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Incidental binding between predictive relations

Anna Leshinskaya, Mira Bajaj, Sharon L. Thompson-Schill
Department of Psychology, University of Pennsylvania

Abstract

Knowledge of predictive relations is a core aspect of learning. Beyond individual relations, we 

also represent intuitive theories of the world, which include interrelated sets of relations. We asked 

whether individual predictive relations learned incidentally in the same context become 

associatively bound and whether they spontaneously influence later learning. Participants 

performed a cover task while watching three sequences of events. Each sequence contained the 

same set of events, but differed in how the events related to each other. The first two sequences 

each had two strong predictive relations (R1 & R2, and R3 & R4). The third contained either a 

consistent pairing of relations (R1 & R2) or an inconsistent pairing (R1 & R3). We found that 

participants’ learning of the individual relations in the third sequence was affected by pairing 

consistency, suggesting the mind associates relations to each other as part of the intrinsic way it 

learns about the world. This was despite participants’ minimal ability to verbally describe most of 

the relations they had learned. Thus, participants spontaneously developed the expectation that 

pairs of relations should cohere, and this affected their ability to learn new evidence. Such 

associative binding of relational information may help us build intuitive theories.

Part of what makes human cognition so sophisticated is that we represent not a catalog of 

sensory facts, but rather, coherent world models (theories) that explain and predict 

observations (Carey, 2009; Gelman & Wellman, 1991; Gopnik, 1996; Gopnik & Meltzoff, 

1997; Gopnik & Wellman, 1994; Keil, Smith, Simons, & Levin, 1998; Kemp, Tenenbaum, 

Niyogi, & Griffiths, 2010; Lombrozo, 2009; Tenenbaum, Kemp, Griffiths, & Goodman, 

2011). In a canonical example, our theory of mind explains people’s actions by relating what 

they see to what they know, and what they know and desire to what they do (Baker, Saxe, & 

Tenenbaum, 2009, 2011; Dennett, 1987; Premack & Woodruff, 1978).

Much other knowledge—about personality traits, technology, biology, cooking—also has a 

theory-like character, but is unlikely all innate, raising the question of how it could be 

learned (Schulz, Goodman, Tenenbaum, & Jenkins, 2008). The pervasiveness of theories 
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such as these makes it likely that our minds are equipped and predisposed to build them. 

Here, we describe an automatic process that could form part of such a mechanism. 

Specifically, we claim that in the course of spontaneous associative learning, the human 

mind is already inclined to build knowledge structures which have a theory-like character.

One distinguishing feature of theories, as opposed to individual relations, is that they are 

coherent, interrelated sets of relations (Gopnik & Meltzoff, 1997). In a theory of mind, an 

agent will believe what he perceives (relation 1) and act on what he desires (relation 2). The 

holder of the theory believes that if she observes relation 1, that relation 2 should also hold. 

But prior to having the theory, how would she know that these individual dependencies hang 

together?

Prior work demonstrates that both adults and children can learn how multiple predictive 

relations covary on the basis of statistical evidence, and use this to reason about new 

scenarios. Schulz and colleagues (Schulz et al., 2008) found that pre-schoolers infer that 

multiple causal relations about the behaviors of novel blocks will hang together in the future 

if they have in the past. If a red block ‘activates’ a blue block, and a blue block activates a 

yellow block, children readily infer that a novel block activated by a red block (acting as if 

blue) will also activate the yellow one: they generalized the pairings of relations. Adults do 

the same during explicit causal reasoning (Waldmann, Meder, Von Sydow, & Hagmayer, 

2010). Gershman (2017) showed that adults rationally use context variation to guide such 

inferences: if multiple lower-order relations (e.g., about which of several foods are pleasant 

vs. aversive) vary by context, they expect such relations to pattern together consistently in 

new contexts, when asked to reason about them explicitly.

Reasoning of this sort is rational and adaptive. Here we wondered whether co-variation of 

relations will affect learning itself. In other words, does the very way in which the mind 

encodes information include the knowledge of which relations predict each other? In prior 

work, participants were taught relations in an explicit manner, and then asked to reason on 

their basis (i.e., about what will happen in new situations). Here we tested whether adult 

participants will spontaneously encode relations among relations during passive observation, 

and whether this encoding will inadvertently affect how accurately they learn new predictive 

relations. If so, tracking the co-variation among relations may be an intrinsic part of how the 

human mind encodes the world.

To test this idea, we presented participants with four individual predictive relations among 

sequentially presented events, where pairs of these relations (‘relational sets’) co-varied 

across two contexts. In a critical third context, we measured how well participants could 

learn two similar relations which were paired either consistently, or inconsistently. During 

the task, there was no demand or benefit to reasoning about pairings of relations; we 

measured only how well participants could learn each relation individually. However, if the 

covariation among relations is an intrinsic part of associative learning, then the consistency 

of their pairings should affect learning, even when this is inadvertent and produces errors. In 

other words, we propose that the binding of relations into coherent sets might operate 

similarly to how we spontaneously learn other observed, predictive statistics of the 
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environment (Reber, 1989; Saffran, Aslin, & Newport, 1996)—but at a higher order level, at 

which relations become associated with other relations.

To test this, it is essential to vary predictive relations while controlling for the individual 

events involved in them. Imagine that one relation is that flipping a light switch results in the 

light turning on, and a second relation in the same context is that pressing a button causes a 

sound. In a different context, learners might anticipate the second rule if they observe the 

first, but this could happen because they are anticipating the sound to occur, regardless of 

whether it is related to the button. Thus they could have simply associated the component 

events, not the relations themselves. To avoid this, one must use multiple contexts in which 

the same events occur with equal frequency, but are related in different ways. In the present 

experiment, we specifically target the associability of relations themselves in this way. We 

thus address a distinct question from related work on grouping action rules (Collins & 

Frank, 2013, 2016; Werchan, Collins, Frank, & Amso, 2015)1 Furthermore, we query 

observational learning, rather than action-reward learning or stimulus-reward learning, by 

employing a statistical learning paradigm (Orbán, Fiser, Aslin, & Lengyel, 2008; Saffran et 

al., 1996; Turk-Browne, Jungé, & Scholl, 2005). This is important because our theories of 

the world are most often constructed to explain observed events, which often may not have 

an explicit reward or action associated with them.

In our statistical learning paradigm, we presented participants with continuous sequences of 

animated events (Figure 1), which appeared as part of distinct sequences (or ‘contexts’) 

distinguished by different objects present in the events. All sequences involved the same 

eight events, which all appeared with equal frequency. However, the predictive structure 

among the events varied, so that different subsets of the 8 were predictively related vs 

unrelated, allowing us to create relational sets. Each sequence contained two predictively 

related pairs, each involving two events (which we term the ‘cause’ and an ‘effect’), such 

that the effect almost always followed the cause. The first two (‘Training’) sequences set up 

how the individual cause-effect relations themselves were paired. For example, in Sequence 

A (as shown in Figure 2), one predictive relation might be that the object tilting is followed 

reliably by the light flashing (R1), and a second might be object turning blue predicted the 

multi-colored stars appearing (R2). The other 4 events appeared equally frequently but are 

not part of any predictable pairs. In Sequence B, the events that had been part of cause-effect 

pairs in Sequence A (tilt, light, color change, and stars) became unrelated, while the other 4 

events formed two other cause-effect pairs (termed R3 and R4; as shown in Figure 3). The 

two training sequences A & B together set up the higher-order structure governing how the 

individual relations cohered into sets: if R1 holds, R2 should hold; but if R3 holds, R4 

should hold, regarding the same set of 8 events. Participants were not told about this 

structure, only exposed to it. To test whether participants spontaneously encoded this higher 

order structure among relations, we asked how it affected learning in a third sequence.

1In these experiments, sets of rules differ in terms of which consequent is more likely to take place. For example, if subjects are taught 
to press button 1 when a red square appears, and button 2 when a blue circle appears, they will press buttons 1 and 2 more often than 
in a second context, where they learn to press buttons 3 and 4. Grouping these rules together involves binding the rules, but also 
binding the two consequent events (buttons 1 & 2).
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In the third, ‘Test’ sequence, cued by a different object, again the same set of eight events 

was shown, and two familiar individual cause-effect relations were present. However, the 

pairing of these relations was either Consistent or Inconsistent with pairing structure 

previously seen in the two training sequences (following Collins & Frank, 2013). In the 

example in Figure 3, the Consistent test sequence exhibited both R1 and R2, individual 

relations both seen in Sequence A. The Inconsistent sequence exhibited R1 and R3, two 

relations which were equally familiar, but paired inconsistently—one came from Sequence 

A, and the other came from Sequence B. We predicted that, despite no instruction to attend 

to the pairing of relations, participants would have spontaneously attended to their 

covariation, and because of this, their learning of the individual relations in the test sequence 

would be affected by their consistency with those pairings.

We measured how well participants learned the individual relations with a forced-choice 

test, which asked them to choose between clips showing typical predictive relations (cause 

followed by effect) vs atypical clips (two unrelated events pairs; Figure 1B). These learning 

probes did not measure knowledge of how the relations went together; it measured only 

knowledge of the individual relations; that is, which individual events followed which others 

reliably. However, for the test sequence, we expected that accuracy on these probes should 

be affected by the way relations were paired (i.e., consistency condition)—that is, if learners 

spontaneously encoded such relations in terms of higher-order sets. Individual relations 

learned in an inconsistent set should be harder to learn, because participants had different 

expectations about their pairings from prior exposure. Thus, although the test always had a 

right answer, participant’s expectations that relations should continue to be paired 

consistently would impair participants’ accuracy in the inconsistent condition. This would 

demonstrate that learning itself is inadvertently affected by spontaneously made inferences 

about how relations cluster together.

METHOD

Overview of Procedures

Participants watched several short (4.5 minute) videos depicting sequences of events while 

performing a cover task, in which they were asked to determine if the event they were seeing 

was the common or rare alternate (e.g., the blue bubbles were pink 10% of the time). This is 

depicted in Figure 1A. Each participant saw three types of sequences in turn: two Training 

Sequences (A and B) and one Test Sequence (either Consistent or Inconsistent; Figure 3), 

which each featured different objects and different predictive statistics among the same set 

of 8 events. Each sequence was characterized by two strong predictive (‘cause-effect’) 

relations: for example, in Sequence A, tilt was nearly always followed by light flash, and 

color change was nearly always followed by stars, as shown in Figure 3; neither of these 

held in Sequence B, although tilt, light flash, color change and bubbles all still took place 

with equal frequency. By varying only the statistical structure, rather than which events 

appeared, we were able to provide participants with information about which predictive 

relations co-apply in the same context (i.e. co-vary). The third, Test Sequence, either 

maintained or violated that pairing (between subjects). Our critical dependent measure was a 

forced-choice test probing knowledge of the specific relations in the sequences (Figure 1B). 
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On each trial, participants saw two snippets of video, showing either a likely transition 

(cause followed by effect) or an unlikely one (between two of the unrelated events—in fact, 

the events that are related in different sequences), and had to select which was more typical. 

Both individual cause-effect relations were tested separately for each sequence, and the tests 

were given directly after each sequence was shown. We then measured how well participants 

had learned the Test Sequence relations relative to their baseline Training Sequence 

knowledge. We expected that performance would be affected by condition: knowledge of the 

individual relations in the Test Sequence should be worse in the Inconsistent than in the 

Consistent condition, relative to baseline learning.

Participants

We recruited 490 participants using Amazon Mechanical Turk; all were required to have an 

IP address in the United States and a 95% previous work approval rate. We excluded 37 

participants because they had previously participated in a related experiment or repeated this 

one. An additional 70 were excluded for failing to pass an attention measure (described 

below). Seven were excluded because of incomplete data or because they reported a 

technical glitch during the experiment. All excluded participants were replaced to complete 

a full set of counterbalanced materials (see Stimuli). Of the 376 participants included in the 

reported analyses, 51% were female (192/376) and the average age was 33.5 (range of 19–

68). Procedures were approved by the Institutional Review Board of the University of 

Pennsylvania, and all participants provided electronic consent. Compensation was $5, with a 

bonus of up to $5 based on cover task accuracy (described below).

Sample Size Determination, Effect Sizes, and Piloting

In an incidental learning paradigm such as this one, a fairly large amount of exposure is 

typically necessary for participants to learn a complex set of context-varying relations; yet 

exposure time to the stimuli is also limited by participants’ interest and fatigue. This means 

that our manipulation of participants’ experiences—and thus, the relevant comparison—was 

minimal in each person, as were the number of measurement trials. Since each participant 

learned two specific predictive relations in each sequence, these could only be tested in a 

limited number of ways. This means that both the level of exposure to the materials, and the 

number of measurements of the resulting learning, was very small in each individual.

The approach we took in this work was thus to measure the effect of this minimal 

intervention in each individual, but with many individuals (rather than collecting many 

measures in fewer participants). This methodological choice was motivated by these inherent 

methodological constraints. We first performed a pilot study (with n=80), as described below 

and in Supplemental Materials, which provided a measure of effect size. Inevitably, the 

observed and expected effect size is small, but allowed us to determine a necessarily sample 

size and plan analyses a priori (with a small exception described below).

The final sample size of 376 (following exclusions) was based on two considerations. 

Firstly, a power analysis using our pilot sample indicated that a sample of 188 participants 

would be sufficient to obtain 80% power. We did obtain a significant effect on the predicted 

interaction effect of interest in this initial sample alone, (F(1, 186) = 4.75, MSE = 0.24, p 
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= .031, partial η2 = 0.011). However, we saw order effects in our baseline learning measures 

that created difficulties of interpretation. To control for order effects, we swapped the order 

of the relevant measures to fully counterbalance them, and added another 188 participants, 

which was effective in removing differences between the training stimuli. As we report 

below, the major finding remained significant.

Stimuli

Sequences were composed of 8 animated event types (chosen out of a pool of 10 for each 

participant), most of which are shown in static form Figure 1A; actual stimuli were GIFs. 

Each event type had a regular version (top row) and a slightly visually distinct ‘oddball’ 

alternate, bottom row of Figure 1A, for the purposes of the cover task (described below), but 

sequences were specified over the event types. Four events were object-based: tilting (the 

entire object rotated 10 degrees), part moving (a detachable part on the object moved/

rotated), color changing (the object gradually changed into a different color), or being 

tapped by a hand. The other six were ambient: the background color changing color; 

snowflakes falling; bubbles floating across the scene; confetti swirling; a pair of leaves 

falling; and a burst of glitter. Each participant saw 8 of the 10 event types, selected 

randomly. Additionally, static “events” in the video streams showed the object still on the 

gray background and were included to provide intermittent pauses. Each GIF file comprised 

12 100ms frames (total length of 1200ms), except static (2400ms).

To create the sequences, events were concatenated into continuous sequences (“videos”). 

These were generated probabilistically using a weighted walk, where the weights were 

specified by a pairwise transition matrix that specified the probability of any event following 

any another. This pairwise transition matrix specified the predictive structure central to our 

design, shown graphically in Figure 2 and numerically in Supplemental Tables 1 – 4. All 

sequences followed this abstract structure, but varied in how the participant’s 8 specific 

event types were assigned to it. The structure always specified two strongly predictive event 

pairs, which formed the individual predictive relations: item two in each pair (the “effect”) 

followed item one (the “cause”) with a 98% probability. The cause could be followed by a 

static event with the remaining 2% probability. The effect could repeat with a 1% probability 

but did not follow any other event. The remaining four events were followed by static, each 

other, or the cause with a 14% probability. Thus, among the 8 events in a sequence, 2 were 

causes, 2 were effects, and 4 were weakly predictable (random). All events had equal 

frequency, as specified by the stationary distribution of the transition matrix.

To ensure each generated sequence was a good reflection of the requested transition matrix, 

the walks were generated iteratively and verified until they met several criteria: no two 

events differed in frequency by more than 10 instances (~2%), the actual cause-effect 

transition strength was above 90%, and the other transitions occurred with a probability 

between 5 – 30%. The obtained transition matrix, averaged across all subjects’ walks, is 

shown in Supplemental Tables 1 – 4.

After the sequences were generated, the rare alternates were shown instead of the common 

event versions with a 10% probability, while ensuring that the number of oddballs was 

equated within 2 instances across the event types.
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In the 3 distinct sequences, event types were shown with a different object present (yellow, 

blue or green; Figure 3). Sequences also varied in how the 8 specific events were assigned to 

the same abstract structure—that is, which events were ‘causes’, ‘effects’, or random events. 

Because each sequence had two strong predictive pairs, it had two causes, two effects, and 

four random events. This created four distinct predictive relations (R1 and R2 for Sequence 

A, and R3 and R4 for Sequence B). In the third, Test Sequence, we used R1 and R2 in the 

Consistent condition, and R1 and R3 in the Inconsistent condition (see Figure 3).

The specific event types assigned to the distinct roles in the four relations were selected for 

four yoked participants at a time. These assignments were chosen randomly, with the 

constraint that any of the four types of object-based events (tilt, part-move, color change, or 

tap) could serve as one of the four causes, and any four of the six ambient events could serve 

as one of the four effects (with the other two then not shown). An additional constraint was 

that tilt and part-move could not serve as causes within the same object, as they could be 

confusable. The rationale for the design overall was to mimic an aspect of the real world, in 

which the behavior/actions of objects lead to outcomes in the environment, and multiple 

relations might apply to the same object.

The relations shown in the Test Sequence varied between participants with respect to the 

relations shown in the Training Sequences (A and B). In the Consistent condition, the Test 

Sequence had the same cause-effect relations as Sequence A (R1 & R2). In the Inconsistent 

condition, it exhibited one relation from Sequence A (R1) and one relation from Sequence B 

(R3). These assignments were thus highly systematic and always followed this abstract 

structure: i.e., Sequence A always matched the Consistent Test Sequence. For this reason, 

the specific objects assigned to Sequence A and B and their order of presentation were 

counterbalanced across conditions (green or blue); The Test Sequence always used the 

yellow object. For Sequences A and B, three videos were created to be 225, 200, and 200 

events in length, each adhering to the sequence properties described earlier. The Test 

Sequence was shown over two videos, of 225 and 200 events in length.

For the four yoked participants, half had the Consistent Test Sequence and half the 

Inconsistent Test Sequence. Otherwise, they saw identical materials for the Training 

Sequences (including the randomly generated walks). Additionally, the event assignments 

for R2 and R3 were counterbalanced across conditions, within the yoked set: they were 

exchanged so that if one pair of participants saw color-change–stars for R2 and hand-tap–

bubbles for R3, as depicted in Figure 3, then another pair saw hand-tap–bubbles for R2, and 

color-change–stars for R3. This was because R2 and R3 are the critical rules differing 

between conditions in the Test Object (see Figure 3). Thus, the identity of the events 

comprising the Test Sequence relations were perfectly counterbalanced across conditions.

Procedure

Participants were randomly assigned both to an experimental condition (Consistent vs. 

Inconsistent), and to a counterbalancing set. The experiment was implemented using 

JavaScript and presented in a web-browser, via the Mechanical Turk interface. Participants 

could access the experiment during the daytime, between 10 am and 7 pm EST, and had to 
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complete the procedure within 2 hours. The average duration of the procedure was 77.84 

minutes.

The participants’ task was to learn to identify the common vs. rare versions of the 8 different 

event types in the videos (top vs bottom row in Figure 1A); this was fixed across participants 

and thus constant across conditions. Following a preview phase (the first 75 events of the 

first video of the first object, about one minute), they were asked to press ‘o’ if the event was 

common and ‘r’ if it was rare, as soon as the event began.

At the start, they were shown a static image depicting each of the 16 events and how they 

paired into rare/common alternates, but not which were which.

To ensure that participants had understood what was meant by an individual ‘event’ in the 

continuous stream, and also that the browser was able to register their key responses, they 

performed a response-practice task following the preview, in which they pressed the space 

bar every time a new event started. They were shown a random subset of 20 events from the 

first video for this task, and could only move forward once they achieved at least 75% 

accuracy. Failure on this could be due either to miscomprehension or to technical glitches in 

registering responses within the time window of the trial; either was grounds for not 

proceeding.

Participants not passing this criterion after ten attempts were compensated but not allowed to 

proceed to the rest of the task.

Participants then performed the rare vs. common identification task. Each Sequence was 

shown as a set of consecutive videos (three videos for Training Sequence A, three videos for 

Training Sequence B, and two videos for the Test Sequence). Each video took about 4.5 

minutes to play. After each video, overall accuracy and percent of trials responded to was 

displayed, with a reminder that low accuracy could be due to a low overall response rate. 

The videos for Training Sequences A and B were first (in counterbalanced order across 

conditions and event assignments), followed by the Test Sequence, though these were not 

labeled differently for the participants. A new preview was shown prior to the start of each 

new Sequence.

After completing the set of videos for a given Sequence, participants were given a forced-

choice familiarity test to assess their learning of that Sequence. On each trial, two videos 

were played consecutively side by side, which each showed a mini-sequence of two events. 

Participants were instructed to choose which video was more typical or familiar by selecting 

a button below each one; another button allowed them to replay the two videos in that trial. 

They had to make a selection to continue; no feedback was given. The questions of interest 

always presented one strong (high transition probability) pair and one weak (low transition 

probability) pair.

There were three types of forced-choice questions. The ‘critical’ questions asked 

participants to compare the strongly predictive, typical two-event sequences (i.e., a cause 

followed by its effect, for example tilt followed by light for Sequence A) to event pairs that 

were atypical (~14 % transition probability), but formed strong pairs shown during other 
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sequences. In this example, we would show hand tap followed by snow, events which were a 

cause-effect pair in Sequence B. The central object was always shown in the test items, to 

cue the right sequence; and tests were presented immediately after sequence exposure. For 

each sequence, there were four critical questions (two for each cause-effect pair). We 

expected that our effect would hold on these critical questions, based on our findings from 

the pilot experiment (see Supplemental Material).

Other questions were shown in order to avoid cuing participants to the actual strong pairs, by 

balancing the number of times the weak pairs (i.e., incorrect options) were shown, and to 

maintain methods consistency with the pilot experiment. These included four questions 

which compared the strong pairs to pairs which were always weak (e.g., the cause followed 

by a different ambient event). Two questions asked participants to compare two strong pairs 

to each other (e.g. R1 to R2 for Sequence A); these questions did not have a correct answer. 

Finally, 16 questions presented the weak pairs from the critical questions compared to each 

other, simply to balance the number of times the weak pairs were presented with the strong 

pairs. Thus, filler questions ensured that correct videos for the hard questions were not 

presented more often than the incorrect videos, and so that the same event pairs were tested 

across all sequences. This created 32 total questions.

Although the Training Sequence videos used in the two conditions were identical, it was 

important to ensure that the generated transition matrices did not, by chance, differ between 

the Consistent and Inconsistent Test Sequences in ways that would make the critical 

questions inherently easier or more difficult for one than the other. The transition probability 

of the strong pairs, minus the transition probability of the weak pairs, for the critical 

questions were highly similar between the Consistent and Inconsistent Test Sequences 

(Consistent M = .842; Inconsistent, M = .845).

It should be noted that following the first test, participants could anticipate that such tests 

would appear during the experiment and this could have motivated them to look for cause-

effect relations. However, there was no task-based incentive to track how pairings co-varied 

across sequences.

We additionally measured verbalizable access to what participants learned. These measures 

were included because it would seem even more convincing that relational sets are learned 

spontaneously and affect future learning inadvertently if participants cannot overtly describe 

the structure they learned and thus would be less likely to strategize about their responses to 

forced-choice tests in such fashion.

After completing the cover task and forced-choice test for both Training Sequences, 

participants were asked to “describe anything you learned about each of the two objects you 

saw,” in a text box (freeform response question). Following the Test Sequence, they were 

additionally asked the following freeform response questions: (1) “During the videos (not 

the questions), did you notice any patterns in the order of events? Did any events seem to 

follow each other more than randomly, for any of the objects?”; (2) “Did the videos about 

each of the objects differ from each other, in terms of which events occurred and in what 

order?”; (3) “Did you notice any similarities or differences between the first two videos and 
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the last one?” Participants were also asked to note any technical glitches they encountered, 

and enter their demographic information.

Scoring and Attention Measures

Scoring of the freeform responses was done as follows: One score tabulated how many of 

the four predictive relations the participant had correctly described in their responses (0 – 4). 

The second score indicated whether participants were aware of the overall structure of the 

relations among the sequences (0 or 1). Participants were given a score of 1 if they explicitly 

noted that one or more relations applied to some sequences but not all of them, or, for those 

in the consistent condition, if they mentioned that Sequence A and the Test Sequence were 

more similar to each other than they were to Sequence B.

Performance on the cover task (common vs. rare decision) was used as a measure of 

attention. Participants with lower than a 60% overall accuracy on the task were excluded 

from the analysis as described in Participants.

Performance on the cover task also determined the participant’s performance bonus. For 

each of the 8 individual videos, accuracy of 75% or above was awarded $0.50, and catching 

25% of the rare events across the experiment was awarded another $1.00, for a maximum of 

$5.00.

All statistics reported are two-tailed, planned comparisons, unless otherwise indicated, with 

an alpha level of .05. Effect sizes are reported for hypothesis-relevant analyses.

RESULTS

Participants in the two conditions had comparable performance on the cover task in terms of 

overall accuracy (Consistent group: M = 84.5%, CI [83.46, 85.95]; Inconsistent group: M = 

85.1%, CI [83.75, 86.29]; p = .558), average hit rate (Consistent group: M = 40.5%, CI 

[37.19, 43.85]; Inconsistent group: M = 41.3%, CI [38.13, 44.61]; p = .753), and false alarm 

rate (Consistent group: M = 6.3%, CI [5.25, 7.17]; Inconsistent group: M = 5.53%, CI [4.69, 

6.61]; p = .247).

Learning of the individual predictive relations for each sequence was assessed with a force-

choice test, presented in between blocks of the cover task. On the questions of interest, 

participants had to choose between sequence snippets depicting a strong (highly likely) pair 

of events for that sequence, and a pair that was weak (unlikely) for that sequence but strong 

for others. Participants in both groups showed above-chance accuracy on this test for each 

sequence (Sequence A: Consistent group, M = 60.37%, SE = 2.21, CI [0.56, 0.65], t(187) = 

4.70, p < .001; Inconsistent group, M = 60.24%, SE = 2.19, CI [0.56, 0.65], t(187) = 4.68, p 
< .001; Sequence B: Consistent group, M = 55.85%, SE = 2.05, CI [0.52, 0.60], t(187) = 

2.86, p = .005; Inconsistent group: M = 59.84%, SE = 2.19, CI [0.56, 0.64], t(187)=4.48, p 
< .001; Test Sequence, Consistent group: M = 60.77%, SE = 2.25, CI [0.56, 0.65], t(187) = 

4.79, p < .001; Inconsistent group: M = 55.45%, SE = 1.64, CI [0.52, 0.59], t(187) = 3.32, p 
= .001).
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This knowledge of predictive relations was largely not verbalizable. When asked to describe 

any predictive patterns they noticed, participants correctly identified an average of 0.75 

relations out of a possible 4. Additionally, only 8 of 376 participants (2%) correctly 

described the structure of how the relations differed between sequences. This is unlikely due 

to any unwillingness of participants to reveal this knowledge. An in-lab pilot sample 

(Supplemental Materials) exhibited a similar lack of verbalizable access, when probed with 

active verbal debriefing following the experiment. This suggests that participants were 

unlikely to be responding to forced-choice tests on the basis of a deliberative strategy 

making explicit use of knowledge of how the relations co-varied.

The analysis of interest was whether condition—the consistency of the Test Sequence with 

the Training Sequence rule structure—affected forced-choice test accuracy on individual 

relation knowledge for the Test Sequence, over and above any differences between groups in 

the Training Sequences. We thus tested whether the Consistent group was more accurate 

than the Inconsistent group on the Test Sequence, relative to their difference in performance 

on the Training Sequences. Training Sequences A and B were collapsed to reflect overall 

training accuracy. A two-way ANOVA with the factors Condition (inconsistent, consistent) 

and Sequence Type (training, test) revealed no effect of Sequence Type (F(1, 374) = 0.38, 

MSE = 0.02, p =.539) or Condition (F(1, 374) = 0.82, MSE = 0.05, p = .367), but a 

significant interaction (F(1, 374) = 5.33, MSE = 0.25, p = .022, partial η2 = 0.014). These 

results are shown in Figure 4. The significance of the interaction effect was confirmed with a 

permutation test for ANOVA, p = .003. The simple effect of Condition on Test Sequence 

was marginally significant (t(374) = 1.91, p = .057, d = 0.20; permutation test p = .087). 

This test is less appropriate the interaction, however, because it does not take into account 

individual differences in learning ability (which varies widely). Although statistically robust, 

it must be noted that the effect size of the interaction was small; a Bayesian analysis of the 

interaction yielded a Bayes factor of 1.426, indicating positive but not strong evidence. As 

noted in Methods, our design necessitated that each participant had a very brief exposure to 

the complex learning manipulation; real-life experience can be more substantial. Our 

confidence in the statistically reliability of the effect is increased by the a priori design based 

on pilot data.

Post-hoc t-tests were used to probe the nature of the interaction. In the Consistent group, 

these revealed no significant difference between the Training Sequence score (M = 57.85%, 

CI [55.10, 60.59]) and the Test Sequence score (60.51%, CI [56.09, 64.92]), t(187) = −1.10, 

p = .273, permutation test p = .311. In contrast, in the Inconsistent group, the Training 

Sequence score (M = 60.31%, CI [57.33, 63.29]) was significantly higher than the Test 

Sequence score (M = 55.72%, CI [52.44, 58.10]), t(187) = 2.30, p = .023, d = 0.168; 

permutation test p = .0418. Thus, the interaction indicated a decline in performance in the 

Inconsistent group, but no reliable change in the Consistent group.

Additional tests were performed to rule out alternative explanations of our results. First, we 

confirmed that there were no differences between the two Training Sequences with an 2 

Sequence Type (Sequence A, Sequence B) by 2 Condition (consistent, inconsistent) 

ANOVA, which revealed no effect of Condition (F(1, 374) = 0.88, MSE = 0.07, p = .349) or 

Sequence type (F(1, 374) = 1.19, MSE = 0.11, p = .277), nor any interaction (F(1, 374) = 
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0.83, MSE = 0.08, p = .362), and was confirmed with permutation tests (p’s > .20). Thus, it 

was not the case that the Consistent group had, by chance, better performance on the 

Training Sequence which matched their Test Sequence.

Second, we wished to rule out that the groups differed in their Training Sequence accuracy 

on the specific predictive relations that differed in their respective Test Sequences. As shown 

in Figure 3, the Consistent Test Sequence was shown with R2, while the Inconsistent Test 

Sequence was shown with R3. Even though the specific events assigned to these relations 

were perfectly counterbalanced, it is possible that, purely by chance, the groups differed on 

their knowledge of these particular relations at training. We found this was not the case: 

there was no reliable difference between the Consistent group’s performance on R2 at 

training (M = 64.01%, CI [58.48, 69.72]) and the Inconsistent group’s performance on R3 at 

training (M = 60.37%, CI [54.68, 66.06]), t(187) = 0.92, p = .359; permutation test p = .194. 

Thus, the effects of condition cannot be explained by differences in knowledge of the 

specific individual predictive relations during training.

DISCUSSION

Our theories about the world contain not just individual predictive relations, but also 

knowledge about which relations hang together. Here we investigated whether relations 

among relations are spontaneously acquired during exposure to events, and whether this 

knowledge influences later learning. Indeed, we found that observers register how individual 

predictive relations cohere into higher-order, context-dependent sets, and that this knowledge 

guides their expectation that these relations will continue to cohere this way in the future—

affecting how they process evidence to the contrary. This suggests that binding relations to 

co-varying relations is an intrinsic manner in which the mind encodes the world.

We ensured that learning was over relations, rather than the events composing them, by 

presenting the same events in each context, but varying which were part of predictive 

relations (Figure 3). This follows the classical definition of relational representations, in 

which relations vary independently of the elements (Gentner, 1983; Markman & Gentner, 

1993). We describe this learning as spontaneous, because there was no task demand to learn 

pairings among the relations. Furthermore, these higher order representations of relational 

sets inadvertently affected later learning accuracy for individual relations: having learned 

how pairs of relations co-apply across two contexts, learning was worse when a third context 

violated this pairing than when it upheld it. This extends prior work on explicit reasoning 

about how relations cohere (Gershman, 2017; Schulz et al., 2008; Waldmann et al., 2010) to 

show that it is an automatically operating part of our how we learn even in absence of 

deliberative reasoning. It is also in line with work in other domains, such as reinforcement 

learning, showing that correlational structure is inferred even when costly and unnecessary 

(Collins, 2017; Collins & Frank, 2016).

Our findings have relevance for theories of learning more broadly. Predictive learning is the 

backbone of associative learning (Shanks, 1995); and human and non-human animals alike 

infer the context-sensitivity of relations—for example, that a tone can predict a shock in one 

room but not another. In certain circumstances, it would appear that contexts serve as 
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‘occasion setters’ (Bouton & Swartzentruber, 1986; Urcelay & Miller, 2014): animals learn 

not that a specific room predicts the shock, but rather, that it modulates the tone-shock 

relation. In these circumstances, it could be assumed that the room is a cue toward the 

relation; analogously in our task, objects can be seen as context cues in just this way. Indeed, 

what cue serves as a ‘context ‘may well be anything at the top of a predictive hierarchy that 

itself predicts more local variation among events, and this role could be statistically inferred 

(Collins & Frank, 2016; Gershman, 2017). Importantly, participants need no overt cue for 

context: the relations which hold in it are themselves cues. For example, in our task’s Test 

Sequence, no object cues were available; participants had to use one relation to anticipate the 

other.

Analogous to this situation is the acquisition of task sets in the reinforcement learning 

literature. When observers learn multiple stimulus-reward contingencies, they track how 

these contingencies co-vary. For example, if at the same time A is rewarding while B is 

punishing, and at other times these fully reverse, monkeys need only observe one relation 

(e.g., that A is rewarding) to retrieve the other; no overt cue apart from the predictive 

statistics themselves is necessary (Saez, Rigotti, Ostojic, Fusi, & Salzman, 2015). We show 

that relation-relation binding also takes place in purely observational learning, and, again, 

not as a deliberative strategy where such inferences are beneficial, but as a natural outcome 

of how the mind encodes observed events.

How can we describe the computations the mind performs to accomplish the binding of 

relations to other relations? At minimum, learners must determine that relations co-vary in 

systematic ways, and create a latent structure which captures this co-variation. Finally, in a 

new context, if a similar individual relation is observed to one already attached to a latent 

variable, its associated relation(s) can be retrieved and anticipated. The first two operations 

can be described using models of structure learning, in which probabilistic inferences are 

made about how relations co-vary and how many clusters of co-varying relations there might 

be (Collins & Frank, 2016; Gershman & Niv, 2012; Kemp et al., 2010). However, 

recognizing when a new relation is ‘similar’ to previously learned ones can be more or less 

trivial. In our case, recognizing a tilt-light relation in the context of a new object is possible 

to make by visual similarity of these events. But sometimes relations hold in a way that 

conflicts with visual similarity. In those cases, it is possible that a process of analogical 

mapping is what enables inference (Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983).

A prior step to these is also important. To either map or cluster relations, there must be 

explicit representations of relations. In our task, it is not enough to keep track the covariation 

among visible events, since all events occur equally often in all contexts; learners must track 

the covariation among relations per se. One must therefore suppose a mechanism which 

creates new latent variables (in a Bayesian framework) or hidden nodes (in a connectionist 

network framework) which represent the relations themselves (i.e., a variable that represent 

the correlation between A & B, separately from the stimuli identities). The literature on 

acquired equivalence suggests such hidden nodes are a natural outcome of predictive 

learning using a multi-layer autoencoder network (Gluck & Myers, 1993; Honey, Close, & 

Lin, 2010).
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Thus, at this general level of description, our data support the possible existence of a 

mechanism that forms latent variables to represent relations, makes unsupervised inferences 

regarding how those relations co-vary, and supports the recognition of similar relations in 

new contexts in order to retrieve those associates. In future work, we hope to adjudicate 

between specific alternative implementations of such mechanisms. Moreover, the 

observation that learning was incidental and not easily verbalizable raises the question of 

what reliance it might have on working memory or other executive resources, another 

important topic for future research. Finally, although the relations we studied here were 

predictive, which are critical and pervasive across many learning tasks, it is possible that 

different phenomena exist among other relations, such as those representing relative features 

(brighter than, larger than; Corral & Jones, 2014) or spatial properties (below, above). If 

similar inferential architectures underlie inference of predictive and other relations, then 

similar principles may apply. Indeed, our work extends the finding of Corral & Jones (2014) 

that pairs of relations among items are better learned when one of the items is involved in 

both relations (e.g., A & B and B & C) than when items are not shared. We show here that 

relations that co-vary consistently, without a shared item, also have an advantage.

More broadly, our claim is that this form of learning is relevant to theory-building. Do the 

resulting representations have the character of relations composing theories? Have our 

learners now acquired a ‘theory’ of two object kinds, composed of their two relations?

One important property of theories is that their descriptions of the world are in a different 

‘vocabulary’ than the evidence (Gopnik & Meltzoff, 1997). In our theory of mind, human 

behavior is not represented as reaches of arms and direction of gaze, but as thought, desire, 

and belief. The computational work on structure learning cited above offers one 

formalization of what this means: that theoretical terms are latent variables postulated to 

explain the evidence: how clusters of events or properties cohere (Collins & Frank, 2013; 

Gershman, 2017; Gershman & Niv, 2012). A latent variable thus does not refer to an 

observable event, but rather, to a relation among observables: it captures the fact of their co-

variation. One possibility is that elements in theories are exactly such latent constructs, 

which is why they seem to be in a “different vocabulary”: a belief explains the coherent co-

variation between certain classes of actions. Under this account, our participants created 

novel latent variables for each of the training sequences, which captured the principle that 

their two relations hung together. This latent variable was responsible for the expectation 

that they would hang together later, and thus served as an element in the theory.

Carey (2009) argues that representations inaccessible to awareness, like those we describe, 

are not conceptual, nor theories. It is thus possible that what we describe are only proto-

theories until they are brought into awareness. We nonetheless argue that these 

representations are highly useful for theory building, particularly for intuitive theories that 

seem to be formed without substantial deliberative reasoning.

This is not, in any way, a deflationary account of theorizing. It is instead an inflationary 

account of incidental learning, in line with demonstrations of its ability to generate 

structured representations of sorts useful for learning linguistic syntax or morphology 

(Endress, Cahill, Block, Watumull, & Hauser, 2009; Fitch & Hauser, 2004; Friederici, 
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Bahlmann, Heim, Schubotz, & Anwander, 2006; Gerken, 2006; Gomez, Gerken, & 

Schvaneveldt, 2000; Kovács & Mehler, 2009; Marcus, Vijayan, Rao, & Vishton, 1999; 

Morgan & Newport, 1981). There are both parallels and differences between the kind of 

learning described here and the mechanisms supporting grammar learning in natural or 

artificial languages. Experiments in artificial grammar as cited above have demonstrated the 

ability of infants and adults to learn complex relations such as the difference between an 

AAB pattern (first two elements repeat) vs. ABA (the first and last elements match); and 

AnBn patterns, where the same number of A as B elements to follow each other (v.s. AnBm 

patterns). Such relations require a ‘phrase structure’ grammar, more complex than what is 

needed to learn relations based on transition probabilities (as here), which can be explained 

with a simpler, finite state grammar (Fitch & Friederici, 2012; Fitch & Hauser, 2004; 

Hauser, Chomsky, & Fitch, 2002). Our ‘grammar’, however, was complex in another 

important sense: it required representing the co-occurrence of different relations over the 

same events across contexts, not just the individual relations. This could be captured by two 

finite state grammars, each specifying two different relations over the same events; these 

grammars might then be selected based on context (e.g., Gebhart, Aslin, & Newport, 2009; 

Kovács & Mehler, 2009). The relation between learning grammars required by natural 

languages, and theories relating predictive structures among events, is a fascinating direction 

for future research.

CONCLUSION

How theories are learned is a major challenge for cognitive science (Gerstenberg & 

Tenenbaum, 2017; Tenenbaum et al., 2011). We tackle just one facet of theories: the 

coherence among multiple predictive relations. We demonstrate that human learners have an 

inclination to encode higher order relations—how pairs of individual relations themselves 

cohere—even when these are incidental to the task, and we show that this forms part of the 

very process by which the mind learns about the world. We argue that this inclination may 

be a mechanism which spontaneously generates novel constructs to explain observations. It 

thus forms an important part of our cognitive repertoire, and may explain how we so readily 

generate intuitive theories.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. Illustration of the cover task, in which participants had to decide for each individual event 

whether it was common or rare. Events appeared in a continuous stream, with the central 

object continually present as events took place on or around it. Below, images depicting 

animated event stimuli used in the experiment. The top row shows the ‘common’ events, and 

the bottom row shows the ‘rare’ events. The rare alternates replaced their common versions 

10% of the time, at random, for purposes of the cover task. Object based events are the first 

four pairs on the left, with arrows indicating motion; Ambient events are the next four pairs. 

B. Illustration of the forced-choice test, which presented participants with two, two-frame 

video clips, and asked them to select which was more typical. This figure is available in 

larger, PDF format at https://osf.io/5autq/. A shorted demo of the experiment is available for 

web-view at https://www.sas.upenn.edu/~alesh/images/EXP6T/TaskDemo.html and for 

download at https://osf.io/jr3u2/.
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Figure 2. 
Graphical depiction of the transition matrix structure governing each sequence, for an 

example assignment of events. Blue arrows indicate strong (> 90% probability) transitions, 

while gray arrows indicate equiprobable (~14 % probability) transitions, and no arrows 

indicates a < 5 % probability transition. Thus, two strong pairs were exhibited in each 

sequence, which here are labeled R1 and R2. A larger version of this figure is available at 

https://osf.io/mc6uz/.
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Figure 3. 
Illustration of the 4 unique rules and their distribution among the three sequences. All 

participants saw two training sequences (A and B), each of which exhibited two pairs of 

relations (R1 & R2, or R3 & R4); specific stimuli were counterbalanced. Half of the 

participants then saw the Consistent sequence, which exhibited both rules from Sequence A, 

while the other half saw the Inconsistent Sequence, which exhibited one rule from Sequence 

A (R1) and one rule from Sequence B (R3). A larger version of this figure is available at 

https://osf.io/hyex5/.
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Figure 4. 
Results, showing percent accuracy on the critical questions in the forced-choice test by 

Condition and Sequence type. Error bars indicate 95% confidence intervals using the t 
distribution. Dotted line depicts accuracy expected by chance (50%). The interaction 

demonstrates that while Inconsistent group participants performed worse on the Test 

Sequence than their Training Sequence baseline, the Consistent group did not show such a 

difference.
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