Lawrence Berkeley National Laboratory

Recent Work

Title

THE PHOTOCHEMISTRY OF N03 AND THE KINETICS OF THE N2O[--O, SYSTEM

Permalink

https://escholarship.org/uc/item/0vm1k4tw

Author

Graham, Richard A.

Publication Date 1977-05-01

000000004477101,589040

Submitted to Journal of Physical Chemistry

U Preprint c.

The photochemistry of NO_3 and the kinetics of the $\text{N}_2\text{O}_5\text{-}\text{O}_3$ system

Richard A. Graham and Harold S. Johnston

May 1977

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

000,000,7700,000

LBL-6276

The Photochemistry of NO₃ and the Kinetics of the $N_2O_5O_3$ System

By

Richard A. Graham and Harold S. Johnston Department of Chemistry and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

00001,004,77101,589062

Abstract

The kinetics of the nitrogen pentoxide catalyzed decomposition of ozone were studied in the dark and with photolytic light absorbed by the NO₃ radical. Ultraviolet, visible, or infrared absorption cross sections were measured for N₂O₅, HNO₃, NO₂, and NO₃ in this study. The equilibrium constant for N₂O₅ = NO₂ + NO₃ was found to be: (molecules cm⁻³, 298-329 K)

 $K = (8.4 \pm 1.8) \times 10^{26} \exp[-11180 \pm 100)/T]$

The rate constants for several reactions were measured: $(cm^3 molecule^{-1} sec^{-1})$

2 $NO_3 \neq 2 NO_2 + O_2$ $g = (8.5 \pm 2.8) \times 10^{-13} \exp[-(2450 \pm 100)/T]$ $0 + N_2O_5 \neq \text{products}$ $n \le 2 \times 10^{-14}$ $n = (1.0 \pm 0.4) \times 10^{-11}$

By combining the equilibrium constant K with literature values^{3,36} of Ke and Kf, rate constants for reactions e and f were evaluated:

 $NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$ $e = (2.5 \pm 0.5) \times 10^{-14} \exp[-(1230 \pm 100)/T]$ $NO + NO_3 \rightarrow 2 NO_2$ $f = (1.9 \pm 0.4) \times 10^{-11}$ at 297 K

At one atmosphere total pressure, the photolysis of NO_3 occurs with a primary quantum yield less than one in the red region of the spectrum. Under tropospheric conditions with an overhead sun, the solar photolysis constants at 298 K for the two paths of dissociation were found to be:

$$NO_{3} + hv \neq NO + O_{2} \qquad j_{1} = 0.040 \pm 0.02 \text{ sec}^{-1}$$
$$NO_{3} + hv \neq NO_{2} + O \qquad j_{2} = 0.099 \pm 0.02 \text{ sec}^{-1}$$

ii

The average quantum yield for process two was approximately 0.77 for light with wavelengths between 470 and 610 nm, and that for process one was about 0.23 between 470 and 610 nm but only 0.07 in the strong absorption region between 610 and 670 nm. The photolysis constants may be larger at lower total pressures.

Errors made in previous studies in this laboratory^{23,25} are corrected: reported cross sections for the near ultraviolet absorption by HNO_2 were much too low; an infrared absorption ascribed to NO_3 is due to N_2O_5 ; previously reported visible cross sections for NO_3 were found to be about a factor of four too low and are corrected here; previously reported ultraviolet cross sections for N_2O_5 are revised slightly.

the second second

the straight the second

. .

State & Gogerson

a dina

a se l'e

iii

I. Introduction

1

The interactions of the higher oxides of nitrogen and ozone provide a classic case wherein complex laboratory reactions are explainable in terms of sets of elementary reactions.¹ Conversely, the rate constants of the elementary reactions are evaluated by combining data from several different laboratory systems. The complex reactions are: I. the thermal decomposition of nitrogen pentoxide;²⁻⁴ II. the reaction of nitrogen pentoxide and nitric oxide;⁵⁻¹¹ III. the formation of nitrogen pentoxide from nitrogen dioxide and ozone;¹²⁻¹⁶ IV. the nitrogen pentoxide catalyzed decomposition of ozone.¹⁷⁻²⁰

> 1. $2 N_2 O_5 \rightarrow 4 NO_2 + O_2$ 11. $N_2 O_5 + NO \rightarrow 3 NO_2$ 111. $2 NO_2 + O_3 \rightarrow N_2 O_5 + O_2$ 112. $2 O_3 + N_2 O_5 \rightarrow 3 O_2 + N_2 O_5$

These four complex reactions are explained quantitatively by six elementary chemical reactions involving the nitrate free radical, NO₂.¹

The photochemistry of NO₃ is potentially important in the balance of ozone in the troposphere and lower stratosphere.²¹ If the photolysis products are nitric oxide and oxygen, the net effect is catalytic destruction of ozone:

 $NO_{3} + hv \rightarrow NO + O_{2}$ $NO + O_{3} \rightarrow NO_{2} + O_{2}$ $NO_{2} + O_{3} \rightarrow NO_{3} + O_{2}$ $net: 2 O_{3} + hv \rightarrow 3 O_{2}$

If the photolysis products are nitrogen dioxide and atomic oxygen, there is no net chemical reaction:

 $NO_{3} + hv \rightarrow NO_{2} + 0$ $0 + O_{2} + M \rightarrow O_{3} + M$ $NO_{2} + O_{3} \rightarrow NO_{3} + O_{2}$ net: null reaction

The primary goal of this study was to obtain the primary quantum yields for the photolysis of NO_3 . As a part of the study, it was necessary to determine the optical absorption spectra of several oxides and oxyacids of nitrogen and the rate constants of several elementary reactions.

Jones and Wulf²² used photographic spectroscopy to obtain the low absorption cross sections of nitrogen pentoxide between 285 and 390 nm at room temperature, and some results for 210 to 290 nm were previously reported from this laboratory.²³ Ramsay²⁴ studied the visible NO₃ spectrum under high dispersion and concluded that the observed diffuseness indicates predissociation. He identified a short progression in the symmetric stretching vibration of NO₃ beginning with the strong zerozero transition at 662 nm and extending to shorter wavelengths with approximately 950 cm⁻¹ intervals to 559 nm. At least 15 other bands in the visible region are unassigned. Visible cross sections for NO₃ were measured by Schott and Davidson⁴ at high temperature in a shock tube, and they found the absorption spectrum to change with temperature. The only report of an infrared NO₃ absorption is a weak band between 1325 and 1375 cm⁻¹ observed in an N₂O₅-O₃ system by Cramarossa and Johnston.²⁵ 0 9 9 0 9 7 7 8 9 9 4

apparatus; its ultraviolet spectrum has been studied, $^{26-30}$ and nitric acid has been measured in the atmosphere by way of its infrared absorption spectrum. 31,32

Neither the reaction rate nor products of the reaction of atomic oxygen with nitrogen pentoxide are known, but Murphy³³ derived an upper limit of 8 x 10^{-14} cm³ molecule⁻¹ sec⁻¹ from NO₂ photolysis in the presence of N₂O₅. No rate constant has been reported for the reaction of oxygen atoms with NO₃. The only experimentally determined value for the equilibrium constant, *K*, for the reaction

> $N_2O_5 \Rightarrow NO_2 + NO_3$ $K = [NO_2][NO_3]/[N_2O_5]$

appears to be that of Schott and Davidson⁴ from shock-tube pyrolysis of N_2O_5 between 450 and 550 K.

Although $N_2O_5-O_3$ kinetics have been cited as an example of a well understood complex mechanism, ^{34,35} further study of these reactions seemed to be needed. In the present study, several different experimental quantities were measured. Conventional spectroscopic methods were used to obtain absorption cross sections for various oxides and oxyacids of nitrogen. To obtain absolute cross sections for the NO₃ absorption spectrum, simultaneous molecular modulation measurements were made for NO₃ and N_2O_5 since the formation of one was primarily caused by the disappearance of the other in the system used. Four other photochemical and chemical kinetic studies were made: (1) The rate constant for the reaction between nitrogen dioxide and ozone.¹⁴ (2) The steady-state concentration of the NO₃ radical in the presence of N_2O_5 and O_3 .

(3) The rate constant for the $N_2^{0}{}_{5}$ catalyzed decomposition of ozone, with and without photolytic illumination of NO_3 . (4) The amplitude and phase shift of the molecular modulation of NO_3 with either oxygen or nitrogen as buffer gas and irradiation by red, gold, or green fluorescent lamps.

Repair of the second

II. Mechanism

The experimental data were interpreted in terms of the following 15 step chemical mechanism:

$$N_{2}O_{5} \xrightarrow{A(M)} NO_{2} + NO_{3}$$

$$NO_{2} + NO_{3} \xrightarrow{B(M)} N_{2}O_{5}$$

$$K = \frac{A(M)}{B(M)}$$

$$NO_{2} + NO_{3} \xrightarrow{e} NO + O_{2} + NO_{2}$$

$$NO_{4} + NO_{3} \xrightarrow{f} NO_{2} + NO_{2} + NO_{2} + O_{2}$$

$$NO_{3} + NO_{3} \xrightarrow{f} NO_{2} + NO_{2} + O_{2}$$

$$NO_{4} + O_{3} \xrightarrow{h} NO_{2} + O_{2}$$

$$NO_{4} + O_{3} \xrightarrow{h} NO_{2} + O_{2}$$

$$NO_{4} + O_{3} \xrightarrow{h} NO_{2} + O_{2}$$

$$NO_{3} + hv (vis.) \xrightarrow{j_{2}} NO_{2} + O$$

$$NO_{3} + hv (vis.) \xrightarrow{j_{2}} NO_{2} + O$$

$$NO_{3} + O \xrightarrow{n} NO_{2} + O_{2}$$

$$NO_{3} + O \xrightarrow{n} O_{2} + O_{2}$$

$$O_{3} + O \xrightarrow{n} O_{2} + O_{2}$$

$$O_{3} + O \xrightarrow{q} O_{2} + O_{2}$$

$$O_{3} + O \xrightarrow{q} O_{2} + O_{2}$$

$$O_{4} + O_{2} + M \xrightarrow{r} O_{3} + M$$

$$NO_{3} \text{ on walls } \xrightarrow{w} NO_{2} + 1/2 O_{2}$$

$$(1)$$

For the simplified mechanism using reactions A, B, g, and h, the steady-state NO_3 concentration and the rate of destruction of ozone is given exactly by the following expressions^{17,1}

$$[NO_3]_{ss} = (Kh/2g)^{1/3} [N_2O_5]^{1/3} [O_3]^{1/3}$$
(2)

$$-\frac{1}{2}\frac{d[0_3]}{dt} = \frac{1}{2}(Kh)^{2/3}(2g)^{1/3}[N_2^{0_5}]^{2/3}[0_3]^{2/3}$$
(3)

The full mechanism without light, reactions A through i plus w, involves more complex expressions, but they can be solved by a process of successive approximation for [NO₃]:

$$[NO_3]_{ss} = \left(\frac{Kh}{2g}\right)^{1/3} [N_2O_5]^{1/3} [O_3]^{1/3} \alpha^{1/3}$$
(4)

$$\alpha = \left(1 - \frac{\beta e}{h} \frac{[NO_3]}{[O_3]} - \frac{\omega}{Kh} \frac{[NO_3]^2}{[O_3][N_2O_5]}\right)$$
(5)

$$\beta = \frac{2f[NO_3] + i[O_3]}{f[NO_3] + i[O_3]}$$
(6)

$$-\frac{1}{2}\frac{d[0_3]}{dt} = \frac{1}{2}(Kh)^{2/3}(2g)^{1/3}(\alpha)^{-1/3}[N_2^{0}_5]^{2/3}[0_3]^{2/3}$$
(7)

Measurements of the steady-state concentration of NO₃ and the rate of ozone decomposition in the presence of N₂O₅ yield two quantities, $(Kh/2g)^{1/3}$ $\alpha^{1/3}$ and $\frac{1}{2}(Kh)^{2/3}(2g)^{1/3} \alpha^{-1/3}$, whose product is $\frac{1}{2}$ Kh. From the independently measured¹⁴ rate constant h, the values of K and g are found. From literature values^{3,36} for Ke and Kf, the values of e and f can be calculated, and the literature value³⁷ for i then provides enough data to evaluate all terms in α and β except the one involving w. Equations 4 and 5 can be rewritten as

$$\left\{\frac{[NO_3]^3}{[O_3][N_2O_5]} + \left(\frac{Kh}{2g}\right)\frac{e}{h}\beta\frac{[NO_3]}{[O_3]}\right\}_{i-1} = \left(\frac{Kh}{2g}\right)_i - \left(\frac{\omega}{2g}\right)_i\frac{[NO_3]^2}{[O_3][N_2O_5]}$$
(8)

- 6

0000,0004477101168006

By plotting the left-hand-side of Equation 8 against $[NO_3]^2/[O_3][N_2O_5]$, one obtains (w/2g) as the slope and (Kh/2g) as the intercept. The process is reiterated. Since the effect of reactions e, f, i, and w on the data evaluation was typically less than 10 percent, this process of successive approximation quickly converges on final values for the rate constants.

When visible light absorbed by NO_3 is passed through the reaction vessel containing N_2O_5 and ozone, the steady-state concentration of NO_3 and the rate expression for ozone decay have the following form:

$$[NO_3]_{ss} = \left(\frac{Kh}{2g}\right)^{1/3} [O_3]^{1/3} [N_2O_5]^{1/3} \gamma^{1/3}$$
(9)

$$Y = \left(1 - \frac{\delta e}{h} \frac{[NO_3]}{[O_3]} - \frac{\omega}{Kh} \frac{[NO_3]^2}{[O_3][N_2O_5]} - \frac{j_1 + j_2}{Kh} \frac{[NO_3]^2}{[O_3][N_2O_5]}\right)$$
(10)

$$\delta = \beta + \frac{f[NO_3] j_1[NO_3]}{Ke[N_2O_5] \{f[NO_3] + i[O_3]\}}$$
(11)

$$-\frac{1}{2} \left\{ \frac{d[0_3]}{dt} - j_2[N0_3] + j_1(2 - \beta)[N0_3] \right\}$$

$$= \frac{1}{2} (Kh)^{2/3} (2g)^{1/3} \gamma^{-1/3} [N_2 0_5]^{2/3} [0_3]^{2/3}$$
(12)

The net observed photolysis constant for NO₃ is $(j_2 + \beta j_1)$. These expressions apply for the case of excess oxygen, where the concentration of oxygen atoms is suppressed.

The photolysis constant for NO_3 is derived from the behavior of a $N_2O_5-O_3$ steady state flow system with the photolysis lamps being

turned on and off by a low frequency square wave. Since the concentrations of the chemical species vary periodically in time due to the photolysis lamps, they can be described by a Fourier series of the form

$$F(\omega t) = C_{o} + \sum_{n=1}^{\infty} C_{n} \sin\left(n\omega t + \delta_{n}\right)$$
(13)

where $\omega = 2 \pi f$, f is the flashing frequency, the C_n are the amplitudes, and the δ_n are the phase shifts. The flashing lamps are represented by a square wave

$$L(\omega t) = \frac{I}{2} + \frac{2I}{\pi} \sum_{\substack{n \\ n}}^{\infty} \frac{1}{n} \sin(n\omega t)$$
(14)

where $\delta_n = 0$. The values for δ_n for the other chemical species are their phase shifts relative to the photolysis lamps.

A system using red lamps for photolysis is used here for an illustrative calculation. Red light has insufficient energy for reaction j_2 to occur, and the importance of the oxygen atom reactions n and m can be suppressed by using oxygen as the carrier gas. Reactions e, f, i, and w have less than a 10 percent effect on the NO₃ concentration and are neglected in order to simplify the reaction set. The differential equation for NO₃ is then given by:

$$\frac{d[NO_3]}{dt} = A[N_2O_5] - B[NO_2][NO_3] - 2g[NO_3]^2 + h[NO_2][O_3] + \frac{F}{V} \left([NO_3]_{in} - [NO_3]_{out} \right)$$
(15)
$$- [NO_3] \left[\frac{j_1}{2} + \frac{2j_1}{\pi} \sum_{\substack{\text{odd} \\ n}}^{\infty} \frac{1}{n} \sin(n\omega t) \right]$$

where F = flow rate.

V = volume of cell.

 $[NO_3]_{in} = \text{concentration of NO}_3$ flowing into the cell. $[NO_3]_{out} = \text{concentration of NO}_3$ flowing out of the cell. $j_1 = \text{wavelength integrated product of the light intensity,}$ NO_3 absorption cross section, and primary quantum yield.

9

The low quantum yield of red light photolysis results in periodic changes in $[NO_3]$ that are much less than one percent. In this system NO_2 is a low concentration, fast intermediate compared to NO_3 , and an approximate steady state expression for NO_2 is

$$[NO_{2}] = \frac{1}{B[NO_{3}] + h[O_{3}]} \left\{ A[N_{2}O_{5}] + 2g[NO_{3}]^{2} + [NO_{3}] \left[\frac{j_{1}}{2} + \frac{2j_{1}}{\pi} \sum_{\substack{\text{odd} \\ n}}^{\infty} \frac{1}{n} \sin(n\omega t) \right] \right\}$$
(16)

This expression is substituted into Equation 15 to give:

$$\frac{d[NO_3]}{dt} = \frac{2}{B[NO_3] + h[O_3]} \left\{ A[N_2O_5] h[O_3] - B[NO_3] 2g[NO_3]^2 - B[NO_3]^2 - B[NO_3]^2 \left[\frac{j_1}{2} + \frac{2j_1}{\pi} \sum_{\substack{\text{odd} \\ \text{odd}}}^{\infty} \frac{1}{n} \sin(n\omega t) \right] \right\} + \frac{F}{V} \left([NO_3]_{\text{in}} - [NO_3]_{\text{out}} \right)$$
(17)

Since $B[NO_3] \ge 10 \ h[O_3]$ under typical experimental conditions at 298 K and one atmosphere pressure, the $h[O_3]$ term in the denominator of Equation 17 will be neglected. For a system at steady state with respect to products and reactants, the unmodulated terms in Equation 17 cancel out. Only the modulated or AC terms are left, and the expression for the modulation of the NO_2 concentration by the flashing lamps is:

$$\frac{d[NO_3]}{d\theta_{AC}} = -2[NO_3] \left[\frac{j_1}{\pi^2 f} \sum_{\substack{n \\ n}}^{\infty} \frac{1}{n} \sin(n\theta) \right]$$
(18)

where $\theta = \omega t$.

Since the modulation of the NO_3 concentration is less than one percent, $[NO_3]$ will be essentially constant and Equation 18 integrates in closed form to give:

$$[NO_3]_{AC} = 2[NO_3] \left[\frac{j_1}{\pi^2 f} \int_{n}^{\infty} \frac{1}{n^2} \cos(n\theta) \right]$$
(19)

Hence, the concentration modulation of NO₃ is a triangular wave with a phase shift of +90° referred to the flashing lamps (Equation 14). The modulation amplitude is directly proportional to the light intensity and the primary quantum yield. Only the first term of the series in Equation 19 is used since the experimentally measured quantities are the phase shift and amplitude of the first harmonic of the modulation signal. The above mathematical treatment represents an approximation; the actual data analysis uses the complete kinetic mechanism and is performed by a computer program using the Gear method.³⁸

Ground state oxygen atoms $(0^{3}P)$ are generated in the $N_{2}O_{5}-O_{3}$ system from photolysis of both O_{3} and NO_{3} . Because atomic oxygen is a very fast intermediate, reactions *m* and *n* would result in a NO_{3} modulation with the same phase shift as the NO_{3} photolysis reactions. Nitrogen was used

as a carrier gas in experiments to measure the rate constants for reactions m and n. A low, known concentration of oxygen was present due to a small amount of oxygen in helium flowing through the ozonizer. Since the rate of reaction r, $0 + 0_2 + M$, is about 10 times that of any other oxygen atom reaction, the oxygen atom concentration is almost directly proportional to the rate constant for this reaction and can be readily calculated. The modulation contributions from reactions m and n can then be separated by varying the N0₃ to N₂0₅ ratio.

III. Experimental

A. Reaction Cells

A diagram of the experimental apparatus is presented in Figure 1. The reaction cell is a cylindrical quartz tube, 15 cm in diameter and 178 cm long. The quartz tube is 0-ring sealed to two nickel-plated stainless steel end caps; all 0-rings are made of silicone rubber. The end caps are 18 cm and 24 cm long and are mounted in a rigid steel frame. The volume of the cell is 45.3 liters and the surface to volume ratio is 2.5 cm^{-1} . Three aluminum coated, 8.6 cm diameter mirrors are mounted in the end caps to give multiple reflections: optical paths of 861, 1717, 2573, and 3429 cm can be selected by an external adjustment screw. Calcium fluoride windows transmit radiation from the far-ultraviolet to approximately 9.5 microns in the infrared. The reaction cell can be evacuated to less than 10^{-3} torr by a liquid nitrogen trapped oil diffusion pump. The cell and optical train are mounted on a Newport Research Corporation vibration isolation table.

The gas cell is enclosed in an insulated box with walls of six inch thick urethane boards faced with one inch coated fiberglass boards. The light beam enters through evacuated glass tubes sealed with calcium fluoride windows. Cooled methanol from a Neslab LT-9 circulator or chilled water is pumped into an elevated 22 liter surge tank. The coolant then flows through a finned gravity coil mounted on top of the reaction cell frame, and a blower circulates air around the coil. The temperature of the cell is regulated by a contact thermometer and relay operating a heating wire wrapped around the cooling coil. Experiments can be

0000,0347701680059

performed between 233 and 343 K. Six iron-constantan thermocouples mounted around the cell and a thermocouple inside a six-inch stainless steel thermowell in the cell indicated a temperature homogeneity of \pm 0.2 K with the lamps flashing.

A similar reaction cell³⁹ was also used for monitoring the decay of ozone in the presence of nitrogen pentoxide and for modulation experiments to determine the absorption cross sections for NO_3 . A quartz tube 29 cm in diameter and 91 cm long is 0-ring sealed to nickel-plated stainless steel end caps to give a 67.0 liter volume and a 1.8 cm⁻¹ surface-to-volume ratio. Optical path lengths between 4 and 32 meters can be obtained with the gold-coated multiple reflection mirrors. A Nernst glower is the infrared source and KBr windows are used. The temperature control, electronics, detectors, monochromator, and gas handling system used with this system (IR cell) are identical with the ones that will be described for the primary reaction cell (UV cell).

B. Detection System

5.1

Three light sources are used with the main reaction cell: a Sylvania DE450A deuterium arc lamp is used for UV work and a tungsten lamp for the visible region, one of these two being mounted next to an American Time Products 400 cps tuning fork chopper; a Nernst glower for the infrared region with its own 400 cps tuning fork can be used as the source beam by turning one mirror. The source beam passes through the reaction cell and then to a McPherson Model 2051 1-m grating monochromator with a 150 line/mm grating and order sorting filters for infrared spectroscopy and a 1200 line/mm grating and colored glass filters for visible and ultraviolet work. The infrared detector is a Santa Barbara

Research Center copper-doped germanium photoconductor cooled to liquid helium temperature (4 K). An EMI 9526B photomultiplier for ultraviolet spectroscopy and a RCA 4832 photomultiplier for the visible region are biased by a Fluke Model 408B power supply. The infrared detector and one of the photomultipliers are mounted on the two exit slits of the l-m monochromator; turning one mirror diverts the monochromator's output from one detector to the other.

As the source beam passes through the cell, it is amplitude modulated with the flashing frequency f of the photolysis lamps at wavelengths where the reaction species absorb radiation. The modulation information is carried at the sideband frequencies $400 \pm f$ and extracted with lock-in amplification techniques.^{40,41} The higher harmonics of the f cps signal are reduced by the lock-in and filters to less than two percent of the fundamental. The system is calibrated by applying a signal of known amplitude and zero phase shift to the initial amplification stages.

A PDP 8/E minicomputer with a programmable clock was interfaced to a multiplexer and a Preston X-Mod 723A digital voltmeter with an accuracy of 1 part in 20,000 and a maximum sampling rate of 100 hertz. Spectra stored in the computer's memory can be displayed on an oscilloscope, plotted on a X-Y recorder, or stored on a dual drive Dectape unit. The modulation signals were simulated with a chemical kinetics program by Whitten.⁴³ This program uses the Gear³⁸ method for solving coupled differential equations and is run on Lawrence Berkeley Laboratory's CDC 7600 computer.

C. Photolysis Lamps

The photolytic light for these experiments was provided by red, gold, or green 30 watt General Electric F30T8 fluorescent lamps. Two of the 36 inch lamps were placed along each side of the cell with an Alzac reflector. The lamp electrodes were heated by six volt transformers to insure rapid firing. They were switched on and off by a 700 volt regulated power supply controlled by the in-phase square wave of a low frequency reference generator. The light intensity was monitored by a phototransistor to detect changes due to lamp aging; this signal showed that the lamp output was a square wave with an initial spike containing less than .01 percent of the total area at 1 hertz.

To obtain the spectral distribution of the lamps, the spectral response of the UV cell's optical system was calibrated with a General Electric 30A/T24/17 tungsten ribbon lamp. The brightness temperature of the tungsten ribbon was measured with a Leeds and Northrup Model 8622-C optical pyrometer which was calibrated at the Lawrence Berkeley Laboratory. The spectrum of the tungsten ribbon lamp was scanned from 280 to 900 nm at brightness temperatures of 2100 ± 1 K and 2173 ± 1 K (true temperatures ⁴⁴ of 2300 K and 2388 K). Correction curves for the optical system were obtained by dividing the observed lamp spectra by the calculated intensity distribution, using the emissivities of DeVos.⁴⁵ When normalized at one point, the two correction curves agreed with a one percent average uncertainty.

Photolysis lamps of various colors were then used as the light source, and their spectra were recorded. The corrected photolysis lamp

spectra are presented in Figure 2. The ratios of the total photon fluxes for the green, gold, and red lamps were 1.0 : 0.56 : 0.23, respectively. The visible spectra of NO₃ and O₃ are included in Figure 2 to show the degree of overlap with the various lamps.

The average cross section for NO₃ or O₃ absorption for each lamp spectrum is the wavelength integrated product of cross section (σ_{λ}) and lamp intensity (I_{λ}) :

$$\sigma_{avg}(NO_3) = \frac{\int \sigma_{\lambda}(NO_3) I_{\lambda} d\lambda}{\int I_{\lambda} d\lambda}$$
(20)

The products of ozone photolysis by light in the 570 to 630 nm region are ground state oxygen atom and oxygen, and no energy chains that destroy ozone have been observed.^{46,47} Since the rate constants for oxygen atom reacting with 0_2 and 0_3 are well known,³⁷ ozone can be used for actinometry with the photolysis lamps.

Ozone from a silica gel trap was liquified and pumped on to remove oxygen before being allowed to vaporize slowly into the evacuated cell to a pressure of 2 to 3 torr. Concentration determinations were made from ozone's visible absorption spectrum before and after 30 minute periods of illumination by the flashing lamps. Since 30 percent of the cell volume was in the end caps and shielded from the lamps, the actual intensity of the lamps was a factor of 1/.70 larger than that calculated from ozone destruction. The path lengths used for modulation calculations were multiples of 708 cm, the part of the monitoring beam's path that was illuminated by the lamps. After a period of illumination, up to 20 minutes were required for the ozone concentration to equalize throughout

the cell. Ozone measurements in the dark cell were made during the 30 minutes after a photolysis period so that an extrapolation could be made back to the time when the lamps were turned off. Since less than 25 percent of the initial ozone was destroyed in an experiment, the average quantum yield for ozone photolysis was \geq 1.99.

The light intensities measured for the main reaction cell were:

Lamp	297.	<u>8 K</u>	329.0 K	
Green	1.55 ±	0.15	2.03 ± 0.21	C.S.
Gold	1.07 ±	0.02		(21)
Red	0.33 ±	0.04	0.29 ± 0.05	
	(units are 10^{16}	photons cm ⁻²	sec^{-1}	•

Both ozone's low visible absorption cross section and the concentration fluctuations due to the end caps were responsible for the large uncertainties in the light flux measurements. The ratios of the 298 K intensities for the green, gold, and red lamps (1.0 : 0.69 : 0.21) are similar to those obtained from spectral distribution measurements of the lamps when they were new.

D. Gases and Flow System

The purification of nitrogen dioxide and the preparation of nitric acid have been previously described.²⁸ Ozone, prepared by electric discharge through purified oxygen,²³ was used in the 1 atm flow system or collected on 6 to 12 mesh silica gel at 193 K for actinometry or for later desorption by a N_2 carrier gas into the flow system. The glass manifold for handling the gases used stainless steel Cajon ultra-torr

fittings and greaseless Teflon stopcocks with Viton O-rings and was evacuated by a liquid nitrogen trapped oil diffusion pump. A Texas Instruments Model 145 quartz spiral manometer was used to measure gas pressures.

The carrier gases for the flow experiments were provided by Lawrence Berkeley Laboratory. High dry grade nitrogen was passed through a Matheson particulate filter and through a column containing P_2O_5 -coated glass beads in order to remove moisture. High dry oxygen flowed through a silica tube containing copper turnings at 900 K to convert hydrocarbons to CO_2 and H_2O and then through ascarite and P_2O_5 columns to remove these oxidation products. Extra pure helium was used without further purification. A tank of NO_2 in N_2 from Matheson Company, analyzed by ultraviolet spectroscopy to contain 812 ± 9 ppm NO_2 and 43 ± 1 ppm NO, and a tank of 0.65 percent NO_2 in N_2 prepared in this laboratory were used in flow experiments.

The flow rates of the gases into the reaction cell were measured with Manostat Predictability flowmeters or Hastings mass flowmeters, both being calibrated for the gases used by an American Meter Company wet test flowmeter. The gases were mixed and jetted into the reaction cell through a glass disperser tube. This tube lay in the bottom of, and ran the length of the reaction cell. The disperser tube had holes spaced an inch apart and sized to give approximately equal throughput at the typical operating condition of 4000 cm³ per minute. The gases left the cell through a similar tube located at the top of the cell. The pressure drop through the cell at one atmosphere flow conditions was approximately 4 torr. Atmospheric pressure was measured by a mercury barameter to be 756 \pm 2 mm Hg (0°C).

IV. Results

A. Absorption Cross Sections

The absorption cross sections and concentration measurements in the various spectral regions were obtained with the following instrument setting: UV and visible – 0.83 nm resolution, 50 nm min⁻¹ scan, 0.3 sec time constant, data collected at 0.2 sec intervals; IR – 13 nm resolution, 1.0 sec time constant, 400 nm min⁻¹ scan, data collected at 0.2 sec intervals, one atmosphere total pressure. The absorption cross section σ (cm² molecule⁻¹) at the average wavelength λ is defined by

$$A \equiv \log_{e} I_{o}(\lambda)/I(\lambda) = \sigma(\lambda) CL$$
 (22)

where C is concentration in molecules cm^{-3} , L is optical path in cm, I o is the intensity of the incident beam, and I that of the transmitted beam. A low pressure mercury lamp and the 486 nm deuterium line were used for wavelength calibration.

1. Ozone

Ozone from a silica gel trap was liquified and pumped on to remove oxygen. It was then vaporized slowly into the evacuated gas cell to a pressure of 2 to 3 torr as measured by the quartz spiral manometer. From the ozone visible cross sections of Griggs,⁴⁸ the ozone decomposition during transfer to the gas cell was determined to be one percent. The visible absorption band obeyed Beer's law and was independent of pressure between 2 torr and 1 atm and of temperature between 298 K and 329 K. Ozone concentrations in actinometry experiments were measured by averaging three data points at each of the two absorption maxima and using a σ (574.6 nm) of 4.78 x 10⁻²¹ and a σ (602.5 nm) of 5.17 x 10⁻²¹ cm² molecule⁻¹. The ozone cross sections at the 4.72 and 4.78 μ infrared peaks were based on concentrations determined from the ozone spectrum in the visible region. The infrared ozone cross sections decreased a few percent from 298 to 329 K and varied quadratically with the observed optical density.⁴²

2. Nitrous Acid

1.1.1.1

Concentrations of nitrous acid vapor prepared from mixtures of NO, NO_2 , and H_2O were calculated from thermochemical data^{49,50} for the equilibrium

$$NO + NO_2 + H_2O = 2 HNO_2$$
 (23)

It has since been found that the actual amount of HNO_2 was much less than the equilibrium amount, and the previously reported²³ cross sections from this laboratory were too low - perhaps by a factor of 3 to 6. Ultraviolet cross sections for HNO_2 reported by Cox and Derwent⁵¹ are a factor of 5 to 6 higher than the earlier work.²³

3. Nitrogen Dioxide

The ultraviolet absorption spectrum of nitrogen dioxide at room temperature obtained as a part of these studies has been published elsewhere.²³ Tanks of NO₂ in N₂ were calibrated from NO₂ cross sections in the visible region and were used in the determination of the 8 μ HNO₃ and N₂O₅ infrared cross sections. Ultraviolet cross sections reported by Bass <u>et al</u>.⁵² are approximately 10 percent lower in the 400 nm region, but the two studies show agreement within the limits of the experimental uncertainties.

4. Nitrogen Pentoxide and Nitric Acid

Nitrogen pentoxide was prepared from 0_3 and $N0_2$ in a one atmosphere flow system, and the concentrations of N_2O_5 , HNO_3 , and O_3 (all of which absorb in the ultraviolet region) were determined from their infrared absorptions. The nitric acid was apparently formed by a heterogeneous reaction on the cell walls of the N_2O_5 with ppm concentrations of H_2O in the carrier gas. According to Morris and Niki,⁵³ the reaction of water with N_2O_5 to give HNO₃ has a gas phase reaction rate of less than 1.3×10^{-20} at 298 K. The fast heterogeneous reaction they also observed is probably the cause of nitric acid formation in the present system. For conditions of very low ozone concentration, an appreciable amount of NO₂ is also present and can be measured by its near ultraviolet spectrum. Six ultraviolet spectra were taken with N_2^{0} concentrations of (3-10) x 10^{14} molecules cm⁻³. The absorptions due to 0₃, HNO₃, and NO₂ were subtracted from the spectra; the main source of uncertainty was the measurement of small ozone concentrations. The average uncertainty in Table I and Figure 3 is approximately 10 percent for 205 to 260 nm and 20 percent for longer wavelengths.

The N_2O_5 and HNO_3 infrared cross sections were measured in a steady state flow system using a calibrated tank of NO_2 in N_2 . The N_2O_5 to HNO_3 ratio was varied by changing the amount of water vapor in the system. The cross sections were then determined by a mass balance from the HNO_3 , N_2O_5 , and NO_3 absorptions. The Beer-Lambert law was obeyed for optical densities less than 2.5 at the peak of the 8.03 μ Q-branch of N_2O_5 :

 $\sigma(298 \text{ K}) = (1.75 \pm 0.01) \text{ x } 10^{-18}$ $\sigma(313 \text{ K}) = (1.68 \pm 0.02) \text{ x } 10^{-18}$ $\sigma(329 \text{ K}) = (1.56 \pm 0.03) \text{ x } 10^{-18}$

(Uncertainties are the standard deviation of the mean.) The N_2O_5 and HNO₃ absorption bands are shown in Figure 4.

5. Nitrate Radical

The concentration of NO, was much too small to be accurately determined by the NO_x mass balance. Since the loss of two NO₃ molecules (reactions g and B) results in the production of approximately one N_2O_5 molecule, the NO_3 absorption cross section can be calculated from the ratio of modulation signals for N_2O_5 and NO_3 . Both green and gold photolysis lamps were used in these measurements. Since the only quantity of interest in this part of the study was the ratio of modulation amplitudes, accurate values for the photon fluxes were not needed. The N205 modulation signal was averaged for 30 to 60 minutes at 1/4 cps, and the much stronger NO_3 signal for 10 minutes. The NO_3 modulation was monitored at 627 nm, the center of a fairly broad absorption band that obeyed Beer's law, and $N_{2}O_{5}$ was observed at its 8.03 μ infrared absorption peak. The stoichiometric factor (S.F.) relating the NO₃ and N_2O_5 concentration modulations was obtained for each set of conditions by a complete computer simulation. The NO $_3$ cross section at 627 nm could then be obtained from the N_2O_5 cross sections and the ratios of modulation amplitudes and optical path lengths:

(24)

$$\sigma_{627 \text{ nm}} = \sigma_{N_2 O_5} \frac{1}{\text{s.r.}} \frac{A_{NO_3}}{A_{N_2 O_5}} \frac{L_{N_2 O_5}}{L_{NO_3}}$$
(25)

The averages from 24 sets of data 42 for Equation 25 are:

 $\sigma_{627}(298 \text{ K}) = (7.03 \pm 0.18) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ $\sigma_{627}(313 \text{ K}) = (7.01 \pm 0.13) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ $\sigma_{627}(329 \text{ K}) = (7.04 \pm 0.13) \times 10^{-18} \text{ cm}^2 \text{ molecule}^{-1}$ (26)

The absorption cross sections of NO_3 in this system, with corrections made for the visible ozone absorption, were averaged over each nm for presentation in Table II.

The average cross sections for NO₃ absorption for each lamp (red, gold, and green) were evaluated by Equation 20 over wavelength regions above and below 580 nm (the threshold for forming NO₂ + 0) and entered in Table III with the average O₃ cross sections for each lamp.

B., Chemical Kinetic Data

1. N_2O_5 Catalyzed Decomposition of Ozone

Measurements of the $N_2^{0}{}_5$ catalyzed decomposition of ozone were carried out using infrared scanning techniques for monitoring 0_3 , $N_2^{0}{}_5$, and HNO_3 . The reaction cell was conditioned with $N_2^{0}{}_5$ and 0_3 in a flow system at one atmosphere total pressure. The relative amount of $N_2^{0}{}_5$ being converted to HNO_3 on the walls decreased slowly with time, but was always greater than 10 percent. When the flows were stopped, the $N_2^{0}{}_5$ would be completely converted to nitric acid in 2 to 4 hours.

The reaction cell was closed off from the flow system at the start of an experiment. Ozone was measured by scanning the 4.4 to 5.76 μ region. Nitric acid and nitrogen pentoxide were then measured by scanning the 7.0 to 8.36 μ region. A set of measurements of all three species took 10 to 11 minutes. From 5 to 10 determinations of the concentrations of the three species were made over the course of an experiment by repeating the pair of scans as quickly as possible. The data points for each reactant were least-squares fitted to a third-order polynomial to give its concentration profile as a function of time. The decays of 0_3 and $N_{2}O_{5}$ are illustrated by the profiles of concentration versus time presented in Figure 5. The polynomial curves for $[0_3]$ and $[N_20_5]$ usually fit the data points with a standard deviation smaller than 0.2 percent. The differential rate of change of ozone was calculated from the concentration profile polynomials and used in Equation 7. The rate constants from the central portions of the curves were averaged and are presented in Table IV. The data were weighted by their standard deviations and leastsquares fitted to Arrhenius parameters. The results for the two cells differed by 10 calories in the activation energy. The combined data give

$$\frac{1}{2}(Kh)^{2/3}(2g)^{1/3} = (1.39 \pm 0.19)$$

$$\times 10^{5} e^{-(9914 \pm 40)/T} \text{ cm molecules}^{-1/3} \text{ sec}^{-1}$$
(27)

The data from this work is compared to the results of Schumacher and Sprenger¹⁸ on an Arrhenius plot in Figure 6.

2. NO₃ Steady State Concentrations

Nitrogen trioxide is a free radical intermediate in the $N_2^{0}{}_5^{-0}{}_3$ system, and its concentration depends on those of 0_3 and $N_2^{0}{}_5$ and on the rate constants relating the three species. The concentrations of NO_3 , O_3 , and $N_2^{0}{}_5$ were measured under steady state flow conditions in the UV cell. The NO_3 visible absorption spectrum was scanned, and after a quick conversion of the system to infrared use, the $N_2^{0}{}_5$ and O_3 spectra in the infrared were recorded. The NO_3 spectrum was then rescanned.

At three temperatures and over a wide range of concentrations of ozone and nitrogen pentoxide, a total of 136 determinations were made of the steady-state concentration of the NO₃ radical.⁴² By means of successive approximations and the method of least squares, the quantities Kh/2g and w/2g of Equation 8 were evaluated. The results are summarized in Table V. The values for $(Kh/2g)^{1/3}$, weighted by their standard deviations, were fitted by the method of least squares to the Arrhenius equation to give

$$(Kh/2g)^{1/3} = (4.04 \pm 0.47) \times 10^8 \exp(-3730 \pm 40)/T$$
 (28)

molecules $^{1/3}$ cm⁻¹, which is plotted in Figure 7. Schott and Davidson⁴ measured the equilibrium constant *K* and the rate constant *g* at high temperature, Johnston and Yost¹² measured the rate constant *h* near room temperature, and the combined results from these studies for $(Kh/2g)^{1/3}$ are also shown in Figure 7. The present work differs from the older results by about a factor of three.

3. N₂O₅ Catalyzed Decomposition of Ozone with Photolytic Illumination of NO₃

Closed cell $N_2O_5-O_3$ decay experiments were also carried out with photolysis lamps flashing at 8 cps to obtain information on NO_3 photolysis products. Oxygen was used as the carrier gas to keep the steady state concentration of ozygen atoms low. The normal ozone decay could then be affected by reactions j_1 and j_2 for NO_3 photolysis and by reaction r, $0 + O_2 + M$, if j_2 occurs. Experiments were performed in the UV cell using red, green, and gold lamps. The data were intially evaluated in Table VI using Equation 7, which does not take into account the effect of photolysis light in calculating the apparent rate constant for the N_2O_5 catalyzed decomposition of ozone. When the temperature of the system sometimes rose by 0.1 to 0.3 K due to heating by the lamps, the rate constants were extrapolated back to 297.8 K by Equation 27. Unilluminated experiments, performed in between the illuminated ones, gave rate constants within experimental error of the dark value predicted by Equation 27.

C. Modulation Experiments

The modulation experiments produced several types of kinetic information, including the identification of reaction species, the NO_3 visible absorption cross sections, the primary quantum yields for NO_3 photolysis, and the rate constants for oxygen atoms reacting with NO_3 and N_2O_5 . All modulation experiments were performed in a flow system at one atmosphere total pressure.

1. Identification of Reaction Species

Preliminary experiments were carried out to determine the modulation behavior of the various reaction species. In the $N_2O_5-O_3$ flow system, the species present in significant concentrations were O_3 , N_2O_5 , HNO_3 , and NO_3 . The NO_3 modulation was monitored by its strong visible absorption spectrum. The amplitudes for different wavelengths in this spectrum were proportional to their respective NO_3 absorption cross sections, and the phase shifts were identical throughout the region. The NO_3 phase shifts for flashing frequencies near 1 cps were approximately 90°, indicating that NO_3 is a reactant being destroyed by light or fast intermediates. Ozone has a weak absorption that overlaps the NO_3 spectrum, but its predicted modulation amplitude was several orders of magnitude smaller than that of NO_3 and could not be detected at the visible, ultraviolet, or infrared ozone absorption bands.

The N₂O₅ modulation was monitored at its 8.03 μ infrared absorption peak. The phase shift for this signal always differed from that for NO₃ by approximately 180°, indicating that NO₃ and N₂O₅ have a reactant-product relationship. Modulation data were taken at 10 cm⁻¹ intervals in the 1325 to 1375 cm⁻¹ region where an NO₃ absorption band has been reported.²⁵ The NO₃ phase shift at 627 nm was 121°, and the N₂O₅ phase shift at 8.03 μ was -62°. The amplitude and phase shift data in Figure 8 indicate that this absorption band is due to N₂O₅. The absorption cross sections for this band were calculated from the 8.03 μ N₂O₅ cross section, and the ratio of modulation amplitudes are plotted in Figure 4.

Nitrogen dioxide was a low-concentration, fast intermediate in this system and attempts were made to detect this species by its strong near ultraviolet absorption spectrum. Since no modulation signal could be detected, the ratio of the NO₃ concentration modulation to that for NO₂ was greater than a factor of 10, in agreement with computer simulations. Nitric oxide modulations in this system were much too small to be detected. The infrared absorption of HNO₃ at 7.70 μ was monitored to determine if nitric acid played a role in the modulation kinetics. Since no phase coherent signal was detected, the HNO₃ concentration modulation is at least a factor of 10 smaller than that of N₂O₅.

2. NO₃ Quantum Yields

According to Equation 19, the NO₃ modulation amplitude is directly proportional to its primary quantum yield. Modulation experiments were carried out to measure the quantum yield using red, green, and gold lamps. Oxygen was used as the carrier gas in order to suppress possible contributions to the modulation amplitude from oxygen atom reactions with NO_{3*} and N_2O_5 . These experiments were performed in the UV reaction cell, and a summary of the data is presented in Table VII. The quantum yields were calculated from a computer simulation of the reaction system for each set of conditions. The light fluxes from Equation 21 and the absorption cross sections from Table III were used in the calculations. The variations in the observed quantum yields are mainly due to uncertainties in the light fluxes and to complications in the $[NO_3]$ determination: the green and gold lamps reduced the steady state concentration of NO_3 by 5 to 30 percent in the lighted portion of the reaction cell, but the optical path for spectroscopic monitoring also passed through the end caps (30 percent of the volume) where no NO, was photolyzed. Although

0000,000,0770068117

these two sections of the cell were treated separately in computations, convective mixing between the lighted and unlighted sections introduced noise into the modulation signal and some uncertainty into the NO_3 simulations.

3. Oxygen Atom Reactions

When nitrogen is substituted for the oxygen carrier gas (which had suppressed the oxygen atom concentration) the changes in modulation amplitudes can be attributed to reactions m and n. The primary quantum yields for NO₃ determined from the data in the previous section were used to calculate the NO₃ modulation amplitudes due to the photolysis reactions j_1 and j_2 . The residual amplitudes observed with the nitrogen carrier gas were attributed to reactions m and n. Computer simulations showed a linear relationship between the rate constants m and n and the calculated modulation amplitudes due to these reactions. The modulation amplitudes for cases with N₂ as carrier gas are given in Table VIII.

V. Discussion

A. Absorption Cross Sections

The NO₃ cross sections presented in this work are about four times higher than previously reported values²³ since the earlier study used the values of K and g determined by Schott and Davidson⁴ to calculate the steady state concentrations of NO₃. Schott and Davidson⁴ extrapolated their 650 to 1050 K NO₃ cross sections determined in a shock tube to 300 K and obtained a value of 8.4 x 10^{-19} cm² molecule⁻¹ at 652 nm. The present study obtained a value of 3.9 x 10^{-19} cm² molecule⁻¹ at this wavelength and found an average overall increase in NO₃ cross sections with temperature (Table III). Since the wavelength chosen by Schott and Davidson lay between two strong absorption peaks, the possible variation in shape of both of these peaks with temperature made their long extrapolation uncertain.

The N_2O_5 ultraviolet cross sections in Table I are based on concentrations determined by infrared absorptions. These values supersede some earlier data²³ based on a fairly crude NO_x mass balance. The present results are up to 40 percent higher than those of Jones and Wulf²² in the 290 to 310 nm region. The agreement is satisfactory, however, in view of the difficult experimental conditions in both studies.

The weak infrared abosrption band from 1325 to 1375 cm⁻¹ attributed to NO₃ by Cramarossa and Johnston²⁵ has been identified by a molecular modulation study in this research as N_2O_5 . Their study used long path infrared monitoring of the species in the $N_2O_5-O_3$ system and subtracted off a large overlying HNO₃ absorption. Part of their evidence for the band being NO₃ was an apparent one-third power dependence of the absorption
on the 0_3 and $N_2^{0}0_5$ concentrations. The present experimental conditions gave NO_3 to $N_2^{0}0_5$ ratios similar to the earlier study, and a residual absorption was observed when the HNO₃ absorption was subtracted from the spectrum. The band was identified as $N_2^{0}0_5$ by its phase shift (Figure 8).

B. N₂0₅-0₃ Kinetics

The behavior of the $N_2^{0}{}_{5}{}^{-0}{}_{3}$ system in the unilluminated reaction cell can be well described by reactions A through i and w. The $N_2^{0}{}_{5}$ catalyzed decomposition of ozone gave. $\frac{1}{2}(Kh)^{2/3}(2g)^{1/3}$, Equation 27, and measurements of the steady state concentration of $N_{0}{}_{3}$ as a function of $N_2^{0}{}_{5}$ and 0_{3} led to $(Kh/2g)^{1/3}$, Equation 28. The equilibrium constant K was obtained by multiplying Equation 27 by 28 and dividing by the rate constant h. Substitution of K and h in Equation 27 or 28 then gave the rate constant g. These rate constants are listed in Table IX. The uncertainties for K and g were obtained by propagation of the standard deviations of h and of the quantities in Equations 27 and 28.

This rather involved method of obtaining values for K and g results in the accumulation of uncertainties from three different kinetic quantities. Equations 4 and 7 can be rearranged to give

$$\left(\frac{Kh}{2g}\right)^{1/3} = \frac{[NO_3]}{[O_3]^{1/3} [N_2O_5]^{1/3} \alpha^{1/3}}$$
(29)

$$(\kappa h)^{2/3} (2g)^{1/3} = \frac{-\frac{d[0_3]}{dt}}{[0_3]^{2/3} [N_2 0_5]^{2/3} \alpha^{-1/3}}$$
(30)

Multiplying these two equations together and dividing by h, one finds

$$K = \frac{-\frac{d[0_3]}{dt} [N0_3]}{h[0_3][N_20_5]}$$
(31)

The concentrations of chemical species in this expression were determined from experimentally measured absorption cross sections. Since the NO₃ cross section was derived experimentally as a direct multiple of that of N_2O_5 , a systematic error in the N_2O_5 cross section would be canceled out. The ozone cross section is used in both the numerator and denominator, and the correction term for minor side reactions, α , cancels out in Equation 31. Hence, uncertainties in absorption cross sections should have little effect on the value obtained in this work for the equilibrium constant K.

The observed first-order loss of NO₃ in the dark was assumed to lead to NO₂ (reaction w) as a product in the proposed mechanism, but the possibility of NO (reaction w') being the product has not been eliminated. A chemiluminescence study of the NO₂-O₃ reaction indicated that no significant amount of NO was in the gas phase of this system. Even if the NO is formed heterogeneously, the effect is less than 0.2 percent in the values for (Kh/2g) or (w/2g) in Table V. The reaction w rate constants for the two sets of products are:

<u>Temp (K)</u>	$w (sec^{-1})$	$w' (sec^{-1})$	
298	0.0026 ± 0.0003	0.0035 ± 0.0003	
313	0.0031 ± 0.0005	0.0017 ± 0.0006	(32)
329	0.0055 ± 0.0020	0.006 ± 0.004	

The enthalpy of formation of NO₃ can be obtained from the activation energy of the equilibrium constant K and the enthalpies of formation⁵⁴ of NO₂ and N₂O₅:

$$\Delta H_{f, 300 \text{ K}} = 17.6 \pm 0.2 \text{ kcal/mole}$$
(33)

The calculated threshold wavelength for the photolysis of NO_3 to give NO_2 and $O({}^3P)$ can then be calculated:

$$\Delta E_{300 \text{ K}} = 49.3 \pm 0.2 \text{ kcal/mole}$$
 and $\lambda \le 580 \pm 3 \text{ nm}$ (34)

The early study by Schumacher and Sprenger¹⁸ of the N_{205}^{0} catalyzed decomposition of ozone used hundreds of torr of ozone and followed the reaction manometrically. The present research used only about three torr of ozone, but the measurements of $\frac{1}{2}(Kh)^{2/3}(2g)^{1/3}$ in the two systems agree within the experimental errors. The results from the present study have a higher precision, a larger temperature range, and both N_{205}^{0} and 0_{3}^{0} were directly measured by their infrared absorptions. The higher activation energy measured by Schumacher and Sprenger,¹⁸ 20,700 calories versus 19,700 calories in the present study, could be due to reactant self-heating. The temperature rise in the present studies was calculated^{55,56} to be less than 0.12 K, but the high concentrations of reactants in the earlier study would give a much larger rate of heat release.

The equilibrium constant K determined in this research has been used with literature data^{3,6,10,36} to calculate rate constants for reactions B, e, and f (Table IX). In addition, the rate constants for the reaction of NO₃ with acetaldehyde and propylene measured by Morris and Niki⁵⁷ can be revised to give 1.7 x 10⁻¹⁵ cm³ molecule⁻¹ sec⁻¹ and 4×10^{-15} cm³ molecule⁻¹ sec⁻¹, respectively.

C. NO₃ Photochemistry

The experimental data needed to determine the photochemistry of NO₃ are the observed quantum yields for NO₃ from molecular modulation studies in oxygen (Table VII) and the effect of illumination on the rate of the N_2O_5 catalyzed decomposition of ozone (Table VI). The two modes of photolysis of NO₃ have different effects on ozone. If the photolysis products are NO₂ + 0, ozone is produced in an oxygen system via reaction r, $0 + O_2 + M$. The primary quantum yield is the net effect observed on NO₃, and O₃ is formed:

$$\frac{NO_{3} + hv + NO_{2} + O}{O + O_{2} + M + O_{3} + M} (r)}$$

net: $\frac{NO_{3} + hv + O_{2} + NO_{2} + O_{3}}{O_{2} + O_{3}}$

For photolysis of NO₃ giving a nitric oxide molecule that subsequently reacts with O₃, the observed quantum yield of NO₃ is the same as the primary quantum yield, and an O₃ molecule is destroyed:

$$\frac{\text{NO}_{3} + \text{hv} + \text{NO} + \text{O}_{2} \qquad (j_{1})}{\text{NO} + \text{O}_{3} + \text{NO}_{2} + \text{O}_{2} \qquad (i)}$$

net:
$$\frac{\text{NO}_{3} + \text{hv} + \text{O}_{3} + \text{NO}_{2} + 2 \text{O}_{2}}{\text{O}_{2} + 2 \text{O}_{2}}$$

If the NO reacts with NO_3 , however, the observed quantum yield is twice the primary quantum yield, and O_3 is unaffected:

$$\frac{\text{NO}_{3} + \text{hv} + \text{NO} + \text{O}_{2} \qquad (j_{1})}{\text{NO} + \text{NO}_{3} + 2 \text{ NO}_{2} \qquad (f)}$$

net: 2 NO₃ + hv + 2 NO₂ + O₂

The photolysis sources in this study were three broad-band fluorescent lamps with overlapping spectral distributions (Figure 2). In order to determine the products of NO, photolysis, the observed quantum yields in Table VII were combined with a detailed interpretation of the illuminated $N_{2}O_{5}$ catalyzed decomposition of ozone. The rate constants calculated by Equation 7 (no light reactions) for green and gold lamp illuminated experiments are listed in the first column of Table VI. (The quantum yields for red light photolysis were too small to yield information from this type of data treatment.) Rate constants were recalculated by Equation 12 for several possible distributions of products in an effort to obtain the expected $\frac{1}{2}(Kh)^{2/3}(2g)^{1/3}$ value (i.e., that given by Equation 27). The second set of values in Table VI takes into account the lowered steady state concentration of NO3 due to photolysis, but does not make corrections for any ozone created or destroyed (i.e., \boldsymbol{j}_1 and \boldsymbol{j}_2 in the lefthand side of Equation 12 are zero). The next two columns of calculated rate constants contain ozone corrections and indicate the effects of attributing the observed quantum yield data of Table VII entirely to j_1 or j_2 . The last column contains the quantum yields that result from fitting the data to the $\frac{1}{2}(Kh)^{2/3}(2g)^{1/3}$ value obtained in dark experiments (Equation 27). The quantum yields for green lamps in Table VII appear to be significantly lower at 329 K than at 298 K. The 329 K data was not as extensive as that at 298 K and was not used in the product analysis; the evidence for a temperature effect on the NO3 quantum yield is not strong.

The quantum yields from the three sets of lamps at 298 K were used to estimate the wavelength dependence of photolysis products. Since

only broad bands of light were used in this study, the actual details of band shapes cannot be determined. Figure 9 presents one possible separation of the NO3 spectrum into photochemically active bands. Since the red lamp quantum yields are so low, the strong 662 and 627 nm bands were assumed to be inactive. The red lamp intensity below 600 nm was quite small, and the red lamp quantum yield in Table VII was assumed to be due to reaction j_1 . The distribution of light giving NO + 0, as products was constrained by the very small overlap of the green and red lamp spectra (Figure 2) and the apparent values of j_1 for each lamp. Although the threshold energy for the formation of NO₂ and O(3 P) was computed to be 580 ± 3 nm, vibrational and rotational energy could contribute to the dissociation process at higher wavelengths, as has been observed for NO_2 .⁵⁸ In Table X, the products of average cross section and quantum yield deduced in Table VI from experimental results are compared with those calculated from the synthetic band shapes in Figure 9. Although the calculated j-values are all slightly lower than the experimental results, the values fall within the error limits of the measurements. The wavelength averaged NO3 cross sections from Table III were used for the data analysis of Tables VI and X for convenience. The important photochemical parameter is the product of the quantum yield and absorption cross section, and although the data are consistent with any number of choices of quantum yield distributions and compatible cross sections different from Figure 9, the first-order photolysis rate constants would remain the same. In the 470 to 610 nm region, the average primary quantum yield was 0.23 for \boldsymbol{j}_1 and 0.77 for ${j_2}$. The average quantum yield for ${j_1}$ in the strong 610 to 700 nm region was only 0.07.

Since the solar light flux from the green to red regions of the spectrum changes slowly with wavelength, the photolytic rates (cross section x light flux x quantum yield) calculated for NO_3 in the lower atmosphere have little dependence on the exact shape of the absorption bands that give the different products. Leighton⁵⁹ has tabulated solar light fluxes averaged over 100 Å intervals with corrections for ozone absorption, for the effects of particles in the atmosphere, and for Rayleigh scattering; these correction terms are not large in the region of the spectrum of the present work. The light fluxes for an overhead sun were used to calculate *j*-values:

 $j_1 = 0.040 \pm 0.02 \text{ sec}^{-1}$ $j_2 = 0.099 \pm 0.02 \text{ sec}^{-1}$

The error limits are an estimate of the overall uncertainties in the component experiments. If the entire NO₃ visible absorption band was photochemically active, the total *j*-value would be 0.27 sec⁻¹.

The NO₃ free radical is important in several gas phase reaction mechanisms, but little is known about its structure or electronic states. Walsh⁶⁰ predicted that the molecule has D_{3h} symmetry and a ${}^{2}A'_{2}$ ground electronic state. Semi-empirical calculations by Olsen and Burnelle,⁶¹ however, predict a Y-shaped structure with a ${}^{2}B_{2}$ ground state. Although the nitrate anion has absorptions in the 1350 to 1400 cm⁻¹ and 720 to 830 cm⁻¹ regions,⁶² no infrared absorption bands for the NO₃ free radical have been observed.

Several reactions are energetically possible in the region of the strong NO_2 visible absorption spectrum:

$NO_3 + hv \rightarrow NO + O_2(^{3}\Sigma_{g})$	λ ≤ 8 μ
$\rightarrow NO + O_2(^{1}\Delta_g)$	$\lambda \leq 1100$ nm
$\rightarrow \text{NO} + \text{O}_2(^{1}\Sigma_g^+)$	$\lambda \leq 700 \text{ nm}$
$\rightarrow NO_2 + O(^{3}P)$	$\lambda \leq 580$ nm

The quantum yield results of this research indicate that both NO and NO $_2$ are formed by NO $_3$ photolysis, but the electronic states of the products were not identified.

The extremely strong NO_3 absorption bands at 662 and 627 nm are the first two transitions in a series that Ramsey²⁴ identified as involving symmetric stretching vibrations. The results obtained here indicate that absorption of light at these wavelengths does not lead to photolysis of NO_3 at a total pressure of one atmosphere. Collisional deactivation appears to be faster than dissociation to $NO + O_2$ when NO_3 is excited in these bands. Whether NO_3 has a symmetrical D_{3h} structure or a Y-shaped C_{2v} structure, the "reaction coordinate" to form $NO + O_2$ does not have the symmetry of a symmetric stretch, but more nearly that of an antisymmetric stretch. Although the other bands of NO_3 have not been interpreted, it is tempting to speculate that absorption in anti-symmetric bands leads to $NO + O_2$. Below 580 nm, the primary quantum yield seems to be close to unity. If NO_3 is Y-shaped, the symmetric-stretching normal coordinate would have a large component of bond-breaking to give an oxygen atom.

These results indicate a substantial amount of formation of $NO_2 + O_2$ at wavelengths above the 580 nm threshold (Figure 9). This effect could be the participation of rotational energy in the bond-breaking process.

However, an analysis of the energy present from the Boltzmann distributions of rotational and vibrational levels for a D_{3h} structure showed that it could account for only 40 percent of the effect shown in Figure 9. This discrepancy may reflect a partial failure of this method to separate j_1 and j_2 . These results clearly point out the need for further experimentation: (1) using monochromatic radiation, (2) varying the wavelength, (3) varying total pressure at each wavelength, and (4) some variation of temperature.

D. Oxygen Atom Reactions

The interpretation of the rate data for the reactions of N_2O_5 and NO_3 with oxygen atoms (reactions *m* and *n*, respectively) is highly dependent on the other kinetic parameters measured in this study. When the oxygen carrier gas was replaced by nitrogen, there was a change in the NO_3 molecular modulation amplitude as shown in Table VIII. Computer simulations were carried out using the entire mechanism plus various assumed values for the rate constants *m* and *n*. For reaction *m* the effect on the observed NO_3 modulation amplitude is of opposite sign depending on products:

$$N_2 O_5 + O \neq 2 NO_3$$
 (m')
 $N_2 O_5 + O \neq 2 NO_2 + O_2$ (m'')

The experimental data yield the result that the absolute value of the difference in m' and m'' is $\leq 2 \times 10^{-14}$ cm³ molecule⁻¹ sec⁻¹ at 298 K; this was determined by the absence of any identifiable effect and the sensitivity of the method. Within experimental error the value of the rate constant n was the same at 298 and 329 K:

$$n = (1.0 \pm 0.4) \times 10^{-11} \text{ cm}^3 \text{ molecules sec}^{-1}$$

This value is fairly close to that for the similar reaction of atomic oxygen with nitrogen dioxide, 37 which is 9.1 x 10^{-12} cm³ molecule⁻¹ sec⁻¹.

E. Check on Mechanism and Rate Constants

The molecular modulation data at a flashing frequency of 1/4 cps have been used, along with other data, to evaluate some of the rate constants in Table IX. A check on the consistency of the procedure was to use the mechanism and rate constants to predict the modulation amplitude and phase shift for NO_3 at other flashing frequencies. A series of experiments was conducted with the gold colored lamps flashing at frequencies between 1/4 and 8 cps with $[0_3] = 6.2 \times 10^{16}$, $[N_2 0_5] =$ 1.22×10^{15} , $[0_2] = 2.46 \times 10^{19}$, $[NO_3] = 5.4 \times 10^{13}$ molecules cm⁻³, and T = 298 K. The experimental and calculated amplitudes and phase shifts are plotted in Figure 10. A similar set of experiments was carried out using the green colored lamps at 329 K with $[0_3] = 2.4 \times 10^{16}$, $[N_2O_5] =$ 7.5 x 10^{14} , $[0_2] = 2.23 \times 10^{19}$, and $[NO_3] = 11.6 \times 10^{13}$; calculated and observed results are plotted in Figure 11. Within experimental error the observed data agree with the calculated amplitudes and phase shifts, and provide a partial confirmation of the mechanism and rate constants described by this study.

F. Errors

These studies were carried out with well-defined experimental conditions and with primary spectroscopic data having a precision of

000,00,00, 4771 01 1681 233

one percent or better. Water vapor adsorbed by the cell's walls converted nitrogen pentoxide to nitric acid, and the HNO₂ concentration was from 10 to 20 percent of that of N_2O_5 in the flow experiments. Although no significant reactions of nitric acid with 0_3 , 0, or $N0_3$ are known, there is some uncertainty as to whether the ever-present nitric acid was undergoing an unrecognized chemical reaction. The separation of quantum yields of NO3 for the two sets of products depended on small perturbations of kinetic data by NO₃ irradiation, and the non-illuminated ends of the reaction cell introduced uncertainty in the average concentration of NO3 being photolyzed. The wavelength resolution of the quantum yield was only approximate due to the broadband nature of the fluorescent lamp spectra, but this should not cause a major error in the photolysis rate constants for atmospheric conditions. Finally, the rate constants m and n are derived from the five to ten percent difference between two large numbers, and these rate constants had all the accumulated errors of the entire study.

Acknowledgment

This work was supported in part by the National Science Foundation Grant No. CHE-75-17833, by the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory, and by the Climatic Impact Assessment Program.

Work performed under the auspices of the U. S. Energy Research and Development Administration.

References

1.	H. S. Johnston, <u>J. Am. Chem. Soc.</u> 73, 4542 (1951).
2.	F. Daniels and E. H. Johnston, <u>J. Am. Chem. Soc.</u> 43, 53 (1921).
3.	H. S. Johnston and Yu-sheng Tao, <u>J. Am. Chem. Soc.</u> 73, 2948 (1951).
4.	G. Schott and N. Davidson, J. Am. Chem. Soc. 80, 1841 (1958).
5.	J. H. Smith and F. Daniels, <u>J. Am. Chem. Soc.</u> 69, 1735 (1947).
6.	R. L. Mills and H. S. Johnston, <u>J. Am. Chem. Soc.</u> 73, 938 (1951).
7.	H. S. Johnston and R. L. Perrine, <u>J. Am. Chem. Soc.</u> 73, 4782 (1951).
8.	H. S. Johnston, <u>J. Am. Chem. Soc.</u> 75, 1567 (1953).
9.	D. J. Wilson and H. S. Johnston, <u>J. Am. Chem. Soc.</u> 75, 5763 (1953).
10.	R. L. Mills, Ph.D. Thesis, Standord University, 1951.
11.	I. C. Hisatsune, B. Crawford, Jr., and R. A. Ogg, Jr., <u>J. Am. Chem.</u>
	<u>Soc.</u> 79, 4648 (1957).
12.	H. S. Johnston and D. M. Yost, <u>J. Chem. Phys.</u> 17, 386 (1949).
13.	C. H. Wu, E. D. Morris, Jr., and H. Niki, <u>J. Phys. Chem.</u> 77, 2507
	(1973).
14.	R. A. Graham and H. S. Johnston, <u>J. Chem. Phys.</u> 60, 4628 (1974).
15.	D. D. Davis, J. Prusazcyk, M. Dwyer, and P. Kim, <u>J. Phys. Chem</u> .
	78, 1775 (1974).
16.	J. T. Herron and R. E. Huie, Int. J. Mass Spectrom. Ion Physics
	16, 125 (1975).
17.	G. Sprenger, <u>Z. Elektrochem.</u> <u>37</u> , 674 (1931).
18.	H. J. Schumacher and G. Sprenger, Z. Physik. Chem. 2B, 266 (1929).
19.	M. E. Nordberg, <u>Science</u> 70, 580 (1929).
20.	T. M. Lowry and R. V. Seddon, J. Chem. Soc., 1461 (1938).

- 21. H. S. Johnston, <u>Science</u> 173, 517 (1971).
- 22. E. J. Jones and O. R. Wulf, <u>J. Chem. Phys.</u> 5, 873 (1937).
- 23. H. S. Johnston and R. Graham, <u>Can. J. Chem.</u> 52, 1415 (1974).
- 24. D. A. Ramsay, Proc. Colloq. Spectroscopy Int., 10th, 583 (1962).
- 25. F. Cramarossa and H. S. Johnston, J. Chem. Phys. 43, 727 (1965).
- 26. R. Dalmon, Mem. Serv. chim. etat. 30, 141 (1943).
- 27. S. C. Schmidt, R. C. Amme, D. G. Murcray, A. Goldman, and F. S. Bonomo, Nature (London), Phys. Sci. 238, 109 (1972).
- 28. H. S. Johnston and R. Graham, J. Phys. Chem. 77, 62 (1973).
- 29. F. Biaume, J. Photochem. 2, 139 (1973/74).
- G. S. Beddard, D. J. Giachardi, and R. P. Wayne, <u>J. Photochem.</u> 3, 321 (1974/75).
- 31. D. G. Murcray, T. G. Kyle, F. M. Murcray, and W. J. Williams, <u>J.</u> <u>Opt. Soc. Am.</u> 59, 1131 (1969).
- D. G. Murcray, A. Goldman, A. Csoeke-Poeckh, F. H. Murcray, W. J.
 Williams, and R. N. Stocker, <u>J. Geophys. Res.</u> 78, 7033 (1973).
- R. F. Murphy, Ph.D. Thesis, University of California, Los Angeles, 1969.
- 34. H. S. Johnston, <u>Gas Phase Reaction Rate Theory</u>, Ronald Press Co., New York, 1966, pp. 14-32.
- 35. S. W. Benson, <u>The Foundations of Chemical Kinetics</u>, McGraw-Hill Book Co., Inc., New York, 1960, pp. 408-418.
- 36. A. B. Harker and H. S. Johnston, J. Phys. Chem. 73, 1153 (1973).
- D. Garvin and R. F. Hampson, Editors, <u>Chemical Kinetics Data</u> Survey, NBSIR 74-430, 1974.
- A. C. Hindmarsh, Lawrence Livermore Laboratory Report UCID-30001, Rev., 1, 1972.

- 39. A. B. Harker, Ph.D. Thesis, University of California, Berkeley, 1972.
- 40. E. D. Morris, Jr., Ph.D. Thesis, University of California, Berkeley, 1968.
- 41. E. D. Morris, Jr. and H. S. Johnston, <u>Rev. Sci. Instrum.</u> 39, 620 (1968).
- 42. R. A. Graham, Ph.D. Thesis, University of California, Berkeley, 1975.
- G. Z. Whitten, "Rate Constant Evaluations Using a New Computer Modeling Scheme," paper presented at ACS National Meeting (Spring, 1974).
- 44. G. A. W. Rutgers and J. C. DeVos, Physics XX, 715 (1954).
- 45. J. C. DeVos, Physics XX, 690 (1954).
- 46. E. Castellano and H. S. Schumacher, J. Chem. Phys. 36, 2238 (1962).
- 47. E. Castellano and H. S. Schumacher, Z. Physik. Chem. 34, 198 (1962).
- 48. M. Griggs, J. Chem. Phys. 49, 857 (1968).
- 49. A. P. Altshuller, J. Phys. Chem. 61, 251 (1957).
- 50. D. M. Waldorf and E. L. Balb, J. Chem. Phys. 39, 432 (1963).
- 51. R. A. Cox and R. G. Derwent, <u>J. Photochem.</u> 6, 23 (1976/77).
- 52. A. M. Bass, A. E. Ledford, Jr., and A. H. Laufer, <u>J. Res. Natl.</u> <u>Bur. Stand.</u> 80A, 143 (1976).
- 53. E. D. Morris, Jr. and H. Niki, J. Phys. Chem. 77, 1929 (1973).
- 54. D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and
 R. H. Schumm, NBS Technical Note 270-3 (1968).
- 55. T. Boddington and D. Gray, Proc. Roy. Soc. London A. 320, 71 (1970).
- 56. P. G. Ashmore, B. J. Tyler and T. A. B. Wesley, 11th Int. Symp. on Combustion, 1133 (1967).

- 57. E. D. Morris, Jr. and H. Niki, J. Phys. Chem. 78, 1337 (1974).
- J. N. Pitts, Jr., J. H. Sharp, and S. I. Chan, <u>J. Chem. Phys.</u> 42, 3655 (1964).
- 59. P. A. Leighton, <u>Photochemistry of Air Pollution</u>, Academic Press, New York, 1961, pp. 26-71.
- 60. A. D. Walsh, J. Chem. Soc., 2306 (1953).
- 61. J. F. Olsen and L. Burnelle, <u>J. Am. Chem. Soc.</u> 92, 3659 (1970).
- 62. K. Nakamoto, <u>Infrared Spectra of Inorganic and Coordinations</u> <u>Compounds</u>, John Wiley & Sons, Inc., New York, 1963, p. 92.

Figure Captions

Figure 1. Schematic diagram of experimental apparatus.

Figure 2. Relative intensities of photolysis lamps at 298 K and absorption spectra of NO_3 and ozone. The dashed vertical line is the threshold for formation of $NO_2 + 0$ from the photolysis of NO_3 .

Figure 3. Nitrogen pentoxide (N_2O_5) ultraviolet spectrum at 298 K.

Figure 4. Nitrogen pentoxide and nitric acid (dashed line) infrared spectra at 298 K.

Figure 5. An example of concentration profiles for $N_2^{0} - 0_3$ static cell decay.

Figure 6. Arrhenius plot for $\frac{1}{2}(\kappa h)^{2/3}(2g)^{1/3}$.

Figure 7. Arrhenius plot for $\left(\frac{Kh}{2g}\right)^{1/3}$.

Figure 8. Modulation amplitude and phase shifts for the 1320 to 1380 cm^{-1} region at 329 K with green lamps.

Figure 9. Separation of the NO₃ spectrum into photochemically active bands with synthetic shapes. Figure Captions (continued)

Figure 10. Modulation amplitudes and phase shifts of NO3 for gold

lamp photolysis at 298 K.

lamp photolysis at 329 K.

Figure 11. Modulation amplitudes and phase shifts of NO3 for green

XBL 759-7273

Fig. 1

Fig. 2

XBL 759-7288

Fig. 5

Fig. 6

XBL 759-7290

Fig. 9

XBL 7510-7468

Fig. 10

Fig. 11

Table I. Ultraviolet absorption cross sections for N_2^{0} at 298 K

			÷	•			
	Pres	ent Work	· · · · · · · · · · · · · · · · · · ·	· ·	Jones and	Wulf (ref. 2	!2)
λ nm	10 ¹⁹ σ cm ²	λ nm	10 ¹⁹ σ cm ²		λ nm	10 ¹⁹ σ cm ²	
205	69	265	1.77	•	290	0.42	
210	52	270	1.52		300	0.24	
215	33	275	1.25	•	310	0.13	٠
220	20.6	280	1.07		320	0.075	
225	13.1	285	0.83	•	330	0.040	
230	9.3	290	0.63		340	0.027	
235	7.2	295	0.46		350	0.018	
240	5.7	300	0.32		360	0.010	
245	4.5	305	0.22	. •	370	0.0047	
250	3.5	310	0.15	•	380	0.0013	
255	2.63	2					
260	2.12	- 1 ⁻ •	an a	• •		•	

Table II. Absorption cross sections $(cm^2 molecule^{-1}, base e)$ averaged over each nm for the nitrogen trioxide (NO₃) free radical at 298 K

ť

ÿ

					•						•
$-\frac{1}{2}$	10 ¹⁹ σ	λ.2	$10^{19} \sigma$	λ	10 ¹⁹ σ	λ	10 ¹⁹ σ	. λ.,	10 ¹⁹ σ",	λ. 10 ¹⁹	
400	0.0	456	3.2	512	16.1	568	25.7	624	116.6	680 4.9	
401	0.1	457	3.4	513	15.1	569	26.3	625	86.5	681 3.5	Å,
402	0.1	458	3.7	514	14.1	570	25.3	626	70.0	682	•
403	0.3	459	3.9	515	14.0	571	25.1	627	69.0	683 1.6	
404	0.2	460	3.9	516	14.0	572	24.8	628	68.9	684 0.9	
405	0.5	461	3.6	517	13.0	573	24.7	629	67.0	685 0.5	
<u>.</u> 406	0.3	. 462	3.5	518	12.1	574	25.5	630	64.1	686 · 0.3	
407	0.1	463	3.8	519	12.8	575	27.0	631	50.2	687 0.2	
408	0.3	464	4.1	520	14.4	576	29.2	632	32.7	688 0.4	
409	0.5	465	4.5	521	15.8	577	30.5	633	-19.9	689 0.2	· ,
410	0.6	466	4.5	522	17.2	578	30.3	634	13.2	690 0.1	
¢411	0.5	467	4.8	523	16.6	579	29.4	635	10.6	691 0.0	5 K .
* 412	0.3	÷468	5.0	524	.15.0	580	29.9	636	12.3	692 0.0	~
413	0.7	469	5.2	525	13.8	581	32.0	637	16.4	693 0.1	
414	0.7	470	4.9	517	13.7	. 592	- 31.0	638	17.0	694 U.I	
415	0.0	471	5.0	528	17.9	584	20.0	640	12.4	696 0.4	
410	0.4	472	5.5	520	21.0	585	24.6	641	7.8	697. 0.4	
418	0.6	474	5.6	5 30	20.9	586	27.5	642	6.8	698 0.4	·* .
419	0.9	475	5.9	531	19.1	587	34.8	643	6.9	699 0.4	•
- 420	0.9	476	6.4	532	18.1	588	. 44.8	644	7.1	700 0.3	· · ·
421	0.9	477	6.8	533	17.3	589	55.2	645	6.7	701 0.2	2.5.4
422	0.8	478	6.6	534	17.7	590	56.7	646	5.6	702 0.2	
423	1.0	479	6.4	535	20.2	591	51.9	647	4.9	703 0.1	ş
424	1.2	480	6.4	536	23.2	592	48.3	648	4.8	704 0.0	
425	1.3	481	6.5	537	23.8	593	43.2	649	3.7		
426	0.9	482	6.3	538	21.1	594	39.2	650	3.2	· · ·	
427	0.8	483	6.1	539	18.8	595	39.1	651	3.3		
428	1.2	484	6.2	540	18.1	596	41.6	652	3.9		÷.,
429	1.2	485	6.6	541	16.8	597	40.9	653	4.7		1 5
4 30	1.2	486	7.4	542	16.8	598	35.4	654	5.7		
4 31	1.5	487	8.0	543	14.3	599	28.9	655	6.9		
4,32	1.4	488	8.0	544	13.9	600	24.5	656	8.9		
433	1.5	489	8.6	545	16.2	601	24.5	657	11.8		
434	1.7	490	9.3	546	20.4	602	28.4	658	16.8	2 A A A A	
435	2.1	491	9.2	547	25.6	603	33.9	659	27.6		
436	2.1	492	8.9	548	27.5	604	40.0	660	51.2	· •	• •
437	1.8	493	8.9	549	24.9	605	41.8	661	101.5	an strat	
438	1.8	494	8.8	550	22.4	606	33.8	662	170.8		
4 39	2.1	495	9.1	551	21.4	607	23.2	663	170.4		
440	1.9	496	10.4	552	21.6	606	15.9	664	115.4		
441	1.9	497	11.2	553	22.2	609	13.3	660	/3.5		
. 442	2.0	498	10.8	224	24.5	610	13.3	000	40.0	*	
443	1.9	499	10.3	555	27.8	612	14.3	607	47./		
444	2.1	500	9.0	220	29.5	612	10.9	640	17.5		
445	2.3	501	9.4	550	30.0	616	21./	670	20.7		
440	2.3	502	9.1	550	31.7	616	10 0	671	4.0		
447	2.2	503	10.5	560	12.3	616	17.4	672	5.7		
440	2.8	504	11.6	561	28.5	617	16.7	671	4.7		
450	2.5	505	11.0	563	26 8	618	18.3	674	3.6		
450	2.8	507	11.4	562	25.9	619	20.2	675	3.0		
452	3.1	508	10.6	560	24.8	620	24.7	676	3.1		
453	3.2	500	11.2	545	24.7	621	39.8	677	4.0		
45%	3.4	510	13.0	566	25 8	622	76.1	678	5.5	*	
454	2.4	511	15 1	567	25.5	623	120.4	679	5.9		
							A & V & 7				

Table III. Wavelength averaged cross sections $(cm^2 molecule^{-1})$ of NO₃ and O₃ for different photolysis lamps

	Lamp	σ _{NO 3}	% Light	σ _{NO3}	% Light	σ ₀ ,
		$(\lambda \leq 580)$	nm)	(λ > 580	nm)	
<u>298 K</u>	Green	1.88×10^{-18}	93	2.99×10^{-18}	7	2.76 x 10^{-21}
	Gold	2.51×10^{-18}	37	3.11×10^{-18}	63	3.82×10^{-21}
	Red		0	2.12×10^{-18}	100	2.13×10^{-21}
		· · ·		· .		
•						
<u>329 K</u>	Green	2.01×10^{-18}	93	3.10×10^{-18}	7	2.76 x 10^{-21}
	Gold	2.67×10^{-18}	37	3.22×10^{-18}	63	3.82×10^{-21}
	Red	-	0	2.17×10^{-18}	100	2.13×10^{-21}

					62
	•	Table IV.	$\frac{N_{2}0_{5}}{2}$ cataly	zed decomposition of ozone	ι.
Run	Temp	[0,]	$[N_2O_5]$	$\frac{1}{2}$ (Kh) ^{2/3} (2g) ^{1/3}	% Stor Dov
No.	(K)	(10^{15} mc)	230 $plec/cm^3$	$(10^{-9} \text{ cm molec}^{-1/3} \text{ sec}^{-1})$	% Stan. Dev.
				i i	
		(IR	Cell: Surfac	$e/Volume = .180 \text{ cm}^{-1}$)	
1	298.8	29.0	2.03	0.547	1.6
2	298.8	72.6	1.40	0.561	1.7
3	298.8	63.7	1.09	0.547	0.8
4	314.4	55.3	0.96	2.972	2.3
5	314.4	43.8	1.23	2.891	1.1
6	314.4	38.7	1.71	2.808	1.5
7	330.2	21.9	0.42	12.41	5.4
8	330.2	9.31	0.31	12.31	4.1
			0-11. 0	-1x-1 or o -1x	
,		(00	Cell: Surfac	e/Volume = .252 cm)	
9	297.8	53.3	0.58	0.488	1.9
10	297.8	58.8	1.07	0•482	1.2
11	297.8	67.4	1.38	0.462	1.5
12	297.8	31.7	1.28	0.504	2.6
13	297.9	85.1	1.10	0.499	2.2
14	297.9	40.4	0.56	0.479	1.8
15	313.4	30.1	0.67	2.558	3.5
16	313.4	23.6	0.79	2.632	2.2
17	313.4	31.2	0.76	2.597	1.9
18	329.0	39.0	0.25	10.99	2.7
19	329.0	29.2	0.45	10.82	4.4
20	329.0	31.4	0.83	11.09	4.1

Table V.	Summary o	of	[N0]ss	data
----------	-----------	----	--------	------

Temp (K)	No. of Obs.	[0 ₃] Range (10 ¹⁶)	[N ₂ 0 ₅] Range (10 ¹⁴) molecules cm ⁻³	[NO ₃] Range (10 ¹³))	$\frac{Kh}{2g}$ (10 ¹⁰ molecules cm ⁻³)	$\frac{\omega}{2g}$ (10 ¹³ molecules cm ⁻³)
297.8	62	0.6 - 11	0.5 - 14	1.0 - 7.6	0.3127 ± 0.0059	0.573 ± 0.056
313.4	41	0.2 - 7	0.7 - 15	1.5 - 13	2.018 ± 0.034	0.454 ± 0.071
329.0	33	1.5 - 7	1.4 - 7	6.0 - 16	11.16 ± 0.39	1.12 ± 0.39

17 De

Table VI. Calculation of $1/2(Kh)^{2/3}(2g)^{1/3}$ for the illuminated reaction cell with all temperatures corrected to 297.8 K

$$\begin{array}{c} \frac{1/2(X\hbar)^{2/3}(2g)^{1/3} (10^{-9} \text{ cm molecule}^{-1/3} \text{ sec}^{-1})}{(No, j_{1} \text{and} j_{2})} & \left(\frac{(No_{3}]_{ss}}{(Only)} \right) \left(\frac{A11}{j_{1}} \right) \left(\frac{A11}{j_{2}} \right) \left(\frac{A11}{j_{2}} \right) \left(\frac{Fitted to}{give 0.484} \right) \\ 24 & \text{Green} & 0.422 & 0.371 & 0.312 & 0.520 & j_{1} = .11 \\ 26 & \text{Green} & 0.440 & 0.396 & 0.344 & 0.535 & j_{1} = .17 \\ 27 & \text{Gold} & 0.478 & 0.430 & 0.396 & 0.529 & j_{1} = .25 \\ 29 & \text{Gold} & 0.478 & 0.430 & 0.396 & 0.529 & j_{1} = .25 \\ 29 & \text{Gold} & 0.472 & 0.423 & 0.391 & 0.524 & j_{1} = .23 \\ 30 & \text{Gold} & 0.468 & 0.429 & 0.387 & 0.521 & j_{1} = .20 \\ 30 & \text{Gold} & 0.468 & 0.429 & 0.387 & 0.521 & j_{1} = .20 \\ 30 & \text{Gold} & 0.468 & 0.429 & 0.387 & 0.521 & j_{1} = .20 \\ 31 & 32 & 2.51 \times 10^{-18} \text{ cm}^{2} \text{ molecule}^{-1} \end{array}$$

1. 1. 1

v

3 4

64

Ĵ,

ry'

Table VII. Observed quantum yields for NO $_3$ photolysis from 1/4 cps modulation data

Lamps	Temp (K)	$[NO_3] \times 10^{-13}$	$[N_{2}O_{5}] \times 10^{-14}$	$[0_3] \times 10^{-3}$.6 L (cm)	Mod. Amp. (@ 627 nm)	Observed Q.Y.
		(molecules cm^{-3})		· · ·
Red	298	6.00	11.19	6.076	1416	.00046	.084
	298	2.274	3.22	1.157	2832	.00034	.085
	298	5.33	13.62	3.364	1416	.00033	.071
Red	329	12.04	8.38	2.045	1416	.00067	.078
	329	13.70	16.97	1.545	1416	.00077	.084
Green	298	2.74	3.96	3.11	.708	.00518	1.11
	298	4.00	8.65	3.434	708	.00740	1.06
	298	5.25	11.00	5.94	708	.01002	1.08
4	298	5.02	5.96	9.35	708	.00914	1.03
Green	329	14.71	5.07	6.35	708	.0267	.80
	329	11.22	2.64	5.48	708	.0218	.86
	329	7.35	4.15	1.120	708	.01336	.80
	329	. 11.49	7.19	2.40	708	.01991	.77
	329	17.49	14.85	3.86	708	.02800	.75
Gold	298	5.49	11.41	6.12	1416	.01757	1.03
	298	5.58	11.86	6.17	1416	.01775	1.04
	298	3.656	15.24	1.607	1416	.01144	1.06
	298	3.645	15.16	1.583	1416	.01154	1.08
	298	5.71	12.66	6.27	1416	.01824	1.04
	298	5.83	13.09	6.32	1416	.01855	1.04

C **(**1 **\$**. Sec. Geo ÷G

\$C

60

61

C \mathbf{C}

Table VIII. NO₃ modulation amplitude with N₂ as principal carrier gas and difference between these cases with N₂ and corresponding cases with O₂ as carrier gas

Temp (K)	Concent (molecules c	rations $m^{-3} \times 10^{-14}$	Modulation Amplitude x 10 ³		
	[N205]	[N0 ₃]	Observed	Difference	
298	15.45	0.333	12.98	1.01	
	7.78	0.270	10.41	0.86	
	2.96	0.195	7.26	0.57	
329	12.03	1.225	28.30	3.65	
	4.85	0.991	23.71	3.06	
	1.87	0.753	18.51	2.62	
0000007106306

Table IX.

Rate constants and NO_3 photolysis constants for eleven reactions in the mechanism, as derived from the literature or obtained in this work

Quantity	T Range of Observations	$\begin{pmatrix} A-factor \\ cm^3 sec^{-1} unless noted \end{pmatrix}$	E a (degrees K)	Ref
A (1 atm)	273 - 300	$1.24 \times 10^{14} \text{ sec}^{-1}$	10,317	6,10
Ke	338 - 396	$2.05 \times 10^{13} \text{ sec}^{-1}$	12,406	3
Kf	297	(0.71 ± 0.014)		36
К	298 - 329	$(8.4 \pm 1.8) \times 10^{26} \text{ cm}^{-3}$	11178 ± 100	*
B (l atm)	273 - 300	$(1.48 \pm 0.33) \times 10^{-13}$	-861 ± 300	A/K
е	338 - 396	$(2.5 \pm 0.5) \times 10^{-14}$	1127 ± 100	Ke/K
f	297	$(1.87 \pm 0.41) \times 10^{-11}$		36
g	298 - 329	$(8.5 \pm 2.8) \times 10^{-13}$	2450 ± 100	*
h	231 - 298	$(1.34 \pm 0.11) \times 10^{-13}$	2466 ± 30	14
i	198 - 330	$(9. \times 10^{-13})$	1200	37
j,	Sunlight	$(0.040 \pm 0.02) \text{ sec}^{-1}$		*
j	Sunlight	$(0.099 \pm 0.02) \text{ sec}^{-1}$		*
m	298	$\leq 2 \times 10^{-14}$	ing an an the	*
n	298 - 329	$(1.0 \pm 0.4) \times 10^{-11}$	0	. *
q	: 220 - 1000	1.9×10^{-11}	2300	37
r	200 - 346	$6.6 \times 10^{-35} \text{ cm}^6 \text{ sec}^{-1}$	-510	37
		(M: Ar = 1.0, $N_2 = 1.6$,		
		$0_2 = 1.7)$		

*This work.

Error limits are based on random errors of this study and do not include possible systematic errors.

67

X. Comparison of experimental results with the synthetic spectra of Figure 9

(σ_{avg} in units of 10⁻¹⁸ cm² molecule⁻¹) Experimental Results Calculated Results j₁: $NO + O_2$ Green Gold Red Green Gold Red $0.049 \pm .010$ $0.23 \pm .04$ 0.14 ± .06 φ 2.99[°] 2.17 3.11 σ_{avg} $0.42 \pm .13$ φ σ avg $0.71 \pm .05$ $0.11 \pm .02$ 0.67 0.40 0.10

	•
0.85 ± .10	0.63 ± .06
1.88	2.51
	0.85 ± .10 1.88

 $1.60 \pm .10$

 $\phi \sigma_{avg}$

1.58 ± .15 -

1.50

1.40

Û J Ud Ţ 1 J 5 ģ 1

This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.

TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

63