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Abstract

Nonparametric Methods for High-Dimensional Data Analysis

by

Philippe A Boileau

Doctor of Philosophy in Biostatistics

and the Designated Emphasis in

Computational and Genomic Biology

University of California, Berkeley

Professor Sandrine Dudoit, Chair

Modern biomedical studies generate high-dimensional data, meaning that the number of
variables collected is equal to or larger than the number of observations. Examples are nu-
merous, including single-cell transcriptome analyses and clinical trials. The dimensions of
these data often prevent the use of traditional statistical methods: the theory motivating
their application is no longer applicable. New procedures must be developed for express use
in these contexts to ensure trustworthy inference. This dissertation delves into two topics in
high-dimensional statistics, the first being covariance matrix estimator selection. Motivated
by the need to nonparametrically identify an optimal estimator of the covariance matrix
for a given dataset, we propose a cross-validated estimator selection procedure and investi-
gate its finite-sample and high-dimensional asymptotic performance. Our theoretical results,
supported by empirical evidence, demonstrate that this procedure selects the optimal esti-
mator asymptotically. Here, optimality is defined in terms of a Frobenius-norm-based risk.
Applications are myriad, though we focus on improving exploratory analyses in single-cell
transcriptome analyses. The second topic, born of the need to reliably uncover biomarkers
that predict clinical trial patients’ response to novel therapies, is treatment effect modifier dis-
covery. Treatment effect modifiers are pre-treatment covariates that influence the effect of a
treatment on an outcome. While many approaches exist for identifying these effect modifiers
in traditional asymptotic settings, few developments have been made for high-dimensional
data. We propose a nonparametric framework for defining parameters measuring treatment
effect modification, deriving accompanying estimators, and establishing these estimators’
asymptotic properties. We derive several such parameters and estimators using our method-
ology, and assess these estimators’ empirical performance through comprehensive simulation
studies and real clinical trial data analyses.
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Chapter 1

Introduction

The biomedical sciences depend on data and statistics to pursue all manner of quantita-
tive investigations. From establishing the efficacy of novel therapies in small clinical trials
to uncovering genetic mutations associated with disease susceptibility in genome-wide asso-
ciate studies of entire populations, statistical reasoning, theory, and methods are required
to translate substantive problems into mathematical questions, collect and organize data,
perform analyses, and interpret findings.

Whether the resulting findings help answer the original scientific question depends on the
statistical models’ and methods’ ability to faithfully capture the complexity of the problem.
In part due to the limited availability of computing power, statistical analyses of biomed-
ical data have traditionally relied on relatively simple parametric models. These models
make simplifying assumptions about the data-generating process (DGP) when translating
the scientific question into statistical terms, permitting practitioners to perform approxi-
mate, computationally efficient inference. The reliability of this inference, however, depends
on the quality of the approximation, which is generally unknowable. This uncertainty is un-
acceptable in high-stake situations, like when assessing the safety and efficacy of potentially
life-altering medications in clinical trials.

Semi- and nonparametric modeling approaches have been developed in response to the
limitations of parametric procedures. In combination with the increased availability of com-
puting resources, these more flexible frameworks permit the development and use of statis-
tical models that more accurately encode the phenomena under study. Statistical inference
performed in these models can therefore provide more realistic approximations of reality.
Introductions, reviews, and applications of these frameworks are provided by Vaart [1998],
Tsiatis [2006], Bickel and Doksum [2015], van der Laan and Rose [2011b, 2018b], among
others.

There are myriad applications of semi- and nonparametric procedures in the biomedical
sciences. Much work relating to HIV testing, treatment efficacy, treatment adherence and
patient outcomes have relied on these frameworks [Petersen et al., 2007, 2008, Tsai et al.,
2010, Geng et al., 2010, Chamie et al., 2016, Petersen et al., 2017, Havlir et al., 2019, , for
example]. International and federal health regulatory bodies have recently encouraged the
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use of covariate adjustment methods for efficiently assessing therapies’ treatment benefits
in clinical trials [for Medicinal Products for Human Use, 2023, for Drug Evaluation and
Research, 2023], like those proposed and discussed by Rosenblum and van der Laan [2010],
Moore and van der Laan [2011], Vermeulen et al. [2015], Dı́az et al. [2016], Dı́az et al. [2019],
Benkeser et al. [2021a], Li et al. [2023], to name but a few. Elucidation COVID-19 vaccines’
mechanisms of action have been supported by mediation analyses [Gilbert et al., 2022, Fong
et al., 2022, 2023] that are only possible using these flexible approaches. [Benkeser et al.,
2021b, Hejazi et al., 2021]. Again, the complexity of these quantitative questions bars the
use of simpler parametric-model-based procedures.

Little work has been done, unfortunately, to extend these methodologies for their appli-
cation to high-dimensional data, data for which the number of features is—at minimum—of
the same magnitude as the number of observations. Such data are increasingly generated or
collected as part of modern biomedical experiments and studies. Though the aforementioned
model mispecification issues remain, practitioners have generally turned to simplifying as-
sumptions and accompanying parametric methods to circumvent or lessen the difficulties
associated with high-dimensional data analyses.

A (perceived) challenge driving the adoption of these untenable approaches is the be-
lief that only simple patterns can be reliably estimated from these data. See the “bet on
sparsity” by Hastie et al. [2009, Chap. 16]. While the simplicity afforded by penalized
parametric methods might be justified in some situations, this precept dissuades researchers
from exploring alternative, more appropriate approaches. Assumptions incorporated into
statistical models should reflect substantive knowledge about the DGP, not the need to sim-
plify downstream analytical tasks. Again, inference performed with methods depending on
unreasonable assumptions are at best unreliable and at worst misleading.

This thesis contains a selection of works demonstrating that nonparametric methods
can be developed for high-dimensional data analyses in the biomedical sciences, that they
have favorable theoretical properties, and that their application permit rigorous, trustworthy
statistical inference.

Motivated by the widespread dependence of statistical methods regularly used in compu-
tational biology on the covariance matrix, we propose a general estimator selection procedure
of this parameter in Chapter 2. Broadly, the covariance matrix plays a fundamental role
in many modern exploratory and inferential procedures, including dimensionality reduction,
hypothesis testing, and regression. In low-dimensional regimes, where the number of obser-
vations far exceeds the number of variables, the optimality of the sample covariance matrix
as an estimator of this parameter is well-established. High-dimensional regimes do not ad-
mit such a convenience. As such, a variety of estimators have been derived to overcome the
shortcomings of the sample covariance matrix in these settings. The question of selecting an
optimal estimator from among the plethora available remains largely unaddressed, however.
Using the framework of cross-validated loss-based estimation, we develop the theoretical
underpinnings of just such an estimator selection procedure. In particular, we propose a
general class of loss functions for covariance matrix estimation and establish finite-sample
risk bounds and conditions for the asymptotic optimality of the cross-validated estimator
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selector with respect to these loss functions. We evaluate our proposed approach via a com-
prehensive set of simulation experiments and demonstrate its practical benefits by its use in
the exploratory analysis of two single-cell transcriptome sequencing datasets. The contents
of this chapter have been published in Boileau et al. [2021b].

In Chapter 3, we present a method for reliably uncovering predictive biomarkers from
high-dimensional clinical trial data. Predictive biomarker discovery is an endeavor central to
precision medicine; they define patient sub-populations which stand to benefit most, or least,
from a given therapy. The identification of these biomarkers is often the byproduct of the
related but fundamentally different task of treatment rule estimation. Using treatment rule
estimation methods to identify predictive biomarkers in clinical trials where the number of
covariates exceeds the number of participants often results in high false discovery rates. The
higher than expected number of false positives translates to wasted resources when conduct-
ing follow-up experiments for drug target identification and diagnostic assay development.
Patient outcomes are in turn negatively affected. We propose a variable importance param-
eter for directly assessing the importance of potentially predictive biomarkers, and develop a
flexible nonparametric inference procedure for this estimand. We prove that our estimator is
double-robust and asymptotically linear under loose conditions on the DGP, permitting valid
inference about the importance metric. The statistical guarantees of the method are verified
in a thorough simulation study representative of randomized control trials with moderate
and high-dimensional covariate vectors. Our procedure is then used to discover predictive
biomarkers from among the tumor gene expression data of metastatic renal cell carcinoma
patients enrolled in recently completed clinical trials. We find that our approach more readily
discerns predictive from non-predictive biomarkers than procedures whose primary purpose
is treatment rule estimation. This chapter has been published in Boileau et al. [2022].

Chapter 4 expands on the method proposed in Chapter 3, providing a general non-
parametric inference framework for treatment effect modifier discovery in high dimensions.
Heterogeneous treatment effects are driven by treatment effect modifiers, pre-treatment co-
variates that modify the effect of a treatment on an outcome—like predictive biomarkers.
Similarly to procedures used for the more pointed goal of predictive biomarker discovery,
current approaches for uncovering treatment effect modifiers are limited to low-dimensional
data, data with weakly correlated covariates, or data generated according to specific paramet-
ric processes. We resolve these issues by developing a framework for defining model-agnostic
treatment effect modifier variable importance parameters applicable to high-dimensional
data with arbitrary correlation structure, deriving one-step, estimating equation and tar-
geted maximum likelihood estimators of these parameters, and establishing these estima-
tors’ asymptotic properties. This framework is showcased by defining variable importance
parameters for DGP with continuous, binary, and time-to-event outcomes with binary treat-
ments, and deriving accompanying multiply-robust and asymptotically linear estimators.
Simulation experiments demonstrate that these estimators’ asymptotic guarantees are ap-
proximately achieved in realistic sample sizes for observational and randomized studies alike.
This methodology is applied to gene expression data collected for a clinical trial assessing
the effect of a monoclonal antibody therapy on disease-free survival in breast cancer pa-
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tients. Genes predicted to have the greatest potential for treatment effect modification have
previously been linked to treatment-resistant breast cancer.
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Chapter 2

Cross-Validated Covariance Matrix
Estimator Selection

2.1 Introduction

The covariance matrix underlies numerous exploratory and inferential statistical procedures
central to analyses regularly performed in diverse fields. For instance, in computational bi-
ology, this statistical parameter serves as a key ingredient in many popular dimensionality
reduction, clustering, and classification methods which are regularly relied upon in quality
control assessments, exploratory data analysis, and, recently, the discovery and character-
ization of novel types of cells. Other important areas in which the covariance matrix is
critical include financial economics, climate modeling and weather forecasting, imaging data
processing and analysis, probabilistic graphical modeling, and text corpora compression and
retrieval. Even more fundamentally, the covariance matrix plays a key role in assessing
the strengths of linear relationships within multivariate data, in generating simultaneous
confidence bands and regions, and in the construction and evaluation of hypothesis tests.
Accurate estimation of this parameter is therefore essential.

When the number of observations in a data set far exceeds the number of features, the
estimator of choice for the covariance matrix is the sample covariance matrix: it is an efficient
estimator under minimal regularity assumptions on the data-generating distribution [Ander-
son, 2003, Smith, 2005]. In high-dimensional regimes, however, this simple estimator has
undesirable properties. When the number of features outstrips the number of observations,
the sample covariance matrix is singular. Even when the number of observations slightly
exceeds the number of features, the sample covariance matrix is numerically unstable on
account of an overly large condition number [Golub and Van Loan, 1996]. Its eigenvalues
are also generally over-dispersed when compared to those of the population covariance ma-
trix [Johnstone, 2001, Ledoit and Wolf, 2004]: the leading eigenvalues are positively biased,
while the trailing eigenvalues are negatively biased [Marčenko and Pastur, 1967].

High-dimensional data have become increasingly widespread in myriad scientific domains,
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with many examples arising from challenges posed by cutting-edge biological sequencing
technologies. Accordingly, researchers have turned to developing novel covariance matrix
estimators to remediate the deficiencies of the sample covariance matrix. Under certain
sparsity assumptions, Bickel and Levina [2008b,c], Rothman et al. [2009], Lam and Fan
[2009], Cai et al. [2010b], and Cai and Liu [2011], among others, demonstrated that the true
covariance matrix can be estimated consistently under specific losses by applying element-
wise thresholding or tapering functions to the sample covariance matrix. Another thread
of the literature, which includes notable contributions by Stock and Watson [2002], Bai
[2003], Fan et al. [2008, 2013, 2016b, 2019], and Onatski [2012], has championed methods
employing factor models in covariance matrix estimation. Other popular proposals include
the families of estimators inspired by the empirical Bayes framework [Robbins, 1964, Efron,
2012], formulated by Schäfer and Strimmer [2005] and Ledoit and Wolf [2004, 2012, 2015,
2018].

Despite the flexibility afforded by the apparent wealth of candidate estimators, this va-
riety poses many practical issues. Namely, identifying the most appropriate estimator from
among a collection of candidates is itself a significant challenge. A partial answer to this
problem has come in the form of data-adaptive approaches designed to select the optimal
estimator within a particular class [for example, Bickel and Levina, 2008b,c, Cai and Liu,
2011, Fan et al., 2013, Fang et al., 2016, Bartz, 2016]. Such approaches, however, are in-
herently limited by their focus on relatively narrow families of covariance matrix estimators.
The successful application of such estimator selection frameworks requires, as a preliminary
step, that the practitioner make a successful choice among estimator families, injecting a
degree of subjectivity in their deployment. The broader question of selecting an optimal
estimator from among a diverse library of candidates has remained unaddressed. We offer
a general loss-based framework building upon the seminal work of van der Laan and Du-
doit [2003b], Dudoit and van der Laan [2005], van der Vaart et al. [2006] for asymptotically
optimal covariance matrix estimator selection based upon cross-validation.

In the cross-validated loss-based estimation framework, the parameter of interest is de-
fined as the risk minimizer, with respect to the data-generating distribution, based on a loss
function chosen to reflect the problem at hand. Candidate estimators may be generated in
a variety of manners, including as empirical risk minimizers with respect to an empirical
distribution over parameter subspaces corresponding to models for the data-generating dis-
tribution. One would ideally select as optimal estimator that which minimizes the “true”
risk with respect to the data-generating distribution. However, as this distribution is typi-
cally unknown, one turns to cross-validation for risk estimation. van der Laan and Dudoit
[2003b], Dudoit and van der Laan [2005], van der Vaart et al. [2006] have shown that, under
general conditions on the data-generating distribution and loss function, the cross-validated
estimator selector is asymptotically optimal in the sense that it performs asymptotically as
well in terms of risk as an optimal oracle selector based on the true, unknown data-generating
distribution. These results extend prior work summarized by Györfi et al. [2002, Ch. 7–8].

Focusing specifically on the covariance matrix as the parameter of interest, we address
the choice of loss function and candidate estimators, and derive new, high-dimensional
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asymptotic optimality results for multivariate cross-validated estimator selection procedures.
Requiring generally nonrestrictive assumptions about the structure of the true covariance
matrix, the proposed framework accommodates arbitrary families of covariance matrix esti-
mators. The method therefore enables the objective selection of an optimal estimator while
fully taking advantage of the plethora of available estimators. As such, it generalizes ex-
isting, but more limited, data-adaptive estimator selection frameworks where the library of
candidate estimators is narrowed based on available subject matter knowledge, or, as is more
commonly the case, for convenience’s sake.

The remainder of the chapter is organized as follows. In Section 2.2, we formulate the
problem within the general framework of cross-validated loss-based estimation. In Sec-
tion 2.3, we propose a general class of loss functions for covariance matrix estimation and
establish finite-sample risk bounds and conditions for the asymptotic optimality of the cross-
validated estimator selector with respect to these loss functions. We briefly review and detail
several of covariance matrix estimator families in Section 2.4. Section 2.5 provides a thor-
ough interrogation of the proposed cross-validated estimator selector in a series of simulation
experiments. The practical benefits of using the cross-validated estimator selection strategy
are then demonstrated by its application in a dimensionality reduction pipeline for novel cell-
type identification with two distinct single-cell RNA-seq datasets in Section 2.6. We conclude
the chapter with a brief discussion in Section 2.7. All proofs are relegated to Section 2.8 for
expository clarity.

2.2 Problem Formulation and Background

Consider a data set Xn×J = {X1, . . . , Xn : Xi ∈ RJ}, comprising n independent and identi-
cally distributed (i.i.d.) random vectors, where n ≈ J or n < J . Let Xi ∼ P0 ∈ M, where
P0 denotes the true data-generating distribution and M the statistical model, that is, a
collection of possible data-generating distributions P for Xi. We assume a nonparametric
statistical modelM for P0, minimizing assumptions on the form of P0. We denote by Pn the
empirical distribution of the n random vectors forming Xn×J . Letting E[Xi] = 0 without loss
of generality and defining ψ0 ≡ Var[Xi], we take as our goal the estimation of the covariance
matrix ψ0. This is accomplished by identifying the “optimal” estimator of ψ0 from among a
collection of candidates, where, as detailed below, optimality is defined in terms of risk.

For any distribution P ∈ M, define its covariance matrix as ψ = Ψ(P ), where Ψ is a
mapping from the modelM to the set of J × J symmetric, positive semi-definite matrices.
Furthermore, candidate estimators of the covariance matrix are defined as ψ̂k ≡ Ψ̂k(Pn) for
k = 1, . . . , K in terms of mappings Ψ̂k from the empirical distribution Pn to Ψ ≡ {ψ ∈
RJ×J |ψ = ψ⊤}. While this notation suggests that the number of candidate estimators K
is fixed, and we treat it as such throughout, this framework may be extended such that K
grows as a function of n and J . It also follows that {ψ = Ψ(P ) : P ∈ M} ⊂ Ψ; that is, the
set of all covariance matrices corresponding to the data-generating distributions P belonging
to the modelM is a subset of Ψ.
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In order to assess the optimality of estimators in the set Ψ, we introduce a generic loss
function L(X;ψ, η) characterizing a cost applicable to any ψ ∈ Ψ and X ∼ P ∈ M, and
where η is a (possibly empty) nuisance parameter. Specific examples of loss functions for
the covariance estimation setting are proposed in Section 2.3. Define H as the mapping
from the model M to the nuisance parameter space H ≡ {η = H(P ) : P ∈ M} and let
η̂ ≡ Ĥ(Pn) denote a generic nuisance parameter estimator, where Ĥ is a mapping from Pn
to H. Given any η ∈ H, the risk under P ∈ M for any ψ ∈ Ψ is defined as the expected
value of L(X;ψ, η) with respect to P :

Θ(ψ, η, P ) ≡
∫
L(x;ψ, η)dP (x)

= EP [L(X;ψ, η)] .

Under the additional constraint on the loss function that a risk minimizer exists under
the true data-generating distribution P0, the minimizer is given by the parameter of interest

ψ0 ≡ argmin
ψ∈Ψ

Θ(ψ, η0, P0), (2.1)

where η0 ≡ H(P0). The risk minimizer need not be unique. The optimal risk under P0 is

θ0 ≡ min
ψ∈Ψ

Θ(ψ, η0, P0),

which is to say that a risk minimizer ψ0 attains risk θ0.
For any given estimator ψ̂k of ψ0, its conditional risk given Pn with respect to the true

data-generating distribution P0 is

θ̃n(k, η0) ≡ EP0 [L(X; Ψ̂k(Pn), η0) | Pn]
= Θ(ψ̂k, η0, P0).

Defining the risk difference of the kth estimator as θ̃n(k, η0)− θ0, the index of the estimator
that achieves the minimal risk difference is

k̃n ≡ argmin
k∈{1,...,K}

θ̃n(k, η0)− θ0.

The subscript n emphasizes that the risk and optimal estimator index are conditional on the
empirical distribution Pn. They are therefore random variables.

Given the high-dimensional nature of the data, it is generally most convenient to study
the performance of estimators of ψ0 using Kolmogorov asymptotics, that is, in the setting in
which both n → ∞ and J → ∞ such that J/n → m < ∞. Historically, estimators have
been derived within this high-dimensional asymptotic regime to improve upon the finite
sample results of estimators brought about by traditional asymptotic arguments. After all,
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the sample covariance matrix retains its asymptotic optimality properties when J is fixed,
even though it is known to perform poorly in high-dimensional settings.

Naturally, it would be desirable for an estimator selection procedure to select the esti-
mator indexed by k̃n; however, this quantity depends on the true, unknown data-generating
distribution P0. As a substitute for the candidates’ true conditional risks, we employ instead
the cross-validated estimators of these same conditional risks.

Cross-validation (CV) consists of randomly, and possibly repeatedly, partitioning a data
set into a training set and a validation set. The observations in the training set are fed to
the candidate estimators and the observations in the validation set are used to evaluate the
performance of these estimators [Breiman and Spector, 1992, Friedman et al., 2001]. A range
of CV schemes have been proposed and investigated, both theoretically and computationally;
Dudoit and van der Laan [2005] provide a thorough review of popular CV schemes and
their properties. Among the variety, V -fold stands out as an approach that has gained
traction on account of its relative computational feasibility and good performance. Any CV
scheme can be expressed in terms of a binary random vector Bn, which assigns observations
into either the training or validation set. Observation i is said to lie in the training set
when Bn(i) = 0 and in the validation set otherwise. The training set therefore contains∑

i(1−Bn(i)) = n(1− pn) observations and the validation set
∑

iBn(i) = npn observations,
where pn is the fixed validation set proportion corresponding to the chosen CV procedure.
The empirical distributions of the training and validation sets are denoted by P 0

n,Bn
and

P 1
n,Bn

, respectively, for any given realization of Bn. Bn, we emphasize, is independent of Pn.

Using this general definition, the cross-validated estimator of a candidate Ψ̂k’s risk is

θ̂pn,n(k, Ĥ(P 0
n,Bn

)) ≡ EBn

[
Θ(Ψ̂k(P

0
n,Bn

), Ĥ(P 0
n,Bn

), P 1
n,Bn

)
]

= EBn

[
1

npn

n∑
i=1

I(Bn(i) = 1)L(Xi; Ψ̂k(P
0
n,Bn

), Ĥ(P 0
n,Bn

))

]
,

for a nuisance parameter estimator mapping Ĥ. Here, EBn [·] denotes the expectation with
respect to Bn. The corresponding cross-validated selector is

k̂pn,n ≡ argmin
k∈{1,...,K}

θ̂pn,n(k, Ĥ(P 0
n,Bn

)).

As a benchmark, the unknown cross-validated conditional risk of the kth estimator is

θ̃pn,n(k, η0) ≡ EBn

[
Θ(Ψ̂k(P

0
n,Bn

), η0, P0)
]
.

The cross-validated oracle selector is then

k̃pn,n ≡ argmin
k∈{1,...,K}

θ̃pn,n(k, η0).

As before, the pn and n subscripts highlight the dependence of these objects on the CV pro-
cedure and the empirical distribution Pn, respectively, thus making them random variables.
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Ideally, the cross-validated estimator selection procedure should identify a k̂pn,n that is
asymptotically (in n, J , and possibly K) equivalent in terms of risk to the oracle k̃pn,n, under
a set of nonrestrictive assumptions based on the choice of loss function, target parameter
space, estimator ranges, and, if applicable, nuisance parameter space, in the sense that

θ̃pn,n(k̂pn,n, η0)− θ0
θ̃pn,n(k̃pn,n, η0)− θ0

P−→ 1 as n, J →∞. (2.2)

That is, the estimator selected via CV is equivalent in terms of risk to the CV scheme’s
oracle estimator chosen from among all candidates.

When Equation (2.2) holds, a further step may be taken by relating the performance of
the cross-validated selector to that of the full-dataset oracle selector, k̃n:

θ̃n(k̂pn,n, η0)− θ0
θ̃n(k̃n, η0)− θ0

P−→ 1 as n, J →∞. (2.3)

When the cross-validated selection procedure’s full-dataset conditional risk difference
converges in probability to that of the full-dataset oracle’s, the chosen estimator is asymp-
totically optimal. In other words, the data-adaptively selected estimator performs asymp-
totically as well, with respect to the chosen loss, as the candidate that would be picked from
the collection of estimators if the true data-generating distribution were known.

2.3 Loss Functions and Estimator Selection

Proposed Loss Function

The choice of loss function should reflect the goals of the estimation task. While loss functions
based on the sample covariance matrix and either the Frobenius or the spectral norms are
often employed in the covariance matrix estimation literature, Dudoit and van der Laan
[2005]’s estimator selection framework is more amenable to loss functions that operate over
random vectors. Accordingly, we propose the observation-level Frobenius loss:

L(X;ψ, η0) ≡ ∥XX⊤ − ψ∥2F,η0

=
J∑
j=1

J∑
l=1

η
(jl)
0 (X(j)X(l) − ψ(jl))2,

(2.4)

where X(j) is the jth element of a random vector X ∼ P ∈ M, ψ(jl) is the entry in the jth

row and lth column of an arbitrary covariance matrix ψ ∈ Ψ, and η0 is a J ×J matrix acting
as a scaling factor, that is, a potential nuisance parameter. For an estimator η̂ of η0, the
cross-validated risk estimator of the kth candidate estimator Ψ̂k under the observation-level
Frobenius loss is

θ̂pn,n(k, Ĥ(P 0
n,Bn

)) = EBn

[
1

npn

n∑
i=1

I(Bn(i) = 1)∥XiX
⊤
i − Ψ̂k(P

0
n,Bn

)∥2
F,Ĥ(P 0

n,Bn
)

]
.
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Ledoit and Wolf [2004], Bickel and Levina [2008c], and Rothman et al. [2009], among
others, have employed analogous (scaled) Frobenius losses to prove various optimality results,

defining η
(jl)
0 = 1/J , ∀j, l. This particular choice of scaling factor is such that whatever the

value of J , ∥IJ×J∥F,η0 = 1. With such a scaling factor, the loss function may be viewed as
a relative loss whose yardstick is the J × J identity matrix. A similarly reasonable option
for when the true covariance matrix is assumed to be dense is η

(jl)
0 = 1/J2. This weighting

scheme effectively computes the average squared error across every entry of the covariance
matrix; however, when the scaling factor is constant, it only impacts the interpretation of
the loss. Constant scaling factors have no impact on our asymptotic analysis. Since it need
not be estimated, it is not a nuisance parameter in the conventional sense.

When the scaling factor of Equation (2.4) is constant, the risk minimizers are identi-
cal for the cross-validated observation-level Frobenius risk and the common cross-validated
Frobenius risk [used by, for example, Bickel and Levina, 2008c, Rothman et al., 2009, Fan
et al., 2013, Fang et al., 2016].

Proposition 2.1. Define the cross-validated Frobenius risk for an estimator Ψ̂k as

R̂n(Ψ̂k, η0) ≡ EBn

[
∥Sn(P 1

n,Bn
)− Ψ̂k(P

0
n,Bn

)∥2F,η0
]
, (2.5)

where Sn(P
1
n,Bn

) is the sample covariance matrix computed over the validation set P 1
n,Bn

, and

η0 is some constant scaling matrix. Then, R̂n(Ψ̂k, η0) − θ̂pn,n(k, η0) is constant with respect

to Ψ̂k(P
0
n,Bn

) such that

k̂pn,n = argmin
k∈{1,...,K}

θ̂pn,n(k, η0)

= argmin
k∈{1,...,K}

R̂n(Ψ̂k, η0).

Note that the traditional Frobenius loss corresponds to the sum of the squared eigenvalues
of the difference between the sample covariance matrix and the estimate. Proposition 2.1
therefore implies the existence of a similar relationship for our observation-level Frobenius
loss. It may therefore serve as a surrogate for a loss based on the spectral norm.

We are not restricted to a constant scaling factor matrix. One might consider weighting
the covariance matrix’s off-diagonal elements’ errors by their corresponding diagonal entries,
especially useful when the random variables are of different scales. Such a scaling factor
might offer a more equitable evaluation across all entries of the parameter:

Lweighted(X;ψ, η0) ≡
J∑
j=1

J∑
l=1

1√
ψ

(jj)
0 ψ

(ll)
0

(X(j)X(l) − ψ(jl))2.

Here, η0 = diag(ψ0) is a genuine nuisance parameter which can be estimated via the diagonal
entries of the sample covariance matrix.
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Finally, the covariance matrix ψ0 is the risk minimizer of the observation-level Frobenius
loss if the integral with respect to X and the partial differential operators with respect to ψ
are interchangeable.

Proposition 2.2. Let the integral with respect to X and the partial differential operators
with respect to ψ be interchangeable, and let η be some fixed J × J matrix. Then

ψ0 = argmin
ψ∈Ψ

Θ(ψ, η, P0)

for Θ(·) defined under the observation-level Frobenius loss.

Our proposed loss therefore satisfies the condition of Equation (2.1). The main results
of the paper, however, relate only to the constant scaling factor case. In a minor abuse of
notation, we set η0 = 1, and suppress dependence of the loss function on the scaling factor
wherever possible throughout the remainder of the chapter.

Optimality of the Cross-validated Estimator Selector

Having defined a suitable loss function, we turn to a discussion of the theoretical properties
of the cross-validated estimator selection procedure. Specifically, we present, in Theorem 2.1,
sufficient conditions under which the method is asymptotically equivalent in terms of risk
to the commensurate CV oracle selector (as per Equation (2.2)). This theorem extends the
general framework of Dudoit and van der Laan [2005] for use in high-dimensional multivariate
estimator selection. Adapting their existing theory to this setting requires a judicious choice
of loss function, new assumptions, and updated proofs reflecting the use of high-dimensional
asymptotics. Corollary 2.1 then builds on Theorem 2.1 and details conditions under which
the procedure produces asymptotically optimal selections in the sense of Equation (2.3).
Again, all proofs are provided in Section 2.8.

Theorem 2.1. Let X1, . . . , Xn be a random sample of n i.i.d. random vectors of dimension J ,
such that Xi ∼ P0 ∈M, i = 1, . . . , n. Assume, without loss of generality, that E[Xi] = 0, and
define ψ0 ≡ Var[Xi]. Denote the set of K candidate estimators by {Ψ̂k(·) : k = 1, . . . , K}.
Next, define the observation-level Frobenius loss function as L(X;ψ) ≡ ∥X⊤X − ψ∥2F,1.
Finally, designate pn as the proportion of observations in any given cross-validated validation
set. Consider the following assumptions:

Assumption 2.1. For any P ∈ M and X ∼ P , maxj=1,...,J (|X(j)|) <
√
M1 < ∞ almost

surely (a.s.).

Assumption 2.2. Define Ψ ≡ {ψ ∈ RJ×J | ψ = ψ⊤, |ψ(jl)| < M2 < ∞, ∀ j, l = 1, . . . , J},
and assume that Ψ̂k(Pn), ψ0 ∈ Ψ.
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Finite-Sample Result. LetM(J) ≡ 4(M1+M2)
2J2 and c(δ,M(J)) ≡ 2(1+δ)2M(J)(1/3+

1/δ). Then, for any δ > 0,

0 ≤ EP0 [θ̃pn,n(k̂pn,n)− θ0] ≤ (1 + 2δ)EP0 [θ̃pn,n(k̃pn,n)− θ0] + 2c(δ,M(J))
1 + log(K)

npn
. (2.6)

High-Dimensional Asymptotic Result. The finite-sample result in Equation (2.6) has
the following asymptotic implications: If c(δ,M(J))(1+log(K))/(npnEP0 [θ̃pn,n(k̃pn,n)−θ0])→
0 and J/n→ m <∞ as n, J →∞, then

EP0 [θ̃pn,n(k̂pn,n)− θ0]
EP0 [θ̃pn,n(k̃pn,n)− θ0]

→ 1. (2.7)

Further, if c(δ,M(J))(1 + log(K))/(npn(θ̃pn,n(k̃pn,n)− θ0))
P→ 0 as n, J →∞, then

θ̃pn,n(k̂pn,n)− θ0
θ̃pn,n(k̃pn,n)− θ0

P→ 1. (2.8)

The proof relies on special properties of the random variable Zk ≡ L(X; Ψ̂k(Pn))− L(X;ψ0)
and on an application of Bernstein’s inequality [Bennett, 1962]. Together, they are used to
show that 2c(δ,M(J))(1 + log(K))/(npn) is a finite-sample bound for comparing the per-
formance of the cross-validated selector, k̂pn,n, against that of the oracle selector over the
training sets, k̃pn,n. Once this bound is established, the high-dimensional asymptotic results
follow immediately.

Only a few sufficient conditions are required to provide finite-sample bounds on the
expected risk difference of the estimator selected via our CV procedure. First, that each
element of the random vector X be bounded, and, second, that the entries of all covariance
matrices in the parameter space and the set of possible estimates be bounded. Together,
these assumptions allow for the definition of M(J), the object permitting the extension of
the loss-based estimation framework to the high-dimensional covariance matrix estimation
problem.

The first assumption is technical in nature — it makes the proofs tractable. While it
may appear stringent, and, for instance, is not satisfied by Gaussian distributions, we believe
it to be generally applicable. We stress that parametric data-generating distributions, like
those exhibiting Gaussianity, rarely reflect reality, that is, they are merely mathematical
conveniences1 Most random variables, or transformations thereof, arising in scientific practice
are bounded by limitations of the physical, electronic, or biological measurement process;
thus, our method remains widely applicable. For example, in microarray and next-generation
sequencing experiments, the raw data are images on a 16-bit scale, constraining them to

1Anecdotally, one cannot help but find themself reminded that “Everyone is sure of this [that errors
are normally distributed] . . . since the experimentalists believe that it is a mathematical theorem, and the
mathematicians that it is an experimentally determined fact.” [Poincaré, 1912, p. 171].
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[0, 216). Similarly, the measurement of immunologic markers, of substantial interest in vaccine
efficacy trials of HIV-1, COVID-19, and other infectious diseases, are bounded by the limits
of detection and/or quantitation imposed by assay biotechnology.

Verifying that the additional assumptions required by Theorem 2.1’s asymptotic results
hold proves to be more challenging. We write f(y) = O(g(y)) if |f | is bounded above by
g, f(y) = o(g(y)) if f is dominated by g, f(y) = Ω(g(y)) if f is bounded below by g, and
f(y) = ω(g(y)) if f dominates g, all in asymptotics with respect to n and J . Further,
a subscript “P” might be added to these bounds, denoting a convergence in probability.
Now, note that c(δ,M(J))(1 + log(K))/(npn) = O(J) for fixed pn and as J/n → m > 0.
Then the conditions associated with Equation (2.7) and Equation (2.8) hold so long as
EP0 [θ̃pn,n(k̃pn,n)− θ0] = ω(J) and θ̃pn,n(k̃pn,n)− θ0 = ωP (J), respectively.

These requirements do not seem particularly restrictive given that the complexity of the
problem generally increases as a function of the number of features. There are many more
entries in the covariance matrix requiring estimation than there are observations. This intu-
ition is corroborated by our extensive simulation study in the following section. Consistent
estimation in terms of the Frobenius risk is therefore not possible in high-dimensions without
additional assumptions about the data-generating process.

Some additional insight might be gained by identifying conditions under which these
assumptions are unmet for popular structural beliefs about the true covariance matrix. In
particular, we consider the sparse covariance matrices defined in Bickel and Levina [2008c]
and accompanying hard-thresholding estimators (see Section 2.4):

Proposition 2.3. In addition to Assumptions 2.1 and 2.2 of Theorem 2.1, assume that ψ0

is a member of the following set of matrices:{
ψ : ψ(jj) < M2,

J∑
l=1

I(ψ(jl) ̸= 0) < s(J) for all , j = 1, . . . , J

}
where s(J) is the row sparsity, that the hard-thresholding estimator is in the library of candi-
dates, and that it uses a “sufficiently large” thresholding hyperparameter value in the sense
of Bickel and Levina [2008c]. Then, by Theorem 2 of Bickel and Levina [2008c], we have
EP0 [θ̃pn,n(k̃pn,n)− θ0] = o(J) if s(J)/J = o(1/ log J) asymptotically in n and J .

Proposition 2.3 states that the conditions for achieving the asymptotic results of Theo-
rem 2.1 are not met if the proportion of non-zero elements in the covariance matrix’s row
with the most non-zero elements converges to zero faster than 1/ log J and the library of
candidates possesses a hard-thresholding estimator whose thresholding hyperparameter is
reasonable in the sense of Bickel and Levina [2008c]’s Theorem 2 and its subsequent discus-
sion. Plainly, the true covariance matrix cannot be too sparse if the collection of considered
estimators contains the hard-thresholding estimator with a correctly specified thresholding
hyperparameter value.

This implies that banded covariance matrices whose number of bands are fixed for J do
not meet the criteria for our theory to apply, assuming that one of the candidate estimators
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correctly specifies the number of bands. Nevertheless, we observe empirically in Section 2.5
that our cross-validated procedure selects an optimal estimator when the true covariance
matrix is banded or tapered more quickly in terms of n and J than any other type of true
covariance matrix.

These results are likely explained by the relatively low complexity of the estimation
problem in this setting. High-dimensional asymptotic arguments are perhaps unnecessary
when the proportion of entries needing to be estimated in the true covariance matrix quickly
converges to zero. These limitations of our theory reflect stringent, and typically unverifiable,
structural assumptions about the estimand. We reiterate that the conditions of Theorem 2.1
are generally satisfied. In situations where the true covariance matrix is known to possess
this level sparsity, practitioners might instead appeal to Equation (39) of Bickel and Levina
[2008c] to support their use of a cross-validated estimator selection procedure. This result,
coupled with that of Proposition 2.1, likely explains the aforementioned simulation findings
of the banded and tapered covariance matrices.

Now, Theorem 2.1’s high-dimensional asymptotic results relate the performance of the
cross-validated selector to that of the oracle selector for the CV scheme. As indicated by
the expression in Equation (2.3), however, we would like our cross-validated procedure to be
asymptotically equivalent to the oracle over the entire data set. The conditions to obtain this
desired result are provided in Corollary 2.1, a minor adaptation of previous work by Dudoit
and van der Laan [2005]. This extension accounts for increasing J , thereby permitting its
use in high-dimensional asymptotics.

Corollary 2.1. Building upon Assumptions 2.1 and 2.2 of Theorem 2.1, we introduce the
additional assumptions that, as n, J → ∞ and J/n → m < ∞, pn → 0, c(δ,M(J))(1 +

log(K))/(npn(θ̃pn,n(k̃pn,n)− θ0))
P→ 0, and

θ̃pn,n(k̃pn,n)− θ0
θ̃n(k̃n)− θ0

P→ 1. (2.9)

Under these assumptions, it follows that

θ̃pn,n(k̂pn,n)− θ0
θ̃n(k̃n)− θ0

P−→ 1. (2.10)

The proof is a direct application of the asymptotic results of Theorem 2.1.

As before, the assumption that c(δ,M(J))(1 + log(K))/(npn(θ̃pn,n(k̃pn,n) − θ0))
P→ 0

remains difficult to verify, but essentially requires the estimation error of the oracle to increase
quickly as the number of features grows. That is, npn(θ̃pn,n(k̃pn,n)− θ0) = ωP (J). We posit
that this condition is generally satisfied, similarly to the asymptotic results of Theorem 2.1.

Now, a sufficient condition for Equation (2.9) is that there exists a γ > 0 such that(
nγ(θ̃n(k̃n)− θ0), (n(1− pn))γ(θ̃pn,n(k̃pn,n)− θ0)

)
d→ (Z,Z), (2.11)
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for a single random variable Z with P(Z > a) = 1 for some a > 0. For single-split validation,
where P(Bn = b) = 1 for some b ∈ {0, 1}n, it suffices to assume that there exists a γ > 0

such that nγ(θ̃n(k̃n)− θ0)
d→ Z for a random variable Z with P(Z > a) = 1 for some a > 0.

Equation (2.9) essentially requires that the (appropriately scaled) distributions of the
cross-validated and full-dataset conditional risk differences of their respective oracle selec-
tions converge in distribution as pn → 0. Again, this condition is unrestrictive. As pn → 0,
the composition of each training set becomes increasingly similar to that of the full-dataset.
The resulting estimates produced by each candidate estimator over the training sets and
the full-dataset will correspondingly converge. Naturally, so too will the cross-validated and
full-dataset conditional risk difference distributions of their respective selections.

While the number of candidates in the estimator library K has been assumed to be
fixed in this discussion of the proposed method’s asymptotic results, it may be allowed to
grow as a function of n and J . Of course, this will negatively impact the convergence rates of
c(δ,M(J))(1+log(K))/(npnEP0 [θ̃pn,n(k̃pn,n)−θ0]) and c(δ,M(J))(1+log(K))/(npn(θ̃pn,n(k̃pn,n)−
θ0)). The sufficient conditions outlined in the asymptotic results of Theorem 2.1 are achieved
so long as the library of candidates does not grow too aggressively. That is, we can
make the additional assumptions that K = o(exp{EP0 [θ̃pn,n(k̃pn,n) − θ0]/J}) and K =
oP (exp{(θ̃pn,n(k̃pn,n)−θ0)/J}) such that the results of Equations (2.7) and (2.8) are achieved,
respectively.

Finally, we have assumed thus far that EP0 [X] is known. This is generally not the case
in practice. In place of a random vector centered at zero, we might instead consider the
set of n demeaned random vectors X̃n×J where X̃i = Xi − X̄ and X̄(j) = 1/n

∑
X

(j)
i . It

follows from the details given in Remark 2.1 that the asymptotic results of Theorem 2.1 and
Corollary 2.1 apply to X̃n×J .

Remark 2.1. We assume throughout this work that EP0 [X] = 0 without loss of general-
ity. In practice, however, the mean vector is generally unknown. Consider the uniformly
bounded random vector Y such that X = Y − EP0 [Y ]. We might therefore consider using

the demeaned random vector Ỹ = Y − Ȳ instead, where Ȳ (j) = 1/n
∑
Y

(j)
i . Employing

Ỹ in place of X in Lemma 2.1, and denoting Z̃k ≡ L(Ỹ ; Ψ̂k(P
0
n,Bn

)) − L(Ỹ ;ψ0), we find

that EP0 [Z̃k|P 0
n,Bn

, Bn] =
∑∑

(ψ
(jl)
0 − Ψ̂

(jl)
k (P 0

n,Bn
))((n − 2)ψ

(jl)
0 /n − Ψ̂

(jl)
k (P 0

n,Bn
)). It then

follows that, as n → ∞, EP0 [Z̃k|P 0
n,Bn

, Bn] = EP0 [Zk|P 0
n,Bn

, Bn]. The asymptotic results of
Theorem 2.1 and Corollary 2.1 are therefore achievable when EP0 [Y ] is unknown. The same
cannot be said for the finite sample result of Theorem 2.1: EP0 [Z̃k|P 0

n,Bn
, Bn] is not strictly

nonegative. For large enough values of n, however, we do expect these finite bounds to be
approximately correct.

Software Implementation

The cross-validated covariance matrix estimator selection procedure is implemented in cvCovEst
[Boileau et al., 2021a], an open-source R package [R Core Team, 2021]. This package is avail-
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able via the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=cvCovEst.

2.4 Candidate Covariance Matrix Estimators

Using the proposed cross-validated selection procedure effectively requires a large and diverse
set of candidate covariance matrix estimators. In this spirit, we provide in the sequel a brief
overview of select covariance matrix estimators that have proven to be effective in a variety
of settings. Note, however, that the proposed selection framework need not be limited to
those described here. Thorough reviews of estimators have been provided by Pourahmadi
[2013], Fan et al. [2016a], and Ledoit and Wolf [2020], to name only a few.

Thresholding Estimators

An often natural, simplifying assumption about the true covariance matrix’s structure is
that it is sparse, that is, a non-negligible portion of its off-diagonal elements have a value
near zero or equal to zero. This assumption is not altogether unreasonable: Given a system
of numerous variables, it seems unlikely in many settings that a majority of these variables
would depend on one another.

The class of generalized thresholding estimators [Bickel and Levina, 2008c, Rothman
et al., 2009, Cai and Liu, 2011] is one collection of covariance matrix estimators based
upon this structural assumption. Given the sample covariance matrix Sn, the generalized
thresholding estimator is defined as

Ψ̂gt(Pn; t) ≡
{
t
(
S(jl)
n

)
: j, l = 1, . . . , J

}
, (2.12)

where t(·) is a thresholding function that often requires one or more hyperparameters dic-
tating the amount of regularization. The hard, soft, smoothly clipped absolute deviation
(SCAD) [Fan and Li, 2001], and adaptive LASSO [Rothman et al., 2009] functions are among
the collection of suitable thresholding operators. As an example, the hard-thresholding func-
tion is defined as tu(S

(jl)
n ) ≡ S

(jl)
n I(S

(jl)
n > u) for some threshold u > 0. Cai and Liu [2011]

also demonstrated that element-specific thresholding functions might be useful when the
features’ variances are highly variable. The hyperparameters for any specific thresholding
function are often selected via CV. Regardless of the choice of t(·), these estimators preserve
the symmetry of the sample covariance matrix and are invariant under permutations of the
features’ order.

Bickel and Levina [2008c] and Rothman et al. [2009] have shown that these estimators
are consistent under the spectral norm (which is defined as a square matrix’s largest absolute
eigenvalue), assuming that log J/n→ 0, that the observations’ marginal distributions satisfy
a tail condition, and that the true covariance matrix is a member of the class of matrices
satisfying a particular notion of “approximate sparsity.” Cai and Liu [2011] have derived

https://CRAN.R-project.org/package=cvCovEst
https://CRAN.R-project.org/package=cvCovEst
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similar results for their entry-specific thresholding estimator over an even broader parameter
space of sparse covariance matrices.

Banding and Tapering Estimators

A family of estimators related to thresholding estimators are banding and tapering esti-
mators [Bickel and Levina, 2008b, Cai et al., 2010b]. Like thresholding estimators, these
estimators rely on the assumption that the true covariance matrix is sparse. However, the
structural assumption of these estimators on ψ0 is much more rigid than that of thresholding
estimators. Specifically, such estimators assume that the true covariance matrix is a band
matrix, that is, a sparse matrix whose non-zero entries are concentrated about the diagonal.
These estimators therefore require a natural ordering of the observations’ features, operat-
ing under the assumption that “distant” variables are uncorrelated. Such structure is often
encountered in longitudinal and time-series data.

Given the sample covariance matrix Sn, the banding estimator of Bickel and Levina
[2008b] is defined as

Ψ̂band(Pn; b) ≡
{
S(jl)
n I(|j − l| ≤ b) : j, l = 1, . . . , J

}
,

where b is a hyperparameter that determines the number of bands to retain from the sample
covariance matrix and is chosen via a CV procedure. For the class of “bandable” covariance
matrices, i.e., the set of well-conditioned matrices whose elements not in the central bands of
the matrix decay rapidly, this banding estimator has been shown to be uniformly consistent
in the spectral norm so long as log(J)/n→ 0.

The tapering estimator of Cai et al. [2010b] is the smooth generalization of the band-
ing estimator, gradually shrinking the off-diagonal bands of the sample covariance matrix
towards zero. It is defined as

Ψ̂tap(Pn; b) ≡ Wb ◦ Sn,

for some weight matrixWb. Here, “◦” denotes the Hadamard (element-wise) matrix product.

Clearly, letting W
(jl)
b = I(|j − l| ≤ b) for some positive integer b results in the banding

estimator. A popular weighting scheme derived by Cai et al. [2010b] is

W
(jl)
b ≡


1, when |j − l| ≤ b

2

2− |j−l|
b
, when b

2
< |j − l| ≤ b

0, otherwise

,

which we use in our simulation study presented in Section 2.5. Cai et al. [2010b] also derived
the optimal rates of convergence for this estimator under the Frobenius and spectral norms,
considering a class of bandable covariance matrices that is more general than that considered
by Bickel and Levina [2008b]: The smallest eigenvalue of the covariance matrices in this class
can take on a value of zero. However, this estimator does not improve upon the bounds set
by the banding estimator.
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Shrinkage Estimators

We next consider the linear and non-linear shrinkage estimators inspired by Stein’s work
on empirical Bayesian methods. These estimators are rotation-equivariant, shrinking the
eigenvalues of the sample covariance matrix towards a set of target values, whilst leaving its
eigenvectors untouched. In doing so, the resultant estimators are better-conditioned than
the sample covariance matrix in a manner guaranteeing that the resultant covariance matrix
estimator be non-singular. Further, these estimators do not rely on sparsity assumptions
about the true covariance matrix, setting them apart from those previously discussed.

One of the first shrinkage estimators, the linear shrinkage estimator of the sample co-
variance matrix, was proposed by Ledoit and Wolf [2004]. This estimator is defined as the
convex combination of the sample covariance matrix and the identity matrix. Hence, it rep-
resents a compromise between Sn, an unbiased but highly variable estimator of ψ0 in high
dimensions, and IJ×J , a woefully biased but fixed estimator. Ledoit and Wolf [2004] found
that, under mild conditions, the asymptotically optimal shrinkage intensity with respect to
the scaled (by J) Frobenius norm can be estimated consistently in high dimensions. This
estimator is defined as

Ψ̂ls(Pn) ≡
b2n
d2n
mnI +

a2n
d2n
Sn, (2.13)

for mn = tr(Sn)/J , d
2
n = ∥Sn −mnI∥2F,1/J , b̄2n = n−2

∑
i∥XiX

⊤
i − Sn∥2F,1/J , b2n = min(b̄2n, d

2
n),

and a2n = d2n − b2n.
Bespoke shrinkage targets may be used in place of the identity. For example, one might

consider a dense matrix target whose diagonal elements are the average of the sample covari-
ance matrix’s diagonal elements and whose off-diagonal elements are equal to the average
of all the sample covariance matrix’s off-diagonal elements. For the sake of brevity, discus-
sion of such estimators is omitted, but examples are provided by, among others, Ledoit and
Wolf [2003] and Schäfer and Strimmer [2005], particularly for use in financial economics and
statistical genomics applications, respectively.

When assumptions about the true covariance matrix’s structure are unfounded, it can
become impossible to select an appropriate linear shrinkage target. Instead, one might
consider generalizing these estimators to shrink the eigenvalues of the sample covariance
matrix in a non-linear fashion. That is, an estimator that shrinks the sample covariance
matrix’s eigenvalues not by a common shrinkage factor (as with linear shrinkage estimators)
but with shrinkage factors tailored to each sample eigenvalue. As with the aforementioned
linear shrinkage estimators, such non-linear shrinkage estimators produce positive-definite
estimates so long as the shrunken sample eigenvalues are positive and rotation-equivariant.
These estimators belong to a class initially introduced by Stein [1986] and have since seen a
resurgence in the work of Ledoit and Wolf [2012, 2015]. More recently, Ledoit and Wolf [2018]
derived an analytical non-linear shrinkage estimator that is asymptotically optimal in high
dimensions and more computationally efficient than their previously formulated estimators.
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Estimators Based on Factor Models

Covariance matrix estimators based on factor models form another broad family of estimators
that do not assume sparsity of the true covariance matrix. Often encountered in econometrics
and finance, these estimators utilize the operating assumption that the dataset’s observations
are functions of a few common, often latent, factors. The factor model can be described as
follows:

X = µ+ βF + ϵ, (2.14)

where XJ×1 represents a random observation, µJ×1 a mean vector, βJ×L a matrix of factor
coefficients, FL×1 a random vector of L common factors, and ϵJ×1 a random error vector.
Assuming that F and ϵ are uncorrelated, the covariance matrix of X is given by

ψ = βCov(F )β⊤ + ψϵ, (2.15)

where ψϵ is the covariance matrix of the random error.
For a review on estimating the covariance matrix in the presence of observable factors,

see Fan et al. [2016a]. We now briefly discuss the estimation of ψ when the factors are
unobservable. Notice that when ψϵ is not assumed to be diagonal, the decomposition of
ψ in Equation (2.15) is not identifiable for fixed n and J , since the random vector X is
the only observed component of the model. By letting J → ∞, and assuming that the
eigenvalues of ψϵ are uniformly bounded or grow at a slow rate relative to J and that
the eigenvalues of (1/J) β⊤β are uniformly bounded away from zero and infinity, it can
be shown that βCov(F )β⊤ is asymptotically identifiable [Cai et al., 2010b]. It follows from
these assumptions that the signal in the factors increases as the number of features increases,
while the noise contributed by the error term remains constant. The eigenvalues associated
with βCov(F )β⊤ therefore become easy to differentiate from those of ψϵ.

Now, even with βCov(F )β⊤ being asymptotically identifiable, β and F cannot be distin-
guished. As a solution, the following constraint is imposed on F : Cov(F ) = IL×L. It then
follows that

ψ = ββ⊤ + ψϵ. (2.16)

Under the additional assumption that the columns of β be orthogonal, Fan et al. [2013]
found that the leading L eigenvalues of ψ are spiked, meaning that they are bounded below
by some constant [Johnstone, 2001], and grow at rate O(J) as the dimension of ψ increases.
The remaining J−L eigenvalues are then either bounded above or grow slowly. This implies
that the latent factors and their loadings can be approximated via the eigenvalues and
eigenvectors of ψ.

Fan et al. [2013] therefore proposed the Principal Orthogonal compleEment Thresholding
(POET) estimator of ψ, which was motivated by the spectral decomposition of the sample
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covariance matrix

Sn =
J∑
j=1

λjV·,jV
⊤
·,j

≈
L∑
j=1

β·,jβ
⊤
·,j +

J∑
j=L+1

λjV·,jV
⊤
·,j ,

where λj and V·,j are the jth eigenvalues and eigenvectors of Sn, respectively, and β·,j is the
jth column of β. For ease of notation, we denote the second term by Sϵ and refer to this
matrix as the principal orthogonal complement. The estimator for L latent variables is then
defined as

Ψ̂POET(Pn;L, s) ≡
L∑
j=1

λjV·,jV
⊤
·,j + Tϵ,s, (2.17)

where Tϵ,s is the generalized thresholding matrix of Sϵ

T (jl)
ϵ,s ≡

{
S
(jj)
ϵ , when j = l

s
(
S
(jl)
ϵ

)
, otherwise

,

for some generalized thresholding function s.
Although this estimator is computationally efficient, the assumptions encoding the factor

based model under which it is derived are such that the latent features’ eigenvalues grow in
J . This results in a poor convergence rate under the spectral norm [Fan et al., 2016a].

2.5 Simulation Study

Simulation Study Design

We conducted a series of simulation experiments using prominent covariance models to verify
the theoretical results of our cross-validated estimator selection procedure. These models
are described below.

Model 1: A dense covariance matrix, where

ψ(jl) =

{
1, j = l

0.5, otherwise
.

Model 2: An AR(1) model, where ψ(jl) = 0.7|j−l|. This covariance matrix, corresponding to
a common timeseries model, is approximately sparse for large J , since the off-diagonal
elements quickly shrink to zero.
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Model 3: An MA(1) model, where ψ(jl) = 0.7|j−l| · I(|j − l| ≤ 1). This covariance matrix,
corresponding to another common timeseries model, is truly sparse. Only the diagonal,
subdiagonal, and superdiagonal contain non-zero elements.

Model 4: An MA(2) model, where

ψ(jl) =


1, j = l

0.6, |j − l| = 1

0.3, |j − l| = 2

0, otherwise

.

This timeseries model is similar to Model 3, but slightly less sparse.

Model 5: A random covariance matrix model. First, a J×J random matrix whose elements
are i.i.d. Uniform(0, 1) is generated. Next, entries below 1/4 are set to 1, entries
between 1/4 and 1/2 are set to −1, and the remaining entries are set to 0. The
square of this matrix is then computed and added to the identity matrix IJ×J . Finally,
the corresponding correlation matrix is computed and used as the model’s covariance
matrix.

Model 6: A Toeplitz covariance matrix, where

ψ(jl) =

{
1, j = l

0.6|j − l|−1.3, otherwise
.

Like the AR(1) model, this covariance matrix is approximately sparse for large J .
However, the off-diagonal entries decay less quickly as their distance from the diagonal
increases.

Model 7: A Toeplitz covariance matrix with alternating signs, where

ψ(jl) =

{
1, j = l

(−1)|j−l|0.6|j − l|−1.3, otherwise
.

This model is almost identical to Model 6, though the signs of the covariance matrix’s
entries are alternating.

Model 8: A covariance matrix inspired by the latent variable model described in Equa-
tion (2.14). Let βJ×3 = (β1, . . . , βJ)

⊤, where βj are randomly generated using a
N(0, I3×3) distribution for j = 1, . . . , J . Then ψ = ββ⊤+IJ×J is the covariance matrix
of a model with three latent factors.
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Estimator Hyperparameters

Sample covariance matrix Not applicable
Hard thresholding [Bickel and Lev-
ina, 2008c]

Thresholds = {0.1, 0.2, . . . , 1.0}

SCAD thresholding [Fan and Li,
2001, Rothman et al., 2009]

Thresholds = {0.1, 0.2, . . . , 1.0}

Adaptive LASSO [Rothman et al.,
2009]

Thresholds = {0.1, 0.2, . . . , 0.5};

exponential weights = {0.1, 0.2, . . . , 0.5}
Banding [Bickel and Levina,
2008b]

Bands = {1, 2, . . . , 5}

Tapering [Cai et al., 2010b] Bands = {2, 4, . . . , 10}
Linear shrinkage [Ledoit and Wolf,
2004]

Not applicable

Dense linear shrinkage [Schäfer
and Strimmer, 2005]

Not applicable

Nonlinear shrinkage [Ledoit and
Wolf, 2018]

Not applicable

POET [Fan et al., 2013] using hard
thresholding

Latent factors = {1, 2, . . . , 5};

thresholds = {0.1, 0.2, 0.3}

Table 2.1: Families of candidate estimators used by cvCovEst in the simulation study (74
distinct estimators in total)

Each covariance model was used to generate data sets consisting of n ∈ {50, 100, 200, 500}
i.i.d. multivariate Gaussian, mean-zero observations. The uniform boundedness condition of
Theorem 2.1’s Assumption 2.1 is therefore not satisfied; we do this purposefully to further
stress that this assumption is not limiting in many practical settings. For each model and
sample size, five data dimension ratios were considered: J/n ∈ {0.3, 0.5, 1, 2, 5}. Together,
the eight covariance models, four sample sizes, and five dimensionality ratios result in 160
distinct simulation settings. For each such setting, the performance of the cross-validated
selector with respect to the various oracle selectors and several well-established estimators
is evaluated based on aggregation across 200 Monte Carlo repetitions.

We applied our estimator selection procedure, which we refer to as cvCovEst, using a 5-
fold CV scheme. The library of candidate estimators is provided in Table 2.1, which includes
details on these estimators’ possible hyperparameters. Seventy-four estimators make up the
library of candidates. We note that no penalty is attributed to estimators generating rank-
deficient estimates, like the sample covariance matrix when J > n, though this limitation is
generally of practical importance. When the situation dictates that the resulting estimate
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must be positive-definite, the library of candidates should be assembled accordingly.

Simulation Study Results

To examine empirically the optimality results of Theorem 2.1, we computed analytically,
for each replication, the cross-validated conditional risk differences of the cross-validated
selection, k̂pn,n, and the cross-validated oracle selection, k̃pn,n. The Monte Carlo expectations
of the risk differences stratified by n, J/n, and the covariance model were computed from the
cross-validated conditional risk differences. The ratios of the expected risk differences are
presented in Figure 2.1. These results make clear that, for virtually all models considered,
the estimator chosen by our proposed cross-validated selection procedure has a risk difference
asymptotically identical on average to that of the cross-validated oracle.

A stronger result, corresponding to Equation (2.8) of Theorem 2.1, is presented in Fig-
ure 2.2. For all but Models 1 and 8, we find that our algorithm’s selection is virtually
equivalent to the cross-validated oracle selection for n ≥ 200 and J/n ≥ 0.5. Even for Model
8, in which the covariance matrices are more difficult to estimate due to their dense struc-
tures, we find that our selector identifies the optimal estimator with probability tending to
1 for n ≥ 200 and J/n = 5.

More impressive still are the results presented in Figure 2.3 that characterize the full-
dataset conditional risk difference ratios. For all covariance matrix models considered, with
the exception of Model 1, our procedure’s selections attain near asymptotic optimality for
moderate values of n and J/n. This suggests that our loss-based estimator selection ap-
proach’s theoretical guarantee, as outlined in Corollary 2.1, is achievable in many practical
settings.

In addition to verifying our method’s asymptotic behavior, we compared the estimates
generated by our method against those of the individual candidate procedures using the sim-
ulated data sets. This was accomplished by computing the Frobenius norm of each estimate
against the corresponding true covariance matrix. The mean norms over all simulations were
then computed for each covariance matrix estimation procedure, again stratified by n, J/n,
and the covariance matrix model (Figure 2.4). Our CV scheme was used to select hyper-
parameters of these competing approaches where necessary. As stated previously, our CV
approach is generally equivalent to these estimators’ hyperparameter selection procedures.
The hyperparameters considered are provided in Table 2.2. Where appropriate, the compet-
ing methods’ hyperparameters are more varied than those used by cvCovEst, reflecting more
aggressive estimation procedures that one might employ when only using a single family of
estimators.

We repeated this benchmarking experiment using the spectral norm to assess the accuracy
of our estimation procedure with respect to the leading eigenvalue of the covariance matrix.
Recall that the spectral norm of a square matrix is defined as it’s largest absolute eigenvalue.
Though our theoretical results do not relate to to this norm, outcomes similar to those in
Figure 2.4 are expected given the relationship between these two norms for reasons previously
described.
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Figure 2.1: Comparison of the cross-validated selection and cross-validated oracle selection’s mean
cross-validated conditional risk differences. Note the differing y-axis scales for the different models.
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Figure 2.2: Comparison of the cross-validated (k̂pn,n) and cross-validated oracle (k̃pn,n) selec-
tions’ cross-validated conditional risk differences. The proposed cross-validated selection procedure
achieves asymptotic equivalence in most settings for relatively small sample sizes and numbers of
features.
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Figure 2.3: Comparison of the cross-validated selection and oracle selection’s full-dataset conditional
risk differences.
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Figure 2.4: Comparison of competing, bespoke covariance matrix estimation procedures to our
cross-validated selection approach in terms of the Monte Carlo mean Frobenius norm under a
variety of data-generating processes. Note that the scales of the y-axis are tailored to the covariance
matrix model.
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Figure 2.5: Comparison of competing, bespoke covariance matrix estimation procedures to our
cross-validated selection approach in terms of the Monte Carlo mean spectral norm under a variety
of data-generating processes. Note that the scales of the y-axis are tailored to the covariance matrix
model.
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Estimator Hyperparameters

Sample covariance matrix NA
Hard thresholding Thresholds = {0.05, 0.10, . . . , 1.00}
SCAD thresholding Thresholds = {0.05, 0.10, . . . , 1.00}
Adaptive LASSO Thresholds = {0.1, 0.2, . . . , 0.5};

exponential weights = {0.1, 0.2, . . . , 0.5}
Banding Bands = {1, 2, . . . , 10}
Tapering Bands = {2, 4, . . . , 10}

Linear shrinkage NA
Dense linear shrinkage NA
Nonlinear shrinkage NA

POET using hard thresholding Latent factors = {1, 2, . . . , 10};
thresholds = {0.1, 0.2, . . . , 1.0}

Table 2.2: Families of candidate estimators compared against the cross-validated loss-based
estimator selection procedure. Note that the library of candidate estimators used by the
proposed method is provided in Table 2.1

The results, presented in Figures 2.4 and 2.5, demonstrate that our estimator selection
procedure performs at least as well as the best alternative estimation strategy. This suggests
that procedures dedicated to or relying upon the accurate estimation of leading eigenvalues
and eigenvectors, like principal component analysis and latent variable estimation, might
benefit from the integration of our cross-validated covariance matrix estimation framework.

2.6 Real Data Examples

Single-cell transcriptome sequencing (scRNA-seq) allows researchers to study the gene ex-
pression profiles of individual cells. The fine-grained transcriptomic data that it provides
have been used to identify rare cell populations and to elucidate the developmental relation-
ships between diverse cellular states.

Given that a typical scRNA-seq data set possesses tens of thousands of features (genes),
most workflows prescribe a dimensionality reduction step. In addition to reducing the
amount of computational resources needed to analyze the data, reducing the dimensions mit-
igates the effect of corrupting noise on interesting biological signal. The lower-dimensional
embedding is then used in downstream analyses, like novel cell-type discovery via clustering.

One of the most popular methods used to reduce the dimensionality of scRNA-seq data
is uniform manifold approximation and projection (UMAP) [McInnes et al., 2018]. This
method captures the most salient non-linear relationships among a high-dimensional data
set’s features and projects them onto a reduced-dimensional space. Instead of applying
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Figure 2.6: Comparisons of scRNA-seq data sets’ UMAP embeddings based on vanilla PCA or
PCA with the cross-validated selection’s covariance matrix estimate. The data sets consist of (A)
285 cells collected from the visual cortex of mice and (B) 2,816 mouse brain cells. Distinct cell
types are indicated by color.

UMAP directly, the scRNA-seq data set’s leading principal components (PCs) are often
used as an initialization.

This initial dimensionality reduction by PCA is believed to play a helpful role in denoising.
However, PCA typically relies on the sample covariance matrix, and so when the data set
is high-dimensional, the resulting principal components are known to be poor estimates of
those of the population [Johnstone and Lu, 2009]. We hence posit that our cross-validated
estimator selection procedure could form a basis for an improved PCA. That is, we hope that
the eigenvectors resulting from the eigendecomposition of our estimated covariance matrix
could be used to generate a set of estimates closer to the true PCs in terms of risk. These PCs
could then be fed to UMAP to produce an enhanced embedding. Indeed, simulation results
provided in Figure 2.5 suggest that cvCovEst produces estimates of the leading eigenvalue
at least as well as those produced by the sample covariance matrix, in terms of the spectral
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Estimator Hyperparameters

Sample covariance matrix NA
Hard thresholding Thresholds = {0.05, 0.10, . . . , 0.30}
SCAD thresholding Thresholds = {0.05, 0.10, . . . , 0.50}
Adaptive LASSO Thresholds = {0.1, 0.2, . . . , 0.5};

exponential weights = {0.1, 0.2, . . . , 0.5}
Linear shrinkage NA

Dense linear shrinkage NA
POET using hard thresholding Latent factors= {5, 6, . . . , 10};

thresholds = {0.05, 0.10, . . . , 0.3}

Table 2.3: Families of candidate estimators used in single-cell transcriptomic data analyses

norm.
We applied our procedure to two scRNA-seq data sets for which the cell types are known

a priori. These data were obtained from the scRNAseq Bioconductor R package [Risso and
Cole, 2020], and prepared for analysis using a workflow outlined in Amezquita et al. [2020].
A 5-fold CV scheme was used; the library of candidate estimators is provided in Table 2.3.
We expect that cells of the same class will form tight, distinct clusters within the low-
dimensional representations. The resulting embeddings, which we refer to as the cvCovEst-
based embeddings, were then compared to those produced by UMAP using traditional PCA
for initialization, which we refer to as the PCA-based embeddings. For each embedding, the
20 leading PCs were fed to UMAP. The first data set is a collection of 285 mouse visual
cortex cells [Tasic et al., 2016], and the second data set consists of 2,816 mouse brain cells
[Zeisel et al., 2015]. The 1,000 most variable genes of each data set were used to compute
the PCs of both embeddings.

The resulting UMAP plots are presented in Figure 2.6. Though the two embeddings gen-
erated for each data set are qualitatively similar, the low-dimensional representation relying
on our loss-based approach is more refined in Figure 2.6A. A number of cells erroneously
clustered in the PCA-based embedding are correctly represented in the cvCovEst-based em-
bedding. This explains the 41% increase in average silhouette width of our method relative
to the traditional approach. Further insight is gleaned from the diagnostic plots of Fig-
ure 2.7. Figure 2.7A indicates that cvCovEst selected the POET estimator [Fan et al.,
2013] with 5 latent factors and a thresholding hyperparameter of 0.3. It that the selected
estimator significantly improves upon the sample covariance matrix in terms of the cross-
validated Frobenius risk. Figure 2.7B provides further insight into the discrepancies between
the UMAP results of Figure 2.6A: the sample covariance matrix likely over-estimates many
of the leading eigenvalues.

The embeddings in Figure 2.6B qualitatively identical, and so too are their average
silhouette widths. This is expected, the Zeisel et al. [2015] is not truly high-dimensional.
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Figure 2.7: Tasic dataset: Diagnostic plots and tables generated using the cvCovEst R package.
(A) The top-left plot presents the cross-validated Frobenius risk of the estimator selected by our
method. k represents the number of potential latent factors, and lambda the thresholding value
used. The top-right panel contains a line plot of the selected estimator’s eigenvalues. The bottom-
left plot displays the absolute values of the estimated correlation matrix output by the cvCovEst
selection, and the bottom-right table lists the best performing estimators from all classes of estima-
tors considered. (B) Side-by-side line plots of the estimated leading eigenvalues of the cvCovEst
selection and the sample covariance matrix.
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Figure 2.8: Zeisel dataset: Diagnostic plots and tables generated using the cvCovEst R package.
The components in (A) can be interpreted in the same manner as the previous figure, with the ex-
ception of the top-left panel. In this table, a five number summary of the cross-validated Frobenius
risk is given for each class of estimators considered across all possible combinations of hyperparam-
eters, if any. It is clear from the tables in (A) that the cvCovEst selection is essentially equivalent
in terms of cross-validated risk to the sample covariance matrix. The plots in (B) further highlight
that the 20 leading eigenvalue of the cvCovEst estimate and the sample covariance matrix are
indistinguishable.
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The sample covariance matrix likely is a reasonable estimator in this setting. Ideally, data-
adaptive selection procedures should be cognizant of this. Indeed, cvCovEst, when applied
to the Zeisel et al. [2015] data set, selects an estimator whose cross-validated empirical risk
is only slightly smaller than that of the sample covariance matrix, and whose leading PCs
are virtually identical (Figure 2.8).

2.7 Discussion

This work extends Dudoit and van der Laan [2005]’s framework for asymptotically opti-
mal, data-adaptive estimator selection to the problem of covariance matrix estimation in
high-dimensional settings. We provide sufficient conditions under which our cross-validated
procedure is asymptotically optimal in terms of risk, and show that it generalizes the cross-
validated hyperparameter selection procedures employed by existing estimation approaches.
Future work might derive analogous results for other loss functions, or perhaps even for other
parameters like the precision matrix.

The simulation study provides evidence that near-optimal results are achieved in data
sets with relatively modest numbers of observations and many features across models indexed
by diverse covariance matrix structures. These results also establish that our cross-validated
procedure performs as well as the best bespoke estimation procedure in a variety of settings.
Our scRNA-seq data examples further illustrate the utility of our approach in fields where
high-dimensional data are collected routinely.

Practitioners need no longer rely upon intuition alone when deciding which candidate
estimator is best from among a library of diverse estimators. We expect that a variety of
computational procedures relying upon the accurate estimation of the covariance matrix be-
yond the exploratory analyses considered here, like clustering and latent variable estimation,
stand to benefit from the application of this framework.

2.8 Proofs

Proof. Proposition 2.1.
Assume without loss of generality that EP0 [X] = 0 and η0 = 1. Then,
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θ̂pn,n(k, 1) = EBn
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1
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⊤
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 ∑
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(
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(j)
i X

(l)
i )2 − 2X

(j)
i X

(l)
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0
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)(jl)
)

+ (Ψ̂k(P
0
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)(jl))2

)]

= EBn

[
J∑
j=1

J∑
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(
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0
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)(jl))2 − 2S(P 1
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)(jl)Ψ̂k(P
0
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+
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∑
{i:Bn(i)=1}

(X
(j)
i X

(l)
i )2
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= EBn

[
J∑
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J∑
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Ψ̂k(P

0
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)(jl)
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)(jl)Ψ̂k(P

0
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)(jl)
)]

+ C1,

where C1 is constant with respect to Ψ̂k(P
0
n,Bn

).
From Equation (2.5), notice that

R̂n(Ψ̂k, 1) = EBn

[
∥Ψ̂k(P

0
n,Bn

)− Sn(P 1
n,Bn

)∥2F,1
]

= EBn

[
J∑
j=1

J∑
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(
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0
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= EBn
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)(jl)Ψ̂k(P
0
n,Bn
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)]

+ C2,

where C2 is constant with respect to Ψ̂k(P
0
n,Bn

).
Thus,

k̂pn,n = arg mink∈{1,...,K}θ̂pn,n(k, 1)

= arg mink∈{1,...,K}R̂n(Ψ̂k, 1).
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Proof. Proposition 2.2.
For any a = 1, . . . , J and b = 1, . . . , J , we find that

0 =
δ

δψ(ab)
Θ(ψ, η, P0)

=
δ

δψ(ab)
EP0 [L(X;ψ, η)]

=
δ

δψ(ab)
EP0

[
J∑
j=1

J∑
l=1

η(jl)
(
X(j)X(l) − ψ(jl)

)2]

= EP0

[
δ

δψ(ab)

J∑
j=1

J∑
l=1

η(jl)
(
X(j)X(l) − ψ(jl)

)2]
∝ EP0

[
X(a)X(b) − ψ(ab)

]
⇒ ψ(ab) = ψ

(ab)
0 .

It follows that ψ0 is a risk minimizer.

Proof. Proposition 2.3.
Let the hard-thresholding estimator minimizing the expected cross-validated conditional

risk under P0 be indexed by k0. Then

EP0 [θ̃pn,n(k̃pn,n)− θ0] ≤ EP0 [θ̃pn,n(k0)− θ0]

= EP0

[
EBn

[
EP0

[
∥Ψ̂k0(P

0
n,Bn

)−XX⊤∥2F,1

− ∥ψ0 −XX⊤∥2F,1 | P 0
n,Bn

]]]
= EP0

[
EBn

[
EP0

[
∥Ψ̂k0(P

0
n,Bn

)− ψ0∥2F,1 | P 0
n,Bn

]]]
= O(s(J) log J).

The first inequality follows from the definition of the cross-validated conditional risk under
P0; the last equality follows from Theorem 2 (and its subsequent discussion) of Bickel and
Levina [2008c], since X is sub-Gaussian by the boundedness condition of Assumption 1 and
J/n→ m as n, J →∞. Then,

c(δ,M(J))(1 + log(K)

npnEP0 [θ̃pn,n(k̃pn,n)− θ0]
= Ω

(
J

s(J) log J

)
.

Lemma 2.1. Let Zk ≡ L(X; Ψ̂k(P
0
n,Bn

))− L(X;ψ0). Then,

VarP0

[
Zk | P 0

n,Bn
, Bn

]
≤M(J)EP0

[
Zk | P 0

n,Bn
, Bn

]
,

where M(J) ≡ 4(M1 +M2)
2J2.
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Proof.
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where the second to last equality follows by noting that EP0 [X
(j)X(l)|P 0

n,Bn
, Bn] = EP0 [X

(j)X(l)]

and that, by definition, EP0 [X
(j)X(l)] = ψ

(jl)
0 . Then,
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Here, the second inequality holds from the application of Jensen’s Inequality to the square
of the double sum, which is effectively an expectation of a discrete uniform random variable
when scaled by J2. The final inequality results from Assumptions 1 and 2, and concludes
the proof.

The following lemma is a result taken directly from Dudoit and van der Laan [2005]. It
is restated here for convenience.

Lemma 2.2. Let Y1, Y2, . . . be a sequence of random variables. If E[|Yn|] = O(g(n)) for some
positive function g(·), then Yn = OP (g(n)).

Proof. We must show that, for each ϵ > 0, there exists an N and B > 0 such that
P(|Yn|/g(n) > B) < ϵ for all n > N . By assumption, there exists an N and a C > 0
such that E[|Yn|]/g(n) < C for all n > N . By defining C/B = ϵ and making use of Markov’s
Inequality, we find that

P
(
|Yn|
g(n)

> B

)
≤ E [|Yn|]

g(n)B
≤ C

B
= ϵ.
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Having derived Lemma 2.1, the remainder of the proof for Theorem 2.1 closely follows
the proof of the first theorem in Dudoit and van der Laan [2005].

Proof. Theorem 2.1, Finite-Sample Result.

0 ≤ θ̃pn,n(k̂pn,n)− θ0

= EBn

[ ∫
(L(x; Ψ̂k̂pn,n
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.

(2.18)

The first inequality is by assumption, and the second is by definition of k̂pn,n such that

θ̂pn,n(k̂pn,n) ≤ θ̂pn,n(k) ∀k. For simplicity in the remainder of the proof, we replace k̂pn,n and

k̃pn,n with k̂ and k̃, respectively, in a slight abuse of notation.
Now, let the first two terms of the last expression in Equation (2.18) be denoted by Rk̂,n,

and the third and fourth terms by Tk̃,n. The last term is the cross-validated oracle’s risk

difference: (1 + 2δ)(θ̃pn,n(k̃)− θ0). Thus,

0 ≤ θ̃pn,n(k̂)− θ0 ≤ (1 + 2δ)(θ̃pn,n(k̃)− θ0) +Rk̂,n + Tk̃,n. (2.19)
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We next show that EP0 [Rk̂,n+Tk̃,n] ≤ 2c(δ,M(J))(1+log(K))/(npn), where c(δ,M(J)) =

2(1 + δ)2M(J)(1/δ + 1/3) for some δ > 0. For convenience, let

Ĥk ≡
∫

(L(x; Ψ̂k(P
0
n,Bn

))− L(x;ψ0))dP
1
n,Bn

(x)

H̃k ≡
∫

(L(x; Ψ̂k(P
0
n,Bn

))− L(x;ψ0))dP0(x)

Rk,n(Bn) ≡ (1 + δ)(H̃k − Ĥk)− δH̃k

Tk,n(Bn) ≡ (1 + δ)(Ĥk − H̃k)− δH̃k,

so that Rk,n = EBn [Rk,n(Bn)] and Tk,n = EBn [Tk,n(Bn)].
Given Bn and P

0
n,Bn

, let Zk,i, 1 ≤ i ≤ npn, denote the npn i.i.d. copies of Zk corresponding
with the validation set, that is, with {Xi : Bn(i) = 1} (as defined in Lemma 2.1). Then,
Ĥk =

∑
i Zk,i/npn and H̃k = EP0 [Zk,i | P 0

n,Bn
, Bn]. Hence, H̃k−Ĥk is an empirical mean of npn

i.i.d. centered random variables. Further, by Assumptions 1 and 2, |Zk,i| < 2(M1 +M2)
2J2

a.s.. Next, we apply Bernstein’s Inequality to the centered empirical mean H̃k − Ĥk, using
the property of the Zk,i’s derived in Lemma 2.1, to obtain a bound for the tail probabilities
of Rk,n(Bn) and Tk,n(Bn):
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Then, for s > 0, Bernstein’s Inequality yields
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And so, for s > 0,
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(
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where c(δ,M(J)) = 2(1 + δ)2M(J)(1
δ
+ 1

3
). The same bound applies for the marginal prob-

abilities of PP0(Rk,n(Bn) > s) since they hold for arbitrary choices of Bn and P 0
n,Bn

. The
second inequality follows from K being larger than or equal to 1 by definition.

Finally, for any u > 0, we have by the properties of expectations and the previously
derived result that

EP0 [Rk̂,n] =

∫ ∞

0

PP0(Rk̂,n > s)ds−
∫ 0

−∞
PP0(Rk̂,n ≤ s)ds

≤
∫ ∞

0

PP0(Rk̂,n > s)ds

≤ u+

∫ ∞

u

PP0(Rk̂,n > s)ds

≤ u+

∫ ∞

u

Kexp

{
− npn

c
(
δ,M(J)

)s} ds.
Since the expression on the right-hand side of the inequality above achieves its minimum

value of c(δ,M(J))(1 + log(K)/(npn) at un = c(δ,M(J))log(K)/(npn), then

EP0 [Rk̂,n] ≤ c
(
δ,M(J)

) 1 + log(K)

npn
.

The same bound applies to EP0 [Tk̃,n]. Therefore, taking the expected values of the inequality
in Equation (2.19), we produce the desired finite-sample result in Equation (2.6).

Proof. Theorem 2.1, High-Dimensional Asymptotic Result.
The expected risk differences ratio’s convergence follows directly from Equation (2.6) for

some δ > 0, so long as c(δ,M(J))(1 + log(K))/(npnEP0 [θ̃pn,n(k̃pn,n)− θ0])→ 0 as n, J →∞.
Given the assumption in Kolmogorov asymptotics that J/n → m < ∞ as J, n → ∞, an
equivalent condition is that m(M1 +M2)

2J(1 + log(K))/(pnEP0 [θ̃pn,n(k̃pn,n) − θ0]) → 0 as
n, J →∞. Convergence in probability then follows from Lemma 2.2.

Though there are minor adaptations to the assumptions to reflect the use of high-
dimensional asymptotics, the proof of Corollary 2.1 follows that of Corollary 2.1 in Dudoit
and van der Laan [2005].

Proof. Corollary 2.1.
The asymptotic statement of Equation (2.10) is an immediate result of Theorem 2.1’s

Equation (2.8).

θ̃pn,n(k̂pn,n)− θ0
θ̃pn,n(k̃pn,n)− θ0

θ̃pn,n(k̃pn,n)− θ0
θ̃n(k̃n)− θ0

P→ 1.
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Letting Z1,n ≡ (n(1 − pn))γ(θ̃pn,n(k̃pn,n) − θ0) and Z2,n ≡ nγ(θ̃n(k̃n) − θ0), and assuming

that the sufficient condition in Equation (2.11) holds, we find that Z1,n/Z2,n
d→ 1 by the

Continuous Mapping Theorem. Then, notice that

Z1,n

Z2,n

=
(1− pn)γ(θ̃pn,n(k̃pn,n)− θ0)

θ̃n(k̃n)− θ0
,

which yields the desired sufficient condition when pn → 0. In the case of single-split valida-

tion, Z2,n
d
= Z1,n/(1−pn), and so Z2,n

d→ Z implies that (Z1,n, Z2,n)
d→ (Z,Z).
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Chapter 3

Treatment Effect Modifier Discovery
in Clinical Trials

3.1 Introduction

Precision medicine is now a chief focus of the biomedical establishment. Its promise of
tailored interventions and therapies is impossible to overlook, potentially spelling major
improvements in patient outcomes [Kraus, 2018, Ginsburg and Phillips, 2018]. Much effort
has therefore been invested in the development of quantitative methods capable of uncovering
patient sub-populations which benefit more, or less, from novel therapies than the standard
of care.

These groups of patients are distinguished from one another based upon diverse biomet-
ric measurements referred to as predictive biomarkers [Royston and Sauerbrei, 2008, Kraus,
2018]. Examples include age, sex at birth, ethnicity, and gene expression data taken from
various tissue samples. Once identified, these biomarkers may provide clinicians and biol-
ogists with mechanistic insight about the disease or therapy, and spur the development of
diagnostic tools for targeted treatment regimes.

The statistical discovery of predictive biomarkers has, to date, largely been a byproduct of
conditional average treatment effect (CATE) estimation. This typically unknown parameter
contrasts the expected outcomes of patients under different treatments as a function of their
characteristics, thereby defining the optimal treatment rule. Employing an estimate of the
CATE, clinicians can identify a subgroup of patients that draws most benefit from a therapy.
When estimated using sparse modelling or otherwise interpretable methods, interpretable
machine learning algorithms can be used to find potentially predictive biomarkers [Robins
et al., 2008, Tian et al., 2014, Luedtke and van der Laan, 2016, Chen et al., 2017, Zhao et al.,
2018, Wager and Athey, 2018, Fan et al., 2020, Bahamyirou et al., 2022, Hines et al., 2022a].

While CATE estimation procedures are demonstrably successful at predictive biomarker
discovery in settings where the number of features is small relative to the sample size, it is
not so in modern clinical trial in which the number of features frequently exceeds the number
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of enrolled patients. The high-dimensional nature of trial data make the CATE estimation
problem particularly difficult. Methods proposed for this setting must rely on convenient —
and sometimes unverifiable — assumptions about the underlying data-generating process.
Examples are sparsity, linear associations, and negligible dependence structures [Tian et al.,
2014, Chen et al., 2017, Zhao et al., 2018, Fan et al., 2020, Bahamyirou et al., 2022]. When
these assumptions are violated, as is the case when, for example, the set of biomarkers is
comprised of gene expression data, the CATE estimate will be biased but may be viable. The
biomarkers designated as predictive, however, will likely be false positives (as demonstrated
in Section 3.4).

Hines et al. [2022a] recently proposed a collection of variable importance parameters that
assess the impact of variables, either individually or in predefined sets, on the variance of the
CATE. These parameters are based on popular variable-dropout procedures and on previous
work about the variance of the conditional treatment effect [Levy et al., 2021]. While the
proposed estimators of these parameters are consistent and asymptotically linear under non-
restrictive assumptions about the data-generating process, Hines et al. [2022a] note that
quantifying treatment effect modification in this way is misleading when variables are highly
correlated. Dropout-based importance metrics may also be deceiving when there are many
variables; other features may act as surrogates for the omitted covariate(s) [Hastie et al.,
2009, Chap. 15]. This framework is therefore inappropriate for the discovery of predictive
biomarkers in high dimensions.

Still other procedures not relying on CATE estimation have recently been proposed.
Sechidis et al. [2018] developed an information-theoretic approach for identifying these treat-
ment effect modifiers, though the statistical properties of the procedure are not established
and the simulations do not consider high-dimensional data. Zhu et al. [2022] recently de-
veloped a penalized linear modelling method for the identification of predictive biomarkers
in high dimensions that accounts for the biomarker correlation structure. Like the previous
method, however, no formal statistical guarantees are provided.

Myriad methods attempting to identify high-dimensional interactions more generally
might also be considered for our task [for example, Hao and Zhang, 2014, Jiang and Liu,
2014, Tang et al., 2020]. They too generally rely on untenable simplifying assumptions about
the data-generating process. These include, but are not limited to, assumptions of normal-
ity, sparsity of the main effects, sparsity of interaction effects, and bounds on the condition
number of the biomarker covariance matrix. Large sets of biomarkers are again unlikely
to satisfy such conditions, barring these methods’ use for predictive biomarker discovery in
high-dimensions.

A simpler alternative is to fit individual (generalized) linear models of the outcome for
each biomarker. Each model is comprised of the biomarker’s main effect and a treatment-
biomarker interaction term. The effect size estimate of the latter serves as a measure im-
portance; larger magnitudes equate to increased treatment effect modification. Hypothesis
testing about these treatment-biomarker interaction effects is also possible. As with CATE
estimation methods, however, this simple approach imposes stringent parametric conditions
on the data-generating process. When the outcome is continuous, for example, inference is
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only possible when all marginal biomarker-outcome relationships are truly linear. In small
samples, an additional assumption of Gaussian error terms is needed for valid hypothesis test-
ing. Violation of these unrealistic conditions again produces unreliable predictive biomarker
identification.

A lack of Type-I error control has marked repercussions in many biomedical applications.
In drug target discovery, limited resources are wasted by performing biological follow-up ex-
periments on false positives. In diagnostic development, the inclusion of non-predictive
biomarkers may dilute the signal from truly informative ones. In a sequencing-based di-
agnostic, invalid biomarkers will compete with others for sequencing reads, reducing the
sequencing depth and, thereby, the quantification accuracy of predictive biomarkers. These
failings have direct, detrimental effects on patient health outcomes.

Motivated by these drawbacks, we present in this work a flexible approach for directly
assessing the predictive potential of individual biomarkers. That is, we estimate (a trans-
formation of) each biomarker’s univariate CATE, a novel variable importance parameter
for treatment effect modification. What is more, our procedure permits the formal statis-
tical testing of these biomarkers’ predictive effects under non-restrictive assumptions about
the underlying data-generating process, and we find that it controls the false discovery rate
(FDR) at the nominal level for realistic sample sizes. We also demonstrate on real-world data
that our method provides reasonable sub-population identification results when combined
with standard clustering approaches.

We emphasize that our framework is not a competitor of treatment rule estimation proce-
dures, it is complementary. The estimation of the CATE and the identification of predictive
biomarkers are related but distinct pursuits. To highlight this, we might consider a two-step
procedure wherein the full set of biomarkers is filtered using our method, and then the CATE
is estimated using the remaining features. The benefits of such a strategy are numerous. The
results of the initial stage can help assess whether the assumption of sparsity used by existing
methods is tenable, and therefore whether estimating the CATE is feasible. If not, then the
ranking of biomarkers might still provide biological or clinical insight, or motivate further
study. If so, the CATE may be estimated more accurately, thanks to the reduced number
of features considered, using flexible methods like those of Tian et al. [2014], Luedtke and
van der Laan [2016], or Wager and Athey [2018]. Further, the rankings generated in the ini-
tial stage can impart intuition about the otherwise uninterpretable treatment rule produced
by “black-box” methods.

The remainder of the chapter is organized as follows: In Section 3.2, the estimation set-
ting and problem are detailed in statistical terms. Section 3.3 then describes the proposed
inferential procedures. The asymptotic behavior of our method is then verified empirically
through a comprehensive simulation study in Section 3.4. Application of the proposed ap-
proach to clinical trial data then follows in Section 3.5. We end with a brief discussion of the
method in Section 3.6. Throughout, we emphasize inference about the univariate CATEs in
a randomized control trial setting, though some remarks on its application to observational
data are also provided.
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3.2 Variable Importance Parameters

Consider n identically and independently distributed (i.i.d.) random vectors

Xi = (Wi, Ai, Y
(1)
i , Y

(0)
i ) ∼ PX,0, i = 1, . . . , n, corresponding to complete but unobserved

data generated by participants in a randomized control trial or observational study. We
drop the indices for notational convenience where possible throughout the remainder of the
article. Here, W = (V,B) is a (q + p)-length random vector of q pre-treatment covariates,
V , like location and income, and p pre-treatment biomarkers, B, such as gene expression
data, A is a binary random variable representing a treatment assignment, and Y (1) and Y (0)

are random variables corresponding to the potential outcomes of clinical interest under both
treatment and control conditions, respectively [Rubin, 1974]. The number of biomarkers p
is assumed to be approximately equal to or larger than n. Generally, only one potential
outcome is observed per unit. We ignore this point for now, and return to it in the next
section.

Clinically relevant predictive biomarkers are often those that have a strong influence on
the outcome of interest on the absolute scale. As such, an ideal target of inference when
these outcomes are continuous and the number of covariates small is the CATE conditioning
on the set of biomarkers:

EPX,0

[
Y (1) − Y (0)

∣∣B] .
For reasons previously discussed, however, accurate and interpretable estimation of this pa-
rameter is generally challenging when p is large, preventing the accurate recovery of predictive
biomarkers.

Indexing the biomarkers of by j = 1, . . . , p, such that B = (B1, . . . , Bp), centering them
such that EPX,0

[Bj] = 0, and assuming that EPX,0
[B2

j ] > 0, we instead target the full-data
variable importance parameter ΨF (PX,0) = (ΨF

1 (PX,0), . . . ,Ψ
F
p (PX,0)) where

ΨF
j (PX,0) ≡

EPX,0

[(
Y (1) − Y (0)

)
Bj

]
EPX,0

[
B2
j

] . (3.1)

Let Q̄X,0(A,W ) ≡ EPX,0
[Y (A)|W ]. Then this parameter can be represented as

ΨF
j (PX,0) =

EPX,0

[(
Q̄X,0(1,W )− Q̄X,0(0,W )

)
Bj

]
EPX,0

[
B2
j

] .

Assuming the expectation of Q̄X,0(1,W )− Q̄X,0(0,W ) conditional on any given Bj is linear
in Bj, Ψ

F (PX,0) is the vector of simple linear regression coefficients generated by regressing
the differences in expected potential outcomes against the individual elements of B. That
is, let f(W ) = Q̄X,0(1,W ) − Q̄X,0(0,W ), and assume that EPX,0

[f(W )|Bj] = βjBj. Then,
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for j = 1, . . . , p,

ΨF
j (PX,0) =

EPX,0
[f(W )Bj]

EPX,0

[
B2
j

]
=

EPX,0

[
EPX,0

[f(W )Bj|Bj]
]

EPX,0

[
B2
j

]
=

EPX,0

[
βjB

2
j

]
EPX,0

[
B2
j

]
= βj .

While the true relationship between the difference of potential outcomes and a predictive
biomarker is almost surely nonlinear, ΨF (PX,0) remains a well-defined parameter and is a
generally informative target of inference. Biomarkers with the largest absolute values in
ΨF (PX,0) generally modify the effect of treatment the most.

Analogous simplifications of the high-dimensional regression problem are applicable to
other types of outcome variables. For binary outcomes, we might similarly wish to quantify
the importance of biomarkers on the absolute risk scale using a slightly modified univariate
CATE parameter, ΨF (binary)(PX,0) = (Ψ

F (binary)
1 (PX,0), . . . ,Ψ

F (binary)
p (PX,0)), where:

Ψ
F (binary)
j (PX,0) ≡

EPx

[(
PPX,0

[
Y (1) = 1

∣∣W ]− PPX,0

[
Y (0) = 1

∣∣W ])Bj

]
EPX,0

[
B2
j

] (3.2)

for centered biomarkers j = 1, . . . , p. This is, in fact, the same parameter as ΨF (PX,0) but
presented in a more intuitive form for the binary outcome context: assuming a linear re-
lationship between the difference of the potential outcomes’ probability of success and the
covariates, this variable importance parameter consists of the simple linear regression coef-
ficients of the difference in the conditional potential outcome success probabilities regressed
on each biomarker. Again, the true relationship between the difference of potential outcome
probabilities and covariates is unlikely to be linear. Nevertheless, this parameter is telling
of biomarkers’ predictive capacities.

We stress that the parameters in Equations (3.1) and (3.2) are reasonable approxima-
tions of all but pathological treatment effect modification relationships; they summarize the
true, marginal functional parameters using interpretable linear models. A case in which
ΨF
j (PX,0) will fail to capture treatment effect modification due to biomarker j is when the

EP0 [Y
(1)−Y (0)|Bj] is parabolic: the orthogonal projection of Y (1)−Y (0) onto Bj produces a

variable importance parameter value of zero. If such relationships are suspected, however, it
suffices to target the corresponding variable importance parameters of the squared biomark-
ers. Analogous parameters based on transformations of the biomarkers should be considered
when the data-generating process is assumed to possess other similarly troublesome nonlin-
earities.
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3.3 Inference

As previously mentioned, only one of the potential outcomes, Y (0) or Y (1), is observed per
unit. Instead of {Xi}ni=1, we have access to n i.i.d. random observations O = (W,A, Y ) ∼
P0 ∈ M, where W and and A are defined as before, and Y = AY (1) + (1 − A)Y (0) is a
continuous or binary random outcome variable. P0 is the unknown data-generating distribu-
tion of the observed data that is fully determined by PX,0 and the (conditional) treatment
assignment distribution gA|W . That is, P0 is an element of the nonparametric statistical
modelM = {PPX,0,gA|W : PX,0 ∈MX , gA|W}. In a perfect RCT, gA|W = gA = Bernoulli(0.5).
The challenge therefore lies in estimating the full-data, causal parameter of Equations (3.1)
and (3.2) with the observed data; it is generally impossible without making additional as-
sumptions about P0. We begin by providing such identification conditions.

Throughout the remainder of the chapter, we represent the empirical distribution of P0

by Pn, the conditional outcome regression function by Q̄0(A,W ) ≡ EP0 [Y |A,W ], and the
treatment assignment mechanism by g0(W ) ≡ PP0 [A = 1|W ]. Where possible, we simplify
notation further by writing Q̄0(A,W ) and g0(W ) as Q̄0 and g0, respectively. All proofs are
provided in Section 3.7.

Assumption 3.1. No unmeasured confounding: Y (a) ⊥ A|W for a = {0, 1}.

Assumption 3.2. Positivity: There exists some constant ϵ > 0 such that PP0 [ϵ < g0(W ) <
1− ϵ] = 1.

A3.1 assures that there are no unmeasured confounders of treatment and outcome, al-
lowing for treatment allocation to be viewed as the product of a randomized experiment.
A3.2 is an overlapping support condition stating that all observations may be assigned to
either treatment condition regardless of covariates. These conditions, regularly cited in the
causal inference literature, are generally satisfied in randomized control trials. Altogether,
they lead to the following result:

Theorem 3.1. Under the conditions of A3.1 and A3.2, letting EP0 [Bj] = 0, and assuming
that EP0 [B

2
j ] > 0,

Ψj(P0) ≡
EP0

[(
Q̄0(1,W )− Q̄0(0,W )

)
Bj

]
EP0

[
B2
j

]
= ΨF

j (PX,0)

(3.3)

for j = 1, . . . , p such that Ψ(P0) = (Ψ1(P0), . . . ,Ψp(P0).

Having established the conditions under which ΨF (PX,0) can be estimated from the ob-
served data, we now focus on inference about Ψ(P0). Define the Augmented Inverse Proba-
bility Weight (AIPW) [Robins et al., 1995] transform as

Ta(O; Q̄0, g0) =
I(A = a)

I(a = 1)g0(W ) + I(a = 0)(1− g0(W ))
(Y − Q̄0(A,W )) + Q̄0(a,W ), (3.4)
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and let T̃ (O;P0) = T1(O; Q̄0, g0)− T0(O; Q̄0, g0).

Theorem 3.2. The efficient influence function (EIF) of Ψj(P ) for P ∈M and j = 1, . . . , p
is given by

Dj(O;P ) ≡

(
T̃ (O;P )−Ψj(P )Bj

)
Bj

EP
[
B2
j

] . (3.5)

The EIF of Equation (3.5) informs the construction of nonparametric efficient estimators
of Ψj(P0) under non-restrictive assumptions about the data-generating process [Bickel et al.,
1993a, Hines et al., 2022b]. Many approaches exist for deriving these efficient estimators,
such as one-step estimation [Pfanzagl and Wefelmeyer, 1985, Bickel et al., 1993a], estimating
equations [van der Laan and Robins, 2003a, Chernozhukov et al., 2017, 2018], or targeted
maximum likelihood estimation [van der Laan and Rubin, 2006a, van der Laan and Rose,
2011a, 2018a]. We use the, in this case, straightforward method of estimating equations.
The resulting estimator is intuitive: it corresponds to the estimator of the simple linear
regression coefficient of centered biomarker j regressed on the adjusted predicted differences
in potential outcomes. Further, it is identical to the one-step estimator.

Corollary 3.1. Let Pm be the empirical distribution of another dataset of m random obser-
vations distributed according to P0 and distinct of Pn. If such a dataset is not available, it
might be generated using sample-splitting techniques. We require that the size of Pm grows
linearly with the size of Pn. That is, O(m) = O(n). This is trivially accomplished when
using most sample-splitting frameworks, like K-fold cross-validation. Then define Q̄m and
gm as estimates of the nuisance parameters Q̄0 and g0 fit to Pm. The estimating equation
estimator of Ψj(P0) is then given by:

Ψ
(ee)
j (Pn;Pm) =

∑n
i=1 T̃ (Oi;Pm)Bij∑n

i=1B
2
ij

, (3.6)

where we again assume that the biomarkers are centered such that
∑
Bij = 0. This estimator

is double robust.

The double-robustness property signifies that Ψ
(ee)
j (Pn;Pm) is a consistent estimator of

Ψj(P0) so long as either the estimator of the conditional expectation or the estimator of the
propensity score are consistent. In particular, when g0 is known, as in most clinical trials, it
is guaranteed to be consistent.

Under the following conditions, we can detail this estimator’s limiting distribution.

Assumption 3.3. Known treatment assignment mechanism: g0 is known.

Assumption 3.4. Nuisance parameter estimator convergence: Let

∥Q̄m(A,W )− Q̄0(A,W )∥22 ≡
∫
(Q̄m(a, w)− Q̄0(a, w))

2dP0(a, w) .
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and

∥gm(W )− g0(W )∥22 ≡
∫
(gm(w)− g0(w))2dP0(w) .

Then it must be that ∥Q̄m − Q̄0∥2 ∥gm − g0∥2 = oP (n
−1/2), where ∥·∥2 denotes the L2(P0)

norm.

Theorem 3.3. If A3.3 or A3.4 are satisfied and EP0 [B
2
j ] > 0 for j = 1, . . . , p, then

√
n
(
Ψ

(ee)
j (Pn;Pm)−Ψj(P0)

)
D→ N (0,VP0 [Dj(O;P0)]) . (3.7)

Again, A3.3 is generally satisfied in clinical trials, implying that the estimating equation
estimator of Equation (3.6) is asymptotically linear. Valid hypothesis testing is possible even
when the conditional outcome regression is biased. This results from the form of the EIF,
and is discussed in the proof (Section 3.7).

In observational settings, A3.4 requires that the conditional outcome regression estimates
and the treatment assignment rule estimates converge in probability to their respective true
parameters at a rate faster than n−1/4. When the number of biomarkers and covariates is
moderate relative to sample size, these conditions are typically satisfied by estimating these
parameters using flexible machine learning algorithms [van der Laan and Rose, 2011a] like
the Super Learner of van der Laan et al. [2007a]. Relying on the general asymptotic theory of
cross-validated loss-based estimation [van der Laan and Dudoit, 2003a], the Super Learner
method constructs a convex combination of estimators from a pre-specified library that
minimizes the cross-validated risk of a pre-defined loss function. Even in a high-dimensional
setting where the number of biomarkers is far larger than n, recent results about Random
Forests [Wager and Athey, 2018] and deep neural networks [Farrell et al., 2021] suggest
conditions for which A3.4 is satisfied. Generally, fast convergence of these estimators in
high dimensions requires strong smoothness and sparsity assumptions about the underlying
parameters [Hines et al., 2022b].

Under A3.1, A3.2, and either A3.3 or A3.4, Theorem 3.3 delivers the means by which
to construct α-level Wald-type confidence intervals for Ψj(P0). However, the estimator of
Equation (3.6) and any accompanying testing procedure require that the nuisance parameters
be estimated on a separate dataset.

Since practitioners rarely have access to two datasets from the same data-generating pro-
cess, we propose a cross-validated estimator that uses all available data. Begin by randomly
partitioning the n observations of Pn into K independent validation sets P 1

n,1, . . . , P
1
n,K of

approximately equal size. For k = 1, . . . , K, define the training set as, in a slight abuse of
notation, P 0

n,k = Pn \ P 1
n,k. Then the cross-validated estimator of Ψj(P0) is defined as:

Ψ
(CV)
j (Pn) =

1

K

K∑
k=1

∑n
i=1 I(Oi ∈ P 1

n,k)T̃ (Oi;P
0
n,k)Bij∑n

i=1 I(Oi ∈ P 1
n,k)B

2
ij

, (3.8)

and has the same limiting distribution as Ψ
(ee)
j (Pn;Pm) under conditions consistent with those

of either A3.3 or A3.3. The accompanying cross-validated estimator of the EIF’s standard
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deviation for biomarker j is given by

σ
(CV)
j (Pn) =

(
1

K

K∑
k=1

[
1∑n

i=1 I(Oi ∈ P 1
n,k)

n∑
i=1

I(Oi ∈ P 1
n,k)

(
Dj(Oi;P

0
n,k)
)2])1/2

.

The α-level Wald-type confidence intervals for Ψj(P0) are then constructed as

Ψ
(CV)
j (Pn)±

z(1−α/2)σ
(CV)
j

(Pn)√
n

,

where z(1−α/2) is the (1 − α/2)th quantile of a standard Normal distribution. Inference
about Ψj(P0) is therefore made possible under non-restrictive assumptions about the data-
generating process when using data-adaptive methods and cross-validation to the estimate
nuisance parameters. Even in small samples where the limiting properties of Ψ

(ee)
j (Pn;Pm)

might not be attained, the generalized variance moderation technique of Hejazi et al. [2023]
can be used for Type-I error control.

In summary, we take as target of inference the simple linear regression slopes of the
difference of predicted outcomes under treatment and control conditions regressed on each
biomarker. We suggest that these parameters be estimated by learning the conditional
outcome regression and treatment assignment rule (if necessary), using them to predict the
potential outcomes, and then fitting simple linear regressions to the difference in predicted
potential outcomes as a function of each centered biomarker. Under the conditions outlined
in A3.1, A3.2, and A3.3 or A3.4, we prove that our estimator targets the causal parameter
of interest and is asymptotically linear, providing a straightforward statistical test to assess
whether a biomarker modifies the treatment effect. Even when the causal inference conditions
of A3.1 and A3.2 are not satisfied, Ψ(P0) remains an interpretable statistical parameter. It
captures the strength of treatment-biomarker interactions in high dimensions, and inference
about it can be performed using the same cross-validated procedure.

3.4 Simulation Study

Details

This work is motivated by the need to identify predictive biomarkers in clinical trials. Of
particular interest is their detection for drug target discovery and diagnostic assay develop-
ment. The former requires the identification of biomarkers causally related to the outcome of
interest, whereas the latter seeks a small set of strongly predictive biomarkers. We therefore
focus on these applications throughout the simulation study.

A varied collection of data-generating processes, defined below, are considered to demon-
strate that the theoretical guarantees outlined in the previous section are achieved for a
range of functional forms of the conditional outcome regression. Recall that Y corresponds
to the outcome, A the treatment assignment, W the covariates, and B the biomarkers, a
subset of the covariates. The treatment assignment rules, g0, are treated as known.
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• Class 1: Moderate dimensions, non-sparse treatment-biomarker effects vector with
independent biomarkers

– Linear conditional outcome regression:

W = B ∼ N(0, I100×100)

A|W = A ∼ Bernoulli(1/2)

Y |A,W ∼ N
(
W⊤ (β + I(A = 1)γ(1) + I(A = 0)γ(0)

)
, 1/2

)
.

Here, β = (β1, . . . , β100)
⊤ such that β1 = . . . = β20 = 2 and β21 = . . . = β100 = 0,

and γ(a) = (γ
(a)
1 , . . . , γ

(a)
100)

⊤ where γ
(1)
1 = . . . = γ

(1)
50 = 5, γ

(0)
1 = . . . = γ

(0)
50 = −5

and γ
(1)
51 = . . . = γ

(1)
100 = 0 for a = {0, 1}.

– Kinked conditional outcome regression: W and A are distributed as above. The
conditional outcome is defined as

Y |A,W ∼ N
(
W⊤ (I(A = 1)γ + I(A = 0) diag(I(W > 0)) γ) , 1/2

)
,

where γ = (γ1, . . . , γ100), γ1 = . . . = γ50 = 10, γ51 = . . . = γ100 = 0, and diag(·) is
a diagonal matrix whose diagonal equals the input vector.

– Nonlinear conditional outcome regression: W and A are distributed as above.
Then,

Y |A,W ∼ N
(
exp

{
|W⊤β|

}
+ I(A = 1)W⊤γ, 1/2

)
,

where β1 = . . . = β20 = 1 and β21 = . . . = β100 = 0, and where γ1 = . . . = γ50 = 5
and γ51 = . . . = γ100 = 0.

• Class 2: High dimensions, sparse treatment-biomarker effects vector with correlated
biomarkers

– Linear conditional outcome regression:

C ∼ Bernoulli(1/2)

W |C = B|C ∼ N(−I(C = 0) + I(C = 1),Σ500×500)

A|W = A ∼ Bernoulli(1/2)

Y |A,W ∼ N
(
W⊤ (β + I(A = 1)γ) , 1/2

)
Here, C is an unobserved subgroup indicator, β = (2, 2, 2, 2, 2, 0, . . . , 0), and
γ = (5, 5, 5, 5, 0, . . . , 0). The biomarker covariance matrix, Σ, is the estimated
gene expression correlation matrix of the 500 most variable genes taken from
the tumours of patients with metastatic or recurrent colorectal cancer [Watanabe
et al., 2011]. These genes were first clustered using hierarchical clustering based
on their Euclidean distance with complete linkage, and the correlation matrix
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was then estimated using the cross-validated estimation procedure of Chapter 2
[Boileau et al., 2021b] implemented in the cvCovEst R package [Boileau et al.,
2021a, R Core Team, 2022], relying on the banding and tapering estimators of
Bickel and Levina [2008a] and Cai et al. [2010a], respectively. The gene expression
data has been made available by the Bioconductor [Huber et al., 2015] experiment
package curatedCRCdata [Parsana et al., 2021].

– Kinked conditional outcome regression: C, W and A are distributed as above.
The conditional outcome distribution is as follows:

Y |A,W ∼ N
(
W⊤ (I(A = 1)γ + I(A = 0) diag(I(W > 0)) γ) , 1/2

)
,

where γ = (10, 10, 10, 10, 0, . . . , 0).

– Nonlinear conditional outcome regression: C, W and A are distributed as above.
Then,

Y |A,W ∼ N
(
exp

{
|W⊤β|

}
+ I(A = 1)W⊤γ, 1/2

)
,

where β = (1, 1, 1, 1, 1, 0, . . . , 0) and γ = (5, 5, 5, 5, 0, . . . , 0).

The first class of data-generating processes reflects the scenario in which a set of biomark-
ers known to be associated with the outcome, perhaps based on prior clinical or biological
investigations, are assessed for potential treatment-biomarker interactions. Since they have
been cherry-picked, a reasonable assumption is that a non-negligible proportion of these
biomarkers modify the effect of treatment on the outcome of interest. The second set of
data-generating processes is representative of exploratory scenarios wherein a vast number
of biomarkers, like tumor gene expression data collected prior to the start of treatment, are
explored for strong effect modification. Further, these data-generating processes contain two
subgroups, representing, for example, unknown patient subpopulations in a clinical trial.
These models each possess four non-zero treatment-biomarker interactions in the leading
entries of γ or γ(0) and γ(1). The biomarkers that modify the treatment effect are correlated
mimicking a small gene set.

The collections of moderate and high-dimensional data-generating processes each con-
tain three outcome regression models. Their sketches are provided in Figure 3.1. The
simplest “linear” models correspond to the functional form assumed by many existing high-
dimensional CATE estimation procedures for a continuous outcome [Tian et al., 2014, Chen
et al., 2017, Zhao et al., 2018, Ning et al., 2020]. The “kinked” data-generating processes
are named so for the kink in the marginal conditional outcome regression of its predictive
biomarkers. These marginal relationships are representative of predictive biomarkers in clin-
ical trials assessing the efficacy of the standard of care against combinations of the standard
of care and another drug, and where the treatment group outperforms the control group
in all biomarker defined subpopulations, but with different treatment effect sizes. Finally,
the “nonlinear” data-generating mechanisms represent those whose conditional outcome re-
gressions deviate most from assumptions of linearity. We expect these to pose the greatest
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Figure 3.1: Sketches of predictive biomarkers’ marginal relationships with the outcome variable for
the considered conditional outcome regression models.

challenge with respect to identifying predictive biomarkers. We note that the linear condi-
tional outcome regression models are not identifiable, but this is not a concern for generative
purposes.

Two hundred datasets of 125, 250, and 500 observations were generated for each of these
data-generating processes — 3,600 in all — by sampling without replacement from simulated
populations of 100,000 observations. Each model’s Ψ(P0) was computed from its respective
population. These random samples and estimands are used in the following subsections to
assess the finite sample performance of our proposed procedure and to benchmark its ability
to discover predictive biomarkers against that of popular CATE estimation methods.

The cross-validated estimator of Equation (3.8) is used to estimate the vector of uni-
variate CATE simple linear regression coefficients in the simulated datasets using 5-fold
cross-validation. Throughout the remainder of the chapter, we refer to our proposed method
as uniCATE. van der Laan et al. [2007a]’s Super Learner procedure is used to estimate the
conditional outcome regressions. The library of candidate algorithms is made up of ordinary
linear, LASSO, and elastic net regressions [Tibshirani, 1996, Zou and Hastie, 2005], poly-
nomial splines [Stone et al., 1997], XGboost [Chen and Guestrin, 2016], Random Forests
[Breiman, 2001], and the mean model.

Bias and Variance of Univariate CATE Estimator

The theoretical results of Section 3.3 are asymptotic, yet many clinical trials are made up of
a small to moderate numbers of participants. We therefore verify that uniCATE’s estimates,
metrics of biomarkers’ predictive importance, are accurate when computed under realistic
sample sizes. We computed the empirical bias and variance of the cross-validated estimator
when applied to each data-generating process and at each simulated sample size. The results
of our analysis of the nonlinear models are presented in Figure 3.2. Those of the linear and
kinked models, presented in Figures 3.3 and 3.4, respectively, are virtually identical.

We find that uniCATE is approximately unbiased across sample sizes regardless of the
conditional outcome regressions’ complexities, as suggested by Theorem 3.3. However, the
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Figure 3.2: The empirical biases and variances of uniCATE estimates for all biomarkers across all
simulation scenarios with a nonlinear conditional outcome regression. Biomarkers colored blue are
truly predictive, and those colored gold are nonpredictive.
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Figure 3.3: The empirical biases and variances of uniCATE estimates for all biomarkers across all
simulation scenarios with a linear conditional outcome regression. Biomarkers coloured blue are
truly predictive and those coloured gold are nonpredictive.
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Figure 3.4: The empirical biases and variances of uniCATE estimates for all biomarkers across all
simulation scenarios with a kinked conditional outcome regression. Biomarkers coloured blue are
truly predictive and those coloured gold are nonpredictive.
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Figure 3.5: The empirical predictive biomarker classification results for the moderate dimensions,
non-sparse treatment-biomarker interaction settings with uncorrelated biomarkers (A) and the
high-dimension, sparse treatment-biomarker interaction settings with correlated biomarkers(B).

estimator is highly variable in the moderate dimension, non-sparse (e.g. Figure 3.2A) sce-
narios when n = 125 and 250, and somewhat variable when n = 125 in the high dimension,
sparse data-generating processes (e.g. Figure 3.2B). As expected, the empirical variance of
the estimator decreases drastically in all simulation settings as sample sizes increase.

This is encouraging for diagnostic biomarker assay development: the ranking of predictive
biomarkers reported by uniCATE is reliable under realistic sample sizes and data-generating
processes. These results suggest that our method accurately and precisely evaluates biomark-
ers with respect to their predictive abilities when the number of truly predictive biomarkers
is small in samples possessing as few as 250 observations. Similar behavior is observed when
there are a large number of predictive biomarkers in trials of 500 subjects or more.
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Type-I Error Control

In addition to evaluating the accuracy of uniCATE’s estimates, we assess the method’s
ability to distinguish predictive biomarkers from non-predictive biomarkers. This is of par-
ticular importance in applications requiring the reduction of the pool of potential predictive
biomarkers, as in the development of diagnostic assays, or generating hypotheses for bio-
logical and clinical validation in drug target discovery. We therefore evaluate uniCATE’s
Type-I error rate control across the simulation scenarios using a target FDR [Benjamini
and Hochberg, 1995] of 5%. The inferential procedure described in Section 3.3 is used to
test whether predictive biomarkers’ linear approximations of the univariate CATE are sig-
nificantly different from zero. Nominal p-values are adjusted using the FDR-controlling
procedure of Benjamini and Hochberg [1995]. We note that nominal FDR control is not
guaranteed by this adjustment method in the high-dimensional simulations because of the
biomarkers’ correlation structure. The results are presented in Figure 3.5.

Our method’s capacity to identify predictive biomarkers was compared to that of popular
CATE estimation methods: the modified covariates approach and its augmented counterpart
[Tian et al., 2014, Chen et al., 2017]. Briefly, the former directly estimates the linear model
coefficients of the treatment-biomarker interactions, using a linear working model for these
terms, without having to model or estimate the main effects. While Tian et al. [2014]’s
method is flexible since it avoids making any assumptions about the functional form of the
main biomarker effects, it can lack precision in small-sample, high-dimensional settings. Tian
et al. [2014] and Chen et al. [2017] therefore proposed “augmented” versions of this method
that explicitly account for this source of variation. While Tian et al.’s [2014] and Chen
et al.’s [2017] augmentation procedures differ, they are identical in the randomized control
trials with continuous outcome variables [Chen et al., 2017]: they are equivalent to fitting a
(penalized) multivariate linear regression with treatment-biomarker interaction terms.

We again emphasize that these methods are not true competitors of our procedure. Their
primary goal, CATE estimation, differs from that of uniCATE. However, Tian et al. [2014]
and Chen et al. [2017] demonstrated that the (augmented) modified covariates approach
could identify potentially predictive biomarkers when fit using regularized linear regressions
like the LASSO. Biomarkers with non-zero treatment-biomarker interaction coefficient es-
timates are classified as predictive. We therefore applied these approaches, using 10-fold
cross-validation to select the LASSO hyperparameters, to all simulated datasets. The im-
plementations of these estimators provided by the personalized R software package [Huling
and Yu, 2021] was used.

The results pertaining to the moderate dimension simulations (p = 100) with 50 predic-
tive biomarkers are presented in Figure 3.5A. Only uniCATE is capable of controlling the
Type-I error rate; it approximately achieves the nominal FDR of 5% in all settings with
samples sizes of 250 and above. The modified covariates approach and its augmented coun-
terpart possess FDRs no lower than 25% across all scenarios. Indeed, their control of Type-I
error generally worsens as sample size increases. Our method’s superior performance with
respect to FDR control is likely due to its conservativeness: many of the predictive biomark-
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ers are not recognized in smaller sample-size settings. As sample size grows, however, so too
does its true positive rate (TPR) while maintaining a near perfect true negative rate (TNR).
When n = 500, uniCATE generally identifies close to or more predictive biomarkers than
the modified covariates approach, and nearly as many as the augmented modified covariates
method.

Our procedure’s performance with respect to FDR control is again superior to that of
the CATE estimation approaches in the high dimensional simulation scenarios with 500
biomarkers (Figure 3.5B). While the adjustment procedure of Benjamini and Hochberg [1995]
does not guarantee FDR control at the desired rate in these scenarios due to the correlation
structure of the tests, it is nearly achieved in larger sample sizes. uniCATE also marginally
outperforms other approaches in terms of the TNR. Unlike in the moderate sample-size
simulations, however, our method identifies predictive biomarkers more efficiently than the
other procedures considered.

These results demonstrate that uniCATE recovers truly predictive biomarkers more re-
liably than interpretable treatment rule estimators. In most simulation scenarios, uniCATE
provides well controlled Type-I error rates while its TNR and TPR are comparable or su-
perior to other methods. However, when the number of truly predictive biomarkers is large
and the sample size small, uniCATE’s biomarker classification will be conservative. In this
setting, our method still provides good Type-I error control, limiting the waste of resources
on the investigation of false positives, as would be the result if using existing methods. If
the investigator prefers a less conservative approach, since, for example, the cost of follow-up
experiments is low, the (augmented) modified covariate approach may be considered instead.

3.5 Application to IMmotion Trials

Until recently, Tyrosine kinase inhibitors targeting vascular endothelial growth factor (VEGF)
were the standard of care for patients with metastatic renal cell carcinoma (mRCC) [Rini
et al., 2019]. Unfortunately, many patients with mRCC find these treatments, like suni-
tinib, ineffective, and most develop a resistance over time [Rini and Atkins, 2009]. Immune
checkpoint inhibitors like atezolizumab can produce more durable results and improve overall
survival in pre-treated patients with mRCC [Motzer et al., 2015a,b, McDermott et al., 2018].
A combination of atezolizumab and bevacizumab, the latter of which also binds to VEGF,
was shown to improve the objective response rate (ORR) in a Phase 1b study [Wallin et al.,
2016]. Objective response is a binary indicator of clinically meaningful response to treat-
ment. These findings were supported by a Phase 2 study, IMmotion 150, which compared
atezolizumab alone and in combination with bevacizumab against sunitinib [McDermott
et al., 2018]. In a subsequent Phase 3 study, IMmotion 151 [Rini et al., 2019], the ate-
zolizumab and bevacizumab combination improved progression free survival and objective
response over sunitinib in patients whose cancer cells expressed the programmed death-1
ligand 1 (PD-L1), but not all of these patients showed benefit. These results motivate the
search for biomarkers that are more predictive of this treatment’s clinical benefit than PD-L1



CHAPTER 3. TREATMENT EFFECT MODIFIER DISCOVERY IN CLINICAL
TRIALS 62

Figure 3.6: Heatmaps of the modified covariates approach’s (A), augmented modified covariates
approach’s (B), and uniCATE procedure’s (C) predictive biomarkers’ log-transformed gene expres-
sion data from the IMmotion151 trial. Rows and columns are ordered via hierarchical clustering
with complete linkage and Euclidean distance.

Figure 3.7: Comparison of the ORR across the methods’ predicted subgroups in the IMmotion151
trial. The hierarchical clustering with complete linkage and Euclidean distance applied to uni-
CATE’s predictive biomarkers was used to iteratively define two, three, and four clusters (K). The
points are slightly horizontally jittered along the x-axis to avoid overplotting.
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Method Predictive Biomarkers

Modified Covariates
ADCY8, CDH17, COL6A6, CSMD3, CXCL5, EEF1A2,
GJB6, GRIA4, H19, IGKV1-9, KLK4, MMP3, MUC17,
PZP, TCHH, TEX15, TRIM63, VIL1, WFIKKN2, XIST

Augmented Modified
Covariates

EEF1A2, IGKV1-9, MMP3, PZP, TEX15, TRIM63

uniCATE

WFIKKN2, NMRK2, KLK1, TRIM63, IGKV1-9,
HHATL, UCHL1, CLDN1, EEF1A2, C8A, KCNJ3,
ITIH2, IGLV3-21, TCHH, ATP1A3, IGLL5, ENPP3,
IGKV3-15, IGLC3, SAA1, TEX15, IGKV1-16, IGKV1-
5, IGHG1, GRIN2A, IGHV2-5, SERPIND1, IGHV1-18,
DEFB1, CYP2J2, IGHV1-24, CES3, IGKV3-11, IGLV1-
40, IGHV1-2, SLC17A4, KLK4, MMP7, ANKRD36BP2,
IGHV3-11, IGHV4-31, IGHV4-34, IGLV3-19, HAMP,
CSMD3, PDZK1IP1, IGHG3, MUC17, ALPK2, IGLV2-
14, FRAS1, DNAH11, IGHGP, SAA2, BMPER, IGLV1-
47, MMP3, FOSB, HPD, SYT13, IGHV4-59, SLC38A5,
IGHA1, CYP2C9, IGKC, IGLC2, PGF, IGHV3-21,
H19, FCRL5, PVALB, IGHV3-74, SLC6A3, IGHV1-
46, IGLV2-23, IGLV3-1, HBA1, IGLV1-44, IGKV3-
20, IGKV4-1, LAMA1, IGHV3-48, IGHV5-51, IGHG2,
HBA2, KNG1, IGKV1-27, IGHM, IGLV2-11, FGL1,
CYP4F22, IGLV1-51

Table 3.1: The list of genes classified as predictive biomarkers by the considered methods.

expression.
Potentially predictive biomarkers were found by applying uniCATE to subsets of the

sunitinib (n = 71) and atezolizumab-bevacizumab (n = 77) treatment arms of the IMmo-
tion 150 trial. Only patients with pre-treatment tumor RNA-seq samples were included. The
500 most variable genes based on this log-transformed RNA-seq data comprised the collec-
tion of potentially predictive biomarkers. Details of the gene expression data collection and
preparation have previously been described by McDermott et al. [2018]. Objective response
was used as the outcome variable. The conditional outcome regression model was fit with a
Super Learner whose library contained (penalized) GLMs with treatment-biomarker interac-
tion terms, XGboost models, Random Forest models, and the mean model. A nominal FDR
cutoff of 5% was employed. The modified covariates and augmented modified covariates
approach for binary outcomes of Tian et al. [2014] were also applied to these data.

The uniCATE method identified 92 genes as predictive biomarkers, whereas the modified
covariates approach and its augmented counterpart identified 20 and 6, respectively. All
results are listed in Table 3.1. That the approaches of Tian et al. [2014] are more conservative
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than ours is a reversal of Section 3.4’s simulation results, but may be explained by the more
complex correlation structure of these data. Indeed, the former rely on sparse linear models
which are known to select but a few features from any given highly correlated set. Our
procedure, however, uncovers sets of correlated predictive biomarkers since their individual
hypothesis testing results will also be associated. This property is desirable when analyzing
genomic data as large gene sets permit more thorough biological exploration and improved
interpretation than do single, uncorrelated genes [Subramanian et al., 2005]. The reporting
of gene sets also improves the reproducibility of findings [Subramanian et al., 2005].
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We performed a gene set enrichment analysis (GSEA) of gene ontology (GO) terms with
uniCATE’s 92 predictive biomarkers using MSigDB [Subramanian et al., 2005, Liberzon
et al., 2011]. The top results are presented in Table 3.2. We found that these genes are
generally associated with immune responses, including those mediated by B cells and lym-
phocytes. Similar findings have been reported by Au et al. [2021] in the context of clear cell
renal cell carcinoma patients’ therapeutic responses to nivolumab, another immune check-
point inhibitor.

Now, having learned of potentially predictive biomarkers, we assessed how well they
delineate patient sub-populations in the IMmotion 151 study. This study’s subjects are
believed to be drawn from the same population as those enrolled in IMmotion 150. Eight
hundred and ten subjects possessed baseline tumor gene expression data for the 500 genes
considered in our IMmotion 150 analysis: 406 in the atezolizumab-bevacizumab combination
arm, and 404 in the sunitinib arm. Figure 3.6 presents the heatmaps of log-transformed gene
expression data for each methods’ set of predictive genes. Subgroups are easily discerned
in uniCATE’s heatmap, but not so much in the other procedures’. This further emphasizes
the benefits of uniCATE’s capacity to identify sets of correlated predictive biomarkers. Note
that the most prominent cluster of patients in the modified covariates method’s heatmap is
driven by the XIST gene. It is not selected by the augmented modified covariates procedure
or uniCATE. Upon further inspection, it does not appear to have a strong predictive effect
(Figure 3.8).

It is unclear from these heatmaps alone whether these subgroups correspond to clus-
ters of patients that benefit more from one therapy than another. We therefore established
subgroups by performing hierarchical clustering with complete linkage using Euclidean dis-
tance on the methods’ selections of IMmotion 151’s log-transformed gene expression data.
The difference in ORR was then computed between patients receiving the atezolizumab-
bevacizumab combination and the sunitinib regiment within each of these subgroups. The
subgroups identified by the (augmented) modified covariates methods’ biomarkers had neg-
ligible differences in ORR (not shown). Instead, we used their estimated treatment rules to
predict whether each patient would benefit more from the atezolizumab-bevacizumab com-
bination or sunitinib, and then computed the difference in ORR within these groups. The
findings are presented in Figure 3.7.

Figure 3.7 evaluates the patient populations classified by each method. When classifying
patients into subgroups, the modified covariates approach and the augmented modified co-
variates approach subset patients into two groups. Ideally, one of the patient groups should
produce a large, positive ORR difference representing an increased benefit from the novel
drug combination. Figure 3.7 shows that when two patient groups are of interest, uniCATE’s
biomarkers-defined subgroups are comparable to the groups identified by the other two meth-
ods in terms of the effect size and the group size. The unsupervised clustering approach used
in uniCATE also permits the definition of multiple clusters, providing a more refined inves-
tigation of patient sub-populations. When considering three or four clusters (K = 3, 4),
one subgroup is found to respond much better on average to the atezolizumab-bevacizumab
combination than to sunitinib. This difference in ORR is greater than that of any subgroup
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Figure 3.8: While the log-transformed XIST gene expression data can be used to define two patient
subpopulations within the IMmotion 151 study, it does not appear to have a strong predictive effect
like the simulated biomarkers of Figure 3.1.

defined using treatment assignment rules.
These results suggest that uniCATE uncovered biomarkers that influence whether mRCC

patients are more likely to respond to tyrosyne kinase inhibitors alone or in combination with
immune checkpoint inhibitors. More work is necessary to validate these findings, and to de-
termine whether these biomarkers could form the basis of assays that inform treatment
decisions. Demonstrating that these biomarkers are predictive of other clinical endpoints,
like overall survival, progression-free survival and safety, would make for compelling evi-
dence. Recovering these biomarkers in a comparison of this drug combination to the current
standard of care would be more convincing still.

3.6 Discussion

In this work, we demonstrate how predictive biomarker discovery, typically a byproduct of
treatment rule estimation, is better addressed as a standalone variable importance estima-
tion problem. We derive a novel nonparametric estimator for a causal parameter which we
argue is generally useful and interpretable, and show that this estimator is consistent and
asymptotically linear under non-restrictive assumptions. We then verify that our proposed
procedure’s asymptotic guarantees are approximately achieved across diverse data-generating
distributions in a thorough simulation study of moderate to high-dimensional randomized
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control trials. Our method is then used in an exploratory analysis of real clinical trial data,
producing biologically meaningful results that identify patient subgroups with greater treat-
ment effect heterogeneity than procedures not explicitly developed for predictive biomarker
discovery.

While we derive theory for uniCATE’s application to observational data, we benchmarked
it exclusively in randomized control trial settings since they constitutes our primary appli-
cation area of interest. Evaluating our method in quasi-experimental settings, however,
offers an interesting avenue of future research. Subsequent work may also explore analogous
(causal) variable importance parameters based on, for example, the relative CATE, or adapt
the univariate CATE for time-to-event outcomes. The study of other non and semipara-
metric estimators of these parameters, such as one-step estimators or targeted maximum
likelihood estimators, might also prove fruitful. Finally, future work might assess whether
treatment effect variable importance parameter inference procedures could be coupled with
novel multiple testing adjustment approaches, like that of Fithian and Lei [2020], to better
account for the complex correlation structures often found among biomarkers.

3.7 Proofs

Theorem 3.1: Identification

Proof. Standard results ensure that ΨF (PX,0) is identified by Ψ(P0): By the law of double
expectation, we find that EPX,0

[Y (A)Bj] = EPX,0
[EPX,0

[Y (A)|W ]Bj], and by A3.1, A3.2 that
Q̄X,0(A,W ) = Q̄0(A,W ).

Theorem 3.2: Efficient Influence Function of Ψj(P )

Proof. We follow the general guidelines in the review of Hines et al. [2022b] to derive the
EIF of Ψj(P0). Define the fixed distribution P whose support is contained in the support of
P0. We define the parametric submodel of P0 for t ∈ [0, 1] as

Pt = tP + (1− t)P0.
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Then,

Dj(O,P0) =
d

dt
Ψj(Pt)

∣∣∣∣
t=0

=
d

dt

EPt

[(
Q̄t(1,W )− Q̄t(0,W )

)
Bj

]
EPt

[
B2
j

] ∣∣∣∣∣
t=0

=
1

EPt

[
B2
j

]2 ( d

dt

{
EPt

[(
Q̄t(1,W )− Q̄t(0,W )

)
Bj

]}
EPt

[
B2
j

]
−

EPt

[(
Q̄t(1,W )− Q̄t(0,W )

)
Bj

] d
dt

{
EPt

[
B2
j

]}) ∣∣∣∣∣
t=0

=
1

EP0

[
B2
j

]2 ((T̃ (O,P0)Bj − EP0

[(
Q̄0(1,W )− Q̄0(0,W )

)
Bj

])
EP0

[
B2
j

]
−EP0

[(
Q̄0(1,W )− Q̄0(0,W )

)
Bj

] (
B2
j − EP0

[
B2
j

]))
=

(
T̃ (O,P0)−Ψj(P0)Bj

)
Bj

EP0

[
B2
j

]

Corollary 3.1: Estimating equation estimator derivation and double robustness.

Proof. The estimating equation estimator for the jth biomarker is given by:

0 =
n∑
i=1

Dj(Oi;Pm)

=

∑n
i=1

(
T̃ (Oi;Pm)−ΨBij

)
Bij∑n

i=1B
2
ij

=⇒ Ψ
(ee)
j (Pn;Pm) =

∑n
i=1 T̃ (Oi;Pm)Bij∑n

i=1B
2
ij

.
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Then, by the Weak Law of Large Numbers,

Ψ
(ee)
j (Pn;Pm)−Ψj(P0)→

EP0

[
T̃ (O;Pm)Bj

]
EP0

[
B2
j

] −
EP0

[(
Q̄0(1,W )− Q̄0(0,W )

)
Bj

]
EP0

[
B2
j

]
∝ EP0

[
Bj

(
g0(W )

gm(W )
− 1

)(
Q̄0(1,W )− Q̄m(1,W )

)
−Bj

(
1− g0(W )

1− gm(W )
− 1

)(
Q̄0(0,W )− Q̄m(0,W )

)]
.

If gm = g0, then this estimator is consistent. The same is true if either ∥gm − g0∥22 = oP (1)
or ∥Q̄m − Q̄0∥22 = oP (1).

Theorem 3.3: Limiting distribution of the estimating equation estimator.

Proof. Define the plug-in estimator for the univariate CATE of biomarker j with nuisance
parameters estimated using Pm as Ψj(Pn;Pm). Then we have through the von Mises expan-
sion of Ψj(·) about P0 that

√
n (Ψj(Pn;Pm)−Ψj(P0)) =

1√
n

n∑
i=1

Dj(O;P0)−
1√
n

n∑
i=1

Dj(O;Pm)

+
√
n (EPn − EP0) [Dj(O;Pm)−Dj(O;P0)]−

√
nR(P0, Pm).

(3.9)

The first term is the sum of mean-zero random variables, and so it converges to a Normal
with variance equal to that of the EIF, scaled by n, as n→∞. The second term is the bias
term that is accounted for by the estimating equation estimator Ψ

(ee)
j (Pn;Pm). The third

and fourth terms are the empirical process and remainder terms, respectively, and we must
show that they converge to zero in probability.

The analysis of empirical process term is identical to that of the average treatment effect
presented in Zheng and van der Laan [2011] due to the similarity of these parameters.
Essentially, so long as the conditional outcome regression and propensity score estimators
converge in probability to some function under the L2 norm, the empirical process term is
oP (1).
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We now study the remainder term:

−R(P0, Pm) =
EP0

[(
T̃ (O;Pm)−Ψ(Pm)Bj

)
Bj

]
EP0

[
B2
j

] + (Ψj(Pm)−Ψj(P0))

=
1

EP0

[
B2
j

]EP0

[
T̃ (O;Pm)Bj − EP0

[
B2
j

]
Ψj(P0)

]
=

1

EP0

[
B2
j

]EP0

[
Bj

(
T1(O;Pm)− Q̄0(1,W )− T0(O;Pm) + Q̄0(0,W )

)]
=

1

EP0

[
B2
j

]EP0

[
Bj

(
g0(W )

gm(W )
− 1

)(
Q̄0(1,W )− Q̄m(1,W )

)
−Bj

(
1− g0(W )

1− gm(W )
− 1

)(
Q̄0(0,W )− Q̄m(0,W )

)]
≤ 1

EP0

[
B2
j

] (∣∣∣∣EP0

[
Bj

(
g0(W )

gm(W )
− 1

)(
Q̄0(1,W )− Q̄m(1,W )

)]∣∣∣∣
+

∣∣∣∣EP0

[
Bj

(
1− g0(W )

1− gm(W )
− 1

)(
Q̄0(0,W )− Q̄m(0,W )

)]∣∣∣∣)

≤ 1

EP0

[
B2
j

](EP0

[
B2
j

(
g0(W )− gm(W )

gm(W )

)2
]1/2

EP0

[(
Q̄0(1,W )− Q̄m(1,W )

)2]1/2
+ EP0

[
B2
j

(
gm(W )− g0(W )

1− gm(W )

)2
]1/2

EP0

[(
Q̄0(0,W )− Q̄m(0,W )

)2]1/2)
(3.10)

If g0 is known, as in a randomized control trial, then the remainder term is exactly zero. When
neither g0 or Q̄0 is now known, then the remainder term of Equation (3.9) is oP (1) under the
conditions of A3.4. The conditions on convergence rates can be relaxed even further: The
remainder term converges to zero in probability so long as the last line of Equation (3.10)
is oP (n

−1/2). That is, we may obtain our desired result even if, say, Q̄m converges at slower
rate to Q̄0 than n−1/4 in probability so long as gm converges more quickly to g0.
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Chapter 4

A Nonparametric Framework for
Treatment Effect Modifier Variable
Importance Parameters

4.1 Introduction

The detection and quantification of heterogeneous treatment effects are central to numerous
areas of study in the medical and social sciences. Examples include precision medicine, as
seen in Chapter 3, where practitioners seek patient subgroups exhibiting differing benefits
from a given therapy, and economics, where policymakers assess the impact of government in-
terventions on diverse population strata. This heterogeneity is generally linked to treatment
effect modifiers (TEM). TEMs are pre-treatment covariates which, as their name suggests,
modify the effect of a treatment, alternatively referred to as an exposure, on the outcome. In
precision medicine, the response of patients with a shared disease to a common therapy may
be a function of, for example, sex-at-birth, age, genetic mutations, and environmental expo-
sures. Uncovering TEMs is therefore of great importance when investigating or attempting
to account for disparate effects of treatment in a population.

Some parametric modeling techniques can accomplish just that in traditional asymptotic
settings under stringent conditions about the data-generating process (DGP). When includ-
ing treatment-covariate interaction terms in addition to main effect terms in a linear model
for a continuous outcome, TEMs are generally defined as the features with non-zero interac-
tion coefficients. Consistent estimation and valid hypothesis testing of the TEMs are possible
when the DGP admits a linear relationship between the outcome, treatment, and covariates.
Generalized linear models (GLM) might be used for TEM discovery in more general settings,
such as when the outcome is binary or a non-negative integer. With time-to-event outcomes,
the Cox proportional hazards model with treatment-covariate interactions might be used.
If the posited functional relationship does not correspond to reality, however, inference is
invalid [see, for example, Hernán, 2010].
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Furthermore, the parameters corresponding to the aforementioned models, like the odds
ratio of a logistic regression model or the hazards ratio of a proportional hazards model, de-
pend on the other covariates included in the model. These conditional parameters are said
to be noncollapsible [for a discussion and worked example, see Greenland et al., 1999], in
the sense that marginalizing over the other covariates in the model may produce a marginal
parameter whose value differs from the marginal parameter directly obtained by omitting
these covariates (to see this, recall that for two random variables X and Y and an arbi-
trary function g(·), we generally find that E[g(E[Y | X])] ̸= g(E[E[Y | X]]) = g(E[Y ])).
Noncollapsible parameters lack a causal interpretation that unambiguously relates them to
marginal treatment effects.

More flexible approaches targeting the conditional average treatment effect (CATE) may
be employed to address these issues. In inferring the expected difference in potential out-
comes — that is, the difference in outcomes that could be computed if each observation’s
outcomes under treatment and control were measured — as a function of the covariates
[Rubin, 1974], CATE estimators are uniquely suited for TEM discovery. The double-robust
estimators of Zhao et al. [2018], Semenova and Chernozhukov [2020], and Bahamyirou et al.
[2022], which model the CATE using a linear model, permit valid statistical inference about
features’ ability to modify the effect of treatment under less restrictive assumptions about the
DGP than traditional parametric methods. Others, like the Super-Learner-based [van der
Laan et al., 2007b] estimator of Luedtke and van der Laan [2016] or the Random-Forests-
inspired [Breiman, 2001] estimators of Wager and Athey [2018] and Cui et al. [2022], rely on
nonparametric supervised statistical learning algorithms to identify potential TEMs under
even fewer constraints on the DGP.

When the number of potential TEMs is commensurate with the number of observations,
or indeed much larger, the above parametric and CATE estimators’ capacity to reliably
uncover TEMs diminishes. Estimation of the linear model coefficients requires penalized
regression methods like the LASSO [Tibshirani, 1996, Tian et al., 2014, Chen and Guestrin,
2016], rendering hypothesis testing of treatment-covariate coefficients difficult. Practitioners
might instead rely on the asymptotic feature selection properties of the LASSO, but these
hold only under restrictive and unverifiable conditions on sparsity and covariate correlation
structures [Zhao and Yu, 2006]. Similar limitations plague the CATE estimators relying on
method-specific variable importance measures. In particular, the causal forests of Wager
and Athey [2018] and Cui et al. [2022] can assess the importance of variables, employing
a permutation-based approach analogous to those of traditional Random Forests. In high
dimensions, however, this metric can produce unreliable rankings of covariates’ treatment
modification abilities: correlated features are likely to act as surrogates for one another,
leading to deflated importance scores [Hastie et al., 2009, Chap. 15].

Instead of depending on algorithm-specific modeling strategies that treat TEM discov-
ery as a byproduct of conditional outcome or CATE estimation, Williamson et al. [2022],
Hines et al. [2022a] and Boileau et al. [2022]—the latter of which makes up the contents



CHAPTER 4. A NONPARAMETRIC FRAMEWORK FOR TREATMENT EFFECT
MODIFIER VARIABLE IMPORTANCE PARAMETERS 74

of Chapter 3—recently proposed TEM variable importance parameters (TEM-VIP1) that
directly assess the strength of covariates’ capacity to modify the effect of treatment. These
algorithm-agnostic parameters, defined within nonparametric statistical models and which
may be augmented with causal interpretations, permit formal statistical inference about
TEMs.

Combining popular variable dropout procedures and previous work about the variance of
the conditional treatment effect estimator, Levy et al. [2021], Williamson et al. [2022], and
Hines et al. [2022a] proposed analogous TEM-VIPs measuring individual or predefined sets
of variables’ influence on the CATE variance. For instance, Hines et al. [2022a] define the
TEM-VIP of a set of covariates as one minus the ratio of the variance of the CATE condi-
tioning on all but these covariates and the variance of the CATE conditioning on all available
covariates. The accompanying, nonparametric estimators are consistent and asymptotically
linear under nonrestrictive assumptions about the DGP. However, these TEM-VIPs might
produce misleading assessments of TEM impact when the covariates are correlated: TEM-
VIPs will generally possess values that do not reflect covariates’ capacity for treatment effect
modification, like the Random-Forests-based CATE variable importance measure of Wager
and Athey [2018], Cui et al. [2022]. We expect this issue to be exacerbated in high dimen-
sions due to the increased chance of complex correlation structures. Additionally, repeatedly
omitting variables and estimating nuisance parameters is computationally expensive — and
perhaps intractable — when the number of potential TEMs is large.

We derived in Chapter 3 a marginal TEM-VIP expressly for high-dimensional DGPs with
continuous or binary outcomes. Assuming that the expected difference in potential outcomes
is linear in any given covariate when conditioning on said covariate, the proposed TEM-VIP is
the simple linear regression coefficient obtained by regressing this difference on the potential
TEM. We argued that this parameter provides a meaningful summary in all but pathological
DGPs: the larger it is, the larger the variables capacity for treatment effect modification.
Further, it does not suffer from the previously mentioned issues associated with dropout- and
permutation-based variable importance measures. A nonparametric estimator of this TEM-
VIP was proposed, and shown to be double-robust and asymptotically linear under mild
conditions on the DGP. A simulation study demonstrated that these asymptotic properties
were approximately achieved in finite-sample, high-dimensional randomized control trials.

This TEM-VIP is limited, however, to absolute effect modification for continuous and
binary responses. Expanding on this work and taking inspiration from previous research
on non- and semiparametric approaches [for example, Rosenblum and van der Laan, 2010,
Tchetgen Tchetgen et al., 2009, Tuglus et al., 2011, Chambaz et al., 2012, Yadlowsky et al.,
2021], we present a general framework for defining and performing inference about marginal
model-agnostic TEM-VIPs. Our approach is demonstrated through the creation of a new ab-
solute TEM-VIP for DGPs with right-censored time-to-event outcomes, and of new relative

1Previous work has referred to TEM-VIPs as (treatment effect) variable importance measures (TE-)VIMs
[for example, Williamson et al., 2022, Hines et al., 2022a], which we believe blurs the distinction between
parameters and estimators and fails to emphasize that these measures of variable importance are well-defined
parameters of a statistical model.
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TEM-VIPs for DGPs with continuous, binary, and right-censored time-to-event outcomes.
We derive one-step, estimating equation and targeted maximum likelihood (TML) estimators
based on these parameters’ efficient influence functions, study their asymptotic behavior, and
investigate their finite sample properties in simulation experiments. This general framework
equips practitioners with the tools to define bespoke TEM-VIPs, readily derive nonparamet-
ric estimators, and establish sufficient conditions for which these estimators permit reliable
inference.

The remainder of the article is organized as follows: Section 4.2 presents TEM-VIPs
and related inference procedures in data-generating processes with binary treatment vari-
ables and continuous outcomes. The CATE-based TEM-VIPs of the previous chapter are
re-framed in terms of treatment effect modification discovery for continuous outcomes in
Section 4.2. Sufficient identifiability conditions for the estimation of TEM-VIPs using ob-
servational data are also presented, as are nonparametric estimators of this estimand. The
asymptotic properties of these estimators are then studied. A proposal for a relative TEM-
VIP follows in Section 4.2. Accompanying causal identifiability conditions, nonparametric
estimators, and sufficient conditions for the desirable asymptotic behavior of these estima-
tors are given. Sections 4.3 and 4.4 introduce analogous developments for data-generating
processes with binary and time-to-event outcomes, respectively. We discuss, in Section 4.5,
the general procedure for defining model-agnostic TEM-VIPs, deriving accompanying esti-
mators, and studying their asymptotic characteristics in nonparametric models. Simulation
studies and a real data application are then presented in Sections 4.6 and 4.7, respectively,
and we end with a discussion of our contributions in Section 4.8. Proofs are relegated to the
Section 4.9 for clarity of exposition.

4.2 Continuous Outcomes

Problem Setting

Let there be n independent and identically distributed (i.i.d.) random vectors {Xi}ni=1,

such that Xi = (Wi, Ai, Y
(0)
i , Y

(1)
i ) ∼ PX,0 ∈ MX , where Wi is a set of p covariates that

are possibly treatment-outcome confounders, Ai is a binary variable indicating treatment
assignment (0 for control, 1 for treatment), and Y

(1)
i and Y

(0)
i are continuous potential

outcomes [Rubin, 1974] that are assumed to be bounded between 0 and 1 without loss of

generality. The potential outcomes Y
(1)
i and Y

(0)
i are the outcomes one would observe for the

ith observation had it been assigned to the treatment and control conditions, respectively.
Here, p is of similar magnitude as, or larger than, n. Finally,MX is a nonparametric model
of possible DGPs. We omit the subscript i where possible throughout the remainder of the
chapter to ease notational burden.

The true DGP, PX,0, is generally unknown, and realizations of its random vectors are
typically unmeasurable, as only one potential outcome is observed. Nevertheless, PX,0 allows
for the definition of causal parameters on which statistical inference may subsequently be
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performed. An example of such a parameter is the conditional average treatment effect
(CATE):

EPX,0

[
Y (1) − Y (0)|W

]
.

As discussed in Section 4.1, however, the CATE poses a challenging estimation problem
— even if somehow provided with the complete data generated according to PX,0 — due to
the dimension of W . Likewise, the recovery of treatment effect modifiers using traditional
variable importance techniques based on CATE estimates, like penalized linear models or
Random Forests [Tian et al., 2014, Chen et al., 2017, Zhao et al., 2018, Wager and Athey,
2018, Ning et al., 2020, Bahamyirou et al., 2022], is generally unreliable in high dimensions.
We instead consider the causal TEM-VIP proposed Chapter 3, which we re-introduce here
in greater generality.

Absolute Treatment Effect Modification Variable Importance
Parameter

Causal Parameter

Indexing W by j = 1, . . . , p, assuming without loss of generality that EPX,0
[Wj] = 0, and

requiring that EPX,0
[W 2

j ] > 0, an absolute TEM-VIP of the jth covariate can be defined as a
mapping

ΨF
j (PX,0) ≡

EPX,0

[(
Y (1) − Y (0)

)
Wj

]
EPX,0

[
W 2
j

] . (4.1)

Letting Q̄PX,0
(a,W ) ≡ EPX,0

[Y (a)|W ], it is straightforward to show that

ΨF
j (PX,0) =

EPX,0

[(
Q̄PX,0

(1,W )− Q̄PX,0
(0,W )

)
Wj

]
EPX,0

[
W 2
j

] .

The estimand is then given by ΨF :MX → Rp, ΨF (PX,0) = (ΨF
1 (PX,0), . . . ,Ψ

F
p (PX,0)).

Just like the estimand presented in Chapter 3, ΨF (PX,0) is the vector of simple linear
regression coefficients generated by regressing the differences in expected potential outcomes
against the individual elements of W . When the relationship between f(W ) and the Wj’s
is nonlinear, as is almost surely the case in most applications, this ΨF (PX,0) can instead be
viewed as assessing the correlation between the difference in potential outcomes and each
potential TEM, re-normalized to be on the same scale as Y .

Though TEM-VIPs provide a continuous measure of the strength of the treatment effect
modifications, some applications may call for the dichotomization of covariates into TEMs
and non-TEMs based on ΨF (PX,0). By default, we classify the jth covariate Wj as a TEM
if |ΨF

j (PX,0)| > 0 and note that, in some settings, it may make sense to impose a non-zero
threshold for this classification. We emphasize that TEMs need not be treatment–outcome
confounders.
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Identifiability Through Observed-Data Parameter

The full data {Xi}ni=1 = {(Wi, Ai, Y
(0)
i , Y

(1)
i )}ni=1 are generally censored through the treat-

ment assignment mechanism. We instead have access to n i.i.d. random variables O =
(W,A, Y ) ∼ P0 ∈ M. The statistical model, M, is fully determined by MX : for each
PX ∈ MX , there exists a unique P ∈ M, where W and A are defined as in the full-data
DGP and Y , the observed outcome variable, is given by AY (1) + (1 − A)Y (0). Here, P0

is the unknown DGP of the observed data. Throughout the remainder of the chapter, we
denote the empirical distribution by Pn, the expected conditional outcome EP0 [Y |A,W ] by
Q̄0(A,W ), and the propensity score PP0 [A = 1|W ] by g0(W ). Q̄0(A,W ) and g0(W ) are
written as Q̄0 and g0 where possible for notational convenience.

Recall too that we place the following moment conditions on W :

Assumption 4.1. Centered covariates: EPX,0
[W ] = 0, without loss of generality.

Assumption 4.2. Non-zero variance: EPX,0
[W 2

j ] > 0, for j = 1, . . . , p.

Assumption A4.1 lightens notation; it has no practical implications. A4.2 is easily satis-
fied in practice by filtering variables exhibiting no variability. Note too that pre-treatment
covariates with zero variance cannot possibly modify the effect of the treatment.

Now, the challenge lies in establishing an equivalence between a parameter of the DGP
for the observed data O and ΨF (PX,0). We repeat sufficient identifiability conditions outlined
in the previous chapter for just that for completeness of presentation:

Assumption 4.3. No unmeasured confounding: Y (a) ⊥ A|W , for a ∈ {0, 1}.

Assumption 4.4. Positivity: there exists some constant ϵ > 0 such that PP0 [ϵ < g0(W ) <
1− ϵ] = 1.

Theorem 4.1. Assuming that A4.1, A4.2, A4.3, and A4.4 hold, we find that

Ψj(P0) ≡
EP0

[(
Q̄0(1,W )− Q̄0(0,W )

)
Wj

]
EP0

[
W 2
j

]
= ΨF

j (PX,0),

(4.2)

for j = 1, . . . , p. The parameter Ψ : M → Rp defined as Ψ(P0) = (Ψ1(P0), . . . ,Ψp(P0)) is
therefore equal to the full-data estimand ΨF (PX,0).

The two latest assumptions are ingrained in the causal inference literature. Assumption
A4.3 ensures that treatment assignment is regarded as if performed in a randomized exper-
iment. It is more easily satisfied by considering many pre-treatment covariates as potential
confounders. Assumption A4.4 requires all observations to have a non-zero probability of
receiving either treatment condition, guaranteeing that Q̄0(1,W ) and Q̄0(0,W ) are equal to
Q̄PX,0

(1,W ) and Q̄PX,0
(0,W ), respectively.
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Inference

Having established an identifiable parameter, we detail procedures for performing inference
about it. We first, however, briefly review the basics of nonparametric asymptotic theory.

Preliminaries Consider a degenerate distribution P̃ that places all support of its random
observations Õ on õ. Further assume that õ is contained in the support of P ∈M and define
a two-component mixture model Pϵ = ϵP̃ + (1 − ϵ)P . Appealing to Riesz’s representation
theorem [Fisher and Kennedy, 2021, Hines et al., 2022b], the efficient influence function of a
parameter Θ(P ) is defined through the following Gateaux — that is, functional — derivative:

dΘ(Pϵ)

dϵ

∣∣∣∣
ϵ=0

= lim
ϵ→0

Θ(Pϵ)−Θ(P )

ϵ
=

∫
θ(o)(dP̃ (o)− dP (o)) =

∫
D(o, P )dP̃ (o) = D(õ, P ) .

Here, θ is defined such that EP [θ(O)] = Θ(P ), and D(o, P ) = θ(o) −
∫
θ(o)dP (o) = θ(o) −

Θ(P ). D(O,P ) therefore generalizes the concept of directional derivatives to functionals,
measuring Θ’s sensitivity to perturbations of P . Intuitively, then, EP [D(O,P )] = 0 for
O ∼ P . When the variance of D(O,P ) is bounded under all P ∈ M, we say that the
Gateaux derivative is well-defined and that Θ is pathwise differentiable.

Now, similar to how asymptotic approximations of mean-based parameters are studied
through Taylor expansions, the asymptotic behavior of the plug-in estimator Θ(Pn), a func-
tional, is studied by way of a von Mises expansion [von Mises, 1947, Bickel et al., 1993b, van
der Laan and Robins, 2003b, Hines et al., 2022b]. This functional equivalent to the Taylor
expansion is defined in terms of the efficient influence function (EIF):

√
n (Θ(Pn)−Θ(P0)) =

√
nEPn [D(O,P0)]−

√
nEPn [D(O,Pn)]

+
√
n (EPn − EP0) (D(O,Pn)−D(O,P0))−

√
nR(P0, Pn) .

(4.3)

R(P0, Pn) is a second-order remainder term in n. Since EP0 [D(O,P0)] = 0, the first term
of Equation (4.3) converges to a Gaussian random variable with mean zero and variance
equal to EP0 [D(O,P0)

2] by the central limit theorem. The second term is a bias term that
generally does not vanish asymptotically. The third term of the von Mises expansion can
generally be shown to converge to zero in probability under sufficient empirical process
conditions. Alternatively, sample-splitting procedures, often referred to as cross-fitting, can
be used to relax these conditions, as suggested by Pfanzagl and Wefelmeyer [1985], Klaassen
[1987], Zheng and van der Laan [2011], Chernozhukov et al. [2017]. The remainder term can
generally be shown to converge to zero in probability under convergence rate assumptions
about nuisance parameter estimators.

Nonparametric estimators, like the one-step [Pfanzagl and Wefelmeyer, 1985, Bickel et al.,
1993b], estimating equation [van der Laan and Robins, 2003b, Chernozhukov et al., 2017],
and targeted maximum likelihood (TML) estimators [van der Laan and Rubin, 2006b, van
der Laan and Rose, 2011b, 2018b], correct the asymptotic bias term. They are constructed
from the efficient influence function.
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One-Step This estimator is derived by subtracting the asymptotic bias term from the
plug-in estimator: Θ(OS)(Pn) ≡ Θ(Pn) + EPn [D(O,Pn)].

Estimating Equation Θ(EE)(Pn) is the solution to the following estimating equation:
0 = EPn [D(O,Pn)].

TML Θ(TML)(Pn) is obtained by tilting Pn to generate a P
⋆
n such that EPn [D(O,P ⋆

n)] ≈ 0.
There are many ways to achieve this. Examples are provided later in the chapter, as
well as in van der Laan and Rubin [2006b], van der Laan and Rose [2011b, 2018b].
The estimator is then defined as Θ(TML)(Pn) ≡ Θ(P ⋆

n), the plug-in estimator using
P ⋆
n . Unlike one-step and estimating equation estimators, TML estimators constrain

estimates to the parameter space.

Provided the required conditions ensuring the third and fourth terms of Equation (4.3)
converge in probability to zero are met, these estimators are asymptotically linear and effi-
cient. That is, they are asymptotically normally distributed with mean Θ(P0) and variance
EP0 [D(O,P0)

2/n] and have the smallest asymptotic variance among regular and asymptoti-
cally linear (RAL) estimators in a nonparametric model [Bickel et al., 1993b, Tsiatis, 2006,
van der Laan and Rose, 2011b].

Inference about Θ(P0) can then be based on the asymptotically normal distribution of
its one-step, estimating equation, and TML estimators. In particular, the α-level Wald-type
confidence interval for Θ(P0) can be constructed identically for each of the three estimators,
Θ(·)(Pn), as follows:

Θ(·)(Pn)± z1−α/2

√
EP0 [D(O,P0)2]

n
, (4.4)

where z1−α/2 is the (1 − α/2)th quantile of the standard Normal distribution. Of course,
EP0 [D(O,P0)

2] is generally unknown; an estimator, EPn [D(O,Pn)
2], is used instead. When

there are many tests to perform in small-to-moderate sample sizes, the empirical Bayes
approach to variance estimation proposed by Hejazi et al. [2023] might also be employed for
improved Type I error rate control.

Efficient Influence Function We return to our study of the TEM-VIP Ψ(P0), defined in
Equation (4.2). The efficient influence function of Ψj(P ) for P ∈M was previously derived
by Chapter 3. We restate it here for convenience.

Proposition 4.1. Assume A4.1 and A4.2. Define Ψj(P ) as in Equation (4.2) for some
P ∈M. The efficient influence function at P ∈M of this parameter is given by

Dj(O,P ) ≡
Wj

EP
[
W 2
j

]( 2A− 1

Ag(W ) + (1− A)(1− g(W ))

(
Y − Q̄(A,W )

)
+ Q̄(1,W )− Q̄(0,W )−Ψj(P )Wj

)
.

(4.5)
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Estimators We now present nonparametric estimators of the TEM-VIP of Equation (4.2).
One-step and estimating equation estimators. As seen in the previous chapter, the one-

step estimator of Ψj(P0), for j = 1, . . . , p, is identical to the estimating equation estimator

Ψ
(EE)
j (Pn). Again, we present this estimator here for completeness. Let Q̄n and gn be,

respectively, estimators of Q̄0 and g0 trained on Pn. Then

Ψ
(OS)
j (Pn) = Ψ

(EE)
j (Pn) ≡

n∑
i=1

Wij∑n
i=1W

2
ij

(
2Ai − 1

Aign(Wi) + (1− Ai)(1− gn(Wi))

(
Yi − Q̄n(Ai,Wi)

)
+ Q̄n(1,Wi)− Q̄n(0,Wi)

)
.

Targeted maximum likelihood estimator. The TML estimator’s derivation is slightly more
involved. Define the negative log-likelihood loss function for Q̄ as

L(O; Q̄) ≡ − log
{
Q̄(A,W )Y

(
1− Q̄(A,W )

)(1−Y )
}
,

and a parametric working submodel for Q̄ as

Q̄j(ϵ)(A,W ) ≡ logit−1
{
logit Q̄(A,W ) + ϵHj(A,W )

}
,

where

Hj(A,W ) ≡ Wj

EP [W 2
j ]

2A− 1

Ag(W ) + (1− A)(1− g(W ))
.

Now, denoting an initial estimator of Q̄0 trained on Pn by Q̄0
n, we update Q̄0

n by computing
ϵ1n,j such that

ϵ1n,j = arg minϵ EPn

[
L(O; Q̄0

n,j(ϵ))
]
,

where, though not immediately clear in the notation, Q̄0
n,j(ϵ) depends directly on Q̄0

n and
indirectly (through Hj(A,W )) on gn and

∑
iW

2
ij/n, an estimator of EP [W 2

j ]. A tilted con-
ditional outcome estimator is then computed as Q̄1

n,j ≡ Q̄0
n,j(ϵ

1
n,j). The solution to the above

equation, ϵ1n,j, is the maximum likelihood estimator (MLE) of a univariate logistic regres-
sion’s slope coefficient obtained by regressing Y on Hn,j(A,W ) while taking Q̄0

n(A,W ) as an
offset. Here, Hn,j is the empirical version of Hj, using gn and

∑
iW

2
ij/n in place of g and

EP [W 2
j ], respectively.

We define P ⋆
n as the tilted Pn, where Q̄

0
n is replaced by Q̄1

n,j. Exploiting a classical result
of logistic regression in parametric statistical models [van der Laan and Rubin, 2006b], it
follows that EPn [D(O,P ⋆

n)] ≈ 0. The TML estimator of the jth TEM-VIP is therefore given

by Ψ
(TML)
j (Pn) ≡ Ψj(P

⋆
n).

We highlight that this estimator is appropriate even when the outcome is not restricted
to (0, 1). It suffices to shift each of the observed outcomes Yi, i = 1, . . . , n, by −mini{Yi}
and to scale them by maxi{Yi} −mini{Yi} prior to computing the TML estimate, and then
rescaling the TML estimate by the same quantities. Note too that other loss functions might
be used to tilt Pn, like the squared error loss. See Gruber and van der Laan [2010] for a
comparison and discussion.
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Asymptotic Behavior Next, we study the asymptotic behavior of these absolute TEM-
VIP estimators. Note that the asymptotic distributions of Ψ(OS)(Pn), Ψ

(EE)(Pn), and
Ψ(TML)(Pn) are identical through their dependence on Dj(O,P0), j = 1, . . . , p. In partic-
ular, they are double-robust, meaning they are consistent even when one of the nuisance
parameters is inconsistently estimated.

Assumption 4.5. Conditional outcome estimator consistency:

∥Q̄n(A,W )− Q̄0(A,W )∥22 =
∫
(Q̄n(a, w)− Q̄0(a, w))

2dP0(a, w) = oP (1).

Assumption 4.6. Propensity score estimator consistency:

∥gn(W )− g0(W )∥22 =
∫
(gn(w)− g0(w))2dP0(w) = oP (1).

Proposition 4.2. Under A4.1 and A4.2, and either A4.5 or A4.6, EP0 [Dj(O,Pn)|Pn] =
oP (1) for j = 1, . . . , p. That is, Ψ(OS)(Pn)

P→ Ψ(P0), and the same is true of the estimating
equation and TML estimators.

Further, these estimators’ sampling distribution can be specified under the following
assumptions:

Assumption 4.7. Donsker conditions: There exists a P0-Donsker class2 G0 such that
PP0 [Dj(O,Pn) ∈ G0]→ 1 and EP0 [(Dj(O,Pn)−Dj(O,P0))

2|Pn] = oP (1) for each j.

Assumption 4.8. Shared rate convergence: ∥Q̄n(A,W )− Q̄0(A,W )∥2 ∥gn(W )−g0(W )∥2 =
oP (n

−1/2).

Assumption 4.9. Bounded covariates: There exists C ∈ R+, such that |Wj| ≤ C for
j = 1, . . . , p.

Theorem 4.2. Assuming A4.1, A4.2, A4.7, A4.8, and A4.9,
√
n(Ψ

(OS)
j (Pn) − Ψj(P0)) =

(1/
√
n)
∑

iDj(Oi, P0)+oP (1) for j = 1, . . . , p. This implies that
√
n(Ψ

(OS)
j (Pn)−Ψj(P0))

D→
N(0,EP0 [Dj(O,P0)

2]). This result is true of the estimating equation and TML estimators,
too.

A4.7 is a generally unverifiable entropy assumption guaranteeing that the third term
on the right-hand side of Equation (4.3) converges to zero in probability. However, it is
equivalent to placing weak regularity conditions on Q̄ and g that are more transparent. If
these nuisance parameters are càdlàg (continue à droite, limite à gauche: right continuous,
left limits) [Neuhaus, 1971] and have finite supremum and (sectional) variation norms [Gill

2A class F with bounded suprepmum norm is P-Donsker if F is pre-Gaussian and the empirical process
G(F) converges weakly under L∞(P ) to the Gaussian process GP (F) in n. Here, G(F) = {G(f), f ∈ F}
[Bickel et al., 1993b, van der Laan and Rose, 2011b, Bickel and Doksum, 2015].
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et al., 1995], for example, then A4.7 is met [see van der Laan and Gruber, 2016, van der Laan,
2017, for a discussion of these conditions]. Alternatively, nonparametric estimators may be
extended to perform a sample-splitting procedure such that this requirement is replaced by
even milder conditions [Bickel, 1982, Schick, 1986, Klaassen, 1987, Zheng and van der Laan,
2011, Chernozhukov et al., 2017], like the convergence of Q̄n or gn to fixed functionals that
are not necessarily equal to Q̄0 and g0, respectively [Zheng and van der Laan, 2011]. In
Chapter 3 we derive such a cross-fitted estimator based on the one-step approach.

A4.8 is satisfied when the nuisance parameter estimators jointly converge at the standard
semiparametric rate of n−1/2. This so-called “shared rate convergence” condition also allows
for one of the nuisance parameters to converge more slowly if the other estimator converges
more quickly. When p is small relative to n, A4.8 is typically satisfied by estimating Q̄0 and g0
with flexible machine learning methods that place few, if any, assumptions on the functional
form of these parameters. One such approach is the Super Learner framework [van der
Laan et al., 2007b]. In high-dimensional observational settings, however, this convergence
property is only met by appealing to smoothness and sparsity assumptions about the nuisance
parameters. Examples of these conditions for Random Forests and deep neural networks are
outlined in Wager and Athey [2018] and Farrell et al. [2021], respectively. Of note, A4.8 is
satisfied regardless of p’s size relative to n when either of the nuisance parameters are known,
as is the case with g0 in randomized control trials (RCT). This follows from inspection of
the second-order remainder term of Equation (4.3), which equals to zero in this scenario.

We note that A4.7 and A4.8 are satisfied when estimating the nuisance parameters with
the Highly Adaptive LASSO under the condition that these parameters are càdlàg and have
bounded sectional variation norm [van der Laan, 2017, Bibaut and van der Laan, 2019].
Current implementations of this estimator are currently too computationally demanding for
use wit the high-dimensional DGPs considered, however.

The final assumption, A4.9, is a sufficient, technical condition required to bound the
second-order remainder of Equation (4.3). While it may appear stringent, and is, for example,
not satisfied by covariates generated according to a multivariate Gaussian distribution, we
believe that it is generally applicable. Many — if not most — of the random variables
studied in the biological, physical, and social sciences are bounded by their very nature
or by limitations of measurement instruments. We demonstrate Theorem 4.2’s practical
robustness to A4.9 in the simulation experiments of Section 4.6 by generating covariates
with Gaussian distributions.

We remark that while Theorem 4.2 states that Ψ(OS)(Pn) and Ψ(TML)(Pn) — as well
as their cross-fitted counterparts — are asymptotically identical, noticeable differences in
behavior are possible in finite samples. This is explored in the simulation study of Section 4.6.
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Relative Treatment Effect Modification Variable Importance
Parameter

Causal Parameter

While the TEM-VIP of Equation (4.1) is a generally informative assessment of treatment
effect modification, situations may arise where a relative TEM-VIP is of greater interest.
Examples include scenarios with non-negative outcome variables. A parameter based on the
ratio of conditional expected potential outcomes might provide a more expressive metric of
treatment effect modification:

EPX,0

[
Y (1)

∣∣W ]
EPX,0

[
Y (0)

∣∣W ] = Q̄PX,0
(1,W )

Q̄PX,0
(0,W )

.

The full-data model,MX , is identical to the one presented in Section 4.2, save that Y (0), Y (1) ∈
R+.

As with the CATE, estimating the conditional parameter above is challenging in high
dimensions, making TEM discovery difficult. Again assuming A4.1 and A4.2, we instead
propose a TEM-VIP inspired by a GLM of the outcome with a log link function:

ΓFj (PX,0) ≡
EPX,0

[(
log Q̄PX,0

(1,W )− log Q̄PX,0
(0,W )

)
Wj

]
EPX,0

[
W 2
j

] . (4.6)

Then ΓF :MX → Rp, ΓF (PX,0) = (ΓF1 (PX,0), . . . ,Γ
F
p (PX,0)) is the target of inference.

Assuming that the expectation of log Q̄PX,0
(1,W ) − log Q̄PX,0

(0,W ) conditional on any
given Wj is linear in Wj, Γ

F (PX,0) = (ΓF1 (PX,0), . . . ,Γ
F
p (PX,0)) is the vector of simple linear

regression coefficients produced by regressing the log-ratio of expected conditional potential
outcomes against individual covariates. As with ΨF (PX,0), Γ

F (PX,0) remains an informative
estimand under violations of this linearity assumption in all but pathological scenarios, and
can be viewed as assessing the correlation between the log-ratio of potential outcomes and
each covariates. As in the absolute TEM-VIP case, Wj is said to be a TEM under this
relative VIP if |ΓFj (PX,0)| > 0.

Identifiability Through Observed-Data Parameter

Relating ΓF (PX,0) to some parameter of P0 follows directly from the result of Theorem 4.1.

Corollary 4.1. Under the conditions outlined in Theorem 4.1,

Γj(P0) ≡
EP0

[(
log Q̄0(1,W )− log Q̄0(0,W )

)
Wj

]
EP0

[
W 2
j

]
= ΓFj (PX,0),

(4.7)

for j = 1, . . . , p. The observed-data parameter Γ :M→ Rp defined as
Γ(P0) = (Γ1(P0), . . . ,Γp(P0)) is therefore equal to the full-data estimand ΓF (PX,0).
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Inference

Efficient Influence Function To lighten notation, Dj(O,P ) is recycled to represent the
efficient influence function of Γj(P ) and all other parameters throughout the remainder of
the chapter.

Proposition 4.3. Assume A4.1 and A4.2, and define Γj(P ) as in Equation (4.7) for P ∈
M. The efficient influence function of this parameter is

Dj(O,P ) ≡
Wj

EP
[
W 2
j

]( 2A− 1

Ag(W ) + (1− A)(1− g(W ))

Y − Q̄(A,W )

Q̄(A,W )

+ log
Q̄(1,W )

Q̄(0,W )
− Γj(P )Wj

)
.

(4.8)

Estimators Nonparametric estimators of Γ(P0) are given next.
One-step and estimating equation estimators. From the von Mises expansion of Equa-

tion (4.3), we find that the one-step TEM-VIP estimator for the jth potential TEM is given
by

Γ
(OS)
j (Pn) ≡

n∑
i=1

Wij∑n
i=1W

2
ij

(
2Ai − 1

Aign(Wi) + (1− Ai)(1− gn(Wi))

Yi − Q̄n(Ai,Wi)

Q̄n(Ai,Wi)

+ log
Q̄n(1,Wi)

Q̄n(0,Wi)

)
.

As with the absolute TEM-VIP, the estimating equation estimator of Γ(P0), Γ
(EE)
j (Pn), is

identical to Γ
(OS)
j (Pn).

Targeted maximum likelihood estimator. The TML estimator of Γj(P0), Γ
(TML)
j (Pn), is

computed using a targeting strategy that is almost identical to that of Ψ
(TML)
j (Pn). The only

departure from the previously presented procedure occurs in the definition of Hj(A,W ). For
the relative TEM-VIP, we let

Hj(A,W ) ≡ Wj

EP [W 2
j ]Q̄(A,W )

2A− 1

Ag(W ) + (1− A)(1− g(W ))
.

The calculation of the tilted estimator Q̄1
n,j is otherwise unchanged. It then follows that

Γ
(TML)
j (Pn) ≡ Γj(P

⋆
n), where we again stress through notation that Γ

(TML)
j (Pn) is a plug-in

estimator relying on the tilted empirical distribution P ⋆
n . P

⋆
n is identical to Pn save that Q̄1

n,j

is used in place of Q̄n.
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Asymptotic Behavior As before, we begin the study of Γ(OS)(Pn), Γ
(EE)(Pn), and

Γ(TML)(Pn)’s identical asymptotic behavior with sufficient conditions for consistency.

Proposition 4.4. If A4.1, A4.2, and A4.5 are satisfied, EP0 [Dj(O,Pn)|Pn] = oP (1) for

j = 1, . . . , p. That is, Γ(OS)(Pn)
P→ Γ(P0). This result holds for the estimating equation and

TML estimators as well.

We contrast Propositions 4.2 and 4.4. Unlike Ψ(OS) and Ψ(TML), Γ(OS) and Γ(TML) are
not doubly robust. Consistent estimation of Q̄0 is required and, baring practical positivity
violations, estimation of g0 has no impact.

Next, the asymptotic linearity of these estimators is established.

Assumption 4.10. Convergence rate of conditional outcome estimator:
∥Q̄n(A,W )− Q̄0(A,W )∥2 = oP (n

−1/4).

Theorem 4.3. Under A4.1, A4.2, A4.7, A4.8, A4.9, and A4.10,
√
n(Γ

(OS)
j (Pn)−Γj(P0)) =

(1/
√
n)
∑

iDj(Oi, P0)+oP (1). Again, this result applies to the estimating equation and TML

estimators, and implies that
√
n(Γ

(OS)
j (Pn)− Γj(P0))

D→ N(0,EP0 [Dj(O,P0)
2]).

The conditions required for the asymptotic linearity of Γ(OS)(Pn) and Γ(TML)(Pn) are
largely similar to those of Ψ(OS)(Pn) and Ψ(TML)(Pn). The sole difference is that candidate
estimators of the conditional expected outcome must converge at a rate no slower than
oP (n

−1/4). The propensity score estimator, however, may converge at a slower rate so long
as A4.8 is satisfied. While this distinction has little impact in observational study settings,
the same cannot be said in RCTs. Knowing g0 does not guarantee the asymptotic linearity
of Γ(OS)(Pn) and Γ(TML)(Pn) — an accurate estimator of Q̄0 is essential.

4.3 Binary Outcomes

Consider the setting identical to that described in the previous section, save that the outcome,
Y , is a binary random variable. Noting that Q̄(A,W ) = P[Y = 1|A,W ], it follows that all
results of Section 4.2 apply to these DGPs. That is, the absolute and relative TEM-VIPs,
as well as their respective asymptotically linear estimators, can just as readily be used to
detect treatment effect modifiers when the outcome is binary.

4.4 Right-Censored Time-to-Event Outcomes

Returning to the motivating example of the introduction, the discovery of treatment effect
modifiers is essential to precision medicine: they delineate patient subgroups, allowing for
tailored care. They can also provide mechanistic insight on experimental therapies and
improve the success rate of clinical trials. However, the data generated and collected in
many therapeutic areas, like oncology, are characterized censored time-to-event outcomes
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like time to death or disease recurrence. The TEM-VIPs presented thus far are not readily
applicable to this setting.

Problem Setting

Consider n i.i.d. random vectors {Xi}ni=1, where X = (W,A,C(0), C(1), T (0), T (1)) ∼ PX,0 ∈
MX . We again defineMX as a nonparametric statistical model of possible full-data DGPs
and denote the true DGP by PX,0. As before, W and A are, respectively, the vector of pre-
treatment covariates and the binary treatment indicator. Here, C(a) and T (a) correspond,
respectively, to the (discrete or continuous) censoring and event times, from which we define
the right-censored time-to-event T̃ (a) = min{T (a), C(a)} and the censoring indicator ∆(a) =
I(T (a) > C(a)), under condition a ∈ {0, 1}.

Causal parameters of interest in this setting often build upon the conditional survival
function SPX,0

(t|a,W ) ≡ PPX,0
[T (a) > t|W ], a ∈ {0, 1}. Consider the CATE of the survival

probability at time t:

EPX,0

[
SPX,0

(t|1,W )− SPX,0
(t|0,W )|W

]
.

The difference in conditional restricted mean survival times (RMST) [Chen and Tsiatis,
2001, Royston and Parmar, 2011] for time t might be a meaningful target causal parameter
too:

EPX,0

[
min{T (1), t} −min{T (0), t}

∣∣∣W]
= EPX,0

[∫ t

0

{
SPX,0

(u|1,W )− SPX,0
(u|0,W )

}
du
∣∣∣W] .

A derivation of the above equality is found in Dı́az et al. [2019].
As with the CATE in DGPs with continuous and binary outcomes, however, the recovery

of treatment effect modifiers from these parameters is unreliable in high dimensions. We
suggest using the TEM-VIPs described in the subsequent subsections instead.

Absolute Treatment Effect Modification Variable Importance
Parameter

Causal Parameter

Under A4.1 and A4.2, the following measure of absolute treatment effect modification for
time-to-event outcomes can be used:

ΨF
j (PX,0; t) ≡

EPX,0

[
Wj

∫ t
0

{
SPX,0

(u|1,W )− SPX,0
(u|0,W )

}
du
]

EPX,0

[
W 2
j

] . (4.9)
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The estimand is then given by ΨF :MX × R+ → Rp,
ΨF (PX,0; t) = (ΨF

1 (PX,o; t), . . . ,Ψ
F
p (PX,0; t)). We reuse “Ψ” to emphasize that this is an

absolute effect parameter.
Similar to the continuous outcome scenario, ΨF

j (PX,0; t) captures the correlation of the
difference in conditional RMSTs and the jth covariate, standardized to be on the outcome’s
scale. ΨF (PX,0; t) = (ΨF

1 (PX,0; t), . . . ,Ψ
F
p (PX,0; t)) therefore generally identifies the pre-

treatment covariates responsible for the largest differences in expected truncated survival
times.

Identifiability Through Observed-Data Parameter

As before, the full data {Xi}ni=1 are typically not observable. Define T = AT (1)+(1−A)T (0)

and C = AC(1) + (1 − A)C(0). We instead have access to {Oi}ni=1, a set of n random
variables O = (W,A, T̃ ,∆) ∼ P0 ∈M, whereW and A are defined as in the full-data model,
T̃ = min{T,C} = Amin{T (1), C(1)} + (1− A)min{T (0), C(0)} is the right-censored time-to-
event, and ∆ = I(T > C) is the censoring indicator. Again, P0 is the true unknown DGP for
the observed data O and is fully specified by PX,0, andM is the model of possible observed-
data DGPs. Further, let S0(t|A,W ) ≡ PP0 [T > t|A,W ] and PP0 [C > t|A,W ] ≡ c0(t|A,W )
represent the observed conditional survival and censoring functions, respectively.

Sufficient identifiability conditions relating ΨF (PX,0; t) to a parameter of the observed-
data DGP are provided next.

Assumption 4.11. No unmeasured exposure-time-to-event confounding: T (a) ⊥ A|W , for
a ∈ {0, 1}. Unclear how to interpret A in this and the next assumption.

Assumption 4.12. No unmeasured time-to-event-censoring confounding: T (a) ⊥ C(a)|A,W ,
for a ∈ {0, 1}.

Assumption 4.13. Censoring mechanism positivity: There exists some ϵ > 0 such that
PP0 [c0(u|A,W ) < 1− ϵ] = 1 for all u ∈ (0, t).

Theorem 4.4. Assuming A4.1, A4.2, A4.4, A4.11, A4.12, and A4.13 hold, we find that

Ψj(P0; t) ≡
EP0

[
Wj

∫ t
0
{S0(u|1,W )− S0(u|0,W )} du

]
EP0

[
W 2
j

]
= ΨF

j (PX,0; t) ,

(4.10)

for j = 1, . . . , p. The observed-data parameter Ψ :M× R+ → Rp,
Ψ(P0; t) = (Ψ1(P0; t), . . . ,Ψp(P0; t)) is equal to ΨF (PX,0; t).

Beyond the condition that the covariates be centered and have non-zero variance, the
assumptions required by Theorem 4.4 are standard in the causal inference literature for
time-to-event parameters [see, for example, Moore and van der Laan, 2011, Benkeser et al.,
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2019, Dı́az et al., 2019]. A4.11 ensures that the treatment assignment mechanism can be
viewed as random, conditional on the covariates. A4.12 requires that survival and censoring
times are independent given treatment and covariates. Finally, A4.13 specifies that every
random unit has a positive probability of being observed at every time up to and including
t.

Inference

Efficient Influence Function The efficient influence function of the estimand in Equa-
tion (4.10) is provided below.

Proposition 4.5. Define Ψj(P ; t) as in Equation (4.10) for some P ∈M and assume A4.1
and A4.2. The uncentered efficient influence function of S(t|a,W ) is given by

d(O,P ; t, a) ≡ I(A = a)S(t|a,W )

(Ag(W ) + (1− A)(1− g(W )))∫ t

0

I(T̃ ≥ u)

c(u−|a,W )S(u|a,W )
(I(T = u)− λ(u|a,W )) du+ S(t|a,W ) ,

where λ(u|A,W ) is the conditional survival hazard at time u and u− denotes the left-hand
limit of u [Moore and van der Laan, 2011]. By the functional delta method, the efficient
influence function of Ψj(P ; t) is

Dj(O,P ; t) ≡
Wj

EP
[
W 2
j

] (∫ t

0

d(O,P ;u, 1)− d(O,P ;u, 0) du−Ψj(P ; t)Wj

)
. (4.11)

Estimators In practice, for numerical reasons, the integrals in the estimators presented
next are approximated by weighted sums.

One-step and estimating equation estimators. It follows immediately from Proposition 4.5
that the one-step and estimating equation estimators of Ψj(P0; t) are defined as

Ψ
(OS)
j (Pn; t) = Ψ

(EE)
j (Pn; t) ≡

1∑n
i=1W

2
ij

(
n∑
i=1

Wij

∫ t

0

d(Oi, Pn;u, 1)− d(Oi, Pn;u, 0)du

)
.

Targeted maximum likelihood estimator. Let the log-likelihood loss of λ(u|A,W ) be given
by

L(O;λ, u) = − log
{
λ(u|A,W )I(T=u)(1− λ(u|A,W ))1−I(T=u)

}
.

Define the parametric working submodel for λ(u|A,W ) as

λ(ϵ)(u|A,W ) = logit−1{logitλ(u|A,W ) + ϵHj(u|A,W )} ,

where

Hj(u|A,W ) ≡ Wj(2A− 1)S(u|A,W )

(Ag(W ) + (1− A)(1− g(W )))EP
[
W 2
j

] ∫ u

0

1

c(v−|A,W )S(v|A,W )
dv .
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Denoting the initial estimator of λ0(u|A,W ) by λ0n(u|A,W ), we update λ0n(u|A,W ) by com-
puting ϵ1n, where

ϵ1n,j = arg minϵEPn

[
L(O;λ0n(ϵ), u)

]
.

This empirical expectation is minimized using the MLE of the univariate logistic regression
of the event indicators (1 − ∆)I(T̃ = v) on Hn,j(u|A,W ), for time v ranging from 0 to u
and with the initial hazard estimates as an offset. Hn,j is the empirical counterpart of Hj,
using Sn, gn, cn, and

∑
iW

2
ij/n in place of S, g, c, and EP [W 2

j ], respectively. The longitudinal
structure of the data need not be considered [Moore and van der Laan, 2011]; the repeated
measures are treated as independent when estimating ϵ1n,j [Moore and van der Laan, 2011].
λ1n,j(u|A,W ) is then defined as λn(ϵ

1
n,j)(u|A,W ). Setting λ0n,j(u|A,W )← λ1n,j(u|A,W ), this

procedure is repeated until ϵ1n,j ≈ 0.
This procedure for tilting the conditional hazard at time u is performed at each observed

time point between 0 and t. These tilted hazards replace their initial counterparts in Pn to
form the tilted empirical distribution P ⋆

n . Noting that Sn,j(t|A,W ) = Πt
u=1(1−λ1n,j(u|A,W )),

it follows that the TML estimator of Ψj(P0; t) is given by Ψ
(TML)
j (Pn; t) ≡ Ψj(P

⋆
n , t).

Asymptotic Behavior We now consider the asymptotic properties of these estimators.

Assumption 4.14. Conditional survival estimator consistency:

∥Sn(u|A,W )− S0(u|A,W )∥22 =
∫
(Sn(u|a, w)− S0(u|a, w))2dP0(a, w) = oP (1)

for all u ∈ [0, t].

Assumption 4.15. Conditional propensity score estimator and censoring estimator consis-
tency: ∥gn(W )− g0(W )∥22 = oP (1) and

∥cn(u|A,W )− c0(u|A,W )∥22 =
∫
(cn(u|a, w)− c0(u|a, w))2dP0(a, w) = oP (1)

for all u ∈ [0, t].

Proposition 4.6. Ψ(OS)(Pn; t)
P→ Ψ(P0; t) when A4.1, A4.2, and either A4.14 or A4.15 are

satisfied. This result also applies to Ψ(EE)(Pn; t) and Ψ(TML)(Pn; t).

Assumption 4.16. Shared convergence rate: ∥gn(W )−g0(W )∥2∥Sn(u|A,W )−S0(u|A,W )∥2 =
oP (n

−1/2) for all u ∈ [0, t].

Assumption 4.17. Convergence rate of conditional censoring estimator: ∥cn(u|A,W ) −
c0(u|A,W )∥2 = oP (n

−1/4) for all u ∈ [0, t].

Theorem 4.5. Assuming that A4.1, A4.2, A4.7, A4.9, A4.16, and A4.17 are met,√
n(Ψ

(OS)
j (Pn; t) − Ψj(P0; t)) = (1/

√
n)
∑

iDj(Oi, P0; t) + oP (1). The same is true for the
estimating equation and TML estimators. Again, this implies that√
n(Ψ

(OS)
j (Pn; t)−Ψj(P0; t))

D→ N(0,EP0 [Dj(O,P0; t)
2]).
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Proposition 4.6 states that consistent estimation of the TEM-VIPs is possible if either
the conditional survival function is consistently estimated or if the treatment assignment
mechanism and the censoring mechanism are consistently estimated. This implies that,
in an RCT, consistent estimates of Ψ(P0; t) only require that the censoring mechanism be
consistently estimated. When there is no censoring or censoring is known to be independent
of covariates, consistency is guaranteed when c0(t|A,W ) = c0(t|A) is estimated with the
Kaplan-Meier estimator.

Enforcing more stringent conditions on the DGP and the nuisance parameter estimators
results in Theorem 4.5. That is, requiring that the entropy constraint of A4.7 is satisfied
— or, alternatively, that nuisance parameters are estimated via cross-fitting — and that the
nuisance parameters estimators are consistent at the rates given in A4.16 and A4.17 ensures
asymptotically normal estimators that are centered around the true parameter value. When
the treatment assignment mechanism is known, as in an RCT, then the only necessary
consistency rate condition is that of the censoring mechanism. Valid inference is therefore
possible even when the conditional survival function is misspecified.

Relative Treatment Effect Modification Variable Importance
Parameter

Causal Parameter

As mentioned in Section 4.2, a relative TEM-VIP may be of greater relevance than an
absolute TEM-VIP in some contexts. In particular, when treatment effect modification is
assessed in terms of conditional probabilities, as is done in this time-to-event setting, a
relative measure may be more sensitive. We propose a causal parameter analogous to that
of Equation (4.6):

ΓFj (PX,0; t) ≡
EPX,0

[(
logSPX,0

(t|1,W )− logSPX,0
(t|0,W )

)
Wj

]
EPX,0

[
W 2
j

] . (4.12)

Again, we assume A4.1 and A4.2. Then ΓF :MX × R+ → R,
ΓF (PX,0; t) = (ΓF1 (PX,0; t), . . . ,Γ

F
p (PX,0; t)) can be interpreted in a similar fashion to the

relative TEM-VIP of the continuous outcome DGP. As in Section 4.4, “Γ” is reused to stress
that this is a relative parameter.

Identifiability Through Observed-Data Parameter

The causal TEM-VIP ΓF (PX,0; t) is identifiable in the observed data under the conditions
outlined in Theorem 4.4. This follows immediately given that S0(t|A,W ) = SPX,0

(t|A,W ).
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Corollary 4.2. Under the assumptions of Theorem 4.4, it follows that

Γj(P0; t) ≡
EP0 [(logS0(t|1,W )− logS0(t|0,W ))Wj]

EP0

[
W 2
j

]
= ΓFj (PX,0; t)

(4.13)

such that Γ :M× R+ → Rp, Γ(P0; t) = (Γ1(P0; t), . . . ,Γp(P0; t)) = ΓF (PX,0, t).

Inference

Efficient Influence Function The efficient influence function of the observed-data pa-
rameter presented in Equation (4.13) is given next.

Proposition 4.7. Assuming A4.1 and A4.2, the efficient influence function of Γ(P ; t) is

Dj(O,P ; t) ≡
Wj

EP
[
W 2
j

] ( 2A− 1

Ag(W ) + (1− A)(1− g(W ))∫ t

0

I(T̃ ≥ u)

c(u−|A,W )S(u|A,W )
(I(T = u)− λ(u|A,W )) du

+ log
S(t|1,W )

S(t|0,W )
− Γ(P ; t)Wj

)
.

(4.14)

Estimators One-step and estimating equation estimators. Γ(OS)(Pn; t) and Γ(EE)(Pn; t),
are then given by

Γ(OS)(Pn; t) = Γ(EE)(Pn; t) ≡
1∑n

i=1W
2
ij

n∑
i=1

Wij

(
2Ai − 1

Aig(Wi) + (1− Ai)(1− g(Wi))∫ t

0

I(T̃i ≥ u)

c(u−|Ai,Wi)S(u|Ai,Wi)

(I(Ti = u)− λ(u|Ai,Wi)) du

+ log
S(t|1,Wi)

S(t|0,Wi)

)
.

Targeted maximum likelihood estimator. This estimator employs a conditional hazard
estimator tilting procedure similar to that of Ψ

(TML)
j (Pn; t). The definition of Hj(t|A,W ) is

slightly modified:

Hj(t|A,W ) ≡ Wj(2A− 1)

(Ag(W ) + (1− A)(1− g(W )))EP
[
W 2
j

] ∫ t

0

1

c(u−|A,W )S(u|A,W )
du .

Then, given the tilted empirical distribution P ⋆
n , Γ

(TML)
j (Pn; t) ≡ Γj(P

⋆
n ; t).



CHAPTER 4. A NONPARAMETRIC FRAMEWORK FOR TREATMENT EFFECT
MODIFIER VARIABLE IMPORTANCE PARAMETERS 92

Asymptotic Behavior

Proposition 4.8. If A4.1, A4.2, and A4.14 are satisfied, Γ(OS)(Pn; t)
P→ Γ(P0; t). The

estimating equation and TML estimators share this property, too.

Assumption 4.18. Convergence rate of the conditional survival estimator: ∥Sn(t|A,W )−
S0(t|A,W )∥2 = oP (n

−1/4).

Theorem 4.6. Assuming that A4.1, A4.2, A4.7, A4.9, A4.16, A4.17, and A4.18, are met,√
n(Γ

(OS)
j (Pn; t)−Γj(P0; t)) = (1/

√
n)
∑

iDj(Oi, P0)+oP (1). It follows that
√
n(Γ

(OS)
j (Pn; t)−

Γj(P0; t))
D→ N(0,EP0 [Dj(O,P0; t)

2]). This result applies to the estimating equation and TML
estimators as well.

As for the relative TEM-VIP introduced in Equation (4.6), the nonparametric estimators
of the estimand in Equation (4.12) are not double-robust. Further, consistent estimation of
all nuisance parameters at the typical nonparametric rate is required to ensure the asymptotic
linearity of the estimators. For example, in an RCT where censoring is assumed to be
completely at random, consistent estimation of the survival function is necessary to produce
consistent estimates of Γ(P0; t). If the conditions of Theorem 4.6 are satisfied, however, then
asymptotically valid hypothesis testing about the parameter is possible using the Gaussian
null distribution.

4.5 Deriving New Treatment Effect Modification

Variable Importance Parameters

Readers might find the previous sections repetitive. This is purposeful. Their contents pro-
vide a blueprint for defining pathwise differentiable TEM-VIPs based on causal parameters
of treatment effects, deriving estimators of these TEM-VIPs, and establishing conditions un-
der which these estimators are regular and asymptotically linear and efficient. We formalize
this framework in the following workflow.

1. Select a full-data, pathwise differentiable parameter ΦF (PX) of some treatment effect
that is relevant to the problem at hand. For example, we consider the average treatment
effect EPX

[Y (1) − Y (0)] in Section 4.2 for continuous outcomes, and the difference in
RMSTs EPX

[min{T (1), t}−min{T (0), t}] in Section 4.4 for right-censored time-to-event
outcomes.

2. Define f(W ) such that EPX
[f(W )] = ΦF (PX). Under A4.1 and A4.2, the TEM-VIP

of covariate j is given by ΘF
j (PX) = EPX

[f(W )Wj]/EPX
[W 2

j ]. In Section 4.2, f(W ) =

Q̄PX
(1,W ) − Q̄PX

(0,W ), the CATE, and in Section 4.4, f(W ) =
∫ t
0
SPX

(u|1,W ) −
SPX

(u|0,W ) du, the conditional RMST.
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3. Establish the identifiability of the TEM-VIP in the observed-data model. Denoting
the observed-data counterparts of ΘF

j and ΦF as Θj and Φ, respectively, the conditions
establishing that ΘF

j (PX) = Θj(P ) are virtually identical to the conditions needed for
the equality of ΦF (PX) and Φ(P ). The only additional assumption required is that Wj

have bounded variance. See Theorems 4.1 and 4.4 for examples.

4. Derive the efficient influence function of the TEM-VIP. This derivation is straightfor-
ward, relying on the chain rule and the definition of the efficient influence function for
Φ(P ). If the uncentered efficient influence function of Φ(P ) is given by d(O,P ) for
O ∼ P , then the efficient influence function of the TEM-VIP, Θj(P ), based on Φ(P )
is Wj/EP [W 2

j ](d(O,P ) − WjΘj(P )). Consider the average treatment effect, whose
uncentered efficient influence function is d(O,P ) = (2A − 1)/(Ag(A) + (1 − A)(1 −
g(A)))(Y −Q̄(A,W ))+Q̄(1,W )−Q̄(0,W ). Using the previous formula, the efficient in-
fluence function of the absolute TEM-VIP with a continuous or binary outcome is that
of Proposition 4.1, where the generic Θj is replaced by Ψj. Similarly, the uncentered
efficient influence function of the log-ratio of expected conditional potential outcomes
is given by d(O,P ) = (2A−1)/(Ag(A)+(1−A)(1−g(A)))(Y − Q̄(A,W ))/Q̄(A,W )+
log(Q̄(1,W )/Q̄(0,W )). The efficient influence function of the relative TEM-VIP for
continuous and binary outcome settings is given in Proposition 4.3, where Θj = Γj.

5. The one-step, estimating equation, and TML estimators can then be derived from the
TEM-VIPs efficient influence function. Examples are found in Sections 4.2 and 4.4.

6. These estimators’ asymptotic properties are identical to those of the nonparametric
efficient estimators of Φ, assuming that the potential treatment effect modifiers are
bounded. Again, examples are provided in Sections 4.2 and 4.4.

4.6 Simulation Studies

Next, we investigate the finite-sample performance of the proposed one-step and TML estima-
tors for a subset of the previously introduced estimands. Recall that the one-step estimator
is obtained by subtracting the empirical EIF from the plug-in estimator — and is equal, in
the settings considered here, to the estimating equation estimator — and that the TML es-
timator is derived by first tilting the nuisance parameter estimators to ensure that the mean
of the empirical EIF is negligible, and then using these updated estimators in the plug-in
estimator. The one-step and TML estimators are implemented in the unihtee R software
package [R Core Team, 2023], available at github.com/insightsengineering/unihtee and to be
submitted to the Comprehensive R Archive Network (CRAN). These estimators’ empirical
absolute bias, variance, and Type I error rates are evaluated in two observational study sce-
narios — one with a continuous outcome and another with a binary outcome — and one RCT
setting with a time-to-event outcome. These simulation experiments rely on the simChef R

https://github.com/insightsengineering/unihtee
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package’s simulation study framework [Duncan and Tang, 2022]. Code for reproducing these
simulations is made available at github.com/PhilBoileau/pub temvip-framework.

The nonparametric estimators’ capacity to recover treatment effect modifiers is compared
to that of Tian et al. [2014] and Chen et al. [2017]’s (augmented) modified covariates meth-
ods. These methods are among the few that enable treatment effect modification discovery
in high-dimensional data under a variety of DGPs — albeit requiring stringent assumptions
like sparsity and negligible correlation structure among pre-treatment covariates. We stress,
however, that their primary goal is not the recovery of these treatment effect modifiers,
but CATE estimation. The modified covariates approach estimates the CATE by cleverly
transforming the outcome such that only the treatment-covariate interactions in a GLM
need be modeled. The augmented modified covariates procedure models this transformed
outcome as a function of all covariates to improve efficiency. Both procedures can incorpo-
rate propensity score weights to improve estimation in observational study scenarios. TEM
discovery is possible when employing modeling strategies with built-in feature selection ca-
pabilities; we model the transformed outcome-covariates relationships with a linear model
and fit this model with the LASSO [Tibshirani, 1996]. Variables are classified as TEMs when
their estimated treatment-covariate interaction coefficients are non-zero. These methods are
implemented in the personalized R package [Huling and Yu, 2021].

Continuous Outcome, Observational Study

The first DGP we consider has a continuous outcome Y , high-dimensional covariatesW , and
mimics an observational study, in that treatment status A is an unknown function of W :

W ∼ N(0, I500×500)

A|W ∼ Bernoulli

(
logit−1

(
1

4
(W1 −W2 +W3)

))
Y |A,W ∼ 1 + 2

∣∣∣∣∣
5∑
j=1

Wj

∣∣∣∣∣+ (5A− 2)
5∑
j=1

Wj + ϵ ,

where ϵ ∼ N(0, 1/2). Note that the treatment assignment mechanisms used here and in
the following subsections were chosen to respect Assumption A4.4. Indeed, the estimators
— particularly the TML estimators — presented in Sections 4.2 and 4.4 exhibit extreme
variability in the presence of practical positivity violations. Practical positivity violations
materialize in finite samples when the estimated probability of receiving treatment is negli-
gible, and can occur even when the positivity assumption of A4.4 is satisfied.

We take as target of inference the absolute TEM-VIPs of Equation (4.1). We consider
five sample sizes: n = 125, 250, 500, 1,000, and 2,000. Two hundred replicates are simulated
at each sample size.

We consider the one-step and TML estimators of this parameter where Q̄0 and g0 are
estimated using the Super Learner algorithm of van der Laan et al. [2007b] implemented in

https://github.com/PhilBoileau/pub_temvip-framework
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Figure 4.1: Empirical bias and variance of one-step and TML estimators. The empirical bias and
variance of the one-step and TML estimators are stratified by DGP, treatment modifier status,
and sample size (note the difference in y-axis scales between modifiers and non-modifiers). Two
hundred replicates were simulated to compute the values in each scenario.

the sl3 R package [Coyle et al., 2021]. This algorithm computes the convex combination of
nuisance parameter estimators, referred to as base learners, that optimizes the cross-validated
risk for the squared error and negative log-likelihood loss function for the conditional outcome
and propensity score, respectively. For Q̄0, the base learners are comprised of the LASSO
[Tibshirani, 1996], ridge regression [Hoerl and Kennard, 1970], elastic net [Zou and Hastie,
2005], and multivariate adaptive regression splines (MARS) [Friedman, 1991] estimators
with main and treatment-covariate interaction terms, as well as Random Forests [Breiman,
2001]. For g0, we consider the LASSO, ridge regression, elastic net, MARS, and Random
Forests. The modified covariates method and its augmented counterpart estimate g0 using
LASSO, and employ the identity link function to estimate the association of the covariates
and treatment on the outcome.
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Figure 4.1A presents the empirical absolute bias and variance of the one-step and TML
estimators. Both exhibit a small empirical bias for the TEMs for n = 125, but are otherwise
approximately unbiased at all other sample sizes. These estimators’ variances are virtually
identical at all sample sizes, and rapidly decrease as sample size increases. The bias and vari-
ance for non-TEMs (covariates indices 6 to 500) are similarly negligible for both estimators
in all sample sizes.

We next evaluate these estimators’ ability to distinguish covariates that modify the effect
of treatment from those that do not. The empirical false discovery rate (FDR), true negative
rate (TNR), and true positive rate (TPR) are computed at each sample size. The FDR
reports the proportion of incorrectly classified covariates among the set of predicted TEMs.
The TNR and TPR measure the proportion of correctly classified non-TEMs and TEMs,
respectively. Using nominal 5%-level, two-sided Wald-type hypothesis tests and accounting
for multiple testing using the FDR-controlling approach of Benjamini and Hochberg [1995],
we expect the one-step and TML estimators to achieve a 5% FDR in the largest sample sizes.
The one-step and TML estimators’ classification are compared to those of the modified
covariates and augmented modified covariates methods. Again, variables with non-zero
estimated treatment-covariate interaction coefficients are labeled as TEMs.

Of the four methods considered, only the one-step and TML estimators approximately
control the FDR at the nominal level in all sample sizes (Figure 4.2A). The (augmented)
modified covariates methods, on the other hand, maintain an FDR near 75%. Their perfor-
mance does not improve as a function of n. Trends in the methods’ FDRs are elucidated
by their TNRs and TPRs. The one-step and TML estimators produce a near-perfect TNR
while maintaining a competitive TPR. The augmented modified covariates procedure has a
TPR near 100% in all sample sizes, yet has TNRs marginally lower than the one-step and
TML estimators. The modified covariates method produces similar TNRs to its augmented
counterpart, but has poorer TPRs. The parametric methods’ inability to reliably classify
TEMs might be due to the non-linearity of the expected conditional outcome or the number
of features relative to the sample size.

Binary Outcome, Observational Study

We consider another observational DGP, this time with a binary outcome and a moderate
number of correlated covariates:

W ∼ N(0,Σ100×100), Σij =

{
1, i = j

0.1|i− j|−1.8, otherwise

A|W ∼ Bernoulli

(
logit−1

(
1

4
(W1 +W2 +W3)

))
Y |A,W ∼ Bernoulli

(
logit−1

(
1− 2A+

5∑
j=1

Wj +

(
A− 1

2

) 5∑
j=1

Wj

))
.
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Figure 4.2: TEM classification results. The one-step, TML, modified covariates, and augmented
modified covariates estimators’ capacities to correctly identify TEMs from the set of covariates are
measured in terms of the FDR, TPR, and TNR. These metrics are stratified by DGP and sample
size. Two hundred replicates were simulated to compute the values in each scenario.
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Here, Σ is a 100 × 100 Toeplitz matrix, so that the pre-treatment covariates’ correlation
structure imitates that of spatial or temporal data. Again, care is taken to avoid practical
positivity violation issues.

We benchmark the estimation of the relative TEM-VIP presented in Equation (4.6). The
true parameter values are approximated using Monte Carlo methods. Again, 200 replicates
were simulated for each of n = 125, 250, 500, 1,000, and 2,000. The corresponding one-step
and TML estimators are compared and their nuisance parameters are estimated using Super
Learners, with the same base learners for Q̄0 and g0 as in the continuous-outcome exam-
ple. The (augmented) modified covariate methods again rely on the LASSO for propensity
score estimation, and use the logistic link function to model the outcome conditional on the
potential TEMs and treatment.

The empirical bias and variance of the one-step and TML estimators are provided in
Figure 4.1B. Among the TEMs, the one-step estimator exhibits more finite-sample bias than
the TML estimator, though this bias decreases as sample size increases. The TML estimator,
however, has noticeably greater finite-sample variance than the one-step for n = 125, 250.
Among the non-TEMs (pre-treatment covariates indexed 6 through 100), these estimators
have similar bias. Again, however, the TML estimator has greater variance in the smaller
sample sizes.

The empirical FDR, TNR, and TPR of the one-step and TML estimators, as well as
those of the (augmented) modified covariates methods are presented in Figure 4.2B. Only
the one-step estimator reliably controls the FDR at the 5% level at sample sizes of 500
and above. This is seemingly due to the estimator’s conservative behavior: It achieves a
near-perfect TNR at all sample sizes, but has the lowest TPR of all estimators regardless
of sample size. The TML estimator fails to control the FDR at the desired levels in all
sample sizes, though the FDR decreases with sample size and is nearly controlled at n =
2, 000. The poor FDR of the TML estimator relative to the one-step estimator may be due
to the latter’s increased variability, exhibited in Figure 4.1B. The (augmented) modified
covariates methods tend to perform similarly: their FDR hovers around 75% at all sample
sizes, their TNR decreases marginally as n increases, and their TPRs are generally higher
than those of the nonparametric estimators. Given that sparsity and linearity assumptions
are satisfied, the lackluster FDR control of the (augmented) modified covariates procedures
might be attributed to violations of the Irrepresentable Condition [Zhao and Yu, 2006] —
the covariates’ correlation structure is too complex.

Right-Censored Time-to-Event Outcome, Randomized Control
Trial

Next, we simulate RCT data with known treatment assignment mechanism, a discrete
right-censored time-to-event outcome, and a duration of 10 time units. Recall that O =
(W,A, T̃ ,∆), where W and A are defined as before, T̃ is the right-censored time-to-event,
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and ∆ is the censoring indicator. The simulation generative model is given by

W ∼ N(0,Σ300×300)

A ∼ Bernoulli(1/2)

C|A,W ∼ min
{
Negative Binomial

(
1, logit−1 (5 + A+W1)

)
, 10
}

T |A,W,C ∼ Negative Binomial

(
1, logit−1

(
−2− A+ (10A− 5)

10∑
j=1

Wj

))
T̃ = min {T,C}
∆ = I(T > c),

where the covariates’ covariance matrix Σ is block-diagonal, with each block corresponding to
ten moderately correlated features. This correlation structure loosely mimics the expression
levels of a collection of genes.

The estimand is defined as the absolute TEM-VIP of Equation (4.9) at time t = 9. Again,
the true parameter values are approximated through Monte Carlo methods. The one-step and
TML estimators’ conditional censoring hazard function is estimated by the LASSO and their
conditional survival hazard function is estimated by the LASSO augmented with treatment-
covariate interaction terms. The propensity scores of these nonparametric estimators and the
(augmented) modified covariates methods are fixed at 1/2, as in a 1:1 RCT. Penalized Cox
proportional hazards models are used by the parametric methods to model the conditional
survival hazard. We highlight that our simulation DGP satisfies the proportional hazards and
non-informative censoring assumptions, but that its covariates possess a complex correlation
structure. This might worsen the (augmented) modified covariate methods’ treatment effect
modifier classification performance.

Figure 4.1C presents the one-step and TML estimators’ empirical biases and variances.
As for the binary DGP, both estimators are biased for the TEMs (indices 1–10) at all sample
sizes, but approximately unbiased for all non-TEMs. As expected, however, the empirical
bias associated with the TEMs decreases with sample size, and is negligible when n = 2,000.
The empirical variances of these estimators behave as expected, too: they decrease with
increasing sample size. The TML estimator’s empirical variances are generally smaller than
those of the one-step estimator.

The FDR, TNR, and TPR of all methods considered are reported in Figure 4.2C. The
TML estimator is the only procedure to control the FDR at the nominal 5% level, while
the one-step estimator possesses an FDR of approximately 10% for n = 125, 250, and which
slowly decreases to the nominal rate by n = 2,000. The (augmented) modified covariates
approaches result in empirical FDRs that grow with sample size, from approximately 70% for
n = 125 to 90% for n = 2,000. The parametric methods’ behavior with respect to the FDR
might be explained by the relationship between their TNR and sample size: as sample size
increases, they produce a greater amount of false positives. The nonparametric estimators,
however, maintain a near-perfect TNR at all sample sizes. All procedures perform similarly
with respect to the TPRs in all but the smallest sample size.
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4.7 Application

We apply our framework to a clinical trial dataset with a right-censored time-to-event out-
come. This analysis, as well as the results of the simulation studies, can be reproduced with
the code found in this public repository: github.com/PhilBoileau/pub temvip-framewor.

Trastuzumab is a monoclonal antibody targeting the HER2 oncogene that demonstrably
improves the clinical outcomes of breast cancer patients whose tumors over-express this
gene. Improvement is not uniform, however: some patients are resistant to this therapy.
Identifying biomarkers that predict response to trastuzumab is therefore of great interest
[Loi et al., 2014].

Loi et al. [2014] make available a subset of patients enrolled in the FinHER clinical trial
(GSE47994), a study comparing docetaxel and vinorelbine — chemotherapies — as adjuvant
treatment for early-stage breast cancer [Joensuu et al., 2006]. Patients with over-expressed
HER2 disease were additionally randomized to receive either nine weekly trastuzumab in-
fusions or no trastuzumab. Loi et al. [2014] provide the quality controlled, normalized gene
expression data and relevant clinical information for 201 of these patients. Taking as outcome
distant disease-free survival, defined as the time interval between the date of randomization
and the date of first cancer recurrence or death, if prior to recurrence, we consider the 500
most variable genes for the purpose of TEM discovery.

Traditional approaches to this task rely on Cox proportional hazards models. For ex-
ample, a penalized regression of the outcome on the treatment, genes, treatment-gene in-
teractions, and pre-treatment covariates like age and chemotherapy could be fit, and the
genes with non-zero estimated interaction coefficients would be classified as TEMs. This is
equivalent to the augmented modified covariates approach of Tian et al. [2014]. Alterna-
tively, individual regressions for each gene of the outcome conditioning on treatment, gene,
pre-treatment covariates, and the treatment-gene interaction could be fitted. Genes with sig-
nificant treatment-gene interactions would be reported as TEMs. However, both approaches
perform inference about conditional parameters, the hazards ratio, while we aim to learn
about parameters that reflect population-level information about treatment effect hetero-
geneity. Verifying the proportional hazards assumption is also impractical given the number
of potential TEMs considered.

We instead use our framework, taking as estimand the RMST-based TEM-VIP of Equa-
tion (4.9). Patients’ distant disease-free survival times are discretized into 6-month intervals
for computational convenience. We use the TML estimator since the previous simulation
experiments suggests that it controls the Type I error rate better than the one-step estima-
tor at this sample size. Its element-wise variance is also likely lower. Given that previous
evidence suggests possible higher-order interactions between patients’ chemotherapy regi-
men, trastuzumab, and biomarkers [Loi et al., 2014], we estimate the conditional failure and
censoring hazards using a Super Learner made up of the penalized generalized linear models
using the logit link and possessing terms for the treatment, genes, and treatment-gene inter-
actions, Random Forests, and XGBoost [Chen and Guestrin, 2016]. This procedures takes
approximately 20 minutes to run on a personal computer with a single core of an Apple

https://github.com/PhilBoileau/pub_temvip-framework
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Figure 4.3: FinHER clinical trial data analysis results. A Empirical cumulative distribution func-
tion (eCDF) of nominal p-values. The dotted line corresponds to the eCDF under the null (a
Uniform([0, 1]) distribution). B Volcano plot of the 500 most variable genes’ TEM-VIP estimates
and associated nominal p-values. Yellow genes are deemed unimportant due to their small esti-
mated effect sizes and larger p-values; orange genes possess a meaningful estimated effect but fail
to achieve the adjusted p-value cutoff; red genes are significant at the 5% FDR level and have large
estimated TEM-VIPs. C The log-transformed gene expression data of genes with meaningful effect
estimates are used to cluster patients. Hierarchical clustering with complete linkage is used for
patients and identified TEMs alike.

M1 CPU. Parallelization can reduce this runtime further. We note that similar results are
produced by directly estimating the nuisance parameters with Random Forests or XGBoost,
though at the expense of an objective choice of nuisance estimators otherwise facilitated by
the Super Learner estimator.

In this analysis, we have sought to dichotomize pre-treatment covariates into TEMs and
non-TEMs based on the value of their estimated TEM-VIP. However, as expected, there
seems to be a continuum in the biomarkers’ capacity to influence the effect of treatment,
in terms of both statistical significance and biological effect size. This can be seen in the
empirical cumulative distribution function (eCDF) of the nominal p-values (Figure 4.3A)
and in the volcano plot (Figure 4.3B). Hypothesis testing alone, with a null of Ψ(P0) = 0,
may therefore not be adequate. As in differential expression studies in transcriptomics,
one can instead leverage the volcano plot and deem a biomarker of clinical interest if it is
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Table 4.1: Top five selected TEMs

Gene Estimate Std. Err. Adj. p-Value
1 EPPK1 -0.116 0.025 0.001
2 NDUFB3 -0.121 0.028 0.004
3 BNIP3L -0.108 0.025 0.004
4 PNKD -0.106 0.027 0.006
5 DUSP4 -0.097 0.024 0.006

significant at the 5% FDR level and if its absolute estimated TEM-VIP is larger than 0.05
(for each unit increase in log2 gene expression, a TEM-VIP equal to 0.05 in this analysis
approximately corresponds to an expected difference in RMST of about 18 days). There
are 220 such biomarkers for the FinHER clinical trial. Alternatively, if one is interested
only in modifications above a certain magnitude m, one could define the null hypothesis
for the jth biomarker as |Ψj(P0)| ≤ m. The (adjusted) p-values obtained from these tests
could then be used to produce a ranked list of biomarkers for follow-up analyses. The above
considerations highlight the importance of thinking carefully and critically about how to
translate the biological question of interest into a statistical inference question, including
defining what constitutes a meaningful effect size.

Now, the five genes with the smallest p-values from among the clinically meaningful
biomarkers are presented in Table 4.1. All have previously been linked to breast cancer, and
their estimated effects are generally in the direction expected by the literature. Increased
EPPK1 expression has been linked to estrogen-related receptor γ, which is associated with
breast cancer growth suppression [Ariazi et al., 2002, Tiraby et al., 2011]. A meta-analysis
of 11 genome-wide association studies found that a single nucleotide polymorphism in a
NDUFB3 promoter was significantly associated estrogen receptor negative breast cancer
[Couch et al., 2016]. Moussay et al. [2011] found that BNIP3L upregulation is associated
with TNFα stimulation, which is associated with trastuzumab resistance [Mercogliano et al.,
2017]. Evidence suggests that overexpression of MR-1S, an isomer of PNKD associated with
disordered cell differentiation, malignant transformation initiation, and accelerated metasta-
sis, is therefore a potential therapeutic target of breast cancer [Wang et al., 2018]. Finally,
Menyhart et al. [2017] found that increased expression of DUSP4 correlates with increased
resistance to trastuzumab.

We also present the log-transformed gene expression of the features with clinically mean-
ingful TEM-VIP estimates in Figure 4.3C. We should expect them to define patient sub-
groups if these biomarkers truly modify the effect of treatment. Indeed, these genes’ ex-
pression data produce multiple distinct patient clusters. We refrain from interpreting Fig-
ure 4.3C any further, however, considering it solely a diagnostic tool. Using patients’ out-
comes and biomarkers to compute TEM-VIP estimates, then relying on these estimates to
data-adaptively define subgroups in the same data may cause overfitting. These results
would ideally be validated on an external dataset, though, as is often the case with openly-
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accessible clinical trial data, none are available. This might motivate extensions to this
TEM discovery framework that support valid inference about both TEM-VIPs and patient
subgroups using the same data.

4.8 Discussion

We propose several causally interpretable TEM-VIPs in full-data models, establish iden-
tifiability conditions to relate them to parameters of observed-data distributions, derive
accompanying nonparametric estimators, and study these estimators’ asymptotic behavior.
Under non-stringent conditions on the DGPs and nuisance parameter estimators, we find
that these estimators are consistent. Imposing a few additional assumptions results in effi-
cient, asymptotically linear estimators that permit straightforward hypothesis testing about
the corresponding TEM-VIPs. A general workflow for creating new TEM-VIPs and deriving
associated nonparametric estimators is provided.

Simulation experiments demonstrate that the estimators’ behavior approximates their
established theoretical guarantees in realistic DGPs and for moderate sample sizes. As an
additional validation of our methodology, we attempted to identify TEMs in a publicly
available clinical trial dataset. These data were originally collected to assess the effect of
a monoclonal antibody therapy, trastuzumab, on breast cancer patients. Many genes were
classified as TEMs, and a literature review of the top-ranked genes suggests that they are
associated with breast cancer. Indeed, a number of these TEMs are known biomarkers of
trastuzumab resistance. A diagnostic plot of the predicted TEMs’ expression data further
suggests that they may be used to define patient subgroups, but this must be validated with
external data.

This work gives rise to several research directions. The framework outlined in Section 4.5
permits the derivation of bespoke pathwise differentiable TEM-VIPs and accompanying non-
parametric efficient estimators. In particular, researchers working in the biotechnology and
pharmaceutical industries can perform inference about TEM-VIPs derived from estimands
used in clinical trials. Such heterogeneous treatment effect analyses would closely track
the statistical guidelines enforced by regulatory authorities, like those of the International
Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use
for clinical trials [International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use, 2019]. This framework for TEM inference might also sup-
port statistically rigorous subgroup discovery. TEMs identified using our methodology could
be used to cluster observations (i.e., patients), and, subsequently, treatment effects could
be estimated within these groups. Whether there exists a sound approach that permits
the application of this workflow to a single dataset, perhaps building on recent advances in
post-selection inference, should be investigated. Future work might also determine whether
these TEM-VIP estimators improve treatment rule estimation procedures by acting as vari-
able filters. That is, only pre-treatment covariates with TEM-VIP estimates significantly
different from zero would be used, along with known confounders, to learn the treatment
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rule. Doing so would increase the interpretability of the rule and might improve estimation
in high-dimensional regimes.

4.9 Proofs

Theorem 4.1

Proof. It follows immediately from A4.3 and A4.4 that Q̄PX,0
(A,W ) = Q̄0(A,W ). Then

ΨF (Px,0) = Ψ(P0).

Proposition 4.1

Proof. Using the generic definition provided in Equation (4.2), the efficient influence function
of Ψj(O,P ) is

Dj(O,P ) =
d

dϵ
Ψj(Pϵ)

∣∣
ϵ=0

=
Wj

EP
[
W 2
j

] (I(A = 1)

g(W )

(
Y − Q̄(A,W )

)
+ Q̄(1,W )

− I(A = 0)

1− g(W )

(
Y − Q̄(A,W )

)
+ Q̄(0,W )−Ψj(P )Wj

)
.

Proposition 4.2

Proof. From the definition of Dj given by Equation (4.5), we find that

EP0 [Dj(O,P )] ∝ EP0

{
Wj

((
g0(W )

g(W )
− 1

)(
Q̄0(1,W )− Q̄(1,W )

)
−
(
1− g0(W )

1− g(W )
− 1

)(
Q̄0(0,W )− Q̄(0,W )

))}
.

It follows immediately that EP0 [Dj(O,P )] = 0 when g = g0 or Q̄ = Q̄0 for j = 1, . . . , p.

Theorem 4.2

Proof. Asymptotic linearity of Ψ(OS) and Ψ(TML) are achieved when the third and fourth
terms in the von Mises expansion of Equation (4.3) converge in probability to 0. Under
A4.7, D(O,Pn) ∈ G0 with probability tending to one which implies that EP0 [(Dj(O,Pn) −
Dj(O,P0))

2] = oP (1). It follows that the third term of the von Mises expansion is oP (1).
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What remains is to bound the error term. Similar to the proof for the cross-fitted
estimator in the previous chapter, we find that

−R(P0, Pn) =
1

EP0

[
W 2
j

]EP0

[
Wj

(
g0(1,W )

gn(1,W )
− 1

)(
Q̄0(1,W )− Q̄n(1,W )

)
−Wj

(
g0(0,W )

gn(0,W )
− 1

)(
Q̄0(0,W )− Q̄n(0,W )

)]
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W 2
j
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(
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)(
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+

∣∣∣∣EP0
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(
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)(
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(
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(
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.

The last inequality follows from A4.9. A similar bound applies to R(P0, Pn). The remainder
term of Equation (4.3) is therefore oP (1) under the conditions of A4.8.

It follows, applying the central limit theorem to the first term of the von Mises expansion,

that
√
n(Ψ

(OS)
j (Pn)−Ψj(P0)

D→ N(0, P0Dj(O,P0)). The same is true for Ψ
(TMLE)
j (Pn).
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Corollary 4.1

Proof. The conditions outlined in Theorem 4.1 imply that Q̄PX,0
(A,W ) = Q̄0(A,W ). It

follows immediately that ΓF (PX,0) is equal to Γ(P0).

Proposition 4.3

Proof. Using the same point mass contamination approach, we obtain the following efficient
influence function for Γj(O,P ):

Dj(O,P ) =
d

dϵ
Γj(Pϵ)

∣∣
ϵ=0

=
Wj

EP
[
W 2
j

] ( I(A = 1)

g(W )Q̄(1,W )

(
Y − Q̄(A,W )

)
+ Q̄(1,W )

− I(A = 0)

(1− g(W ))Q̄(0,W )

(
Y − Q̄(A,W )

)
+ Q̄(0,W )−Ψj(P )Wj

)
.

Proposition 4.4

Proof. From the definition of Dj given by Equation (4.8), we find that

EP0 [Dj(O,P )] ∝ EP0

{
Wj

(
g0(W )

g(W )Q̄(A,W )

(
Q̄0(1,W )− Q̄(1,W )

)
+ log Q̄0(1,W )− log Q̄(1,W )

− 1− g0(W )

(1− g(W )) Q̄(A,W )

(
Q̄0(0,W )− Q̄(0,W )

)
+ log Q̄0(0,W )− log Q̄(0,W )

)}
.

It follows immediately that EP0 [Dj(O,P )] = 0 when Q̄ = Q̄0.

Theorem 4.3

Proof. The proof is analogous to Theorem 4.2. Again, the entropy constraint of A4.7 ensures
that the third term of the von Mises expansion converges to zero in probability to 1. The
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remainder term in the same von Mises expansion is shown to be oP (n
−1/2):

−R(P0, Pn) =
1

EP0

[
W 2
j

]EP0

[
Wj

(
g0(W )

gn(W )Q̄n(A,W )

(
Q̄0(1,W )− Q̄n(1,W )

)
+ log Q̄0(1,W )− log Q̄n(1,W )

− 1− g0(W )

(1− gn(W )) Q̄n(A,W )

(
Q̄0(0,W )− Q̄n(0,W )

)
− log Q̄0(0,W ) + log Q̄n(0,W )

)]
∝ EP0

[
Wj

g0(W )

gn(W )Q̄n(A,W )

(
Q̄0(1,W )− Q̄n(1,W )

)]
+ EP0

[
Wj

(
log Q̄0(1,W )− log Q̄n(1,W )

)]
− EP0

[
Wj

1− g0(W )

(1− gn(W )) Q̄n(A,W )

(
Q̄0(0,W )− Q̄n(0,W )

)]
− EP0

[
Wj

(
log Q̄n(0,W ) + log Q̄0(0,W )

)]
= EP0

[
Wj

g0(W )

gn(W )

(
Q̄0(1,W )

Q̄n(1,W )
− 1

)]
− EP0

[
Wj

(
Q̄0(1,W )

Q̄n(1,W )
− 1

)]
− EP0

[
Wj

1− g0(W )

(1− gn(W ))

(
Q̄0(0,W )

Q̄n(0,W )
− 1

)]
+ EP0

[
Wj

(
Q̄0(0,W )

Q̄n(0,W )
− 1

)]
+ oP (n

−1/2)

≤
∣∣∣∣EP0

[
Wj

(
g0(W )

gn(W )
− 1

)(
Q̄0(1,W )

Q̄n(1,W )
− 1

)]∣∣∣∣
+

∣∣∣∣EP0

[
Wj

(
1− g0(W )

1− gn(W )
− 1

)(
Q̄0(0,W )

Q̄n(0,W )
− 1

)]∣∣∣∣
+ oP (n

−1/2)

≤ EP0

[
W 2
j

Q̄n(1,W )2

(
g0(W )

g(W )
− 1

)2
]1/2

EP0

[(
Q̄0(1,W )− Q̄n(1,W )

)2]1/2
+ EP0

[
W 2
j

Q̄n(0,W )2

(
1− g0(W )

1− gn(W )
− 1

)2
]1/2

EP0

[(
Q̄0(0,W )− Q̄n(0,W )

)2]1/2
+ oP (n

−1/2)

a.s.

≤ M EP0

[(
g0(W )

gn(W )
− 1

)2
]1/2

EP0

[(
Q̄0(1,W )− Q̄n(1,W )

)2]1/2
+M EP0

[(
1− g0(W )

1− gn(W )
− 1

)2
]1/2

EP0

[(
Q̄0(0,W )− Q̄n(0,W )

)2]1/2
+ oP (n

−1/2)
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The second equality follows from A4.10 and the Maclaurin series of log(x + 1). The
final inequality follows from A4.9 and that Y is a positive random variable such that
W 2
j /Q̄(A,W )2 ≤M almost surely (a.s.). The reported result follows by applying the central

limit theorem to the first term of the von Mises expansion.

Theorem 4.4

Proof. SPX,0
(t|A,W ) ≡ S0(t|A,W ) is immediate from A4.4, A4.12 and A4.13. Then

ΨF (PX,0; t) = Ψ(P0; t).

Proposition 4.5

Proof. Using previous results from Moore and van der Laan [2011] and the functional delta
method, we obtain:

Dj(O,P ; t) =
d

dϵ
Ψj(Pϵ; t)

∣∣
ϵ=0

=
Wj

EP
[
W 2
j

] (∫ t

0

d(O,P ;u, 1)− d(O,P ;u, 0) du−Ψj(P ; t)Wj

)
.

Proposition 4.6

Proof. From the definition of Dj(O,P ; t) in Equation (4.11), we find that

EP0 [Dj(O,P ; t)] ∝

EP0

{
Wj

(∫ t

0

(d(O,P ;u, 1)− d(O,P0;u, 1))− (d(O,P ;u, 0)− d(O,P0;u, 0)) du

)}
.

Conditioning on W , it suffices to show that EP0 [da(O,P ; t)− da(O,P0; t)] = 0. It follows
from previous results of van der Laan and Robins [2003b], Tsiatis [2006] and Cui et al. [2022]
that this is achieved when A4.14 or A4.15 are satisfied.

Theorem 4.5

Proof. The proof is analogous Theorem 4.2’s. From the results of Moore and van der Laan
[2011] and the the functional delta method, the entropy condition of A4.7 implies that the
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third term of the von Mises expansion for any given t is oP (1). Then,

−R(P, P0) =
1

EP0

[
W 2
j

]EP0

{
Wj

(∫ t

0

(d1(O,P ;u)− d1(O,P0;u))

− (d0(O,P ;u)− d0(O,P0;u)) du

)}
a.s.

≤ C

EP0

[
W 2
j

]∣∣∣∣EP0

{∫ t

0

(d1(O,P ;u)− d1(O,P0;u))

− (d0(O,P ;u)− d0(O,P0;u)) du

}∣∣∣∣
Similar to the proof of Proposition 4.6, it suffices to show that the integrand is bounded by
oP (n

−1/2). Indeed, this has previously been established under conditions A4.7, A4.2, A4.9,
A4.16 and A4.17. See, for example, van der Laan and Robins [2003b], [Tsiatis, 2006] and
Cui et al. [2022].

Corollary 4.2

Proof. It follows from the conditions of Theorem 4.4 that ΓF (PX,0) is equal to Γ(P0).

Proposition 4.7

Proof. Again relying on the point mass contamination approach, we obtain:

Dj(O,P ; t) =
d

dϵ
Γj(Pϵ; t)

∣∣
ϵ=0

=
Wj

EP
[
W 2
j

]( 2A− 1

Ag(W ) + (1− A)(1− g(W ))∫ t

0

I(T̃ ≥ u)

c(u−|A,W )S(u|A,W )
(I(T = u)− λ(u|A,W ) du)

+ log
S(t|1,W )

S(t|0,W )
− Γ(P ; t)Wj

)
.
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Proposition 4.8

Proof. By the definition of Equation (4.14), we have that

EP0 [Dj(O,P ; t)] ∝ EP0

{
Wj

((
g0(W )

g(W )
− 1− g0(W )

1− g(W )

)
∫ t

0

c0(u−|A,W )

c(u−|A,W )S(u|A,W )
(λ0(u|A,W )− λ(u|A,W )) du

+ log
S(t|1,W )

S(t|0,W )
− log

S0(t|1,W )

S0(t|0,W )

)}
Then EP0 [Dj(O,P ; t)] = 0 under A4.14.
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Theorem 4.6

Proof. A4.7 implies that the third term of the von Mises expansion is oP (1). We then find
that

−R(P0, Pn) =
1

EP0

[
W 2
j

]EP0

{
Wj

(
2A− 1

Agn(W ) + (1− A)(1− gn(W ))∫ t

0

I(T̃ ≥ u)

cn(u−|A,W )Sn(u|A,W )
(I(T = u)− λn(u|A,W )) du

+ log
Sn(t|1,W )

Sn(t|0,W )
− log

S0(t|1,W )

S0(t|0,W )

)}
=

1

EP0

[
W 2
j

]EP0

{
Wj

((
g0(W )

gn(W )
− 1− g0(W )

1− gn(W )

)
∫ t

0

c0(u−|A,W )

cn(u−|A,W )Sn(u|A,W )
(λ0(u|A,W )− λn(u|A,W )) du

+ log
Sn(t|1,W )

Sn(t|0,W )
− log

S0(t|1,W )

S0(t|0,W )

)}
=

1

EP0

[
W 2
j

]EP0

{
Wj

((
g0(W )

gn(W )
− 1− g0(W )

1− gn(W )

)
∫ t

0

c0(u−|A,W )

cn(u−|A,W )Sn(u|A,W )
(λ0(u|A,W )− λn(u|A,W )) du

+

(
Sn(t|1,W )

S0(t|1,W )
− 1

)
−
(
S0(t|0,W )

Sn(t|0,W )
− 1

))}
+ oP (n

−1/2)

=
1

EP0

[
W 2
j

]EP0

{
Wj

((
g0(W )

gn(W )

c0(t|A,W )

cn(t|A,W )
− 1

)(
S0(t|1,W )

Sn(t|1,W )
− 1

)
+

(
1− g0(W )

1− gn(W )

c0(t|A,W )

cn(t|A,W )
− 1

)(
S0(t|A = 0,W )

Sn(t|A = 0,W )
− 1

))}
+ oP (n

−1/2)

a.s.

≤ C

EP0

[
W 2
j

]{EP0

[(
g0(W )c0(t|A,W )− gn(W )cn(t|A,W )

gn(W )cn(t|A,W )

)2
]1/2

EP0

[
(S0(t|1,W )− Sn(t|1,W ))2

]1/2
+ EP0

[(
(1− g0(W ))c0(t|A,W )− (1− gn(W ))cn(t|A,W )

(1− gn(W ))cn(t|A,W )

)2
]1/2

EP0

[
(S0(t|0,W )− Sn(t|0,W ))2

]1/2}
+ oP (n

−1/2)
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H. Poincaré. Calcul des probabilités, volume 1. Gauthier-Villars, 1912.

M. Pourahmadi. High-dimensional covariance estimation. Wiley series in probability and
statistics. Wiley, 2013.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2022. URL https://www.R-project.org/.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2023. URL https://www.R-project.org/.

B. I. Rini and M. B. Atkins. Resistance to targeted therapy in renal-cell carcinoma.
The Lancet Oncology, 10(10):992–1000, 2009. ISSN 1470-2045. doi: https://doi.
org/10.1016/S1470-2045(09)70240-2. URL https://www.sciencedirect.com/science/

article/pii/S1470204509702402.

B. I. Rini, T. Powles, M. B. Atkins, B. Escudier, D. F. McDermott, C. Suarez, S. Brac-
arda, W. M. Stadler, F. Donskov, J. L. Lee, R. Hawkins, A. Ravaud, B. Alekseev,
M. Staehler, M. Uemura, U. De Giorgi, B. Mellado, C. Porta, B. Melichar, H. Gur-
ney, J. Bedke, T. K. Choueiri, F. Parnis, T. Khaznadar, A. Thobhani, S. Li, E. Piault-
Louis, G. Frantz, M. Huseni, C. Schiff, M. C. Green, and R. J. Motzer. Atezolizumab
plus bevacizumab versus sunitinib in patients with previously untreated metastatic re-
nal cell carcinoma (immotion151): a multicentre, open-label, phase 3, randomised con-
trolled trial. The Lancet, 393(10189):2404–2415, 2019. ISSN 0140-6736. doi: https://doi.
org/10.1016/S0140-6736(19)30723-8. URL https://www.sciencedirect.com/science/

article/pii/S0140673619307238.

D. Risso and M. Cole. scRNAseq: Collection of Public Single-Cell RNA-Seq Datasets, 2020.
R package version 2.3.17.

H. Robbins. The empirical Bayes approach to statistical decision problems. Annals of
Mathematical Statistics, 35(1):1–20, 1964.

J. Robins, L. Orellana, and A. Rotnitzky. Estimation and extrapolation of optimal
treatment and testing strategies. Statistics in Medicine, 27(23):4678–4721, 2008. doi:
https://doi.org/10.1002/sim.3301. URL https://onlinelibrary.wiley.com/doi/abs/

10.1002/sim.3301.

J. M. Robins, A. Rotnitzky, and L. P. Zhao. Analysis of semiparametric regression models
for repeated outcomes in the presence of missing data. Journal of the American Statistical
Association, 90(429):106–121, 1995.

https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.sciencedirect.com/science/article/pii/S1470204509702402
https://www.sciencedirect.com/science/article/pii/S1470204509702402
https://www.sciencedirect.com/science/article/pii/S0140673619307238
https://www.sciencedirect.com/science/article/pii/S0140673619307238
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3301
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3301


BIBLIOGRAPHY 126

M. Rosenblum and M. J. van der Laan. Simple, efficient estimators of treatment effects
in randomized trials using generalized linear models to leverage baseline variables. The
International Journal of Biostatistics, 6(1), 2010.

A. J. Rothman, E. Levina, and J. Zhu. Generalized thresholding of large covariance matrices.
Journal of the American Statistical Association, 104(485):177–186, 2009. doi: 10.1198/
jasa.2009.0101. URL https://doi.org/10.1198/jasa.2009.0101.

P. Royston and M. K. B. Parmar. The use of restricted mean survival time to estimate the
treatment effect in randomized clinical trials when the proportional hazards assumption
is in doubt. Statistics in Medicine, 30(19):2409–2421, 2011. doi: https://doi.org/10.1002/
sim.4274. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4274.

P. Royston and W. Sauerbrei. Interactions between treatment and continuous covariates: A
step toward individualizing therapy. Journal of Clinical Oncology, 26(9):1397–1399, 2008.
doi: 10.1200/JCO.2007.14.8981. URL https://doi.org/10.1200/JCO.2007.14.8981.
PMID: 18349388.

D. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology, 66(5):688–701, 1974.

A. Schick. On Asymptotically Efficient Estimation in Semiparametric Models. The Annals
of Statistics, 14(3):1139 – 1151, 1986.
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