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Altered effective connectivity patterns of the default mode 
network in Alzheimer’s disease: An fMRI study

Yufang Zhong, Liyu Huang*, Suping Cai, Yun Zhang, Karen M. von Deneen, Aifeng Ren, and 
Junchan Ren Alzheimer’s Disease Neuroimaging Initiative
School of Life Science and Technology, Xidian University, Xi-an, Shaanxi 710071, China

Abstract

The aim of this work is to investigate the differences of effective connectivity of the default mode 

network (DMN) in Alzheimer’s disease (AD) patients and normal controls (NC). The technique of 

independent component analysis (ICA) was applied to identify DMN components and multivariate 

Granger causality analysis (mGCA) was used to explore an effective connectivity pattern. We 

found that: (i) connections in AD were decreased than those in NC, in terms of intensity and 

quantity. Posterior cingulated cortex (PCC) exhibited significant activity in NC as it connected 

with most of the other regions within the DMN. Besides, the PCC was the convergence center 

which only received interactions from other regions; (ii) right inferior temporal cortex (rITC) in 

the NC exhibited stronger interactions with other regions within the DMN compared with AD 

patients; and (iii) interactions between medial prefrontal cortex (MPFC) and bilateral inferior 

parietal cortex (IPC) in the NC were weaker than those in AD patients. These findings may 

implicate a brain dysfunction in AD patients and reveal more pathophysiological characteristics of 

AD.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder which is mainly 

characterized by significant impairments in a global cognitive decline [2]. It is estimated that 

half of the population above 80 years old may have symptomatic AD and this number will 

grow to approximately 81 million by the year 2040 [9]. AD is a widespread epidemic 

disease threatening social health. However, there is no current effective treatment for this 

disease [25]. The principal cause of the formation of such a situation is that the pathological 

mechanism of AD still remains unknown. It would be quite worthwhile to explore the brain 

activity characteristics from a network perspective.
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A number of functional magnetic resonance imaging (fMRI) studies have reported the 

existence of the default mode network (DMN) and its core regions which mainly include the 

posterior cingulated cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal cortex 

(IPC), inferior temporal cortex (ITC) and (para)hippocampus (HC) [3,8]. Viewed as an 

integrated system, the DMN plays a critical role in monitoring the external environment and 

supporting internal mentation [10,19]. However, the DMN was frequently found to be 

abnormal due to AD [1,13,27]. It is totally necessary to investigate how these DMN brain 

regions interact with each other and the altered causal interaction pattern in relation to AD.

This study combined independent component analysis (ICA) and multivariate Granger 

causality analysis (mGCA) to investigate the issue of effective connectivity within the DMN 

in AD patients and normal controls (NC). ICA was successfully used to identify DMN 

components and mGCA was applied to explore effective connectivity. It is worth noting that 

our approach of mGCA is quite different from previous implements which were based on 

the decrease of residual F to evaluate the causal effect [23,24]. Since the residual-based F 
approximately obeys chi-square distribution, it is a little troublesome in subsequent 

statistical analysis for group level inference. Our approach applied signed-path coefficients 

to evaluate the causal effects among brain DMN regions. The signed-path coefficients are 

considered to be normally distributed and could be used in a parametric statistical analysis at 

the group level [7]. The use of this model greatly simplifies the subsequent statistical 

analysis procedure.

2. Materials

2.1. ADNI

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu/). ADNI was launched in 2003 

by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year public-private partnership. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. Determination of sensitive and specific markers 

of very early AD progression is intended to aid researchers and clinicians in developing new 

treatments and monitor their effectiveness, as well as lessen the time and cost of clinical 

trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California – San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and 

ADNI-2. To date, these three protocols have recruited over 1500 adults, ages 55–90, to 

participate in the research, consisting of cognitively normal older individuals, people with 

early or late MCI, and people with early AD. The follow up duration of each group is 
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specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited 

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date 

information, see www.adni-info.org.

2.2. Subjects

We downloaded 3 T functional MRI data and corresponding clinical data from baseline and 

follow-up scans from the ADNI publically available database (http://adni.loni.usc.edu/). 

Thirty-five AD patients (range 63–83 years) and 30 NC (range 65–83 years) were used in 

this study. The main characteristics of the subjects are reported in Table 1, which presents 

the baseline clinical and demographic variables of the two groups.

2.3. Data acquisition

The fMRI data were collected by a 3.0-Tesla Philips MRI scanner. Resting-state functional 

images were obtained using an echo-planar imaging (EPI) sequence and the parameters 

included repetition time (TR) = 3000 ms, echo time (TE) = 30 ms, flip angle = 80°, number 

of slices = 48, slice thickness = 3.3 mm, voxel size = 3 mm × 3 mm × 3 mm, voxel matrix = 

64 × 64 and total volume = 140. All original image files are available to the general 

scientific community.

2.4. Data processing

All preprocessing was performed using the Data Processing Assistant for Resting-State 

fMRI (DPARSF, Yan and Zang, 2010, http://www.restfmri.net), which is based on Statistical 

Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI 

Data Analysis Toolkit (REST, Song et al., 2011, http://www.restfmri.net). The first ten time 

points from each functional image were discarded to allow for equilibration of the magnetic 

field. All remaining volume slices were corrected for different signal acquisition times. 

Then, the time series of images for each subject was realigned using a six-parameter (rigid 

body) linear transformation. Participants with head motion exceeding 1.0 mm in any 

dimension of x, y and z or 1.0° in any angular motion were excluded for further analysis. 

The resulting images were then spatial normalized to the standard EPI template with 3 × 3 × 

3 resolution. The normalized images were further spatially smoothed with a Gaussian kernel 

of 6 mm full width at half maximum (FWHM). In order to reduce the effects of confounding 

factors, the linear trends of time courses were removed using REST. Finally, we applied 

temporal filtering (0.01 Hz < f < 0.08 Hz) to the time series of each voxel to reduce the 

effect of low-frequency drifts and high-frequency noise such as respiratory and cardiac 

rhythms.

3. Methods

3.1. ICA

The preprocessed data for all subjects were analyzed with independent component analysis 

(ICA) for the fMRI toolbox (GIFT, http://icatb.sourceforge.net/) which includes twice 

principal component analysis (PCA) reduction, ICA separation, and back-reconstruction [5]. 

Prior to PCA, the optimal number of components was set to 25/30 for NC and AD patients, 

which was estimated based on minimum description length (MDL). In the first step, data 
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from each subject were temporally reduced to the optimal number. Then, the reduction step 

was once again achieved by PCA according to the optimal numbers. In the second step, the 

data were separated by ICA using the Infomax algorithm [16]. Finally, independent 

components (ICs) and time courses for each subject were back-reconstructed. The IC that 

best matched DMN component was selected with a standard DMN template [13]. After the 

conversion of the intensity values in each IC spatial map to Z-scores, a one sample t-test 

(height threshold: false discovery rate (FDR), p = 0.05, extent threshold: k = 10 voxels, p < 

0.01) was performed to determine the DMN for each of the two groups [6].

3.2. mGCA

Consider the bivariate linear autoregressive model of two time-variant processes x(t) and 

y(t):

x(t) = αx, 0 + ∑
i = 1

p
αxx, ix(t − i) + ∑

i = 1

p
αxy, iy(t − i) + ∑

j = 1

q
βx, jz j(t) + εx(t)

y(t) = αy, 0 + ∑
i = 1

p
αyx, ix(t − i) + ∑

i = 1

p
αyy, iy(t − i) + ∑

j = 1

q
βy, jz j(t) + εy(t)

(3-1)

where zj(t) represents up to q exogenous processes (six orthogonal motion estimates and 

physiological noise) independent of the path network (j = 1, … q). Contributions of each 

lagged variable to the prediction of its respective target are denoted by α; β corresponds to 

the covariate effect and prediction errors of individual models are denoted by ε. In 

formulation (3-1), if αyx is significantly different from zero, then it is said that x(t) Granger 

causes y(t).

The bivariate GCA definition presented in formulation (3-1) can be extended to multivariate 

conditions (3-2) as well [15].

y1(t) = α10 + ∑
i = 1

p
α11iy1(t − i) + … + ∑

i = 1

p
α1niyn(t − i) + ∑

j = 1

q
β1, jz j(t) + ε1(t)

⋮

yn(t) = αn0 + ∑
i = 1

p
αn1iy1(t − i) + … + ∑

i = 1

p
αnniyn(t − i) + ∑

j = 1

q
βn, jz j(t) + εn(t)

(3-2)

For each subject, preprocessed time-series data were extracted from peak voxel locations in 

the regions that showed differential temporals within the DMN between the AD patients and 

NC. These time-series data for each subject were then entered into mGCA. The resulting 

path coefficient, characterized by the strength and direction of the temporal relation among 

the structures, was entered into one-sample t-test (p = 0.05, uncorrected) to achieve the 

group result and further two-sample t-test (p = 0.05, uncorrected) to obtain the group 

differences.
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4. Results

4.1. Regions of DMN

We identified eight regions from the DMN map for NC and AD patients separately, detected 

by ICA and followed by a one-sample t-test with FDR p = 0.05. Fig. 1 shows the group 

DMN results. Since there were no survived voxels at FDR p = 0.05 for the bilateral 

parahippocampal gyrus (PHG) in the AD patients, these two regions were defined with a 

more lenient threshold of p = 0.1, uncorrected. DMN in the NC included the PCC, MPFC, 

bilateral ITC, IPC and PHG. DMN in AD patients mainly involved the PCC, MPFC, 

bilateral ITC and IPC.

4.2. Within-group effective connectivity

Fig. 2 shows the effective connectivity patterns learned by mGCA using a one-sample t-test 

for NC (a) and AD patients (b) respectively. We observed that the connections in AD 

patients were decreased than those in NC, in terms of both intensity and quantity. PCC was 

connected with most of the regions within the DMN in NC while exhibiting attenuate 

interactions in AD patients. In addition, the PCC was the convergence center which only 

received interactions from other regions.

4.3. Between-group effective connectivity

In order to better evaluate the causal interactions among DMN, we implemented a two-

sample t-test between the two groups. Fig. 3 displays the results of DMN causal interactions 

of NC versus AD patients. We noted that the rITC in NC exhibited stronger interactions with 

other regions within the DMN. They are connections from the IITC to the lIPC/lPHG/rITC/

rPHG (solid line). Besides, interactions between the MPFC and bilateral IPC in NC were 

weaker than those in AD patients (dashed line).

5. Discussion

This paper applied mGCA combined with ICA to study the effective connectivity patterns in 

NC and AD patients. In other words, the core regions in the DMN were identified by ICA 

and were subsequently used to constitute the nodes of mGCA. We noticed that our approach 

of ICA + mGCA procedure is not conceptually novel. However, the model of mGCA is not 

the same one as in previous studies [18,29,30]. As mentioned above, the mGCA here used 

normally distributed signed-path coefficients to evaluate the causal interaction among 

activated regions. To our best knowledge, this is the first study referencing this model to 

investigate the configuration of regions within the DMN from the perspective of a causal 

relationship for NC and AD patients.

We found that connections in AD patients were decreased than those in NC. In another 

words, some connections were disrupted because of AD. Previous studies on AD have 

reported decreased functional connectivity in the DMN [13,28]. The abnormal connectivity 

has been interpreted to be directly related to AD and regarded as the potential biomarker 

[13,22]. Our results from mGCA were consistent with these findings. What’s more, we 

noted that the PCC was strongly connected with most of the DMN regions while tends to be 
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attenuate in AD patients. PCC was believed to be the most metabolically active regions in 

healthy subjects and the most significant functional connectivity region in DMN during 

resting state [3,14,28]. It is involved in episodic memory function and the most common 

location appeared in early metabolic and perfusion abnormalities [13]. The decreased 

interactions may reveal decreased PCC activity which probably was proportional to the 

declining memory function in AD patients. Thus, the PCC activity could be used as an 

important clinical index to detect the degree of dementia. In addition, the PCC was the only 

region which merely received interactions from other regions. We deduced that the PCC may 

be the most important node of information processing in the DMN. All of the information 

from other regions must be integrated into the PCC and ultimately exert its function. 

However, since our research is only limited to the relationship within the DMN, bidirectional 

interactions may exist between the PCC and other resting state networks [17,18].

It is worth noting that interactions between the rITC and other regions within the DMN were 

stronger in the NC. That is, the activity of the rITC was inhibited in AD patients. Early 

evidence has demonstrated that the ITC participates in both visual perception and memory 

and the rITC is considered to be the repository of long-term visual memory [20]. Most of the 

AD patients have an obvious decline in memory function [13,17]. The inhibited activity of 

the rITC, or more generally of the ITC lesion, could be the critical cause of the deficient 

memory and may reflect a breakdown of visual-related cortical networks in AD patients.

In addition to the reduced interactions within the DMN, increased interactions between the 

MPFC and bilateral IPC were also observed in AD patients. The MPFC is critical for 

episodic retrieval and the IPC was recorded to be related to short-term memory [4,26]. 

Previous studies showed that AD patients presented increased activity in the right dorsal 

lateral prefrontal cortex (DLPFC), and increased functional connectivity within the 

prefrontal regions during various memory tasks [11,21]. This increased activity and 

connectivity have been interpreted to be compensatory recruitment of cognitive resources to 

maintain task performance [11,12]. The increased interactions between the MPFC and 

bilateral IPC (prefrontal-parietal lobe) obtained in our study potentially indicate that AD 

patients possess a relative boost in short-term memory function compared with NC. The 

enhanced short-term memory well temporarily makes up for its long term memory function 

defect. With the worsening of the disease, the short-term memory function will eventually be 

lost. Our findings provided further support that AD patients can make use of additional 

neural resources in prefrontal regions to compensate for losses of cognitive function.
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HIGHLIGHTS

• The DMN interactions in AD patients were decreased compared with NC.

• PCC was significantly active and had to be the convergence center.

• Region of the rITC exhibited stronger interactions in normal controls.

• Some interactions in the NC were weaker than those in AD patients.
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Fig. 1. 
A T-statistic map of DMN for normal controls (NC) (a) and AD patients (b). The green 

capital letters indicate the specific regions in the DMN. T score bar is shown on the right 

(FDR, p = 0.05). A: posterior cingulated cortex (PCC), B: medial prefrontal cortex (MPFC), 

C: left inferior parietal cortex (lIPC), D: right inferior parietal cortex (rIPC), E: left inferior 

temporal cortex (lITC), F: right inferior temporal cortex (rITC), G: left parahippocampal 

gyrus (lPHG), H: right parahippocampal gyrus (rPHG).
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Fig. 2. 
T-statistic effective connectivity patterns of DMN in normal controls (a) and AD patients 

(b). The thickness of the lines is proportional to the connection strength. Connections are 

tested with significance level p = 0.05, one-sample t-test.
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Fig. 3. 
T-statistical result of DMN causal interactions of normal controls (NC) versus AD patients. 

The thickness of the line is proportional to the connection strength. The solid line indicates 

that the connection in NC is significantly stronger than that in AD patients while the dashed 

line points out the opposite. Connections are tested with significance level p = 0.05, two-

sample t-test.
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Table 1

Demographics and neuropsychological characteristics.

Age (mean ± SD) Female/male MMSE (mean ± SD) CDR

NC (n = 30) 74.9 ± 5.80 15/15 29.0 ± 1.15 0

AD (n = 35) 72.7 ± 6.76 17/18 21.0 ± 3.52 1

No significant differences (p < 0.05) were observed in age or gender between the two groups. Significant differences were noted in MMSE scores 
between the two groups (p < 0.0001).

AD, patients with Alzheimer’s disease; NC, normal controls; MMSE, Mini Mental State Examination; CDR, Clinical Dementia Rate.
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