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Abstract

Angle-resolved Photoemission Studies of a Doped Bilayer Iridate

by

Gregory Affeldt

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Alessandra Lanzara, Chair

Interest has been rising in systems, such as the iridates, where both spin-orbit coupling
and Coulomb correlations play a prominent role, with theoretical proposals for a variety of
exotic states. One such state, the spin-orbit Mott insulator, was discovered by Kim et al in
Sr2IrO4 using angle-resolved photoemission spectroscopy, the experimental technique used
in this work. Such states were later discovered in a variety of materials, including Sr3Ir2O7,
Na2IrO3, and RuCl3 and provide a concrete testing ground for the physics of Mott insulators.
This includes, naturally, the search for nearby exotic states which are the frequent companion
of the Mott state. Indeed, significant attention has been given to doped Sr2IrO4 as an analog
to the cuprate high-temperature superconductors, and to Na2IrO3, Li2IrO3, and RuCl3 as
candidates for hosting a spin-liquid state.

This work focuses on (Sr1−xLax)3Ir2O7, which is notable in the weakness of its parent
Mott state and thus its likely proximity to other ground states. The substitution of La on
the Sr site adds electrons as carriers to the system. This eventually destroys the insulating
state, though manifestations of both Coulomb correlations and spin-orbit coupling remain
well beyond the insulator-metal transition. Chapter 1 covers the physics relevant to the
ground state of (Sr1−xLax)3Ir2O7, starting from the effects of Coulomb correlations and
spin-orbit coupling in general and including an overview of the current experimental results
in doped and undoped Sr2IrO4 and Sr3Ir2O7. Chapter 2 summarizes the theory of (spin-
and) angle-resolved photoemission spectroscopy (ARPES), and describes analysis techniques
used in the later chapters. The main experimental results of the work obtained using spin-
integrated photoemission are in chapter 3, including evidence for a novel ground state in
lightly-doped (Sr1−xLax)3Ir2O7 and a thorough exploration of the evolving role of Coulomb
correlations with doping. Chapter 4 goes into more recent results from several spin-resolved
ARPES measurements and their possible implications, including some outstanding puzzles
in the results.
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Chapter 1

Introduction

The past several decades of research in condensed matter physics have been focused on
materials falling into one of two categories: those in which the correlation of charge carriers
via the Coulomb force are important, and those in which the relativistic interaction between
an electron’s spin and its orbital angular momentum is relevant. Recently, interest has been
growing in materials where both Coulomb correlations and spin-orbit coupling are relevant
to the ground state. This extends the separate domains of Mott insulators and topological
materials to a rich landscape summarized in figure 1.1, which hosts a variety of exotic states.

The iridates, including the material that is the focus of this dissertation, lie in the rela-
tively unexplored middle ground of this landscape with moderate strength of both spin-orbit
coupling and Coulomb correlations. In many iridates, including Sr2IrO4 where it was first
discovered[1], Sr3Ir2O7 [2, 3], Na2IrO3[4, 5], and Li2IrO3[6] the parent state is the spin-orbit
Mott insulator. Theoretical proposals for alternate ground states including spin liquids[7]
and superconductors [8] have spurred efforts to look for these states in related materials.
Here, we explore the properties of the spin-orbit Mott state in (Sr1−xLax)3Ir2O7 after it has
been perturbed by carrier doping.

This chapter explores the physics underpinning experimental studies in chapters 3 and
4. Section 1.1 briefly discusses concepts of band theory used later in this dissertations, with
a sketch of the fundamentals of Mott insulators (section 1.1.1) and an overview of the role
of spin-orbit coupling in solids (section 1.1.2). The spin-orbit Mott state exemplified by
(Sr1−xLax)3Ir2O7 and several other iridates is described in detail in section 1.2. The remain-
der of the chapter is devoted to experimental characterizations of Sr3Ir2O7, (Sr1−xLax)3Ir2O7,
and variants of its relative Sr2IrO4.

1.1 Single-electron band physics

In order to get a handle on the problem of 1023 electrons interacting with 1023 ionic cores, a se-
ries of approximations must necessarily be made. First among these is the Born-Oppenheimer
approximation, in which the physics of the ionic cores and electrons are treated separately–
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Figure 1.1: Phase diagram of ground states with spin-orbit coupling and Coulomb correla-
tions, from [9]

when considering the state of the electrons, the ionic cores are considered as fixed sources
of potential due to Coulomb interactions. Next, one brings in the (empirically supported)
notion of a crystal, i.e. that these ionic cores form a periodic lattice, and the thermodynamic
limit of an infinite crystal, allowing one to not worry about boundary conditions (though for
surface and interface effects these can be explicitly addressed). In this world of an infinite
periodic potential, Bloch’s theorem is essential: the energy eigenstates for an electron in a
periodic potential are of the form

ψn~k(~r) = ei
~k·~rφn~k(~r) (1.1)

where φ~k(~r) has the same periodicity in ~r as the underlying potential and is labeled by

the crystal momentum ~k (which differs from true momentum in that it is only defined up
to a reciprocal lattice vector) and a band index n, as many states can exist with the same
~k. The energy eigenvalues corresponding to these states En(~k) is known as the dispersion
relation, and is a function of fundamental interest as it governs the behavior of electrons;
derivatives of the dispersion give electron velocities and effective masses, and the availability
of unoccupied electron states at small excitation energies defines the difference between
metals and insulators.

This reduced problem is still in general quite difficult, but can be solved using a variety of
approximations. Among the most useful builds the Bloch wavefunction perturbatively from
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the atomic wavefunctions at each site. This is known as the tight binding approximation
(because it is most relevant when electron are tightly bound to their ionic cores), and is the
basis for talking about orbital character of electron bands, as well as models for correlated
system discussed later in section 1.1.1.

As an example of how this works, consider a 1D chain of atoms with one electron each,
separated by a distance a. Electron wave functions must, by Bloch’s theorem, be of the form
ψk(x) = eikxφk(x), with φk(x) periodic over a length a. While the φk can in principle differ
for inequivalent k, the most natural choice in a picture starting from the independent atomic
picture is just a superposition of the atomic orbitals, so that

ψk(x) =
1√
N
eikx

N∑
j=0

φ(~r − ~rj), (1.2)

The energy of each ψk state is then given by evaluating the expectation of the full
Hamiltonian in that state

E(k) =< ψ∗k|H|ψk >=

∫
ψ∗kHψk (1.3)

=
1

N

∑
j

∑
`

ei(`−j)ka
∫
φ∗(~r − jax̂)Hφ(~r − `ax̂)d~r (1.4)

=
1

N

∑
j

∑
`

ei(`−j)ka
∫
φ∗(~u)Hφ(~u− (`− j)ax̂)d~x (1.5)

=
1

N

∑
j

∑
m

eimka
∫
φ∗(~u)Hφ(~u−max̂)d~u (1.6)

=
∑
m

eimka
∫
φ∗(~u)Hφ(~u−max̂) (1.7)

where this last sum can be broken down by the distance m between sites. Since the
atomic orbitals φ is localized near the origin, the overlap integrals decrease rapidly with
increasing |m|. Assuming it vanishes for |m| > 1 gives

E(k) =

∫
φ∗(~u)Hφ(~u) + cos(ka)

∫
φ∗(~u)Hφ(~u− ax̂) (1.8)

= E0 + γ cos(ka) (1.9)

where E0 is the energy of the free atomic orbital. While in principle the overlap integral
γ is calculable, it is typically left as an experimental fitting parameter.

In a more complicated system there can be degenerate orbitals, orbitals of higher ` (so
that they are not spherically symmetric), and atoms of multiple elements in the lattice. In
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the case of Sr3Ir2O7, all three of these come into play–the relevant physics is the result of 5
electrons in each Ir 5d shell, and interaction between adjacent iridium sites is mediated by
the filled 2p orbitals on the intermediate oxygen sites. This has implications for the magnetic
interactions between moments on the Ir sites, which is discussed further in 1.2.2.

1.1.1 Coulomb correlations and the Hubbard model

The band theory outlined above explicitly ignores one of the fundamental properties of
electrons–their negative charge, which gives rise to complicated interactions between the
many electrons in the lattice. Band theory can be extended with the Fermi liquid theory
first developed by Landau[10], which takes into account weak interactions between electrons.
In this picture, electrons are replaced conceptually with electronic quasiparticles, collective
excitations of the many-body electron wavefunction. These move through a metal in the
same way as an electron in the simple band picture, but have a finite lifetime as interactions
with other states give a nonzero probability of decay.

In many transition metal oxides, however, band theory predicts metallic behavior while
experiment shows insulating behavior. In these systems (of which NiO was an early ex-
ample), it was proposed by Mott and Peierls in 1937 that electron-electron interactions
drive the insulating behavior[11]. This led eventually to the 1963 Hubbard model[12], whose
Hamiltonian is written in second quantization as

Ĥ = −t
∑
<ij>,σ

ĉ†i,σ ĉj,σ + ĉ†j,σ ĉ1i,σ + U
∑
i

n̂i,↑n̂i,↓ (1.10)

where the first sum is over all nearest neighbor pairs i and j, ci,σ, c
†
i,sigma are fermion

annihilation and creation operators on site i with spin σ, respectively, and ni,σ is the number
of electrons on site i with spin σ. The first term is commonly known as the hopping term
and gives rise to the tight-binding band structure as in section 1.1. The second term is
the Hubbard U term and causes an energy penalty for having a site doubly occupied as its
mechanism for encoding electron-electron repulsion.

For Mott insulators, a common starting point in the Hubbard model is the case of half
filling (one electron per site), and treating hopping as a perturbation on the localized ground
state (t << U). Second order perturbation theory starting from this ground state gives rise
to an antiferromagnetic interaction between neighboring spins, as hopping is forbidden for
neighboring spins that are aligned (due to Pauli exclusion) while hopping lowers the energy
for antiparallel spins.

It is empirically observed that most Mott insulators are antiferromagnets at sufficiently
low temperature. This, however, gives rise to a second method for an insulating state to
arise: in the case of a square lattice, the antiferromagnetic ground state partially breaks
translational symmetry (as two neighboring sites with opposite spins are inequivalent) and
thus doubles the size of the unit cell. This causes there to be an even number of electrons
per unit cell, which is necessary but not sufficient for an insulating ground state in simple
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Figure 1.2: Antiferromagnetic order in Mott insulators

band theory. A metal which becomes insulating due to antiferromagnetic ordering is known
as a Slater insulator, while in a Mott insulator the gap precedes the magnetic ordering.

1.1.2 Spin-orbit coupling

The above discussion of electronic physics in solids neglects the spin of an electron except
as an additional degree of freedom that allows two electrons to have the same energy and
momentum. Here we discuss the relativistic spin-orbit coupling, which changes the energy
of electrons according to the relationship between their spin and orbital angular momenta.
This is first discussed in the more well-known atomic case, followed by its immediate analog
in semiconductors. The section ends with descriptions of several states that emerge in the
presence of both spin-orbit coupling and broken symmetry.

Atomic spin-orbit coupling

The general Hamiltonian for a spin ~mus in a magnetic field ~B is given by

H = − ~µs · ~B (1.11)

and serves to lower the electron energy if it is more nearly aligned with the magnetic field.
An electron bound to an atomic nucleus does not ordinarily experience a magnetic field,
but for a charged particle moving with velocity ~v in an electric field ~E there is an effective
magnetic field given by

~B = − ~v
c2
× ~E (1.12)
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which arises from a Lorentz transformation into the particle’s rest frame. For the case of
an electron bound to an atom, a spherically symmetric potential (and thus, electric field) is

expected, so that one may write ~E(~r) = E(r)~r/r. Substituting this form into equations 1.11
and 1.12 gives

H = −E(r)

rc2
~µs · (~v × ~r) (1.13)

=

(
E(r)

merc2

)(geµB
~

)
~S · (~r × ~p) (1.14)

=
2µB

~meec2

1

r

∂U

∂r

(
~L · ~S

)
(1.15)

So that the spin-orbit coupling favors states where ~L and ~S are antiparallel, i.e., the total
angular momentum ~J is minimized. The potential U is given by the Coulomb potential for
an atom with atomic number Z:

U(r) = − 1

4πε0

Ze

r
(1.16)

so that
∂U

∂r
=

1

4πε0

Ze

r2
(1.17)

and

H ∝ Z

r3

(
~L · ~S

)
(1.18)

The expectation of the radius for a hydrogen-like atom is r = a0/Z, and the magnitude of
the spin-orbit coupling in hydrogen-like atoms is proportional to Z4. Note that a more exact
treatment takes into account that the electron’s orbital frame is not inertial, which gives rise
to a factor of 1

2
in the final result, but all the scaling dependencies are encapsulated in this

treatment.
It is for this reason that systems with heavier elements (e.g., iridium) are those where

spin-orbit coupling is relevant, despite the screening by other electrons that necessarily occurs
in most real systems. This is borne out by figure 1.3. In the left panel is a schematic for a
common band structure near the Fermi level for GaAs and other semiconductors, with an
energy splitting ∆SO between the light and heavy hole valence bands and a deeper split-off
band. The value of this splitting for a range of semiconductors is plotted in the right panel
(data from [13] and [14]) vs the atomic number of the heaviest component element. There
is an overall upward trend, though a wide spread in spin-orbit splitting values.

Symmetry considerations

In prior discussions of the effects of spin-orbit coupling, both inversion and time-reversal
symmetries were preserved. This guarantees spin degeneracy as these spatial symmetries
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Figure 1.3: Spin-orbit coupling in semiconductors. Left: schematic of typical near-EF band
structure with spin-orbit split-off band. Right: Band splitting due to spin-orbit coupling vs.
the atomic number of heaviest constituent element for several common semiconductors

manifest in symmetries of the allowed energy states:

E(~k, ↑) = E(−~k, ↑) (inversion) (1.19)

E(~k, ↑) = E(−~k, ↓) (time reversal) (1.20)

E(~k, ↑) = E(~k, ↓) (inversion and time reversal) (1.21)

Thus, in order to have states with spin non-degenerate bands, either time-reversal or inversion
symmetry must be broken. The latter case is the domain of magnetism, where states of spin
along a particular direction are lowered in energy relative to those antiparallel. The rest
of this section will explore system with broken inversion symmetry and its effects on the
electronic ground state.

Rashba effect

One common way for inversion symmetry to be broken is at the interface between a sample
and the vacuum, i.e. its surface. At such a boundary, the charges of the ions nearest the
surface are not counterbalanced by their partners above and an electric field arises. As in
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Figure 1.4: Schematic of the Rashba effect

the case of atomic spin-orbit coupling, electrons moving in this electric field see an effective
magnetic field

~B = − 1

c2

(
~v × ~E

)
=

1

mc2

(
~p× ~E

)
(1.22)

which will then interact with the spin of the electron via the Hamiltonian in equation 1.11.
Ignoring the possible addition of a reciprocal lattice vector, ~p = ~~k and substituting ~E = E0ẑ
gives

HRashba = α
(
~σ × ~k

)
· ẑ (1.23)

which clearly induces a splitting between spins aligned along the positive and negative
z-axis. Restricted to ~k = kxx̂ and considering separately the Hamiltonians for “up” and
“down” spins with respect to the z-axis, this is a splitting proportional to kx.

A schematic of the effect of the Rashba effect on a free electron band (applicable to, for
instance, the (111) surface state on gold) is shown in figure 1.1.2. At left is the unperturbed
spin-degenerate dispersion along the kx direction which, as the Rashba effect is turned on,
splits into two bands based on the spin in the perpendicular direction in the center panel.
When viewed from the perspective of a constant energy slice in the kx, ky plane, there are
two spin-polarized bands with counter-rotating helical spins, as shown in the right panel.

Dresselhaus effect

While inversion symmetry is always broken at material boundaries, in many materials the
underlying crystal structure lacks inversion symmetry to begin with. These so-called non-
centrosymmetric crystals include common III-V semiconductors with the “zincblende” struc-
ture, including GaAs. With this structure, there is a spin-momentum interaction which, up
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Figure 1.5: Effective magnetic field for the linear Dresselhaus effect

to prefactors is given by

HD ∝ kx
(
k2
y − k2

z

)
σx + ky

(
k2
z − k2

x

)
σy + kz

(
k2
x − k2

y

)
σz (1.24)

In many thin or quasi-2D systems, kz is not a meaningful momentum and should be averaged
over. In these cases, there is a cubic term (in kx, ky) that comes from the parts of the above
with no kz dependence, and a linear term from the parts proportional to k2

z , which is

HD, linear ∝ −kxσx + kyσy (1.25)

The effective magnetic field with respect to crystal momentum (i.e., the direction in which
it is energetically favorable for the spins to point) for this linear Dresselhaus effect is shown
in figure 1.5. Note that, as expected, this arrangement does not respect inversion symmetry,
but still respects time reversal as the field flips with opposite ~k.

Local inversion symmetry breaking

It has recently been discovered that, even in materials with an inversion center, local effects
can give rise to spatially dependent spin structures in momentum space[15]. Because spin-
orbit coupling is due to an interaction between valence electrons and heavy ionic cores, the
symmetry at these sites is also relevant. If an ion does not sit at an inversion center of its
crystal structure, electrons that are localized there can experience local electric fields.

As an example, consider the two-dimensional crystal structure illustrated in figure 1.6
which consists of layers of two types of atoms. The overall structure is defined by a rectan-
gular lattice and has inversion symmetry centered at the two locations marked with stars,
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Figure 1.6: Local Rashba effect in a layered material

and thus for the overall system (assuming also time reversal symmetry) opposite spin states
must be degenerate. Limiting the scope to the electrostatic environment on one of the light
gray sites, however, reveals a lack of inversion symmetry as a dark ion sits on one side of it,
a light ion the other. The charges on these sites can be different due to different oxidation
states in the bonding process, so that a net dipole field can exist. This electric field, similar
to that at an interface, can give rise to a Rashba-like effect where the spin of electrons in a
given layer is locked to its momentum. This is offset by the opposite dipole field, and thus
a spin texture of the opposite chirality, in the adjacent layer, and the total spin polarization
is zero.

This sort of spin polarization is in practice difficult to measure, as any bulk probe will
see offsetting signatures from the two layers. It has, however, been observed using angle-
resolved photoemission spectroscopy (discussed in chapter 2) in PtSe2[16] and WSe2, as this
selectively probes the surface of a material, allowing for stronger signal from the spin chirality
in the top layer than in the one beneath it.

1.2 Ruddlesden-Popper Iridates: Sr2IrO4 and Sr3Ir2O7

This section will discuss the physics of the Ruddlesden-Popper iridates–a family of materials
Sr2nIrnO3n+1 that share the same layered structure of Ir-O octahedra. The structure of the
n=1 compound, Sr2IrO4, is shown at left in figure 1.7 and is essentially the same as that
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Figure 1.7: Crystal structure of Ruddlesden-Popper iridates. Left: 3D view of basic structure
in Sr2IrO4 Center: 3D view of basic structure in Sr3Ir2O7. Right: Structure in the Ir-O plane
showing staggered octahedral rotations. Purple circles are Ir sites, brown O, and green Sr.

of La2CuO4, with iridium in the place of copper and strontium in that of lanthanum. The
n=2 compound, Sr3Ir2O7, and its doped relatives (Sr1−xLax)3Ir2O7, are the subject of the
experimental work discussed in this dissertation. Both Sr2IrO4 and Sr3Ir2O7 deviate from the
ideal layered perovskite structure in that the Ir-O octahedra rotate, alternating in clockwise
and counterclockwise directions. This doubles the size of the true unit cell in the system (as
it must contain octahedra of both rotations) and leads to a slight change in the magnetic
interactions discussed in the following sections. More recent measurements have suggested
a somewhat lower symmetry than that implied here[17, 18], though deviations are small.

1.2.1 Formation of the spin-orbit Mott state

From the chemistry of the parent compound Sr3Ir2O7 and given the strong oxidation states
of Sr (2+) and O (2-), charge neutrality demands that Ir is in a 4+ state with an electron
configuration [Xe]4f 145d5. The 4f levels are deeper in energy and thus the near-EF features
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will be due to the 5d orbitals in a tight binding picture. These d orbitals are labeled based
on the angular part of their wavefunctions as |xy >,|xz >,|yz >,|z2 >, and |x2 − y2 >. The
latter two (known as eg orbitals) have high occupation probability along the directions of
the Ir-O bonds, and due to the negative charge of the O site are energetically more costly to
occupy. The former three orbitals (known as t2g) have maxima in directions between these
bonds and thus do not pay this energy penalty. The energy between these two sets of orbitals
is known as the crystal field splitting, and at 3.6 eV[19], are the largest energy scale relevant
to these d orbitals. Thus, the unoccupied eg orbitals are ignored in the following discussion.

In this restricted framework of the t2g orbitals, the spin-orbit coupling due to the iridium
ions can be considered. As in the semiconductor case above, this will give a splitting ∆SO ∝
~̀ ·~s and thus the eigenstates of the angular momentum operators ~̀ should be considered. In
terms of the eigenstates of the `z operator, the orbitals are

|xy > =
1√
2

(|+ 2 > −| − 2 >)

|xz > =
1√
2

(|+ 1 > −| − 1 >)

|yz > =
i√
2

(|+ 1 > +| − 1 >)

|z2 > = |0 >

|x2 − y2 > =
i√
2

(|+ 2 > +| − 2 >)

Considering only the t2g orbitals, the only nonzero elements of the `z operator are <
xz|`z|yz >= i and its conjugate. The t2g states can then be grouped into states with `z
eigenvalues of +1, 0, and -1, so that they have an effective |~̀eff | = 1 and the spin-orbit
coupling drives a splitting between a pair of jeff = 3

2
states and a jeff = 1

2
state. The

latter are lower in energy and thus filled with four electrons, leaving only one electron in
the jeff = 1

2
state. This state is then analogous to the half-filled Hubbard model, and the

moderate U corresponding to this system is sufficient to split off a lower and upper Hubbard
band and the sample is insulating.

1.2.2 Theory of Magnetism in jeff states

The Hamiltonian governing the behavior of the spin and orbital degrees of freedom on a
single site is taken to be:

H0 = λ~̀ · ~s+ ∆`2
z (1.26)

where the λ term is the usual spin-orbit coupling and the ∆ term is related to the tetragonal
distortion of the oxygen octahedra along the c-axis. This Hamiltonian has a degenerate
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Figure 1.8: Schematic of energy scales in a spin-orbit Mott insulator

ground state given by spin-orbit entangled pseudospins:

|↑̃ > = sin θ|0, ↑> − cos θ|1, ↓> (1.27)

|↓̃ > = sin θ|0, ↓> + cos θ|1, ↑> (1.28)

with θ defined by tan(2θ) = 2/
√

(2)λ/(λ − 2∆). In the limit of no tetragonal distortion

these states are just the typical ~j states.
The magnetism of these pseudospin states on the Ir sites is governed by a Hamiltonian

related to superexchange across intermediate oxygen atoms and depend significantly on the
position of these oxygen atoms. Most physical systems can be approximated by geometries
in which the Ir-O-Ir bond angle is 180◦ (corner-sharing octahedra, notably Sr2IrO4) or 90◦

(edge-sharing octahedra, notably Li2IrO3 and Na2IrO3). This dependency is due to the
overlap integrals involved in superexchange and the coupling between the different Ir d
orbitals and the spin degree of freedom, as shown in figure 1.9. In the corner-sharing case,
the only non-vanishing orbital overlaps come from the |xz > and |xz > Ir states with the
py (for the bond along the x direction) and pz O states, respectively. Other states can be
seen as zero on symmetry grounds: the product of the Ir state and the O state must be
symmetric with respect to the y and z axes, while the symmetry along x is already broken
by the displacement between the Ir and O ions. In the edge sharing case it is different
orbitals on each Ir site that comes into play, with contributions from a |yz > state on one Ir
site and a |xz > state on the other as well as the O pz state.

For the corner-sharing case relevant to the material studied in this work, the resulting
pseudospin interaction Hamiltonian is

Hij = J1
~Si · ~Sj + J2

(
~S1 · ~rij

)(
~rij · ~Sj

)
(1.29)
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Figure 1.9: Geometries considered for superexchange in iridate systems, from [20]

where the ~Si refer to the pseudospin states, ~rij is the unit vector along the bond between
sites i and j, and J1, J2 are coupling constants, with J2 a small perturbation on the otherwise
isotropic antiferromagnetic Heisenberg model. Thus, up to small corrections, the interaction
between spin-orbit entangled pseudospins in corner-sharing iridates is the same as in the
widely-used t-J model for cuprates.

Further corrections added to the prior argument due to the rotation and elongation of
Ir-O octahedra break the symmetry of the Heisenberg model, and the ground state can thus
either have pseudospins aligned antiferromagnetically in the Ir-O plane (observed in Sr2IrO4)
or along the perpendicular c axis (observed in Sr3Ir2O7).

In the alternate case of edge sharing octahedra, the magnetic Hamiltonian reduces to a
quantum compass model and has been proposed as a realization of the Kitaev model[20],
which should give rise to a quantum spin liquid with fractional excitations[21, 22, 23]. Sys-
tems with this structure have been widely explored, including Na2IrO3[24, 25, 5, 26, 27, 28,
29, 30] and Li2IrO3[6, 31].

1.2.3 Layer-dependent metal-insulator transition

The prior discussion restricted its attention to a single Ir-O layer, approximating three-
dimensional crystals as a two-dimensional system. From the structures in figure 1.7, we see
that the Ir-O layers are more separated in the case of Sr2IrO4 than in Sr3Ir2O7, and thus this
system is more nearly two-dimensional. X-ray scattering shows that in this two-dimensional
sample the jeff = 1

2
picture very nearly holds [19], while Sr3Ir2O7 is farther from this ideal

picture [32]
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Among the first measurements exploring the role of dimensionality in these systems was
an optical conductivity measurement conducted on Sr2IrO4, Sr3Ir2O7, and the fully three-
dimensional n = ∞ compound, SrIrO3. Since the latter is not easily grown in single bulk
crystals, an epitaxially grown (on MgO) film was used. The results of this measurement are
shown in figure 1.10. Panel (a) of this figure shows the optical conductivity spectrum for
Sr2IrO4. In line with its insulating nature, the conductivity vanishes near zero energy, and
exhibits two main peaks in the energy range measured, labeled α and β. These peaks are
due to transitions into the unoccupied upper Hubbard band from the lower Hubbard band
and jeff = 3

2
band, respectively, as illustrated in the cartoon of panel (d). In the spectrum

for Sr3Ir2O7 shown in panel (b), these two peaks have both broadened and shifted to lower
energy. Finally, in the SrIrO3 spectrum shown in panel (c), the α peak has reached zero
energy, indicating a transition to a metallic state. The β peak in this spectrum has broadened
further and shifted to slightly lower energy when compared to the Sr3Ir2O7 measurement.
This phenomenology is consistent with what one might expect from a tight binding picture
for these samples. As the number of Ir-O layers grows, the average number of nearest
neighbors for a given Ir atom increases from 4 in the most two-dimensional case (Sr2IrO4) to
six in the cubic three-dimensional case (SrIrO3). This increase in coordination number will
increase the bandwidth until finally it is sufficiently great to bridge the separation caused
by the Mott gap, as illustrated by the dashed lines in panel (d). At this point, the Hubbard
bands merge and a partially-filled jeff = 1

2
band crosses the chemical potential. This allows

for arbitrarily small excitations and the system is metallic, provided that the spin-orbit
coupling is sufficiently strong to maintain separation between the jeff = 1

2
and jeff = 3

2
bands

[33]. While this appears to hold experimentally, there is also a theoretical suggestion that
the metallic state in SrIrO3 is related to topology [34], similar to a proposal in Na2IrO3[30].

A similar argument suggests that by applying hydrostatic pressure will decrease the dis-
tance between neighboring Ir sites, increasing the overlap integrals and thus the bandwidth.
Early experimental efforts in this direction found insulating behavior up to at least 55 GPa
in Sr2IrO4 [35]. In Sr3Ir2O7, a second-order structural transition is observed near 14 GPa
[36], with a decreasing electronic gap up to 104 GPa [35]. A later study shows a first-order
structural transition at 54 GPa and metallic behavior starting near 20 GPa [37].

1.2.4 Pseudogaps and possible superconductivity in Sr2IrO4

The experiment that shows the clearest connection to the particular physics of the cuprates
started with an undoped parent Sr2IrO4 sample, which is then doped via the surface depo-
sition of potassium ions. Since potassium is an alkali metal, it has a strong 1+ oxidation
state and donates electrons to the surface layers of Sr2IrO4. The resulting spectral weight
at the chemical potential for a deposition of half a potassium monolayer is shown at left in
figure 1.11, and is remarkably similar to that seen in cuprates. Namely, there is a finite arc
of ungapped states (positions marked with x’s 1-4) as shown by the symmetrized EDCs at
right. This analysis technique will be discussed in the next chapter, but the local minima
in the spectral intensity at EF correspond to the pseudogap. Similarly, surface potassium
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Figure 1.10: Layer-dependent metal-insulator transition in RP iridates. (a), (b): Optical
conductivity for single crystal Sr2IrO4 and Sr3Ir2O7, respectively. (c): Optical conductivity
for thin-film SrIrO3. (d): Schematic of low-energy features in the optical conductivity.

doping on a Sr2IrO4/Sr3Ir2O7 heterostructure sample appears to give rise to a d-wave gap in
analogy to the superconducting gap in cuprates that would point to a Tc near 30 K[38, 39].

While the ARPES data suggest superconductivity in Sr2IrO4 the nature of the surface
doping experiment, which dopes only the first few layers and must be conducted in ultra-
high vacuum, make traditional measures of superconductivity (i.e., magnetic susceptibility
and electrical transport) difficult. Further, this sort of state is not observed in other mea-
surements on chemically electron-doped samples[40, 41], pointing to a either a role of the
potassium layer beyond chemical doping or to disorder induced by chemical doping decreas-
ing the tendency toward superconductivity and the pseudogap state. There are, however,
indications of a pseudogap in hole-doped Sr2IrO4 [42], though the doping on the Ir site makes
interpretation more difficult.
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Figure 1.11: ARPES data revealing a pseudogap in Sr2IrO4

1.3 Properties of doped (Sr1−xLax)3Ir2O7

While surface-doped Sr2IrO4 has similarities to the cuprate superconductors upon doping,
as discussed in the previous section, there are many other systems in which carrier doping
Sr2IrO4 induces a metal-insulator transition through the breakdown of the Mott state [43,
44, 45, 46, 47]. Sr3Ir2O7 differs from its single-layer relative in magnetic and electrical ground
states, and exhibits different phenomena with La substitution for Sr. This section will explore
the ways in which Sr3Ir2O7 evolves with doping, as measured by transport, magnetization,
scattering, and optical experiments.

1.3.1 Transport properties

One of the first effects to consider upon doping an insulator is the ability to create a con-
ductive system. In the case of a band insulator, this simply means occupying a previously
empty conduction band that has a continuum of states available, so that even a very small
number additional electrons should induce some metallic behavior. In a Mott insulator such
as Sr3Ir2O7, the picture is less clear. The addition of electrons to a half-filled insulating Mott
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Figure 1.12: Resistivity measurements along both the a (left) and c (right) axis of
(Sr1−xLax)3Ir2O7 for several doping levels.

state will eventually diminish the energy barrier to hopping.
The most straightforward way to assess this transition is the measurement of electrical

resistivity as a function of doping and temperature. This was done in [48] for a range of
(Sr1−xLax)3Ir2O7 samples from the parent compound to x = 0.05. These results are shown
in figure 1.12. At left is the resistivity along the crystallographic a-axis, with the c-axis
resistivity on the right. The quasi-two-dimensional nature of (Sr1−xLax)3Ir2O7 is seen in
the anisotropy between the resistivity in these two directions–resistivity along the c axis is
roughly a factor of 10 greater than that along the a axis in samples with nonzero doping.
In both cases the resistivity at all temperatures steadily drops with increasing doping, as
additional carriers create a path for transport. The sign of a complete transition to a
metal from an insulator is decreasing resistance as the temperature goes toward 0 K. This is
achieved in the x = 0.05 sample but not the x = 0.03 sample, indicating an insulator-to-metal
transition near x = 0.04.

1.3.2 Magnetic structure and excitations

Magnetic ground state

Earlier in this chapter, it was shown that the pseudospin Hamiltonian for Sr2IrO4 and,
presumably, also Sr3Ir2O7, was that of a Heisenberg antiferromagnet within a single Ir-O
plane. Neither the direction of the spins nor the relationship between spins of neighboring
Ir-O layers is obvious from this Hamiltonian. Empirically, in Sr3Ir2O7, the spins point along
the crystallographic c axis[49, 50]. Further, spins along the c axis are anti-aligned, as shown
in the right side of figure 1.13 from [51]. This structure leads to the same periodicity of the
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Figure 1.13: Crystallographic and magnetic structure of Sr3Ir2O7 from [51].

Ir-O octahedral rotations discussed in section 1.2 and thus does not break any additional
symmetries or change the unit cell with the onset of antiferromagnetic order.

This antiferromagnetic ground state is one of the clearest empirical differences between
Sr3Ir2O7 and Sr2IrO4, where the spins align antiferromagnetically within the ab plane, along
the direction of the Ir-O bonds[52]. The susceptibility measurements in the literature ([48])
show significant ability for the spins to tilt away from the c-axis with small magnetic fields
and thus that the magnetic anisotropy is relatively small. This in turn suggests that the c
axis ground state is near in energy to one with spins aligned in the ab plane as in the case of
Sr2IrO4. Indeed, a theoretical study [51] found that these states are near in energy, with the
transition between these two states governed by the compression or elongation of the Ir-O
octahedra along the c axis. This result is illustrated in figure 1.14 in the form of a phase
diagram for undoped Sr3Ir2O7 and Sr2IrO4 with respect to this distortion (parameterized
by θ) and the strength of the Hund’s coupling in the system. The solid line shows the
phase boundary between a canted in-plane AF order and the c-axis collinear order actually
observed in Sr3Ir2O7. The dashed vertical line represents the same for Sr2IrO4, which differs
from that for Sr3Ir2O7 due to additional interlayer interaction terms in Sr3Ir2O7. The shaded
region represents the experimentally constrained parameter space that may be occupied by
Sr3Ir2O7. This so-called “spin flop” is observed experimentally in Sr2IrO4 upon doping with
either Ru[53] or Mn [54]. Other theoretical studies also suggests that a transition to the in-
plane magnetic configuration may be driven by oxygen vacancies [55], and that the Hubbard
model derived for the bilayer system in analogy to the calculation for Sr2IrO4 naturally
results in c-axis order [56].

The evolution of the magnetic state with doping in (Sr1−xLax)3Ir2O7 was measured using
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Figure 1.14: Spin flop transition in (Sr1−xLax)3Ir2O7 and Sr2IrO4 as a function of octahedral
distortion and Hund’s coupling.

polarized neutron scattering in [57], and is summarized in figure 1.15. The panel at left
shows the evolution of the magnetic ordering between samples with x ≈ 2% and x ≈ 3%.
In both samples, the order parameter is zero above an onset temperature near 250 K, then
increases monotonically toward a saturation value at low temperature. While the difference
between these samples in La concentration is only 1%, the x ≈ 3% sample shows a significant
suppression of the ordered moment. Adding data from measurements at x = 0, x ≈ 4% gives
the curve in the panel on the right. This evolution of the magnetic order parameter with
doping points to a phase transition near x = 4%.

Combining this magnetic phase boundary with the transport results in figure 1.12 and
several other measurements gives rise to the phase diagram for (Sr1−xLax)3Ir2O7 in figure
1.16. At the lowest doping levels and temperatures, the system is both antiferromagnetic and
insulating, as expected for a Mott insulator. With increasing doping both the insulating and
antiferromagnetic behaviors weaken, and vanish near the critical doping x ≈ 4%. Beyond this
doping level, there is no long-range magnetic ordering, though later works reveal signatures of
short-range magnetic correlations. Hogan et al make the point in [57] that this doping-driven
phase transition is, in fact, first order, with the most compelling evidence being scanning
tunneling microscopy measurements of samples in the region just to the left of the critical
doping in this phase diagram. These measurements reveal phase separation, i.e., isolated
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Figure 1.15: Doping evolution of antiferromagnetism in (Sr1−xLax)3Ir2O7 measured by neu-
tron scattering from [57]. Left: Temperature dependence of the order parameter for two
samples (x ≈ 2%, 3%. Right: Low-temperature orderer AF moment as a function of doping
in (Sr1−xLax)3Ir2O7.

pockets of metallic and insulating behaviors on a nanometer length scale. They further
identify an additional structural transition from neutron scattering in the form of a reflection
that should be symmetry-forbidden from the structure of (Sr1−xLax)3Ir2O7, indicated by the
red squares and denoted TS in the figure. This structural distortion appears to exist in all
samples with at least some metallic concentrations. Hints of further transition to a glassy
state appear below 100 K in susceptibility and scattering measurements[58].

Magnetic excitation spectra

Understanding the physics of the pseudospins in Sr3Ir2O7 beyond the ground state is ac-
complished by observing the possible magnon excitations above this ground state. This is
accomplished via resonant inelastic x-ray scattering (RIXS) where the difference in energy
and momentum between x rays incident upon the sample and those that reach the detector
after scattering is used to infer the energy and momentum of excitations in the sample. This
spectrum for undoped Sr3Ir2O7 is shown in figure 1.17 along high symmetry directions in mo-
mentum space. There are three distinct features in this spectrum: elastic and nearly-elastic
scattering events (A), a dispersive magnon band (B), and a weaker, broader two-magnon
spectrum (C). The magnon dispersion B is notable for the absence of an acoustic branch
and the large gap between the band minimum near (π, π) and zero energy. An acoustic
mode is generally expected as a consequence of symmetry and Goldstone’s theorem, but the
broken rotational symmetry caused by pinning the pseudospins to the c axis allows for a gap
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Figure 1.16: Phase diagram of (Sr1−xLax)3Ir2O7 from scattering and transport

in the expectation spectrum. This same experiment can be performed on doped samples,
with results shown in figure 1.18. The three panels of this figure show RIXS spectra for an x
= 0, x = 0.02, and x = 0.065 sample, which correspond to the parent, doped antiferromag-
netic, and doped paramagnetic ground states, respectively. The primary change with doping
is the decrease and eventual closure of the gap at the band minimum. This corresponds
to the suppression of anisotropic terms in the spin Hamiltonian, and indeed the magnetic
correlations along the c axis are suppressed at higher doping levels. The continued existence
of well-defined magnon dispersion is a sign of remnant short range order in the system be-
yond the region of the phase diagram where the long range antiferromagnetic ground state
exists[59].

1.3.3 Optical properties

Equilibrium optical conductivity

The optical conductivity spectra of Sr3Ir2O7 are shown in figure 1.19. The two peaks α and
β correspond to direct optical transitions at energies ~ω ≈ 0.35 eV and 0.8 eV, which is
consistent with published band structure calculations of Sr3Ir2O7. At higher temperature,
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Figure 1.17: Magnon dispersion along high-symmetry directions in Sr3Ir2O7, measured by
RIXS

Figure 1.18: Magnon dispersion along high-symmetry directions in (Sr1−xLax)3Ir2O7, mea-
sured by RIXS, for three different doping levels.
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Figure 1.19: Infrared optical conductivity of Sr3Ir2O7 as a function of temperature, from
[60]. Inset: the same data on a semilogarithmic plot.

these features broaden and weaken, and the peak labeled α shifts to lower energy. The
broadening of these peaks is expected, as the increase in the population of phonons provides
more channels with slightly different energy for the interband transitions. The shift of the
α peak is attributed to the emergence of states near EF at high temperature. The features
at lower energy are directly related to phonons in the system. The sharp edge near the
indirect gap energy of 0.1 meV corresponds to interband transitions, where phonons in the
system provide the necessary momentum and enhance the conductivity here with increasaing
temperature. The sharp peaks at lower energy correspond to optical phonons, discussed
below. Figure 1.20 (a) and (b) show the optical conductivity near three optical phonon
modes at low energy in Sr3Ir2O7 for a range of temperatures. The two lower-energy modes
near 264 cm−1 and 374 cm−1 are identified as bending modes of the in-plane Ir-O-IR bond.
The higher energy mode near 639 cm−1 corresponds to stretching of the Ir-O bond along the
c axis. All three of these modes have relatively flat dispersions [60] and can contribute to the
indirect gap transitions observed above. Panel (c) shows the relative shift of these phonon
energies with temperature, with virtually no change in the 264 cm−1 and 639 cm−1 modes
over the range measured. The 374 cm−1 mode, however, decreases in energy by roughly 6%
between 10 K and 400 K. This softening suggests that the O ions can have large displacements
perpendicular to the Ir-O-Ir bond direction at high temperature, as illustrated in the inset
to panel (c), which in turn may affect the hopping properties and magnetic interactions at
high temperature.
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Figure 1.20: Phonon modes in Sr3Ir2O7 from [60]. Top: Optical conductivity at energies
corresponding to bending (left) and stretching (right) phonon modes in Sr3Ir2O7 as a function
of temperature. Bottom: Shift in phonon peak positions with temperature.
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Charge density wave-like instability

In addition to equilibrium properties, optical reflectivity experiments are well-suited to prob-
ing sample phenomena at an ultrafast timescale, shedding light on dynamical properties and
instabilities toward orderings not found in equilibrium. The results of one such experiment
are shown in figure 1.21 for a metallic (x = 5.8%) (Sr1−xLax)3Ir2O7 sample. Shown in
panel a is the change in reflectivity of 1.55 eV photons after an intense pump pulse (fluence
≈ 400µJ/cm2) of the same energy. For experimental reasons, this transient is normalized to
the overall reflectivity at that energy. In each of these curves, there is a sharp peak near zero
delay (corresponding to temporal overlap of pump and probe) caused by rapidly-decaying
high energy excitations followed by a slower decay and weak oscillations. The amplitude of
these oscillations is plotted as a function of temperature in panel b, and shows a rapid onset
near 200 K and saturation at very low temperatures, similar to an order parameter. This
temperature of 200 K corresponds closely to the structural distortion temperature for this
doping in figure 1.16. Indeed, this trend holds for a range of samples from x = 2.7 % out to
this measurement at x = 5.8%, suggesting a connection between the structural distortion and
an instability toward density-wave behavior. This supports a picture of (Sr1−xLax)3Ir2O7 as
a system with many competing ground states close in energy, even into the metallic regime
away from the parent Mott state.
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Figure 1.21: Ultrafast reflectivity oscillations in a metallic x =5.8% (Sr1−xLax)3Ir2O7 sample,
from [61]. a: Reflectivity transients as a function of temperature. b: Reflectivity oscillation
amplitude as a function of temperature. c: Reflectivity oscillation period and damping time
as a function of temperature.
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Chapter 2

Angle-resolved photoemission
spectroscopy

The majority of the work presented in this dissertation uses the experimental technique
of angle-resolved photoemission spectroscopy (ARPES). This chapter outlines the theory
behind this experiment and its interpretation, as well as practical concerns in both the
experimental realization and its analysis. The final section is a brief introduction to spin-
resolved ARPES, used in chapter 4.

2.1 Theory of ARPES

At its most basic level, the ARPES experiment can be understood classically in terms of
simple conservations laws. An electron in a solid with binding energy Eb absorbs an incident
photon of energy hν and is emitted from a sample, so its vacuum kinetic energy is given, as
in the photoelectric effect, by conservation of energy as

Ekin = hν − Eb − φ (2.1)

where φ is the sample work function. Additionally, discrete translational symmetry of the
lattice along the surface direction gives rise to conservation of crystal momentum in that
direction, so that an electron in the solid with in-plane crystal momentum k‖ is emitted at
an angle θ to the sample normal satisfying

~|~k‖| =
√

2me(hν − φ− Eb) sin θ (2.2)

Thus, by measuring the kinetic energy of an outgoing electron and its angle relative to the
sample surface, we can infer its state before the photoemission process, up to an unknown
momentum component normal to the surface where translation symmetry is explicitly broken
by the sample-vacuum interface. There are, however, techniques for addressing this kz,
discussed in section 2.2.3.
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While the above semi-classical treatment of the photoemission process relates the mea-
sured quantities of an outgoing electron with properties of its internal state, understanding
the overall state of the electrons in a solid from such data requires the analysis of the prob-
ability that electrons in each state are photoemitted in the first place[62]. This is treated
quantum mechanically by Fermi’s golden rule, where the probability for a transition wfi is
given by

2π

~
|< f |Hint|i >|2δ(Ef − Ei − hν) (2.3)

for an initial state |i > and a final state |f >, driven by a photon of energy hν. The
interaction Hamiltonian Hint comes from the typical Hamiltonian involving an electron in a
field:

H =
1

2m

(
p− e

c
A
)2

+ eφ (2.4)

=
1

2m

(
p2 +

e

c
p · A+

e

c
A · p+

e2

c2
|A|2

)
+ eφ (2.5)

It is typical to assume that the field is small so that the |A|2 term can be neglected.

Since ~p is proportional to ~∇, the ~p · ~A term is small whenever the field is changing over a
length scale that is long relative to the system, a reasonable assumption for our purposes
as for 100 eV light, the wavelength is 12 nm, which is longer than several lattice spacings
and deeper than the typical origin of measured photoelectrons and so the typical interaction
Hamiltonian is

Hint =
e

mc
~A · ~p (2.6)

The interaction Hamiltonian then directly depends on the polarization of the incoming
light with respect to the momentum of an electron of interest, which will have interesting
effects discussed in section 2.2.2.

A rigorous theoretical treatment of the transition matrix element in equation 2.3 would
take into account the entire process, from excitation of an electron in the sample to the
eventual detection, as a single coherent process, including the reaction of the many-body
wavefunction inside the crystal to the emission and its subsequent effect on the measured
electron. To make the problem more tractable, it is useful to make several approximations in
the framework of the three-step modelof photoemission where we consider the experiment as a
sequence of independent steps: excitation of the electron in the bulk, transport to the crystal
surface, and escape into the vacuum. Once the electron is in vacuum it is reasonable to treat it
as a classical object subject to the focusing electric fields of the detector. This approximation
allows us to treat the three steps separately and simply multiply their probabilities together
to find the final detection cross section. The initial excitation step is essentially an optical
transition and governed by dipole selection rules (though near the surface the additional∇·A
term in the Hamiltonian will allow dipole-forbidden transitions). Probability amplitudes for
this step are governed by transition matrix elements discussed in section 2.2.2. The transport
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of the excited electron to the sample surface is limited by its mean free path, discussed in
section 2.2.1. Lastly, the transition across the sample surface is related to the sample work
function, which comes from the dipole moment near the surface due to broken inversion
symmetry.

The measured signal is given by

I(k, ω) = MA(k, ω)f(ω) (2.7)

where M is a transition matrix element that depends on the experimental geometry, inten-
sity and energy of the incident light. Lastly, f(ω) is the Fermi-Dirac distribution (as only
occupied electron states are accessible by photoemission. A(k, ω), the single particle spectral
function, is the physical quantity of interest and gives the probability of an electron existing
with energy ~ω and momentum k in the sample. The spectral function can be expressed in
terms of the dispersion εk and the electron proper self-energy Σ(k, ω) = Σ′(k, ω) + iΣ′′(k, ω)
with Σ′,Σ′′ both real functions of k and ω:

A(k, ω) = − 1

π

Σ′′(k, ω)

(ω − εk − Σ′(k, ω))2 + Σ′′(k, ω)2
(2.8)

In the limit of no interactions, the self energy goes to zero and the spectral function is
simply a sequence of delta functions at the band energy for each k. If instead we consider
only the frequent case of self-energy that is independent of k, we have

A(k, ω) = − 1

π

Σ′′(ω)

(ω − εk − Σ′(ω))2 + Σ′′(ω)2
(2.9)

Considering a constant energy, this gives lineshapes that are Lorentzian with character-
istic width given by Σ′′ corresponding to electron lifetimes. The effect of Σ′ is to change
the band position relative to the underlying model, and is manifest in band velocities and
masses.

2.2 Experimental considerations

There are several details in which the results of a physical ARPES experiment differ from
the ideal theoretical case outlined in section 2.1. Among these, there are straightforward
instrumental resolution effects which serve to broaden the linewidths in momentum and
energy, matrix element effects related both to orbital symmetry and final state availability,
and effects in which the photoelectron charge interacts with either other photoelectrons
(space charging) or the holes left behind by the photoemission process (sample charging).
The details of these effects are explored below.
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2.2.1 Sample surface

In order to measure a given photoelectron, it must make its way out of the sample and to
the detector. For this measurement to be meaningful (i.e., give accurate information about
the state of the electron before the photoemission process) it must do so without scattering
inside the sample. Thus, the depth probed by ARPES is limited by the mean free path of
electrons which, for the range of exciting photon energies used in this study, is typically a
few monolayers, as seen in figure 2.2.1.

ARPES is therefore an extremely surface sensitive probe and accordingly great care must
be taken to ensure surface quality. To this end, most samples are cleaved insitu to reveal
pristine inner layers as the surface, and experiments are performed in ultrahigh vacuum
(typical pressures lower than 5 x 10−10 Torr). Even at this pressure, the number of gas
molecules incident on the sample surface is sufficient to cover it over the course of a few
hours.

2.2.2 Matrix element effects

While the three-step model described in section 2.1 is a simplification of the physical transi-
tions at play in the photoemission process, it serves to logically separate out different sources
of effects in an observed spectrum. The leasts intuitive of these is the so-called “transition
matrix element”, which depends on the initial and final states of the electron in the solid.
Often this dependence is due to symmetry with respect to the scattering plane, which is
defined by the incoming light vector and outgoing electron vector, shown as a green plane
in figure 2.2.2, which is normal to the sample surface in this case (but not always).

If the sample is oriented such that it is symmetric under reflection across the scattering
plane, then from elementary quantum mechanics we know that electron wavefunctions are
eigenfunctions of this reflection, and thus either purely odd or purely even across this plane.
For sufficiently high photon energy, the lattice potential has only small effect on the electron
final state and thus its wavefunction is nearly a plane wave:

ψ ~kf
= (~r) ≈ ei

~kf ·~r (2.10)

which is clearly even with respect to the scattering plane and the matrix element suppresses
intensity for odd initial states if the light polarization is even and vice versa, while allowing
transitions where the initial state and light polarization have the same parity with respect to
this plane. In the case of normal emission, the outgoing electron wavefunction will have axial
symmetry along the sample normal. This can give significant suppression to the intensity of
states near the center of the first Brillouin zone, and often necessitates measurements near
the zero crystal momentum Γ point in higher Brillouin zones to see all bands.

In some systems the wave function of an electron band is closely related to the atomic
or molecular orbitals from which they are derived. In particular, for the near-EF states in
Sr3Ir2O7, the bands are derived from a mixture of three 5d states–|xy >, |xz >, and |yz >.
In the case of measurement at the Brillouin zone corner, the scattering plane coincides with



CHAPTER 2. ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY 32

Figure 2.1: Inelastic mean free path for electrons in various materials

the sample xz-plane, and changing between s and p polarized light highlights the |xz >
(even) and |yz >, |xy > (odd) orbitals.

2.2.3 Out-of-plane momentum considerations

While the in-plane (crystal) momenta are conserved by the photoemission process, symmetry
is broken along the direction normal to the sample surface and thus there is no straightfor-
ward conservation law for the momentum in this direction (kz)–it will necessarily change as
the photoelectron crosses the surface from the sample into vacuum. To access information
about kz, it is common to employ the sudden approximation, in which it is assumed that
this change takes place over a time sufficiently short that the electron does not interact with
the solid other than a step change in its momentum. It is common to further assume that
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Figure 2.2: Schematic of the scattering geometry for an ARPES experiment

the state of the electron after excitation is well-described by a free-electron-like state (which
holds better at higher excitation energies), given by a dispersion

Ef =

(
~2

2m

)(
k2
)
− φ− V0 (2.11)

where the zero of energy is set to the vacuum, φ is the sample work function, and V0 is a
parameter known as the inner potential to be determined experimentally[63]. Under this
assumption, conservation of energy gives

kz =
1

~

√
2me (hν − φ− V0)− k2

‖

In order to determine V0, it is most common to measure a set of spectra at normal emission
so that k‖ = 0 with a range of incident photon energies, thus changing kinetic energies of
the photoelectrons and kz. For 3D materials, there will be some variation in band locations
due to dispersion with kz, which should be periodic with period 2∗π

c
, where c is the lattice

spacing along the z direction. If this dispersion is taken to be sinusoidal in kz, then one can
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fit it with the form

E(kz) = A sin(kzc+B) + C (2.12)

= A sin
( c
~
√

2me (hν − V0) +B
)

+ C (2.13)

(2.14)

with the four parameters A, B, C and V0 to get the inner potential and thus an estimate of
the perpendicular momentum kz.

2.2.4 Sample charging and space charging

Much of the discussion up to this point has considered the ARPES experiment as the mea-
surement of a single photoemitted electron from a system in equilibrium. In reality, the high
repetition rate and brightness of both synchrotron and laser light sources for ARPES can
give rise to effects that skew the measurement. In measurements where many electrons are
emitted in the same bunch, space charging effects can negatively effect energy resolution.
Conceptually, this consists of faster electrons being sped up and slower electrons being slowed
down by the Coulomb repulsion of electrons in the same bunch. Insulating samples, though
well grounded, can have a build up of holes due to photoemitted electrons and long recovery
times that serve as a potential lowering the energy of subsequent photoelectrons and shifting
all measured bands to higher apparent binding energy. The standard method for assessing
whether a measurement is subject to either of these effects is to measure with a range of
incoming photon intensities, as each becomes more significant with increasing frequency of
photoemission.

2.3 ARPES analysis

Most modern ARPES experiments are conducted using a two-dimensional detection scheme,
measuring photoemission intensity over a range of energies and emission angles simultane-
ously. By taking several such spectra in different experimental geometries and appropriate
conversions of emission angles to crystal momenta, one quickly builds a three-dimensional
spectrum I(kx, ky, E) that needs to be broken down into tractable pieces. For the extraction
of physical quantities, it is common to restrict oneself to a one-dimensional space and exam-
ine the intensity curve. If momentum is held fixed and the intensity varies with energy, one
has and energy distribution curve (EDC). Similarly, if energy is held fixed and one takes the
intensity as a function of momentum along some direction, one has a momentum distribution
curve (MDC). Alternatively, one can attempt to extract information from two-dimensional
slices, either with two dimensions in momentum (referred to as a constant energy map or
CEM), or one energy and one momentum (referred to here as an E-k cut). These images are
often useful for getting an overall picture of the band structure, but for extracting quanti-
tative information it is more precise to use EDCs or MDCs. In this section we discuss the
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details of each of these types of analysis, and then apply them to the problem of extracting
physical information from a model dataset.

2.3.1 Analysis methods

EDC analysis

A frequently-used model for the inelastic background in an ARPES experiment is the so-
called Shirley background, where one considers that an electron may scatter to any state
with lower energy, irrespective of momentum, with equal probability

IBG =

∫ ∞
ω

I0(ω′)dω′ (2.15)

In reality, the details of the background will be more complicated and depend on the details
of scattering channels available to photoemitted electrons (e.g., available bosons). Further,
the calculation of such a background is simple given a known density of states, but that
is not the situation realized in experiments. The calculation of a background only from a
spectrum that includes both intrinsic features and the background is difficult, but realizable
using iterative methods with an initial guess for the intrinsic structure. It is thus common
to use a phenomenological background to fit EDCs when details of the peak are desired.
From the form of the Shirley background we see that it should be relatively featureless at
energies with no intrinsic density of states, and thus that fitting a smooth phenomenological
background at energies away from peaks corresponding to bands will give a similar result
more simply.

MDC analysis

For bands away from their extrema, it is common to use MDC analysis to extract the
dispersion relation (i.e., E(~k), though this procedure directly gives ~k(E)). This is preferred
to EDC analysis largely due to the relative momentum independence of the self energy,
which gives us the spectral function in equation 2.9. For a fixed energy, the band is simply
Lorentzian, which is easy to fit and extract a peak position. These peak positions can
be inverted to give the dispersion E(k), which is useful for extracting information about
the bandwidth, velocity, and effective masses. If an accurate model of the noninteracting
dispersion εk is known, the difference E(k)− εk is a measure of the real part of the electron
self-energy.

In addition to extracting band dispersions, MDC analysis is useful for evaluating the
size of the Fermi surface. Luttinger’s theorem shows that, even in the presence of electronic
interactions (i.e., nonzero self energy), the volume of the Fermi surface as a fraction of the
Brillouin zone is proportional to the carrier concentration in the system. The Fermi surface
in this case is defined by the peaks of the spectral function with momentum. In practice,
it is useful to combine MDC fitting with two-dimensional analysis to fit a curve with the
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appropriate Fermi surface shape to the MDC peaks, rather than summing the Fermi surface
area implied by each individual MDC.

2.3.2 Application to gap extraction

Among the most meaningful physical quantities that can be extracted from an ARPES spec-
trum is an excitation gap, which can have importance as an indicator of physical properties
(as in a semiconductor) or even be an order parameter for a ground state in the system (as
in superconductors, magnets). The concept is straightforward–we are looking for the energy
difference between the maximum of some band and the minimum of another. In cases where
the upper gap edge is unoccupied (and thus not visible in an ARPES spectrum), the dis-
tance between the highest band maximum and the chemical potential serves as a useful lower
bound for the gap. In practice, the chemical potential in these situations is determined by
measuring a metal in good electrical contact with the gapped system (usually polycrystalline
gold) to get a good reference. There are also some system (e.g., cuprate superconductors)
where only a portion of the Fermi surface is gapped, and thus the chemical potential can be
taken from a spectrum at the ungapped momentum points.

Several details in the data analysis make gap determination difficult and there are many
techniques for doing so, each with strengths and weaknesses. These are discussed below and
applied to artificial data, shown in figure 2.3.2. In panel (a) we have a sample dispersion
consisting of an electron-like band crossing the Fermi level and one valence band maximum
deep below EF . In panel (b) we have a mock ARPES spectrum, with Lorentzian broadening
of the dispersions and a finite-temperature Fermi-function cutoff applied. Additionally, we
have added a Shirley-like background function IBG(ω) = α

∫∞
ω
Iintr(ω

′)dω′. In evaluating
each of these techniques for gap extraction, it is desirable to have a gap value near to that of
the underlying dispersion. It is physically more relevant, in light of the ordered-state origin
of many gaps, to be certain that a method does not indicate a nonzero gap when none exists.
The potential for false gaps in each will be discussed.

EDC analysis

The most natural method for finding the position of a band edge is by analyzing the EDC
through the band extremum or, in the case of bands that apparently disperse across EF ,
at the Fermi momentum. In either case the correct momentum is determined by the peak
in the MDC at the correct energy (either EF or near the extremum of the band). In the
oversimplified case that the peak is far from the Fermi level, the self-energy is varying slowly
with energy, and small background signal, this EDC will be marked by a peak at the band
energy whose maximum can be taken as the location of the band edge. Each of the previous
assumptions will fail in general, giving rise to complications with using the EDC to determine
the band edge. Since the Fermi-Dirac distribution has a negative slope in a window around
EF , peaks near the Fermi energy will be apparently shifted to the deeper binding energy, and
thus this measure can indicate gaps where none exist. Fitting the product of a peak and a
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Figure 2.3: Simulated ARPES spectrum for gap determination

Fermi cutoff is difficult, as moving a peak to higher energies where the Fermi function is small
gives only a small shift in the apparent peak position. If, however, the gap is significantly
larger than kT and the background is flat (or at the worst, locally linear), fitting to a peak
(possibly including a background slope) will give an excellent indicator of peak position. A
more robust method of extracting a gap from an EDC near EF is to take the leading edge
midpoint, i.e., the energy at which the spectrum attains half its peak value. Since the bare
spectrum (before considering the Fermi function) is unlikely to have a negative slope at EF
unless the peak corresponding to the band is below EF , this midpoint should not move to
deeper binding energy when no gap exists.

A sample EDC analysis of the band crossing EF in our sample data is presented in figure
2.3.2. Panel (a) shows the two-dimensional cut of interest, with a red line marking the Fermi
level (at which the MDC in panel c is taken) and a blue line marking the location of kF (at
which the EDCs in panels b and d are taken). In panel d, the EDC has been zoomed in to
the area near the Fermi level, and both the leading edge midpoint and peak position have
been marked with red Xs. It is clear here that the peak is at some negative binding energy,
while the leading edge midpoint remains at the Fermi level.

MDC dispersion analysis

As discussed in section 2.3.1, it is common to extract the position of valence bands in
ARPES spectra by fitting peaks to MDCs for each binding energy, and tracing out the peak
locations to recover a dispersion. The application of this to gap extraction is conceptually
simple–one finds the extremum energy of a band’s dispersion, and sets that as either the
upper or lower gap edge–and avoids the issues with the Fermi cutoff and energy-dependent
background inherent in EDC analysis. In practice, there are two complications with this
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Figure 2.4: Using EDC peak analysis to find a band position

technique. First, as a band flattens out toward its extremum, the more difference there is in
band positions between adjacent energy levels, and the energy broadness in the measurement
(both inherently from correlation effects and due to limited experimental resolution) serves to
make MDC peaks increasingly broad. In cases where matrix elements allow the observation
of both sides of a dispersion, the two peaks corresponding to the band will also merge, making
tracing the individual peaks difficult. The second effect is that even at energies above the
band maximum (or below the band minimum), the energy broadness of the measurement
will give rise to MDC peaks where there is no band. While naively this seems a problem, it
also provides a route to using MDC analysis to extract band edge positions; beyond the edge
of the band, the dispersion will tend toward being vertical, and thus the inflection point of
the fit parameter corresponding to the peak location is a reasonable estimate of the band
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Figure 2.5: Using MDC analysis to find a band edge

edge.
A sample use of this technique for determining a band edge position is shown in figure

2.3.2. The left panel shows the underlying dispersion with a dashed black curve, and MDC
peak locations with red crosses. The blue X markers correspond to the positions of the MDC
peak upturn and the true band maximum.

In this case, the MDC dispersion analysis reports a larger gap than is present in the data.
It is thus possible that this analysis could report a non-zero gap in an ungapped system if a
band disperses very near to but does not cross the Fermi level. It additionally suffers from
the need for exceedingly high statistics–to get reliable information the signal-to-noise ratio
in each of the MDCs must be sufficiently high for the fits to converge.

EDC symmetrization

In special cases where one expects the spectral function to be symmetric with respect to the
chemical potential (particle-hole symmetry), one can use symmetrization of EDCs to remove
the effect of the Fermi-Dirac distribution from the measured spectrum. That is,

I(k, ω) + I(k,−ω) = f(ω)A(k, ω) + f(−ω)A(k,−ω) (2.16)

= f(ω)A(k, ω) + (1− f(ω))A(k, ω) (2.17)

= A(k, ω) (2.18)

where we have used that f(−ω) = 1 − f(ω) and assumed A(k, ω) = A(k,−ω). This is not
generally valid, but has been used with success in specific cases where particle-hole symmetry
is a reasonable assumption (in particular, in the case of the superconducting gap).



CHAPTER 2. ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY 40

2.4 Spin-resolved ARPES

The last section of the experimental work in this dissertation is an extension of the ARPES
experiment that sensitivity to the spin degree of freedom. The utility of this comes from the
possibility for bands to be split by electron spin. This occurs in ferromagnets, where spin up
and spin down electrons are separated by a constant offset due to the magnetism; in Rashba
and Dresselhaus states (as discussed in section 1.1.2), where the spin of an electron is locked
to its momentum; and in novel topological states such as the three-dimensional topological
insulator. In this last case, the ability to observe the separate band crossings of spin-up and
spin-down electrons is essential for identifying topological states and spin-resolved ARPES
has proved an invaluable tool in that field.

In practice, there are two distinct methods employed for analyzing the spin of photoelec-
trons. In the conventional Mott detector, electrons are accelerated to relativistic energies and
scatter off of a target with heavy nuclei (typically gold) and thus strong spin-orbit coupling
which preferentially reflects electrons with different spins in different directions. This is typi-
cally coupled with a hemispherical electron detector for energy spectroscopy. In contrast, the
detector used in this work was custom built and utilizes time-of-flight energy spectroscopy
along with a low-energy exchange polarimeter[64], which has different reflectivity for elec-
trons polarized parallel and antiparallel to its magnetization. Experiments are conducted
by short (typically one minute) periods of measurement with alternating magnetizations of
the scattering target. Because this operates at a lower kinetic energy, overall reflectivity is
higher than in the case of the Mott detector. The time-of-flight energy analysis also allows
for simultaneous detection of electrons with different energies but the same emission angle,
increasing experimental efficiency.

A quantity of significant interest in spin-resolved ARPES measurements is the spin asym-
metry at a particular momentum and energy,

Pintr(k, ω) =
A(k, ω, ↑)− A(k, ω, ↓)
A(k, ω, ↑) + A(k, ω, ↓)

(2.19)

Since the Fermi function is independent of the electron spin, and assuming for the mo-
ment that the matrix elements Mσ are independent of spin (this is not always the case as
will be discussed later in this section), then this intrinsic polarization is the same as the
photoelectron polarization

Pintr(k, ω) ≈ I(k, ω, ↑)− I(k, ω, ↓)
I(k, ω, ↑) + I(k, ω, ↓)

(2.20)

It is not generally possible to directly measure the spin-up and spin-down currents sep-
arately; a differential measurement is used with finite efficiency in terms of filtering spins.
In the exchange polarimetry scheme used in this work, measurements are alternated with
opposite target magnetization, which gives different reflectivity for opposite spins. Suppose
the first measurement is taken with the exchange target polarized up, so that the reflectivity
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of spin-up electrons is higher than that of spin-down electrons by a factor α.

R↑ = R;R↓ = αR (2.21)

The incident beam will have N total electrons, N↑ with spin up and N↓ with spin down.
Upon reflection from the target, the number of electrons measured will be

N1 = RN↑ + αRN↓ (2.22)

After flipping the magnetization of the target, the reflectivity in the spin-up and spin-
down channel will switch, and the number of electrons measured will be

N2 = RN↓ + αRN↑ (2.23)

so that to get the incident polarization P we take

N1 −N2

N1 +N2

=
N↑ + αN↓ −N↓ − αN↑
N↑ + αN↓ +N↓ + αN↑

(2.24)

=

(
1− α
1 + α

)(
N↑ −N↓
N↑ +N↓

)
(2.25)

= SeffP (2.26)

where Seff is the effective Sherman function, a measure of how efficient a spin polarimeter
is at differentiating opposite spins. It is related to the overall scattering cross section at
angle θ via

σ(θ) = σ0(θ)
(

1 + Seff(θ)P · M̂
)

(2.27)

and is determined via scattering with a known spin-polarized electron beam. The desired
polarization is thus inferred from inverting the previous equation for P. The uncertainty in
this polarization is given by

∆P =
1√
NSeff

=
1√

N0R0Seff

(2.28)

where N is the number of measured electrons, N0 is the number of incident electrons and
R0 is the overall reflectivity of the target. The typical figure of merit for spin detectors is

FOM =
(∆P )2

N0

= SeffR0 (2.29)

2.4.1 Spin-dependent matrix elements

In interpreting the results of a spin-ARPES measurement, it is important to understand
effects other than a polarization in the band that may give rise to a nonzero measured
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polarization. While the photoemission process does not include impetus for the electron
spin to change direction once it has left the sample, it is possible for electrons of a given spin
to be preferentially emitted. That is, the matrix element can differ for opposite spins, which
will change the measured spin polarization from that intrinsic to the band, or even give rise
to a nonzero polarization in a spin-degenerate band. In the common case of linearly-polarized
light incident upon an atomic system, the spin polarization induced by these spin-dependent
matrix elements is[65]

~PSME =
2ξ
(
k̂e · ε̂

)
1 + β

(
3
2
(k̂e · ε̂)2 − 1

2

) (k̂e × ε̂) (2.30)

where ε and ke are unit vectors in the directions of the photon polarization and electron
momentum, respectively, β is an (material-dependent) asymmetry factor and ξ is a factor
related to the transition amplitudes from a state with angular momentum ` to stats with
angular momentum `−1 and `+1 which couple to the spin degree of freedom and give rise to
the polarization. The geometric conditions for nonzero polarization from this effect are that
the incident photon polarization and outgoing electron momentum are neither parallel nor
perpendicular. In the geometry of figure 2.2.2, this means that the spin-dependent matrix
elements are zero with an s polarized photon beam but not, in general, for a p polarized
beam.

While the calculations leading to equation 2.30 are for free atomic systems, they have
been shown to hold qualitatively for spin-resolved photoemission from core levels of several
metallic systems[66, 67, 68], as well as in the Bi core levels, valence band, and conduction
band of Bi2Se3 [69].

The factors β, ξ, can depend on the material being measured, but for a given sample
the spin is dependent only on the experimental geometry. In particular, since different
momentum states are measured in our experiment by turning the sample and leaving k̂e
fixed, the expression is independent of ~k and can be accounted for by a constant offset across
the entire Brillouin zone which can be determined by measuring the spin polarization at
normal emission.
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Chapter 3

Electronic structure of
(Sr1−xLax)3Ir2O7

This chapter explores work done using spin-integrated ARPES endstations at the Advanced
Light Source to determine the ground state properties of (Sr1−xLax)3Ir2O7, a series of
electron-doped compounds related to the parent spin-orbit Mott insulator Sr3Ir2O7. As
discussed in chapter 1, transport and scattering experiments identified a first-order insulator-
to-metal transition near a doping level of x = 4% that coincides with the antiferromagnetic-
to-paramagnetic transition, and will form an important benchmark for other phenomena
discussed in this chapter. Most of this work and many of the figures come from two papers
[70, 71].

Sections 3.2, 3.3, and 3.4 will explore effects that are understandable at the level of con-
ventional band theory, in particular the states populated by the donor electrons, the changes
in band splittings due to modified effects of interactions relevant to Sr3Ir2O7 (Coulomb cor-
relation, spin-orbit coupling, bilayer splitting), and the dispersions of bands near the Fermi
level. Then section 3.5 will discuss a novel suppression of spectral weight in the conduc-
tion band of (Sr1−xLax)3Ir2O7 that is reminiscent of the pseudogaps in cuprates and doped
Sr2IrO4 and appears to be closely tied to the magnetic ordering in the system. Section 3.6
covers a temperature-dependent loss of coherence in the conduction band across the entire
phase diagram, and its place in the known phase diagram for (Sr1−xLax)3Ir2O7.

3.1 Introduction: Electronic structure of Sr3Ir2O7

In working toward the electronic structure and properties of (Sr1−xLax)3Ir2O7, it is useful to
first examine the electronic structure of the parent compound Sr3Ir2O7[72]. As described in
the first chapter, Sr3Ir2O7 is a spin-orbit assisted Mott insulator with a Mott gap in its half-
filled jeff = 1

2
band. Dispersions, both theoretical and experimental, from [2, 3] are displayed

in figure 3.1. The calculation at left uses a local density approximation including Coulomb
correlations and spin-orbit coupling (LDA+SOC+U) and show dispersive bands for both
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Figure 3.1: Dispersion measured in undoped Sr3Ir2O7, from [2]. Left: Theoretical dispersion
from an LDA + SOC + U calculation. Right: Experimental dispersions extracted from
ARPES data. In each, red bands represent jeff = 1

2
bands, black are jeff = 3

2
bands.

the half-filled jeff = 1
2

band (red) near the Fermi level and the filled jeff = 3
2

band (black)
at higher binding energy. The right hand panel of the figure is the experimental dispersion
in the same work. Bands are colored according to correspondence with the calculations, as
ARPES cannot distinguish between jeff = 1

2
and jeff = 3

2
bands. While the data disagree

regarding the energy of the band maximum at Γ they otherwise correspond quite closely.
Experimentally, the maximum of the lower Hubbard band is at the X point, and it disperses
across the Brillouin zone with a minimum near the M point. Note that this band structure
has no Fermi level crossings and thus there is no Fermi surface, in line with its insulating
nature. From the calculation we see that the lowest-energy unoccupied states are near the
M point.

The addition of electrons in (Sr1−xLax)3Ir2O7 can have one of two basic types of effects,
as illustrated in figure 3.2. In the simpler case, akin to simple band insulators and semicon-
ductors, the extra carriers populate the lowest-lying states above the Fermi level. In this
case, this is the upper Hubbard band. An alternate case is the introduction of states inside
the Mott gap where the strong correlations on the lattice sites relevant to the conduction
band localize the extra electrons on the defect/dopant sites. As more carriers are added, the
additional charge density will screen the Coulomb repulsion from the singly-occupied sites,
and the excitation gap will eventually go to zero and the lower and upper hHubbard band
will merge into one filled band. Since ARPES can only observe occupied states, these two
scenarios are difficult to distinguish between, especially for small dopant concentratations
where the dispersion of the conduction band cannot be determined.
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Figure 3.2: Schematic of possible impacts of carrier addition in a half-filled Mott insulator.
Added electrons may occupy states in the conduction band (top) or form a state inside the
Mott gap (bottom).

3.2 Band structure effects

The Fermi surface of a metallic (Sr0.94La0.06)3Ir2O7 (x = 6%) sample is shown in figure 3.3.
Red/orange regions correspond to regions of high intensity, while blue denotes low intensity.
This Fermi surface consists of lens-like pockets on either side of the M point, corresponding
to the position of the minimum of the upper Hubbard band from the calculation in figure
3.1.

The low-energy dispersion is seen in the energy-momentum cut in panel along high sym-
metry directions in the first Brillouin zone. White curves are guides to the eye for the
dispersion of the four bands visible in this energy window. The small electron-like bands
near the M point give rise to the lens-shaped Fermi surface seen in the Fermi surface. Since in
the more heavily doped samples this band crosses the Fermi level, we follow previous ARPES
works[73, 74, 75] in referring to it as the “conduction band” independent of its origin. The
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hole-like band near the X point is identified as the lower Hubbard band, following works on
undoped Sr3Ir2O7[3, 76]. The band maxima at Γ are commonly attributed to the Jeff = 3

2

bands[3, 33, 76], and their separation is due to the bilayer splitting present in Sr3Ir2O7.

3.2.1 Population and evolution of the conduction band

Figure 3.3: Fermi surface of (Sr0.94La0.06)3Ir2O7. The white dashed square is the boundary
of the reduced BZ. (b): Energy-momentum distribution of ARPES intensity along high
symmetry directions in the first Brillouin zone. White curves are guides to the eye for the
band dispersions.

While the primary change in the Fermi surface with increasing electron concentration is
the increasing size of the nearly elliptical Fermi surface pockets in the x = 1% sample, the
geometry of these pockets also changes with doping. Notably, in the x = 6% sample, whose
Fermi surface is replicated in figure 3.5, there is spectral weight at the Fermi level in a large
arc between the pockets not observed in the lower doping levels. This is reflected in the
EDCs along this arc-like feature at momentum locations marked by magenta stars in panel
a are shown in panels b-d. This arc is manifest by the small peak at EF for the x = 6%
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Figure 3.4: Energy-momentum distribution of ARPES intensity along high symmetry direc-
tions in the first Brillouin zone. White curves are guides to the eye for the band dispersions.

sample for all momenta observed, and likely corresponds to dispersion of this band slightly
above the chemical potential (as suggested in connection to a similar observation in [75]).
Indeed, the peak positions are at a lower binding energy nearer the Γ − X direction. As
expected, no such residual peak is observed in the EDC along the Γ−X direction in the x
= 1% and x = 3.5% samples.

The width of the electron pocket along its long dimension is extracted from the separation
of MDC peaks taken along the kx direction at the widest part of the pocket, as indicated
for the x = 6% sample by the magenta line in panel a of figure 3.6. These MDCs are shown
in panel d for the x = 1%, 3.5% and 6% samples. The peak locations, obtained from a fit
of two Gaussian peaks and constant background, are marked by magenta squares and grow
significantly farther apart with additional doping, as shown by the evolution of the magenta
trace in panel g. The width of the pocket along the narrow direction is similarly extracted
from MDCs along that direction (ky for the pocket shown in the figure) and marked by
orange circles. In each of these MDCs in panel e, there are three distinct peaks rather than
the four that would be expected from the two nearby pockets (one from each band crossing
in this direction as shown in panels a and c) due a combination of matrix element effects
(like those seen in [74], especially notable in the x = 3.5% sample where the constant energy
maps only faintly show one of the two pockets) and the nearness of the two inner Fermi level
crossings (especially important in the x = 6% sample). Further, these peaks are difficult to
resolve above the noise level in the x = 1%and x = 3.5%samples, making the determination
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Figure 3.5: Detailed evolution of M point band. (a): Fermi surface of the x = 6% sample
in and near the first Brillouin zone. (b),(c),(d): EDCs taken along the arc in the x = 6%
Fermi surface for the x = 1%, x = 3.5%, and x = 6% samples, respectively, at momentum
locations marked by magenta stars in panel a. (e)-(h): Zoomed in constant energy maps of
the electron-like band in the region marked by a yellow rectangle in panel a, from 10 meV
above EF to a binding energy of 40 meV near the band bottom.

of the pocket width difficult. To this end, the error bars reported for this measurement in
panel g are set by the width of the overall feature on one side of the Brillouin zone boundary
and these less-certain measurements are marked by lighter circles in panel g. This width
undergoes a more modest change with doping, increasing from Wshort = 0.04 π/a at x = 1%
to only Wshort = 0.09 π/a at x = 6%.

The band minima for these electron-like bands are offset in momentum from the M
point. This offset is not predicted in LDA+SOC+U calculations for the single layer Sr2IrO4

compound and thus is likely related to the bilayer splitting in the system. This momentum
offset can be measured in the separation between the two band minima along the Γ-M
direction, extracted from MDC peak locations at the bottom of the conduction band. The
binding energy at which these MDCs are taken is different for each doping, determined from
the upturn of the EDC taken at the middle of the Fermi pocket. These MDCs are shown in
panel f of figure 3.6 for the three dopings measured here, and the peak locations are marked
with green triangles. Contrary to a rigid doping-like picture, the band minima move farther
apart with increasing doping.
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Figure 3.6: Doping evolution of conduction band parameters. (a): Cartoon Fermi surface
illustrating the band parameters extracted from MDCs in panels d-f. (b)-(c): Cartoon
dispersions along high symmetry directions illustrating the same band parameters. (d):
MDCs along the widest part of the Fermi surface pocket for each sample at EF , with magenta
squares marking kF locations. (e): MDCs along the middle of the Fermi surface pocket in
the narrower direction for each sample at EF , with orange circles marking kF locations. (f):
MDCs along the same direction as in panel f at the binding energy of the minima of the
electron-like pockets for each sample, with green triangles marking the momentum location
of the band minima. (g): Doping evolution of the Fermi pocket dimensions and separation
between band minima.

3.2.2 Effects in the valence band

Figure 3.8 shows constant energy maps of the ARPES intensity from lightly doped (x = 1%)
through a doping near the metal-insulator transition (x = 3.5%) to heavily doped (x = 6%)
(Sr1−xLax)3Ir2O7 samples. The orange dashed lines represent the boundaries of the surface
Brillouin zone in the presence of either AF order or the unit cell doubling generated by the
staggered rotation of Ir-O octahedra, while the green dashed lines are the boundaries of the
unreduced Brillouin zone. Γ here denotes the momentum coming from normal emission of
photoelectrons. Γ’ is equivalent to Γ in the reduced Brillouin zone but represents a distinct
crystal momentum in the larger zone. The Fermi surface for each is shown in panels (a),
(e), and (i) and consists of electron-like pockets near the M point along the boundary of the
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Figure 3.7: Dispersion near the Fermi energy for (Sr1−xLax)3Ir2O7 samples. (a): Raw ARPES
spectrum for the x = 1% sample along a M-Γ-X-M-Γ’ path (marked in figure 3.3). (b): Second
derivative with respect to energy of (a). (c)-(f): The same as (a) and (b) for the x = 3.5%
and x = 6% samples.

reduced Brillouin zone. While these pockets are well separated in the x = 1% sample, the
increased pocket size in the x = 6% sample leads to significant deviation from an elliptical
shape and hybridization between adjacent pockets near the Γ - X direction as well as along
the Brillouin zone boundary. These bands are absent at a binding energy of 200 meV, shown
in panels (b), (f), and (j), where the primary spectral weight arises from the Jeff = 1

2
lower

Hubbard band at the X point. At a binding energy of 400 meV, the Jeff = 3
2

bands at Γ/Γ′

are visible along with the Jeff = 1
2

lower Hubbard band near X. At 600 meV, most bands
should be of mostly Jeff = 3

2
character, and a large number of band crossings are visible here

in the constant energy maps of panels (d), (h), and (l).
While previous ARPES works on Sr3Ir2O7 have primarily used the reduced Brillouin

zone delineated by the orange boundaries in these figures, two features seemingly align more
closely with the green zone boundaries of the unreduced Brillouin zone. The first is the
difference between the spectra near the Γ and Γ′ points, especially visible at a binding
energy of 400 meV in the x = 3.5% sample in panel g of figure ?? (and to a lesser extent in
the x = 6% sample, panel k). In each, a large pocket is observed at Γ′ and only faint spectral
weight related to a deeper band maximum is visible at Γ, though this may be related to
photoemission matrix element effects at normal emission as seen in undoped Sr3Ir2O7 [3].
The second is the elongation of the lower Hubbard band pockets along the Γ′ −X direction
in the x = 1% and x = 3.5% samples and, to a lesser degree along the Γ − X direction
in the x = 6% sample. In the case of the reduced (orange) Brillouin zone, these pockets
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Figure 3.8: Constant energy maps for x = 1% (a - d), x = 3.5% (e - h) and x = 6% (i - l)
samples at binding energies from 0 to 600 meV. The orange dashed square represents the
Brillouin zone of Sr3Ir2O7 while the green dashed squares represent the Brillouin zone when
the unit cell doubling due to Ir-O octahedral rotations is ignored.

should have fourfold rotational symmetry about the X point, with the same width along the
Γ−X and Γ′−X directions, while these are not required by the unreduced (green) Brillouin
zone. A similar distortion has been noted in undoped Sr3Ir2O7 [76, 77], with two distinct
explanations that each depend on the incident photon energy. One study suggests that the
bonding and antibonding bands have opposite elongations, so that the overall band structure
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is symmetric under the required rotation, but that a given photon energy will preferentially
select one of these bands resulting in the observed elongation. The other explanation of the
X point elongation comes from considering a bulk Brillouin zone in which the cross section
of the first Brillouin zone at a particular kz value is not a square. In particular, at kz = 0
the point labeled Γ′ here is actually the bulk Z point, and the Brillouin zone boundary is
naturally elongated along Γ′ − X. Most published calculations of the band structure of
Sr3Ir2O7 do not consider this three dimensional zone, and such calculations may be useful
to determine the relevance of the bulk Brillouin zone for this system. We further note that
there have been recent reports[18] showing broken symmetries in the structure of the Ir-O
octahedra such that the correct lattice for Sr3Ir2O7 is monoclinic rather than tetragonal, as
the square BZ we use here would suggest. The distortions causing the system to depart from
tetragonal symmetry are quite small (on the order of 0.1%), and thus should not be clearly
visible in the ARPES spectra here.

3.3 Correlation-related changes

3.3.1 Reduction in the Mott gap

The most straightforward manifestation of electron-electron correlations in Sr3Ir2O7 is its
energy gap (and consequent insulating state). While doping into the conduction band even-
tually induces a metallic state, the underlying gap between the lower and upper Hubbard
bands remains as a signature of the Coulomb correlations in (Sr1−xLax)3Ir2O7. The mag-
nitude of this effect can be extracted from the band structure at each doping level as the
energy difference between the maximum of the dispersion of the lower Hubbard band and
the minimum of the upper Hubbard band. As previously discussed, there is some ambiguity
as to whether the electron-like conduction band at M is the true upper Hubbard band or a
state developing in the Mott gap. If it is indeed the upper Hubbard band, the Mott gap is
the energy separation between the X point band maximum and the near-M band minimum.
In the case of an in-gap band at M, the Mott gap is somewhat larger and not immediately
available from APRES spectra, as the upper Hubbard band is unoccupied. We can, how-
ever, extract an estimate for the Mott gap by taking the energy separation between the X
point band maximum and the chemical potential. This is necessarily a lower bound on the
gap for the in-gap state scenario, as the lowest energy for the (unobserved) upper Hubbard
band is immediately above the chemical potential. The gap values under each scenario are
shown in figure 3.3.1. In panels (a) and (b) are the low-temperature EDCs from the X point
and near-M band minimum, respectively, for x = 1%, 3.5%, and 6%. Triangles mark the
fit-extracted peak position, indicative of the energies of the band extrema. Panel (c) shows
the Mott gap for each doping, with dark green circles giving the value assuming the M-point
band is the upper Hubbard band and light green circles that it is an in-gap state. Green
lines provide guides to the eye for the trends of these gap values with doping. In either case,
there is a net decrease in the gap magnitude over the doping range studied, with an increase
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Figure 3.9: Doping dependence of the Mott gap in (Sr1−xLax)3Ir2O7. (a): EDCs at the X
point for x = 1%, 3.5%, and 6% samples. (b): EDCs at the band minimum near M for
x = 1%, 3.5%, and 6% samples. (c): Extracted Mott gap values by doping using the X
point maximum binding energy (light green) and the energy separation between the X point
maximum and the near M minimum (dark green).

across the metal-insulator transition between x = 3.5 %and x = 4.5 %. This unexpected
increase is well within the error bars for the lower Hubbard band - chemical potential gap,
while much larger in the measured gap between the lower Hubbard band and the conduction
band. This discrepancy largely comes from the vanishing of a 20 meV spectral weight sup-
pression in the antiferromagnetic samples across the metal-insulator transition, as discussed
in section 3.5. This may indicate that the position of the lower Hubbard band is the better
indicator of the Mott gap. This is in line with a previous study of (Sr1−xLax)3Ir2O7, though
our gap values are somewhat lower than those reported in that work[74]. The major part of
this discrepancy is due to observation of the two bands at the X point. In that work, the
lower binding energy band is not observed in samples below a doping level of x = 5%. Both
works agree that the gap remains open to high doping levels (x ≥ 6%), in contrast to the
single-layer Sr2IrO4 where the Mott gap collapses abruptly [78].

3.3.2 Enhancement of band masses

The evolution of the effective mass in the lower Hubbard band and conduction band with
doping is illustrated in figure ??. Band dispersions are determined by taking EDCs at each
of several momentum points along a line in the Brillouin zone, and extracting a characteristic
energy for each. As the lower Hubbard band lacks a clear peak feature in the x = 1% and x =
3.5% samples, the leading edge midpoint was taken as the band position, as shown in panels
(a) - (c). Similar EDC stacks for the conduction band are shown in panels (f) - (h), where a
peak position can be fit. Panels (d) and (i) show these extracted dispersions for each doping
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Figure 3.10: Effective masses of near-EF bands. (a), (b), (c): EDCs taken at momentum
positions along the M-X direction (marked in inset to panel (e)) in the x = 1%, 3.5%, and
6% samples. (d) Dispersions for the lower Hubbard band extracted from the EDC fits in
(a) - (c). (e): Effective masses in (Sr1−xLax)3Ir2O7 as a function of doping from the fits to
dispersion. (f) - (j): The same as (a) - (e), for the conduction band rather than the lower
Hubbard band.

level, which are then fit near the band extremum with a quadratic band in which the effective
mass is a parameter. These extracted masses are plotted in panels (e) and (j) as magenta
circles, normalized by the free electron mass m0. Error bars are derived from statistical errors
in the quadratic fits, combined with the variation in mass parameter acquired from shifting
the fitting range near the extremum, accounting for both the noise in band positions and
asymmetry apparent in the bands. The absolute values of these band masses are similar to
those reported in some systems of doped SrTiO3[79]. Both bands display a similar increase
of a factor of 2.5 between the x = 1% and x ≈ 8% samples, evolving smoothly across the
metal-insulator transition near x = 4%. The high effective mass in metallic samples is in
rough agreement with, though somewhat higher than, values from a recent work in which
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the mass enhancement is indirectly measured using infrared spectroscopy[80].

Figure 3.11: Doping dependence of band renormalization in cuprates and iridates.
(a): Doping dependence of band renormalization in La2−xSrxCuO4 (LSCO, red cir-
cles) Bi2Sr2CaCu2O8+δ(Bi2212, light green diamonds) and Bi2Sr2CuO4+δ (Bi2201, dark
green triangles) from [81]. (b): doping dependence of effective mass in lower Hubbard
band (downward pointing triangles) and conduction band (upward pointing triangles) in
(Sr1−xLax)3Ir2O7, from figure 3.10.

Figure 3.11 compares the doping dependent effective mass of the conduction band and
lower Hubbard band of (Sr1−xLax)3Ir2O7 with phenomena observed in cuprate superconduc-
tors, shown in figure panel (a). Since the bands in the cuprates are approximately half filled,
the mass renormalization is extracted from linear fits to the dispersion near the chemical po-
tential crossing rather than parabolic fits near band extrema as was done in Sr3Ir2O7. Filled
symbols correspond to the ratio of band velocities measured at binding energies EB ≥ 100
meV for three families of cuprate superconductors. This energy range is chosen to exclude
explicit renormalization effects from electron-boson coupling which only impact states within
an energy window of Eb ≈ ~ω of the Fermi level. For all three cuprate families, the inverse
band velocity, and thus the effective mass, increase with doping at roughly the same rate.
This is in line with the observed change in effective mass in (Sr1−xLax)3Ir2O7, suggesting a
connection between the change in effective mass with doping observed in the iridates to this
high-energy renormalization observed in cuprates. In cuprates, this slope change has been
associated with a “high energy anomaly” wherein the band velocity drastically changes at
an energy between 0.3 and 0.5 eV[82, 83]. A similar anomaly is present at high energy (near
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1 eV) in Sr2IrO4[84], though no such feature has been reported in Sr3Ir2O7. In studies with
data at sufficiently high binding energy [3, 76] the ARPES spectra become broad near 1 eV,
making the detailed study of dispersions at this binding energy difficult. This type of feature
is thought to be a manifestation of strong correlations, though its doping dependence does
run counter to the basic picture of mass increasing with strengthening correlations[82, 85].

3.4 Effects of spin-orbit coupling and bilayer splitting

Figure 3.12: X and Γ band extrema locations in (Sr1−xLax)3Ir2O7. (a): EDCs at the X point
through the maximum of the lower Hubbard band for the x = 1%, x = 3.5 %, and x = 6%
samples, with triangles marking the extracted feature locations. (b): EDCs at the Γ and Γ’
points for the same samples.

The evolution of band separations can be most easily quantified via the analysis of energy
distribution curves (EDCs) as in figure 3.12. In panels (a) and (b), we show the EDCs cor-
responding to the band maxima at X and Γ/Γ’, respectively, for each doping level measured
here. From the EDCs taken at the X point in each sample (panel a), it appears that there is
a transfer of spectral weight from the 300 meV feature to the 100 meV feature with increas-
ing doping. There are two clearly visible distinct features in the x = 1% spectrum, a flat
spectrum with a leading edge near 100 meV in the x = 3.5% measurement, and a more pro-
nounced peak near 100 meV in the x = 6% sample. The peak at higher binding energy more
closely matches the lower Hubbard band position in undoped Sr3Ir2O7, especially considering
the downward shift due to the introduction of electrons. This crossover from a high-energy
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feature to a low-energy feature at X, which has been observed in a previous ARPES study
of (Sr1−xLax)3Ir2O7[74] (though at a different doping level), may be due either to the for-
mation of an in-gap state or due to inhomogeneity in the doping level within the measured
area. STM measurements of lightly doped (Sr1−xLax)3Ir2O7 have revealed metallic regions
within tens of nanometers of regions with a density of states that is fully gapped, well within
the size of the beam spot used here[86, 57]. This sample-dependent coexistence of metallic
and insulating regions could explain the different doping level at which this spectral weight
transfer occurs between the present study and the literature (in a previous study[74], this
crossover is observed near a doping level of x = 4%). As previously discussed, the separation
between the two bands at the Γ point (or the band at Γ and the band at Γ’ in the case of the
x = 3.5% sample) is related to the bilayer splitting in the system. Published studies of the x
= 0% compound show a splitting of 180 meV between these bands[3, 76], while the splitting
in both the x = 3.5% and x = 6% samples is 158 and 157 meV, respectively. The EDCs at
the Γ and Γ’ points in the x = 1% sample do not show clear peaks corresponding to these
bands, and thus it is difficult to extract a precise value of this splitting. The difference be-
tween literature values for undoped Sr3Ir2O7 and the doped samples here appears significant
(though different handling of the spectral background in the literature may play a role), but
no significant change is observed across the metal-insulator transition. Finally, the splitting
between the bands at X (Jeff = 1

2
) and Γ/Γ′ (Jeff = 3

2
) is ≈ 255 meV in the x = 6% sample

and ≈ 265 meV in the x = 3.5% sample, indicating a highly similar but potentially weaker
effect of spin-orbit coupling with increased doping.

3.5 Low energy spectral weight suppression

In addition to straightforward shifts of the band positions and dispersions with doping, lightly
doped Sr3Ir2O7 populates a conduction band that does not reach the chemical potential–
rather, spectral weight at low energies is suppressed. This suppression of spectral weight,
together with the lack of back bending at EF and the shape of the symmetrized EDCs resem-
bles the pseudogap feature observed in other correlated materials[87, 88, 89]. In this section
the doping, temperature, and momentum dependence of this spectral weight suppression are
explored, revealing close ties to the antiferromagnetic insulating ground state.

3.5.1 Doping dependence

The spectral weight suppression (SWS) is identified by its behavior in the conduction band
of (Sr1−xLax)3Ir2O7, as seen in figure 3.13. The effect is most prominent in the x = 1%
sample as shown in panel b, where the cut is taken along the widest part of the electron-like
pockets (black arrow in panel a). The band is well removed from the chemical potential in
both this sample and in the x = 3.5% sample (data in panel c), where some dispersion is
becoming evident but clearly stops short of EF . As the doping increases to 4.5% and 6%,
no suppression of spectral weight is observed and the band crosses the chemical potential.
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Figure 3.13: Conduction band dispersions in (Sr1−xLax)3Ir2O7. (a): Constant energy map in
an x = 1% sample at 40 meV below the Fermi level, showing the cut location for subsequent
panels with a black arrow. (b): Second derivative with respect to energy of the energy-
momentum cut along the M-X direction in an x = 1% sample. (c)-(e): Same as (b) for a x
= 3.5%, 4.5%, and 6% sample, respectively

While the occupied bandwidth of this conduction band increases with doping as expected,
the band bottom moves toward the chemical potential with doping from x = 1% until x =
4.5% as the energy scale of the spectral weight suppression decreases more quickly than the
chemical potential shift induced by doping.

In order to investigate the origin of this suppression, we studied its evolution with both
temperature and doping across the reported metal-insulator transition. In figure 3.14, we
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Figure 3.14: Doping dependence of the spectral weight suppression at low temperature.
Left: EDCs near kF for each doping level measured. Right: Extracted leading edge gap as
a function of doping

plot EDCs integrated over a small angular range near kF (±0.05◦) along the Γ−M direction
as a function of doping. For the x = 1% and 3.5%, samples where there is no spectral weight
at the chemical potential, we used a momentum corresponding to the MDC peak at the
lowest binding energy for which such peaks were distinguishable. The left panel shows the
low-temperature (15-20 K) EDCs for each doping. Consistent with our observations from
the energy-momentum second derivative plots, there is a gap between the leading edge of
the EDC and EF in the x=1% and x=3.5% samples, while the spectral weight crosses the
chemical potential in the x=4.5% and x=6% samples. By fitting the leading edge of these
integrated EDCs we extract a gap value of 42 meV for the x = 1% sample and of 21 meV
for the x = 3.5% sample, while there is no gap in the other two samples.

3.5.2 Temperature dependence

In figure 3.15 we show the temperature dependence of the integrated EDCs for the x = 1%
sample. In the low-temperature regime, a relatively sharp quasiparticle peak is present at
energies near 50 meV with a narrow leading edge. As the temperature further increases,
the leading edge appears to shift closer to the Fermi level, followed by a decrease of the
quasiparticle peak. Panel b depicts the gap value extracted from this leading edge method
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Figure 3.15: Temperature dependence of the observed spectral weight suppression (a): Tem-
perature dependence of the same integrated EDCs in an x=1% sample. EDCs are normalized
by their value at -150 meV for clarity. (b) Temperature dependence of the leading-edge gap
value extracted from integrated EDCs in (a). (c) Symmetrized EDCs for selected tempera-
tures in the x = 1 % sample showing the evolution of the quasiparticle peak position for each
temperature. In each, a smooth background fit for -0.15 eV ≤ E ≤ -0.1 eV was subtracted.
Red triangles mark approximate peak positions, determined from the second derivative.

for each temperature, which appears to fall off approximately linearly with temperature
to a closure around the Neel temperature at 240 K. This method is less reliable at higher
temperatures where the peak is less well defined, particularly at and above 160 K, where open
symbols and a dashed guide to the eye are used to indicate this uncertainty. An alternative
method for examining the temperature dependence of the gap is the use of symmetrized
EDCs, like those shown in panel c. In the approximation of particle-hole symmetry, this
symmetrization removes the effect of the Fermi-Dirac distribution on the lineshape, which
can be of particular importance with small gaps and at higher temperatures. In the 15 K
and 80 K data, we can see that the peak corresponding to the conduction band (marked
with a red triangle) remains well-defined, with a slight shift and broadening between these
two temperatures. A major effect of increasing temperature appears to be the filling of the
gap, reminiscent of the pseudogap behavior in cuprate superconductors[90, 91]. The EDCs
measured at 200 K and 240 K are nearly featureless when symmetrized, a signature of the
gap “filling in” with additional spectral weight near EF .

One potential spurious effect that would mimic the spectral weight suppression observed
here is sample charging: in insulating samples, the photoemission process leaves a net pos-
itive charge on the sample which exerts an attractive force on subsequent bunches of pho-
toelectrons,lowering their kinetic energy. While this would result in superficially similar
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experimental phenomenology, including the decreasing change in the band maximum posi-
tion with higher temperatures and dopings, it would depend upon photon flux and affect all
bands within a single measurement equally. While we did not perform a thorough photon
flux dependence, we do observe a difference in the thermal shift of band positions between
the M point band and a deeper valence band at Γ in an x = 3.5% sample, as shown in figure
?? In panel a we show the change in EDCs between 20 K and 100 K for this deeper valence
band, showing a shift of less than 9 meV in the leading edge position, which sets an upper
bound for the change in any sample charging voltage between those two measurements. In
contrast we have the EDCs for the near-M band in panel b, which show a change of approx-
imately 18 meV between those two measurements, clearly above the magnitude that might
be explained by charging.

Figure 3.16: Thermal shifts of band features in (Sr1−xLax)3Ir2O7. Left: shift in the valence
band maximum at the Γ point corresponding to warming from 20 K to 100 K in an x =
3.5% sample. Right: corresponding shift in the EDC at kF for the conduction band.

3.5.3 Momentum dependence

The momentum dependence of gaps is of critical importance to theoretical efforts to under-
stand them. In cuprates, the superconducting gap is defined by its d-wave nature, and the
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momentum anisotropy of the pseudogap is key to interpretations of its origin–similarity to
the symmetry of the superconducting gap lends credibility to Cooper pairing origins, and
the proximity to so-called nesting vectors at which charge density wave order might be fa-
vorable suggest that as a possible source of the pseudogap. While the ‘gapped’ pocket in
the present case is a much smaller portion of the Brillouin zone, looking at the SWS as a
function of momentum should constrain its possible origins. Data to this effect are shown
in figure 3.17, and appear to suggest an isotropic SWS. The left panel shows the near-EF

constant energy map in an x = 1% sample with six momentum locations around the edge
of the electron-like pocket. EDCs corresponding to these momentum locations are shown
in the panel at right. The leading edge gap in each is well within the error bars on such a
measurement, suggesting a SWS that does not depend strongly on momentum. This does
not, however, rule out (momentum-dependent) density wave orders as an origin, as the entire
‘Fermi surface’ is very nearly nested by vectors near the AF ordering vector.

Figure 3.17: Momentum dependence of the observed spectral weight suppression
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3.6 Temperature-dependent coherence loss

A further examination of the EDCs as a function of temperature reveals another interesting
property of these data: the well-defined coherent peak observed at low temperature for
the conduction band has a peculiar dependence on temperature and doping. Specifically,
the peak area remains constant across the low-temperature region then diminishes rapidly
across a narrow temperature range. This evolution of the quasiparticle peak is depicted
in figure 3.18 for the x = 1%, 3.5%, and 6% samples. To extract the quasiparticle weight
(corresponding to the grey areas in panel a) for each EDC, we fit a background function
consisting of a Fermi-Dirac distribution paired with a linear density of states to the energy
regions away from the peak (e.g., from -0.2 to -0.1 eV and 0.01 eV to 0.05 eV). Subtracting
this background from the integrated EDC isolates the peak, whose integral is taken as a
measure of the quasiparticle weight. Panels d-f display the evolution of this peak area with
respect to temperature for each measured doping. The curves are guides to the eye. We
observe a reduction of nearly 50% over a temperature range of approximately 40 K in each of
these samples and find that the transition temperature increases monotonically with doping.

In order to rule out sample aging as a possible origin for the observed loss of coherence,
we present a set of EDCs measured on an x = 1% sample, from a measurement in which the
temperature was cycled from 15 K up to 120 K and then returned to 15 K. The results of this
measurement are shown in figure 3.19. At left are the EDCs for the initial 15 K measurement,
the intermediate 120 K measurement, and the subsequent measurement at 15 K. As expected,
there is some change to the background between the two low temperature measurements,
and an apparent downward shift of the leading edge due to inelastic scattering. To better
analyze the behavior of the coherent peak, the background-subtracted EDCs are shown at
right. In these, we see the two 15 K measurements are nearly identical, with a significantly
smaller peak in the 120 K data. If aging were the origin of the coherence loss, the blue
aged 15 K EDC should be even smaller than the one at 120 K, as the cooling process causes
additional adsorbates to stick to the sample at low temperature after the pressure increases
with raising the temperature.

This loss of coherence is similar to that previously observed in the related manganite
La1.2Sr1.8Mn2O7 (LSMO). In this system, a coherent quasiparticle is observed near the Fermi
level at low temperatures and undergoes a rapid decrease in weight over a narrow tempera-
ture range and eventually disappears at the ferromagnetic metal to paramagnetic insulator
transition temperature. The low-temperature coherence is attributed to a condensed polaron
state[87], though a later work questions this interpretation[92]. This polaron condensation is
suggested as a mechanism for the stabilization of the metallic state. Similar physics may be
present in the presently-studied compound where both the sharpness of the coherent peak
and the coherence loss temperature increase in the metallic regime, suggesting a connection
between the low-temperature coherence and the formation of the metallic state. Indeed, po-
laronic physics have been suggested in undoped Sr3Ir2O7 by a recent ARPES study[93] and
have been suggested to explain other signatures in layered perovskite iridates [51], including
the destruction of the magnetic state at temperatures much smaller than the magnon gap
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Figure 3.18: Temperature dependent coherence loss in (Sr1−xLax)3Ir2O7. (a): EDcs at kF
near the M point for the x = 1% sample at range of temperatures. Black curves are a
smooth background fit outside the peak region, and the shaded area is taken as a measure
of quasiparticle weight. (b), (c): The same as (a) for x = 4.5%, 6%, respectively. (d)-(f):
Background-subtracted peak area as a function of temperature for each doping measured.

temperature in Sr3Ir2O7. Alternatively, the loss of coherence may be related to that ob-
served in the layered cobaltates (Bi0.5Pb0.5)2Ba3Co2Oy and NaCo2O4[88], where such a loss
is attributed to a crossover in dimensionality as c-axis transport becomes incoherent. The
lower resistivity anisotropy in Sr3Ir2O7 relative to the cobaltates, however, suggests that this
is an unlikely explanation for the coherence loss as such a transition would likely occur at
significantly higher temperature.
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Figure 3.19: Doping and temperature dependence of coherent peak. (a) - (c) Integrated
EDCs at M for various temperatures for x = 1%, 4.5%, and 6% samples with background fits
(black traces) and extracted peak areas. (d) - (f) Temperature evolution of the background-
subtracted peak area for x = 1%, 4.5%, and 6% samples, respectively.

3.7 Electronic phase diagram

To summarize the data, we compare the phase diagram as determined via ARPES to that
from a recent scattering, transport, and magnetization study[57] on the same system in
figure 3.20. The doping and temperature dependence of the spectral weight suppression
suggests an identification of this feature with the magnetic ordering along (π, π) observed
via X-ray scattering[94, 57]. We note also that the drastic change in the gap magnitude over
the short doping range from x = 3.5% to x = 4.5% is consistent with the reported first-order
melting of the antiferromagnetic state[57]. The doping dependence of the coherence-loss
temperature for the conduction band suggests that it may be connected to the onset of
the metallic state with doping. It is unlikely to be connected to the structural transition
reported from scattering[57] as the structural transition temperature is significantly higher
in the fully metallic samples where both are observed.

This phase diagram highlights several of the ways in which (Sr1−xLax)3Ir2O7 and its
spectral weight suppression are similar to other Mott systems, including Sr2IrO4. In both
cases, a low-doping state marked by the absence of quasiparticles near the chemical poten-
tial emerges near the antiferromagnetic Mott state and then vanishes with further doping.
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While the spectral weight suppression appears to be linked to the antiferromagnetic state in
(Sr1−xLax)3Ir2O7, further work is required to identify a microscopic mechanism giving rise
to the suppression. No clear identification exists in pseudogapped systems as magnetism,
superconductivity, and charge density waves, among other phenomena, provide possible and
contested origins of the pseudogap [95, 89]. In fact, the role of magnetism in the cuprate
pseudogap is called into question by a similar gap magnitude in nickelates with much weaker
magnetism[96]. The apparent lack of momentum dependence in the spectral weight sup-
pression differs from the highly anisotropic pseudogap, though the smaller size of the Fermi
surface limits a full exploration of the momentum dependence.This may be due to different
nesting conditions provided by the Fermi surface geometry, as the entire M-point pocket
in (Sr1−xLax)3Ir2O7 is nearly nested by a vector near (π, π) while pseudogapped systems
are nested only near the antinodal direction. Further, this low-doping state gives way to a
metallic region with signatures of another ordering; in (Sr1−xLax)3Ir2O7 this is marked by
the coherence loss transition instead of superconductivity. Lastly, we note the different band
signatures of the metal-insulator transition: in (Sr1−xLax)3Ir2O7 metallicity is reached when
the spectral weight suppression decreases to zero energy leaving small electron-like Fermi
surface pockets while in (Sr1−xLax)2IrO4 the Mott gap collapses at low doping and a large
hole-like Fermi surface emerges [78, 97].



CHAPTER 3. ELECTRONIC STRUCTURE OF (SR1−xLAx)3IR2O7 67

Figure 3.20: Phase diagram of (Sr1−xLax)3Ir2O7. Tgap is the temperature at which the
leading edge gap appears to vanish. Egap denotes the leading edge gap magnitude in the
lowest temperature measurement. Tcoh denotes the characteristic temperature associated
with the loss in coherent spectral weight as discussed in section 3.5 . AF-I and PM-M
regions are taken from a recent scattering-based study[57]
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Chapter 4

Spin-polarized photoemission from
(Sr1−xLax)3Ir2O7

This chapter describes results of spin-resolved ARPES measurements conducted on doped
samples of (Sr1−xLax)3Ir2O7. While traditional spin-integrated ARPES has provided sig-
nificant insight into the role of electron correlations, collective excitations, and doping ef-
fects in (Sr1−xLax)3Ir2O7, the only signature of spin-orbit coupling in the previous chap-
ter was a small possible shift in band splittings between the jeff = 1

2
and jeff = 3

2
states.

Spin-resolved ARPES, however, has been instrumental in studying spin-orbit effects in the
broken-symmetry states discussed in chapter 1, including the surface[98, 99] and bulk[100]
Rashba effect. Importantly, it is also the main mechanism for experimentally identifying and
studying topological states in materials such as Bi2Se3 [101, 64] and antimony [102, 103, 104].
A search for proposed topological states in the iridates will certainly involve spin-resolved
ARPES.

One previous study reported spin-resolved ARPES measurements of Sr3Ir2O7 [77], with a
primary focus on a Rashba-like surface state. This signal was a small polarization difference
from an otherwise large signal that was attributed as possibly due to surface antiferromag-
netism. The measurements in this chapter extend the observation of that state across the
phase diagram of (Sr1−xLax)3Ir2O7 well into the metallic, antiferromagnetic regime. This
state is unusual in that it has nonzero spin polarization at the edge of the Brillouin zone,
which apparently violates the combination of time reversal symmetry and lattice transla-
tion symmetry. Further, additional photon polarization-dependent measurements here show
that this signal is derived from strongly spin-orbit coupled moments, and a photon energy
dependence suggests similarities to the analogous to the local Rashba state discussed in the
context of PtSe2 in chapter 1.

This work was conducted at the Advanced Light Source using our group’s custom-built
spin-TOF spectrometer while the synchrotron was running in its two-bunch mode (as the
normal multibunch mode results in a repetition rate that is too high for the TOF instrument
to distinguish between slow electrons from one bunch and fast electrons from the next).
Data were collected at two complementary beamlines. Beamline 4.0.3 provided light with



CHAPTER 4. SPIN-POLARIZED PHOTOEMISSION FROM (SR1−xLAx)3IR2O7 69

controllable linear polarization that is essential to the discussion in section ??. Beamline
10.0.1, on the other hand, had only p-polarized light available but gave much higher flux,
enabling some of the more high statistics measurements as the measurement rate in these
experiments was otherwise quite low.

4.1 Unusual momentum dependence

Figure 4.1 summarizes the basic spin structure observed in an (Sr1−xLax)3Ir2O7 sample with
x = 2.5%. Panels (a) - (c) show spin-resolved ARPES energy distribution curves (EDCs)
at several high symmetry points in the Brillouin zone of a (Sr1−xLax)3Ir2O7 sample with
x = 2.5% with spins measured along a direction perpendicular to the electron momentum.
In each, the blue curve represents the intensity of measured electrons with spins in the
“up” direction, and red for electrons with spins in the “down” direction. The lower half of
each of these panels depicts the photoelectron polarization as a function of binding energy,
calculated as P =

I↑−I↓
I↑+I↓

. In all three of these measurements, the Jeff= 1
2

lower Hubbard band

nearest the Fermi energy has a 10-20% polarization in the ”up” direction, while deeper bands
show signs of opposite polarization. Panel (d) shows the band structure in Sr3Ir2O7 from an
LDA+SOC+U calculation (adapted from [3]), with Jeff= 1

2
(3

2
) bands in red (black). The

primary differences between the calculation and experimental observations in this sample are
the population of the electron-like band at M and a decrease in the gap between a maximum
at X and minimum at M, as well as the higher binding energy of the first band at Γ. The
cartoon in panel (e) shows the most relevant features in the Brillouin zone–the electron-like
pockets at M are depicted with dark ellipses, while lighter curves show the location of the
maxima for the Jeff= 1

2
band near X. Arrows show the direction of measured spins, with

filled in arrowheads for the direction near EF and open arrows for the spin polarization at
higher binding energy.

One of the curious features about this result is the apparent indifference of the observed
spin texture to periodicity requirements corresponding to the Brillouin zone of (Sr1−xLax)3Ir2O7,
even considering the larger Brillouin zone that does not account for the staggered rotation
of Ir-O octahedra, as shown in panel (e). In either case, the spin at the X point should
be zero as it is related to the X point at the opposite corner of the Brillouin zone by both
time reversal symmetry and a reciprocal lattice vector. The observation of spin polarization
at the Brillouin zone boundary was explored in more detail using the same time-of-flight
spectrometer coupled to an 11 eV laser system in our lab. The results of this measurement
are shown in figure 4.2. Spin-resolved EDCs at the M point, as well as just inside (M-) and
outside (M+) are shown in panels (a)-(c), while the spin-resolved EDC measured at the Γ
point is in panel (d). The nonzero polarization at Γ is due to an understood spin-resolved
matrix element effect [64] (see section2.4.1) observed in measurements with p-polarized light,
and the polarization measured there (≈ 5%) should be read as the effective ”zero” of spin
polarization for this measurement geometry. Surprisingly, only the measurement precisely
at the M point has a spin polarization significantly above this zero (≈ 18%). This is strong
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Figure 4.1: Momentum dependence of spin polarizations in an x = 3.1% sample with p-
polarized light. (a): Spin-resolved EDCs and spin polarization for the X point of the first
Brillouin zone. (b), (c): Same as (a) for an M point in the first Brillouin zone and the Γ point
in the second Brillouin zone, respectively. (d): LDA+SOC+U calculation from [2] showing
the contributions of Jeff= 1

2
and Jeff= 3

2
bands in red and black, respectively. (e): Cartoon

of the spin polarization near EF (filled arrowheads) and near -0.8 eV (open arrowheads)

confirmation that the spins measured at the Brillouin zone boundary is not due to broad
momentum resolution. This aspect of the data is not understood, though the fact that the
polarization changes sign with kinetic energy and the dependence on incident photon energy
and polarization discussed following figures 4.5 and 4.4 rule out simple extrinsic effects. Fur-
ther, this observation is consistent with the results in Sr3Ir2O7 from a previous study [77],
which shows peaks in the polarization near the Brillouin zone corners.
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Figure 4.2: Fine momentum dependence of the spin polarization in x = 7%(Sr1−xLax)3Ir2O7

measured with 11eV light. (a) - (c): spin-resolved EDCs just inside (M-), at (M), and outside
(M+) the M point, respectively. (d): spin-resolved EDC at Γ for matrix element reference.
(e): Spin polarization as a function of kx along the M-Γ-M direction, with antisymmetric
guide to the eye. Inset: momentum locations of the measured spins.
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4.2 Doping dependence

Figure 4.3: Doping dependence of spin polarization at X. (a): Magnetic phase diagram for
(Sr1−xLax)3Ir2O7, from [.] (b): Spin-resolved EDC and spin polarization near EF for an x =
3.1% sample. (c) same as (b) for a x = 6% samples.

The typically-mentioned collinear c-axis antiferromagnetic ordering in this system does
not break time reversal symmetry, though there have been suggestions of a small canting[105]
that would break this symmetry and allow for an observed spin polarization. To this end,
we explore the nature of the spin signal as a function across the magnetic transition in
(Sr1−xLax)3Ir2O7. In panel a of figure 4.3 we reproduce a phase diagram from [106] which
shows the most current understanding of the magnetic ordering in this system. The parent
long-range antiferromagnetic insulating state melts in a first-order transition near x = 4%
[57], while a short-range magnetic ordering persists in the metallic regime. At high doping
levels, the system remains correlated but apparently lacks 3D magnetic ordering. In panels
b and c, we show spin-resolved EDCs for the maximum of the lower Hubbard band near the
X point for samples at x = 3.1%, and x = 6%, respectively, measured with s-polarized light.
The spectral features of the lower Hubbard band become more pronounced with increasing
doping (as observed in spin-integrated ARPES experiments), though a spin-polarized signal
persists across the phase transition near x = 4% and this it is unlikely that magnetism plays
a role in the observed spin signal.
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Figure 4.4: Spin flipping in (Sr1−xLax)3Ir2O7. (a): Spin-resolved EDCs and spin polarization
at the X point of the first Brillouin zone in a x = 2.5% sample taken with s-polarized light
at 55 eV. (b): Same as (a) with p-polarized light. (c) Cartoon for spin flipping mechanism
as well as experimental geometry

4.3 Photon polarization dependence

Spin resolved EDCs for the X point in a x = 2.5% samples taken with both s and p polarized
light are shown in figure 4.4 for an energy range from 1.5 eV below to 100 meV above
EF . In each, there is are two distinct features near 250 meV and 1 eV corresponding to
the Jeff= 1

2
and Jeff= 3

2
bands, respectively. The Jeff= 3

2
band has 15% polarization up in

both measurement conditions, while the peak corresponding to the Jeff= 1
2

peak switches
from 20% down to 10% up when switching from s to p polarization. Also noticeable is
the relative intensity difference between the Jeff= 1

2
bands near EF and the Jeff= 3

2
bands

at deeper binding energies with polarization. A cartoon related to the origin for this spin-
flipping phenomenon (which has been previously reported in Bi2Se3[107]) is shown in panel
c. Though the underlying orbitals for these Jeff= 1

2
states are Ir 5d orbitals rather than the

p orbitals of a j = 1
2

state, a similar calculation gives this spin flipping effect. The essential
physics is the entanglement between the spin and orbital angular momenta of electrons in
the solid. By changing the polarization of the incoming light, the photoemission matrix
elements will select for electrons with different spatial symmetry, which depends only on the
orbital portion of the angular momentum. Depending on the details of the wave functions
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and final states involved, this can give spin polarizations from P = -1 to +1 for a j = 1
2

state, though the polarizations measured here are more modest. The same idea suggests an
explanation for the lack of flipping in the Jeff= 3

2
bands: for a fully polarized j = 3

2
state,

there is only one combination of ~̀ and ~s that contribute, and changing the polarization of
incident light will only affect the intensity rather than contributing to the spin polarization.

4.4 Photon energy dependence

While the overall spin polarization from the bulk in this system must be zero due to simul-
taneous inversion and time-reversal symmetry, it is possible for our observed signal to be
a surface effect (where inversion symmetry is explicitly broken) or due to a local inversion
symmetry breaking, as observed in PtSe2 and other systems [15, 16]. In this picture, inver-
sion symmetry is broken at the Ir site by a different atom in the layer above than in the
layer below its oxygen octahedron (Sr rather than Ir, or vice versa). This can give rise to an
electric field near the Ir site that induces a Rashba-like splitting of the bands in each layer
that cancels out in the bulk crystal on average. Treating this as a layer-dependent electric
field along the c-axis gives rise to a layer-dependent spin polarization in the bonding and
antibonding bands which should cancel in each layer, as shown in figure 4.5. Two factors
are then sufficient to give rise to a nonzero spin signal–stronger photoemission signal from
the top layer of the unit cell, and preference for either the bonding or antibonding band.
The surface sensitive nature of photoemission is well known, and Sr3Ir2O7 has a preferen-
tial cleaving plane (shown by the horizontal dashed line in panel e), so the signal from the
top layer of each unit cell will be at stronger than that from the bottom layer. It is also
known from a photon-energy-dependent ARPES study of undoped Sr3Ir2O7 that the rela-
tive contributions of the bonding and antibonding bands to the photoemission intensity at
the X point near EF is strongly photon-energy dependent[76]. Assuming a periodicity in
kz of 10π/c and an inner potential of 10 eV as seen in that work gives the curve in panel
f. Panels a-d show spin-resolved EDCs and corresponding spin polarizations in insulating
samples at the X point for a range of photon energies which are consistent with this picture
of the origin of the observed spin signal. Namely, both the hν = 35 eV and hν = 82 eV
measurements should be dominated by the contribution of the antibonding band, and have
the same sign of observed spin polarization. The hν = 55 eV measurement should have more
signal from the bonding band, and shows the opposite spin polarization. Lastly, the hν =
100 eV measurement in panel d should have roughly equal contributions from the bonding
and antibonding bands, and shows no clear spin polarization in the valence band.

4.5 Conclusion

Together these observations reveal a a consistent spin-polarized photoemission signal across
the metal-insulator transition in (Sr1−xLax)3Ir2O7. The lack of periodicity in this signal
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Figure 4.5: Photon energy dependence of the observed spin signal. (a): Spin-resolved EDC
and spin polarization near EF for an insulating sample at the X point measured with a
photon energy of hν = 35 eV. (b)-(d) Same as (a) for hν = 55 eV, 82 eV, and 100 eV.
(e): Cartoon of bilayer structure in Sr3Ir2O7 with proposed layer and band-dependent spin
polarization. (f): Relative contributions of banding and antibonding bands to photoemission
intensity in Sr3Ir2O7, from [76]

with the Brillouin zone of (Sr1−xLax)3Ir2O7 is unusual, and suggests a need for further
development in the theory of how spin-orbit coupling can effect correlated states, or that the
photoemission process is more complicated than currently understood when viewed in the
light of spins. The dependence of the spin signal on electron binding energy indicate that
this signal originates in the physics of the crystal rather than some external process. The
dependence on photon polarization and energy suggest a strong role of spin-orbit coupling
and a possible layer-dependent spin texture.

Aside from the lack of periodicity, these results are similar to recent measurements from
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our group on Bi2Sr2CaCu2O8+δ, where a consistent spin structure is observed across the
superconducting dome and displays a photon energy dependence similar to here [108]. As
in the case of spin-integrated ARPES, a thorough comparison between these results and
spin-resolved ARPES on the single-layer Sr2IrO4 (for which no results currently exist in the
literature) is warranted to ascertain the essential ingredients of this new phenomenon.
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