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Hierarchical multivariate directed acyclic graph autoregressive 
models for spatial diseases mapping

Leiwen Gao1, Abhirup Datta2, Sudipto Banerjee1

1Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA

2Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA

Abstract

Disease mapping is an important statistical tool used by epidemiologists to assess geographic 

variation in disease rates and identify lurking environmental risk factors from spatial patterns. 

Such maps rely upon spatial models for regionally aggregated data, where neighboring regions 

tend to exhibit similar outcomes than those farther apart. We contribute to the literature on 

multivariate disease mapping, which deals with measurements on multiple (two or more) diseases 

in each region. We aim to disentangle associations among the multiple diseases from spatial 

autocorrelation in each disease. We develop multivariate directed acyclic graphical autoregression 

models to accommodate spatial and inter-disease dependence. The hierarchical construction 

imparts flexibility and richness, interpretability of spatial autocorrelation and inter-disease 

relationships, and computational ease, but depends upon the order in which the cancers are 

modeled. To obviate this, we demonstrate how Bayesian model selection and averaging across 

orders are easily achieved using bridge sampling. We compare our method with a competitor using 

simulation studies and present an application to multiple cancer mapping using data from the 

Surveillance, Epidemiology, and End Results program.

Keywords

areal data analysis; Bayesian hierarchical models; directed acyclic graphical autoregression; 
multiple disease mapping; multivariate areal data models

1 | INTRODUCTION

Spatially referenced data comprising regional aggregates of health outcomes over delineated 

administrative units such as counties or zip codes are widely used by epidemiologists to 

map mortality or morbidity rates and better understand their geographic variation. Disease 

mapping, as this exercise is customarily called, employs statistical models to present 

smoothed maps of rates or counts of a disease. Such maps can assist investigators in 
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identifying lurking risk factors1 and in detecting “hot-spots” or spatial clusters emerging 

from common environmental and socio-demographic effects shared by neighboring regions. 

By interpolating estimates of health outcome from areal data onto a continuous surface, 

disease mapping also generates smoothed maps for the small-area scale, adjusting for the 

sparsity of data or low population size.2,3

For a single disease, there has been a long tradition of employing Markov random 

fields (MRFs)4 to introduce conditional dependence for the outcome in a region given 

its neighbors. Two conspicuous examples are the conditional autoregression (CAR)5,6 

and simultaneous autoregression (SAR) models7 that build dependence using undirected 

graphs to model geographic maps. More recently, a class of directed acyclic graphical 

autoregressive (DAGAR) models was proposed as a preferred alternative to CAR or 

SAR models in allowing better identifiability and interpretation of spatial autocorrelation 

parameters.8

Multivariate disease mapping is concerned with the analysis of multiple diseases that are 

associated among themselves and across space. It is not uncommon to find substantial 

associations among different diseases sharing genetic and environmental risk factors. 

Quantification of genetic correlations among multiple cancers has revealed associations 

among several cancers including lung, breast, colorectal, ovarian, and pancreatic cancers.9 

Disease mapping exercises with lung and esophageal cancers have also evinced associations 

among them.10 When the diseases are inherently related so that the prevalence of one 

encourages (or inhibits) occurrence of the other, there can be substantial inferential benefits 

in jointly modeling the diseases rather than fitting independent univariate models for each 

disease.10–21

The existence of multivariate MRFs can be demonstrated using a multivariate extension of 

the so called “Brook’s lemma,” which attempts to derive a joint distribution from specified 

full conditionals.13,22,23 McNab, in a series of papers, has delivered substantial insights 

into the construction, computation, and properties of different classes of multivariate CAR 

models.21,24–26 Rather than work with full conditionals, an alternate approach builds joint 

distributions using linear transformations of a set of univariate CAR models.14,16,19,27,28 

A different classe merges from hierarchical constructions10,29 where each disease enters 

the model in a given sequence (or order) of conditional probability models. This produces 

simple yet flexible and interpretable association structures, but every ordering produces 

a different model resulting in an explosion of models even for a modest number of 

cancers (say, more than 2 or 3 diseases). While multivariate MRF models constructed from 

undirected graphs are invariant to ordering, hence obviate the issue of order dependence, 

they impose restrictions to ensure positive-definiteness of covariance matrices, can be 

computationally onerous and render covariance structures that are challenging to interpret.

We introduce a class of multivariate DAGAR (MDAGAR) models for multiple diseases 

mapping by building the joint distribution hierarchically using univariate DAGAR models. 

This approach is analogous to generalized MCAR (GMCAR) models.10 The objective 

here is to retain the interpretation of spatial autocorrelation offered by the DAGAR, 

which is challenging for the CAR30 and order-free MCAR models. Our methodological 
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innovation is devising a hierarchical MDAGAR model in conjunction with a bridge 

sampling algorithm31,32 for choosing among differently ordered hierarchical models and, 

more importantly, offering Bayesian model averaged (BMA) inference to neutralize the 

effect of order dependent inference. The idea is to begin with a fixed ordered set of 

cancers, posited to be associated with each other and a cross space, and build a hierarchical 

model. The DAGAR specification produces a comprehensible association structure, while 

bridge sampling allows us to rank differently ordered models using their marginal posterior 

probabilities. Since each model corresponds to an assumed conditional dependence, the 

marginal posterior probabilities will indicate the tenability of such assumptions given the 

data. Epidemiologists, then, will be able to use this information to establish relationships 

among the diseases and spatial autocorrelation for each disease.

The article proceeds as follows. Section 2 develops the hierarchical MDAGAR model and 

introduces a bridge sampling method to select the MDAGAR with the best hierarchical 

order. Section 3 presents simulation studies comparing MDAGAR with GMCAR and order-

free MCAR models and also illustrates model averaged inference from the bridge sampling. 

Section 4 applies our MDAGAR to age-adjusted incidence rates of four cancers from the 

Surveillance, Epidemiology, and End Results (SEER) database and discusses different cases 

with respect to predictors. Finally, in Section 5, we summarize with some concluding 

remarks and pointers for future research.

2 | METHODS

2.1 | Overview of univariate DAGAR modeling

Let G = V, ℰ  be a graph corresponding to a geographic map, where the vertices 

V = 1, 2, …, k  represent clearly delineated regions on the map and ℰ = (i, j): i j  is the 

collection of edges between the vertices representing neighboring pairs of regions. We 

denote two neighboring regions i and j by i j. We assume that the vertices in V are ordered 

in a fixed sequence according to their number labels. The DAGAR model builds a spatial 

autocorrelation model for a single outcome on G using the ordered set of vertices in V8. 

Let N(1) be the empty set and let j ∈ V\ 1  be the index for any region except 1. We 

define N(j) to be the set of labels of geographic neighbors of j that precede j in V, that is, 

N(j) = l ∈ V: l < j; l j .8 Let wi: i ∈ V  be a collection of k random variables defined over 

the map. DAGAR specifies the following autoregression,

w1 = ϵ1; wj = ∑
l ∈ N(j)

bjlwl + ϵj, j = 2, …, k, (1)

where ϵj
indN 0, λj  with the precision λj, and bjl = 0 if l ∉ N(j). This implies that 

w N(0, τQ(ρ)) , where Q(ρ) is a spatial precision matrix that depends only upon a spatial 

autocorrelation parameter ρ and τ is a positive scale parameter. The precision matrix 

Q(ρ) = (I − B)⊤F (I − B), B is a k × k strictly lower-triangular matrix and F is a k × k
diagonal matrix. The elements of B and F are denoted by bjl and λj, respectively, where
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bjl =
0, if l ∉ N(j)

ρ
1 + n < j − 1 ρ2 , if j = 2, 3, …, k, l ∈ N(j) and λj = 1 + n < j − 1 ρ2

1 − ρ2 , j

= 1, 2…, k .

(2)

n < j is the number of members in N(j) and n < 1 = 0. The above definition of bjl is consistent 

with the lower-triangular structure of cB because l ∉ N(j) for any l ≥ j. The derivation of 

B and F as functions of a spatial correlation parameter ρ is based upon forming local 

autoregressive models on embedded spanning trees of subgraphs of G.8

DAGAR and CAR are both examples of MRFs.4 They are similar in that both models use 

a graph to model geographic neighbors, but they are different in how they model spatial 

dependencies. DAGAR, as the name suggests, builds dependencies using a directed acyclic 

graph (DAG). This produces a joint likelihood using sequential construction of the partial 

conditional distributions wi ∣ w < i. CAR builds a joint model by specifying Gaussian full 

conditional distributions wi ∣ w−i by treating the underlying map as an undirected graph, 

where absence of an edge between two regions denotes conditional independence of their 

spatial effects given other geographic neighbors. These two approaches yield different 

structures for the precision matrix Q(ρ) with different interpretations for the parameter 

ρ. DAGAR retains the interpretation of ρ as an autocorrelation parameter,8 while the 

interpreting spatial autocorrelation in CAR is challenging.30

2.2 | Motivating multivariate disease mapping

There is a substantial literature on joint modeling of multiple spatially oriented outcomes, 

some of which have been cited in Section 1. While it is possible to model each disease 

separately using a univariate DAGAR, hence independent of each other, the resulting 

inference will ignore the association among the diseases. This will be manifested in model 

assessment because the less dependence among diseases that a model accommodates, the 

farther away it will be from the joint model in the sense of Kullback-Leibler divergence.

More formally, suppose we have two mutually exclusive sets A and B that contain labels 

for diseases. Let yA and yB be the vectors of spatial outcomes over all regions corresponding 

to the diseases in set A and set B, respectively. A full joint model p y , where y = yA
⊤, yB

⊤ ⊤, 

can be written as p(y) = p yA × p yB ∣ yA . Let C1 and C2 be two nested subsets of diseases 

in A such that C2 ⊂ C1 ⊂ A. Consider two competing models, p1(y) = p yA × p yB ∣ yC1

and p2(y) = p yA × p yB ∣ yC2 , where p1( ⋅ ) and p2( ⋅ ) are probability densities constructed 

from the joint probability measure p( ⋅ ) by imposing conditional independence such that 

p yB ∣ yA = p yB ∣ yC1 and p yB ∣ yA = p yB ∣ yC2 , respectively. Both p1( ⋅ ) and p2( ⋅ ) suppress 

dependence by shrinking the conditional set A, but p2( ⋅ ) suppresses more than p1( ⋅ ). We 

show below that p2( ⋅ ) is farther away from p( ⋅ ) than p1( ⋅ ).
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A straightforward application of Jensen’s inequality yields EB ∣ C1 log p yB ∣ yC1
p yB ∣ yC2

≥ 0, where 

EB ∣ C1[ ⋅ ] denotes the conditional expectation with respect to p yB ∣ yC1 . Therefore,

KL p p2 − KL p p2 = EA, B log p(y)
p2(y) − log p(y)

p2(y) = EA, B log p1(y)
p2(y)

= EA, B log p yB ∣ yC1

p yB ∣ yC2

= EB, C1 log p yB ∣ yC1

p yB ∣ yC2
= EC1 EB ∣ C1 log p yB ∣ yC1

p yB ∣ yC2
≥ 0.

(3)

The equality EA, B[ ⋅ ] = EB, C1[ ⋅ ] in the last row follows from the fact that the argument is a 

function of diseases in B, C1 and C2 and, hence, in B and C1 because C2 ⊂ C1. The argument 

given in (3) is free of distributional assumptions and is linked to the submodularity of 

entropy and the “information never hurts” principle.33,34 Equation (3) shows that models 

built upon hierarchical dependence structures depend upon the order in which the diseases 

enter the model. While this is a disadvantage, hierarchical dependencies are easier to 

interpret, easier to compute using currently available Bayesian modeling software such as 

BUGS or JAGS and have been shown to be very competitive in inferential performance.35 

Hence, we develop and implement Bayesian model averaging over different ordered models 

in a computationally efficient manner.

2.3 | Multivariate DAGAR model

Modeling multiple diseases will introduce associations among the diseases and spatial 

dependence for each disease. Let yij be a disease outcome of interest for disease i in region j. 

For sake of clarity, we assume that yij is a continuous variable (eg, incidence rates) related to 

a set of explanatory variables through the regression model,

yij = xij
⊤βi + wij + eij, (4)

where xij is a pi × 1 vector of explanatory variables specific to disease i within region j, βi

are the slopes corresponding to disease i, wij is a random effect for disease i in region j, and 

eij
indN 0, σi

2 −1  is the random noise arising from uncontrolled imperfections in the data.

Part of the residual from the explanatory variables is captured by the spatial-temporal effect 

wij. Let wi = wi1, wi2, …, wik
⊤ for i = 1, 2, …, q. We adopt a hierarchical approach,10 where 

we specify the joint distribution of w = w1
⊤, w2

⊤, …, wq
⊤ ⊤ as p(w) = p w1 ∑i = 2

q p wi ∣ w < i . 

We model p w1  and each of the conditional densities p wi ∣ w < i  with w < i = w1
⊤, …, wi − 1

⊤ ⊤

for i ≥ 2 as univariate spatial models. The merits of this approach include simplicity and 

computational efficiency while ensuring that richness in structure is accommodated through 

the p wi ∣ w < i 's.

We point out two important distinctions from the GMCAR model10: (i) instead of using 

CAR for the spatial dependence, we use DAGAR; and (ii) we apply a computationally 
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efficient bridge sampling algorithms32 to compute the marginal posterior probabilities 

for each ordered model. The first distinction allows better interpretation of spatial 

autocorrelation than the CAR models. The second distinction is of immense practical value 

and makes this approach feasible for a much larger number of outcomes. Without this 

distinction, analysts would be dealing with q! models for q diseases and choose among them 

based upon a model-selection metric. That would be overly burdensome for more than 2 or 3 

diseases.

2.4 | A conditional multivariate DAGAR model

The multivariate DAGAR (or MDAGAR) model is constructed as

w1 = ϵ1; wi = Ai1w1 + Ai2w2 + ⋯ + Ai, i − 1wi − 1 + ϵi for i = 2, 3, …, q, (5)

where ϵi N 0, τiQ ρi  and τiQ ρi  are univariate DAGAR precision matrices with B and F 

as in (2). In (5), we model w1 as a univariate DAGAR and, progressively, the conditional 

density of each wi given w1, …, wi − 1 is also as a DAGAR for i = 2, 3, …, q.

Each disease has its own distribution with its own spatial autocorrelation parameter. There 

are q spatial autocorrelation parameters, ρ1, ρ2, …, ρq , corresponding to the q diseases. Given 

the differences in the geographic variation of different diseases, this flexibility is desirable. 

Each matrix Aii′ in (5) with i′ = 1, …, i − 1 models the association between diseases i and 

i′. We specify Aii′ = η0ii′Ik + η1ii′M, where M is the binary adjacency matrix for the map, 

that is, mjj′ = 1 if j′ j and 0 otherwise. Coefficients η0ii′ and η1ii′ associate wij with wi′j and 

wi′j′. In other words, η0ii′ is the diagonal element in Aii′, while η1ii′ is the element in the jth 

row and j′th column if j′ j. Therefore, for the joint distribution of w, if A is the kq × kq
strictly block-lower triangular matrix with (ii′)th block being Aii′ = O whenever i′ ≥ i, and 

ϵ = ϵ1
⊤, …, ϵq

⊤ ⊤, then (5) renders w = Aw + ϵ.

Since I − A is still lower triangular with 1s on the diagonal, it is nonsingular with 

det(I − A) = 1 . Writing w = (I − A)−1ϵ, where ϵ N(0, Λ) and the block diagonal matrix Λ
has τ1Q ρ1 , …, τqQ ρq  on the diagonal, we obtain w N 0, Qw for ρ = ρ1, …, ρq

⊤ with

Qw = (I − A)⊤Λ(I − A) . (6)

We say that w follows MDAGAR if w N 0, Qw .

Interpretation of ρ1, …, ρq is clear: ρ1 measures the spatial association for the first disease, 

while ρi, i ≥ 2, is the residual spatial correlation in the disease i after accounting for the first 

i − 1 diseases. Similarly, τ1 is the spatial precision for the first disease, while τi, i ≥ 2, is the 

residual spatial precision for disease i after accounting for the first i − 1 diseases.

2.4.1 | Model implementation—We extend (4) to the following Bayesian hierarchical 

framework with the posterior distribution
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p(β, w, η, ρ, τ, σ ∣ y) ∝ p(ρ) × p(η) × ∏
i = 1

q

IG 1/τi ∣ aτ, bτ × IG σi
2 ∣ aσ, bσ × N βi ∣ μβ, V β

−1

× N w ∣ 0, Qw × ∏
i = 1

q
∏
j = 1

k
N yij ∣ xij

⊤βi + wij, 1/σi
2 ,

(7)

where β = β1
⊤, β2

⊤, …, βq
⊤ ⊤, τ = τ1, τ2, …, τq , σ = σ1

2, σ2
2, …, σq

2  and η = η2, η3, …, ηq  with 

ηi = ηi1
⊤, ηi2

⊤…, ηi, i − 1
⊤ ⊤ and ηii′ = η0ii′, η1ii′

⊤ for i = 2, …, q and i′ = 1, …, i − 1. For variance 

parameters 1/τi and σi
2, IG( ⋅ ∣ a, b) is the inverse-gamma distribution with shape and rate 

parameters a and b, respectively. For each element in ηi we choose a normal prior N μij, σηij
2 , 

while the prior N w ∣ 0, Qw  can also be written as

p w ∣ τ, η2, …, ηq, ρ ∝ τ1

k
2 Q ρ1

1
2exp − τ1

2 w1
⊤Q ρ1 w1

× ∏
i = 2

q
τi

k
2 Q ρi

1
2exp − τi

2 wi − ∑
i′ = 1

i − 1
Aii′wi′

⊤
Q ρi wi − ∑

i′ = 1

i − 1
Aii′wi′ ,

(8)

where det Q ρi = ∏j = 1

k λij, and wi
TQ ρi wi = λi1wi1

2 + ∑j = 2

k λij wij − ∑j′ ∈ N(j) bijj′wij′
2.

We sample the parameters from the posterior distribution in (7) using Markov chain Monte 

Carlo (MCMC) with Gibbs sampling and random walk metropolis36 as implemented in 

the rjags package within the R statistical computing environment. Web Appendix B S.2.1 

presents details on the MCMC updating scheme.

2.5 | Model selection via bridge sampling

It is clear from (5) that each ordering of diseases in MDAGAR will produce a different 

model. For the bivariate situation, it is convenient to compare only two models (orders) by 

the significance of parameter estimates as well as model performance. However, when there 

are more than two diseases involved in the model, at least six models (for three diseases) 

will be fitted and comparing all models become cumbersome or even impracticable.

Instead, we pursue model averaging of MDAGAR models. Given a set of T = q! candidate 

models, say M1, …, MT, Bayesian model selection and model averaging calculates

p M = Mt ∣ y = p y ∣ M = Mt p M = Mt

∑j = 1

T p y ∣ M = Mj p M = Mj

, (9)

for t = 1, …, T .37 Computing the marginal likelihood p y ∣ Mt  in (9) is challenging. Methods 

such as importance sampling38 and generalized harmonic mean39 have been proposed 

as stable estimators with finite variance, but finding the required importance density 

with strong constraints on the tail behavior relative to the posterior distribution is often 

challenging. Bridge sampling estimates the marginal likelihood (ie, thenormalizing constant) 
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by combining samples from two distributions: a bridge function ℎ( ⋅ ) and a proposal 

distribution g( ⋅ ).40 Let θt = βt, σt, ρt, τt, η2, t, …, ηq, t  be the set of parameters in model Mt with 

prior p θt ∣ Mt  as defined in the first row of (7). Based on the identity,

1 =
∫ p y ∣ θt, Mt p θt ∣ Mt ℎ θt ∣ Mt g θt ∣ Mt dθt

∫ p y ∣ θt, Mt p θt ∣ Mt ℎ θt ∣ Mt g θt ∣ Mt dθt

,

a current version of the bridge sampling estimator is

p y ∣ M = Mt = Eg θt ∣ Mt p y ∣ θt, Mt p θt ∣ Mt ℎ θt ∣ Mt

Ep θt ∣ y, Mt ℎ θt ∣ Mt g θt ∣ Mt

≈
1

N2
∑i = 1

N2 p y ∣ θt, i, Mt p θt, i ∣ Mt ℎ θt, i ∣ Mt

1
N1

∑j = 1

N1 ℎ θt, j
⋆ ∣ Mt g θt, j

⋆ ∣ Mt

,
(10)

where θt, j
⋆ p θt ∣ y, Mt , j = 1, …, N1, are N1 posterior samples and θt, i g θt ∣ Mt , i = 1, …, N2, 

are N2 samples drawn from the proposal distribution.32 The likelihood p y ∣ θt, M = Mt  is 

obtained by integrating out w from (7) as

N y ∣ Xβ, Qw
−1 ρt, τt, η2, t, …, ηq, t + diag σt ⊗ Ik

−1 , (11)

given that y = y1
⊤, …, yq

⊤ ⊤ with yi = yi1, yi2, …, yik
⊤, diag(σ) is a diagonal matrix with 

σi
2, i = 1, …, q, on the diagonal, and X is the design matrix with, Xi as block diagonal where 

Xi = xi1, xi2, …, xik
⊤. The bridge function ℎ θt ∣ Mt  is specified by the optimal choice31,

ℎ θt ∣ Mt = C 1
s1p y ∣ θt, Mt p θt ∣ Mt + s2p y ∣ Mt g θt ∣ Mt

, (12)

where C is a constant. Inserting (12) in (10) yields the estimate of p y ∣ M = Mt  after 

convergence of an iterative scheme31 as

p y ∣ Mt
(t + 1) =

1
N2

∑i = 1

N2 l2, i

s1l2, i + s2p y ∣ Mt
(t)

1
N1

∑j = 1

N1 1
s1l1, j + s2p y ∣ Mt

(t)

, (13)

where l1, j = p y ∣ θt, j
⋆ , Mt p θt, j

⋆ ∣ Mt

g θt, j
⋆ ∣ Mt

, l2, i = p y ∣ θt, i, Mt p θt, i ∣ Mt

g θt, i ∣ Mt
, s1 = N1

N1 + N2
, and s2 = N2

N1 + N2
.

Given the log marginal likelihood estimates from bridgesampling, the posterior model 

probability for each model is calculated from (9) by setting prior probability of each model 

p M = Mt . For Bayesian model averaging (BMA), the model averaged posterior distribution 

of a quantity of interest Δ is obtained as p( Δ ∣ y) = ∑t = 1

T p Δ ∣ M = Mt, y p(M = Mt ∣ y ,37 

and the posterior mean is
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E( Δ ∣ y) = ∑
t = 1

T
E Δ ∣ M = Mt, y p M = Mt ∣ y . (14)

Setting Δ = β, w  fetches us the model averaged posterior estimates for spatial random 

effects as well as calculating the posterior mean incidence rates as discussed in Section 4.

3 | SIMULATION

We simulate three different experiments. The first is designed to evaluate MDAGAR’s 

inferential performance against GMCAR. The second compares MDAGAR, GMCAR and 

order-free MCAR for data generated from the latter. The third experiment illustrates the 

effectiveness of bridge sampling (Section 2.5) in preferring models with a correct “ordering” 

of the diseases.

3.1 | Data generation

We compare MDAGAR’s inferential performance with GMCAR10 (Section 3.2) and order-

free MCAR16 (Section 3.3). We choose the 48 states of the contiguous United States as 

our underlying map, where two states are treated as neighbors if they share a common 

geographic boundary. We generated our outcomes yij using the model in (4) with q = 2, that 

is, two outcomes, and two covariates, x1j and x2j, with p1 = 2 and p2 = 3. We fixed the values 

of the covariates after generating them from N 0, Ipi , i = 1, 2, independent across regions. 

The regression slopes were set to β1 = (1, 5)⊤ and β2 = (2, 4, 5)⊤.

Turning to the spatial random effects, we generated values of w = w1
⊤, w2

⊤ ⊤ from a N 0, Qw

distribution, where the precision matrix is

Qw = τ1Q ρ1 + τ2A21
⊤ Q ρ2 A21 τ2A21

⊤ Q ρ2

τ2Q ρ2 A21 τ2Q ρ2

. (15)

We set τ1 = τ2 = 0.25, ρ1 = 0.2, and ρ2 = 0.8 in (15) and take Q ρi = D ρi
−1, where 

D ρi = exp −ϕid j, j′ , ϕi = − log ρi  is the spatial decay for disease i and d j, j′  refers to 

the distance between the embedding of the jth and j′th vertex. The vertices are embedded 

on the Euclidean plane and the centroid of each state is used to create the distance matrix. 

Using this exponential covariance matrix to generate the data offers a “neutral” ground 

to compare the performance of MDAGAR with GMCAR. We specified A12 using fixed 

values of η = η021, η121 . Here, we considered three sets of values for η to correspond to low, 

medium and high correlation among diseases. We fixed η = 0.05, 0.1  to ensure an average 

correlation of 0.15 (range 0.072–0.31); η = 0.5, 0.3  with an average correlation of 0.55 

(range 0.45–0.74); and η = 2.5, 0.5  with a mean correlation of 0.89 (range 0.84–0.94). We 

generated wij's for each of the above specifications for η and, with the values of wij generated 

as above, we generated the outcome yij N xij
⊤βi + wij, 1/σi

2  , where σ1
2 = σ2

2 = 0.4. We repeat the 

above procedure to replicate 85 datasets for each of the three specifications of η.
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For our third experiment (Sections 3.4 and 3.5), we generate a dataset with q = 3 cancers. 

We extend the above setup to include one more disease. We generate yij's from (4) with 

the value of x3j fixed after being generated from N 0, I3 , β3 = (5, 3, 6)⊤, and σ3
2 = 0.4. Let 

[i, j, k] denote the model p wi × p wj ∣ wi × p wk ∣ wj, wi . For three diseases the six resulting 

models are denoted as M1 = [1, 2, 3], M2 = [1, 3, 2], M3 = [2, 1, 3], M4 = [2, 3, 1], M5 = [3, 1, 2] , 
and M6 = [3, 2, 1].

Each of the six models imply a corresponding joint distribution w N 0, Qw  which is used 

to generate the wij's. Let the parenthesized suffix (i) denote the disease in the ith order. For 

example, in M2 = [1, 3, 2], we write w in the form of (5) as

w1 ϵ(1); w3 = A(21)w1 + ϵ(2); w2 = A(31)w1 + A(32)w3 + ϵ(3),

where ϵ(i) N 0, τ(i)Q ρ(i)  with Q ρ(i) = D ρ(i)
−1 as in the first experiment, 

and A ii′ = η0 ii′ I + η1 ii′ M is the coefficient matrix associating random 

effects for diseases in the ith and i′th order. We set 

τ(1) = τ(2) = τ(3) = 0.25, ρ(1) = 0.2, ρ(2) = 0.8, ρ(3) = 0.5, η0(21) = 0.5, η1(21) = 0.3, η0(31) = 1, η1(31) = 0.6, η0(32)
= 1.5,
and η1(32) = 0.9 to completely specify Qw for each of the 6 models. For each Mi, we generate 

50 datasets by first generating w N 0, Qw  and then generating yij's from (4) using the above 

specifications. Details on the algorithms and the computing environments for each model are 

provided in Section S.2.1.

3.2 | Comparisons between MDAGAR and GMCAR

In our first experiment, we analyzed the 85 replicated datasets using (7) with

p(ρ) × p(η) ∝ ∏
i = 1

q = 2
Unif ρi ∣ 0, 1 × N η21 ∣ 0, 0.01I2 , (16)

where η21 = η021, η121
⊤ and Unif is the uniform density. Prior specifications are completed 

by setting aτ = 2, bτ = 0.4, aσ = 2, bσ = 0.4, μβ = 0, V β = 1000I in (7). The same set of priors was 

used for both MDAGAR and GMCAR as they have the same number of parameters with 

similar interpretations. Both models are fast to compute; MDAGAR reported an average 

running time of 3.87 minutes for each dataset in the bivariate disease analysis, while that for 

GMCAR was 6.25 minutes.

We compare models using the widely applicable information criterion (WAIC)41,42 and a 

model comparison score D based on a balanced loss function for replicated data.43 Both 

WAIC and D reward goodness of fit and penalize model complexity. Details on how these 

metrics are computed are provided in Web Appendix B S.2.2. In addition, we also computed 

the average mean squared error (AMSE) of the spatial random effects estimated from each 

of the 85 datasets. We found the mean (standard deviation) of the AMSEs to be 1.69 (0.034) 

from the 85 low-correlation datasets, 1.47 (0.030) from the 85 medium-correlation datasets, 

and 2.35 (0.059) from the 85 high-correlation datasets. The corresponding numbers for 
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GMCAR were 1.83 (0.033), 1.59 (0.031), and 2.14 (0.050), respectively. The MDAGAR 

tends to have smaller AMSE for low and medium correlations, while GMCAR’s AMSE 

tends to be pronouncedly lower than MDAGAR’s when the correlations are high. We also 

compute the mean values of WAICs and D scores for each simulated dataset. Figure 1 

plots the values of WAICs (A-C) and D scores (D-F) for the 85 datasets corresponding to 

each of the three correlation settings. Here, MDAGAR outperforms GMCAR in all three 

correlation settings with respect to both WAICs and D scores. While MDAGAR outperforms 

GMCAR in overall model fitting scores for most correlation settings, GMCAR can yield 

better estimates of spatial effects in high correlation settings.

Figure 2 presents scatter plots for the true values (x-axis) of spatial random effects against 

their posterior estimates (y-axis). To be precise, each panel plots 85 × 48 × 2 = 8160 true 

values of the elements of the 96 × 1 vector w for 85 datasets against their corresponding 

posterior estimates. We see strong agreements between the true values and their estimates 

for both MDAGAR and GMCAR. The agreement is more pronounced for the datasets 

corresponding to medium and high correlations. For the low-correlation datasets, MDAGAR 

still exhibits strong agreement which is better than GMCAR.

We compute DKL N 0, Qtrue N 0, Qw = 1
2 log det Qtrue

det Qw
+ tr QwQtrue

−1 − qk , which is the 

Kullback-Leibler divergence between the model for w with the true generative precision 

matrix (Qtrue) and those with MDAGAR and GMCAR precisions Qw . Using the 

posterior samples in the precision matrix, we evaluate the posterior probability that 

DKL N 0, Qtrue N 0, QMDAGAR  is smaller than DKL N 0, Qtrue N 0, Qw . Figure 3 depicts a 

density plot of these probabilities over the 85 datasets. w and medium, the MDAGAR has a 

mean probability of around 69% to be closer to the true model than the GMCAR, while for 

high correlations GMCAR excels with an average probability of 72% to be closer to the true 

model. These findings are consistent with the AMSEs, where GMCAR tended to perform 

better when correlations were high. Additional comparative diagnostics from MDAGAR and 

GMCAR, such as coverage probabilities for parameters and correlations between random 

effects for two diseases in the same state, are presented in Web Appendix B S.2.2.2.

3.3 | Comparisons between MDAGAR and order-free MCAR

We also generated data using an order-free MCAR model16 to evaluate MDAGAR and 

GMCAR when the underlying structure is different from the proposed conditional scheme. 

For the MCAR model, we specified the joint covariance matrix of w as

Qw
−1 = A ⊗ Ik × k Γ−1 A ⊗ Ik × k

⊤, (18)

where Σ = AA⊤ is a q × q matrix corresponding to disease dependence, A is the upper 

triangular Cholesky decomposition of Σ and Γ is a kq × kq block diagonal matrix with 

Γii
−1 = τi

2 D − ρiW  (k × k precision matrix for a proper CAR) for each i = 1, …, q. 

This corresponds to the MCAR generated from w = (A ⊗ I)v , where v = v1, …, va
⊤

and vi
indN 0, D − ρiW  for i = 1, …, q, D, is the diagonal matrix with number of neighbors 

along the diagonal and W is a binary adjacency matrix. Therefore, w is generated from 
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independent but not identically distributed latent proper CAR distributions (see Reference 

16, Section 3.2).

Keeping other model specifications same as in Section 3.1 (so q = 2 and ρi’s are as 

in Section 3.1), we fixed A = 1 0
0.7 1 . Computing (17) with these specifications yields a 

mean correlation of 0.52 among the entries of the matrix (range: 0.48–0.54). The above 

procedure is replicated for 50 datasets for each model. We estimated the MDAGAR and 

GMCAR models in two opposite orders, denoted MDAGAR1, MDAGAR2, GMCAR1, and 

GMCAR2, and compared with the order-free MCAR. We estimate (7) with the respective 

specifications for Qw for each model. For the MDAGAR and GMCAR models, we used the 

priors specified in the previous section using (16). For the MCAR, we assigned logaii, i = 1, 2, 

and a21 with normal priors with variances 0.0625 and 100, respectively. The order-free 

MCAR is also fast to compute and reported an average running time of 5.89 minutes for 

each dataset in this experiment.

Figure 4 plots values of (A) WAICs, (B) D scores, and (C) the posterior mean of the 

Kullback-Leibler divergence between a given model and the true density, DKL p ytrue p(y) , 

for each of the 50 datasets (indexed in the x-axis) computed for each of the five models. For 

model fitting, GMCAR1 exhibits better performance with smaller values for WAIC and D, 

while GMCAR2, MDAGAR1, and MDAGAR2 are all comparable with MCAR. GMCAR1 

and MDAGAR1 exhibit slightly better performance in D scores compared with GMCAR2 

and MDAGAR2, respectively, but the two orders produce similar WAICs. In terms of the 

posterior means of DKL p ytrue p(y), MCAR is expectedly closer to the true model (having 

the same data generating structure), but MDAGAR is still very competitive performance in 

spite of being a misspecified model. The variability in the posterior means of DKL p ytrue p(y)
for the different models reveal substantial overlap so conditional models have the ability to 

compete with order-free MCAR even when data are generated from the latter.

3.4 | Analyses using different orderings for spatial units

The MDAGAR model in Section 3.2 is analyzed using an ordering of spatial units (counties) 

from the southwest to the northeast. Here, we repeat the analysis for the MDAGAR 

model using three other orderings that start in the southeast, northwest, and northeast, 

respectively. We present results from these differently ordered DAGAR models using the 

85 low-correlation simulated datasets. For the random effects, the mean (standard deviation) 

of the AMSEs for three different orderings (southeast, northwest, and northeast) are 1.61 

(0.029), 1.28 (0.026), and 1.43 (0.027), respectively, without significantly differing from the 

original ordering in Section 3.2.

Figure 5 plots the densities of mean WAICs, D scores, and DKL p ytrue p(y)  over the 85 

datasets for the MDAGAR model using three different orderings and the original ordering in 

Section 3.2. In computing DKL p ytrue p(y) , we specify p ytrue = N Xβtrue + wtrue, diag σtrue ⊗ Ik , 

which is the density of the true y and p(y) = N Xβ + w, diag(σ) ⊗ Ik  is the density for y from 

MDAGAR. While the ordering of the diseases does not appear to have a significant impact 
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on model fitting as the density plots for the four orderings almost overlap with each other, 

(3) suggests that some order dependence may be expected.

3.5 | Model selection for different disease orders

We now evaluate the effectiveness of the method in Section 2.5 at selecting the model with 

the correct ordering of diseases. We used the bridgesampling package in R to compute 

p Mi ∣ y(n) = maxt = 1, …, 6 p Mt ∣ y(n)  for each of n = 50 × 6 datasets generated as described in 

Section 3.1. Table 1 presents the probability of each model being selected for different true 

model scenarios. The probability of selecting the true model is shown in bold along the 

diagonal. Our experiment reveals that bridge sampling is extremely effective at choosing 

the correct order. It was able to identify the correct order between78% and 90%, which is 

substantially larger than any of the probability of choosing any of the misspecified models.

4 | MULTIPLE CANCER ANALYSIS FROM SEER

We now turn to analyzing an areal dataset using the MDAGAR model for four different 

cancers: lung, esophagus, larynx, and colorectal. The incidence of adenocarcinoma of lung 

and esophageal cancer have been found to share common risk factors44 and metabolic 

mechanisms.45 Lung cancer appears to be among the most common second primary cancers 

in patients with colon cancer.46 Meanwhile, patients with laryngeal cancer have also been 

reported to possess high risks of developing second primary lung cancer.47 The dataset 

is extracted from the SEER∗Stat database using the SEER∗Stat statistical software.48 The 

dataset consists of the four cancers: lung, esophagus, larynx, and colorectal, where the 

outcome is the 5-year average age-adjusted incidence rates (age-adjusted to the 2000 U.S. 

Standard Population) per 100000 population in the years from 2012 to 2016 across 58 

counties in California, USA, as mapped in Figure 6. The maps exhibit preliminary evidence 

of correlation across space and among cancers. Cutoffs for the different levels of incidence 

rates are quantiles for each cancer. For all four cancers, incidence rates are relatively higher 

in counties concentrated in the middle northern areas including Shasta, Tehama, Glenn, 

Butte, and Yuba than those other areas. In general, northern areas have higher incidence 

rates than in the south. This is especially pronounced for lung cancer and esophagus cancer. 

For larynx cancer, while the highest incidence rates are in the northwest (Del Norte and 

Sisikiyou counties), the incidence rates in the south are also at somewhat higher levels. For 

colorectal cancer, the edge areas at the bottom also exhibit high incidence rates.

As an exploratory tool to assess associations among the cancers, we calculate Pearson’s 

correlation for each pair of cancers by regarding incidence rates in different counties as 

independent samples and find Pearson’s correlation coefficient between the incidence of 

lung cancer and those of esophageal, larynx, and colorectum cancers to be 0.55, 0.46, 

and 0.46, respectively. Meanwhile, the correlation between esophageal and larynx cancer 

is 0.27. Next, to explore the spatial association for each disease, we calculate Moran’s I 

based upon rth order neighbors for each cancer and plot the areal correlogram.49 Defining 

distance intervals, 0, d1 , d1, d2 , d2, d3 , …, the rth order neighbors refer to units with distance 

in dr − 1, dr , that is, within distance dr but separated by more than dr − 1 . The distance is the 

Euclidean distance from an Albers map projection of California. As shown in Figure 7, 
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lung, esophageal, and colorectum cancers all present spatial patterns that initially diminish 

with increasing r and eventually flatten close to 0. Overall, counties with similar levels of 

incidence rates tend to depict some spatial clustering.

We turn to model based inference using (7). We return to the MDAGAR, GMCAR, and 

MCAR, where neighbors are defined using shared borders. We analyze this dataset and 

separate the spatial correlation for each cancer from association among cancers with the 

following prior specifications,

p(η, ρ, τ, σ, w) = ∏
i = 1

q
Unif(ρi ∣ 0, 1) × ∏

i = 2

q
∏
j = 1

i − 1
N(ηij ∣ 0, 0.01I2)

× ∏
i = 1

q
N(βi ∣ 0, 0.001I) × ∏

i = 1

q
IG(1/τi ∣ 2, 0.1) × ∏

i = 1

q
IG(σi

2 ∣ 2, 1)

× N(w ∣ 0, Qw) .

(19)

We also discuss a case excluding the risk factor (see Web Appendix B Section S.2.2.3).

For covariates, we include county attributes that possibly affect the incidence rates, 

including percentages of residents younger than 18 years old (youngij), older than 65 years 

old (oldij), with education level below high school (eduij), percentages of unemployed 

residents (unempij), black residents (blackij), male residents (maleij), uninsured residents 

(uninsureij), and percentages of families below the poverty threshold (povertyij). All 

covariates are common for different cancers and extracted from the SEER∗Stat database48 

for the same period, 2012 to 2016.

Since cigarette smoking is a common risk factor for cancers, adult smoking rates (smokeij) 

for 2014 to 2016 were obtained from the California Tobacco Facts and Figures 2018 

database.50 Spatial patterns in the map of adult cigarette smoking rates, shown in Figure 

8, are similar to the incidence of cancers, especially lung and esophageal cancers, the 

highest smoking rates are concentrated in the north. While some central California counties 

(eg, Stanislaus, Tuolumne, Merced, Mariposa, Fresno, and Tulare) also exhibit high rates, 

although there is clearly less spatial clustering of the high rates than in the north.

Since the order of cancers in the DAG specify the model, we fit all 4! = 24 models using 

(7) and compute the marginal likelihoods using bridge sampling (Section 2.5). By setting 

the prior model probabilities as p M = Mt = 1
24  for t = 1, 2, …, 24, we compute the posterior 

model probabilities using (9). These are presented in Table 2. We obtain BMA estimates 

using (14) with the weights in Table 2. Among all models, model M10 is selected as the 

best model with the largest posterior probability 0.577 and the corresponding conditional 

structure is [esophageal] × [larynx | esophageal] × [colorectal | esophageal, larynx] × [lung | 

esophageal, larynx, colorectal].

Table 3 is a summary of the parameter estimates including regression coefficients, spatial 

auto correlation ρi , spatial precision τi ,and noise variance σi
2  for each cancer. From 

M10 and BMA, we find the regression slopes for the percentage of smokers and uninsured 

Gao et al. Page 14

Stat Med. Author manuscript; available in PMC 2023 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



residents are significantly positive and negative, respectively, for esophageal cancer. The 

negative association between percentage of uninsured and esophageal cancer may seem 

surprising, but is likely a consequence of counties exhibiting low incidence rates for 

esophageal cancer having a relatively large number of uninsured residents (see top right 

in Figure 6 and the right most figure in Figure 8). Since esophageal cancer has low incidence 

rates, this association could well be spurious due to spatial confounding. Percentage of 

smokers is, unsurprisingly, found to be a significant risk factor for lung cancer, while the 

percentage of blacks seems to be significantly associated with elevated incidence of larynx 

cancer. In addition, we tend to see that percentage of population below the poverty level has 

a pronounced association with higher rates of lung and esophageal cancer.

Recall from Section 2.4 that ρ1 is the residual spatial autocorrelation for esophageal cancer 

after accounting for the explanatory variables, while ρi for i = 2, 3, 4 are residual spatial 

autocorrelations after accounting for the explanatory variables and the preceding cancers 

in the model M10. From Table 3, we see that esophageal cancer exhibits relatively weaker 

spatial autocorrelation, while the residual spatial autocorrelations for larynx and colorectal 

cancers after accounting for preceding cancers are both at moderate levels of around 

0.5. Similarly for the spatial precision τi, larynx appears to have the smallest conditional 

variability while that for colorectal and lung are slightly larger.

For the posterior mean incidence rates and spatial random effects wij, we present estimates 

from model M10 and BMA. Figure 9A,B is maps of posterior mean spatial random 

effects and model fitted incidence rates for four cancers obtained from BMA, while 

Figure 10A,B shows maps of those from model M10. The posterior mean incidence rates 

from BMA and M10 are in accord with each other, and both present DAGAR-smoothed 

versions of the original patterns in Figure 6. For posterior means of spatial random 

effects, in general, the estimates from M10 are similar to model averaged estimates, 

especially for lung and colorectal cancers, exhibiting relatively large positive values in 

the northern counties, where the incidence rates are high. However, for esophageal and 

larynx cancers we see slight discrepancies between M10 and BMA in the north. The 

BMA estimates produce larger positive random effects, ranging between 0.1and 0.5,in 

most counties, while M10 produces estimates between 0 and 0.1 for esophageal cancer. 

More counties with random effects larger than 0.1 are estimated from M10 for larynx 

cancer. We believe this is attributable, at least in part, to another competitive model, 

M15 = [larynx] × [esophagus ∣ larynx] × [lung ∣ larynx, esophagus] × [colorectal ∣ larynx, esophagus,
lung]
(posterior probability 0.342), which contributes to the BMA. On the other hand, the effects 

of some important county-level covariates play an essential role in the discrepancy between 

the estimates of random effects and model fitted incidence rates for each cancer.

Recall from Section 2 that η0ii′ and η1ii′ reflect the associations among cancers that can 

be attributed to spatial structure. Specifically, larger values of η0ii′ will indicate inherent 

associations unrelated to spatial structure, while the magnitude of η1ii′ reflects associations 

due to spatial structure. Figure S.2 presents posterior distributions of η for all pairs 

of cancers. We see from the distribution of η043 that there is a pronounced nonspatial 
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component in the association between lung and colorectal cancers. Similar, albeit somewhat 

less pronounced, nonspatial associations are seen between larynx and esophageal cancers 

and between lung and larynx cancers. Analogously, the posterior distributions for η143

and η132 tend to have substantial positive support suggesting substantial spatial cross-

correlations between lung and colorectal cancers and between colorectal and larynx cancers. 

Interestingly, we find negative support in the posterior distributions for η121 and η142.The 

negative mass implies that the covariance among cancers with in a region is suppressed 

by strong dependence with neighboring regions. This seems to be the case for associations 

between lung and esophageal cancers and between lung and larynx cancers.

Web Appendix B also presents supplementary analysis that excludes adult smoking rates 

from the covariates, which we refer to as “Case 2.” Figure S.3 shows estimated correlations 

between pairwise cancers in each of the 58 counties. The top row presents the correlations 

including smoking rates (“Case 1”) as has been analyzed here. The bottom row presents the 

corresponding maps for “Case 2.” Interestingly, accounting for smoking rates substantially 

diminishes the associations among esophageal, colorectal and lung cancers. These are 

significantly associated in “Case 2” but only lung and colorectal retain their significance 

after accounting for smoking rates.

We also implemented the order-free MCAR model (as described in Section 3.3) and 

presented the estimates of posterior mean incidence rates and spatial random effects in 

Figure 11. Compared with MDAGAR, the MCAR exhibits better fitting for colorectal cancer 

since the posterior incidence rates in Figure 11B is closer to those in the raw map (Figure 6), 

while MDAGAR seems to outperform MCAR for larynx cancer. Overall, the model fitting is 

comparable between MDAGAR and MCAR.

5 | DISCUSSION

We have developed a multivariate “MDAGAR” model in conjunction with a bridge sampling 

method to estimate spatial correlations for multiple correlated diseases. The MDAGAR 

is constructed hierarchically over areal units based on univariate DAGAR models. We 

demonstrate that MDAGAR tends to outperform GMCAR when association between 

spatial random effects for different diseases is weak or moderate. MDAGAR retains the 

interpretability of spatial autocorrelations, as in univariate DAGAR, separating the spatial 

correlation for each disease from any inherent or endemic association among diseases. 

While MDAGAR, like all DAG based models, is specified according to a fixed order of the 

diseases, we show that bridge sampling can effectively choose among the different orders 

and also provide BMA inference in a computationally efficient manner.

Our data analysis elicits how correlations between incidence rates for different cancers are 

impacted by risk factors. For example, eliminating adult cigarette smoking rates produces 

similar spatial patterns for the incidence rates of esophageal, lung and colorectal cancer. 

In addition, the significant correlation between lung and esophageal cancer, even after 

accounting for smoking rates, implies other inherent or endemic association such as latent 

risk factors and metabolic mechanisms. We also see that the MDAGAR based posterior 

estimates of the latent spatial effects in Figures 9A and 10A resemble those from MDAGAR 
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without covariates (Figure 12), while the maps for the estimated incidence rates in Figures 

9B and 10B account for the spatial variability of the covariates.

Future research will look at different constructions of graphical models for areal data. 

Examples can include defining rth order neighbors using distance metrics, as in Figure 

7, and deriving alternate precision matrices. We also intend to address scalability with 

very large number of diseases. Here, common spatial factor models for areal data51 can 

be adapted to model the factors as DAGAR, thereby yielding classes of DAGAR based 

factor models. A very different approach will be to build scalable graphical models using 

two different graphs: one for areal units (CAR or DAGAR) and another undirected graph 

representing conditional independence among cancers. Multidimensional MRFs as well 

as developments analogous to recently introduced graphical Gaussian processes52 can be 

pursued for high-dimensional disease mapping. Finally, spatial confounding in multivariate 

disease mapping53–55 will be explored in the context of MDAGAR.
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FIGURE 1. 
Density plots for WAICs and D scores over 85 datasets. (A-C) Density plots of WAIC 

for MDAGAR (blue) and GMCAR (red) models with low, medium, and high correlation, 

respectively, (D-F) the corresponding density plots for D scores. The dotted vertical line 

shows the mean for WAIC and D in each plot
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FIGURE 2. 
Scatter plots for estimates of spatial random effects (y-axis) against the true values (x-

axis) with 45° lines over 85 datasets: (A-C) Estimates from MDAGAR model with low, 

medium, and high correlation, (D-F) the corresponding estimates from GMCAR. Pearson’s 

correlation coefficient for each plot is indicated as “r”
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FIGURE 3. 
Density plots for probability that the KL-divergence between the MDAGAR and the true 

model is smaller than that between GMCAR and the true model with three levels of 

correlation for two diseases: Low (purple), medium (green), and high (red)
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FIGURE 4. 
Density plots for (A) WAICs, (B) D scores, and (C) the posterior mean of DKL p ytrue p(y)
over 50 datasets, respectively, using MDAGAR1, MDAGAR2, GMCAR1, GMCAR2, and 

MCAR. The dot vertical line shows the mean for each plot
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FIGURE 5. 
Density plots for WAICs, D scores, and DKL p ytrue p(y)  over 85 datasets for the MDAGAR 

model using four different orderings: Northeast (red), northwest (green), southeast (blue), 

and southwest (purple). The dotted vertical line shows the mean for each plot
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FIGURE 6. 
Maps of 5-year average age-adjusted incidence rates per 100 000 population for lung, 

esophagus, larynx, and colorectal cancer in California, 2012 to 2016
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FIGURE 7. 
Moran’s I of rth order neighbors for lung, esophageal, larynx, and colorectum cancer
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FIGURE 8. 
Important county-level covariates with significant effects: Adult cigarette smoking rates 

(left), percentage of black residents (middle), and uninsured residents (right)
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FIGURE 9. 
Maps of posterior results using BMA for lung, esophagus, larynx, and colorectal cancer 

in California including (A) posterior mean spatial random effects and (B) posterior mean 

incidence rates
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FIGURE 10. 
Maps of posterior results using the highest probability model M10 for lung, esophagus, 

larynx, and colorectal cancer in California including (A) posterior mean spatial random 

effects and (B) posterior mean incidence rates
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FIGURE 11. 
Maps of posterior results (Case 1) using MCAR for lung, esophagus, larynx, and colorectal 

cancer in California including (A) posterior mean spatial random effects and (B) posterior 

mean incidence rates
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FIGURE 12. 
Maps of posterior mean spatial random effects (with no covariates) using the same order as 

M10
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TABLE 1

Proportion of times π Mi  bridge sampling chose the model with the correct order out of the 50 datasets with 

that order

True model π M1 π M2 π M3 π M4 π M5 π M6

M1 0.90 0.00 0.10 0.00 0.00 0.00

M2 0.00 0.86 0.00 0.00 0.14 0.00

M3 0.14 0.00 0.86 0.00 0.00 0.00

M4 0.00 0.00 0.00 0.90 0.00 0.10

M5 0.00 0.22 0.00 0.00 0.78 0.00

M6 0.00 0.00 0.00 0.16 0.00 0.84
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TABLE 2

The posterior model probabilities for 24 models

p M1 ∣ y p M2 ∣ y p M3 ∣ y p M4 ∣ y p M5 ∣ y p M6 ∣ y p M7 ∣ y p M8 ∣ y
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p M9 ∣ y p M10 ∣ y p M11 ∣ y p M12 ∣ y p M13 ∣ y p M14 ∣ y p M15 ∣ y p M16 ∣ y
0.000 0.577 0.000 0.000 0.000 0.000 0.342 0.079

p M17 ∣ y p M18 ∣ y p M19 ∣ y p M20 ∣ y p M21 ∣ y p M22 ∣ y p M23 ∣ y p M24 ∣ y
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Note: Bold values signify that the 95% credible intervals exclude 0.
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TABLE 3

Posterior means (95% credible intervals) for parameters estimated from M10 and BMA estimates for regression 

coefficients only for the SEER four cancer dataset

Parameters Model Esophageal Larynx Colorectal Lung

Intercept M10 16.76 (4.06, 29.56) 6.37 (−1.16, 13.89) 19.16 (−11.94, 49.72) 28.68 (−18.3, 74.93)

BMA 15.87 (2.92, 28.63) 6.85 (−0.71, 14.38) 18.21 (−14.03, 49.07) 28.25 (−18.12, 74.52)

Smokers(%) M10 0.25 (0.12, 0.37) 0.04 (−0.03, 0.12) 0.23 (−0.12, 0.57) 0.81 (0.08, 1.62)

BMA 0.23 (0.10, 0.36) 0.05 (−0.03, 0.12) 0.22 (−0.13, 0.58) 0.80 (0.08, 1.59)

Young(%) M10 −0.12 (−0.31, 0.07) −0.07 (−0.18, 0.04) 0.27 (−0.2, 0.76) −0.08 (−0.90, 0.74)

BMA −0.11 (−0.3, 0.08) −0.08 (−0.19, 0.03) 0.29 (−0.18, 0.78) −0.01 (−0.86, 0.82)

Old (%) M10 −0.11 (−0.25, 0.04) −0.05 (−0.14, 0.03) 0.10 (−0.28, 0.48) −0.09 (−0.81, 0.67)

BMA −0.10 (−0.25, 0.05) −0.05 (−0.14, 0.03) 0.10 (−0.29, 0.49) −0.08 (−0.79, 0.66)

Edu (%) M10 0.02 (−0.08, 0.12) −0.02 (−0.08, 0.04) 0.16 (−0.12, 0.43) −0.20 (−0.75, 0.31)

BMA 0.02 (−0.09, 0.12) −0.02 (−0.07, 0.04) 0.15 (−0.14, 0.42) −0.24 (−0.79, 0.27)

Unemp (%) M10 −0.13 (−0.29, 0.03) 0.01 (−0.08, 0.10) −0.09 (−0.54, 0.37) 0.60 (−0.47, 1.55)

BMA −0.12 (−0.28, 0.05) 0.01 (−0.08, 0.1) −0.08 (−0.54, 0.38) 0.61 (−0.43, 1.56)

Black (%) M10 0.14 (−0.06, 0.34) 0.14 (0.03, 0.26) −0.16 (−0.73, 0.39) 0.15 (−1.06, 1.29)

BMA 0.13 (−0.07, 0.33) 0.15 (0.03, 0.27) −0.18 (−0.75, 0.39) 0.14 (−1.02, 1.25)

Male (%) M10 −0.04 (−0.17, 0.09) 0.00 (−0.07, 0.08) 0.24 (−0.12, 0.60) 0.14 (−0.57, 0.79)

BMA −0.04 (−0.17, 0.09) 0 (−0.07, 0.08) 0.24 (−0.12, 0.62) 0.14 (−0.55, 0.82)

Uninsured (%) M10 −0.24 (−0.44, −0.04) −0.08 (−0.20, 0.04) 0.07 (−0.44, 0.58) 0.01 (−0.82, 0.86)

BMA −0.23 (−0.42, −0.02) −0.08 (−0.2, 0.04) 0.09 (−0.42, 0.61) 0 (−0.81, 0.82)

Poverty (%) M10 0.30 (−0.24, 0.84) 0.20 (−0.12, 0.51) −0.06 (−1.51, 1.45) 0.85 (−2.15, 3.85)

BMA 0.32 (−0.23, 0.87) 0.2 (−0.12, 0.51) −0.08 (−1.54, 1.42) 0.8 (−2.14, 3.75)

ρcancer M10 0.25 (0.01, 1.00) 0.33 (0.01, 0.96) 0.50 (0.03, 0.97) 0.52 (0.03, 0.99)

τcancer M10 25.27 (5.08, 61.57) 27.60 (8.05, 60.42) 19.97 (3.06, 55.61) 20.31 (1.77, 55.92)

σcancer
2 M10 1.67 (1.11, 2.47) 0.49 (0.28, 0.75) 8.22 (1.09, 14.23) 1.19 (0.18, 5.21)

Note: Bold values signify that the 95% credible intervals exclude 0.
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