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Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic
PDEs with variable coefficients

Gustavo Cháveza,∗, George Turkiyyahb, Stefano Zampinia, David Keyesa

aKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia
bAmerican University of Beirut, Beirut, Lebanon

Abstract

We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the
discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-
rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner
achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit
good weak and strong scalability at large processor counts in a distributed memory environment. Numerical
experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant
and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible
to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their
arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow
for optimization of the memory requirements and performance of the preconditioner.

Keywords: Preconditioning, Cyclic reduction, Hierarchical matrices.

1. Introduction

This work focuses on the iterative solution of large-scale block tridiagonal linear systems of equations that arise
from the discretization of elliptic partial differential equations on structured grids. Specifically, we demonstrate
a parallel and scalable preconditioner based on an approximate factorization generated by the cyclic reduction
algorithm [1]. Cyclic reduction uses a sequence of Schur complement reduction steps, with each step eliminating
half of the unknowns. While an exact cyclic reduction would result in prohibitively expensive dense matrix blocks,
we exploit the data-sparsity of these resulting blocks by approximating them in a hierarchically low-rank form
featuring log-linear storage.This work builds on [2, 3], where a fast direct solver was introduced based on the
synergy of parallel cyclic reduction and hierarchical matrices, and named accelerated cyclic reduction (ACR).

Iterative methods are advantageous for large-scale scientific computing since they feature tractable complexity
and scalability, but their convergence is problem dependent. Direct methods, in contrast, guarantee a solution at
the expense of higher complexity. Similar to the way in which incomplete factorizations such as the incomplete
Cholesky factorization [4] or the incomplete LU factorization [5] accelerate the convergence, of Krylov methods, we
propose a variable-accuracy ACR factorization that serves as a preconditioner to Krylov methods.

Since ACR is entirely algebraic, its range of applicability extends to problems with arbitrary coefficient struc-
ture, up to the amenability of rank compression. Furthermore, the ACR factorization and solve stages require only
log-linear work and memory, which is particularly beneficial at large-scale. In addition, ACR exhibits substantial
concurrency due to two separate characteristics: hierarchical matrix arithmetic operations expose substantial con-
currency at the node level [6, 7], and the amount of distributed memory concurrency in cyclic reduction, which is
based on red/black ordering of the block rows of the linear system, is proportional to the square root of the problem
size in two-dimensions and to the cube root of the problem size in three-dimensions.

Numerical experiments document the robustness, performance, and memory consumption of the ACR precon-
ditioner on a set of elliptic PDEs with heterogeneous coefficients. In particular, we study the variable-coefficient
Poisson equation, the convection-diffusion equation, and the wave Helmholtz equation in heterogeneous media. For
these equations, the numerical results show that ACR is a broadly applicable preconditioner that, without any
equation-specific customizations. can be used to accelerate the convergence of Krylov methods very effectively even

∗Corresponding author
Email address: gustavo.chavezchavez@kaust.edu.sa (Gustavo Chávez)
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as the size of the linear system increases, the contract in the coefficients gets more pronounced, or the eigenvalue
structure of the matris becomes more irregular.

This rest of this paper is organized as follows. Section 2 reviews the literature on hierarchical matrices for
the solution of elliptic PDEs. Section 3 reviews the basic elements of hierarchical matrix representations. Section
4 describes the accelerated cyclic reduction algorithm for the generation of the preconditioner, where hierarchical
matrix representations are used for storing and manipulating the formally dense blocks that arise in the factorization
process and shows the effect of tuning parameters on the hierarchical matrix structure. Section 5 describes the
parallel version of the algorithm including the distributed memory parallelism of the overall factorization process
and the shared memory parallelism of the inner arithmetic operations on hierarchical matrices, and shows the weak
and strong scalability of resulting algorithm. Sections 6 through 8 present detailed performance results on the
effectiveness and near-optimal complexity of the ACR preconditioner on three problem categories of engineering
interest: a variable coefficient Poisson problem, a non-symmetric convection-diffusion problem, and an indefinite
Helmholtz equation. Section 9 presents the key conclusions.

2. Literature review

The last two decades have witnessed an increasing interest in the use of data-sparse approximations for the
solution of linear systems. Leveraging an underlying hierarchically low-rank structure has been a successful strategy
for improving the arithmetic complexity and memory footprint of direct solvers. As a result, direct solvers—as well
as the closely related preconditioners obtained by aggressively truncating the rank of low-rank blocks—are becoming
feasible candidates for tackling large-scale problems that traditional direct solvers are not able to handle due to
memory requirements. In this section, we briefly discuss the two major directions towards fast direct solvers and
preconditioners for the solution of sparse linear systems.

2.1. Compression of dense frontal matrices

The seminal work of Chandrasekaran et al. [8] showed that the off-diagonal blocks of the Schur complement
of discretized elliptic PDEs can be efficiently represented with a hierarchical low-rank approximation. Using this
property, methods such as the multifrontal solver [9], and other variants based on Schur complementation, can
represent and perform arithmetic operations—of otherwise dense frontal matrices—using data-sparse formats.

An instance of the synergy of the multifrontal method with the hierarchical semiseparable (HSS) format [10]
can be found in [11, 12, 13, 14, 15, 16]. However, other formats can be used to accelerate the multifrontal method,
such as the hierarchical off-diagonal low rank (HODLR) format [17] which lead to the multifrontal-HOLDR solver
[18], or the block low-rank (BLR) format [19] which lead to the multifrontal-BLR solver [20], among others. For
further discussion of the differences of each variant, we refer the reader to [21].

2.2. Compression of the entire triangular factors

An alternative technique that, rather than compressing individual blocks within the decomposition process,
focuses on approximating the entire triangular factors as one hierarchical matrix has also been proposed. Instances
of such strategy can be seen in the work of what is known as H-Cholesky by Ibragimov et al. [22] and H-LU by
Grasedyck et al. [23, 24]. The main idea is to create an H-Matrix approximation of the sparse system with a
clustering based on a nested dissection ordering of the unknowns. The nonzero blocks are approximated with a
low-rank approximation, and an LU factorization is performed under the appropriate H arithmetic operations.

As with the previous section, different hierarchical formats can be used to approximate dense blocks. The
work of Xia et al. [25] also proposes the construction of a rank-structured Cholesky factorization via the HSS
hierarchical format, whereas the work of Pouransari et al. [26] approximates fill-in via low-rank approximations
with the H2 format. We refer the reader to [21] for a discussion of the differences of each strategy and a discussion
of the implications of the choice of different hierarchical format regarding arithmetic operations count and memory
requirements.

3. Hierarchical matrix representations

A hierarchical matrix is a data-sparse representation that enables fast linear algebraic operations by using a
hierarchy of off-diagonal blocks, each represented by a low-rank approximation or a small dense matrix, that can
be tuned to guarantee a desired precision. The approximation, sometimes referred to as compression, is performed
via singular value decomposition, or related methods that deliver low-rank approximations with fewer arithmetic
operations than the traditional SVD method. For the representation to be effective in terms of arithmetic operations
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and memory requirements, the numerical rank must be significantly smaller than the sizes of the various matrix
blocks that they replace.

3.1. Overview of the H-matrix format

Formally, a hierarchical matrix in the H-format [27, 28, 29], can be constructed from four components: an index
set, a cluster tree, a block cluster tree, and the specification of an admissibility condition.

3.1.1. Index set

The index set I = {0, 1, . . . , n− 1} represents the the nodal points of the grid under a certain ordering, such as
the natural ordering.

3.1.2. Cluster tree

The cluster tree, denoted by TI , recursively subdivides the index set I × I until exhaustion. For simplicity,
consider a binary cluster tree of cardinality 8 as shown in Figure 1.

I1:8

I1:4

I1:2

I1 I2

I3:4

I3 I4

I5:8

I5:6

I5 I6

I7:8

I7 I8
Figure 1: Binary cluster tree TI of cardinality 8.

3.1.3. Block cluster tree

Once the cluster tree is defined, the block cluster tree maps matrix sub-blocks over the partitioning of the index
set I × I. An example of a clustering, frequently used by other data-sparse formats as we discuss in the next
section, is a flat block-subdivision of the matrix in l levels, as depicted in Figure 2. The H-format, however, uses a
discriminant to determine which blocks are further subdivided with the so-called admissibility condition.
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Figure 2: Flat block partitioning at different levels l, without admissibility condition.

3.1.4. Admissibility condition

Besides determining which blocks are further partitioned, the admissibility condition also determines which
blocks are represented as a low-rank block (green) or a dense block (red), see Figure 3.
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Figure 3: Hierarchical block partitioning with standard admissibility condition. Green blocks are represented by low-rank approximations
and red block with dense matrices.

A weak admissibility criterion results in a coarse partitioning of the H-matrix format where the off-diagonal
blocks at every level of the hierarchy are all represented as low rank blocks. A standard admissibility criterion
allows a more refined blocking of the matrix given by the inequality:

min(diameter(τ), diameter(σ)) ≤ η · distance(τ, σ) (1)

where τ and σ denote two geometric regions defined as the convex hulls of two separate point sets t and s
(nodes in the cluster tree). A matrix block Ats satisfying the previous inequality is represented in a low-rank form.
The tuning parameter η controls the weight of the distance function. Larger η values admit larger blocks in the
off-diagonal regions of the matrix as we will illustrate in Section 4.

3.1.5. Compression of low-rank blocks

The last step for the construction of an H-matrix is the choice of an algorithm to compute low-rank approxi-
mations for each of the blocks tagged as low-rank blocks as the product of two matrices of the from UV T . Given a
block of size n×n, an effective compression leads to a tall and narrow matrix U of size n× k, and a short and wide
matrix V of size k × n, where k is the numerical rank of the block at some truncated accuracy Hε. An effective
compression means that the numerical rank k is k � n. An efficient use of a hierarchical matrix to compress a
given matrix has a balance between the numerical low-rank k and a moderate number of low-rank blocks.

3.2. Benefits of H-matrix approximations

H-matrix approximations are especially useful for the particular class of matrices that arise from the discretiza-
tion of elliptic operators with methods such as the boundary element method (BEM), finite-difference (FD), finite
volumes (FV), or the finite element method (FEM). The resulting matrices and their Schur complements have
blocks with bounded ranks that provide algorithmic gains while using H-matrix storage and the set of algebraic
operations that are available within the H-format. In terms of storage, storing a dense matrix requires O(N2)
memory footprint, while its H-matrix approximation counterpart can be stored in O(N logN) units of memory.
For a comprehensive discussion of the construction of H-matrices and their arithmetic operations, we refer the
reader to [29].

4. Accelerated cyclic reduction

In this section we briefly review the cyclic reduction algorithm and describe the tunable accuracy accelerated
cyclic reduction variant that improves its arithmetic and memory complexity estimates to near-optimal complexity
for the variable-coefficient case.

4.1. Cyclic reduction

Cyclic reduction was introduced by Hockney in 1965 [1], and then formalized by Buzbee and Golub in 1970
[30]. Cyclic Reduction is a recursive algorithm for (block) tridiagonal linear systems. The algorithm consists of two
phases: elimination and back-substitution. Elimination is equivalent to block Gaussian elimination without pivoting
on a permuted system (PAPT )(Pu) = Pf . The permutation matrix P corresponds to a red-black ordering.

The red-black ordering slices the domain into lines or planes, depending on whether the underlying problem
comes from a 2D or 3D problem respectively, as depicted on Figure 4. This decomposition bears a similarity to the
slice decomposition as reported in [31]. This decomposition is also used in the sweeping preconditioner [32, 33].
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Figure 4: Plain grid in 2D and 3D, and its corresponding red/black coloring. In 2D N = n2, each block row represents a line of size
n× n., whereas in 3D N = n3, each block row represents a plane of size n2 × n2.

Permutation decouples the system, and the computation of the Schur complement successively reduces the
problem size by half. This process is recursive, and it finishes when a single block is reached, although the recursion
can be stopped early if the system is small enough to be solved directly. The second phase performs a forward and
backward substitution to find the solution. A graphical representation of the progression of elimination is shown in
Figure 5. We refer to the reader to [2] for an extended description of the cyclic reduction method.

Figure 5: Cyclic reduction preserves a block tridiagonal structure through elimination. Red blocks depict diagonal blocks, green blocks
depict the innermost of the bidiagonal blocks, and blue blocks depict the outermost of the bidiagonal blocks. Gray blocks denote blocks
in which elimination is completed.

4.2. Accelerated cyclic reduction (ACR)

In [3], we proposed the use of hierarchical matrices and their corresponding algebraic operations to improve on
the computational complexity and the memory requirements of the classical cyclic reduction method, and named
the resulting method accelerated cyclic reduction (ACR).

In generating the structure of the hierarchical matrix representations of the matrix blocks, we exploit the fact
that, for a 3D problem, the domain is subdivided into n planes each consisting of n2 grid points. As a result, block
rows of the matrix are identified with the planes of the discretization grid. We consider this geometry and use
a two-dimensional planar bisection clustering when constructing each H-matrix. In other words, ACR deals with
H-matrices with one dimension less than the original problem.

A standard admissibility condition was chosen, as opposed to a weak admissibility condition that the H-matrix
format also allows, because it provides the flexibility of selecting a range of coarser to finer blocks.

4.3. Tuning parameters

There are three tuning parameters in the construction of an H-matrix that can be leveraged to optimize memory
requirements and performance: Hε, η, and nmin. These, in turn, allow for a tunable accuracy ACR factorization
which we use in this work as a preconditioner to Krylov methods. The cyclic reduction method was originally
conceived as a direct solver; however, extensions of the use of CR as preconditioner have appeared in the literature
[34, 35], although to the best of our knowledge, none of them use hierarchical matrices.

The first parameter Hε controls the specified block-wise relative accuracy of the H-matrix blocks tagged as
low-rank. This parameter resembles the cut-off tolerance ε of the truncated SVD that disregards singular values to
achieve an approximation accuracy of ε.

The second parameter is η, from the admissibility condition criterion. The case for choosing a standard admis-
sibility condition (small η) is that, by further refining off-diagonals blocks, it is possible to achieve the same relative
accuracy as with a weak admissibility (large η) but with smaller numerical ranks, albeit with more off-diagonal
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blocks (see Figure 6a vs. 6d). Numerical low-ranks are crucial to ensure economic memory consumption and overall
high-performance.

Consider the computation of the approximate inverse in the H-matrix format of a 2D variable-coefficient Poisson
problem, with an error tolerance of three digits of accuracy in the Frobenius norm (

∣∣∣∣AA−1 − I∣∣∣∣
F

), and a fixed
accuracy parameter Hε. The variable of interest in this experiment is the admissibility condition parameter η,
which controls the block refinement as depicted in Figure 6.

(a) η = 2 (Strong admissibility) (b) η = 64

(c) η = 128 (d) η = 256 (Weak admissibility)

Figure 6: H-matrix structure for different parameter η with fixed Hε and leaf size nmin=32. Matrix depicts a 2D variable coefficient
Poisson problem with four orders of magnitude of contrast in the coefficient discretized with N = 1282 degrees of freedom. The numbers
inside the green low-rank blocks denote the required numerical rank for the specified accuracy.

Table 1 documents the memory requirements of each approximate inverse as a function of η. As shown, the
optimal η parameter resides in between strong admissibility (η=2) and weak admissibility (η=256). This tuning is
a significant advantage for data-sparse formats that are not limited to the choice of weak admissibility, such as the
H-format. As the table shows, the most economic inverse regarding memory is not necessarily the representation
with the smallest rank, since an aggressive refinement leads to a larger number of blocks and deeper cluster trees.

N η
∣∣∣∣AA−1 − I∣∣∣∣

F
Max. Rank Memory (Bytes)

1282 2 5.0e-3 16 6.76e+7
1282 64 7.2e-3 34 6.64e+7
1282 128 9.1e-3 64 8.64e+7
1282 256 9.1e-3 126 1.01e+8

Table 1: Memory consumption as a function of the tuning parameter η for the computation of the approximate inverse in the H-
matrix format of a 2D variable-coefficient Poisson problem with four orders of magnitude of contrast in the coefficient, discretized with
N = 1282 degrees of freedom. Parameter η=2 depicts strong admissibility, while η=256 depicts weak admissibility; regarding memory
requirements, η=64 is optimal.

Since the memory consumption of ACR is determined by the sum of the memory consumption of each H-matrix
involved in elimination, an economical storage of each H-matrix directly translates into savings to the overall ACR
memory footprint. As shown in Figure 7, tuning η across a range of problem sizes has nuanced benefits. For linear
systems in the order of a few millions of degrees of freedom a coarse block partitioning (close to weak admissibility)
minimizes the overall memory consumption. However, for problems larger than a dozen of millions of unknowns
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block partitioning closer to strong admissibility is optimal to reduce memory requirements.
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Memory η = 2

Memory η = n/2
Memory η = 2n

Figure 7: Effect of tunable parameter η on total memory consumption of ACR for a 3D variable-coefficient problem. The memory
complexity estimate of O(N logN) is achieved for η = 2 which corresponds to strong admissibility. η = 2n which correspond to weak
admissibility uses the most memory asymptotically, and an intermediate value of η = n/2 achieves the least amount of memory within
the range of problem sizes considered.

The third tuning parameter determines which blocks with less than or equal to nmin rows or columns are stored
as dense matrices, as it is more efficient to operate on them in dense rather than in low-rank form. It also alleviates
unnecessarily deep binary trees in the structure of H-matrices. Figure 6 depicts these blocks in red.

5. Hybrid distributed-shared parallelism

The concurrency features of cyclic reduction have been evaluated in both distributed memory [36, 37, 38, 39, 40],
and shared memory environments [41, 42, 43], although to the best of our knowledge, none of them use hierarchical
matrices. We propose a hybrid model with MPI across the nodes and task-based parallelism across the cores in a
node.

The distribution of parallel work was designed to accommodate the architecture of a modern supercomputer,
such as the Shaheen Cray XC40 supercomputer at the King Abdullah University of Science & Technology. Shaheen
is composed of 6,144 compute nodes, with each node holding 128GB of RAM and two Intel Haswell processors
with 16 cores clocked at 2.3Ghz. The nodes are connected with a Dragonfly network. All our reported numerical
experiments were performed on this machine.

Since the supercomputer architecture features multiple fast individual nodes, physically connected trough a
high-speed network interconnect, we seek to maximize computation within nodes and minimize communication
across nodes. Schur complementation is calculated locally within the nodes with a task-based parallel programming
model. Dependencies to perform elimination and solve are fulfilled via a distributed memory programming model
in which only the missing matrix blocks or vectors are provided with the message passing interface (MPI).

5.1. Distributed memory parallelism

Each plane of the computational domain is assigned to an MPI rank, but to minimize communication within
the nodes, we allocate as many planes per node as memory allows. Let p be the number of compute nodes and n
be the number of planes; therefore each node stores n/p planes at the beginning of the factorization. Since ACR
eliminates half of the planes at each step, after r steps each node holds n/(2rp) planes. At level r = log(n/p),
every node holds a single plane only. In the multigrid literature, this level is known as the C-level, i.e. the coarse
level, illustrated in blue in Figure 8. The remaining log p steps beyond the C-level leave some compute nodes idle;
fortunately, most of the remaining block operations have been completed by this step.

Distributed memory communication occurs only at inter-node boundaries, as the elimination of plane i only
requires planes i− 1 and i+ 1. Thus up to the C-level, there are O(p) messages per step, each transmitting planes
of size O(k n2 log n). Beyond the C-level, there are O(p/2 + · · · + 1) ≈ O(p) communication messages, adding up
to a total communication volume of O(k p n2 log n (log n

p + 1)), where n is the size of the linear dimension and k is
the rank of the low-rank approximation.

7



Figure 8: Distribution of multiple planes per node for an example with n = 16 planes and p = 4 nodes.

5.2. Shared memory parallelism

We exploit the concurrency of hierarchical matrix algebra at node level [6], in particular, through a task-based
programming model [7]. The HLibPro package relies on the Intel Threading Building Blocks library [44] to build
directed acyclic graphs for the dependencies between tasks, which might involve recursion. The allocation of cores
to perform hierarchical matrix algebra within the node depends on the number of planes per node.

For instance, for a node with thirty-two processors and four planes per node, we set four MPI processes, and
for each plane we allocate eight processors to perform task-based parallelism. Resource allocation for either block
row processing (communication of planes) or parallel task-based hierarchical arithmetics (computation of Schur
complement) can be tuned to maximize performance or memory availability.

We refer to the reader to [3] for an extended discussion of the parallel features of ACR, and the derivation of
its parallel complexity estimates.

5.3. Parallel scalability

The parallel scalability of the ACR preconditioner is demonstrated below on a constant-coefficient Poisson
equation with homogeneous Dirichlet boundary conditions in the unit cube, discretized with the 7-point finite-
difference star stencil. We use the conjugate gradient method [45] with a convergence criterion in the 2-norm of the
relative residual down to 10−8. This problem results in a symmetric positive definite matrix whose factors exhibit
rapid decay of the singular values of off-diagonal blocks and offers an ideal testbed to show the parallel scalability
of the hierarchically low-rank algorithmic computations. The following experiments improve on previous timings
for the setup phase performed at smaller accuracies [3], demonstrating that the use of ACR as a preconditioner
with looser tolerances, i.e. smaller ranks, also benefits scalability.

5.3.1. Strong scaling

Figures 9a and 9b show the total time in seconds for the setup and solve per iteration of the ACR preconditioner
in a strong scaling setting; dashed lines indicate ideal scaling, a reduction in time by a factor of two as we double
the number of processors.
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(a) Strong scaling of the preconditioner setup.
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(b) Strong scaling of the preconditioner apply.

Figure 9: ACR preconditioner strong scalability for the solution of the constant-coefficient Poisson equation.

The most time-consuming phase of the ACR preconditioner benefits the most as the number of processors
increases for a variety of problem sizes. Nonetheless, the ideal scaling of the solve stage deteriorates at large
processor counts as factors such as hardware latency play a significant role in this computationally lightweight
kernel solely based on H matrix-vector multiplications.

5.3.2. Weak scaling

Figures 10a and 10b depict the results of a weak scaling experiments for the ACR preconditioner fixing a different
numbers of degrees of freedom per processor, along with the ideal weak scaling reference lines depicted as dashed
curves considering that the estimates of setup is of O(k2N log2N) operations and the solve stage per iteration are
of O(kN logN) operations.
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(a) Weak scaling of the preconditioner setup.
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(b) Weak scaling of the preconditioner apply.

Figure 10: Weak scalability of the ACR preconditioner application for the solution of the constant-coefficient Poisson equation.

The setup stage follows the ideal trending line as we increase the number of processors. The solve phase deviates
from the ideal scaling due to the communication latency which is more noticeable due to its lower arithmetic intensity,
the scalability of the Krylov method (conjugate gradient in this case), and the load imbalance in the late stages of
the recursive bisection of cyclic reduction.

6. Variable-coefficient Poisson equation

The solution of variable-coefficient PDEs is an essential engineering problem, as the coefficient structure typically
corresponds to material properties of the problem under consideration. This section documents the behavior of the
ACR preconditioner from an increasingly challenging coefficient structure with up to six orders of magnitude of
contrast.
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The problem under consideration in this section is the symmetric positive definite discretization of the 3D
variable-coefficient Poisson equation with Dirichlet boundary conditions. In particular, the second-order accurate
7-point finite-difference star stencil with harmonic average of the coefficient κ(x) [46]:

−∇ · κ(x)∇u = 1, x ∈ Ω = [0, 1]3, u(x) = 0, x ∈ Γ, (2)

6.1. Generation of random permeability fields

The generation of random permeability field κ(x) that closely represents a porous medium for the modeling
of water or oil flow is a well-defined task on its own. The experiments in this section are based on the parallel
framework for the multilevel Monte Carlo approach (MLMC) described in [47], via the Distributed and Unified
Numerics Environment DUNE [48]. The random permeability fields are defined with covariance function of the
form:

C(h) = σ2 exp(−||h||2/λ), h ∈ [0, 1]3 (3)

Gaussian random fields are set to a correlation length λ = 3h, where h = 1
n−1 and N = n3. The variance σ

is set to deliver a particular contrast in the coefficient measured in orders of magnitude. Figure 11 depicts four
random fields realizations at different number of degrees of freedom and contrast of the coefficient.

(a) N = 323 One order of
magnitude of contrast.

(b) N = 643 Two orders of
magnitude of contrast.

(c) N = 1283 Four orders of
magnitude of contrast.

(d) N = 2563 Six orders of
magnitude of contrast.

Figure 11: Different realizations of random permeability fields κ(x) at different resolutions and contrast of the coefficient. Images depict
the middle slice of each 3D permeability field.

6.2. Tuning parameters

The main parameter that controls the accuracy of the ACR preconditioner is Hε. As discussed in section 3, Hε
controls the accuracy of the H-matrix approximations and their arithmetic operations. This global threshold, in
turn, controls the relative accuracy of the solution for a given right-hand side.

It is expected that as we adjust Hε, we can control the required number of iterations to reach convergence with
a Krylov method. One could set Hε to the sought after accuracy of the solution and not require any iteration at
all. However, the performance and memory requirements, although asymptotically-optimal, become impractical at
high-accuracy for 3D problems. For the ACR preconditioner, the sweet spot for achieving the fastest time to solution
is not the one corresponding to the least number of iterations. It is generally the case that the inexpensive ACR
preconditioners provide the fastest time to solution. There is a trade-off between the accuracy of the preconditioner
and the number of Krylov iterations as numerical experiments show below.

The effect on the required number of iterations as a function of the preconditioner accuracy Hε to solve a
N = 1283 problem with coefficient contrast of four orders of magnitude can be seen in Figure 12a. The largest Hε
requires the most number of iterations, while the smallest Hε requires the least number of iterations.

As can be seen from Figure 12b, even though setting a large Hε required the greatest number of CG iterations,
this is the recommended value of Hε to optimize for time to solution in our current implementation. Although
there are more iterations than with a smaller Hε, the application of the preconditioner is fastest at large Hε since
the ranks are the smallest, see Figure 13a. Figure 13b depicts how Hε directly determines the memory footprint
of the preconditioner, and shows why it is desirable to set Hε as large as possible to also optimize for memory
requirements. Larger values of the preconditioner accuracy could deliver better time to solution, although at the
expense of more synchronizing iterations, which might be undesirable for some applications.
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(a) Number of CG iterations as a function of the preconditioner
accuracy Hε for the variable-coefficient Poisson equation. The
preconditioner with the smallest Hε requires the least number
of iterations.
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(b) Time requirements while refining the preconditioner ac-
curacy Hε for the variable-coefficient Poisson equation. The
preconditioner with the largest Hε delivers the best time to
solution.

Figure 12: Number of iterations and preconditioning accuracy for the variable-coefficient Poisson equation with N = 1283 degrees of
freedom and coefficient contrast of four orders of magnitude.
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(a) Largest rank in the factorization at different preconditioner
accuracy Hε. The preconditioner with the largest Hε requires
the smallest numerical rank.
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Figure 13: Effect of the preconditioner accuracy Hε for the variable-coefficient Poisson equation with N = 1283 degrees of freedom and
coefficient contrast of four orders of magnitude.

6.3. Sensitivity with respect to high contrast coefficient

As the problem difficulty increases, i.e. the contrast of the coefficient sharpens, there are cases for which the most
economical preconditioner (e.g. Hε=1e-1) might not reach convergence within an acceptable number of iterations,
see Table 2.

N Hε CG Iterations
323 1e-1 27
643 1e-1 51
1283 1e-1 95

2563
1e-1 100+
1e-2 73

Table 2: Number of iterations required by CG for the variable-coefficient Poisson equation with coefficient contrast of six orders of
magnitude. The most economical preconditioner for the hardest problem did not reach convergence within 100 iterations, thus requiring
a more accurate version of the preconditioner to reach convergence.
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Therefore, to reach convergence, a more accurate preconditioner is necessary. Figure 14 shows the required
number of iterations to achieve convergence for a preconditioner with accuracy Hε=1e-2 at increasing problem
size and contrast of the coefficient. For comparison, the baseline case (zero contrast) depicts a constant-coefficient
Poisson equation with κ(x)=1.
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Figure 14: Required number of iterations for an ACR preconditioner accuracy of Hε=1e-2 as both the problem size and the contrast of
the coefficient increases. A larger number of iterations is necessary as the contrast of the coefficient increases.

One of the established methods for the solution of these type of problems is algebraic multigrid. As the contrast
of the coefficient changes, Table 3 shows the number of iterations required by the conjugate gradient method (CG)
without preconditioning, and the preconditioned conjugate gradient method using algebraic multigrid (AMG) as a
preconditioner, accessed here via the hypre library [49, 50]. To compare at a similar number of iterations, the ACR
preconditioner was tuned to require less than ten iterations, in this case at Hε=1e-4. Experiments show that at
moderate contrast of the coefficients and using 512 cores, the solve time of the ACR preconditioner is comparable
to the AMG preconditioner, albeit at a large enough number of right-hand sides so that the setup time of ACR gets
amortized since the preconditioner can be reused. Another dimension of comparison is a traditional direct solver,
such as the LU factorization, here accessed through the SuperLU DIST package [51]. For instance, for the problem
of four orders of magnitude of contrast, the LU factors are computed in 27.16 seconds and require 3.5E4 MB of
memory, whereas the ACR preconditioner at Hε=1e-1 is computed in 27.71 seconds, but it only requires 1.7E4 MB
of memory to store its factors.

Coefficient
contrast

CG + No Prec. CG + AMG CG + ACR
Iterations Solve Iterations Solve Iterations Solve

0 257 0.10 6 0.53 3 0.30
2 975 0.24 6 0.35 4 0.34
4 2210 0.44 6 0.28 4 0.37
6 6968 1.35 7 0.26 7 0.59

Table 3: Number of iterations and solve time for the solution of a sequence of Poisson problems N = 1283 with a variable coefficient
at increasing order of magnitude of contrast of the coefficient. Methods under consideration include algebraic multigrid (AMG), and
accelerated cyclic reduction (ACR).

6.4. Operation count and memory footprint

The complexity estimates of the number of operations in the setup and application phases of the precondi-
tioner are bounded by O(k2N log2N) and O(kN logN) respectively, while its memory footprint is bounded by
O(kN logN); where N is the number of degrees of freedom and k is the numerical rank of the approximation.
To demonstrate that these estimates hold for a variable-coefficient problem, Figure 15 shows the behavior of the
preconditioner in terms of operations count and memory footprint as we increase the number of degrees of freedom
N for the variable-coefficient Poisson equation with a coefficient of four orders of magnitude of contrast.

The vertical axis of Figure 15a, normalized by the number of processors used in each case, reports the measured
performance of the setup and application phases of the preconditioner while comparing it with their theoretical
complexity. Figure 15b reports the total memory requirements as the problem size increases and also compares it
with the theoretical complexity demonstrating a fair agreement.
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its theoretical estimate.

Figure 15: Measured performance and memory footprint for the solution of an increasingly larger variable-coefficient Poisson equation
with a random field of four orders of magnitude of contrast in the coefficient. The preconditioner accuracy for this experiments is set
to Hε = 1e-1.

7. Convection-diffusion equation with recirculating flow

In this section we show the effectiveness of the ACR preconditioner on the convection-diffusion equation with a
variable and recirculating flow b(x), i.e. a flow with vanishing normal velocities at the boundary.

−∇ · κ(x)∇u+ αb(x) · ∇u = f(x), x ∈ Ω = [0, 1]3,

b(x) =

 sin(a 2πx) sin(a 2π(1/8 + y)) + sin(a 2π(1/8 + z)) sin(a 2πx)
cos(a 2πx) cos(a 2π(1/8 + y)) + cos(a 2π(1/8 + y)) cos(a 2πz)
cos(a 2πx) cos(a 2π(1/8 + z)) + sin(a 2π(1/8 + y)) sin(a 2πz)

 ,
bx + by + bz = 0.

(4)

The equation is discretized with a 7-point upwind finite difference scheme, which leads to a nonsymmetric linear
system. When the convection term dominates, α > 1, this equation is known to be challenging for classical iterative
solvers.

7.1. Tuning parameters

In a regime of convection dominance, Figure 16a shows how the ACR preconditioner can control the number of
GMRES iterations by tuning the preconditioner accuracy Hε.
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fewer iterations.
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(b) Time requirements while refining the preconditioner accu-
racy Hε. The largest Hε delivers the best time to solution.

Figure 16: This experiment depicts a convection-diffusion problem with recirculating flow with eight vortices, α = 8, discretized with
N = 1283 degrees of freedom.
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Regarding absolute time to solution, experiments with our latest implementation show that the preconditioner
with the largest Hε led to the best time to solution, albeit with the most iterations, as Figure 16b shows. As a
result, this preconditioner configuration featured the lowest numerical rank, as shown in Figure 17a, enabling a fast
application at each iteration. Furthermore, the fastest preconditioner had the least memory requirements, as shown
in Figure 17b.
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(a) Largest rank in factorization at different Hε for the
convection-diffusion equation. The preconditioner with the
largest Hε features the lowest numerical ranks.
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(b) Memory requirements while refining the preconditioner ac-
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least memory footprint.

Figure 17: Effect on the preconditioner accuracy Hε for a convection-diffusion problem with recirculating flow with eight vortices, α = 8,
and discretized with N = 1283 degrees of freedom.

7.2. Sensitivity with respect to vortex wavenumber

Consider an increasing number of vortices in the flow b(x), as Figure 18 shows. At the corners, and in center
of each vortex, there are saddle points which are known to be challenging for multigrid methods to resolve [52].
Figure 19 demonstrates that the ACR preconditioner remains robust as the number of vortices increases.
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(a) Two vortices.
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(b) Four vortices.
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(c) Six vortices.
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(d) Eight vortices.

Figure 18: Increasing number of vortices in the flow b(x).
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Figure 19: Time distribution of the preconditioner as the number of vortices in b(x) increases. Increasing the number of vortices had a
minor effect on the effectiveness of the preconditioner.

7.3. Sensitivity with respect to convection dominance

Consider a fixed-accuracy ACR preconditioner with Hε =1e-1, and an increasingly convection dominated prob-
lem, achieved by gradually increasing α in Equation 4. As expected, Figure 20a shows that a low-accuracy pre-
conditioner requires more iterations as the convective term dominates. Furthermore, given that the accuracy of
the preconditioner is fixed, there is a noticeable effect on the application phase of the preconditioner, which is
proportional to the number of iterations. A graphical representation of such behavior can be seen in Figure 20b.
Evidently, as shown in the section 7.1, it is possible to control, and decrease, the number of iterations by building a
more accurate preconditioner. But the key point here is that the ACR preconditioner in combination with GMRES
is demonstrated to be robust for convection dominated problems.

As a matter of comparison, Table 4 shows the number of iterations of GMRES without preconditioner, and
GMRES in combination with the incomplete LU factorization. In this case, the problem with the strongest convec-
tion dominance did not reach a solution with the incomplete LU factorization as a preconditioner of GMRES. In
terms of memory, the ACR preconditioner for the problem with the strongest convection dominance required 30.76
seconds and 2.3E4 MB of memory with Hε=1e-1, whereas SuperLU DIST required 44.59 seconds and 3.7E4 MB of
memory.
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(b) Time requirements as the convection term gains domi-
nance. The overall time to solution has a moderate increase.

Figure 20: Effect on the preconditioner accuracy Hε for the convection-diffusion equation with recirculating flow discretized with
N = 1283 degrees of freedom as the convective becomes more significant than the diffusion term.
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α
GMRES + No Prec. GMRES + ILU(0) GMRES + ACR
Iterations Solve Iterations Solve Iterations Solve

0 1,132 0.38 201 0.20 26 2.93
2 1,242 0.51 226 0.22 27 3.10
4 1,765 0.60 368 0.30 30 4.02
6 100,000+ - 100,000+ - 77 8.94

Table 4: Number of iterations and solve time for the solution of a sequence of convection-diffusion problems with N = 1283 and
increasingly convection dominance. Methods under consideration include the incomplete LU factorization (ILU), and accelerated cyclic
reduction (ACR).

7.4. Operation count and memory footprint

Figure 21 presents a comparison between the measured performance and memory requirements of the precondi-
tioner, and their corresponding theoretical complexity estimates for the convection-diffusion problem described in
Equation 4, as the problem size increases.

The vertical axis of Figure 21a, normalized with the number of compute nodes used in each case, reports
the measured performance of the setup and application phases of the preconditioner while demonstrating a fair
agreement with the asymptotic complexity estimates for the large-scale experiments.

Figure 21b reports the total memory requirements as the problem size increases and also compares it with its
corresponding theoretical complexity demonstrating a fair agreement across all experiments.
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(a) Comparison of the preconditioner setup and application
with their corresponding theoretical estimates.
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Figure 21: Measured performance and memory footprint for the solution of the convection-diffusion equation with recirculating flow.

8. Indefinite Helmholtz equation in heterogeneous media

The numerical solution of the indefinite Helmholtz equation offers one of the greatest challenges for iterative
and direct solvers at large-scale [53]. There is a significant interest in the development of optimal methods as
several engineering applications use the Helmholtz equation to model time-harmonic propagation of acoustic waves.
Inversion techniques based on full-waveform inversion (FWI) for instance, involve heterogeneous velocity models
and the solution of multiple right-hand sides at a wide range of frequencies. Therefore, the introduction of an
efficient forward solver directly contributes to expanding the limits of what can be modeled computationally.

Consider the indefinite Helmholtz equation in a variable velocity field c(x), at frequency f , and Dirichlet bound-
ary conditions in the unit cube:

−∇2u− (2πf)
2

c(x)2
u = f(x), Ω = [0, 1]3, x ∈ Γ,

c(x) = 1.25(1− 0.4e−32(|x−0.5|
2+|y−0.5|2))

u(x) = sin(πx) sin(πy) sin(πz)

(5)

The velocity field models a waveguide over the unit cube as proposed in [33], and depicted in 22. The forcing
term f(x) is adjusted to satisfy the proposed exact solution u(x). The equation is discretized with the 27-point
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trilinear finite element scheme on hexahedra with the software library PetIGA [54]. Since the linear system arising
from the discretization is indefinite in the high-frequency Helmholtz case, we use ACR to accelerate the convergence
of GMRES.

Figure 22: Wave velocity field c(x). The image depicts the middle slice of the 3D wave velocity field.

8.1. Tuning parameters

We illustrate the effectiveness of the ACR preconditioner on a moderately high-frequency Helmholtz problem
as described in Equation 5, discretized with N = 1283 degrees of freedom and 12 points per wavelength. As Figure
23 shows, we can control the number of iterations that GMRES requires to reach convergence by adjusting the
accuracy of the preconditioner Hε. Notice that the preconditioner accuracy Hε is smaller than what was chosen
for diffusive problems. The need of higher relative accuracy is due to the fact that the Helmholtz equation, in
the high-frequency regime, has off-diagonal block ranks that asymptotically grow with problem size (k ∼ O(n)).
This theoretical estimate is reported in the literature [8]. Evidently, rank growth impacts hierarchical-matrix based
solvers. Nonetheless, the complexity estimates of the ACR preconditioner are still lower than traditional exact
sparse factorizations, as demonstrated in section 8.3.
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Figure 23: Number of iterations as a function of the preconditioner accuracy Hε. As Hε decreases, the preconditioner requires fewer
iterations.

Even though the timings of the preconditioner shows an increase in the setup time as compared to diffusive
problems, it still features an economical solve stage (Figure 24b). As mentioned in the introduction of this section, for
inverse problems which require the solution of a large number of right-hand sides (typically up to a few thousands),
the setup phase (Figure 24a) is typically regarded as an off-line phase that gets amortized if the solve stage is
relatively fast, which is the case for the ACR preconditioner.
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(a) Setup phase at increasing accuracy of the preconditioner.
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(b) Application phase at increasing accuracy of the precondi-
tioner.

Figure 24: Time requirements while refining the preconditioner accuracy Hε. The loosest Hε delivers the fastest time to solution for
a single right-hand side, whereas the tightest Hε delivers the best time to solution for a large number of right-hand sides, since the
preconditioner setup is computed only once.

The growth in the setup phase as the accuracy of the preconditioner is tightened is due to increased numerical
ranks, as shown in Figure 25a. Rank growth has a direct impact on the memory footprint of the preconditioner,
as shown in Figure 25b. Once more, the preconditioner with the loosest Hε, i.e. the lowest numerical rank, is the
preconditioner of choice to optimize for both memory and performance.

1e-6 1e-7 1e-8 1e-9
0

50

100

150

200

Preconditioner accuracy (Hε)

N
u
m
er
ic
al

ra
n
k

Largest rank in factorization

(a) Largest rank in factorization. Factorizations with smaller
ranks lead to more iterations, but less time to solution and
memory footprint.
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memory footprint is delivered with the largest Hε.

Figure 25: Effect on the preconditioner accuracy Hε for the high-frequency Helmholtz equation in a heterogeneous medium discretized
with N = 1283 degrees of freedom and 12 points per wavelength.

8.2. Low to high frequency Helmholtz regimes

Consider a sequence of Helmholtz problems, as described in Equation 5, at increasing frequency. If the frequency
is set to f = 0 Hz, the zeroth-order term vanishes, and we are left with a constant-coefficient Poisson problem. At the
other end of the spectrum, a frequency of f = 8 Hz corresponds to a moderately high-frequency Helmholtz problem
at 12 points per wavelength, as the problem featured in the previous section. Table 5 shows the preconditioner
accuracy chosen to require a maximum of 20 GMRES iterations to reach convergence.
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f
Points per
wavelength

Hε
0 - 1e-1
2 48 1e-3
4 24 1e-4
8 12 1e-6

Table 5: Tuning of the preconditioner to require at most 20 GMRES iterations for a sequence of Helmholtz problems at increasing
frequencies. The problem with f = 0 represents a constant-coefficient Poisson problem, while f = 8 represents a moderately high-
frequency Helmholtz problem.

Figure 26a shows an apparent increase in both the setup and application phases of the preconditioner as a
function of the frequency f . The growth in the setup is mainly due to the higher numerical ranks required to meet
the upper limit of 20 iterations, as shown in Figure 26b. The increase in the application phase is due to both an
increase in ranks, and an increase in the indefiniteness of the problem due to a higher frequency; as is evident from
the growth in the number of required iterations depicted in Figure 26c. Finally as illustrated in figure 26d, the
memory footprint also increases with the frequency as a consequence of higher ranks.
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(a) Time requirements as a function of frequency. The high-
frequency regime (f = 8) requires the most time in both setup
and application phases.
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(b) Largest rank in factorization, the accuracy is adjusted to
require less than 20 GMRES iterations. The high-frequency
case (f = 8) requires the largest numerical rank.
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(c) Number of iterations as a function of frequency. The high-
frequency regime (f = 8) requires the largest number of itera-
tions.
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(d) Memory requirements as a function of frequency. The
high-frequency regime (f = 8) exhibits the largest memory
footprint.

Figure 26: Preconditioner performance for the Helmholtz equation in a heterogeneous medium discretized with N = 1283 degrees of
freedom at increasing frequencies. The problem with f = 0 Hz represents a constant-coefficient Poisson problem, while f = 8 Hz
represents a moderately high-frequency Helmholtz problem.

To give a comparison with traditional techniques, Table 6 shows the number of iterations that GMRES without
preconditioner, the incomplete LU factorization, and algebraic multigrid as preconditioner require. For this problem
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type, the ACR preconditioner was the only method that was able to solve all the problems under consideration.

Frequency
GMRES + No Prec. GMRES + ILU(30) GMRES + AMG GMRES + ACR
Iterations Solve Iterations Solve Iterations Solve Iterations Solve

0 582 0.30 207 201.97 7 0.86 8 0.93
2 100,000+ - 100,000+ - 80 7.22 10 1.55
4 100,000+ - 100,000+ - 100,000+ - 12 2.13
8 100,000+ - 100,000+ - 100,000+ - 16 3.70

Table 6: Number of iterations and solve time for the solution of a sequence of increasingly indefinite Helmholtz problems N = 1283

with a variable coefficient. Methods under consideration include the incomplete LU factorization (ILU), algebraic multigrid (AMG),
and accelerated cyclic reduction (ACR).

8.3. Operation count and memory footprint

As the previous experiments show, the high-frequency Helmholtz regime is where the highest numerical ranks
are required. Therefore, it is of interest to show how the computations behave asymptotically as the problem size
increases considering the estimate k ∼ O(n) [8]. Figure 27a shows a comparison of the preconditioner setup with
the O(n2 N log2N) estimate, and the preconditioner application with respect to the O(n N logN) estimate. Figure
27b shows the memory footprint of the preconditioner with respect to the estimate O(n N logN). Table 7 shows a
fair agreement to the Chandrasekaran et al. estimate on the largest rank growth of the factorization, however, the
average rank on the low-rank blocks of the ACR preconditioner grows slower than k ∼ O(n), which is reflected by a
slightly lower than predicted memory consumption and setup time. The ACR preconditioner does not use the HSS
format or a weak admissibility condition which results in off-diagonal blocks with large rank, but rather a standard
admissibility condition that allows a more refined structure of the H-matrix blocks, as discussed in Section 4.3, and
shown in Figure 6.

N Largest rank Average rank
323 25 16
643 59 32
1283 118 36

Table 7: Rank growth statistics for a sequence high-frequency Helmholtz problems in heterogeneous medium, discretized at 12 points
per wavelength.
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(a) Comparison of the preconditioner setup and application
with their respective theoretical estimates.
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Figure 27: Measured performance and memory footprint for the solution of a sequence high-frequency Helmholtz problems in heteroge-
neous medium, discretized at 12 points per wavelength. On average, the rank of the low-rank blocks of the ACR preconditioner grows
slower than O(n).
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9. Concluding remarks

We presented a robust and scalable preconditioner based on the cyclic reduction method and hierarchical matrices
in a distributed memory environment. The preconditioner relies on a block tridiagonal structure that commonly
arise from the discretization of elliptic operators with variable-coefficient.

The preconditioner setup is based on a red-black ordering for which, if a 3D grid is considered, the ordering
divides the grid into planes. These planes represent block rows of the original linear system, which are represented
with a hierarchical matrix, in the H format, and its structure is defined using a binary spatial partitioning of the
planar grid sections, employing a standard admissibility criterion that controls the rank of individual low-rank
blocks.

The concurrency features of ACR constitute one of its strengths. The regularity of the decomposition allows a
predictable load balance. The parallel features are demonstrated via the companion implementation in a distributed
memory environment with numerical experiments that study the strong and weak scalability of the method. In
our current implementation, concurrency at node level involves task-based parallelism of the hierarchical matrix
arithmetic operations involved in the computation of the Schur complement and its evaluation. In future work,
we plan on developing a set of distributed-memory hierarchical matrix operations that can exploit a larger set of
processors to accelerate the setup phase of the preconditioner.

We demonstrated over a range of problem sizes and parameters that the preconditioner can tackle a broad class
of problems that lack definiteness, such as the indefinite high-frequency Helmholtz equation in heterogeneous media,
or lack symmetry, such as the convection-diffusion equation with a recirculating flow.

Since the accuracy of the H-matrix approximations and their arithmetic operations can be tuned, it was demon-
strated that the preconditioner could control the number of Krylov iterations. Furthermore, we discuss how these
parameters can be used to optimize performance and memory consumption via comparisons with Krylov methods
with established preconditioners such as algebraic multigrid and the incomplete LU factorization, and with direct
solvers that perform a complete LU factorization.

As expected from all hierarchical low-rank approximations methods, the key to performance, and memory
economy, is largely based on achieving an approximation with low rank; i.e. an efficient compression into a data-
sparse format where k (the rank) is much less than n (the size of the block to be approximated). Numerical
examples demonstrate that the required ranks agree with theoretical estimates and that for problems larger than a
dozen of millions of unknowns the strong admissibility condition required less memory than the alternative (weak)
admissibility condition.
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