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ABSTRACT: Floodplains and terraces in river valleys play important roles in the transport dynamics of water and sediment. While
flat areas in river valleys can be identified from LiDAR data, directly characterizing them as either floodplain or terraces is not
yet possible. To address this challenge, we hypothesize that, since geomorphic features are strongly coupled to hydrological and
hydraulic dynamics and their associated variability, there exists a return frequency, or possibly a narrow band of return frequencies,
of flow that is associated with floodplain formation; and this association can provide a distinctive signature for distinguishing them
from terraces. Based on this hypothesis we develop a novel approach for distinguishing between floodplains and terraces that
involves transforming the transverse cross-sectional geometry of a river valley into a curve, named a river valley hypsometric (RVH)
curve, and linking hydraulic inundation frequency with the features of this curve. Our approach establishes that the demarcation
between floodplains and terraces can be established from the structure of steps and risers in the RVH curves which can be obtained
from the DEM data. Further, it shows that these transitions may themselves be shaped by floods with 10- to 100-year recurrence.
We additionally show that, when floodplain width and height (above channel bottom) are normalized by bankfull width and
depth, the ratio lies in a narrow range independent of the scale of the river valley. Copyright © 2017 John Wiley & Sons, Ltd.
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Introduction

Floodplains, terraces, meanders, levees, bars and other fea-
tures that are present within river valleys provide valuable
insights into the geomorphic and hydrological legacies that
shape them (Bridge, 2003). Each of these features plays a
role in river morphology, and they are important determi-
nants of space–time variability of water and sediment flux
(Bull, 1990; Bridge, 2003; Pazzaglia, 2013). Further, these fea-
tures shape the dynamic interaction between river flows and
the riparian corridor through hydrological exchange of fluxes,
which impacts their biogeochemical and ecological functions
(Corenblit et al., 2011; Harvey and Gooseff, 2015).

Among the various geomorphic features, floodplains and
terraces together cover a significant part of a river valley.
Floodplains are areas that are adjacent to the river and formed
by the river in its current hydrological regime and are inun-
dated at times of high water (Leopold et al., 1964; William
Dietrich, personal communication, April 2017). Terraces are
former and abandoned floodplains that are not well integrated
into the existing hydrological regime of the river (Pazzaglia and
Gardner, 1993). Terraces and floodplains have long been uti-
lized for agriculture and urban development because of their

relatively flat surfaces and proximity to rivers. The landforms
and underlying alluvial deposits of terraces record long-term
geomorphic and hydrological responses to climatic and tec-
tonic history (Bull, 1990; Hancock and Anderson, 2002;
Pazzaglia, 2013). Floodplains and terraces play important and
distinct roles in terms of channel migration, channel width
adjustment and sediment source-to-sink dynamics (Bull, 1990;
Nanson and Croke, 1992; Bridge, 2003; Belmont, 2011; Gran
et al., 2013; Pazzaglia, 2013; Stout and Belmont, 2014). There-
fore, extracting and classifying these features from elevation
data and establishing the dynamical basis of their formation
are important for developing deeper insight for both predic-
tive and phenomenological modeling (Kumar, 2011), with
potential applications in managing sediment budgets, design-
ing stream restoration schemes, and evaluating flood risks
(Arthington and Pusey, 2003; Opperman et al., 2009).

Identifying and distinguishing between terraces and flood-
plains are long-standing questions in geomorphological stud-
ies. Traditionally, identification of floodplains in a river val-
ley is based on either historical flood hazard mapping or
hydraulic modeling with field surveys (Noman et al., 2001;
Degiorgis et al., 2012; Grimaldi et al., 2013; Wyrick et al.,
2014; Wheaton et al., 2015). In this work, we hypothesize
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that, since geomorphic features are strongly coupled to hydro-
logical and hydraulic dynamics and their associated variabil-
ity, there exists a return frequency, or possibly a narrow band
of return frequencies, of flow that is associated with floodplain
formation; and this association can provide a distinctive signa-
ture for distinguishing them from terraces. This hypothesis is in
part inspired by and an extension of the empirical observation
that bankfull geometry of stream channels, in a range of geo-
logical and climatic settings, is strongly associated with 1- to
2-year return flows (Leopold et al., 1964). Hydraulic geometry
at the channel scale has been the subject of much investi-
gation (Park, 1977; Rhodes, 1977; Williams, 1978; Knighton,
1998; Bridge, 2003; Dodov, 2004), but hydraulic geometry at
the river valley scale has not been adequately characterized,
although important contributions have been made (Leopold
et al., 1964; Bhowmik and Stall, 1979; Bridge, 2003).

Methods have been developed (Degiorgis et al., 2012; Stout
and Belmont, 2014) to identify ‘flat’ areas from high-resolution
LiDAR (light detection and ranging) digital elevation model
(DEM) data (Passalacqua et al., 2015), which may potentially
be categorized as a floodplain or terrace. However, little is
known about the magnitude and return frequencies of flows
that shape floodplains, and how we may distinguish them from
terraces directly from DEM data. Existing approaches based on
the geometric features of these flat areas, such as elevations
and slopes, are inadequate (Hopkins and Snyder, 2016). Our

hypothesis serves as a basis for addressing these two questions
simultaneously.

In this paper, we propose a new approach for defining and
distinguishing between terraces and floodplains. It involves
transforming the transverse cross-sectional geometry of a river
valley into a curve, named a river valley hypsometric (RVH)
curve, and linking hydraulic inundation frequency with the
features of this curve. We develop and test the proposed
method using data from eight river valley reaches within
three representative watersheds in the Upper Mississippi River
Basin (Figure 1). These study sites are within the Criti-
cal Zone Observatory for Intensively Managed Landscapes
(http://www.imlczo.org). These river valleys were shaped by
Pleistocene ice sheets, but they have since evolved through
different evolutionary pathways. The method is further veri-
fied using data from eight other Critical Zone Observatory
sites. We first present the basic concept of characterizing the
cross-sectional geometry of a river valley in terms of a RVH
curve. Second, we compare the topographic characteristics
among the eight river valley reaches (within the Upper Missis-
sippi River basin) based on their RVH curves and then propose
a delineation of the channel–floodplain zone in a river val-
ley to distinguish them from the terraces. Third, we run 2D
flood simulations to evaluate the assumed delineation. Last,
we investigate the hydro-geomorphological features that allu-
vial river valleys have in common, and compare across other
non-alluvial sites.

Figure 1. Map of Upper Mississippi (UM) River Basin, which includes the study sites in the Minnesota River Basin (MRB), the Clear Creek
Watershed (CCW) and the Upper Sangamon River Basin (USRB). Locations labeled with circles are USGS stream gaging stations. [Colour figure
can be viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 218–228 (2018)
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Study sites

Our primary study sites include three river valleys in the Upper
Mississippi River Basin (Figure 1). The sites are in the Clear
Creek Watershed (CCW) in Iowa, the Upper Sangamon River
Basin (USRB) in Illinois and the Minnesota River Basin (MRB)
in Minnesota. This region was glaciated multiple times during
the Pleistocene Epoch (2.6 million to 11 700 years ago; Fan
and Hou, 2016). These glaciations include several major con-
tinental advances of the Laurentide Ice Sheet that had both
regional and local impacts (Mickelson and Colgan, 2003).
The glaciers deeply buried the bedrock in stratified sediment
and till, and the average thickness of glacial deposits is esti-
mated to have been between 40 and 100 m across the three
watersheds (Soller et al., 2012). Some parts of the region,
including the MRB and the USRB, were glaciated during the
Late Pleistocene (12 000–30 000 years ago; Killey, 2007;
Jennings and Johnson, 2011; Cohen and Gibbard, 2016).
These watersheds tend to have poorly integrated natural
drainage networks with low-gradient, shallow water tables,
and relatively thin weathering profiles (Patterson et al., 2003).
Other parts of the Midwest, including the CCW, were last
glaciated during the Early to Middle Pleistocene (130 000–2
580 000 years ago; Killey, 2007; Rovey and Balco, 2015).
Because of this, the CCW has better integrated drainage net-
works, a wider range of gradients and thicker weathering
profiles (Rovey and McLouth, 2015).

The USRB, MRB, and CCW represent a range of typical
land uses, soil properties and stream network configurations
in the Upper Midwest, and each site has unique hydrologi-
cal and geomorphic characteristics. The 3690 km2 USRB is
a well-studied river system. Analysis of aerial photos, taken
by the US Department of Agriculture (USDA) from 1940 to
2015, indicates that the course of the Sangamon River has
shown negligible migration and the river width has barely
changed (Rhoads et al., 2016). This suggests that the river sys-
tem is close to a quasi-equilibrium condition and that the
resistance of the alluvial sediments is equal to or greater
than erosional forces. In contrast, major tributaries within
the 44 000 km2 MRB are undergoing exceptionally rapid
incision in response to a base-level fall (Belmont et al., 2011;
Belmont, 2011; Gran et al., 2013) as well as increased river
discharges because of land cover change for agriculture
(Foufoula-Georgiou et al., 2015). The mainstem Minnesota
River, scoured by a catastrophic glacial outwash event 13 400
years ago, is rapidly aggrading (Wilcock, 2009). The CCW
covers 270 km2 in east-central Iowa. Many studies of this
watershed show that agricultural practices have enhanced the
rate of soil erosion on highly erodible soils in both uplands and
river valleys, resulting in increasingly high sediment delivery
and higher storm flow peaks (Abaci and Papanicolaou, 2009;
Rayburn and Schulte, 2009; Wilson et al., 2009).

We used the TerEx toolbox (Stout and Belmont, 2014) to
identify and map polygons corresponding to flat areas as can-
didates for being categorized as floodplains or terraces, and

Figure 2. Mapping and statistical analysis of the relatively flat areas as candidates for terraces and floodplains in USRB, CCW and MRB. (a1–a3)
An illustrative example in USRB, CCW and MRB respectively. The colored areas are identified flat areas in the river valley based on TerEx toolbox
(Stout and Belmont, 2014). The numbers on the upper right insert represent the heights (from the channel elevation) in meters. The mapped valley
reach covers two USGS gaging stations, Fisher and Monticello. (b) Probability density functions (PDFs) of the heights of the flat areas for the USRB,
CCW and MRB, respectively. The red solid lines are approximate PDF curves. [Colour figure can be viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 218–228 (2018)
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Figure 3. Illustration of cross-sections of river valley topographies
and RVH curves for the eight study sites in Intensively Managed
Landscapes (IML). (a) Normalized cross-sectional geometries of river
valleys. (b) The corresponding normalized RVH curves. [Colour figure
can be viewed at wileyonlinelibrary.com]

extract their area and height (defined as the relative vertical
distance to the nearest river bed) from a LiDAR DEM. We
used a 1.2 m LiDAR DEM for the USRB (from the Illinois
State Geological Survey (ISGS)) and 1.0 m LiDAR DEM for
both the MRB (from the Minnesota Geospatial Database) and
CCW (from the National Topography Database). Since flood-
plains have lower height differentials with the local channel
as compared to terraces, extracting the heights of the rela-
tively flat polygonal areas in river valleys could potentially
reveal the vertical distance gap between terraces and flood-
plains. The highlighted polygons in the spatial maps, shown
in Figure 2(a1–a3), are illustrative examples from the three
watersheds. Mapped valley reaches cover two USGS gaging
stations in each watershed: Fisher and Monticello in the USRB,
Oxford and Coralville in the CCW, and Morton and Mankato
in the MRB (Figure 1). The probability density functions (PDFs)
are shown in Figure 2(b1–b3). The PDF for USRB shows that
the heights lie in a narrow range, and in addition the PDF
does not have a long tail, which suggests that this valley reach
includes predominantly floodplains. In contrast, the PDFs in
CCW and MRB show a long-tail distribution, which indicates
that there could be both terraces and floodplains in the valley
reach. Even though we are able to capture the heights of flat
areas from LiDAR DEMs, there remains ambiguity with regard
to which specific surface should be classified as a terrace or
floodplain. Next we introduce a relatively simple but novel
framework that can play a useful role in this categorization.

River Valley Hypsometric Curve

The concept of the hypsometric curve was first introduced by
Strahler (1952) to quantify, in a general way, the geomorpho-

logical features of watersheds. In its original form, it displays
the area that lies above a specified elevation, by plotting ele-
vation on the ordinate and the area above that elevation on
the abscissa. Here we adopt a similar concept to describe the
shape of river valleys. Our approach is based on transforming
the cross-sectional geometry of a river valley into a relation
between the height, defined as the elevation above the river
bottom, and the width, defined as the corresponding horizon-
tal span. With increasing height, the width generally increases.
Flat areas, like floodplains and terraces, have very small local
relief, so a small increase in height corresponds to a large
increase in the lateral span. We define this height–width rela-
tionship as a river valley hypsometric (RVH) curve. To enable
comparison across valleys of differing scales, we normalize
the height and width with bankfull depth, Dbf , and width,
Wbf , respectively. Low-gradient segments (here referred to as
steps) in the RVH curve represent flat areas in the river val-
ley. In contrast, steep segments (here referred to as walls or
‘risers’) represent zones of steep slope in the cross-section. In
general, gradients in the RVH curve match the slopes from the
cross-sectional geometry of the river valley.

Eight valley reaches (four in MRB, two in USRB and two
in CCW; Figure 1) were selected for analysis to demonstrate
the information that can be extracted from RVH curves. Each
reach is about 1 km long and immediately downstream from a
gaging station. Cross-sectional lines were generated orthogo-
nal to the longitudinal direction of the valley at 2 m intervals.
To obtain a representative cross-section for the entire valley
reach, the river bottoms of all cross-sections were overlaid on
top of each other and elevations were averaged. Figure 3a
shows the averaged cross-sectional lines thus obtained for the
eight river valley reaches. The corresponding RVH curves are
shown in Figure 3b. For normalizing, we use channel bankfull
width and depth data from the USGS (US Geological Sur-
vey field measurements, data accessed June 2016). Supporting
Information Table S1 provides details related to the study sites’
river and river valley geometries.

Based on the general features of the RVH curves, we can
classify the transverse cross-sectional forms of the river valleys
in our study area into three categories: V-shape, U-shape and
U-shape with terraces (henceforth UT-shape) (Figure 4a1–a3).
The shapes of the river valley imply a sediment mass balance
that ranges from net-incisional to net-aggradational (Nanson
and Croke, 1992; Schumm, 2005; Limaye and Lamb, 2014).
A V-shape valley (Figure 4b1) is relatively narrow compared
to the other two valley types, suggesting active incision. Flat
floodplains are relatively narrow or absent in this type of
valley. A U-shape valley (Figure 4b2) is a flat-bottomed val-
ley, indicating that the valley wall is widening and/or the
valley bottom is undergoing aggradation. A UT-shape valley
(Figure 4b3) is a flat-bottomed valley with terraces, indicating
that there have been former high river levels whose geomor-
phic signatures are preserved. In some cases, the terraces may
be strath terraces if the valley widens as the river has incised
over time. In other cases these may be alluvial fill terraces if
the river aggraded and has incised back through its alluvial
deposits.

For the study sites, the RVH curves (Figure 3b) show dif-
ferent levels of flat segments much more clearly than the
cross-sectional lines themselves (Figure 3a). For example, the
river valley in Fisher is close to a V-shape valley, whereas
Monticello resembles a U-shape valley. There is only one
step (or low-gradient segment) on the RVH curves of the
two USRB sites. This means that all flat areas may be flood-
plains rather than terraces. The four valley reaches in the MRB
(Montevideo, Morton, Mankato and Jordan) resemble U-shape
and UT-shape valleys. Higher sediment loading from rapidly

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 218–228 (2018)
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Figure 4. Illustration of different river valley shapes. (a) Schematics of different types of river valleys (from left to right): V-shape, U-shape and
UT-shape (U-shape with terraces). (b) Illustration of the corresponding cross-sectional geometries extracted from (a). (b1) V-shape valley: the
floodplain is relatively narrow or absent, and the channel is experiencing active incision at this stage. (b2) U-shape valley: the floodplain has clear
flat zones, and the system may be at or near grade. (b3) UT-shape valley: it has both floodplain and terraces, and hence there is more than one
flat level in the river valley. The floodplain may be actively aggrading at this stage. (c) The corresponding river valley hypsometric (RVH) curves.
[Colour figure can be viewed at wileyonlinelibrary.com]

incising tributaries (Belmont et al., 2011) causes active
aggradation in the mainstem of the Minnesota River (Wilcock,
2009; Li, 2014), which can drive rapid channel migration rates
as well as frequent cutoffs. The RVH curves at the two sites
in the CCW (Oxford and Coralville) also resemble UT-shape
valleys, but they have larger scales in both non-dimensional
width and depth. The presence of more risers (which link
the lowermost and second lowermost low-gradient segments
on the RVH curve) support the hypothesis that the CCW
could have more terraces than the other two watersheds. One
unusual curve in Figure 3 is Mankato, which is located in an
urbanized area and includes a large concrete flood control
structure.

It is of interest to note from Figure 3b that, while actual
valley widths vary (see Supporting Information Table S1), all
of the curves more or less collapse into a range (width/Wbf,
height/Dbf)� (18, 1.5). The point (width/Wbf, height/Dbf) = (18,
1.5) is near the end of the lowermost low-gradient segment on
the RVH curve for all valley reaches. Hence the zone for which
(width/Wbf , height/Dbf ) falls within (18, 1.5) can be used to
loosely define the floodplain. In the following sections, we will
run 2D flooding simulations to test this proposition and define
the floodplain in greater detail.

Flood Simulation

Discharge estimation

Daily data of discharge and stage height from gaging sta-
tions are available from the USGS (http://waterdata.usgs.gov/
nwis/rt). Bankfull discharge is defined as the stage at which
streamflow starts to inundate floodplains. We estimated
the bankfull discharge using the break in slope of the
stage–discharge relations (Figure 5a) recorded at the USGS
gaging stations (Leopold and Maddock, 1953; Williams,
1978). Here ‘stage’ refers to water surface height from a
constant base level that is lower than the river bottom.
Once the flow overtops the river bank, stage increases more
gradually with discharge due to the storage available in the

Figure 5. Illustration of the determination of bankfull discharge,
and 10- and 100-year discharges in Monticello, USRB. (a) Bankfull
discharge estimation. Discharge and stage data correspond to daily
records from USGS gaging station (http://waterdata.usgs.gov/nwis/rt).
(b) 10- and 100-year discharge estimation. Annual maximum dis-
charges are from the same USGS gaging station. The fitted curve is
based on a combination of the log-Pearson type III distribution and
empirical regional equations adopted by USGS. [Colour figure can be
viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 218–228 (2018)
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floodplain, which results in a lower slope in the
stage–discharge relation. The transition point on the curve is
regarded as the bankfull condition (Figure 5a). We analyzed
data from two stations in USRB (Fisher and Monticello), four
stations in MRB (Montevideo, Morton, Mankato, Jordan),
and two stations in CCW (Oxford and Coralville). The bank-
full discharges are summarized in Supporting Information
Table S2.

In order to consider a range of return periods of floods to
link to floodplain and terrace delineation, we use three typi-
cal hydrological scenarios. These are bankfull discharge, and
10-year and 100-year return periods. As indicated from results
in the next section, these three scenarios capture the range
of variability of inundation needed for the study. 10-year and
100-year discharges were estimated based on the log-Pearson
Type III distribution, which serves as a default distribution for
flood frequency analysis, and then modified by regional empir-
ical equations according to USGS technical reports (Soong
et al., 2004; Lorenz et al., 2010; Eash et al., 2013). Annual
maximum discharge records are also available from the USGS
database. To estimate the flood return periods, we assumed
stationarity and used the entire record. Figure 5b shows an
example of a curve fit to the observed annual maximum
discharges at the Monticello gaging station.

A correction to discharge input is needed before using
LiDAR DEM to simulate flooding. This correction accounts for
the fact that the near-infrared LiDAR that is used to create the

DEM usually does not fully penetrate water bodies. Penetra-
tion depth depends on water clarity or turbidity. We compared
LiDAR DEM with ADCP (acoustic Doppler current profiler)
field measurements, and found that, even though the LiDAR
data were obtained during low flow conditions, the stream
bed represented in the DEM lies between the water surface
and the actual stream bed. As a result, the ‘false’ river bot-
tom in the LiDAR DEM already accounts for a certain amount
of flow within the streams. This requires a correction before
implementing the hydrodynamic calculation. Here we make
the assumption that the flow discharge at the time the LiDAR
data were acquired was low compared to bankfull or higher
flood discharges. We estimated this discharge Qlidar from the
observed ‘false’ river bottom from the LiDAR data and the rel-
evant rating curve for the site. In running the hydrodynamic
model at bankfull discharge Qbf, the discharge we used in
the model is Qbf � Qlidar. We use the same procedure for the
higher discharges, i.e. the 10-year and 100-year floods. Sup-
porting Information Table S2 summarizes bankfull, 10-year
and 100-year discharges, as well as Qlidar corresponding to the
‘false’ river bottom for all gaging sites. As can be seen from
Table S2, estimated Qlidar is indeed much smaller than any of
the relevant flood discharges, justifying the rationale behind
the above adjustment.

Figure 6. Illustration of flood simulation results at three sites: Monticello (top), Oxford (middle) and Morton (bottom). (a), (b) and (c) show water
depth for bankfull discharge, and 10- and 100-year flood, respectively. (d) Flooding area of 100-year flood from FEMA’s National Flood Hazard
Layer digital database. The solid boxes in (d) cover the same areas as (a), (b) and (c). [Colour figure can be viewed at wileyonlinelibrary.com]

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 218–228 (2018)
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Model and results

We used the Nays2D Flood model to simulate flooding
events. The tool is open source and a part of the Interna-
tional River Interface Cooperative (iRIC) software package.
The iRIC package was developed in collaboration with the
USGS and the Foundation of the Hokkaido River Disaster Pre-
vention Research Center (Nelson et al., 2016). The Nays2D
Flood model uses a 2D shallow-water flow formulation, which
is solved with a finite difference scheme. This model has
been applied extensively, with examples including a severe
flood event in Thailand that occurred in 2011 (Wongsa, 2014)
and a sediment transport study in the Abukuma River flood-
plain related to the Fukushima nuclear disaster (Iwasaki et al.,
2014).

We simulated bankfull, and 10-year and 100-year recur-
rence flows to explore the relationship between the occur-
rence of large floods and geomorphic features in our selected
river valleys. At each of the sites, flows were simulated for
a constant discharge for reach segments where no tributaries
join the main stem. To investigate the highest possible water
level for a flood of a specified recurrence, the duration of the
simulation was sufficiently long to allow the outflow to reach
steady state with the inflow. In this model, infiltration into
the ground was ignored. The Manning roughness coefficient,
another important parameter, was calibrated with observed
water level at each gage station. We first assumed a spa-
tially uniform roughness coefficient across the channel and

Figure 7. Illustration of water levels overlain on normalized RVH
curves (all of the eight sites are shown in Supporting Information
Figure S1). Valley height and width are normalized by bankfull depth
Dbf and bankfull width Wbf, respectively. The normalized RVH curves
have been extracted longitudinally along each river valley reach at 2
m intervals. Locations of the three discharges on the curves are repre-
sented as symbols in the RVH curves; the open cyan circles represent
bankfull discharge, the closed green circles represent the 10-year flood
and open red diamonds represent to the 100-year flood. [Colour figure
can be viewed at wileyonlinelibrary.com]

floodplain in the model, and then calibrated based on the
difference in water surface level from a gaging station with
the one predicted from the simulation. After calibration, the
Manning roughness coefficient was found to be approximately
0.03 for all eight study sites. This value is reasonable for
sand-bed channels and floodplains with low to moderate
vegetation (Chow et al., 1988).

Figure 6a–c illustrates the flow simulations for three sites,
Fisher, Oxford and Mankato, with water depths shown at
bankfull discharge, and 10-year and 100-year flood respec-
tively. We observe that bankfull discharge may not be com-
pletely confined within a river channel. Due to the uneven
heights of river banks over the length of its reach, zones
near the channel can also be inundated to some degree. The
10-year flood results in less inundation area and shallower
water depth compared to the 100-year flood, as expected, but
the differences are not significant (see next section for statis-
tical comparison). Figure 6d shows the map of flooding area
of the 100-year flood from FEMA’s National Flood Hazard
Layer (NFHL) digital database (https://fema.maps.arcgis.com).
The Nays2D Flood model provides similar results (Figure 6c)
to those in the NFHL database. In the next section we use the
simulated results to investigate the relationship between flood
water level and the RVH curve.

Distinguishing Terraces and Floodplains

To verify the hypothesis that there is a formative relation-
ship between recurrence frequency of floods and flood-
plain cross-sectional geometry, we plot the simulated water
heights and surface widths on the corresponding RVH
curves (Figure 7) under the three flow discharges (bankfull,
and 10-year and 100-year recurrence). Each cross-section
has an RVH curve, and every valley reach has abundant
cross-sectional lines. On each RVH curve, we mark the
three discharge scenarios as open circles for bankfull dis-
charge, closed circles for 10-year flood and open diamonds
for 100-year floods.

From this figure, we see that bankfull discharge is barely
at the lowermost step on the RVH curve. Both 10-year and
100-year floods are blocked by the riser in the curve. Although
there is no precise threshold between floodplain and terrace,
the present results suggest that the lowermost step on the RVH
curve designates a floodplain, and the steps above are ter-
races. The results of all eight sites in the USRB, MRB and
CCW are shown in Supporting Information Figure S1. We note
from this figure that water surface elevation at the 100-year
flood provides a reasonable threshold for separating terraces
from floodplains. At most of the sites (except for Mankato), the
water surface elevation at the 10-year flood provides results
that are very close to the 100-year flood. At Fisher, Monti-
cello and Montevideo (Figure S1), there is only one step on
each RVH curves, so we conclude that there are no terraces
at these sites. The other five sites have more than one step,
and hence they have terraces. One unusual case occurs at
Mankato, where the river channel has been artificially chan-
nelized so that even extreme floods are still confined within
the flood control channel.

In order to analyze the results of the normalized water
height and surface width from 10-year and 100-year floods,
the values on every cross-section of the valley reaches are
presented in box plots in Figure 8c. These values correspond
to the open and closed symbols in Figure 7. Median val-
ues of normalized water surface width at the 10-year and
100-year floods are within the range width/Wbf D 18˙ 4 (i.e.
the zone enclosed by the long dashed box in Figure 8(c1).
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Figure 8. Results of the eight study sites in the US Midwest along with those for other Critical Zone Observatory sites. (a) Locations of CZO sites
in the USA. (b) Normalized RVH curves for all of the study sites, which are divided into two groups. The RVH curves in (b1) collapse into a range
(width/Wbf, height/Dbf) � (15, 2), while RVH curves in (b2) collapse into a range (width/Wbf, height/Dbf) � (20, 2). (c) Box–whisker plots showing
normalized water surface width (c1) and water height (c2) corresponding to the 10-year and 100-year flooding events, respectively. These sites
have relatively long discharge records. [Colour figure can be viewed at wileyonlinelibrary.com]

Notably, normalized heights of both the 10-year and 100-year
floods progressively decrease from left (V-shape valley) to right
(UT-shape valley) in Figure 8(c2). A rough estimate of the
normalized water height for flooding zone in UT-shape river
valleys is about 1.4.

Discussion

Our approach, which combines the concept of river valley
hypsometric (RVH) curves with flood simulation, establishes
that the demarcation between floodplains and terraces can be
identified from the structure of steps and risers in the RVH
curves, which can in turn be obtained from the DEM data. Fur-
ther, it shows that these transitions may themselves be shaped
by floods with 10-year to 100-year recurrences. Simulations
of the 10-year and 100-year floods (Figure 7) demonstrate
that the water levels are typically confined within the riser (or
‘inner walls’) between the lowermost and second lowermost
steps (low-gradient segments) on the RVH curves. We infer this
riser (or ‘inner wall’) to be the transition between the flood-
plain and the lowest terrace. Hence one can obtain a first

estimate of the maximum area at risk of flooding by locating
the first step on a representative RVH curve.

To test the generality of the findings beyond the alluvial val-
leys of the US Midwest, we expand the analysis to nine other
CZO (Critical Zone Observatory) sites (Figure 8a). We plot the
RVH curves for all the CZO sites using LiDAR data. Based
on the zones of the RVH curves, these sites can be divided
into two groups. The RVH curves in Figure 8(b1) loosely col-
lapse into the range (width/Wbf, height/Dbf/ � .15, 2/, while
RVH curves in Figure 8(b2) loosely collapse into the range
(width/Wbf, height/Dbf/ � .20, 2/. River valleys in Figure 8(b2)
are more inclined to be in a plain setting, whereas those in
Figure 8(b1) are more inclined to be in a mountain setting.
Two sites that do not fall into these two ranges are in Boul-
der and Southern Sierra, whose river valleys are in very steep
mountain regions. Flood simulations are conducted at four
out of the nine sites: Chadds and Avondale in Christina River
Basin, Jemez River Basin and Shale Hills, all of which have
long periods of discharge records (see Supporting Informa-
tion Table S3). The simulation results are shown in Figure 8c
along with the IML sites (note that the channel in Mankato is
largely expanded for flood control). The modeled water sur-
face widths and heights of 10-year and 100-year floods are

Copyright © 2017 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 43, 218–228 (2018)

wileyonlinelibrary.com


226 Q. YAN ET AL.

in general correspondence with results for the Midwestern
sites (USRB, MRB and CCW) used to develop our method of
analysis.

The relationships outlined above suggest that there may exist
a quasi-equilibrium condition at which floodplain geometry,
as expressed in terms of the width (horizontal span) and depth
(distance to the river bottom) is consistently proportional to
bankfull width and depth. A likely explanation is that the
bankfull discharge, which characterizes the hydraulic geom-
etry and morphodynamics of the main channel (Park, 1977;
Rhodes, 1977; Williams, 1978; Knighton, 1998; Dodov, 2004;
Li et al., 2014), has a significant impact on floodplain for-
mation itself (Singh, 1972; Ray, 1976; Nanson, 1980; Bridge,
1984; Bown and Kraus, 1987; Belmont, 2011; Iwasaki et al.,
2015). It should be recalled in this regard that in alluvial rivers
the channel/floodplain complex is a single unit. The flood-
plain is sculpted by a combination of channel migration and
overbank deposition, and channel bankfull depth is defined
relative to the adjacent floodplain. River meandering plays an
essential role in the formation of floodplains (Lauer and Parker,
2008). The ratio of meander belt width to bankfull width is
found from two examples given by Leopold et al. (1964) to
take the values 10.9 and 18.6, respectively, i.e. close to the
range 18˙ 4 found in this work.

The RVH curves reveal that the relation between bankfull
channel depth (or width) and floodplain depth (or width) is
linear over a range of scales. This result is also consistent with
the work done by Dodov and Foufoula-Georgiou (2005). For
example, if we assume Wfloodplain=Wbf and Hfloodplain=Dbf are
constant, then the relations between Wfloodplain (or Hfloodplain)
and bankfull discharge Q can be expressed in terms of
power-law relationships (/ kQ˛

bf , where k and ˛ are constant
parameters). These expressions allow characterization of the
floodplain to be brought into the general class of relations for
bankfull geometry.

Conclusion

We have introduced the concept of the river valley hypso-
metric (RVH) curve to make river valley geomorphic features
easier to identify and interpret. The statistical interpretation of
RVH curves aids in distinguishing features that are not read-
ily seen directly from the DEM data. Our procedure integrates
LiDAR topography and numerical modeling to study the rela-
tion between flood inundation and geomorphic features for
eight sites within three river valleys in the Upper Midwest,
namely, MRB (Minnesota River Basin), USRB (Upper Sang-
amon River Basin) and CCW (Clear Creek Watershed). We
found both unique and common features among the eight
study sites. Our results indicate that, except in the floodplain of
a highly channelized reach of the Minnesota River, (a) the areal
extent of the 10-year flood provides a good surrogate for the
floodplain itself, and (b) this areal extent increases only mod-
estly at the 100-year flood. The extent of the floodplain can
also be identified in terms of the extent of the lowermost step
on the RVH curve, which is in range 14–22 times the bankfull
width. Normalized water surface widths and heights for both
the 10-year or 100-year floods are found to be within a fairly
specific range (18˙4 and 1.5˙0.1, respectively) for what we
interpret to be U-shape valleys with terraces (UT-shape). These
fairly simple results may be useful in the context of river valley
research such as the morphodynamics of floodplain formation
and flood risk assessment. We have extended and verified our
analysis using nine other sites that cover a more diverse range
of geomorphic settings. Our formulation provides a useful tool

for the future analysis of other river valleys, and the extraction
of generalizations from such analysis. Our results are likely
to have some degree of general applicability to rivers in the
upper Midwest of North America, as well as rivers in plains in
other parts of the world. The separation of floodplains from ter-
races in a river valley plays an important role in water resource
management and flood forecasting and planning.
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