
UC Irvine
UC Irvine Previously Published Works

Title

Pain and Poppies: The Good, the Bad, and the Ugly of Opioid Analgesics

Permalink

https://escholarship.org/uc/item/0vj6j792

Journal

Journal of Neuroscience, 35(41)

ISSN

0270-6474

Authors

Trang, Tuan
Al-Hasani, Ream
Salvemini, Daniela
et al.

Publication Date

2015-10-14

DOI

10.1523/jneurosci.2711-15.2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vj6j792
https://escholarship.org/uc/item/0vj6j792#author
https://escholarship.org
http://www.cdlib.org/


Mini-Symposium

Pain and Poppies: The Good, the Bad, and the Ugly of Opioid
Analgesics

Tuan Trang,1,2 Ream Al-Hasani,3,4 Daniela Salvemini,5 Michael W. Salter,6 Howard Gutstein,7 and XCatherine M. Cahill8

Departments of 1Comparative Biology and Experimental Medicine and 2Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary,
Calgary, Alberta T2N 4N1, Canada, Departments of 3Anesthesiology and 4Anatomy–Neurobiology, Washington University School of Medicine, St. Louis,
Missouri 63110, 5Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104,
6Neurosciences and Mental Health Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada, 7MD Anderson Cancer Center, Houston, Texas
77030, and 8Department of Anaesthesiology and Perioperative Care, University of California Irvine, Irvine, California 92697

Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by
Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of
drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not
have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain
essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished
pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in under-
standing the key causes of these adverse effects and explores the effect of chronic pain on opioid reward.

Opioids and pain: scope of the problem
It is estimated that 20 –30% of Americans suffer from chronic
pain, which is similar to that reported in Canada, Australia, and
European countries (Blyth et al., 2001; Breivik et al., 2006; Jo-
hannes et al., 2010; Schopflocher et al., 2011). Equally striking is

that chronic pain is among the most common forms of chronic
illness afflicting individuals younger than 60 years of age
(O’Connor, 2009). Chronic pain is also a major cause of disability
(Manchikanti et al., 2013), and it is the cardinal feature of a
diverse spectrum of diseases, including arthritis, migraine, can-
cer, metabolic disorders, and neuropathies. Treating pain in these
diseases is notoriously difficult and often requires opioids, the
most potent class of drugs used for controlling pain. Opioids are
particularly effective for treating acute moderate-to-severe pain
after surgery or trauma, and they are quintessential drugs in a
physician’s pharmacological toolbox for managing chronic pain.
In 2012, physicians in the United States wrote �259 million opi-
oid prescriptions, which equates to one bottle of pills for every
adult American (according to the Centers for Disease Control
and Prevention). Consumption of prescription opioids is highest
in the United States and Canada, and, in these countries, opioid
use for managing pain continues to grow (Gomes et al., 2014).
Long-term opioid exposure can result in the development of an-
algesic tolerance, the hallmark feature of which is a loss in pain-
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Significance Statement

Chronic pain is pervasive and afflicts �100 million Americans. Treating pain in these individuals is notoriously difficult and often
requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by
major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction.
Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights
recent breakthroughs in understanding the key causes of these adverse effects and explores the cellular control of opioid systems
in reward and aversion. The findings will challenge traditional views of the good, the bad, and the ugly of opioids.
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relieving effect. In an effort to overcome tolerance, current
strategies involve the use of either higher (and more frequent)
doses of opioids or switching to more potent opioid agonists.
However, these strategies have limited success because tolerance
often reestablishes over time, leaving patients without adequate
pain control. The need for escalating amounts of opioids puts
patients at risk of severe sides effects, including dependence and
respiratory distress. In the United States, an estimated 2.1 million
Americans suffer from opioid substance use disorders (according
to the National Institute of Drug Abuse), and 44 deaths a day are
attributed to opioid overdose (according to the Centers for Dis-
ease Control and Prevention). There is also a higher incidence of
opioid prescription medication addiction that has led to an in-
crease in heroin use and a nearly quadrupling of death rate from
overdose between 2002 and 2013 (Okie, 2010). Prescription, di-
version, and illicit use of opioid therapeutics have emerged as
major societal concerns in recent years (Compton and Volkow,
2006; SAMHSA, 2011). Although the effect of opioid tolerance
and dependence has gained considerable attention, the problem
of opioid-induced hyperalgesia— characterized by a paradoxical
increase in pain sensitivity—is a less recognized consequence of
opioid use. Despite the serious side effects that hinder long-term
opioid use, there remains a strong reliance on this class of drugs
for pain management. Therefore, it is imperative that we under-
stand the underlying causes of these adverse effects to improve
the utility of opioids in treating pain. In this review, we focused
our efforts on critically evaluating the evidence that platelet-
derived growth factor receptor-� (PDGFR-�), adenosine, and
microglia are key cellular substrates in opioid analgesic tolerance,
hyperalgesia, and neuropathic pain. We also present emerging
evidence that chronic pain fundamentally alters reward circuitry,
which has direct implications for the ability of opioids to alleviate
the emotional component of pain and for their abuse potential.
This article is a summary of topics covered in a mini-symposium.
For a more comprehensive review of the subject, the reader is
referred to other articles on this topic (Marchand et al., 2005;
Beggs et al., 2012; Williams et al., 2013; Bourinet et al., 2014;
Cahill et al., 2014; Grace et al., 2014; Fields and Margolis, 2015;
Mélik Parsadaniantz et al., 2015).

Opioid receptors, analgesia, and the CNS
Opioids exert their effects through interaction with the super-
family of G-protein-coupled opioid receptors: �, �, and �. All
three receptor subtypes share extensive structural homology and
couple to pertussis toxin-sensitive guanine nucleotide binding
Gi/o-proteins to inhibit adenylyl cyclase, activate potassium con-
ductance, suppress calcium conductance, and inhibit neu-
rotransmitter release (Feng et al., 2012). Opioid receptors are
expressed throughout the CNS and PNS on key nodes within the
pain pathway. In the CNS, opioid receptors are highly localized in
subcortical regions of the brain (thalamus, periaqueductal gray,
rostral ventromedial medulla, and locus ceruleus) from which
descending pain-modulating pathways originate and in the dor-
sal horn region of the spinal cord, an area important for the relay
of nociceptive input to the brain and a primary site of action for
the analgesic effects of opioids (Fields, 2004; Fig. 1). In the spinal
dorsal horn, opioid receptors are expressed primarily in laminae
I and II, with the proportion of �, �, and � receptors comprising
70, 20, and 10%, respectively (Gouardères et al., 1985; Morris and
Herz, 1987; Stevens et al., 1991). These receptors are localized on
presynaptic afferent fibers (Lamotte et al., 1976; Gamse et al.,
1979), interneurons (Kemp et al., 1996), and postsynaptic pro-
jection neurons (Zieglgänsberger and Bayerl, 1976). Additional

opioid-like receptors have been identified in the CNS, including
the opioid receptor like-1 (ORL-1) receptor (Meunier et al., 1995;
Fioravanti and Vanderah, 2008). Unlike classical opioid recep-
tors, the ORL-1 receptor is insensitive to naloxone, a nonselective
opioid receptor antagonist. Evidence suggests that opioids can
also bind and activate the toll-like receptor 4 (TLR4), an innate
immune pattern-recognition receptor (Hutchinson et al., 2010;
Jacobsen et al., 2014). The importance of these nonclassical opi-
oid receptors in the modulation of pain and in the negative effects
associated with opioid use is beyond the scope of the current
review (Largent-Milnes and Vanderah, 2010; Pasternak and Pan,
2013; Convertino et al., 2015).

PDGFR-�: novel role in opioid tolerance and
neuropathic pain
Opioid receptor activation triggers a complex cascade of signal-
ing events. A major downstream consequence of � receptor sig-
naling is the activation of receptor tyrosine kinases, which are
critically implicated in an array of cellular processes (Lemmon
and Schlessinger, 2010). Wang et al. (2012) discovered recently in
rats that chronic morphine treatment results in the activation of
PDGFR-�, a receptor tyrosine kinase that is activated by � recep-
tors (Belcheva et al., 2001). Activation of the PDGFR-� receptor,
in turn, modulates � receptor function (Belcheva et al., 2001).
Key to their finding was that chronic morphine treatment in-
duced PDGFR-� phosphorylation, which was abrogated by ima-
tinib, a Food and Drug Administration-approved inhibitor of
PDGFR used clinically to treat cancer (Wang et al., 2012). Spinal
or subcutaneous administration of imatinib significantly blocked
the development of morphine analgesic tolerance and reversed
established tolerance. Although imatinib prevented tolerance,
when rats were challenged with morphine alone after repeated
doses of morphine and imatinib, the animals were all tolerant to
antinociceptive effects of morphine. This suggests that imatinib
did not directly inhibit the processes that cause tolerance, but
rather it bypassed these cellular adaptations in restoring the an-
algesic effects of morphine. The results indicate that imatinib
could be effective as an adjuvant therapy to limit or reverse mor-
phine analgesic tolerance.

The mechanism responsible for morphine-induced activation
of the PDGFR-� was identified to be dependent on the release of
PDGF-B, a selective agonist of the PDGFR-� receptor. Rodents
treated with a PDGFR-�–Fc chimeric protein, which scavenges
released PDGF-B, suppressed the development of morphine tol-
erance and restored analgesia in morphine tolerant rats, similar
to the actions of imatinib. Conversely, administration of PDGF-B
induced robust tolerance in opioid-naive animals, indicating that
PDGFR-� signaling is both necessary and sufficient to cause
morphine analgesic tolerance. However, the importance of
PDGF-B extends beyond morphine tolerance to include a role in
neuropathic pain (pain arising from damage or dysfunction of
the nervous system), which is often refractory to the analgesic
effects of opioids. Donica et al. (2014) reported that morphine,
when administered together with imatinib, reversed mechanical
allodynia in nerve-injured rats, suggesting that this pathway may
be responsible for dysfunction of opioid effects in neuropathic
pain states. In contrast, mechanical allodynia was not affected
when morphine or imatinib was administered alone (Donica et
al., 2014). Collectively, these studies provide the first lines of
evidence that PDGFR-� signaling is a critical overlapping mech-
anism in the etiology of morphine tolerance and neuropathic
pain. A major question arising from these studies is, what is the
critical cell type(s) through which PDGFR-� signaling gates mor-
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phine tolerance and neuropathic pain? Moreover, there are
mechanistic similarities between the development of opioid tol-
erance and the occurrence of pain hypersensitivity associated
with nerve injury, such as NMDA receptor phosphorylation and
gliosis (Mao and Mayer, 2001; Wen et al., 2011). Whether there is
overlap between these signaling cascades and PDGFR remains
unresolved.

Adenosine, adenosine receptors, and interactions
with opioids
Adenosine is an essential molecular building block for the proto-
typical energy source molecule ATP. However, adenosine in its
own right is an important, biologically active molecule that reg-
ulates neuronal and non-neuronal function in the CNS and PNS.
Released in response to trauma, seizure, inflammation, pain, and
a host of other conditions, adenosine triggers compensatory ho-
meostatic and neuromodulatory responses that protect against
neuronal damage (Cunha, 2001). Extracellular adenosine can be
derived through a series of catalytic steps. First, the cell surface
ectonucleoside triphosphate diphosphohydrolase [cluster of dif-
ferentiation (CD) 39] rapidly hydrolyzes ATP or ADP to AMP,
which is then further broken down by ecto-5�-nucleotidase
(CD73) to produce adenosine (Robson et al., 2006; Bonan, 2012).
Another source of adenosine comes from intracellular pools re-
leased by ectonucleoside transporters (ENTs) expressed on neu-
rons and glia (Bonan, 2012). The removal of extracellular
adenosine is controlled by ENT uptake (when extracellular aden-

osine concentration exceeds intracellular concentration), adeno-
sine deaminase deamination, and intracellular phosphorylation
by adenosine kinase (Blackburn and Kellems, 1996; Spychala et
al., 1996; Thorn and Jarvis, 1996; King et al., 2006). It is generally
accepted that adenosine kinase is the “upstream coordinator” of
adenosine receptor (AR) signaling, which is mediated by the P1
family of G-protein-coupled receptors: A1, A2A, A2B, and A3 AR
subtypes (Fredholm et al., 2005, 2011; Boison et al., 2010).

The first clues that adenosine may modulate pain and regu-
late opioid analgesia came from the demonstration that syste-
mic administration of an adenosine analog is antinociceptive
(Vapaatalo et al., 1975) and that methylxanthines (which block
ARs) inhibits morphine analgesia (Ho et al., 1973a,b). Evidence
soon emerged that the spinal cord is a key site of action for aden-
osine modulation of pain (Post, 1984) and that morphine admin-
istration in rats readily evokes the release of adenosine in the
spinal cord (Sweeney et al., 1987). This release has also been
reported in human subjects after intrathecal injection of fentanyl,
a potent � receptor agonist (Eisenach et al., 2004). It is now clear
that spinal analgesia produced by adenosine or morphine admin-
istration depends critically on the adenosine receptor subtype
A1AR (Poon and Sawynok, 1998; Wu et al., 2005; Zhang et al.,
2005). However, adenosine may be playing both the roles of
“good cop” and “bad cop” because its activity has also been im-
plicated in the unwanted side effects associated with chronic opi-
oid use (Ahlijanian and Takemori, 1985; Contreras et al., 1990;
Germany et al., 1990). For example, opioid withdrawal increases

Figure 1. Spinal mechanisms of opioid analgesia. A, In the spinal dorsal horn, nociceptive signals encoded by action potentials trigger the release of nociceptive transmitters, such as substance
P (SP), calcitonin gene-related peptide (CGRP), and L-glutamate (Glu). Second-order projection neurons then relay this information from the spinal cord to the brain, where the information is
disseminated and decoded to produce the emotional and sensory experiences of pain. B, Opioids produce their analgesic effects by inhibiting spinal nociceptive transmission. On presynaptic nerve
terminals, opioids reduce cAMP signaling and suppress activity of voltage-gated calcium channels, which inhibits release of nociceptive transmitters. On postsynaptic neurons, opioids activate
inward potassium channels to cause hyperpolarization of ascending projection neurons. Opioids also produce analgesia by activating descending inputs from the periaqueductal gray (PAG) and
rostral ventromedial medulla (RVM), which are key components of the descending inhibitory pain pathways. In these supraspinal structures, opioid-mediated disinhibition of GABAergic interneu-
rons leads to activation of monoamine-containing descending neurons that suppress nociceptive transmission in the spinal dorsal horn. CGRPR, Calcitonin gene-related peptide receptor; NK-1,
neurokinin-1 receptor.
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adenosine acting at A1AR in the ventral tegmental area (VTA)
and substantia nigra, resulting in an inhibition of GABA release
and thereby altering reward processing (Bonci and Williams,
1996; Shoji et al., 1999; Matsui et al., 2014). Chronic opioid ad-
ministration can also decrease extracellular levels of adenosine
and impair A1AR signaling in the brainstem (Nelson et al., 2009).

Attempts at targeting the adenosine system in search for better
analgesics have focused on A1AR and A2ARs but with limited
success because of negative side-effect profiles (Zylka, 2011; Boi-
son, 2013). Other attempts aimed at increasing endogenous
adenosine with recombinant ectonucleotidases (Sowa et al.,
2010) or adenosine kinase inhibitors (Kowaluk et al., 2000) have
also proved disappointing. Attention has now shifted to A3AR as
a possible cellular target for developing novel analgesics (Little
et al., 2015). A3ARs are expressed throughout the CNS in neu-
rons, astrocytes, and microglia, and their expression is upregu-
lated by inflammatory cytokines (Abbracchio et al., 1997; Lopes
et al., 2003). Importantly, these receptors are expressed in critical
pain signaling areas such as the spinal dorsal horn and the rostral
ventral medulla (Little et al., 2015), as well as in the reward path-
ways of the VTA and ventral striatum (D.S., unpublished obser-
vations). Small-molecule A3AR agonists that are potent, selective,
and orally bioavailable (e.g., IB-MECA [N6-(3-iodobenzyl)-
adenosine-5�-N-methyl-uronamide] and MRS5698 [(1S,2R,
3S,4R,5S)-4-[6-[[(3-chlorophenyl)methyl]amino]-2-[2-(3,4-di-
fluorophenyl)ethynyl]-9H-purin-9-yl]-2,3-dihydroxy-N-met-
hylbicyclo[3.1.0]hexane-1-carboxamide]) have been developed
(Jacobson, 1998; Tosh et al., 2012) and tested in Phase II/III
clinical trials for the treatment of cancer and various autoim-
mune disorders. These trials have reported favorable safety pro-
files (Fishman et al., 2002; Silverman et al., 2008; Stemmer et al.,
2013). Moreover, a recent study by Little et al., (2015) found that
selective A3AR agonists are potent, stand-alone agents that effec-
tively attenuate chronic neuropathic pain without disrupting
normal nociceptive processing. Tolerance to the analgesic effects
of these novel A3AR agonists also did not develop, and their use
did not produce inherent reward. Thus, A3AR appears to be a
promising therapeutic target for developing novel analgesics that
may complement, or be used as pharmacological substitutes of,
traditional opioid therapy.

Sex, opioids, pain…and microglia
Neurons were considered the principal cell types targeted by opi-
oid analgesics. This neuron-centric view was supported by evi-
dence that repeated opioid exposure alters the fundamental
properties of neurons and their circuits within the CNS and PNS
and that this altered neuronal output is implicated causally in
opioid tolerance, hyperalgesia, and dependence (Guitart and
Nestler, 1989; Christie, 1991). However, the vast majority of cells
within the nervous system are not neurons but rather glia (Banati,
2003). It is estimated that glia make up 70 –90% of cells, with
microglia comprising �10% of the total glial population in the
adult CNS (Kreutzberg, 1996; Aguzzi et al., 2013; Kettenmann et
al., 2013). Conventionally regarded as macrophages, microglia
were relegated to being passive bystanders that subserve immune
and supportive roles for neurons. This perception of microglia
has changed radically in the past decade, and it is now apparent
that microglia play an active and direct role in a variety of pro-
cesses, including synaptic remodeling, neuronal excitability, and
neurotransmission (Tremblay et al., 2010; Blank et al., 2014;
Salter and Beggs, 2014). The role of microglia as cellular detectors
and effectors of injury, infection, or disease has also gained con-
siderable traction (Trang et al., 2012; Ji et al., 2013). In this re-

spect, the importance of microglia in the sequelae of neuropathic
pain is well established, and it is known that injury to a nerve
instigates a stereotypical series of change in microglial morphol-
ogy, gene expression, function, and number (Hanisch and
Kettenmann, 2007; Kettenmann et al., 2011; Trang and Salter,
2012). These changes are also engaged by morphine; in response
to chronic morphine treatment, microglia transform from a ram-
ified (“resting”) to amoeboid (“activated”) state and upregulate
expression of the cell-surface markers CD11b and ionized
calcium-binding adaptor-1 (Ferrini et al., 2013; Schwarz et al.,
2013; Mattioli et al., 2014). These phenotypic changes, triggered
by opioid treatment or nerve injury, are the cellular and molecu-
lar signatures of microglial “activation.” Additional evidence that
microglia are important opioid targets comes from reports that
they express � and � receptors (Chao et al., 1997; Mika et al.,
2014). Activation of opioid receptors on microglia induces the
release of a myriad of chemokines, cytokines, and neurotrophic
factors (Coller and Hutchinson, 2012; Mélik Parsadaniantz et al.,
2015). Treatments with nonspecific glial inhibitors (e.g., mino-
cycline, fluorocitrate, or propentofylline) block the opioid-
induced release of these signaling molecules and suppress the
increase in microglial reactivity (Watkins and Maier, 2003; Cui et
al., 2008; Horvath and DeLeo, 2009). The cellular effects of glial
inhibitors translate into a reduction in morphine analgesic toler-
ance, an attenuation of the paradoxical increase in pain sensitiv-
ity, and a decrease in dependence (Horvath et al., 2010; Fukagawa
et al., 2013). Glial inhibitors have also been found to alleviate pain
hypersensitivity after peripheral nerve injury (Raghavendra et al.,
2003; Guasti et al., 2009; Grace et al., 2014). Thus, the most par-
simonious conclusion is that glia, in particular microglia, play an
essential role in both neuropathic pain and the negative effects
associated with long-term opioid use.

This conclusion, which is derived from experiments con-
ducted almost exclusively on male rodents, has gained wide
acceptance and is perpetuated by the discovery of an ever-
increasing number of microglial mechanisms being implicated in
chronic pain. However, a study by Sorge et al. (2011) challenged
the totality of such a conclusion as it relates to chronic pain
mechanisms in male versus female mice. In this study, they re-
ported that involvement of spinal TLR4 in mechanical allodynia
was male specific. Because TLR4 in the CNS is expressed primar-
ily on microglia, this initial observation hinted at the possible
existence of a divergent microglial pain signaling mechanism be-
ing sexually dimorphic. In a more recent study, Sorge et al. (2015)
demonstrated that intrathecal administration of glial inhibitors
prevented and reversed mechanical allodynia caused by periph-
eral nerve injury in male, but not in female, mice. Allodynia in
female mice was also resistant to selective ablation of spinal mi-
croglia by saporin toxin conjugated to macrophage antigen
complex-1 and occurred independent of purinergic P2X4 recep-
tor (P2X4R)-mediated release of brain-derived neurotrophic fac-
tor (BDNF), which is a core microglia pain signaling pathway
identified previously in male rodents (see below) (Coull et al.,
2005; Sorge et al., 2015). Together, these findings indicate that
microglia are not sufficient for pain hypersensitivity in female
mice. Instead, it appears that adaptive immune cells, likely
T-lymphocytes, critically mediate pain hypersensitivity in female
mice. This sexual dimorphism in mice is consistent with a clear
gender bias in humans toward women being the majority of
chronic pain patients (Mogil, 2012).

Although there is also evidence for sex differences in analgesic
response to opioids and in susceptibility for opioid abuse in hu-
mans and rodents (Mogil, 2012; Lee and Ho, 2013), it remains to
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be shown whether these differences involve divergent microglial
signaling mechanisms. Therefore, we will proceed to discuss a
novel microglial signaling mechanism discovered to be essential
in the paradoxical pain produced by morphine, with the explicit
caveat that these discoveries were made using male rodent sub-
jects. In this context, a recent study by Ferrini et al. (2013) exam-
ined the relationship between morphine analgesic tolerance and
morphine-induced hyperalgesia; the prevailing view was that tol-
erance and hyperalgesia reflect a single underlying mechanism. In
this study, the authors found that morphine acting on � recep-
tors drives increased expression of P2X4R on microglia and that
blocking P2X4R or specifically ablating spinal microglia reversed
morphine-induced hyperalgesia without affecting tolerance.
Furthermore, morphine treatment caused a P2X4R-dependent
release of BDNF from microglia: the release of BDNF signaled to
downregulate the Cl� cotransporter KCC2 on spinal lamina I
neurons, leading to a dysregulation of Cl� homeostasis (Fig. 2).
Restoring Cl� homeostasis by genetically deleting BDNF from
microglia reversed morphine-induced hyperalgesia but had no
effect on analgesic tolerance. Collectively, these findings dissoci-
ate morphine-induced hyperalgesia from analgesic tolerance and
suggest that interfering with key nodes in the microglia-to-
neuron P2X4R–BDNF–KCC2 pathway suppresses hyperalgesia
without affecting morphine analgesia. It is important to note that
this pathway was first causally implicated in mechanical allodynia
caused by peripheral nerve injury (Tsuda et al., 2003; Coull et al.,
2005). Thus, the P2X4R–BDNF–KCC2 pathway is a common
microglial mechanism that underlies the hyperalgesic effects of
morphine and neuropathic pain (Tsuda et al., 2003; Coull et al.,
2005; Keller et al., 2007; Ulmann et al., 2008; Trang et al., 2009;
Ferrini et al., 2013). Although this pathway is a major component
of the functional alterations in the spinal dorsal horn that results
in ongoing pain after chronic morphine treatment or peripheral
nerve injury, it is one of several microglial mechanisms thought
to contribute to these conditions (Watkins et al., 2001; Clark et
al., 2007; Ji, 2010; Zhuo et al., 2011; Berta et al., 2014). How each
of these mechanisms converges or diverges and whether sexual
dimorphism has an effect on their relative importance has yet to
be determined.

Opioid reward and its modulation by chronic opioids
and pain
Opioids are potent analgesics that produce both positive and
negative reinforcement. The positive reinforcing effects (eupho-
ria, hedonism, or reward) resulting from opioid use are associ-

ated strongly with their high potential for abuse, whereas the
negative reinforcing effects of opioid use arise from the potent
alleviation of the negative sensory and affective/emotional as-
pects of pain. A canonical neurotransmitter associated strongly
with altered mood states and the positive and negative reinforc-
ing effects of opioids is dopamine. The mesocorticolimbic sys-
tem, which includes the VTA and the nucleus accumbens (NAc,
part of the ventral striatum) is responsible for the expression of
motivated behaviors, arousal, and reinforcement learning pro-
duced by natural (e.g., sex, food) and drug-rewarding stimuli, as
well as aversion-based behaviors (Wise, 1989; Koob and Le Moal,
2005; Fields et al., 2007).

Dopaminergic neurons within the VTA are regulated by
GABAergic tone via either intrinsic or synaptic input. Activation
of opioid receptors expressed on intrinsic and synaptic projection
GABAergic neurons causes an increase in dopamine release via
disinhibition of the GABA tone. This opioid control of dopamine
neurons is gated primarily by opioid receptors expressed on
GABAergic terminals arising from the rostromedial tegmental
nucleus (RMTg) rather than GABA intrinsic neurons or the NAc
medium spiny neurons (Matsui et al., 2014). Additionally, sepa-
rate GABA afferents are affected in the development of tolerance
(RMTg) and withdrawal (NAc), whereas VTA GABAergic intrin-
sic neurons were not modulated by either state (Matsui et al.,
2014). Nevertheless, the VTA is critical for opioid reward because
rodents will self-administer intra-VTA morphine, and condi-
tioned place preference to systemically administered morphine is
blocked by intra-VTA administration of � receptor antagonists
(David et al., 2008; Mazei-Robison and Nestler, 2012; Fields and
Margolis, 2015). These data together suggest that opioid recep-
tors in the VTA are “sufficient” but not “necessary” for opioid-
induced reward.

Recent studies suggest that VTA dopamine neurons are orga-
nized topographically according to output projection targets and
that such organization may be relevant to their activation by
appetitive and aversive stimuli (Lammel et al., 2012). Whether
opioids modulate specific VTA dopaminergic output projections
remains an important unresolved question. Similar to the VTA,
the NAc shows topographical organization with hedonic and
aversive “hot and cold spots” (McCutcheon et al., 2012; Berridge
and Kringelbach, 2013). The rostrodorsal quadrant of the medial
NAc shell contains a specialized opioid hedonic hotspot that me-
diates an increase in “liking” after � receptor activation. In con-
trast, a distinct suppressive cold spot in the caudal half of the shell
was identified in which opioid stimulation reduced sucrose pos-

Figure 2. Microglial-mediated disruption of chloride homeostasis in spinal lamina I neurons gates morphine hyperalgesia. In response to chronic morphine treatment, microglia residing in
the spinal cord adopt a reactive state characterized by � receptor-dependent upregulation of P2X4R expression. Activation of P2X4R causes the release of BDNF, which signals to downregulate
the potassium-chloride cotransport KCC2, resulting in a dysregulation of chloride homeostasis in spinal lamina I pain signaling neurons. The P2X4R–BDNF–KCC2 pathway is not only critical for the
paradoxical hyperalgesic effect of morphine but also for pain hypersensitivity after peripheral nerve injury.
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itive liking reactions (Castro and Berridge, 2014). These results
demonstrate the anatomical heterogeneity of the NAc and the
importance of this region in opioid reward.

Reward produced by intra-VTA administration of opioids is
blunted or absent after chronic opioid administration. This effect
correlates with an increase in VTA GABAergic currents (Madha-
van et al., 2010) and an increase in the frequency of spontaneous
miniature IPSCs within the VTA dopaminergic neurons (Bonci
and Williams, 1997). This is consistent with the report that elec-
trically evoked VTA dopamine output to the NAc is decreased
24 h after cessation of chronic morphine (Mazei-Robison et al.,
2011). Importantly, repeated drug exposure causes a decrease in
the rewarding effect of the drug (reward tolerance), and this leads
to an escalation of drug intake, as seen in humans (O’Brien,
1997). As noted previously, similarities exist between chronic
opioid use and chronic pain. This is also true in the mesolimbic

system. Similar to dependent states, morphine-stimulated dopa-
mine release is attenuated in animals with chronic pain (Ozaki et
al., 2002). Taylor et al. (2015b) replicated this finding and also
reported that cocaine-induced, but not amphetamine-induced,
dopamine release was attenuated in chronic pain animals. The
impaired mesolimbic dopamine response in chronic pain is sup-
ported by a recent human functional magnetic resonance imag-
ing study that found dramatically reduced reward-stimulated
activity in the VTA of fibromyalgia patients (Loggia et al., 2014).

Although the mechanisms underlying the neuronal plastic
changes associated with the development and the progression of
drug addiction remain unknown, BDNF is implicated in incen-
tive motivation that drives drug-seeking behavior. BDNF is a
critical modulator of VTA dopamine neuronal activity in opioid-
dependent animals (Vargas-Perez et al., 2009, 2014; Koo et al.,
2012). Furthermore, intra-VTA BDNF can produce an opioid-

Figure 3. Model of microglial-mediated altered reward circuitry. As a consequence of chronic opioid exposure or chronic pain, microglial activation occurs in many areas of the CNS, including brain
regions involved in reward such as the VTA. It is hypothesized that gliosis triggers a reorganization of reward circuitry such that microglia change EGABA in GABAergic neurons within the VTA. A, In
the naive state, these neurons tonically inhibit mesolimbic dopaminergic neurons projecting to the NAc. B, In chronic pain states, activated microglia release BDNF. This in turn causes disruption of
EGABA via downregulation of the K �/Cl � transporter KCC2 protein levels and activity. The loss of KCC2 causes a disruption of Cl � homeostasis in GABAergic neurons, resulting in these neurons being
more depolarized. Consequently, activation of GABAA receptors on these GABAergic neurons results in their depolarization rather than hyperpolarization because of a net inward anion (Cl �/HCO3

� )
current (that is normally outward). An increase in the excitability of GABAergic neurons results in an increase in GABA release and augmentation of the inhibitory tone on dopaminergic neurons,
leading to less dopamine release in the NAc. DA, Dopamine.
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dependent-like state in naive animals (Laviolette and van der
Kooy, 2001; Laviolette et al., 2002, 2004; Vargas-Perez et al., 2009,
2014). BDNF can cause GABAA function in VTA GABAergic
interneurons to shift from inhibition to excitation (Fig. 3). There
is evidence in other systems that BDNF can change GABAergic
excitability via downregulation of KCC2 (Coull et al., 2005; Fer-
rini et al., 2013; Gagnon et al., 2013; Ting-A-Kee et al., 2013). Like
other areas of the brain, downregulation of KCC2 in VTA
GABAA-expressing neurons results in an increase in their excit-
ability. It was identified recently that both chronic pain and
chronic administration of morphine causes a loss in the expres-
sion of KCC2 in VTA GABAergic neurons that results in a greater
tonic inhibition on dopamine neurons (Taylor et al., 2015a,b).
The mechanism of how chronic administration of opioids or
chronic pain modulates reward circuitry within the VTA remains
unresolved, although recent evidence demonstrates that micro-
glial activation contributes to changes in opioid reward (Taylor et
al., 2015a,b). Chronic morphine administration results in signif-
icant gliosis in the VTA and NAc (Narita et al., 2006; Hutchinson
et al., 2009; Schwarz et al., 2013). Similarly, chronic pain in the
absence of opioid medication use also causes microglial activa-
tion in reward circuitry (Taylor et al., 2015b). Inhibitors of both
BDNF and microglia recover the loss of KCC2 function and re-
stores morphine- and cocaine-evoked dopamine release. The
functional behavioral consequence of this change in VTA
GABAergic tone was evidenced by the loss of reward-related be-
haviors dependent on mesolimbic dopamine release in the NAc.
Hence, intra-NAc cocaine and intra-VTA opioid conditioned
place preference was blunted in chronic pain animals. Again,
microglial inhibitors recovered reward in chronic pain animals
but had no effect in pain-naive animals. Together, such findings
suggest that microglial activation results in dysfunction of reward
reliant on mesolimbic dopamine during ongoing chronic pain or
opioid-dependent states. How microglia become activated in the
brain after a peripheral nerve injury remains unresolved, and it is
unknown whether any of these effects are reversible.

Summary
In 1680, Thomas Sydenham espoused that “Among the remedies
which it has pleased almighty God to give to man to relieve his
sufferings, none is so universal and so efficacious as opium.”
Indeed, the potent pain-relieving effects of opioids are un-
matched, but it is now understood that along with the “good” can
come the “bad”: analgesic tolerance, hyperalgesia, dependence,
and reward are recognized as potential adverse consequences of
opioid use. Attempts to negate the adverse effects of opioids and
provide relief to those in pain have been directed mostly at neu-
ronal targets but with only limited success. These strategies were
predicated on the misconception that neurons are the sole and
principal targets of opioid action. On the contrary, converging
lines of evidence indicate that opioids engage a complex constel-
lation of cellular and molecular processes, through which a diver-
sity of cell types interact to produce the negative effects associated
with opioid use. Glia–neuron interactions are key to establishing
and maintaining altered responsiveness of the CNS to long-term
opioid treatment, and, in particular, it is the influence of micro-
glia that is critical. The conceptual shift from microglia as passive
bystanders to active effectors of opioid analgesia is a major break-
through that has reoriented the search for new therapeutic tar-
gets. One potential target highlighted in this review is the
microglia-to-neuron P2X4R–BDNF–KCC2 pathway, which
serves an overlapping role in the pain hypersensitivity caused by
repeated morphine treatment and by peripheral nerve injury.

This pathway is also important in altering reward circuitry in
chronic pain states. Moreover, adenosine and PDGFR-� signal-
ing have emerged as a common mechanism in morphine toler-
ance and neuropathic pain. The commonalities in mechanisms
between opioid tolerance, opioid-induced hyperalgesia, and neu-
ropathic pain provide an exciting opportunity to bridge thera-
peutic strategies aimed at improving the utility of opioids for
treating pain. However, the design of any therapeutic approach
must take into account potential mechanistic differences between
males and females given the recent evidence for sexual dimor-
phism in the role of microglia in neuropathic pain. The challenge,
from the perspective of pain management, is to exploit this new
knowledge to enhance the utility of opioids in treating chronic
pain without stifling the potent analgesic properties of this im-
portant class of drugs.
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