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Abstract

Estimating Causal Effects of Occupational Exposures on Lung Health in the Presence of
Competing Risks

by

Mary Ava Combs

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Chair

In many longitudinal studies researchers are interested in examining failure times associ-
ated with a particular risk in settings where subjects may fail due to only one of multiple
competing risks. Using targeted learning, we present a method of estimating the cumula-
tive incidence of the multinomial outcome constructed of all possible risks which does not
require independence assumptions among the outcomes. We show analytically and with sim-
ulation that this method is suitable within the causal roadmap to provide causal contrasts
with natural interpretations. We compare the minimal assumptions required for statisti-
cally and epidemiologically unbiased interpretations using this method to those required for
cause-specific estimation. We apply this method to estimate the causal effect of average
yearly cumulative exposure to metal-working fluids on mortality from chronic obstructive
pulmonary disease and cancer among a cohort of autoworkers hired between 1938-1985.
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Introduction

In estimating the causal effects of occupational exposure to straight metal-working fluids on
Chronic Obstructive Pulmonary Disease (COPD) death, death from cancer can be viewed as
a competing risk, an outcome after which the outcome of interest can no longer be observed.
If one is interested in the etiologic process by which exposure affects risk of COPD death,
then the ideal experiment would include the ability to intervene on all other death process
that are unrelated to COPD. However, if the progression of cancer is related to the risk of
COPD death, then the natural parameter of interest represents risks from all related causes.
Existing techniques depend on the assumption of independence among outcomes, and do
not estimate the risk from all potential causes of death. Therefore, we develop a technique
which estimates the risk of death from all related causes simultaneously.

Assuming conditional independence between outcomes one can treat a competing risk as
a censoring event. This “cause-specific" risk can be interpreted as the risk of death from
COPD under a specified exposure regime if 1) there is an intervention to stop the cancer
death process, and 2) that intervention does not change the risk of death from COPD. This
method keeps the person-time of those who die from a competing risk as though they did not
die, but weights it according to the risk of COPD death of those with similar baseline and
time-varying covariates up to the time of death but who did not die of the competing risk.
This assumes that there is no information in the fact that someone dies from a competing risk.
This neither inherently over nor under reports risk because both of the following scenarios
are plausible, depending on the particular death processes in question. It would be possible
that an underlying, unmeasured health status actually puts individuals at higher risk of both
death from cancer and death from COPD. In this scenario, the risk of death from COPD
is actually higher among those who die from cancer (had they not died from cancer) and
assuming independence between these death processes results in under-estimating the effect
of exposure on the risk of death from COPD. It is also possible that the disease processes
relating exposure to cancer death and to COPD death are distinct and one’s susceptibility
to one process strongly indicates protection from the other. In this scenario, those who die
from cancer would actually be at lower risk of COPD death (had they not died of cancer)
than their alive counterparts, and assuming independence between these death processes
results in over-estimating the effect of exposure on the risk of death from COPD.
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Chapter 1

Historical Context of Competing Risks

1.1 Motivation
In many longitudinal studies the time from study entry to a particular event is of interest,
but subjects may fail due to any one of multiple outcomes. For example, in randomized
controlled trials testing the efficacy of a novel chemotherapy to treat cancer, patients may
develop other potentially life-threatening medical conditions, possibly as a direct result of
the cancer therapy itself. If these patients die from conditions other than cancer, it is no
longer possible to observe the effect of the chemotherapy treatment on the risk of death from
cancer.

As a motivating example, consider the United Autoworker-General Motors (UAW-GM)
cohort study of almost 40,000 autoworkers [19]. These autoworkers were observed over many
years in order to study the effects of factory exposure to metal working fluids (MWF) on
mortality due to chronic obstructive pulmonary disease (COPD). A worker’s vital status is
followed until time of death, which may be attributed to one of multiple competing causes,
or administrative censoring at end of follow-up. COPD takes a long time to develop, during
which time workers may die from other diseases with shorter latent periods, including one of
several specific cancers that have been associated with MWF exposure. Researchers may be
interested in comparing the cumulative incidence of COPD after a certain number of years
of followup under various static, dynamic, or stochastic exposure regimes.

1.2 Review of Literature

1.2.1 History of Probability Theory for Competing Risks

In epidemiology, competing risks are frequently defined as events which block observation of
an outcome of interest. Using this definition it becomes hard to differentiate a competing risk
from a “censoring event" or, more specifically, from “informative censoring". In this paper
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we instead return to first principles to understand intuitively what is meant when referring
to “competing risks", “cause-specific", or “subdistribution" estimates.

In his 1957 article, “The Estimation of the Probability of Developing a Disease in the
Presence of Competing Risks" published in American Journal of Public Health and the
Nations Health Cornfield utilized concepts from existing actuarial life table methodologies to
describe the problem of competing risks in practicing epidemiology and to propose a novel
solution [13]. He broadly defined a life table as a means of documenting a cohort and the
subsequent “withdrawing" of elements from that cohort. He defined a cohort as a collection
of elements with one or more common characteristics and a withdrawal as an element from
that cohort who loses one or more of the defining characteristic. For example, a cohort of
alive, disease-free animals could be followed until one or both of these characteristics is lost.
At any given point in follow-up, all subjects are either still in the cohort, or have withdrawn
because they are 1) alive with the disease of interest, 2) dead with the disease of interest
at the time of death, or 3) dead without the disease of interest at the time of death. In
this context, Cornfield states that these mutually exclusive categories of key characteristics
whose loss leads to withdrawal from the cohort compete with one another. We can derive
an intuitive description of competing risks as mutually exclusive causes of withdrawal from
a cohort. Cornfield hypothesized an experiment in which one is able to completely eliminate
causes of withdrawal other than the one of interest, but that even in this nearly impossible
context, “ . . . the probability of developing the disease of interest is defined only in the
presence of these other competing causes."

This fundamental issue has besieged researchers for years.
The introduction of the product-limit estimator by Kaplan and Meier in their 1958 paper,

“Nonparametric estimation from incomplete observations" proved to be widely adopted [27].
This estimator is appropriate in precisely the scenario Cornfield hypothesized about in which
all causes of leaving a cohort are eliminated except the one of interest. Kaplan and Meier
stipulate the assumption necessary for their estimator to correctly estimate the cause-specific
survival as independence between the cause of interest and the other competing causes.
This type of loss, that which is independent of the cause of interest has come to be known
as “censoring". The product- limit estimator non-parametrically estimates the cause-specific
survival function, that is, the proportion, S(t), of the cohort whose lifetime (or time until the
event of interest) exceeds t in the absence of competing risks without placing assumptions on
the form of S(t). Their original framing is as follows: For a sample size of N , first order and
label all event times (including events of interest and competing risks), 0 ≤ t′1 ≤ t′2 ≤ . . . ≤ t′N .
Then,

Ŝ(t) =∏
r

N − r
N − r + 1

where r are the times, t′, such that t′r ≤ t and t′r is an event of interest. The relationship be-
tween a cause-specific survival function, S(t) and its corresponding cause-specific cumulative
incidence, Λ(t) can be shown:

S(t) = exp{−Λ(t)}
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And so one can easily convert between survival and cumulative incidence estimates when only
one outcome is of interest and all other outcomes are considered independent. The corre-
sponding estimate of the cumulative incidence function is called the Nelson-Aalen estimator
and its properties were analyzed separately [33, 1].

The application of these estimators which relied only on time and frequency information
(that is, the time from study entry to one of the competing risks and the number of such risks
at any given time) proved to challenging. As demonstrated in their 1960 paper, “Competing
Exponential Risks, with Particular Reference to the Study of Smoking and Lung Cancer"
Berkson and Elveback demonstrate that the quantity of interest and its interpretation can
be just as important, if not more important than the selected estimation method [8]. Using
formulations originally derived by Neyman and discussed in his 1950 book, First Course in
Probability and Statistics, Berkson, et al. first distinguishes between net and crude risks
as those when considering a particular risk alone or in the presence of others, respectively.
They note that although the total crude rate is independent of the ordering of events, the
individual crude rates are not [34]. They then introduce instantaneous risk as the risk of
a net event in the next infinitesimally small time period among those who have survived
up to that time. This quantity has come to be called the intensity of a particular event,
and, in certain cases with restricted histories, a hazard, both notated with λ(t). Using the
joint likelihood of both events, Berkson goes on to define the maximum likelihood estimators
(MLE) of the net risks of each event. Berkson then applies these methods to a prospective
study from the American Cancer Society [25] of 200,000 men in order to study the effect
of smoking on the probability of death from one of four causes: lung cancer, other cancer,
coronary disease, or other diseases. The authors use a bespoke set up, defining outcomes
according to their cause; they propose that non-smokers are subject to death due to diseases
unrelated to smoking, and that smokers are additionally subject to deaths due to lung cancer
brought on by smoking and death due to other diseases brought on by smoking. Berkson first
estimates the net risks of death due to lung cancer, other cancer, coronary disease, and other
disease among smokers and among non-smokers, and compares three methods to quantify
the disparity in net risk for each of the outcomes between the smoking groups: 1) Their MLE
and system of equations method, 2) Differencing the two net risks, and 3) Taking the risk
ratio. Of note, the MLE estimates are very close to the simple difference methods. Their
findings emphasize the importance of considering competing risks even when reporting net
risks or even when a researcher has interest in only one outcome. The risk ratio between
smokers and non-smokers for lung cancer is 9.7, while that for coronary disease is 1.6, and
for other cancers and other diseases are 1.4 and 1.3, respectively. In a study reporting these
results, it could be easy to focus only on the effect of smoking on lung cancer, describing the
other effects as minimal. However, looking at the absolute risk, it is much more likely for
both smokers and non-smokers to die from any of the other causes. In fact, increase in net
risk due to smoking for lung cancer is 0.4%, for coronary disease it is 1.5%, and for other
cancer and other diseases it is 0.4% and 0.7%, respectively. While there is an excess 97 deaths
due to lung cancer associated with smoking, there is an excess of 369 deaths due to coronary
disease associated with smoking. Lung cancer has a longer latent period than most coronary
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diseases, so from a competing risk perspective, it is likely that, among those who died from
coronary disease, had they not, in fact, died from coronary disease, the smokers would have
been more likely to die from lung cancer than the non-smokers. It is only by considering
the increased risk smoking creates for coronary disease that we can say the increased risk to
lung cancer is likely attenuated by the presence of competing risks.

In 1972, Cox published “Regression models and life-tables" in the Journal of the Royal
Statistical Society in which he observed that under a set of assumptions, one can estimate
the association of an exposure or other baseline characteristic with any single cause-specific
hazard [16]. Applied researchers began using this technique because of its potentially pow-
erful results. Cox was not the first to utilize the assumption of proportional hazards, but his
work combined the survival and failure rate life table methods with regression, creating a
powerful way to directly interpret parameter estimates in nearly the same way as one could
interpret linear regression estimates. The proportional hazard assumption merely states that
the hazard of an event at time t is a product of a function of the explanatory variables and
an unknown (and possibly arbitrary) function of time.

λ(t; z) = λ0(t)exp(zβ)

This unknown function of time is called the “baseline" or “reference" hazard and refers to
the hazard of an event at time t for individuals with a specified referent set of explanatory
variable values, i.e. for z = 0, λ(t; z) = λ0(t). Then, Cox defines a partial likelihood for
individual i such that

PLi(β) =
λ(t;β)

∑j∶Tj≥t λ(t;β)

= exp(ziβ)
∑j∶Tj≥t exp(zj;β)

and a maximum likelihood estimator can be defined for β. Cox’s method expands to include
a particular class of “time-dependent" variables, namely, those which can be expressed as a
function of t. Published as a commentary to the 1972 article, Breslow adds an alternative
way of writing the likelihood, namely, by estimating β and λ0 simultaneously by considering
their joint likelihood. Then, assuming a constant hazard between failure times, the Breslow
estimator provides the non-parametric MLE (NPMLE) for the cumulative baseline hazard.

Many others have contributed to our under standing of longitudinal data including
Dabrowska, Greenwood, Heckman, Kalbfleisch, Prentice, and Wellner. In 1993 Andersen,
Borgan, Gill and Keiding wrote their textbook, Statistical Models Based on Counting Pro-
cesses which outlines the counting process notation Aalen had rigorously defined in 1978 [1]
and which he and and Johansen used to define the “Aalen-Johansen" estimator – a “matrix
version" of the Kaplan Meier estimator, thus allow estimation to occur as individuals tran-
sition along multiple states [4, 2]. In their textbook, originally published in 1993, Andersen,
et al. provide various levels of rigor in defining counting processes to directly define the
likelihood of a longitudinal data generating process with multiple end points with the aim
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at reaching various audiences [3]. In this paper, we will attempt to similarly use the least
notation necessary to convey our messages. Counting process notation allows for rigorous
defining of data, data-generating processes, quantities, and models. This language integrates
well with the causal roadmap in which clarity between what is known, unknown, and as-
sumed is paramount for proper interpretation. The Neyman-Rubin causal model and the
insights from Judea Pearl have created a new set of principles to answer data questions based
in causality [46, 44, 35]. Robins expanded on this framework to develop G-computation, a
non-parametric method of identifying a quantity of interest in a longitudinal setting with
time-varying exposure and time-varying confounding affected by prior exposure, and to pro-
pose methods of estimation [41, 42]. Applying the G-computation approach of writing the
entire likelihood of a longitudinal data generating process using Andersen’s multiplicative
intensities allows for flexible definition of quantities of interest, direct assessment of identi-
fiability of those quantities, transparent statistical model selection and causal contrasts.

In 1999 Fine & Gray readdressed the issue of competing risks within the context of Cox
proportional hazards models. They motivate their work by pointing out two things: first, as
Cornfield had pointed out years prior, that assuming independence among competing risks
was fundamentally flawed and secondly that the quantity of interest was usually not the
hazard but cumulative incidence [20]. Under Cox proportional hazards models, the trans-
formation of multiple cause-specific hazards to a single cumulative risk is not only laborious
when one is only interested in a single cause, but the association between the baseline char-
acteristic and a hazard will differ from its association with the cumulative incidence when
estimated this way. To resolve these issues, they propose to estimate “subdistribution" cu-
mulative incidences (and hazards) in such a way that does not require estimating hazards
for every competing risk and which has an easily interpretable coefficient parameter with
respect to a single cause.

The Fine & Gray subditribution estimator proposed is now in wide use even though 1) It
continues to only be valid under proportional hazards, 2) although a statistically unbiased
estimator, the subdistribution cumulative incidence is an epidemiologically biased estimand.
The interpretation of the true Fine & Gray subdistribution cumulative incidence is unclear –
a disparity that can be more easily demonstrated when viewing the issue of competing risks
through a causal framework.

Cornfield hypothesized an experiment in which one is able to completely eliminate causes
of withdrawal other than the one of interest, but that even in this nearly impossible context,
“. . . the probability of developing the disease of interest is defined only in the presence of
these other competing causes." It is this perspective that we adopt in this paper. Three
approaches to addressing competing risks are reviewed: treating the competing risk as a
censoring event, using proportional hazards models (and the subdistribution estimator [20]),
and using the causal roadmap to estimate cause-specific parameters. We will compare the
analytic and applied properties of each approach, but first provide the historical context
for the development of each. Last, we propose wider use of the causal roadmap approach
for estimating cause-specific cumulative incidence over the Fine & Gray estimator of the
subdistribution cumulative incidence because it does not rely on the proportional hazards
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assumption, is able to utilize modern estimation techniques which account for time-varying
exposure and confounding, and, most significantly, it provides an estimand that is epidemi-
ologically unbiased.

1.2.2 Examples from Clinical and Occupational Epidemiology

Analyses that account for competing risks in longitudinal data are used frequently in epi-
demiological data. For example, an analysis of the risk of coronary heart disease (CHD)
among women enrolled in the “Rotterdam Study" identified the population as “frail", mean-
ing at high risk for other causes of death [50]. As such, researchers identified death by any
other cause as a competing risk and proceeded to compare hazard ratio and cumulative in-
cidence estimates using three analysis methods. The hazard ratios compared groups based
on a number of baseline covariates, primarily whether or not they were on systolic blood
pressure lowering medication, and the cumulative incidence estimates risk of CHD after 10
years in the study. The three methods they compared all used proportional hazard mod-
els and included first, treating the competing risk as a censoring event, second, estimating
cause-specific risks, and lastly, estimating so-called “subdistribution" risks based on those
defined by Jason Fine and Robert Gray in their oft-cited 1999 paper, A proportional hazards
model for the subdistribution of a competing risk [20]. They also demonstrated methods
of adapting existing calibration and discrimination techniques to the estimation methods
they used. They found that, when estimating both cause-specific and subdistribution pro-
portional hazard models, hazard ratio estimates were similar but found the cause-specific
10-year cumulative risk estimates as to be higher than the subdistribution estimates.

An analysis of the effect of injection drug use on 6-year risk of acquired immunodeficiency
syndrome (AIDS) after initiation of combination antiretroviral therapy (ART), demonstrated
a non-parametric estimation method while considering death prior to diagnosis as a compet-
ing risk [12]. Standardizing to the study population using inverse probability weighting of
injection drug use and of censoring [11], researchers adjust for competing risks by estimating
cause-specific risks simultaneously. After accounting for confounding, dropout, and compet-
ing risks, they found a lower risk difference of development of AIDS comparing injection drug
users to non-injection drug and a smaller risk ratio, when compared to the similar crude risk
difference and risk ratio. Additionally, they identified the further assumptions required in
order to infer causality from their results.

In a study to compare risk of death among individuals on a kidney transplant waitlist
with and without panel-reactive antibodies (PRA) where receiving a kidney transplant can
be considered as a competing risk, researchers estimate hazard ratios of three end points:
mortality, transplantation and a “composite" outcome of either transplantation or death [45].
They then used proportional hazard models to individually estimate the hazard ratio for each
of the end points, treating the other endpoints as censoring events, and lastly estimate the
subdistribution hazard ratio of mortality considering transplantation as a competing risk.
Individual hazard ratio estimates indicate increased PRA to be associated with higher risk
of mortality and lower cumulative incidence of transplantation. The estimated subdistri-
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bution hazard ratio of mortality also indicated a higher risk among those with PRA, and
was higher than the individual hazard ratio of mortality previously estimated. In contrast,
researchers found a lower risk for the composite outcome for those with higher PRA levels,
underlining the importance of considering separate endpoints separately. Researchers reit-
erate the arguments made by Bryan Lau, Stephen Cole, and Stephen Gange in their 2009
paper, Competing Risk Regression Models for Epidemiologic Data, [30] that when estimating
cause-specific hazard ratios using proportional hazard models, “...the analysis inaccurately
assumes that mortality and transplantation are independent events." Further, researchers
(where “csHR" and “CIF" are used to refer to the cause-specific hazard ratio and the cu-
mulative incidence function, respectively) reiterate that “a csHR > 1 does not necessarily
imply that the subdistribution CIF of exposed patients is higher than the subdistribution
CIF of unexposed patients." and that therefore “cause-specific hazards models [using pro-
portional hazards models] make it difficult to predict a given patient’s probability of dying
or undergoing transplantation as a function of their PRA."

An occupational epidemiologic study which addressed the issue of competing risks used
the National Study of Coal Worker’s Pneumoconiosis data to examine the effect of coal
dust exposure on Ischemic Heart Disease (IHD) mortality among US coal miners [29]. Re-
searchers followed a cohort of 9,078 underground workers from 31 mines in 10 states, until
either death from IHD or death from pneumoconiosis. Investigators used a job exposure
matrix [5] to quantify exposure. Analyses were stratified by region type: anthracite or
bituminous. In the anthracite region, a non-montonic exposure-outcome relationship is ap-
parent, indicative of informative competing risks. This was not seen in bituminous regions.
Researchers used proportional hazard models to estimate subdistribution hazard ratios of
IHD mortality by exposure quartile for each of the three bituminous regions and the an-
thracite region. These analysis found a similar pattern of non-monotonic ratios by exposure
quartile in the anthracite region, but monotonic ratios by exposure quartile in the bitumi-
nous regions. Elevated hazard ratios had confidence intervals which did not contain the null
value for two of the three bituminous region. In the anthracite region, none of the haz-
ard ratio confidence intervals excluded the null. Authors then also estimated cause-specific
hazard ratios from proportional hazard models for the three bituminous regions, comparing
exposure quartiles and comparing regions. We assume death by pneumoconiosis was treated
as a censoring event. Similar to the subdistribution hazard analysis, cause-specific hazard
ratios were elevated monotonically with exposure quartiles with confidence intervals exclud-
ing the null. The cause-specific hazard ratios by region warranted similar interpretation
to the subdistribution hazard ratios. The authors carefully excluded the anthracite region
from cause-specific analysis due to their findings which supported that the competing risk of
death from pneumoconiosis was informative. However, without corresponding estimates of
risk of death from pneumoconiosis, it is hard to interpret the non-monotonic subdistribution
hazard ratios presented for the anthracite region. As such, their conclusion, that exposure to
coal dust increases risk of IHD among coal miners, is undercut by their own statement that,
“Mortality risk varied by coal region, which may be due to regional variations in the compo-
sition of the coal mine dust particulate." Although a novel point – to categorically consider
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composition as opposed to exclusively considering particulate size – this conclusion could be
interpreted that dust exposure in the anthracite region was not found to be associated with
increased risk of IHD mortality. Without a simultaneous analysis of the effect of exposure
on risk of pneumoconiosis mortality, the researchers are unable to deduce that in anthracite
region it is likely that increased dust exposure increased risk to two causes of mortality.

1.3 General Probability Theory with Competing Risks
The most basic notation for longitudinal data evaluating survival time considers the time to
failure random variable, T , with density f , cumulative distribution function F (t) = P(T ≤ t)
and survival function S(t) = P(T ≥ t) = 1 − F (t). The hazard function is the instantaneous
probability of failure conditional on survival up to time t and defined as h(t) = f(t)/S(t).
The hazard function can be expressed as the limit as dt → 0 of P(T ∈ [t, t + dt)∣T ≥ t)/dt
for continuous time and P(T = t∣T ≥ t) for discrete time. Integrating the hazard gives the
cumulative hazard, H(t) = ∫

t

0 h(u)du where, for continuous time, H(t) = −log{S(t)} Ô⇒
S(t) = exp{−H(t)}.

Within the framework of longitudinal data with censoring and competing risks, we will
consider two settings: first, a single time-point exposure at baseline with baseline con-
founders, and second, a setting with time-varying exposure and time-varying confounders.

In both settings, consider n workers, with baseline covariates, W , observed prior to
exposure, which are then followed until discrete time T or C, whichever comes first. Letting
T denote time until failure and let ε ∈ {1, . . . , J} denote the type of failure. Without loss of
generality, let J = 2 as in our example where we can let ε = 1 indicates death by COPD, the
outcome of interest, and ε = 2 indicates death by any cancer, a competing risk. A censoring
event such as end of follow up or death by an unrelated cause precludes the observation of
T , so let T̃ =min(T,C) be the time until end of observation and let ∆ = I(T ≤ C) indicate if
observation ended due to failure. We assume no ties and, in discrete time, the time ordering
N1 → N2.

To write the data in a longitudinal format, we introduce counting processes so that each
worker, regardless of entry time, has a well-defined observation at every time t = 1, . . . , τ
for a given time τ . Let the counting process Nj(t) = I(Tj ≤ t, ε = j) jump from zero to one
when there is a failure of type j, and let dNj(t) = Nj(t + dt) −N(t) indicate that a failure
of type j occurred in [t, t + dt). Likewise, let C(t) = I(C ≤ t) jump to one when there is a
censoring event, and dC(t) = C(t+dt)−C(t) indicate a censoring event between [t, t+dt). Let
N(t) = (N1(t), . . . ,NJ(t)) be the vector of J elements at time t from each failure counting
process, and let N⋅(t) = ∑Jj=1Nj(t) be the combined counting process which jumps to one
when there is any failure event. Note that N⋅ is a counting process itself.

For a given variable or process let the overbar, e.g. C(t) = (C(0),C(1), . . . ,C(t)) denote
the vector containing that variable at each time up to and including time t. The history
at time t is the set of all variables observed up to and including t, denoted as Ft where
Ft− is understood to mean the history just prior, but not including, time t. For example,
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Ft0 = {W,N(t0),C(t0)} is the set of baseline covariates, and the entire failure and censoring
counting processes up to and including time t0.

A variable at time t is dependent upon its parents, a subset of the history at time t. For
example, the parents of C(t) could simply be the censoring process itself at the preceding
time, Pa(C(t)) = (C(t − 1)) since knowing whether or not a person was censored at time
t−1 would tell you the entire distribution of C(t). Note that this example assumes censoring
is independent of baseline covariates and the outcome process for the sake of parsimony.

The likelihood of a data-generating process is a specified parameterization of the proba-
bility distribution of the data. We seek to write the likelihood for both the single-time-point
and for the time-varying exposure settings parameterized by the intensity, defined below.
To do so, we first notice an important aspect of the counting processes in our example.
Workers can experience at most one outcome or censoring event, so we define the count-
ing processes as degenerate after such an occurrence. For example, if a worker dies of
COPD at time t0, then at time t0 − 1, N1(t0 − 1) = N2(t0 − 1) = C(t0 − 1) = 0, at time t0,
N1(t0) = 1,N2(t0) = C(t0) = 0, and N1(t), N2(t), and C(t) are considered degenerate after
t0, i.e. for t > t0, N1(t) = 1,N2(t) = C(t) = 0.

A counting process is comprised of a predictible portion, Λ, called the compensator, and
a random portion, M , a martingale [4]. The intensity of a counting process is a measure
of the rate of change of its predictable part, and is defined as the function, λ, such that
Λ(t) = ∫

t

0 λ(u)du. The intensity can also be defined

λ(t) = 1

dt
E{dN(t)∣Ft−}

which is the expected number of jumps at an infinitesimally small interval around time t given
history Ft−. An individual worker’s intensity at time t can be characterized as a product of
their individual hazard rate hi(t) and the indicator that they are at risk for jumping at time
t. Define Y = I(T ≥ t), then the intensity for worker i can be written

λi(t) =
1

dt
E{dNi(t)∣Ft−} =

1

dt
Yi(t)hi(t)dt

and if we assume the hazard rate across individuals are independent we can express the
population level counting process

λ(t)dt = E{
n

∑
i=1

dNi(t)∣Ft−} =
n

∑
i=1

Yi(t)hi(t)dt

Furthermore, if we assume the hazard rate across individuals is independent and identical,
we can express the population level counting process

λ(t)dt =
n

∑
i=1

Yi(t)h(t)dt

In discrete time we make observations at regular intervals t∗1, . . . , t∗τ but only at a subset of
these times does a failure or censoring event occur. As such, we can refer to that subset,
t1, . . . , tK which may not be evenly spaced but nonetheless index the observations which
contribute to the likelihood.
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1.3.1 Single time point exposure

In a single time point exposure setting each worker is assigned at baseline to a job with
either high or low exposure to metal-working fluids denoted by A ∈ {0,1}. Then, we can
write the full data as (W,A,C,T, ε). Letting N∗

j (t) = (T ≤ t, ε = j) be the counting processes
of COPD death (j = 1) and death related to any cancer (j = 2) and C∗(t) = I(C ≤ t) to be
the counting processes of censoring due to end of follow up, or death due to unrelated causes,
we can also write the full data in using a longitudinal data structure as (W,A,N∗

j (t),C∗(t))
for (t ∶ t1, . . . , tK) at which failure or censoring events occur.

The observed data can be expressed as O = (W,A, T̃ ,∆,∆ε) for T̃ = min(T,C) and
∆ = I(T ≤ C). Using longitudinal data structure, the observed data can be expressed using
the counting processes Nj(t) = I(T ≤ t, ε = j, T ≤ C) for j ∈ {1,2}, or Nj(t) = I(T̃ ≤ t, ε =
j,∆ = 1), and C(t) = I(T̃ ≤ t,∆ = 0). Then, for J = 2, the observed data can be expressed as
O = (W,A,N1(t),N2(t),C(t)) for (t ∶ t1, . . . , tK). Note that we assume the time ordering of
N1(t)→ N2(t) at any time t. The likelihood for O factorized according to this time ordering
is

p(O) = pW (W )g(A∣W )
K

∏
k=1

{λ1(tk)I(N1(tk)=1)(1 − λ1(tk))I(N1(tk)=0)

λ2(tk)I(N2(tk)=1)(1 − λ2(tk))I(N2(tk)=0)

λC(tk)I(C(tk)=1)(1 − λC(tk))I(C(tk)=0)} (1.1)

for the conditional intensities

λj(tk) = P(Nj(tk) = 1∣Pa(Nj(tk))), j = 1,2

λC(tk) = P(C(t) = 1∣Pa(C(tk))) (1.2)

where

Pa(N1(tk)) = (W,A, (N1,N2,C)(tj) ∶ j = 1, . . . , k − 1)
Pa(N2(tk)) = (Pa(N1(tk),N1(tk))
Pa(C(tk)) = (Pa(N2(tk)),N2(tk)) (1.3)

Many of the conditional intensities in the above likelihood will be degenerate after some
time along t1, . . . , tk. Specifically, if Pa(N1(t)) includes observing C has happened, or T
has happened, then the remaining terms in the likelihood product are all 1. The data is
degenerate from then on, as the counting processes do not change value after an event.

We can express the outcome intensities, λj(t), in terms of cause-specific hazards, αj(t).
Recall Pa(N1(tk)) = {W,A, (N1,N2,C)(tk−1)} and that (N1,N2,C)(tk−1) = 0 ⇐⇒ T̃ ≥ t.



CHAPTER 1. HISTORICAL CONTEXT OF COMPETING RISKS 11

Then,

λ1(t) = E{dN1(t)∣Pa(N1(t))}
= E{dN1(t)∣W,A, T̃}

=
⎧⎪⎪⎨⎪⎪⎩

E{dN1(t)∣W,A, T̃ ≥ t} if T̃ ≥ t
0 if T̃ < t

= I(T̃ ≥ t)E{dN1(t)∣W,A, T̃ ≥ t}
= I(T̃ ≥ t)α1(t)

for α1(t) = E{dN1(t)∣W,A, T̃ ≥ t}.
Notice that

α1(t) = P(T = t, ε = 1∣T̃ ≥ t,W,A)
α2(t) = P(T = t, ε = 2∣T̃ ≥ t,W,A)

Similarly, λ2(t) = I(T̃ ≥ t)α2 and λC(t) = E(dC(t)∣Pa(C(t))) = I(T̃ ≥ t)αC(t) for αC(t) =
P(C = t∣T̃ ≥ t,W,A). Note that α1(t) = P(T = t, ε = 1∣T ≥ t,W,A) if C⊥⊥(T, ε)∣{W,A},
α2(t) = P(T = t, ε = 2∣T ≥ t,W,A) if C⊥⊥(T, ε)∣{W,A}, and αC(t) = P(C = t∣C ≥ t,W,A) if
same independent censoring assumption holds.

So the likelihood for a singe observation, O, can be parameterized by pW , gA, λ1, λ2, λC the
marginal distribution of W , the conditional distribution of A∣W and the intensities for the
outcome and censoring counting processes, respectively. Equivalent is the parameterization
with respect to the cause-specific hazards, α1, α2 and the censoring hazard, αC . We can
choose a statistical model such as proportional hazard models to encode what we know
about the data- generating distribution, or for convenience.

Note also the intensity N = N1 +N2, the counting process of T such that N(t) = I(T ≤
t,∆ = 1) = N1 +N2 where the intensity, λ(t) = λ1(t) + λ2(t) whereas in discrete time, under
different time ordering assumptions, N1 +N2 can jump from 0 to 2.

1.3.2 Time-varying exposure and/or time-varying confounders

In a setting with time-varying exposure and time-varying confounders, an individual worker
may change jobs (and therefore exposure) at at given point in time, and their exposure in a
given year may be affected by their previous time at work. Let exposure at time t be binary
representing high or low exposure and the time-varying confounder, previous time at work, be
a continuous percentage. Let A∗(t) and L∗(t) represent the full data for those variables. We
can write the full data using a longitudinal data structure as (W,N∗

j (t), L∗(t),C∗(t),A∗(t))
for (t ∶ t1, . . . , tK) at which failure or censoring events occur.

The observed data can be expressed using A(t) = ∆A∗(t) and L(t) = ∆L∗(t). Then,
for J = 2, the observed data is O = (W,N1(t),N2(t), L(t),C(t),A(t)) for (t ∶ t1, . . . , tK).



CHAPTER 1. HISTORICAL CONTEXT OF COMPETING RISKS 12

Note that We assume the time ordering W → N(t) → L(t) → C(t) → A(t). At times we
suppress some of this notation by assuming W ⊂ L(0), N(t) ⊂ L(t) and that C(t) ⊂ A(t).
The likelihood for O factorized according to this time ordering is

p(O) = pW (W )
K+1

∏
k=1

{λ1(tk)I(N1(tk)=1)(1 − λ1(tk))I(N1(tk)=0)

λ2(tk)I(N2(tk)=1)(1 − λ2(tk))I(N2(tk)=0)

qL(tk)}
K

∏
k=1

{λC(tk)I(C(tk)=1)(1 − λC(tk))I(C(tk)=0)

gA(tk)} (1.4)

for the intensities λ, and conditional densities q and g

λj(tk) = P(Nj(tk) = 1∣Pa(Nj(tk))), j = 1,2

qL(tk) = P{L(tk) = l(tk)∣Pa(L(tk))}
λC(tk) = P(C(t) = 1∣Pa(C(tk)))
gA(tk) = P{A(tk) = a(tk)∣Pa(A(tk))} (1.5)

where

Pa(N1(tk)) = (W, (N1,N2, L,C,A)(tj) ∶ j = 1, . . . , k − 1)
Pa(N2(tk)) = (Pa(N1(tk),N1(tk))
Pa(L(tk)) = (Pa(N2(tk),N2(tk))
Pa(C(tk)) = (Pa(L(tk)), L(tk))
Pa(A(tk)) = (Pa(A(tk)),A(tk)) (1.6)

Many of the conditional intensities in the above likelihood will be degenerate after some
time along t1, . . . , tk. Specifically, if Pa(N1(t)) includes observing C has happened, or T
has happened, then the remaining terms in the likelihood product are all 1. The data is
degenerate from then on, as the counting processes do not change value after an event.

1.3.3 Three Frameworks for Estimation in Settings with
Competing Risks

1.3.3.1 Treating a Competing Risk as a Censoring Event

The earliest method to adjust survival and risk estimates in the presence of competing risks
has been to consider the competing risk a censoring event. There are multiple meanings
and ways to interpret the statement that a competing risk is being “treated as a censoring
event". In this paper, we refer to a competing event as a censoring event if it is known to
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be independent of the outcome of interest, conditional on a set of pre-treatment variables.
That is, in the true data generating distribution it is known that subjects who have the
censoring event at time t have the same risk of the outcome as those with similar exposure
and covariate histories up to time t who were not censored at time t. This condition is
frequently called exchangeability, ignorability, or coarsening a random, varying based on the
context [23, 26, 21]. In this paper, we say a competing risk is treated as a censoring event if
the above condition is assumed, but not necessarily known to be true.

Consider data collected between 1962-1977 on 255 patients with malignant melanoma
who had a radical operation to remove the tumor and were followed until the end of the
study period at which time all subjects had either 1) died from malignant melanoma, 2)
were alive on January 1, 1978, the end of the study, or 3) died from other causes [17]. Of the
205 eligible patients, 57 died from the cause of interest, (malignant melanoma), 134 survived
until the end of the study, and 14 died from other causes. The outcome of interest, death due
to malignant melanoma competes with the remaining two end points. Patients had staggered
entry points and the time scale was years since surgery, so being alive at the end of the study
period is more of a reflection of when they entered the study rather than their risk of death.
It seems reasonable then that risk of death due to malignant melanoma, conditional on
baseline characteristics, is similar among those who were alive at the end of the study t years
after their surgery as those who were still alive t years after their surgery which was not
the end of the study. However, such an argument is less plausible for deaths due to other
causes, particularly without further granular data. For example, suppose the incidence of
post-surgical infection was related to the aggressiveness of the tumor in a way not captured
by baseline characteristics. Then, individuals dying due to surgery-related infections would
be at higher risk of death from malignant melanoma at their time of death had they not
died from infection, than those who did not die from surgery-related infection at all. In this
case, it would be suspect to treat deaths from other causes as censoring. However, if baseline
characteristics did fully capture the risk of post-surgical death from malignant melanoma,
then, conditional on those characteristics, risk of death from malignant melanoma might be
similar among those who did and did not experience death from infection and it might be
appropriate to treat that competing risk as a censoring event.

It is a powerful condition, exchangeability, because, if true, treating a competing event
as a censoring event allows for identifiability of various quantities of interest including the
hazard or cumulative incidence.

Suppose in our motivating example of the autoworker study there are no causes of death
other than COPD and cancer, and that all workers are observed until their death. Let T1

as time until death by COPD, T2 as time until death by any cancer, and T = min(T1, T2).
Let ∆ = I(T2 ≥ T1) indicate that T2 is larger than T1. Then, the observed data is O =
(T,∆). Using the typical proof of identifiability with censoring, we can show that under the
independence assumption we are able to write the marginal hazard for T1 at time t, λ∗(t),
as a function of the observed data.
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λ∗(t) = P(T1 = t∣T1 ≥ t)

= P(T1 = t) ⋅ P(T2 ≥ t)
P(T1 ≥ t) ⋅ P(T2 ≥ t)

= P(T1 = t, T2 ≥ t)
P(T1 ≥ t, T2 ≥ t)

= P(min(T1, T2) = t,∆ = 1)
P(min(T1, T2) ≥ t)

= P(T = t,∆ = 1)
P(T ≥ t)

= P(T = t,∆ = 1∣T ≥ t)
= λ1(t)

Provided T2⊥⊥T1. Note the last line where the cause-specific hazard is defined.

1.3.3.2 Cox proportional hazards models

In his 1972 seminal paper, Sir David Cox presented the proportional hazards model that
specifies the conditional hazard function as the product of an unknown, “baseline" hazard
function and an exponential regression function of covariates [16]. He followed up with
a detailed discussion of the partial likelihood [15] which, with few alterations, is the Cox
proportional hazards model still in use today. An excellent summary of the proportional
hazards model and its uses is given by Lin in 2007, and reiterated below [32].

Consider observed data n i.i.d. copies of O = (T̃ ,∆,{Z(t) ∶ t = 1, . . . ,K}) as defined
previously, with the addition of the variables Z(t) for t = 1, . . . ,K which are restricted to
be dependent upon only t and possibly baseline exposure and covariates. These covariates
are often referred to as “time-dependent" covariates but should not be confused with what
this paper refers to as “time-varying confounders" [41, 18]. Time-varying confounders refers
to covariates dependent upon t, possibly baseline exposure and covariate, and always a non-
empty set of exposure and covariates which themselves vary with time and are affected by
prior exposure. This distinction is important and will be discussed in more detail later.

The proportional hazards assumption specifies that the hazard function of failure time
T , given Z(t), takes the form

λ(t∣Z) = exp{βZ(t)}λ0(t)

for unknown regression parameters β and arbitrary baseline hazard function λ0. The partial
likelihood proposed to estimate β is then

PL(β) =
n

∏
i=1

⎧⎪⎪⎨⎪⎪⎩

exp{βZi(T̃i)}
∑j∈Ri

exp{βZj(T̃i)}

⎫⎪⎪⎬⎪⎪⎭

∆i
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for Ri = {j ∶ T̃j ≥ T̃i}. Taking the derivative we find the score function

U(β) =
n

∑
j=1

∆i

⎧⎪⎪⎨⎪⎪⎩
Zi(T̃i) −

∑j∈Ri
exp{βZj(T̃i)}Zj(T̃j)

∑j∈Ri
exp{βZj(T̃i)}

⎫⎪⎪⎬⎪⎪⎭
for which the maximum likelihood estimator for PL(β) can be found by solving U(β) = 0.
This gives a parametric estimate, β̂ for the association between the corresponding baseline
covariate (e.g. exposure) and the log hazard of the outcome. Typically, when one is in-
terested not in the hazard but the cumulative incidence of an outcome, one can use the
Breslow estimator [16] under the proportional hazards model to simultaneously estimate β
and Λ0(t). This method yields the same estimators for β as Cox’s method, and the esti-
mator for the baseline cumulative incidence, Λ0(t), can be used to estimate the cumulative
hazard (incidence) function at any time. First, the Breslow estimators requires considering
λ0(t) as piecewise constant between uncensored failure times. Then, we notice that un-
der the proportional hazards assumption, the cumulative hazard function has a convenient
simplification:

Λ(t∣Z) = ∫
t

0
λ0(u)exp{βZ}du

= exp{βZ}Λ0(t)

where Λ0(t) = ∫
t

0 λ0(u)du is the baseline cumulative hazard function. Then, we write the
joint likelihood for β and Λ0 as

L(β,Λ0) =
n

∏
i=1

⎧⎪⎪⎨⎪⎪⎩
exp{βZi(T̃i)}λ0(T̃i)

⎫⎪⎪⎬⎪⎪⎭

∆i

exp
⎧⎪⎪⎨⎪⎪⎩
− ∫

T̃i

0
exp{βZi(t)}λ0(t)dt

⎫⎪⎪⎬⎪⎪⎭
which simultaneously yields the non-parametric maximum likelihood estimators (NPMLE)
for β as above and for Λ0(t) as

Λ̂0(t) =
n

∑
i=1

I(T̃i ≤ t)∆i

∑j∈Ri
exp{β̂Zj(T̃i)}

To expand this notation for multiple risks we define the cause-specific hazard functions [38]

λj(t∣Z) = lim
∆t→0

P{t ≤ T < t +∆t, J = j∣T ≥ t,Z(t)}
t

for failure types j = 1, . . . , J . The cause-specific hazard, λj(t∣Z), is the instantaneous failure
rate at time t from cause j given covariates Z(t) and the existence of all other causes of
failure observed. One can consider the overall hazard among J distinct failures as the sum
of the cause-specific hazards.

λ(t∣Z) =
J

∑
j=1

λj(t∣Z)
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The likelihood can be considered in terms of the overall survivor function, F (ti∣Zi) and the
cause-specific hazards.

n

∏
i=1

{[λji(ti∣Zi)]δiF (ti∣Zi)} =
⎛
⎝

n

∏
i=1

[λji(ti∣Zi)]δi
J

∏
j=1

exp{ − ∫
ti

0
λj[u∣Z]du}

⎞
⎠

This likelihood factors into separate components for each cause-specific hazard. As seen on
above in the treating a competing risk as a censoring event section we saw that the cause-
specific hazard identifies the marginal hazard only in the event of independence among the
outcomes. This is where many claim that the mere writing of a likelihood as a product of
cause-specific likelihoods is “treating a competing risk as a censoring event.” However, one
need not make that additional assumption, and merely interpret the cause-specific hazards
as the quantities they are: the instantaneous risk among at time t of failure by cause j.

Assuming the cause-specific hazard functions satisfy the proportional hazards model, i.e.
that

λj(t∣Zj) = λ0j(t)exp{βjZj}

for j = 1, . . . , J causes of failure. The partial likelihood can be written

PL(β) =
J

∏
j=1

nj

∏
i=1

⎡⎢⎢⎢⎢⎣

exp{βZji(T̃ji)}
∑Jk=1∑

nj

l=1 I(T̃kl ≥ T̃ji)exp{βZkl(T̃ji)}

⎤⎥⎥⎥⎥⎦

∆ji

With corresponding MLE β̂ and Breslow estimator of the baseline cumulative hazard function

Λ̂0(t) =
J

∑
j=1

nj

∑
i=1

I(T̃ji ≤ t)∆ji

∑Jk=1∑
nj

l=1 I(T̃kl ≤ T̃ji)exp{β̂Zkl(T̃ji)}

Note that only the jth component is needed to estimate the βj coefficients, and that in such an
estimation the other cause-specific hazards do not need to adhere to the proportional hazards
assumption, nor are other assumptions needed to be put on the relationship between the
outcomes other than mutual exclusivity. Breslow is careful to advise that, “The interpretation
of such effects is, however, restricted to actual study conditions and there is no implication
that the same regression estimates would prevail under a new set of conditions in which, for
example, certain causes of failure have been eliminated.” This is only if we wish to identify
the marginal hazards with the cause-specific hazards.

To apply the Breslow estimator to obtain cause-specific, cumulative incidence estimates,
one needs estimates for all β to obtain the estimate for the baseline cumulative incidence
function. Believing these estimates to be true requires the proportional hazards assumption
to hold for each cause-specific hazard.

Fine and Gray [20] sought to define a single proportional hazards model from which
one could estimate cumulative incidence without relying on models and estimates for the
multiple causes of failure. Based on earlier work, [22], Fine and Gray redefine failure time as
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a “improper random variable”, T ∗, as a combination of the constituent failure times. Recall
T1 and T2 as failure times for risks 1 and 2, respectively, T = min(T1, T2) observed failure
time and ε ∈ {1,2} denoting failure type.

T ∗ = I(ε = 1) × T + {1 − I(ε = 1)} ×∞

The implied subdistribution hazard, λ∗1(t∣Z), is then defined as the instantaneous risk of
failure type 1 at time t among those who have not had risk 1 or who have had risk 2.

λ∗1(t∣Z) = lim
∆→0

1

∆t
P{t ≤ T ≤ t +∆t, ε = 1∣T ≥ t ∪ (T ≤ t ∩ ε ≠ 1), Z}

Assuming proportional hazards, λ∗1(t∣Z) = λ∗10(t)exp{Z(t)β0} the partial likelihood and cor-
responding MLE for β∗, are constructed. Similarly, a version of Breslow’s estimator provides
a consistent estimate for Λ∗

10(t) = ∫
t

0 λ
∗
10(u)du to estimate the cumulative incidence function.

The authors continue by defining an inverse probability of censoring weighted estimator [43]
based on the previously defined score equation for instances where censoring events occur
and are not necessarily observed. This is contrasted to the case where censoring only occurs
due to study end, where the censoring time is observed on all individuals regardless of their
observed outcome. For censoring incomplete data, Fine and Gray do recommend an adjusted
set of estimators to account for this additional source of uncertainty, which simplify to those
already proposed when censoring is completely observed. The authors are the first to point
out that this hazard and its associated risk set is “unnatural.”

1.3.3.3 Causal Roadmap

The Causal Roadmap integrates causal modeling and statistical estimation [36]. It consists
of the following seven steps.

1. Specify knowledge about the system to be studied using a causal model

2. Specify observed data and their link to the causal model

3. Specify the target causal quantity

4. Assess Identifiability

5. Commit to a statistical model and estimand

6. Estimate

7. Interpret
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1.4 Causal Roadmap Applied to Competing Risks

1.4.1 Specify knowledge about the system to be studied using a
causal model

Consider the two experiments described previously, with n workers with a baseline covariate,
W observed prior to exposure, which are then followed until discrete time T , the first oc-
currence of one of J failures denoted by ε ∈ {1, . . . , J}. Without loss of generality, let J = 2.
So, letting T1 denote time until failure ε = 1, i.e. death by COPD, and T2 denote time until
failure ε = 2, i.e. death by any cancer, define T = minj(Tj). Let C denote the discrete time
until a censoring event such as death by any other cause or administrative censoring, and
let ∆ = I(C ≥ T ) and T̃ =min(T,C). Since each worker can experience at most one outcome
(or neither), we can parameterize each outcome as an underlying counting process such that
Nj(t) counts the number of failures of type j in [0, t + dt), and dNj(t) indicates failures of
type j in [t, t+ dt). C(t) counts the number of censoring events in [0, t+ dt). We assume no
ties, and, without loss of generality, the time ordering N1 → N2.

For both settings we can write structural equations to describe the true underlying dis-
tributions and impose restrictions on the model space (the set of all possible distributions
of the true data) that are based on domain knowledge. For example, let {X,U} ∼ P ∈MF

where U is the set of exogenous variables and X = (Pa(X), U) is the set of endogenous
variables generated by a set of functions, f , and parents, {Pa(X)} ⊂ {X,U}. Then MF

is the structural causal model containing all possible distributions, P , of {X,U} . We can
choose to assume that the error distributions are independent.

In the simple point-exposure setting each worker is assigned at baseline to a job with
either high or low exposure to metal-working fluids denoted by A ∈ {0,1} and the counting
processes N1(t) and N2(t) and censoring counting process C(t) are followed up for times
t = 1, . . . , τi where τi would be the end of followup for individual i (which varies by individual
due to staggered entry times). We assume time ordering C → N at each time.

W = fW (UW )
A = fA(W,UA)

C(t) = fCt(W,A,C(t − 1))
Nj(t) = fNj

(W,C(t), UN)

The information in the above structural equations can be expressed in a directed acyclic
graph (DAG) and accompanying list of assumptions – typically restraining the set of unob-
served variables.

In a setting with time-varying exposure and time-varying confounders, an individual
worker may change jobs (and therefore exposure) at at given point in time, and their exposure
in a given year may be affected by their previous time at work. The time-varying exposure
is denoted by A(t) ∈ {0,1} for time t with A(t) = (A(0),A(1), . . . ,A(t)) denoting the entire
history of exposure up to and including time t, and time-varying confounder denoted as L(t)
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W NA

W baseline characteristics
A exposure
N multinomial outcome

Figure 1.1: Directed acyclic graph for point exposure

for time t with L(t) = (L(0), L(1), . . . , L(t)) denoting the entire history of time at work up
to and including time t. Define variable after death/censoring equal to last observed value.

We assume a time ordering of W → C(t)→ N(t)→ L(t)→ A(t) for t = 1, . . . , τi and that
C(0) = 0, L(0) ∈W , Nj(0) = 0 for all j.

W = fW (UW )
A(0) = fA0(W,UA)
C(t) = fCt(W,A(t − 1), L(t − 1),C(t − 1), UC)
Nj(t) = fNjt

(W,A(t − 1), L(t − 1),C(t), UN)
L(t) = fLt(W,A(t − 1), L(t − 1),C(t), UC)
A(t) = fAt(W,A(t − 1), L(t),C(t), UA)

The DAG and corresponding assumptions for the above structural equation model can be
seen in figure 1.2.

1.4.2 Specify observed data and their link to the causal model

In the point exposure scenario, the observed data is n i.i.d copies of O = (W,A, T̃ ,∆, ε) ∼ P0,
or, using counting process notation, the observed data through time K can be expressed as
n i.i.d copies of O = (W,A,{C(t), dN1(t), dN2(t) ∶ t = 1, . . . ,K}) ∼ P0 ∈MF , the set of all
possible distributions of P0.

For the case with time-varying exposure and time-varying covariates, the observed data
is n i.i.d copies of O = (W, T̃ ,∆, ε,{A(t), L(t) ∶ t = 1, . . . ,K}) ∼ P0, or, using count-
ing process notation, the observed data can then be expressed as n i.i.d copies of O =
(W,{dN1(t), dN2(t),C(t),A(t), L(t) ∶ t = 1, . . . ,K}) ∼ P0 ∈MF , the set of all possible distri-
butions of P0.

If the structural equations defining the causal model accurately describe the data-generating
distribution that generated O, then the data are n i.i.d. draws of O from the corresponding
system of equations.
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W N

L1 L2

A1 A2

W baseline characteristics
L1 tvc at time 1
L2 tvc at time 2
A1 exposure at time 1
A2 exposure at time 2
N multinomial outcome

Figure 1.2: Directed acyclic graph for time varying exposure and covariates

1.4.3 Specify the target causal quantity

We will use the formal language of counterfactuals to explicitly state the hypothetical experi-
ment that would generate the full data, including the unobserved counterfactual distribution,
and the corresponding target counterfactual quantity as a parameter of the full distribution
that would answer the scientific question of interest.

Since the selection of j and K are arbitrary, results apply to estimation of cumulative
incidence under other values of j = 1, . . . , J and K = 1, . . . ,max(τi ∶ i = 1, . . . , n).

Under a point treatment setting consider the fixed treatment regime A = a0 ∈ {0,1}.
Suppose we are interested in the cumulative incidence of a particular outcome after some
number of years if all workers had been initially assigned a low exposure job compared to
that if all workers had been initially assigned to a high exposure job. Recall that, in this
scenario, we causally believe that only the exposure at the initial time point is relevant to
the structural model. In truth, this is unlikely in an occupational setting, and this example
is more fitting to a time-varying data structure. Perhaps a more appropriate example would
be in a randomized controlled trial with a single drug administration, or a cohort study of
mortality after a specified surgery intervention.

We let Na
j be the (possibly contrary to fact) counterfactual value of Nj for an individual

under treatment regime a. In this case, the target causal quantity is the cumulative incidence
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of events of type ε = j at a fixed time K under a specified treatment, a0.

Λa0
j (K) ∶= P(Na0

j (K) = 1) (1.7)

Under a time varying setting, consider the static treatment regime A = a0 ∈ {0,1} where
exposure level is set to either always high or always low. This structural model seems
more appropriate for this example because it is likely that health effects change as exposure
accumulates and vice-versa as workers change jobs based on their physical abilities. Suppose
we are interested in the cumulative incidence of a particular outcome after some number of
years if all workers had been at a low exposure job compared to that if all workers had been
at a high exposure job.

We let Na
j be the (possibly contrary to fact) counterfactual value of Nj for an individual

under treatment regime a. In this case, the target causal quantity is the cumulative incidence
of events of type ε = j at a fixed time K under a specified treatment, a0.

Λa0
j (K) ∶= P(Na0

j (K) = 1) (1.8)

1.4.4 Assess identifiability

The target causal quantity is identified if it is equal to a parameter of the distribution of
the observed data. The parameter of the observed data distribution is called the estimand.
In the point treatment setting we can define the cause-specific hazard of event j at time K
under treatment regime a0 and baseline covariates W as

λa0j (K;W ) ∶= P{dNj(K) = 1∣C(K) = 0,N(K − 1) = 0,A = a0,W}

and the combined hazard of any event at time K is

λa0⋅ (K;W ) ∶=
J

∑
j=1

λa0j (K;W )

Integrating over the baseline covariate distribution, QW and factoring out the survival
through time K − 1 of all causes as 1− the combined hazard at each time leading up, we can
express an estimand of the observed data as

EW{Λj(K;W,A = a0)} = ∫
w

K

∑
t=1

[λa0j (t;w)
t−1

∏
s=1

{1 − λa0⋅ (s;w)}]dQW (w)

The observed data parameter corresponds to the counterfactual cumulative incidence under
conditional independence of treatment assignment, positivity, and coarsening at random.

Λa0
j (K;W ) = P{Nj(K) = 1∣dN(K − 1) = 0,C(K) = 0,A = a0,W} (1.9)
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In the time-varying setting we can define the cause-specific hazard of event j at time K
under treatment regime a0, baseline covariates W , and time varying covariates as

λa0j (K;W,L) ∶= P{dNj(K) = 1∣C(K) = 0,N(K − 1) = 0,A = a0,W}

and the combined hazard of any event at time K is

λa0⋅ (K;W ) ∶=
J

∑
j=1

λa0j (K;W )

Integrating over the baseline covariate distribution, QW and factoring out the survival
through time K − 1 of all causes as 1− the combined hazard at each time leading up, we can
express the parameter of interest as

Λa0
j (K) ∶= EW{Λa0

j (K;W )}

= ∫
w

K

∑
t=1

[λa0j (t;w)
t−1

∏
s=1

{1 − λa0⋅ (s;w)}]dQW (w)

The observed data parameter corresponds to the counterfactual cumulative incidence under
sequential conditional independence of treatment assignment, positivity, and coarsening at
random.

Λa0
j (K;W,L) ∶= P{dNj(K) = 1∣dN(K − 1) = 0,C(K) = 0,A = a0,W,L(K)} (1.10)

1.4.5 Commit to a statistical model and estimand

1.4.5.1 Specify the statistical model

The likelihood of the observed data, P0 ∈M can be expressed as a product of the marginal
distribution of the baseline covariate, the conditional distribution of exposure given the
baseline covariate, the conditional probability of N1 = 1 given the past and no ties and
the conditional probability of N2 = 1 given the past and no ties. We assume the outcome
ordering of N1 → N2, and at this point we place no restrictions on the model,M containing
all possible distributions of P0.

L(K) =
K

∏
t=1

QN(t)(N(t)∣W = w,A = a,N(t − 1)) × gA(A = a∣W = w) ×QW (W = w)

1.4.5.2 Specify additional convenience assumptions and the corresponding
augmented statistical model

This model does not require independence of outcomes but causal assumptions are required
for causal inference.
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1.4.5.3 Specify the estimand

The estimand is a parameter of the distributions contained in the augmented statistical
model that, if the convenience assumptions are true, is equal to the target causal quantity.
Our estimand, the cumulative incidence, can be expressed in terms of cause-specific hazards
or intensities of the different counting processes. These can be expressed using the coun-
terfactual sub-distributions under interventions on exposure and censoring for each outcome
possibilty, marginalized over covariates.

We can write the cause-specific hazard for outcome j at time K under counterfactual
intervention a as:

λa1(w) = E{dNj(1)∣A = a,C(K − 1) = 0,N(K − 1) = n(K − 1),W = w}

And we can denote the sum of all hazards at time K as

λa(K;w) =
J

∑
j=1

λaj (K;w)

Then, the cumulative incidence of outcome 1 at time K can be expressed as

Λa
1(K) =

K

∑
t=1

{λa1(t;w) × (
t−1

∏
s=1

[1 − λa(s;w)])}

e.g. for K = 3

Λa
1(3;w) = λa1(1;w) × (1)

+ λa1(2;w) × (1 − λa(1;w))
+ λa1(3;w) × ([1 − λa(1;w)] × [1 − λa(2;w)])

To find the outcome of interest, i.e., the counterfactual cumulative incidence of COPD at
time K setting exposure A = a∗ over the entire population, we marginalize over the baseline
covariate distribution:

Λa∗

1 (K) =∑
w

[
K

∑
t=1

{λa∗1 (t;w) × (
t−1

∏
s=1

[1 − λa∗(s;w)])}] × P(W = w)

e.g. for K = 3

Λa∗

1 (3) = [λa∗1 (1;w1) × (1)
+ λa∗1 (2;w1) × (1 − λa∗(1;w1))
+ λa∗1 (3;w1) × ([1 − λa∗(1;w1)] × [1 − λa∗(2;w1)])] × P(W = w1)
+ [λa∗1 (1;w2) × (1)
+ λa∗1 (2;w2) × (1 − λa∗(1;w2))
+ λa∗1 (3;w2) × ([1 − λa∗(1;w2)] × [1 − λa∗(2;w2)])] × P(W = w2)
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1.4.6 Estimate

The estimator is selected typically based on statistical properties. Targeted Minimum Loss-
Based Estimation (TMLE) allows for the estimation of cumulative incidence of disease in a
cohort following a specified intervention or exposure regime. The longitudinal TMLE was
first described by van der Laan and Gruber [28] and utilizes statistical notation first proposed
by Bang and Robins [7].

The LTMLE estimator estimates a series of nested conditional regressions for counting
down from the year of estimation, K, to 1. Each regression is targeted toward the parameter
of interest, so that the estimator of the mean outcome under the specified regime is consistent
so long as the exposure mechanism models are consistently estimated, even when the outcome
regressions are misspecified.[49].

The final result is a marginal estimate of the cumulative incidence of the outcome among
the cohort after K year of follow-up had the specified exposure regime been followed by all
workers.

Any data-adaptive method can be used to fit each of the nested regressions. Typically we
use SuperLearner [47] to fit main-term logistic regressions for each of the exposure, censoring,
and outcome models using the previously specified covariates as measured up to the current
time period.

In the case of competing risks, we can separately estimate the cumulative incidence for
each outcome, and specify the competing risk as a time-varying covariate in the outcome
mechanisms. We then propose standardizing these estimates so that their sum equals one
by dividing each by their sum. This linear function of three TMLE estimators is itself a
targeted minimum loss-based estimator.

Let Ψ̂k be the ltmle estimator of parameters Ψk for i = 1,2,3 for the three outcomes: death
from COPD (k = 1), death from any cancer (k = 2), and death from neither COPD or cancer
(k = 3). Note the influence curve for each estimator is ICk such that Ψ̂k−Ψk ≈ 1

n ∑
n
i=1 ICk(Oi).

Now, ∑3
k=1 Ψk = 1 but ∑3

k=1 Ψ̂k ≠ 1

Let Ψ = ∑3
k=1 Ψk and Ψ̂ = ∑3

k=1 Ψ̂k. Note Ψ = 1 but Ψ̂ ≠ 1
So,

Ψ̂1 + Ψ̂2 + Ψ̂3 − (Ψ1 +Ψ2 +Ψ3)

≈ 1

n

n

∑
i=1

IC1(Oi) +
1

n

n

∑
i=1

IC2(Oi) +
1

n

n

∑
i=1

IC3(Oi)

and

Ψ̂1 + Ψ̂2 + Ψ̂3 − 1

≈ 1

n

n

∑
i=1

IC1(Oi) + IC2(Oi) + IC3(Oi)

Recall Ψ̂1 −Ψ1 ≈ 1
n ∑

n
i=1 IC1(Oi) so Ψ̂1 ≈ 1

n ∑
n
i=1 IC1(Oi) +Ψ1 and Ψ̂1 −Ψ1 ≈ Ψ′

1(Ψ̂1 −Ψ1)
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If ICj is the influence curve of estimator Ψnj
of parameter Ψ0j , for each j = 1, . . . , d then

the influence curve of the function f(Ψnj
∶ j is an estimator of f(Ψ0j ∶ j) and f(Ψnj

∶ j) =
∑j d

dΨ0j
f(Ψ0)ICj

1.4.7 Interpretation

Interpretation of results starts by a clear distinction of statistical and causal interpretations.
The true value of an estimand may differ from the true value of the causal quantity of interest
based on the veracity of the augmented assumptions. The choice of the statistical estimator
does not affect the difference between the estimand and the causal quantity of interest,
however. Statistical bias is determined by choice in estimator and can be minimized and
quantified (within levels of certainty). Sensitivity analyses can attempt to quantify the
difference between the estimand and the causal quantity of interest. Plots and tables can
be generated to understand the pre-determined research question that can be answered by
non-parametric estimates of the cumulative incidence of a particular outcome.
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Chapter 2

Applied Estimation of Causal Effects of
Occupational Exposure on Competing
Causes of Mortality

2.1 Introduction
Estimating the causal effect of high, chronic, occupational exposure to metal-working fluids
(MWF) on the risk of death by Chronic Obstructive Pulmonary Disease (COPD) is of
interest to occupational health scientists. An analysis based on applying g-estimation in the
UAW-GM cohort study suggests lowering the recommended limits of exposure to straight,
soluble, and synthetic MWF relative to the 1998 National Institute for Occupational Safety
and Health recommendations could save hundreds of years of life lost to COPD, with the
greatest saved under a ban on soluble fluids (1550 years) and straight fluids (737 years)
[37]. This paper adds to the existing literature by considering competing risks in the same
Autoworker study. That study was jointly funded in 1985 by labor and management as
a cancer mortality study with an extensive exposure assessment component, motivated by
worker concerns about digestive and respiratory cancers in relation to MWF exposure [19].

Soluble fluids are the most common MWF exposure, but straight fluids are classified as
human carcinogens by the International Agency for Research on Cancer (IARC) [40]. This
paper adds to existing literature by characterizing the cumulative incidence of COPD death
due to straight MWF exposure with the additional consideration of the competing risk of
cancer death.

COPD takes a long time to develop, during which time individuals under study may die
from other diseases with relatively shorter latent periods, such as cancer. It has also been
demonstrated in previous literature that MWF exposure has a direct effect increasing risk of
death due to cancer in this population [10], largely due to specific cancers including prostate
and lung, among others.

The two predominant frameworks for estimating the cumulative incidence of an outcome
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in the presence of competing risks are the "cause-specific" and the "subdistribution" [30].
The cause-specific cumulative incidence function describes the marginal risk of the outcome
relative not to survival but to the union of survival or the competing risk. When this
parameter is estimated using Cox proportional regression models, one typically estimates
the cause-specific hazard and transforms this to an estimate of more epidemiologically useful
parameter, the cause-specific cumulative incidence [9]. This estimation technique requires
both the proportionality assumption of the cause-specific hazard and the assumption that
the competing events are independent of each other (so as to "treat the competing risk as
a censoring event"). Divorced from the estimation technique, however, the cause-specific
cumulative incidence function remains the desired parameter of interest by epidemiologists.

Methods to estimate the subdistribution parameters have been developed to circumvent
the independence assumption necessary for interpreting Breslow estimators. The subdistri-
bution hazard and subdistribution cumulative incidence can be unbiasedly estimated, though
their interpretation continues to be cause for confusion [6]. Subdistribution parameters are
defined via an improper random variable which classifies those who experience the competing
risk as having infinite survival time [20]. The convenience of these parameters is that the
subdistribution cumulative incidence can be estimated directly from a proportional hazard
model.

In this paper we estimate the outcome distribution of the cumulative incidence of death
from COPD under high- and low-exposure causal interventions using the non-parametric
longitudinal targeted minimum loss-based estimator (ltmle) [31]. We index causal exposure
interventions by the observation year in which cumulative exposure switches from low to
high as defined by a specified threshold. The thresholds will be pre-selected percentiles from
the distribution of cumulative exposure values over the entire cohort and observation time.
We anticipate that an earlier switch time increases the risk of COPD, and that interventions
that use a higher threshold to define high exposure will result in higher estimated COPD
risk.

By directly estimating the cumulative incidence distribution of the outcome we can gain
a more complete understanding of impact that an OSHA policy (federal or state) or else
informal industry guideline designed to lower MWF exposure in the auto industry would
have had on the risk of death due to COPD in this population.

2.2 Methods

2.2.1 Study Population

The United Autoworkers-General Motors (UAW-GM) cohort mortality study was designed
to assess the effects of metalworking fluids on workers’ health and has been described in
detail previously [19]. The study cohort for the current paper was drawn from this larger
population of 45,000 automobile production workers from three manufacturing plants in
Michigan. The study cohort included 39,309 workers hired between 1938 and 1982 after
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restricting eligibility to those with at least three years of employment at GM. Individual
follow-up began after three years of work and lasted through 1995.

2.2.2 Exposure

The exposure to metalworking fluids measured in the UAW-GM cohort mortality study has
been published previously [24]. Concentration of straight, soluble, and synthetic metalworking-
fluid was estimated based on particulate matter (PM) measurements taken from air samples
collected between 1958 and 1987 by industrial hygienists. Exposure factors were then as-
signed to workers based on their plant, department, and specific job obtained from their
employment records. Exposure was characterized as one of two a binary variables, where
individual workers’ time-varying cumulative straight MWF exposure was classified as either
above (high) or below (low) the 75th and 90th percentiles of the distribution of cumulative
straight MWF exposure in the entire cohort.

Exposure accumulates over time, so a worker with low exposure over a long period of
time might have the same cumulative exposure as a worker with high exposure over a short
period of time. It would be desirable for analyses to differentiate between workers with the
same cumulative exposure but with different exposure histories.

In an effort to make such a distinction, exposure interventions are indexed by the obser-
vation year in which the cumulative straight metal working fluid switched from low to high,
as defined by the 75th, and the 90th percentiles of all observed cumulative exposure values.
Exposures can therefore be described by the "switch time", S = 0,1,2,3,⋯,15, and by their
"threshold" (the 75th or 90th percentiles).

2.2.3 Outcome and Competing Risk Measure

Vital status data were obtained through the Social Security Administration, the National
Death Index, plant records, state mortality files, and in some instances death certificates.
Cause of death was obtained from ICD-9 and ICD-10 codes from state vital records and
death certificates. For this study, deaths were categorized using as either caused by any
cancer (ICD-10: C00-D49; ICD-9: 140-165, 170-175, 179-208, 210-239), chronic obstructive
pulmonary disease (COPD) (ICD-10: J40-J47; ICD-9: 490-492, 496), or any other cause.

2.2.4 Covariates

Baseline covariates include race (black, white, or unknown), sex (male or female), plant
location (plant 1, plant 2, or plant 3), categorical calendar year of hire grouped by quantiles
(1938-1952, 1953-1965, 1966-1973, 1974-1981), and binary age of hire (less than 25, or greater
than or equal to 25 years old), as well as cumulative exposure to straight metal-working fluid
in the first three years at work. This demographic and work history information was obtained
through employment records provided by the employer and the labor union.
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Time-varying covariates include employment status (actively at work or left work), cu-
mulative time off work (using the 45th percentile as the cut point), average annual exposure
to straight MWF (using the 90th percentile as the cut point), and the diagnosis of any cancer
up to that year of follow-up. The Michigan Cancer Registry provided ICD-O codes and dates
of incident cancer diagnosis for individuals alive during or after 1985, and the use for this
autoworkers cohort has been described previously [14].

2.2.5 Censoring

Workers are considered censored if they are still alive in 1995 (administrative censoring), if
their observed age exceeds 108, or if they die due to a cause other than cancer or COPD.

2.2.6 Statistical Methods

Targeted Minimum Loss-Based Estimation (TMLE) allows for the estimation of cumulative
incidence of disease in a cohort following a specified intervention or exposure regime. We are
interested in the effect of high cumulative MWF exposure as defined by the 25th and 75th
percentiles on death from COPD after 50 years of followup. Additionally, we compared the
effect of delaying the time until a worker switches from low to high cumulative exposure.

We estimated the cumulative incidence of death from COPD in the worker population
if, during the first S − 1 years of follow-up, they all had cumulative MWF exposure below
the cut-off, then, during the S through 50th year of follow-up, they all had cumulative MWF
exposure above the cut-off. We compared these estimates across multiple values of S and
using the two exposure cut-offs. All exposure regimes intervene to prevent censoring.

The longitudinal TMLE was first described by van der Laan and Gruber [28] and utilizes
statistical notation first proposed by Bang and Robins [7]. Our target parameter of interest
is the mean cumulative incidence of COPD death at each specified time point t = 1, . . . ,50,
among workers following the defined exposure regime s = (0,1s,...,50) where t = 1 indicates
the first year of follow-up, and s indicates the follow-up year of switching from low to high
cumulative exposure. For instance, following exposure intervention regime 10 = (0,15,...,50)
represents cumulative exposure to MWF below the cut-off for the first 4 years of follow-up,
then cumulative exposure to MWF above the cut-off for the fifth through the fiftieth years
of follow-up and being uncensored at each time point. The target parameter is EYs(t) for
a = 0, . . . ,10 where Y (t) is an indicator of death from COPD prior to year t and the s
subscript indicates that this is a counterfactual outcome under intervention regimen s. Each
estimation procedure was performed separately for each intervention regime, exposure cut-off
and time t = 1, . . . ,50.

First, for a given t, we estimated the true exposure assignment mechanism, or the prob-
ability of workers following the specified intervention regime at time point k, given the
observed past, including the treatment and censoring history and other measured covariates,
which we denote gE(k). We similarly generated an estimate for the censoring mechanism
gC(k) , which estimated the probability of a worker fitting one of the censoring criteria in
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time period k given the observed past. For each of the 22 estimation procedures (eleven
switch times and two binary cumulative exposure definitions), fits of the g models gE and gC
were generated using all person-years where, at time k, the worker had followed the regimen
of interest up to time point k − 1.

We then estimated a series of nested conditional regressions for k counting down from
k = t, . . . ,1. Each estimate predicted the probability of the outcome between time points k
and t by predicting either the outcome of the previous (k + 1)th regression or the observed
outcome.

Each regression was targeted toward the parameter of interest, so that the estimator
of the mean outcome under the specified regime is consistent so long as the g models are
consistently estimated, even when the outcome regressions are misspecified.[49]

The final result is a marginal estimate of the cumulative incidence of the outcome among
the cohort after t year of follow-up had regime s been followed by all workers.

We used SuperLearner [47] to fit main-term logistic regressions for each of the exposure,
censoring, and outcome models using the previously specified covariates as measured up
to the current time period. We fit these regressions iteratively for each time period (t =
1, . . . ,50) and generate outcome estimates for the cumulative incidence of death from COPD
or cancer among the population at time t. We used these 50 estimates to generate a marginal
influence curve to estimate the outcomes distribution over the entire follow-up time. We
calculated risk ratios and differences, and their corresponding confidence intervals, using
influence curve based variance estimates, and compared across exposure regimes. We used
the ltmle package [31] in R version 4.1.2. [39]

2.2.7 Parameter of Interest and Estimators

In a world of no censoring, under each previously specified exposure regime, we wish to
estimate the distribution of the cumulative incidence of death from COPD. We use the
longitudinal targeted minimum loss-based estimator (ltmle) to estimate separately the cu-
mulative incidence of death from COPD, death from any cancer, and death from either
COPD or cancer. We make these estimates at 50 and 55 years of follow-up (the 85th and
90th percentiles of distribution of length of follow-up), and estimate each of them under each
exposure regime.

We consider exposure interventions indexed by the observation year in which the cumu-
lative straight metal working fluid switching from low to high, and by the threshold used
to define "high" cumulative exposure. Exposures can therefore be described by the "switch
time", S = 0,1,2,3,⋯,11, and by their "threshold", θ = 25,50,75,90.

These estimates will be standardized so that their sum equals one by dividing each by
their sum. This linear function of three tmle estimators is itself a targeted minimum loss-
based estimator.

Let Ψ̂k be the ltmle estimator of parameters Ψk for i = 1,2,3 for the three outcomes: death
from COPD (k = 1), death from any cancer (k = 2), and death from neither COPD or cancer
(k = 3). Note the influence curve for each estimator is ICk such that Ψ̂k−Ψk ≈ 1

n ∑
n
i=1 ICk(Oi).
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Now, ∑3
k=1 Ψk = 1 but ∑3

k=1 Ψ̂k ≠ 1

Let Ψ = ∑3
k=1 Ψk and Ψ̂ = ∑3

k=1 Ψ̂k. Note Ψ = 1 but Ψ̂ ≠ 1
So,

Ψ̂1 + Ψ̂2 + Ψ̂3 − (Ψ1 +Ψ2 +Ψ3)

≈ 1

n

n

∑
i=1

IC1(Oi) +
1

n

n

∑
i=1

IC2(Oi) +
1

n

n

∑
i=1

IC3(Oi)

and

Ψ̂1 + Ψ̂2 + Ψ̂3 − 1

≈ 1

n

n

∑
i=1

IC1(Oi) + IC2(Oi) + IC3(Oi)

Recall Ψ̂1 −Ψ1 ≈ 1
n ∑

n
i=1 IC1(Oi) so Ψ̂1 ≈ 1

n ∑
n
i=1 IC1(Oi) +Ψ1 and Ψ̂1 −Ψ1 ≈ Ψ′

1(Ψ̂1 −Ψ1)
If ICj is the influence curve of estimator Ψnj

of parameter Ψ0j , for each j = 1, . . . , d then
the influence curve of the function f(Ψnj

∶ j is an estimator of f(Ψ0j ∶ j) and f(Ψnj
∶ j) =

∑j d
dΨ0j

f(Ψ0)ICj

2.3 Results
We used a cohort of n = 39,309 autoworkers from the United Auto Workers–General Motors
(UAW-GM) dataset [19]. We included person-years for each individual starting with their
year of hire and ending with their year of death or 2015, whichever came first. Follow-up
cancer diagnoses observation started in 1985 and ended in 2016. Follow-up for mortality
started in 1941 and ended in 2015. Exposure data ended in 1994. We excluded individuals
missing more than half of their work history. We excluded 8 workers with age less than 16,
and 4 workers with no observed reason for end of observation.

Characteristics of the cohort used are presented in table 2.1. There were 947 deaths due
to COPD, 5,610 and deaths due to any cancer, and the remaining 32,752 were either lost to
follow-up or still alive by the end of mortality follow-up in 2015. Follow-up observation lasted
for an average of 39 years per worker, and individual workers stayed at work for an average
of 17.6 years. The cohort workers contained 34,515(87.8%) male, and 23,295(59.3%) white.
There were 19,136(48.7%) workers hired 25 years old or higher, and 18,535(47.2%) workers
hired in 1965 or later. On average, workers took 2.6% time off annually, and 6,941(17.7%)
were diagnosed with cancer between 1985− 2016. Across all person-years, the mean average
annual straight metal-working fluid exposure was 0.050 mg/m3, and with median and inter-
quartile range (IQR) both 0. Excluding values of 0, the mean average annual straight MWF
exposure was 0.473 mg/m3, with median 0.104 mg/m3 with IQR 0.346.

The distribution of cumulative straight metal-working fluid exposure across all observed
person-years is presented in table 2.2 for the full cohort, and for the subcohorts of those who
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Study population (n=39,309)
Characteristic No. % Mean Median (IQR)
Follow-up years 39 (13)
Years at work 17.6
Avg annual straight MWF exp. (mg/m3)

all 0.050 0 (0)
non-zero 0.473 0.104 (0.346)

Demographics
male 34,515 87.8
white 23,295 59.3
>= 25 yo at hire 19,136 48.7
>= 1965 yr of hire 18,535 47.2

Time-varying covariates
average time off 2.6
cancer Dx 6,941 17.7

Outcomes of Interest
censored 32,752 83.3
cancer death 5,610 14.3
COPD dth 947 2.4

Table 2.1: Demographic, time-varying covariates, and outcomes of the United Autoworkers-
General Motors (UAW-GM) cohort.

die from COPD and those who died from any cancer. In the full cohort, the mean exposure
was 2.26 mg/m3, with median 0.056 mg/m3 and IQR 0.85. Excluding 0 values, the mean
exposure was 4.09 mg/m3, with median 0.69 and IQR 2.29. In the COPD mortality cohort,
the mean exposure was 3.07 mg/m3, with median 0.09 and IQR 1.40. Excluding 0 values,
the mean exposure was 5.45 mg/m3, with median 1.03 and IQR 3.64. In the cancer mortality
cohort, the mean exposure was 2.74 mg/m3, with median 0.05 and IQR 1.06. Excluding 0
values, the mean exposure was 4.94 mg/m3, with median 0.86 and IQR 2.92. The 75th and
90th percentiles of the cumulative straight MWF exposure distribution for the full cohort are
0.85 and 4.21 mg/m3, respectively.

The number of deaths from COPD and cancer by year of follow-up is presented in table
2.3 and in figure 2.1. Most (87.3%) COPD deaths occurred within 55 years of follow-up,
and most (94.9%) cancer deaths occurred in the same follow-up time. Table 2.3 and figure
2.2 show the percent of deaths from COPD and from cancer among workers eligible (alive
and still being followed) by follow-up year.

The number of COPD and cancer deaths increase between follow-up years 0−40 and then
decrease through follow-up year 75. However, the percent of deaths per observation year
among those who were eligible increases throughout the years of follow-up, only decreasing
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Mean Median (IQR) 75th 90th

Full cohort (n=5,610)
all exp. 2.26 0.05 (0.85) 0.85 4.21
non-zero 5.45 1.03 (3.64) 3.94 12.9

COPD (n=947)
all exp. 3.07 0.09 (1.40) 1.4 7.12
non-zero 5.45 1.03 (3.64) 3.94 12.9

Cancer death (n=5,610)
all exp. 2.74 0.05 (1.06) 1.05 5.32
non-zero 4.94 0.86 (2.92) 3.17 11.04

Table 2.2: Cumulative straight metal-working fluid exposure distribution across UAW-GM
cohort, and among those who died from COPD and from cancer.

again after 55 years of follow-up.
The observed number and percent of deaths from COPD and from cancer by switch

time exposure regime is presented in table 2.4. The percent represents the proportion of the
total number of workers whose exposure history followed a particular exposure regime and
who were eligible (still alive and under observation) for the outcomes. Recall that exposure
regimes are defined by the switch time, S, at which a worker’s cumulative straight metal-
working fluid crosses a specified threshold, selected as the 75th and 90th percentiles of the
cumulative exposure distributions. We examine 16 switch time regimes per high exposure
threshold and compare them to a "never switch" exposure regime in which a worker’s cumu-
lative exposure never crosses the 25th percentile threshold. For example, table 2.4 shows that
among those whose cumulative straight MWF exposure crossed the 75th percentile threshold,
0.85 mg/m3, during their first year of observation, S = 1, there were 17 deaths from COPD,
and 74 deaths from cancer, which make up 3.9% and 16.9% of the 438 workers eligible and
who followed the S = 1 exposure regime. For comparison, among those who never crossed
the 75th percentile threshold, 185, (54%) and 4,657, (13.6%) died from COPD and cancer,
respectively.

Table 2.4 shows that under each high exposure threshold, among those who died from
COPD and from cancer and whose cumulative straight MWF exposure crossed the respective
threshold within the first 15 years of observation (the columns marked "Total eligible" in
table 2.4), most, 63.6% from COPD and 52.2% from cancer for the 75th, and 50.6% from
COPD and 51.8% from cancer for the 90th, are accounted for by those whose cumulative
straight MWF exposure exceeded the respective threshold during the "baseline" first three
years of their employment (switch time S = 0) or within the first three years of follow-up
(switch time S = 1, . . . ,3). This trend is lessened, but still present even when we look at the
percent of eligible workers by threshold and switch time.

Table 2.5 and figures 2.3 and 2.4 show the TMLE estimated cumulative incidence and 95%
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Cause of death COPD Cancer
Follow-up year N (%) N (%) Total eligible

0-5 2 (0.01) 57 (0.15) 39,309
5-10 3 (0.01) 150 (0.39) 38,948
10-15 15 (0.04) 224 (0.59) 38,264
15-20 41 (0.11) 311 (0.83) 37,294
20-25 32 (0.09) 474 (1.32) 36,003
25-30 93 (0.27) 677 (1.98) 34,197
30-35 111 (0.35) 825 (2.59) 31,857
35-40 152 (0.56) 831 (3.04) 27,327
40-45 147 (0.82) 746 (4.16) 17,932
45-50 145 (1.19) 593 (4.87) 12,168
50-55 86 (1.38) 383 (6.14) 6,241
55-60 81 (2.2) 245 (6.66) 3,677
60-65 28 (1.69) 78 (4.71) 1,657
65-70 9 (2.19) 14 (3.41) 411
70-75 2 (2.56) 2 (2.56) 78

Table 2.3: Observed number and percent of deaths from COPD and from cancer in the
UAW-GM cohort among those still eligible by year of follow-up, .

confidence intervals of COPD and cancer deaths after 55 years of follow-up by switch time
regime, S = 0,1 . . . ,15, and by high cumulative straight MWF exposure threshold of 75th and
90th percentiles. These estimates represent the cumulative incidence of COPD death (and
death from cancer) if the exposure history for every worker was intervened on and set to the
exposure regime of interest. For example, we estimate that if every worker had cumulative
straight MWF exposure cross the 75th percentile exactly in their fifth year of observation,
7.8%(7.4,8.1) would die from COPD, and 21.8(20.5,22,7) would die from cancer, by the 55th

year of follow-up. The "never switch" row shows the estimated cumulative incidence and
95% confidence intervals of COPD and cancer deaths after 55 years of follow-up if all workers
had cumulative straight MWF exposure levels below the 25th percentile for all follow-up.

A visualization of the TMLE estimates for the cumulative incidence of COPD and cancer
death after 55 years of follow-up by switch time regime and by high straight MWF exposure
threshold is presented in figures 2.3 and 2.4.

In figure 2.3 we see an outlier at switch time S = 11 and high exposure threshold 90th, and
an overall increase in variability in estimates for switch time regimes for S ≥ 10. Otherwise,
estimates across switch time are relatively stable, and there doesn’t appear to be much
distinction between the estimates by high exposure threshold.

In figure 2.4 we see more variability in estimates of cumulative death for cancer across
switch time regimes than we did for COPD death. For 12 of the 16 switch time regimes
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Figure 2.1: Observed number of deaths from COPD and from cancer in the UAW-GM cohort
by year of follow-up.

displayed, the estimate using the 90th percentile is lower than that for the 75th percentile.
Risk ratios are presented in table 2.6 which compare the estimated cumulative incidence

of death from COPD and from cancer by switch time exposure regime to estimates from
the never switch exposure regime. For example, we see that the ratio comparing estimated
cumulative incidence of death from COPD if all workers had a cumulative straight MWF
exposure above the 75th percentile at the start of follow-up (S = 0) relative to the same risk
if all workers had a cumulative straight MWF exposure below the 25th percentile throughout
follow-up is 0.89(0.86,0.93).

This could be interpreted to mean that a person with cumulative straight MWF exposure
over the 75th percentile within the first three years of employment has 89% the risk of dying
from COPD within 55 years as someone whose cumulative straight MWF exposure newer
exceeds the 25th percentile.

Figures 2.5 and 2.6 show the risk ratios comparing the estimated cumulative incidence
of death, from COPD and from cancer, respectively, by switch time exposure regime to
estimates from the never switch exposure regime. The example given above is represented
by the light blue circle at (0,0.89) on the plot. Similarly to the estimated cumulative
incidences of COPD by switch time regime, we see a large amount of variability in the risk
ratios for S ≥ 11 and an outlier at S = 11. The risk ratios are both above and below 1, with
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Figure 2.2: Percent of deaths from COPD and from cancer among eligible workers in the
UAW-GM cohort by year of follow-up.

no noticeable trend over the values of S or between the estimates using the 75th and the 90th

percentile.
The risk ratios for cancer deaths (figure 2.6), on the other hand, do seem to be dif-

ferentiated by the high cumulative exposure threshold used. Counterintuitively, the risk
ratios using the 905th percentile are lower than those using the 75th percentile, indicating a
lower risk of cancer death if workers are forced to have cumulative straight MWF exposure
above the 90th percentile than above the 75th percentile, relative to exposure below the 25th

percentile. This is possibly explained by the healthy worker effect [18], discussed later.
The cause-specific estimates and 95% confidence intervals of cumulative incidence of

COPD death and of cancer death after 55 years of follow-up by switch time (for S = 0, . . . ,10)
and by high cumulative straight MWF exposure threshold are presented in table 2.7.These
estimates were generated using the cause-specific TMLE estimator, which is identical to the
TMLE estimator presented in this paper, except that the competing risk is considered a
censoring event. So, for example the cause-specific estimates of the cumulative incidence of
COPD death is generated using a censoring variable that includes death from cancer.

These estimates are larger than those generated using the TMLE estimator in 2.5. For
example, the cause-specific estimates of the cumulative incidence of death from COPD using
the 75th percentile with switch time intervention regime S = 1 is 13.4%(12.9,14) whereas
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Cause of death COPD Cancer Total eligible
High exposure

threshold
percentile 75th 90th 75th 90th 75th 90th

Observed
switch time N (%) N (%) N (%) N (%) N

0 64 (3.7) 11 (3.1) 255 (14.8) 62 (17.7) 1720 351
1 17 (3.9) 9 (4) 74 (16.9) 35 (15.4) 438 227
2 12 (2.6) 9 (4.9) 83 (18) 31 (16.8) 460 185
3 12 (3.4) 7 (3.3) 52 (14.8) 33 (15.3) 352 215
4 14 (4.1) 5 (3.7) 52 (15.3) 21 (15.7) 340 134
5 8 (3.1) 2 (1.6) 41 (16.1) 17 (13.7) 254 124
6 5 (2.3) 2 (2.2) 38 (17.8) 15 (16.9) 214 89
7 4 (2) 4 (4.5) 38 (19.2) 18 (20.2) 198 89
8 5 (2.6) 2 (2.3) 38 (19.5) 17 (19.3) 195 88
9 6 (2.9) 3 (3.8) 41 (19.9) 13 (16.5) 206 79
10 3 (1.8) 3 (3.7) 27 (16.2) 11 (13.6) 167 81
11 1 (0.7) 6 (7.9) 17 (12.6) 16 (21.1) 135 76
12 8 (6) 3 (4.6) 21 (15.8) 7 (10.8) 133 65
13 2 (1.8) 2 (3.5) 16 (14.7) 9 (15.8) 109 57
14 4 (4) 1 (1.7) 21 (20.8) 6 (10.3) 101 58
15 0 (0) 0 (0) 0 (0) 0 (0) 89 48

never switch 492 (2.1%) 3,052 (13.3%) 22,890
(25th percentile)

Table 2.4: Observed number of deaths from COPD and from cancer in the UAW-GM cohort
by observed switch time regime, and the proportion of COPD and cancer deaths among
those eligible.

the TMLE estimate for the same parameter is 9.8%(7.7,12). There are notable outliers
for switch time S = 6, (20.8%), and using the 90th percentile threshold and switch times
S = 4,7,9.

Risk ratios comparing the estimated cause-specific cumulative incidence of death from
COPD and from cancer by switch time exposure regime to cause-specific estimates from the
never switch exposure regime are presented in table 2.8 and visually represented in figures
2.7 and 2.7. These risk ratios are similar to those generated by the TMLE estimator in that
they generally vary around 1 with no noticeable trend. The cause-specific estimates for the
cumulative incidence of COPD in figure 2.7 for switch times S = 7,9 are greater than 2, and
seem to stand out among the other estimates.
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Cause of Death COPD Cancer
High exposure

threshold
percentile 75th 90th 75th 90th

Exposure regime
switch time (yrs)

0 6.8 (5.4,8.2) 5.2 (3.8,6.7) 23.2 (20.7,25.6) 28.6 (20.8,26.8)
1 9.8 (7.7,12) 8.9 (7.4,10.4) 24 (21.1,26.9) 28.8 (17.7,22.5)
2 8.6 (7.9,9.4) 8.3 (7.7,8.9) 30.7 (29,32.4) 29.1 (24.2,26.2)
3 5.7 (5,6.4) 9.2 (8.4,10) 24.1 (22.4,25.8) 29.3 (25,27.1)
4 7.5 (6.7,8.4) 7.2 (6.8,7.7) 21.6 (20.5,22.7) 29.5 (18.9,20.4)
5 7.8 (7.4,8.1) 7.6 (7.3,8) 21.8 (20.5,23) 29.7 (16.1,17.9)
6 5.9 (5.3,6.4) 6.7 (6.4,7.1) 25.3 (24.5,26.1) 30 (23.1,24.9)
7 3.5 (3.2,3.7) 11.8 (11.1,12.4) 37.9 (36.7,39.2) 30.2 (26.4,28.3)
8 6.7 (6.1,7.3) 5.8 (5.5,6.1) 28 (26.9,29.1) 30.4 (23.1,24.8)
9 12.7 (11.9,13.6) 6.3 (5.9,6.6) 32.6 (31.6,33.7) 30.6 (23.7,25.5)
10 4.4 (4,4.7) 7.3 (6.8,7.9) 25.5 (24.4,26.7) 30.9 (15.9,18.1)
11 6.1 (5.8,6.4) 34.1 (33.2,35) 20 (19.1,20.9) 31.1 (21.5,23)
12 7.4 (6.8,8) 8.9 (8.4,9.5) 27.7 (19.6,21.1) 31.3 (17.8,19.4)
13 5.8 (5.6,6.1) 13.3 (12.6,13.9) 27.9 (25.8,27.8) 31.5 (22.1,23.9)
14 18.6 (18,19.2) 11.7 (11.1,12.2) 28.1 (24.7,26.7) 31.8 (18.3,19.5)
15 5.3 (5.1,5.6) 5.6 (5.4,5.9) 28.4 (34.8,36.7) 32 (31.1,33)

never switch
(25th percentile)

7.6 (6.9,8.4) 24.8 (24,25.7)

Table 2.5: TMLE estimated cumulative incidence and 95% confidence intervals of death from
COPD and from cancer after 55 years of follow-up by switch time and by high cumulative
straight metal working fluid exposure threshold.
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Figure 2.3: TMLE estimated cumulative incidence of death from COPD and 95% confidence
intervals after 55 years of follow-up by switch time and high cumulative straight metal
working fluid exposure threshold.

2.4 Discussion
In this study we hoped to answer two main research questions. First, to determine if expo-
sure to straight metal working fluid (MWF) causes death from chronic obstructive pulmonary
disease (COPD), and secondly to understand the effect using the TMLE estimator described
in this paper would have on cumulative incidence estimation. There is little evidence in our
analysis to support the hypothesis that straight MWF exposure causes death from COPD.
Furthermore, the estimator proposed in this paper generates estimates and confidence inter-
vals very similar to those generated using a standard cause-specific estimator.

In isolation, our lack of evidence to support a causal link between straight MWF exposure
and COPD death is not inconsistent with existing literature. However, we also did not
uncover a link between MWF exposure and cancer death. There is a lot of strong evidence
in existing literature to support a causal link between MWF exposure and cancer death. It
might then be possible that there is another aspect of the analysis presented in this paper
that explains why there was no link found between MWF exposure and either outcome.

One possible explanation lies in the particular exposure definition used when causally
intervening on the data. The exposure metric used is cumulative, meaning that it represents
both the intensity and duration of exposure. A person with a particular level of cumulative
exposure may have arrived at that exposure by one of two routes: slowly over a long period of
time, or with a high exposure over a short period of time. A direct examination of the effect
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Figure 2.4: TMLE estimated cumulative incidence of death from cancer and 95% confidence
intervals after 55 years of follow-up by switch time and high cumulative straight metal
working fluid exposure threshold.

of cumulative MWF exposure on COPD risk would not illuminate if there is a differential
in risk between these two routes. If such a differential were true, we would want to be able
to estimate the effect of cumulative MWF exposure on COPD risk by each route separately,
so that the largest effect could be reported.

For this reason, we created the "switch time" model of exposure. Two people with the
same level of cumulative exposure but one with an early switch time and one with a later
switch time would represent the two routes possible to the same cumulative exposure level.
If, for example, a sudden, intense exposure to MWF fluid caused more risk to developing
COPD than long exposures (equalling the same cumulative exposure) then we would expect
risk estimates for earlier switch times to be higher than for later switch times. The fact
that we did not see a distinction between estimates across switch times suggests that such a
differential may not exist. However we were only able to examine switch times of 15 or less
due to a lack of support over higher switch values. We know, however, that work tenure was
on average 18 years, and frequently much longer than that so it could be that a differential
would be visible for even later switch times, e.g. greater than 20.

Another shortcoming of this implementation of the "switch time" model of exposure is
that it still does not differentiate the ongoing exposure of those with early switch times. A
worker whose cumulative exposure crosses the specified threshold in his first year of follow-up
and is then subjected to high intensity exposure for the next 10 years is viewed as similarly
exposed as a worker whose cumulative exposure crosses the threshold in his first year of
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Cause of Death COPD Cancer
High exposure

threshold
percentile 75th 90th 75th 90th

Exposure regime
switch time (yrs)

0 0.89 (0.86,0.93) 0.69 (0.66,0.72) 0.93 (0.92,0.95) 0.96 (0.94,0.98)
1 1.29 (1.25,1.33) 1.17 (1.14,1.21) 0.97 (0.95,0.99) 0.81 (0.79,0.83)
2 1.13 (1.1,1.17) 1.09 (1.06,1.13) 1.24 (1.22,1.26) 1.02 (1,1.03)
3 0.75 (0.72,0.78) 1.21 (1.17,1.24) 0.97 (0.95,0.99) 1.05 (1.03,1.07)
4 0.99 (0.95,1.02) 0.95 (0.91,0.98) 0.87 (0.85,0.89) 0.79 (0.78,0.81)
5 1.02 (0.98,1.05) 1 (0.97,1.04) 0.88 (0.86,0.89) 0.68 (0.67,0.7)
6 0.77 (0.74,0.8) 0.88 (0.85,0.92) 1.02 (1,1.04) 0.97 (0.95,0.99)
7 0.45 (0.43,0.48) 1.54 (1.5,1.59) 1.53 (1.51,1.55) 1.1 (1.08,1.12)
8 0.88 (0.85,0.91) 0.76 (0.73,0.79) 1.13 (1.11,1.15) 0.97 (0.95,0.98)
9 1.67 (1.63,1.71) 0.82 (0.79,0.85) 1.31 (1.29,1.34) 0.99 (0.97,1.01)
10 0.57 (0.55,0.6) 0.96 (0.93,0.99) 1.03 (1.01,1.05) 0.69 (0.67,0.7)
11 0.8 (0.77,0.83) 4.47 (4.4,4.54) 0.81 (0.79,0.82) 0.9 (0.88,0.91)
12 0.97 (0.94,1) 1.17 (1.13,1.21) 0.82 (0.8,0.84) 0.75 (0.73,0.77)
13 0.76 (0.73,0.79) 1.74 (1.69,1.78) 1.08 (1.06,1.1) 0.93 (0.91,0.94)
14 2.44 (2.39,2.49) 1.53 (1.49,1.57) 1.03 (1.02,1.05) 0.76 (0.75,0.78)
15 0.7 (0.67,0.73) 0.74 (0.71,0.77) 1.44 (1.42,1.46) 1.29 (1.27,1.31)

Table 2.6: Risk ratios comparing TMLE estimated cumulative incidence of death from COPD
and from cancer by switch time exposure regimes to estimates from the never switch exposure
regime.

follow-up and then accumulates no further exposure. In fact, by treating these two exposure
histories the same, our analysis might not be properly adjusting for the healthy worker effect.

We actually do see evidence of the healthy worker effect in the risk ratios of cancer death.
The risk ratios for cancer death when using the 75th percentile as the high exposure threshold
are higher than those when using the 90th percentile. We would nominally expect estimates
using higher thresholds to be higher than those using lower thresholds, so when they are not,
it could indicate that the workers with lower exposures had underlying health problems and
were therefore were selected out of the jobs with higher exposures. Since we observe this
healthy worker effect in the cancer death risk ratios and not in the COPD death risk ratios
there could be something deeper that is wrong with this analysis.

Comparing the estimates made using the TMLE estimator defined in this paper to those
made using the cause-specific estimator, we see very little difference. There is a slight
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Figure 2.5: Risk ratios comparing TMLE estimated cumulative incidence of death from
COPD by switch time exposure regimes to estimates from the never switch exposure regime.

tendency for the cause-specific estimates to vary more between switch times regimes that
are close to one another, but this is mild at best.

In conclusion, the switch time model of exposure does not seem to generate clarity re-
garding the possibly differing effects of straight MWF exposure on COPD and cancer death
between those with similar cumulative straight MWF exposure but with contrasting exposure
histories. In order to clarify whether there are deeper issues in this analysis, the next step
could be to combine the switch time regime estimates into one exposure variable. The results
comparing the cumulative incidence of COPD and cancer deaths if all workers switched at
anytime and if no workers ever switched could be similar to existing literature. Another
possible route would be to use a standard exposure metric such as cumulative exposure or
average annual exposure.
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Figure 2.6: Risk ratios comparing TMLE estimated cumulative incidence of death from
cancer by switch time exposure regimes to estimates from the never switch exposure regime.
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Figure 2.7: Risk ratios comparing cause-specific estimated cumulative incidence of death
from COPD by switch time exposure regimes to estimates from the never switch exposure
regime.
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Cause of Death COPD Cancer
High exposure

threshold
percentile 75th 90th 75th 90th

Exposure regime
switch time (yrs)

0 6.8 (5.1,8.5) 8.4 (7.4,9.4) 22.7 (19.8,25.6) 24.8 (23.1,26.4)
1 13.4 (12.9,14) 10.3 (9.1,11.4) 29.5 (28.9,30.2) 20.3 (19.4,21.3)
2 12.5 (11.6,13.5) 7.7 (6.2,9.2) 33.5 (32.7,34.2) 25.2 (24.1,26.4)
3 12.3 (11.3,13.3) 9.1 (6.8,11.3) 20.4 (19.8,20.9) 33 (32,34)
4 14.2 (12.7,15.7) 22.5 (19.8,25.1) 24.3 (23.5,25) 28.7 (27.9,29.6)
5 12.7 (11.4,14.1) 6.6 (3.7,9.5) 24.4 (23.4,25.3) 17.7 (16.9,18.5)
6 20.8 (19.3,22.2) 6.2 (3.1,9.3) 27.1 (26.5,27.8) 21.6 (20.7,22.5)
7 6.2 (4.7,7.6) 32.1 (28.5,35.6) 39.8 (39,40.7) 27.1 (26.2,28)
8 8 (6.4,9.6) 7.3 (3.8,10.7) 32.6 (31.8,33.5) 22.9 (22.1,23.7)
9 13.9 (12.1,15.7) 52.4 (48.8,55.9) 27.3 (26.4,28.3) 30.5 (29.6,31.4)
10 7.1 (5.3,8.8) 6.9 (6,7.8) 24.8 (23.8,25.7) 16.9 (15.6,18.2)

never switch
(25th percentile)

11.8 (11,12.5) 26.4 (25.5,27.2)

Table 2.7: Estimated cause-specific cumulative incidence and 95% confidence intervals of
death from COPD and from cancer after 55 years of follow-up by switch time and by high
cumulative straight metal working fluid exposure threshold.
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Cause of Death COPD Cancer
High exposure

threshold
percentile 75th 90th 75th 90th

Exposure regime
switch time (yrs)

0 0.58 (0.54,0.62) 0.71 (0.67,0.76) 0.86 (0.83,0.89) 0.94 (0.91,0.97)
1 1.14 (1.08,1.2) 0.87 (0.82,0.92) 1.12 (1.08,1.16) 0.77 (0.74,0.8)
2 1.06 (1.01,1.12) 0.65 (0.61,0.7) 1.27 (1.23,1.31) 0.96 (0.92,0.99)
3 1.04 (0.99,1.1) 0.77 (0.72,0.82) 0.77 (0.74,0.8) 1.25 (1.21,1.29)
4 1.21 (1.15,1.27) 1.91 (1.84,1.98) 0.92 (0.89,0.95) 1.09 (1.05,1.13)
5 1.08 (1.03,1.14) 0.56 (0.52,0.6) 0.92 (0.89,0.96) 0.67 (0.64,0.7)
6 1.76 (1.69,1.83) 0.53 (0.49,0.57) 1.03 (0.99,1.06) 0.82 (0.79,0.85)
7 0.52 (0.48,0.56) 2.72 (2.64,2.81) 1.51 (1.47,1.55) 1.03 (0.99,1.06)
8 0.68 (0.64,0.73) 0.62 (0.57,0.66) 1.24 (1.2,1.28) 0.87 (0.84,0.9)
9 1.18 (1.12,1.24) 4.44 (4.32,4.57) 1.04 (1,1.07) 1.16 (1.12,1.2)
10 0.6 (0.56,0.64) 0.59 (0.55,0.63) 0.94 (0.91,0.97) 0.64 (0.61,0.67)

Table 2.8: Risk ratios comparing cause-specific estimated cumulative incidence of death from
COPD and from cancer by switch time exposure regimes to estimates from the never switch
exposure regime.
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Figure 2.8: Risk ratios comparing cause-specific estimated cumulative incidence of death
from cancer by switch time exposure regimes to estimates from the never switch exposure
regime.
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Chapter 3

Simulation Comparing Methods of
Competing Risk Treatment in
Estimation

3.1 Introduction
In a longitudinal study in which a researcher is interested in the time from study entry
until a particular event, subjects may experience the event of interest, or one of many other
multiple risks. These outcomes are called competing risks when, by their nature, observing
one prohibits the observing of another. For example, in an occupational epidemiology study
workers may be followed in order to study the effects of exposure to fine particulate matter on
cardiovascular disease. However, workers most affected by exposure may develop sub-clinical
disease and leave their job before the outcome of interest develops. Current approaches to
adjust for competing risks tend to have complicated interpretations, or impose unrealistic
assumptions upon the relationship among the potential outcomes.

As a motivating example, consider a group of autoworkers observed over many years in
order to study the effects of factory exposure to metal working fluids (MWF) on mortality due
to chronic obstructive pulmonary disease (COPD). A worker’s vital status is followed until
time of death, which may be attributed to one of multiple competing causes, or administrative
censoring at end of follow-up. COPD takes a long time to develop, during which time
workers may die from other diseases with shorter latent periods, including one of several
specific cancers that have been associated with MWF exposure. In order to compare the
cumulative incidence of COPD after a certain number of years of followup and under specified
exposure regimes, the estimation techniques used by researchers typically involve treating
the competing risk as a censoring event, i.e. imposing an assumption of independence upon
the two outcomes to employ classic survival estimation techniques.

Kaplan and Meier introduced the product-limit estimator to estimate the cause-specific
survival in a theoretical experiment in which all causes of leaving a cohort are eliminated
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except the one of interest. The authors stipulate the assumption necessary for their estimator
to be unbiased as independence between the cause of interest and the other competing
causes. The product- limit estimator non-parametrically estimates the cause-specific survival
function, that is, the proportion, S(t), of the cohort whose lifetime (or time until the event
of interest) exceeds t in the absence of competing risks without placing assumptions on the
form of S(t). The Nelson-Aalen estimator is the corresponding estimator of the cumulative
incidence function, Λ(t) and its properties have been analyzed elsewhere [33, 1].

In this simulation study we generate an occupational cohort with work-related exposures
until their death or end of observation. We examine bias from competing risks and estimator
selection by varying the dependence of outcomes on exposure. We compare estimate bias
across estimator, and consider its effects on interpretation.

We focus on two estimators to addressing competing risks: treating the competing risk
as a censoring event (i.e. the cause-specific estimator) and treating the competing risk as a
time-varying covariate. In both scenarios, we will be using the causal roadmap to estimate
the parameters corresponding to the entire outcome distribution including the outcome of
interest and the competing risk. We propose wider use of the second scenario which does not
rely on the assumption of sequential independence between the outcome and the competing
risk.

3.2 Methods
The simulation study addresses the performance of the TMLE estimator under two settings,
in which the competing risk is treated either as a

Setting 1: time-varying covariate
Setting 2: censoring event
It will be noted below when the analyses under each setting diverge.

3.2.1 Observed data structure

Consider a longitudinal study of autoworkers with outcome COPD death and exposure de-
fined as cumulative straight metal working fluid switching from low to high, as defined
by a pre-specified percentile. Observations are taken at baseline, three intervention nodes
t = 0,1,2, and the outcome is observed at time K = 3.

Time-varying variables are generated for each time point and include a covariate rep-
resenting time off work, L, cumulative exposure, A, censoring, C, and outcomes, Y1 and
Y2. We arbitrarily select Y1 as the outcome of interest and Y2 as the competing risk, as the
analysis is the same in either case.

W ∶ baseline categorical variable representing 6 combinations of race and plant

A(0) ∶ cumulative exposure to straight MWF in first three years of working
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At times t = 1,2

L(t) ∶ time-varying time off work

Y1(t) ∶ death by Chronic Obstructive Pulmonary Disease (COPD)
∈ {0=no death from COPD, 1=death from COPD}

Y2(t) ∶ death by any cancer ∈ {0=no death from cancer, 1=death from cancer}

A(t) ∶ time-varying cumulative exposure to straight MWF ∈ {0=low, 1=high}

C(t) ∶ censoring ∈ {0=not censored, 1=censored}
before time t by one of the following events:

– administrative censoring

– observed age exceeds 108

– death due to an unrelated cause, i.e. causes other than cancer or COPD

At time K = 3 we observe the final outcomes, Y1(3) and Y2(3).

3.2.2 Structural Causal Model

We assume after baseline covariate,W , and baseline cumulative exposure, A(0), the following
time ordering at times t = 1,2,3:

W → L(t), Y1(t), Y2(t)→ A(t)→ C(t)

Let U = (UW , UL, UY1 , UY2 , UA, UC) be unobserved exogenous variables.
We define the following structural equations using f = (fW , fA(t), fL(t), fC(t), fY1(t), fY2(t))
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such that for t = 1,2,3:

W = fW (UW )
A(0) = fA0(W,UA)
L(1) = fL(1)(W,A(0), UL)
Y1(1) = 0 (outcomes Y1 and Y2 are not possible at first time point)
Y2(1) = 0

A(1) = fA(1)(W,A(0), UA)
C(1) = fC(1)(W,UC)
L(2) = fL(2)(W,A(1), L(1),C(1), UL)
Y1(2) = fY1(2)(W,A(1), L(2),C(1), UY1)
Y2(2) = fY2(2)(W,A(1), L(2),C(1), UY2)
A(2) = fA(2)(W,A(1), L(2), Y1(2), Y2(2),C(1), UA)
C(2) = fC(2)(W,Y1(2), Y2(2),C(1), UC)
L(3) = fL(3)(W,A(2), L(2), Y1(2), Y2(2),C(1), UL)
Y1(3) = fY1(3)(W,A(2), L(3), Y1(2), Y2(2),C(2), UY1)
Y2(3) = fY2(3)(W,A(2), L(3), Y1(3), Y2(2),C(2), UY1)

Then the observed data are n i.i.d. draws of O = (W,A(0), L(1), Y1(1), Y2(1),A(1),C(1),
L(2), Y1(2), Y2(2),A(2),C(2), Y1(3), Y2(3)) ∼ P0 ∈MF , where MF is the structural causal
model containing all possible distributions of P0.

Under the setting in which the competing risk is treated as a censoring event, the cen-
soring variable, C, is defined to include instances of the competing risk, Y2. As such, Y2 is
omitted from the structural equations, and the parent nodes of censoring events are altered
to include the parent nodes of the competing risk. We write the following to define the
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pre-intervention structural equations.

W = fW (UW )
A(0) = fA0(W,UA)
L(1) = fL(1)(W,A(0), UL)
Y1(1) = 0 (outcome is not possible at first time point)
A(1) = fA(1)(W,A(0), UA)
C(1) = fC(1)(W,UC)
L(2) = fL(2)(W,A(1), L(1),C(1), UL)
Y1(2) = fY1(2)(W,A(1), L(2),C(1), UY1)
A(2) = fA(2)(W,A(1), L(2), Y1(2),C(1), UA)
C(2) = fC(2)(W,A(1), L(2), Y1(2),C(1), UC)
L(3) = fL(3)(W,A(2), L(2), Y1(2),C(2), UL)
Y1(3) = fY1(3)(W,A(2), L(3), Y1(2),C(2), UY1)

Then the observed data are n i.i.d. draws of O = (W,A(0), L(1), Y1(1),A(1),C(1), L(2),
Y1(2),A(2),C(2), Y1(3)) ∼ P0 ∈MF , where MF is the structural causal model containing
all possible distributions of P0.

3.2.3 Interventions and Counterfactual Outcomes

Under the first setting, where the competing risk is considered a time-varying confounder, we
consider the static exposure regimes As for s = 0,1,2,3 in which the exposure level is set to
0 until a specified "switch" time, s, where exposure switches to 1 and remains 1 until end of
observation. We can call A0 "always high" and A3 "never high". Let C0 = (C(1) = 0,C(2) =
0) indicate the censoring history with no censoring. We are interested in comparing the
cumulative incidence of COPD death after 3 time points across switch time regimes so for
convenience we suppress the censoring notation and define the static exposure and censoring
interventions as follows.

A0 = (1,1,1)
A1 = (0,1,1)
A2 = (0,0,1)
A3 = (0,0,0)

Let Y As
1 (3) be the (possibly contrary to fact) counterfactual value of Y1(3) for an indi-

vidual under treatment regime As. We intervene on our structural equations to generate a
post-intervention distribution which include the counterfactual outcomes.
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For example, for the exposure regime A1 = (0,1,1), the post-intervention structural
equations are:

W = fW (UW )
A(0) = 0

L(1) = fL(1)(W,A(0) = 0, UL)
Y1(1) = 0

Y2(1) = 0

A(1) = 1

C(1) = 0

L(2) = fL(2)(W,A(1) = 1, L(1),C(1) = 0, UL)
Y1(2) = fY1(2)(W,A(1) = 1, L(2),C(1) = 0, UY1)
Y2(2) = fY2(2)(W,A(1) = 1, L(2),C(1) = 0, UY2)
A(2) = 1

C(2) = 0

L(3) = fL(3)(W,A(2) = 1, L(2), Y1(2), Y2(2),C(1) = 0, UL)
Y As

1 (3) = fY1(3)(W,A(2) = 1, L(3), Y1(2), Y2(2),C(2) = 0, UY1)
Y As

2 (3) = fY2(3)(W,A(2) = 1, L(3), Y1(3), Y2(2),C(2) = 0, UY1)

Under the second setting where the competing risk is considered a censoring event, the
interventions and counterfactual are annotated the same as they were in the previous setting.
The definition of C has changed, but the notation has not.

The post-intervention structural equations under this setting omit Y2 so, for example, for
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the exposure regime A1 = (0,1,1) the structural equations look like:

W = fW (UW )
A(0) = 0

L(1) = fL(1)(W,A(0) = 0, UL)
Y1(1) = 0

A(1) = 1

C(1) = 0

L(2) = fL(2)(W,A(1) = 1, L(1),C(1) = 0, UL)
Y1(2) = fY1(2)(W,A(1) = 1, L(2),C(1) = 0, UY1)
A(2) = 1

C(2) = 0

L(3) = fL(3)(W,A(2) = 1, L(2), Y1(2),C(1) = 0, UL)
Y1(3) = fY1(3)(W,A(2) = 1, L(3), Y1(2),C(2) = 0, UY1)

3.2.4 Causal Quantity of Interest

The causal quantity of interest is the mean outcome of Y1(3) under the interventions of
interest.

ΨF (P0) = EP0(Y As
1 (3))

for s = 0,1,2,3. We can calculate causal contrasts, e.g. the causal risk difference of the
cumulative incidence of COPD death between exposure intervention regimes A0, always high
and A3, never high as RD = E(Y A0

1 (3)) −E(Y A3
1 (3)).

The notation for the causal quantity of interest is identical between the setting in which
the competing risk is treated as a time-varying covariate and the one in which it is treated
as a censoring event.

3.2.5 Statistical Estimand and Identfication

The causal quantity of interest is a parameter of the distributions of counterfactuals Y As
1 (3)

for s = 0,1,2,3. To estimate this quantity from the observed data, we need to determine that
we can express the distribution of Y As

1 (3) in terms of P0, the distribution of the observed
data.

We must make two additional assumptions to allow us to identify the distribution of
Y As

1 (3) [41]. If these additional assumptions to the full structural causal model (SCM) are
true, then there exists a function, ψ, such that ΨF (P0) = ψ(P0). We call the resulting full
SCMMF∗ ⊂MF , i.e. MF∗ is the structural statistical model containing all distributions P0

such that
ψ(P ) = ΨF (P0)
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for P the distribution of O implied by P0. Now, O ∼ P0 ∈M. If we believe the following
assumptions, then P0 ∈M∗.

The sequential randomization assumption means that at each time point, all common
causes of L, Y and A are observed. The positivity assumption means that each observation
has a positive probability of following the intervention regime of interest at each time point.

Sequential Randomization Assumption

A(0) ⊥ Y As
1 (3)∣W

A(1) ⊥ Y As
1 (3)∣W,A(0)

A(2) ⊥ Y As
1 (3)∣W,A(1), L(2), Y2(2),C(1)

Positivity Assumption
P0(A(0) = 1∣W ) > 0

P0(A(1) = 1∣W,A(0) > 0

P0(A(2) = 1∣W,A(0), L(2) > 0

Versions of these assumptions must also hold for censoring which is to say that all common
causes of L, Y , and C are observed, and each observation has a positive probability of not
being censored at each time. These assumptions look the same under both competing risks
settings, except for the modified definition of censoring to include Y2, explained below as an
additional sequential randomization assumption.

Let QY1 , QL, QW be the conditional distributions of Y1(3), L(t) for t = 1,2,3 and W ,
and let gA, gC be the conditional distributions of A and C, given their histories. Please note
that the distributions of Y1(1) and Y1(2) are included in that of L(1) and L(2).

Under our first setting where Y2(t) is treated as a time varying covariate, the distribution
of Y2(t) can be included in that of L(t) for t = 1,2,3. Then the observed data likelihood can
be factorized as follows:

P (O) =QW (W ) ×QY1(Y1(3)∣W,A(2), L(3),C(2))
×QL(L(3)∣W,A(2), L(2),C(2))
×QL(L(2)∣W,A(1), L(1),C(1))
×QL(L(1)∣W,A(0))
× gC(C(2)∣W,C(1))
× gC(C(1)∣W )
× gA(A(2)∣W,A(1), L(2),C(1))
× gC(A(1)∣W,A(0))
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Under the second setting where Y2(t) is treated as a censoring event, the distribution of
Y2(t) can be included in that of C(t) for t = 1,2. Then the observed data likelihood can be
factorized as follows:

P (O) =QW (W ) ×QY1(Y1(3)∣W,A(2), L(3),C(2))
×QL(L(3)∣W,A(2), L(2),C(2))
×QL(L(2)∣W,A(1), L(1),C(1))
×QL(L(1)∣W,A(0))
× gC(C(2)∣W,A(1), L(2),C(1))
× gC(C(1)∣W )
× gA(A(2)∣W,A(1), L(2),C(1))
× gC(A(1)∣W,A(0))

Under these assumptions, our causal quantity of interest, ΨF (P0) = EP0(Y As
1 (3)), can be

identified by setting the intervention variables according to As and then taking a sequence
of recursively defined conditional expectations called the G-computation formula[7].

ΨF (P0) =EP0(Y As
1 (3)z)

=∑
w

{∑
l

[P0(Y As
1 (3)∣W = w,L(3) = l3, (A,C) = As)

× P0(L(3) = l3∣W = w,L(2) = l2, (A,C) = As)
× P0(L(2) = l2∣W = w,L(1) = l1, (A,C) = As)
× P0(L(1) = l1∣W = w, (A,C) = As)]
× P0(W = w)}

=∑
w

{∑
l

[P0(Y1(3) = 1∣W = w,L(3) = l, (A,C) = As)

×QL(L(3) = l3∣W = w,L(2) = l2, (A,C) = As)
×QL(L(2) = l2∣W = w,L(1) = l1, (A,C) = As)
×QL(L(1) = l1∣W = w, (A,C) = As)]
×QW (W = w)}
= ψ(P0)

where the right hand side is expressed entirely with P0 with the intervention variables set to
As with probability 1 and is our statistical estimand, ψ(P0). The statistical estimand under
the second setting where the competing risk is treated as a censoring event is expressed the
same as above, but has the alternative definition of censoring to include Y2. As such, in
this second setting there is an additional sequential randomization assumption placed on Y2

because it is included as a censoring event.
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Additional Sequential Randomization Assumption (under setting where compet-
ing risk is treated as a censoring event)

Y2(2) ⊥ Y As
1 (3)∣W,A(1), L(2),C(1)

3.2.6 Simulated data

We simulate data to mimic an occupational cohort where 10,000 workers are observed at
baseline and then at three following time points. A baseline covariate, W , is distributed as a
multinomial random variable with six categories which represent combinations of race, sex,
and plant as distributed in the observed data. The first cumulative exposure, variable, A0,
is also determined at baseline. Time-varying variables are generated for each time point and
include a covariate representing time off work, L, the outcome of death from COPD, Y1,
the competing risk of death from any cancer, Y2, cumulative exposure, A, and censoring, C.
These variables are then generated according to the following rules.

W ∼multinom(p1 = 0.11, p2 = 0.29, p3 = 0.16, p4 = 0.14, p5 = 0.30)
A(0)∣W ∼ expit(−2 − 0.45W )

L(1)∣W,A(0) ∼ expit(0.5 + 0.25W +A(0))
Y1(1) = 0

Y2(1) = 0

A(1)∣ W,A(0), ∼min(1,A(0) + expit(−0.5 + 0.25W5A(0)))
Y1(1) = 0, Y2(1) = 0,

C(1)∣ W,A(1), ∼ expit(−1.5 − 0.1W + 2A(1))
Y1(1) = 0, Y2(1) = 0

L(2)∣ W,L(1),A(1), ∼ expit(0.5 − 0.25W +A(1) + 0.5L(1))
Y1(1) = 0, Y2(1) = 0,
C(1) = 0

Y1(2)∣ W,A(1), L(2), ∼ expit(β1 +W + α1A(1) − 0.25L(2))
Y1(1) = 0, Y2(1) = 0,
C(1) = 0

Y2(2)∣ W,A(1), L(2), ∼ expit(β1 +W + α1A(1) − 0.25L(2))
Y1(2) = 0, Y2(1) = 0,
C(1) = 0
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A(2)∣ W,A(1), L(2), ∼min(1,A(1) + expit(−0.5 + 0.25W +A(1) + 0.5L(2)))
Y1(2) = 0, Y2(2) = 0
C(1) = 0

C(2)∣ W,A(2), L(2) ∼ expit(−1.5 − 0.1W + 2A(2) +L(2))
Y1(2) = 0, Y2(2) = 0
C(1) = 0

L(3)∣ W,A(2), L(2) ∼ expit(0.5 + 0.25W2A(2) + 0.5L(2))
Y1(2) = 0, Y2(2) = 0,
C(2) = 0

Y1(3)∣ W,L(3),A(2) ∼ expit(β2 +W + α2A(2) − 0.25L(3))
Y1(2) = 0, Y2(2) = 0,
C(2) = 0

Y2(3)∣ W,L(3),A(2) ∼ expit(β2 +W + α2A(2) − 0.25L(3))
Y1(3) = 0, Y2(2) = 0,
C(2) = 0

Since we are generating our own data, we know the true Q values, that is, the conditional
distributions of L and Y1 (and Y2 in the setting where Y2 is considered a time-varying
covariate). To evaluate our true parameter, we simulate draws from Q, but intervene on g,
that is, the conditional distributions of A and C (and Y2 in the setting where Y2 is considered
a censoring event). We intervene to set C (and Y2) to not occur (no censoring) and we set
A(0),A(1),A(2) according to one of the interventions of interest, As for s = 0,1,2,3. We
calculate the statistical estimand using this data by taking the mean of Y3. Under sequential
randomization and the positivity assumption, this is the causal quantity of interest.

3.2.7 Estimators

Using the ltmle R package [31], we use the TMLE estimator to estimate the cumulative
incidence of the outcome, Y1, under both settings where the competing risk is treated as a
time-varying covariate and where it is treated as a censoring event.

For each of n observations we denote the expectation of Y conditional on the full history
of observation i which followed the exposure regime As and was fully observed as Qi(3) =
E(Yi∣Li(3), Y1,i(2) = 0, Y2,i(2) = 0,As,Ci(2) = 0,Wi). Then, Qi(2) = E(Qi(3)∣Li(1), Y1,i(1) =
0, Y2,i(1) = 0,As,Ci(t) = 0,Wi) where Qi(1) = E(Qi(2)∣Wi). Then, the G-computation
estimator is defined as follows.

ψ̂GComp =
1

n

n

∑
i=1

Qi(1)

The TMLE estimator is implemented by updating the above conditional outcome for each
subject, Qi(t) with Q

∗

i (t) such that for the clever covariate G(t)(C(t),As, L(t − 1),W ) =
I(C(t) = 0,As). We calculate Q

∗

i (t) = expit(logit(Qi(t) + ε̂i(t)Gi(t)(As,C(t) = 0, L(t − 1))
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where ε̂(t) is the fitted coefficient of the above clever covariate. Then, the TMLE estimator
is as follows.

ψ̂TMLE = 1

n

n

∑
i=1

Q
∗

i (1)

We use the above estimators under the first competing risk setting, where we treat the
competing risk, Y2, as a time-varying covariate. After this event occurs, the remaining
distributions become degenerate. There is also a version of these estimators for the setting
in which we categorize the competing risk as a censoring event, to be intervened upon.

3.2.8 Simulations

We simulated data to mimic a longitudinal occupational cohort study where workers are
observed at baseline and for three time periods thereafter or until they experience one of two
outcomes, death from COPD or death from cancer, or they are censored.

We generated 100 datasets of cohorts containing n = 10,000 workers. At baseline, a
covariate predictive of censoring and both outcomes of interest are generated, and at each
time point, time-varying variables are generated that include a covariate representing time
off work, cumulative exposure, censoring, and outcomes.

Recall that the cumulative exposure variable can be interpreted as the cumulative straight
metal working fluid switching from low to high, as defined by a pre-selected percentile. Our
estimates are generated by intervening on the cumulative exposure histories with inter-
ventions where exposure level is set as low until a specified switch time, where exposure
switches to high and remains high until end of observation. So the exposures of interest can
be described as A0 = (1,1,1), "always high", A1 = (0,1,1), "switch low to high at t=1",
A2 = (0,0,1), "switch low to high at t=2", and A3 = (0,0,0), "never high".

We also intervene to preclude censoring. In the second setting where we consider the
competing risk a censoring event, we also intervene to set Y2(1) = 0 and Y2(2) = 0.

Across our simulations, we vary the strength of the effect of cumulative exposure on
COPD and cancer death as parameterized by the coefficients in the structural equations
generating the outcomes, α = (α1, α2) across α = {(3,3), (1,1), (1,3), (3,1)}.

We compare the difference in cumulative incidence of COPD death and of cancer death
under causal treatment regimes A0, always high and A3, never high. In both competing risk
settings we use the TMLE estimator, but in the setting where we treat the competing risk
as a censoring event, we call our estimator "cause-specific". All analyses use the R ltmle
package [31] with Super Learner [47] with a library that included simple mean, generalized
linear modeling, and a stepwise procedure. We also employ naive estimators by calculating
the conditional means of the outcome given the workers were uncensored and followed the
specified exposure regime, ignoring all other relationships among the variables.

All estimates are compared to the true risk difference, as calculated by the mean of the
binary outcome variable, Y1(3), across a single large-sample (n = 1,000,000) simulation with
exposure and censoring mechanisms specified per the always high and never high interven-
tions. Since the sequential randomization assumption holds given the structural equations
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described in this paper, the TMLE estimator is consistent with the causal effect, and this
method is a valid way to calculate the true risk difference.

3.3 Results

COPD death
Estimator α1,α2 RD bias SE MSE
TMLE (1,1) 0.049 0 0.011 <0.001

(1,3) 0.04 -0.001 0.01 <0.001
(3,3) 0.359 0.005 0.016 <0.001
(3,1) 0.391 -0.001 0.015 <0.001

cs TMLE (1,1) 0.052 0.002 0.01 <0.001
(1,3) 0.052 0.011 0.011 <0.001
(3,3) 0.4 0.046 0.019 0.002
(3,1) 0.404 0.012 0.016 <0.001

naive (1,1) 0.023 -0.027 0.007 <0.001
(1,3) 0.014 -0.027 0.006 <0.001
(3,3) 0.167 -0.187 0.015 0.035
(3,1) 0.209 -0.183 0.013 0.034

cs naive (1,1) 0.025 -0.024 0.007 <0.001
(1,3) 0.024 -0.016 0.008 <0.001
(3,3) 0.217 -0.136 0.018 0.019
(3,1) 0.223 -0.17 0.016 0.029

Table 3.1: Simulation risk difference estimates of COPD death between always high and
never high intervention regimes, and under four coefficient parameter values, α.

Comparing the TMLE and the cause-specific TMLE estimator performances in tables
3.1, and 3.2 we see a lower bias, standard error (SE), and mean squared error (MSE) for the
TMLE estimator across values of α. The bias for the TMLE estimator is on the order of
the standard error for the true risk difference (1/

√
n for n = 1,000,000), demonstrating the

consistency of that estimator. Both TMLE estimators outperform the naive estimators.
Recall that α is the coefficient in the structural equation used to simulate the data that

reflects the strength of the effect of cumulative exposure on COPD and cancer death. All
estimators report a larger risk difference for larger α relative to the outcome of interest. For
example, in table 3.1 we see the largest risk differences when α1 = 3, and in table 3.2 we
see the largest risk differences when α2 = 3. We also see the largest bias values for α = 3
indicating that the consistency of the estimators is challenged as the effect of the exposure
on either the outcome or the competing risk increases.
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Cancer death
Estimator α1,α2 RD bias SE MSE
TMLE (1,1) 0.047 0 0.01 <0.001

(1,3) 0.376 0.002 0.016 <0.001
(3,3) 0.251 -0.001 0.014 <0.001
(3,1) 0.019 -0.002 0.009 <0.001

cs TMLE (1,1) 0.049 0.002 0.01 <0.001
(1,3) 0.387 0.012 0.019 <0.001
(3,3) 0.302 0.05 0.017 0.003
(3,1) 0.03 0.008 0.009 <0.001

naive (1,1) 0.022 -0.025 0.007 <0.001
(1,3) 0.199 -0.175 0.014 0.031
(3,3) 0.107 -0.145 0.012 0.021
(3,1) 0.006 -0.016 0.005 <0.001

cs naive (1,1) 0.023 -0.024 0.008 <0.001
(1,3) 0.211 -0.163 0.017 0.027
(3,3) 0.159 -0.093 0.015 0.009
(3,1) 0.014 -0.008 0.006 <0.001

Table 3.2: Simulation risk difference estimates of cancer death between always high and
never high intervention regimes, and under four coefficient parameter values, α.

Figures 3.1 and 3.2 illustrate the consistency of the longitudinal TMLE estimator when
the competing risk is treated as a time-varying covariate.

3.4 Discussion
It is challenging to estimate outcomes in longitudinal studies with competing risks. The
findings in this paper demonstrate that treating a competing risk as a time-varying covari-
ate is a valid method of consistent estimation. When using the causal roadmap [48], we
can identify the expected counterfactual outcome when the structural models generate the
competing risk as a time-varying covariate by correctly classifying the competing risk in the
g-computation formula. This method relies on the sequential randomization of exposure and
censoring, and on the positivity assumption.

When we repeat the causal roadmap with structural models that generate the competing
risk as a censoring event, we can similarly identify the expected counterfactual outcome by
correctly classifying the competing risk in the g-computation formula. However, this method
relies on an additional assumption, that sequential randomization holds for the competing
risk.
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Figure 3.1: Boxplots of the simulation risk difference estimates of COPD death compared to
the truth (dashed line) under the always high and never high interventions, and under four
coefficient parameter values, α1, α2.

In an occupational cohort study, it is natural to suspect that exposure to harmful chem-
icals at work can affect multiple competing disease processes over a lifetime. However, there
may be unmeasured factors that affect the risk of death for multiple causes of death. If such
a factor exists, then when applying the causal roadmap to estimate the risk of a particular
cause of death, if we treat a competing cause of death as a censoring event, it is not possible
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Figure 3.2: Boxplots of the simulation risk difference estimates of cancer death compared to
the truth (dashed line) under the always high and never high interventions, and under four
coefficient parameter values, α1, α2.

to identify the causal quantity with a statistical estimand based on the observed data. To
do so would require the sequential randomization assumption to hold for the competing risk,
but in fact we could not adjust for all common causes of the outcome of interest and the
competing risk.

However, this paper demonstrates that there exists an alternative method of estimation
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which does not rely on adjusting for unmeasured variables. When classifying a competing
risk as a time-varying covariate, the sequential randomization assumption does not need to
apply to the competing risk. When using an existing unbiased estimator such as TMLE, the
resulting estimates are consistent with the true causal quantity, and maintain the existing
properties of that estimator.
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