, it is not clear to the author how to make this argument rigorous. In par-
ticular, it is not clear that the Ricci-DeTurck flow nor the diffeomorphism that translates
between the Ricci flow and Ricci-DeTurck flow preserve the asymptotic cone.

3.3 Proof of Convergence

With the preliminaries set, turn back to proving theorem 2 of this paper. In this section,
let g(t) be the metric from theorem 2, i.e. g(0) = g0 is εn-close to the Euclidean metric
and asymptotic to a rough cone, gC(Sn−1). Let gsol be the Ricci-DeTurck flow coming out
of gC(Sn−1) and define the 2-tensor, hC(Sn−1) := gC(Sn−1) − δ and the family of 2-tensors
hsol(t) := gsol(t)− δ. (Recall that Koch and Lamm’s result is need to ensure that gsol exists
because gC(Sn−1) is not C2 at the cone point unless it is the flat metric.) To study the blow
down of g, define the family of flows

gλ(x, t) := g(λx, λ2t) (48)

and the related families of symmetric 2-tensors h(t) := g(t)− δ and hλ(t) := gλ(t)− δ. The
goal of this section will be to show that hλ → hsol as λ→∞ on Rn× (0,∞) in a weak sense.
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3.3.1 Reduction of Problem

To begin, establish two basic properties of the rescaled flows, gλ(t). First, the Ricci-DeTurck
flow is invariant under the parabolic rescaling defined by equation 7. Hence, for each λ ∈
(0,∞), the family of metrics, gλ(t), is also a solution to the Ricci-DeTurck flow.

Second, the X∞-norm is also invariant under parabolic rescaling, so the following lemma
holds.

Lemma 5. Let hsol be the related 2-tensor of a Ricci-DeTurck flow coming out of a rough
cone as described in section 3.2. Let h(t) be the related 2-tensor of a Ricci-DeTurck flow as
in Koch and Lamm’s result. Then, for every 1 ≤ λ <∞,

||hλ − hsol||X∞ = ||h− hsol||X∞

and in particular,
||hλ||X∞ = ||h||X∞ .

Proof. Notice, the asymptotic assumptions are not used in this lemma at all. Hence, the
second equation is just a special case of the first equation when the rough cone metric is the
Euclidean metric, gC(Sn−1) = δ, i.e. when hsol ≡ 0. The proof is a simple calculation.

Recall that by definition,

||hλ − hsol||X∞ = sup
t>0
|| (hλ − hsol) (t)||L∞(Rn)

+ sup
x∈Rn

sup
R>0

R−
n
2 ||∇(hλ − hsol)||L2(B(x,R)×(0,R2))

+ sup
x∈Rn

sup
R>0

R
2

n+4 ||∇(hλ − hsol)||Ln+4(B(x,R)×(R2/2,R2))

Further, recall that hλ(y, s) = h(λy, λ2s) by definition and hsol(y, s) = hsol(λy, λ
2s) by

proposition 2 in section 3.2 (equation 46). Define the coordinates ȳ := λy, s̄ := λ2s, x̄ := λx,
and t̄ := λ2t. Also let R̄ := λR. Then look at each term in the X∞-norm.

First,

sup
t>0
|| (hλ − hsol) (t)||L∞(Rn) = sup

t>0
|| (h− hsol) (λ2t)||L∞(Rn)

= sup
λ2t>0

|| (h− hsol) (λ2t)||L∞(Rn)

= sup
t̄>0

|| (h− hsol) (t̄)||L∞(Rn)
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Second,

||∇(hλ − hsol)||L2(B(x,R)×(0,R2)) =

(∫ R2

0

∫
B(x,R)

(∇(hλ − hsol)(y, s))2 dyds

) 1
2

=

(∫ R2

0

∫
B(x,R)

(
λ∇(h− hsol)(λy, λ2s)

)2
dyds

) 1
2

=

(∫ R2

0

∫
B(x,R)

(∇(h− hsol)(ȳ, s̄))2 λ2dyds

) 1
2

=

(∫ λ2R2

0

∫
B(λx,λR)

(∇(h− hsol)(ȳ, s̄))2 λ−nd(λy)d(λ2s)

) 1
2

= λ−
n
2

(∫ R̄2

0

∫
B(x̄,R̄)

(∇(h− hsol)(ȳ, s̄))2 dȳds̄

) 1
2

= λ−
n
2 ||∇(h− hsol)||L2(B(x̄,R̄)×(0,R̄2))

Hence,

sup
x∈Rn

sup
R>0

R−
n
2 ||∇(hλ − hsol)||L2(B(x,R)×(0,R2))

= sup
x̄∈Rn

sup
R̄>0

R̄−
n
2 ||∇(h− hsol)||L2(B(x̄,R̄)×(0,R̄2))

Third,

||∇(hλ − hsol)||Ln+4(B(x,R)×(0,R2)) =

(∫ R2

0

∫
B(x,R)

(∇(hλ − hsol)(y, s))n+4 dyds

) 1
n+4

=

(∫ R2

0

∫
B(x,R)

(
λ∇(h− hsol)(λy, λ2s)

)n+4
dyds

) 1
n+4

=

(∫ R2

0

∫
B(x,R)

(∇(h− hsol)(ȳ, s̄))n+4 λn+4dyds

) 1
n+4

=

(∫ R̄2

0

∫
B(x̄,R̄)

(∇(h− hsol)(ȳ, s̄))n+4 λ2d(λy)d(λ2s)

) 1
n+4

= λ
2

n+4

(∫ R̄2

0

∫
B(x̄,R̄)

(∇(h− hsol)(ȳ, s̄))n+4 dȳds̄

) 1
n+4

= λ
2

n+4 ||∇(h− hsol)||Ln+4(B(x̄,R̄)×(0,R̄2))
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Hence,

sup
x∈Rn

sup
R>0

R
2

n+4 ||∇(hλ − hsol)||Ln+4(B(x,R)×(R2/2,R2))

= sup
x̄∈Rn

sup
R̄>0

R̄
2

n+4 ||∇(h− hsol)||Ln+4(B(x̄,R̄)×(R̄2/2,R̄2))

Therefore,

||hλ − hsol||X∞ = sup
t>0
|| (hλ − hsol) (t)||L∞(Rn)

+ sup
x∈Rn

sup
R>0

R−
n
2 ||∇(hλ − hsol)||L2(B(x,R)×(0,R2))

+ sup
x∈Rn

sup
R>0

R
2

n+4 ||∇(hλ − hsol)||Ln+4(B(x,R)×(R2/2,R2))

= sup
t̄>0

|| (h− hsol) (t̄)||L∞(Rn)

+ sup
x̄∈Rn

sup
R̄>0

R̄−
n
2 ||∇(h− hsol)||L2(B(x̄,R̄)×(0,R̄2))

+ sup
x̄∈Rn

sup
R̄>0

R̄
2

n+4 ||∇(h− hsol)||Ln+4(B(x̄,R̄)×(R̄2/2,R̄2))

= ||h− hsol||X∞

Note, while these two properties are true for all positive λ, the only important values of λ
when studying the blowdown are λ ≥ 1.

Next, define the operator Φsol on X∞ such that for u ∈ X∞

Φsol[u] := S[hC(Sn−1)] + V R[u].

Then lemma 5 can be used to show the following.

Lemma 6. Φm
sol[hλ] → hsol in X∞ as m → ∞ uniformly for all 1 ≤ λ < ∞. (Here the

superscript m denotes applying the map m times.)

Proof. By [KL], Φsol is a contraction on BX∞(0, Cnεn) which has a unique fixed point hsol
(see section 3.1). Hence, for any u ∈ BX∞(0, Cnεn), Φm

sol[u] → hsol in X∞ as m → ∞. This
convergence is allowed to depend on u.

More precisely, Φsol is a contraction on BX∞(0, Cnεn), so there exists a constant 0 < γ < 1
such that for any u1, u2 ∈ BX∞(0, Cnεn)

||Φsol[u1]− Φsol[u2]||X∞ ≤ γ||u1 − u2||X∞

and hence,
||Φm

sol[u1]− Φm
sol[u2]||X∞ ≤ γm||u1 − u2||X∞ .

Then because 0 < γ < 1, γm → 0 as m → ∞. Let u2 = hsol and use that Φsol[hsol] = hsol.
Hence,

||Φm
sol[u1]− hsol||X∞ ≤ γm||u1 − hsol||X∞ .
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By the assumptions on the initial metric, ||g0 − δ||L∞(Rn) ≤ εn, and Theorem 4.3 of [KL],

||hλ(t)||X∞ = ||h(t)||X∞ ≤ Cn||g0 − δ||L∞(Rn) ≤ Cnεn.

Thus, for any fixed λ, plugging in u1 = hλ gives

||Φm
sol[hλ]− hsol||X∞ ≤ γm||hλ − hsol||X∞ .

Moreover, by lemma 5
||hλ − hsol||X∞ = ||h− hsol||X∞

Therefore,
||Φm

sol[hλ]− hsol||X∞ ≤ γm||h− hsol||X∞
Thus, there exists a bound independent of λ that goes to zero as m→∞.

Remark. Lemma 5 and lemma 6 do not make use of the asymptotic assumptions on g0, and
all the statements above hold for any flow coming out of initial data, g0, that is εn-close to
δ in L∞(Rn) and any flow coming, gsol, coming out of a rough cone, gC(Sn−1).

Unfortunately, lemma 5 also shows that hλ does not converge to hsol in the X∞-norm.
Thus, define a weaker norm as follows

||u||X′∞(r) := sup
(x,t)/∈Q(r)

|u|+ sup
(x,t)/∈Q(r)

t−
n
4 ||∇u||L2(B(x,

√
t)×(0,t))

+ sup
(x,t)/∈Q(r)

t
1

n+4 ||∇u||Ln+4(B(x,
√
t)×(t/2,t))

where Q(r) := B(0, r) × (0, r2) ⊂ Rn × (0,∞). Notice in particular, that convergence in
X∞ implies convergence in X ′∞(r) for every r > 0. (see section 3.3.3 for a more detailed
discussion of this bound.) Then the following will be shown.

Lemma 7. For every ε′ > 0, every r > 0 and each fixed m ∈ N, there exists a constant
Λ ∈ R such that for all λ > Λ

||hλ − Φm
sol[hλ]||X′∞(r) <

ε′

2
.

To see why this lemma is enough to imply convergence, argue as follows. First, by lemma
6, for every ε′ > 0, there exists M ∈ N (independent of λ) such that for all m > M ,

||Φm
sol[hλ]− hsol||X′∞(r) ≤ ||Φm

sol[hλ]− hsol||X∞ <
ε′

2
Pick m = 2M and fix this choice of m. Second, by lemma 7, for every r > 0, there exists
Λ ∈ R such that for all λ > Λ

||hλ − Φm
sol[hλ]||X′∞(r) <

ε′

2
Therefore, by the triangle inequality, for any ε′ > 0 and any r > 0, there exists Λ such that
for all λ > Λ

||hλ − hsol||X′∞(r) ≤ ||hλ − Φm
sol[hλ]||X′∞(r) + ||Φm

sol[hλ]− hsol||X′∞(r) < ε′.

Therefore, hλ → hsol in X ′∞(r) for each r > 0.
The proof of Lemma 7 will be given in the next three subsections. The proof will follow

by induction on m.
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3.3.2 Base Case

For the base case, let m = 1 and study hλ − Φsol[hλ]. Recall that hλ can be written

hλ(x, t) = S[hλ(·, 0)](x, t) + V R[hλ](x, t)

=

∫
Rn
K(x− y, t)hλ(y, 0)dy +

∫ t

0

∫
Rn
K(x− y, t− s)R[hλ](y, s)dyds (49)

Then from the definition of Φsol,

hλ − Φsol[hλ] = S[gλ − gsol] :=

∫
Rn
K(x− y, t)(gλ − gsol)(y, 0)dy

which is the standard solution to the heat equation on Rn with initial data (gλ − gsol)(·, 0).
Recall the following bounds on the Euclidean heat kernel. For any integer k ∈ N0, multi-
index α ∈ Nn

0 , and t > 0, there exists a constant, c, such that

||∂kt∇αK(·, t)||L1(Rn) ≤ ct−k−|α|/2

Moreover, for any x ∈ Rn

|∂kt∇αK(x, t)| ≤ c
(
t

1
2 + |x|

)−n−2k−|α|

Then, for any time t > 0, any integer k ∈ N0, any multi-index α ∈ Nn
0 and any real number

r > 0,
∇α∂kt

∣∣hλ − Φsol[hλ]
∣∣(x, t)

=

∫
Rn

(∇α∂ktK)(x− y, t)(gλ − gsol)(y, 0)dy

≤ ||(gλ − gsol)(·, 0)||L∞(Rn\B(0,r)) · ||∇α∂ktK(·, t)||L1(Rn\B(0,r))

+||(gλ − gsol)(·, 0)||L∞(B(0,r)) · ||∇α∂ktK(t)||L∞(B(0,r)) · vol(B(0, r))

≤ η(λr) · c1t
−|α|+k + 2εn · c2

(
t

1
2 + inf

y∈B(x,r)
|y|
)−n−|α|−2k

· c3r
n

where here c1 and c2 are from the above heat kernel bounds and c3 is a geometric constant that
only depends on the dimension, n. Take r = λ−1/2. Then for each fixed pair (x0, t0) ∈ Rn ×
(0,∞), there exists a neighborhood, U around (x0, t0) such that this bound goes uniformly
to zero in U as λ→∞. Thus, as λ→∞, |hλ − Φsol[hλ]| → 0 in C∞loc(Rn × (0,∞)).

Further, let Q(r0) := B(0, r0) × (0, r2
0) and consider hλ − Φsol[hλ], i.e. let k = 0 and

α = ~0. Then note that for any fixed r0 > 0, this bound converges uniformly to zero for every
(x, t) ∈ Rn× (0,∞)\Q(r0), i.e. for all r0 > 0, ∃ c depending only on the dimension such that

sup
(x,t)/∈Q(r0)

∣∣hλ − Φsol[hλ]
∣∣(x, t) ≤ c

(
η
(
λ1/2

)
+ λ−n/2

)
which converges to zero as λ → ∞. In particular, |hλ − Φsol[hλ]| → 0 in X ′∞(r) for every
r > 0. However, notice that hλ does not approach Φsol[hλ] in the X∞-norm precisely because
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X∞ is invariant under parabolic rescaling and the bad behavior near (0, 0). More precisely,
the L∞(Rn)-norm does not improve under rescaling even though it may be zero in the limit,
so

||hλ − Φsol[hλ]||X∞ ≥ ||h(0)− Φsol[h](0)||L∞(Rn).

For example, take g0 to be gsol(0) perturbed by a smooth bump function with compact
support around 0. The next section will that the X ′∞(r)-norm fixes this problem.

3.3.3 Modified Norms

To motivate this section, notice that for any i > 1,

Φi−1
sol [hλ]− Φi

sol[hλ] = V
(
R[Φi−2

sol [hλ]]−R[Φi−1
sol [hλ]]

)
:=

∫ t

0

∫
Rn
K(x− y, t− s)

(
R[Φi−2

sol [hλ]]−R[Φi−1
sol [hλ]]

)
(y, s)dyds

is the standard solution for the non-homogeneous heat equation with initial data identically
zero. From [KL], the composition of the operators V and R are a contraction on X∞. Hence,

||hλ − Φm
sol[hλ]||X∞ ≤ m||hλ − Φsol[hλ]||X∞

However, as seen in the last section, the X∞-norm of the initial step does not improve as
λ→∞. Nevertheless, it was enough to have convergence on the complement of any open set
containing (0, 0). This section will be devoted to replacing the X∞-norm with the X ′∞(r)-
norm in the above bound. Then the next section will show that this bound goes to zero as
λ→∞ and implies convergence on the complement of any open set containing (0, 0).

Define the following norm (first seen in section 3.3.1)

||u||X′∞(r) := sup
(x,t)/∈Q(r)

|u|+ sup
(x,t)/∈Q(r)

t−
n
4 ||∇u||L2(B(x,

√
t)×(0,t))

+ sup
(x,t)/∈Q(r)

t
1

n+4 ||∇u||Ln+4(B(x,
√
t)×(t/2,t))

where Q(r) := B(0, r) × (0, r2) ⊂ Rn × (0,∞). To clarify, the supremums are taken over
pairs where t > 0 because the initial data only has finite essential supremum. Compare this
to the X∞-norm stated in section 3.1 with t = R2. Notice in particular, that convergence in
X∞ implies convergence in X ′∞(r) for every r > 0. However, the converse is false as seen in
the previous section where hλ → Φsol[hλ] in X ′∞(r) for every r > 0 but not in X∞.

Similarly, define the norms

||u||Y ′∞,0(r) := sup
(x,t)/∈Q(r)

(
t−

n
2 ||u||L1(B(x,

√
t)×(0,t)) + t

2
n+4 ||u||

L
n+4

2 (B(x,
√
t)×(t/2,t))

)
||u||Y ′∞,1(r) := sup

(x,t)/∈Q(r)

(
t−

n
4 ||u||L2(B(x,

√
t)×(0,t)) + t

1
n+4 ||u||Ln+4(B(x,

√
t)×(t/2,t))

)
which correspond to the Y -norms in [KL]. Following Koch and Lamm’s notation, denote
Y ′∞(r) = Y ′∞,0(r) + Y ′∞,1(r). The precise meaning will be clear in context. The following is
a simple adaptation of the arguments in [KL] Lemma 4.1 and Lemma 4.2. By the above
definitions for X ′∞(r) and Y ′∞(r) and the definition of the differential operator R = R0 +∇R1

from section 3.1, we have the following.
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Lemma 8. For every 0 < γ ≤ σ < 1, the operators ∇R1[·] : X ′∞(r) → Y ′∞,1(r) and
R0[·] : X ′∞(r)→ Y ′∞,0(r) are analytic with the estimates

||R0[h] +∇R1[h]||Y ′∞(r) ≤ c(γ, σ)||h||2X′∞(r)

for all h ∈ BX′∞(r)(0, γ) ∩BX∞(0, σ) and

||R[h1]−R[h2]||Y ′∞(r) ≤ c(γ, σ)
(
||h1||X′∞(r) + ||h2||X′∞(r)

)
||h1 − h2||X′∞(r)

for all h1, h2 ∈ BX′∞(r)(0, γ) ∩BX∞(0, σ).

Then use the heat kernel estimates from section 3.3.2 to prove the following.

Lemma 9. Let R = R0 + ∇R1 ∈ Y ′∞(r1) ∩ Y∞. Then for any r0 > 2r1, V R is in X ′∞(r0)
and we have the estimate

||V R||X′∞(r0) ≤ C||R||Y ′∞(r1) + C||R||Y∞
(
r1

r0

)n
Proof. Divide up the space Rn × (0, t) over which we will integrate as follows. Let Q1 :=
B(0, r1)× (0, r2

1) be a small cylinder around (0, 0) where we only have Y∞ bounds for R. Let
Q2 := B(x, r2) × (t − r2

2, t) be a small cylinder around (x, t) where K becomes unbounded.
Finally, by definition of X ′∞(r0), we only need to consider (x, t) /∈ Q0 := B(0, r0) × (0, r2

0).
Look at the integral over Q1, Q2, and Rn × (0, t)\(Q1 ∪Q2) separately.

First, consider the integral over Q1. Let Q′1 := B(x, r1)× (t− r2
1, t] and let ci be constants

depending only on n. Then∫
Q1
K ·R0 +∇K ·R1dδ

≤ ||K||L∞(Q′1) · ||R0||L1(Q1) + ||∇K||L∞(Q′1) · ||1||L2(Q1) · ||R1||L2(Q1)

≤ c1

(√
(t− r2

1)+ + (|x| − r1)+

)−n
· rn1 ||R0||Y 0

∞

+ c2

(√
(t− r2

1)+ + (|x| − r1)+

)−n−1

· (r2
1)1/2r

n/2
1 · rn/21 ||R1||Y 1

∞

≤ c3||R||Y∞
(
r1

r0

)n(
1 +

r1

r0

)
≤ c4||R||Y∞

(
r1

r0

)n
Second, Q2 corresponds to Q in Koch and Lamm’s paper, and the integral over Q2 is

bounded using the same argument as they use for I. Third, the integral over the region
Rn×(0, t)\(Q1∪Q2) corresponds to II in [KL] and also follows the same argument. Similarly,
the L2 and Ln+4 bounds on the derivatives follow from the argument in Koch and Lamm as
well. This completes the proof of Lemma 9.
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3.3.4 Induction Step

Now that the correct norms has been chosen, the induction step can be carried out. Applying
the two lemmas and the modified norms for i > 1
||Φi−1

sol (hλ)− Φi
sol(hλ)||X′∞(r0)

= ||V
(
R[Φi−2

sol (hλ)]−R[Φi−1
sol (hλ)]

)
||X′∞(r0)

≤ c1||R[Φi−2
sol (hλ)]−R[Φi−1

sol (hλ)]||Y ′∞(r1) + c2εn

(
r1

r0

)n
≤ c3||Φi−2

sol (hλ)− Φi−1
sol (hλ)||X′∞(r1) + c2εn

(
r1

r0

)n
Here the third line follows from Lemma 9 and the bound

||R[Φi−2
sol (hλ)]−R[Φi−1

sol (hλ)]||Y∞ ≤ c5||Φi−2
sol (hλ)− Φi−1

sol (hλ)||X∞ ≤ c5 · 2Cnεn.

The fourth line follows from Lemma 8.
This completes the induction for an appropriate choice of r0 and r1. The only complication

is that at each step r1 becomes r0. To show this isn’t a problem, fix m ∈ N and r0 > 0. Let
a ∈ R>2 be a constant to be determined later. For each integer, i from 1 to m, let ri = r0/a

i.
Then the following holds.
||(hλ)− Φm

sol(hλ)||X′∞(r0)

≤
m∑
i=1

||Φi−1
sol (hλ)− Φi

sol(hλ)||X′∞(r0)

≤ c1

m−1∑
i=0

||(hλ)− Φsol(hλ)||X′∞(ri) + c2εn

m−1∑
i=1

(m− i)
(

ri
ri−1

)n
≤ c3

m∑
i=1

η(λri) + c2εn

m∑
i=1

(m− i+ 1)

(
ri
ri−1

)n
≤ c4mη(λrm) + c5εnm

2a−n

where the constants ci depend on the dimension, n, and the constants m, and r0. Then there
exist a and λ large enough so that c4mη(λrm) + c5εnm

2a−n is arbitrarily small.
More precisely, fix r0 > 0. Then for every ε′ > 0 and for each m ∈ N, there exists A ∈ R

such that for all a > A,

c5εnm
2a−n <

ε′

4
Pick a = 2A and fix this constant. Then there exists Λ ∈ R such that for all λ > Λ,

c4m η

(
rλ

am

)
<
ε′

4

Thus, for every r0, ε
′ > 0 and for each m ∈ N, there exists Λ ∈ R such that for all λ > Λ,

||(hλ)− Φm
sol(hλ)||X′∞(r0) ≤ c4mη(λrm) + c5εnm

2a−n ≤ ε′

2
.

This proves lemma 7. Therefore, hλ → hsol in X ′∞(r) for each r > 0. The next section will
be devoted to increasing the regularity of this convergence.
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3.4 Regularity of Convergence

This section will focus on replacing convergence in X ′∞(r) for each r > 0 with convergence
in C∞loc(Rn × (0,∞)). First, notice that convergence in X ′∞(r) for each r > 0 directly
implies C0

loc(Rn × (0,∞)). To see this take (x0, t0) ∈ Rn × (0,∞). Let r0 = t0/2 > 0
and Q(r0) = B(0, r0)× (0, r2

0). Then

sup
(x,t)/∈Q(r0)

|hλ − hsol| ≤ ||hλ − hsol||X′∞(r0)

which converges to zero as λ→∞.
Note that both gλ and gsol are smooth for all t > 0, with scale invariant bounds given by

sup
x∈Rn

sup
t>0
|(t

1
2∇)α(t∂t)

k(g − δ)(x, t)| ≤ Cεn (50)

where C is a constant depending only on α, k, and n (see section 3.1). In particular, this
derivative bound on gλ does not depend on λ. Hence, it make sense to ask if their derivatives
converge as λ→∞. Notice, this is the same as asking about the derivatives of hλ and hsol.

Define the two-parameter family of symmetric two-tensors

uλ(x, t) := hλ(x, t)− hsol(x, t) = gλ(x, t)− gsol(x, t) (51)

for t > 0 and λ ≥ 1. Similarly, define

fλ(x, t) = R[hλ](x, t)−R[hsol](x, t). (52)

Note that fλ is a perfectly well-defined smooth function for all λ because hλ and hsol are
both smooth functions. Hence, uλ and fλ satisfy

(∂t −∆)uλ(x, t) = fλ(x, t)

for the initial condition uλ(·, 0) = (gλ − gsol)(·, 0). Then, uλ can be written

uλ(x, t) = S[uλ(·, 0)](x, t) + V [fλ](x, t)

=

∫
Rn
K(x− y, t) (gλ − gsol) (y, 0)dy

+

∫ t

0

∫
Rn
K(x− y, t− s)fλ(y, s)dyds

Now we can state the following lemma.

Lemma 10. With uλ and fλ as above, if equation 51 holds for uλ and uλ converges to zero
in X ′∞(r) for all r > 0, then uλ and fλ converge to zero in C∞loc(Rn × (0,∞)).

Proof. The idea is then to show S[uλ(·, 0)](x, t) goes to zero smoothly because the initial
condition goes to zero; and then V [fλ](x, t) goes to zero smoothly because fλ goes to zero.
It is not yet clear that fλ goes to zero because it requires C2

loc convergence of uλ.
Look at S[uλ(·, 0)](x, t). Recall, from section 3.3.2 that hλ converges to Φsol[hλ] in C∞loc(Rn×

(0,∞)). It is worth noting that a stronger induction argument is probably possible. However,

65



because Φm
sol[hλ] only converges to hsol in X∞, no stronger statement could be made about

the convergence of hλ to hsol directly.
Nevertheless, notice

S[uλ(·, 0)](x, t) =

∫
Rn
K(x− y, t) (gλ − gsol) (y, 0)dy =

(
hλ − Φsol[hλ]

)
(x, t)

Hence, by the argument of section 3.3.2, for all t > 0, for all integers k ∈ N0 and all
multi-indexes α ∈ Nn

0 , ∣∣∂kt∇αS[uλ(·, 0)](x, t)
∣∣→ 0 as λ→∞

Therefore, S[uλ(·, 0)]→ 0 in C∞loc(Rn × (0,∞)).
Now focus on the non-homogeneous part, V fλ. To bound the space derivatives of V fλ,

divide up the integral and change coordinates. Then take the spacial derivative. For α ∈ Nn
0 ,

∇αV fλ(x, t) =

∫
Rn×(0,t)\(B(x,r)×(t−r2,t))

∇αK(x− y, t− s)fλ(y, s)dyds

+

∫
B(0,r)×(0,r2)

K(y, s)∇αfλ(x− y, t− s)dyds

=: I + II

Look at each of the integrals separately. The derivatives of the heat kernel act similar to
the heat kernel away from the point (0, 0). Using this similarity, the same argument as in
Lemma 8 above shows that for any fix r > 0, the integral I goes to zero as λ→∞. However,
the same argument does not work for integral II. The change of variables avoids the bad
behavior of the derivatives of the heat kernel near (0, 0).

Fortunately, the derivative bounds for uλ are enough to gain control in this region.

II ≤
∫ r2

0

||K(·, s)||L1(Rn)ds · sup
(y,s)∈B(x,r)×(t−r2,t)

|∇αfλ(y, s)|

≤ r2 · cεn(t− r2)−
|α|+2

2

For every t > 0, this goes to zero as r goes to zero. Thus, by first picking r small enough
and then picking λ big enough, both I and II can be made arbitrarily small. Thus, all the
spacial derivatives of V fλ, and hence all the spacial derivatives of uλ, converge to zero as
λ→∞. In particular, fλ converges to zero because it only involves space derivatives.

Finally, the time derivatives of V fλ will be bounded using the same method as the space
integral. However, the boundary terms of V involve t, so the time derivatives add extra
terms. Consider the first time derivative.

∂t[V fλ(x, t)] =

∫
Rn×(0,t)\(B(0,r)×(t−r2,t))

∂tK(x− y, t− s) · fλ(y, s)dyds

+

∫ r2

0

∫
B(0,r)

K(y, s) · ∂tfλ(x− y, t− s)dyds

+

∫
B(x,r)

K(x− y, r2) · fλ(y, t− r2)dy

=: I1 + II1 + III1
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Here, the terms I1 and II1 are controlled in the exact same way as the spacial derivatives.
The only new term is III1. However, III1 goes to zero as λ goes to infinity because fλ does.

Taking the spacial derivative of I1, II1, and III1 shows that all spacial derivatives with
one time derivative converge to zero. For I1 and II1 use the same arguments as in the case
of no time derivative. For III, use that r > 0, so the L1-norm of ∇αK(·, r2) is bounded and
fλ converge to zero as before. In particular, ∂tfλ converges continuously to zero.

Now the rest of the time derivatives are shown through induction. To illustrate, look at
∂2
t

∂2
t [V fλ(x, t)] =

∫
Rn×(0,t)\(B(0,r)×(t−r2,t))

∂2
tK(x− y, t− s) · fλ(y, s)dyds

+

∫ r2

0

∫
B(0,r)

K(y, s) · ∂2
t fλ(x− y, t− s)dyds

+

∫
B(x,r)

K(x− y, r2) · ∂tfλ(y, t− r2)dy

+

∫
B(x,r)

∂tK(x− y, r2) · fλ(y, t− r2)dy

=: I2 + II2 + III2 + IV2

The first three terms are all bound exactly as in the first case. Notice that the first two
bounds work for all derivatives of time, while the third uses the induction hypothesis, i.e.
∂tfλ(x, t) → 0 for all t > 0 as λ → ∞. All that remains is the derivative of the boundary
term from I1 in the previous derivative, integral IV2. Here use that for all r2 > 0, the
L1(Rn)-norm of the all space and time derivatives of the heat kernel are bounded at time r2.
Then use that fλ goes to zero as λ → ∞ as before. Lastly, take the spacial derivatives of
each term and use the same argument to show they all converge to zero. In particular, this
shows that ∂2

t fλ goes to zero as λ goes to infinity.
Continuing this process shows that all time and space derivatives converge in a locally

controllable way. Therefore, hλ converges to hsol in C∞loc(Rn × (0,∞)). Equivalently, gλ
converges to gsol in C∞loc(Rn × (0,∞)).

Remark. The argument in this paper can be used to show a similar result in the setting of
[DL]. The only major difference would be in the regularity argument.
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