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J. EVSLIN, M. B. HALPERN, and J. E. WANG*
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Abstract

- We apply the new orbifold duality transformations to discuss the special case of
cyclic coset orbifolds in further detail. We focus in particular on the case of the in-
teracting cyclic coset orbifolds, whose untwisted sectors are Z,(permutation)-invariant
g/h coset constructions which are not X copies of coset constructions. Because A copies
are not involved, the action of Z,(permutation) in the interacting cyclic coset orbifolds
can be quite intricate. The stress tensors and ground state conformal weights of all the
sectors of a large class of these orbifolds are given explicitly and special emphasis is
placed on the twisted h subalgebras which are generated by the twisted (0,0) operators
of these orbifolds. We also discuss the systematics of twisted (0,0) operators in general
coset orbifolds. ’

*E-Mail: hllywd2@physics.bérkeley.edu



1 Introduction

In Ref. [1] a construction of the stress tensors.of all the sectors of all current-algebraic
orbifolds -
A(H) L
| T : ‘ - (L)
was given, where H is any finite group and A(H) is any H-invariant CFT*™* constructed
on affine Lie algebra®=7. This technology employs new duality transformations among the
sectors of each orbifold, and, in particular, the special case of cyclic permutation orbifolds
A(Z»)
N (1.2)
was worked out in full as an illustration.
The untwisted sectors of the permutation orbifolds A(Z,)/Z, are described by the set
of all Zy(permutation)-invariant CFT’s A(Z,), that is by all the Z ,\(permutatlon) invariant

affine-Virasoro®®* constructions L% ; on affine g, where
g=x7"e¢", g'=g,  Z,(permutation) C Aut(g). (1.3)

Here Z,(permutation) acts by permuting the copies {g’} at level k of the affine algebra on
simple g. In this case the twisted current algebras of the twisted sectors are orbifold affine
algebras'®!>!, and the duality transformations relating the sectors of the orbifolds A(Z»)/Z
are discrete Fourier transforms.

In this paper, we apply the results of Ref. [1] for A(Z,\) /Z,\ to study the set of cyclic
coset orbifolds

(k) C A(Z*) (1.4a)
Zy Zy :
h(Zy) C g, Zy(permutation) C Aut(h(Z,)) (1.4b)

in further detail. These orbifolds, first delineated in Ref. [1], are the special cases in A(Z»)/Z
for which the Z,(permutation)-invariant CFT A(Z,) is a coset construction”'%3, In what
follows, an algebra h(Z,) which satisfies (1.4b) is called a Z,-covariant subalgebra® of the
ambient algebra g. .

Among the cyclic coset orbifolds, the cyclic coset copy orbifolds

) _ ey ) (1.5)
Z,\ Z)‘ . Z,\ -

2Since the stress tensor T of g defines a Z y(permutation)-invariant CFT, the property (1.4b) is a necessary
and sufficient condition so that the stress tensors T}, (z,) and T/5z,) also define Z \(permutation)-invariant
CFT’s. '



are well-known examples whose stress tensors in the untw1sted sectors are sums of A commut-
ing copies. In these orbifolds, the action of Z ,\(permutatlon) consists of cyclic permutatlons
of the coset copies. The stress tensors of all the twisted sectors of all cychc copy. orbifolds
are given in Ref. (1]. The case of prime A was given earlier in Refs. [10,11] and copy orbifolds
have also been studied in Refs. [14-18]. As a consequence, our fémarks will be minimal for
these cases.

We focus instead on a more intricate class of cyclic coset orbifolds called the interacting
cyclic coset orbifolds'®!%! because their stress tensors in the untwisted sectors are not sums
of A commuting copies. As a consequence, the action of Z a(permutation) in the interacting
coset orbifolds is generally more involved than the action of Zy(permutation) in the coset
copy orbifolds. The simplest examples of interacting cyclic coset orbifolds are the cases

(L) ~

—Z\L | (1.6)
where g4;,, is the diagonal subalgebra of g. The stress tensors and ground state conformal
weights of these orbifolds are worked out in Ref. [1]. As conjectured in Ref. [10], some of the
sectors of these orbifolds are Kag-Wakimoto coset constructions!®2°..

Generalizing the simplest examples (1.6), we will construct here a large class {h(n, ®)}
of Z-covariant subalgebras

{h(m.®)} C (M2}, AL {0}) = Buisg (17)

where 7 and ® are defined below, and give all the stress tensors and ground state conformal
weights of the corresponding interacting cyclic coset orbifolds

Ga) - G) o AL

Z, Z, Z (1.8)

Special emphasis is placed on the twisted h subalgebras (corresponding to each untwisted
subalgebra h(n, ®)) which are generated by the twisted (0,0) operators of these orbifolds.
The systematics of twisted (0,0) operators in general coset orbifolds

(o/h) . AU)
H H '’ _
is also discussed, and App. A gives the (0,0) operators of the twisted sectors of the cyclic

coset copy orbifolds (1.5). The twisted (0,0) operators of coset orbifolds will be important
in an action formulation of these theories, where one must learn to gauge these twisted -

h C g, H C Aut(g), H C Aut(h) (1.9)

subalgebras.



- 2 The Untwisted Sectors
2.1 Notation
In what follows, Wé. é,séumé (tha..tv. g ifl‘ (13) 1331mp1eOurnotatmnforthecu?rentsoff:he
ambient algebra g is _ o ' ‘
Jo(2) = {Jany(2)} = {Ha)(2), Ea(ny(2)} (2.1a)
a=1,..,dimg,- I=0,.,A-1, A=1,..,rankg, € A(g) (2.1b)

where the index I labels the copies of g aﬁd the index a runs over a general basis of g. The
algebra of affine g |

[Hary(m), Hpay(n)] = 615k m 84B0min0 (2.2a)
[Hamy(m), Eogy(n)] = dr10aEon(m + n) (2.2b)
N(a, B)Earp,m(m +n) if (a + ) € Ag)
[Eary(m), Eguy(n)] =615 § - Hpnm+n)+kméping  if (a4 6) =0 B (2.2¢)
0 . otherwise
A,B=1,..rankg, o,f0€A(g); LJ=0,.,A=1, mneZ (2.2d)

holds in the Cartan-Weyl basis of g. »
The action of the automorphism group Z,(permutation) on affine g is

Juny ' = wrs(he)Jagyy  wri(Be) = 6140,0 mod » € Zx(permutation) C Aut(g)  (2.3a)

| c=0,..,A-1, p(a)'e {1,..., A}, p_(a)\_)__t_f_ € {0,..,A—-1} - (2.3b)

where p(c) is the order of the element h, € Zy(permutation).

2.2 The subalgebra h(n,®) C g

The subject of this subsection is the construction of a large class of Z-covariant subalgebras
{h(Z)}. The members of this class are labeled as h(n, @),
A
9 2 h(n, ®) € {h(Z»)}, 7€ Z* - (24)
where 7 is any positive integer that divides A, and ® is constructed for each choice of n as
follows. On the simple roots {a; € A(g)} of g, choose an integer-valued function ¢(c;) with
values in the range 0 to f\; -1

&= {d(a)}: (o) € {0,... % _1}, i=1,.., rankg. (2.5)

3



Therefore at fixed A, n and g we will construct

rankg

N(A, n,g)—()

Z,-covariant suba.lgebras h(n, <I>) Next, we deﬁne a natural extensmn of ¢la),

rankg ) ) ra.nkg

d(a) = Z ni(a)p(e;) when a= Z n;(a)a;, ny(a) €Z

i=1 » _ i=1

which is defined on all roots @ € A(g).
Using ¢(c), we may now write the currents Jy(;s) of the subalgebra h(n, ®)

Tnnay(2) = {JR(z;0)} = {HH(z:0), ER(2;0)}

in terms of the currents J,() of the ambient algebra g,

Ay, . Ay
-2 ’ i 2rijo(a) :
HE(z;0) =Y Hiwjsr)(2), EE(z;0)= Y € ¥ Eogirm)(2)
j=0 , j=0 .
o | (n,®) for ER
N n  for HE

Hauen(z) = Hany(2z),  Eausn(2) = Ean(2)  (periodicity for g)

HE(z;0) = HE(2;0), EREN(5:0) = ER(2;0)  (periodicity for h(n, ®))
% €zt R=0,..,n-1, a € Ag), A =1, .. rankg.

The periodicity relations in (2.9 ¢,d) are conventions.
The currents Jy(; ) have the mode expansions

HE(z;0) =Y HR(m;0)z™™,  EE(z;0) =) EX(m;o)z™™!

meZ meZ
and, using the algebra (2.2) of affine g, one finds the subalgebra h(n, ®)

[HA(m o), HB(” O)] = 6RS%km6AEém+n0 '
[HE(m; 0), E3(n;0)] = 6Fa EX(m + n; o)

4

(2.6)

2.7)

(2.9a)

(2.9b)

- (2.9¢)

(2.9d)

(2.9¢)

(2.10)

(2.11a)

(2.11b)



[EZ(m; o), Ej (n;0)] / Lo (2.11c)

N(a, B)ER, 4(m n;0) if (a+ 8) € Ag)
;61?5 o vHvR(m+n,0)+nkm6m+n,o if (@+6)=0
0 " otherwise:

"~ A,B=1,...,rankg, o, B € Ag), R,S=0,..,n—1, m,n € Z. (2.11d)

This algebra consists of 7 commuting copies of affine g at level %k, where the copies are
labeled by the indices R and S.

The algebra (2.11) of h(n, ®) has no explicit ¢(c) dependence, but the induced action of
the Z, automorphism (2.3) on the curtents Jy,g),

= _2mil B2 140a)
- HE(m;0)' = H " (m;0), ER(m;o0) ' =e 3 BB (m; 0) (2.12)

is different for each h(n, ®) (see App. B). In (2.12), the symbol |z] is the greatest integer
less than or equal to . A short calculation shows that Ef ' and HY ' in (2.12) also satisfy
the algebra (2.11), which means that Zjx(permutation) is in Aut(h(n,®)). It follows that
each h(n, ®) is a Zy-covariant subalgebra of g.

As an example of these subalgebras®, consider the subalgebra A(1, {0}) for all g and A,
where {0} means ¢(o;) = 0, VYo,. For this choice, one finds that

- HE(z;0) ZHA {2 5—0 ZEG(Ii (2.13a)

- h(n=1® = {0}) = g4iag _ (2.13b)

so that the Zj-covariant subalgebr‘é, is the diagonal subalgebra of g. This is the h subalgebra
of the simple case in (1.6).
As another example consider the ambient algebra

g=xi,9, ¢ 2g=5U(@) (2.14)

with simple root . This has a Z)-covariant subalgebra h(n = 1, {¢(a) = 1}) whose currents

H™%(z;0) = Hy(2) + H(l)( z) + Hy(2), (2.15a)
Effo(z; 0) = E:!:a(O)(Z) +e* 5 E:ta(l)(z) +e 22’nEm(z (2) . (2-15b)

generate an affine SU (2) at level 3k. Here H(; and Eiauyy I = 0,1,2 are the Cartan
generator and root operators of SU(2)’.

bThe trivial case h(\,®) = ¢ is not useful in the g/h coset constructions below.

5



2.3 Affine-Sugawara and coset constructions. .

7,12,21-23

The affine-Sugawara construction on g is
na-b Py STy T Ty i
Ty=———=) : N - ’ 1
Azdimg k - Q
Cqg= ——=—, =_- eZ* h=—= 2.16b
ST T+ h T 02 02 ( )
a,b=1,...,dimg ‘ (2.16c¢)

where z, l~z, ¥ and () are respectively the invariant level, dual Coxeter number, highest root
and quadratic Casimir of g. In the text below, including the twisted sectors of the interacting
coset orbifolds, these quantities always refer to g and affine g. '

The reader should bear in mind that, here and throughout this paper, :(-): means OPE
normal ordering?*!::!.

The affine-Sugawara construction on the subalgebra h(n, ®) is

| 1 n—1 rankg
Thina) = 55— 2D  HYEHE() : + D : EX(e)EE,(0) ) (2.17a)
Zﬁk + Q R=0 A=1 acA(g) . .
Azdimg
Chi(n,®) = = (2.17b)
ﬁ.’l? +h

because the algebra h(n, @) is embedded at level %k in affine g. In what follows we will
suppress the explicit A and o summations above.

Another form of this stress tensor is
A-1

Tomey = Y, [Lo-r: HayHawy : +L5-1 : Ba)B-a) ] (2.18a)
J,L=0 : '

Ly-L= 2—%%‘-—65J—L,0 modms  Lyp 55—’;14-_@6%#@5#14,0 modn (2.18b)
in terms of the ambient currents J;. The form in (2.18) shows that all the subalgebra
- constructions Th(,,¢) are Zy(permutation)-invariant CFTs because the inverse inertia tensors
L depend only on the combination J — L (see Ref. [1]).

Finally we may use K-conjugation™!%13258 to obtain the coset constructions

Tg/h(n;é) =T, — Thin,) (2.19a)
T+h %3: +h

7,12,13

Co/h(n®) = Cg — Cn(n,e) = ATdimg( ) (2.19b)

which describe the untwisted sectors of this class of interacting cyclic coset orbifolds.

6



3 Twisted Currents

3.1 The ambient twisted algebra Bp(c)

In Ref. [1], a general prescripﬂbﬁ is given to obtain the twisted ambient algebra of each
~ sector o of any orbifold A(H)/H. One begins with the action of the automorphisms on the
ambient currents J,

Jy ' = wlhe)Jy he € H C Aut(g). (3.1)
The matrix w(h,) defines an eigenvalue problem whose elgenvectors U,(0) generate the g
eigencurrents

T(0) ~ Uy(0)J, (3:2)

-with diagonal response to the automorphism w(hs). The twisted g currents jy(a), which are
the ambient currents of each twisted sector o,

Tfo) s de) (33)

then satisfy the same OPE’s as the eigencurrents. The diagonal monodromies of jg(o) are
controlled by the eigenvalues of w(h,). ' '

In the case! of the cyclic permutation orbifolds A(Z,)/Z,, the matrices w(h,) are given in
Eq. (2.3), and one obtains the twisted g currents jgp(a) of sector o, which satisfy the orbifold
affine algebra g,(,): ‘ '

Joyo () = (LI (2)} = (A M@&Mn (3.42)
ifosC 7(r+s)
2(r) 2(s) P U)knab5r+s,0 mod p(a) '] ( ) Y|
Jatsy (&) Iy (w) =651 (z ~ 0 + (z _w) ] +0((z — w) ) (3.4b)
r r —m—-1-— r i 2wir
WNOED SN )Z A, D)) = e TS Iz ) (3.4c)
meZ

JO (m + ——)10), = 0 when m + —— > 0 3.4d
(l(])( p(a))l ) ( ) ( )

. .y |
Bp(o) = X ]’.’_S : gz(a), c=0,..,A~- (3.4¢)
a,b=1, ..., dimg, r,s=0,..p(0) -1, 3,01 =0, ,—)\— - 1. (3.4f)

p(o)
Here j, [ label copies gﬁ( o) of an orbifold affine algebra on simple g, with twist classes labeled
by 7, s. The quantity p(o) is the order of each copy and also the order of the automorphism
h, € Zy. The orbifold affine level of each gi(a) is

k(o) = p(o)k (3.5)

7



where k is the level of the affine algebra (2.2). In what follows, g, is called the ambient
orbifold affine algebra of sector o. '

3.2 General twisted subalgebras

A central problem which arises in general coset orbifolds

%y)cAgﬂ, hCg, HCAut(g), HC Aut(h) (36)

is to find the twisted h currents with diagonal monodromy. The analysis of Ref. 1] for the

ambient algebra g can also be applied, mutatis mutandis, to the H-covariant subalgebra h,
with attention to the embedding of affine h in affine ¢

where M is the embedding matrix m the untwisted sector.
The induced action of the automorphism group H on the currents Jj, has the form

' =Qo)Jn | T . (3.8)

and the matrix Q(o) defines an induced eigenvalue problem whose eigenvectors Uy (o) gen-
erate the h eigencurrents 8

£@~mwm:m@M4=mmM@@@@ (3.9)

whose response to (o) is diagonal. The twisted h currents Jj,

~

TIn(0) = Ju(0) ’ (3.10)

satisfy the OPE’s of the h eigencurrents, with diagonal monodromies controlled by the
eigenvalues of Q(c). Moreover, with Egs. (3.3), (3.9) and (3.10), we see that J, is embedded
in the ambient twisted algebra as

J(0) ~ M(0)y(0),  M(0) = Unlo) MU} (o) BEES)

where M (o) is the embedding matrix of sector o.
The general twisted h currents J,, are further discussed in Subsec. 4.5, and Appendix A
givés an application of this procedure to the simple case of the cyclic copy orbifolds.



3.3 The twisted subalgebra h(n,®,0) C g,

For our class of interacting cyclic coset orbifolds

Zy, L Zy (3:12)

the embedding matrix M of the subalgebra h(n, ®) is specified in Eq. (2.9a). In the discussion
below, we will use the notation '

Jrtna0)(2) = (T (z0,0)} = {HF (73 00), B (25 0;0)} (3.13a)

h(777 (Da 0) - gp(a)7 h(ﬂ, 67 0) = h(ﬂ, Q), gp(O):l =g (313b)

for the twisted h currents of sector o, which generate the twisted subalgebras h(7, @, o).
Starting from (2.9) and (2.12), we obtain the explicit form of the twisted currents jh(,,,q,,,,),

p(v)n

2rijrN(o - Mr .
A (20, 0) Z T /(1(“_{_12))( ) (3.14a)
R |

pa i Ls] o)r o L) 3 ~ &(ﬂ)ﬂ (27 ﬂ—l&r

ER ") (2: 01 0) o2 (N (o) L2 Emiete) c(!(#ﬁg )+ )( ) (3.14b)
J=0 ‘
A n p(a)p(n, o) '
= u(n, o) = ged(n, — e 7", L eZt 3.14c
pEnm o) =eedth i) ) 7 (3149
A M
P = P(n,0), P(n, o) =1 mod —, P(n,0) € {1,. (3.14d)
(m9) ( plo)p p (mo) e, Tl

RS=0,.. u—1 r,s=0,-...,—Z—1, =0, A1 (3.14e)

in terms of the currents Jy , of the ambient orbifold affine algebra (3.4), where z=gcd(z, y)
is the largest integer such that z/z, y/z € Z. The result (3.14) summarizes the embedding
matrix of sector o. :

The OPE’s of the twisted currents Ju(;¢,0) follow from those of B,(0) D (3.4):

—6AB6r+s 0 mod -'1-

(z —w)?

oy ER L(r+9) (w; o; 0_)

fff’(r) (2;0; a)f{ﬁ"s’ (w; 0;0) = Grg—

L +0((z —w)?) (3.15a)

+O0((z — w)°) (3.15b)

HBO (2 0 6) ESO)(w; 0, 0) = bgs



ER() (2 0; 0V ES) (w3 0; 0) ' ‘ (3.15¢)
a B

N(a.B)EZG ) (wioi0)

- ath +0((z-w)) if(e+pP)e A(s;)
=0 r+3 0 '
=ns § Bhuomod} | ol eme) 4 o((; - w)) if (at f) =
O((z — w)% . otherwise
RS=0,.. u—1, r,s=0,...,%—1. (3.15d)

These OPE’s are isomorphic to the OPE’s of u copies of order n/u orbifold affine algebra
taken at orbifold affine level Ak/u, where the copies are labeled by the indices R and S. The
number of copies and the order can be read from (3.15d), and the order 7/ also appea.rs in
the central terms of (3.15). As a check on these quantities, recall that

(orbifold affine level) = (order)-(affine level) (3.16a)
A= 2 |
-(uk) = (u) (nk) | (3.16b)

where (3.16a) is a general property of orbifold affine algebra. and ’\k is the level of the
untwisted algebra h(n, ®). -
The system (3.15) is distinguished however from an orbifold affine algebra by the mon-

odromies
Hy O (26 05 0) = e 2" HET (2505 0) (3.17a)
ERO(2¢’;0;0) = 6_2"z(m+m)Ef D(z;0;0) (3.17b)

of the twisted h currents jh(,,,q,,,,), which also follow from (3.14). To see the consequences of
this difference, we use the mode expansions

HyO(z050) =y 2" 17wk AMO(m + ) (3.182)
~ . n/u

(1) (2; 0 0) z" J +—— 7$(e) ~ (3.18b)-

3 s = SR LY

: meZ _
which follow from the monodromies in Eq. (3.17). Then, (3.15) and (3.18) give the twisted
subalgebra h(n, ®,0) C 8,4

. " ' ‘ Ak T
HR’(T)m-f—-I— ’HS,(s)n+_5_ = 0ag0rc—(m + — )0, r+s 3.19a
[H;( 77/#) B ( 77/#)] ABORS u ( 77/#) m4n+ 820 ( )
R(r) Ty S 5, 99(e) ’
Hy 4+ ), B n + o+ =) - (319p)

10



r+s .op(a),.

— SR, (r45) »
| . 5RsaAEa (m +n + __'f]/ﬂ -+ 3 )
RO ms "+ a¢(a) 55O (g 4 5 98(6) i 319¢
ERO(m + 7+ TE2), B0+ 2o+ ZE) g (3:190)
N(a, B)E “R’('+3’(m+n+ f73+ﬂa—+él)  fat+B e Ag)
=6ps{ o HRC+)(min+ :,7,:)'*‘ s (m+ T a¢,\a))6m+n+; 2.0 ifat+f=0
0 : : otherwise
RS=0,. .,u—1 r,s=0,...,-Z—— 1, o0=0,.,A -1 - (3.19d)

As we will discuss in the following section, algebras of the form (3.19) are known in the

literature.

3.4 Doubly-twisted current algebras

To identify the twisted h subalgebras (3.19), we first introduce the fundamental weights {);}

of g
a? : '

)\i c 0y = (S,;j—zl, ’L,] = 1, ceny rankg (3.20)

and the vector d, | _ .

2 T : A . .' .
d4 = - :;’ 3 "5(0;3’\’ . A=1,..rankg (3.21a)
i=1 i

$(or) = —% ‘o (3.21b)

Then, using (3.21b) we can rewrite the induced action (2.12)

21r1,|_—+—jp,d ‘o .

HEm)' = HM(m), ENm)'=e" 5" EM7(m)  (322)

of Z,(permutation) on the subalgebra. The twisted subalgebra h(n, ®, o) can also be rewrit-

ten in this notation as

- - Ak
2O (m 4+ L), B39 (n 4 )] = 6ap0rs (1 + ——)8, . rte 3.23a
[ A ( n/”) B ( n/'u)] AB Rs'u( T]/ )m+n+;'3/"—0 ( )
—d-a
HR(’) ES@m + 2 3.23b
[ (m n/u) ( T )] ( )
r+s—d-a

)

= 6R504AER’(T+S) m+n-+
N n/w

11



[Eg&r)t(mﬂ—-ﬁ/——) B3O n+ 21 - o (3.23¢)

| N, ﬁ) R(r+s) (m+n+ 7L N ifat+p € A(g)
= JRS HR (T+S)( +n+ T-/i-s)_*_ z\k(m+ T;/dpa) +n+rﬁ 0 lf a+,6 d
-0 otherw1se o
RS=0,.,u—1, r,s:O,...,g-—l, 6=0, ... A—1. (3.23d)

This form of h(n, ®, o) is recognized as u = u(n,o) commuting copies of a doubly-twisted
current algebrall.

The doubly-twisted current algebras correspond to affine algebras which have been simul-
“taneously twisted both by outer automorphisms Z, (permutations) and inner automorphisms
(d # 0) of g. Equivalently, doubly-twisted current algebras are inner-automorphically twisted
orbifold affine algebras. The doubly-twisted algebras have an order (in this case n/u) and
a level (in this case Ak/u), which are the order and level of the orbifold affine algebra!®':!
before the inner-automorphic twist. - :

The origin of these algebras in this problem can be understood from Eq. (3.22), which
shows that the induced automorphism Q on J, is a combination of the permutation au-
tomorphism (R — R + o) and an inner automorphism (the phases). In turn, the inner
automorphisms can be traced to the form (2.9a) of the root operators of the untwisted
subalgebra h(n, ®)

A
7. _ :
Ef(zv 0) = Z Ea(nj+R) (Z)” (3.243,)
2rijud-o . . _ )
Eomjrr)" =€ Eagjrr) = (M + R)Ea@mjrr)é(nj + )™ (3.24b)
f('f]] + R) = 62"ij5d'H(nj+R)(0) . ' (324C)

where Eq(;;+r)” is inner-automorphically equivalent to Eo(pjtr)-
In special cases, the doubly-twisted subalgebras reduce to smgly-tw1sted subalgebras
When the mner—a,utomorphlc vector d vanishes

d=0 & ®=1{0} (3.25)

then the subalgebras h(n, 0, o) are orbifold affine algebras (see also Subsec. 5.1). When d # 0,
n = 1 (and hence p = 1) the twisted subalgebras are inner-automorphically twisted26-2
affine Lie algebras on simple g (see also Subsec. 5.4). When d # 0 and

N

oo € Z, p=n#1 (3.26)
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 the twisted subalgebras consist of 17 copies of inner—automorphiéallj; twisted afﬁneg (see also
Subsec. 5.5).

We emphasme that the doubly-tmsted algebra.s (3 23) are- subalgebras of orbifold affine-
algebra. The exphc1t form‘of the embedding - :

R,(r) 2mijrN(a)P . (ﬂﬂ_ll‘_ ) p(o-)u:r/n
Hy " (m + — z _"’é_)— Hy(imy(m + (o) ) (3.272)
RO (m 4 T2 | v (3.27b)
o n/w ~
A1
Plelu 2mJLN(al/L—¢(a))P 2«:\;/¢(a) “(—(‘i-r+—('ﬂz¢( ) 4 p(d)“ + p(a)a¢(a)
—= e n/u e B m
(ui+R
‘= a(uj+R) _ (o')
plo)n pla)o ' o :
r—d-a T+ 555 ¢(a) plo)p  plo)o ,
= , T+ ola) € Z. 3.27c
n/w p(o) U X ) (8279

follows from the discussion above. It has been further observed in Ref. [10] that outer-
automorphically twisted affine Lie algebras®® also occur as subalgebras of orbifold affine
algebras. So the orbifold affine algebras contain (as subalgebras) examples of all standard
twisted current algebras. ) _

It may also be possible to find interacting cyclic coset orbifolds whose twisted h subalge-
bras are “triply-twisted” current algebras, which are tw1sted as well by outer automorphisms
of simple g.

4 Stress tensors Qf the twisted sectors

4.1 Systematics |
The Zjy-invariant CFT’s A(Z,) are described by the stress tensors
T= Lt}'b_J : Ja([)Jb(J) 5 c=0 (41&)

L=r =L% .  K=0.,A-1 (4.1b)

where L% ; is any solution of the Virasoro master equation®®* (VME) with cyclic permuta-
. tion symmetry. The explicit form of this consistent subansatz of the VME is given in Ref. [1].
Then, the duality transformations of Ref. [1] give the stress tensor for each twisted sector

13



o of all cyclic permutation orbifolds A(Z,)/Z, in terms of the twisted currents Jam of the
ambient orbifold affine algebra gp(a) in Eq. (3.4):

o)1 7 o
T,(2) = ) Z LOD (g ; 0 (2) ‘(,;)( );, o=1.,A~1 = "(42a)
r=0 Js=0
p(o)—1 - A
L2000 (g Z e R (4.2b)
7—53"']—1 R -
s=0 :

The relation in (4.2b) is the duality transformation from the inverse inertia tensor L of the
untwisted sector to the inverse inertia tensor L of the twisted sector o. The integers N(o)
and the ground state conformal weights Ag(o)

Z Lo(m)z™2%,  Ly(m > 0)[0), = bnoho(0)0)s (4.32)
Ag(0) = ;(TZ)S (o)k p(dilﬁau)bu)(a) r(p(o) — 1) (43b)
T g T g T 0 '
Mena pP(0) =1, "K', 7N(0)s B
4p2(a)( 3 Leb - ; L o) ——) 7_s) o=1,..,A-1

are given in Ref. [1]. The central charge é(o) = c of the twisted sectors is the same as the
central charge of the untwisted sector.
The stress tensors, central charges and ground state conformal weights of our interacting

* coset orbifolds o
(h(n,tb) ) . (4 4)
Zy : |

~ are easily obtained from Eq. (4.3b) and the duality transformations (4.2b). The form of

these results

Tgp(a)/h(m@la) = Tgp(a') - Th(nvéra)’ 0= 1’ T A - 1 (4-5&)
Topier = (T-z-";)m Thino.) = (Tﬂ;‘r;_"))m Thpior /. 8.0) = (Tg_/_h%&)a (4.5b) -
) B \adima( L 1 - .5
Concor/M1.0) = Cafhin@) = A lmg(x e v E) (4.5¢)
(Bo)g, oy /nme) = (Bo)g, iy — (B0)nm,a0) (4.5d)

14



~ follows from the liheafity of the diality transformations and the linearity of K-conjugation,
and shows that these coset orbifolds can be understood in terms.of the component. orbifolds
9/Zy and h(n,®)/Z,. Here the various stress tensors of the twisted sectors are obtained by
the duality tra,nsformations '

g
s

T — Tgp(a')’ Th(ﬂv‘l’) — Th("l»‘l’,ﬂ)’ Ty/h(ﬂ,‘l’) - Tgp(c)/h‘(n»Q)a') (4'6)

of each component of T} /h; 4 in (2.19a). In the following subsections, we will consider these

component orbifolds separately. v
_Similarly, one finds for general coset orbifolds (g/h)/H that

(Fam)o = (Fg)o = (Ty)s (47)

s0 the general case can be understood in terms of the component orbifolds g/H and h/H.

4.2 The WZW cyclic orbifolds ¢/7Z,
For each WZW cyclic orbifold g /Z, the set of stress tensors in the twisted sectors’
R ) ab plo)—1 —(_5 -1

1 :
_ 2 : E : j(r) 7(=r) . —
(Tg/Z)\) Tgp(d) —_ ( k + Q Ja(])Jb(]) .y g = 1, eeey A - 1 (4-8&)

r=0 j=0

~

: Az dimg A ‘ Azdimg 1 :
Cgp(a) = Cg = T:h—_, (A )gp(a) 24(3: + h) ]. - p2(0')) (4.8b) :

is a list of o-dependent orbifold affine-Sugawara, constructions!®!!:!,

4.3 The orbifolds h(n, &)/Z,

Substitution of the inverse inertia tensor (2.18b) into the duality transformations (4.2b)
yields (see App. B) the stress tensors of the twisted sectors of the orbifolds h(n, ®)/Z,:

p(o)-1 (a)

(Tagr)o = T,,(,,,q, n= > Z (L) B B + L2 () S, BT - (4.99)
r=0 - j,I=0
. 1. 21ri(i——l)PN(a)r
J_ —_— -3 i
L ( ) / Ak + Q elo) (SJ—l,O mod ”51',0 mod g{;!u (49b) |

: 1 1 ‘ 2wi(j—1)¢§ai 2"‘(17“1‘)P(N(.0)r-¢(a)) )

gt = — ¢ Ca .
E? ! (U) = 'I’]/M Z%k + Qe A € plo) 61—1,0 mod I‘ON(o')r,qS(a) mod ——p(:’)“ (49C)
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Azdimg

é g) — = T =, 49d
h(n,2.0) = Chin,®) Sorh (4.9d)
B0 - |din -1 ...
2R )
-3 Z csc?( 7ar (o ) )(rankg + Z cos(————— T n¢(a)))] (4.9¢)
‘ R=1 p( ) QEA(E) ( )lu’
. . » A )
ac A(g), A= 11 “'1ra'nkg’ ])l = 07 ey TN T L. ' (49.f)

p(o)

We note that the ground state conformal welghts in (4.9¢) depend in general on the inner-
automorphic parameters ¢(a) ~ d - a.

When the order A of a cyclic permutation orbifold is prime, every twisted sector o has
order p(c) = A and so j =1 = 0. Moreover p = 1s0 R =S = 0. As a result many of the
expressions above simplify, and one obtains i in partlcular

I’_]—f:ﬁ,(r) (m + ’\7;\/77) — H‘g r)( + 7:\/77) (410&)
o, THO AT op(a) + 3
AB
77 61-0' mod A 61‘ a¢(a) mod 2
AB — ’ b a,— — _Z__________fl_ 4.10c
L0 = oma e YO = ko (4.10c)
A
A,B=1,..,rankg, o,B€A(g), 71,5=0,..,7—1, . YA (4.10d)

from (3.14) and (4.9). When & = {0}, these Lwisted h currents generate the subalgebras
g, C gy of orbifold affine algebra identified in Ref. [11].

4.4 The orbifold affine-Sugawara constructions of h(n, ®)/Z

The stress tensors (4.9) of the twisted sectors of the orbifolds h(7n, ®)/Z, take the simpler
form ,

p-1p=l A |
SN (HEO () HE D (0) + ERO()EET(0) 1 (411a)

T,
. Lh(n®0) & 2/\]9 + TIQ o

o=1,.,A-1 ~ (4.11b)



" when written in terms of the twisted A currents f,;(,, #,5)- This form shows that the stress '
tensors Th(,, #,0) are nothing but the appropriate orbifold affine-Sugawara constructions!®
the twisted subalgebras h(n, @, ). :

To understand this, recall that h(n, ®) is embedded in afﬁne g at-level ’\k and the OPE
form® (3.15) of h(n, ®, o) has orbifold affine order 7/ u. Then the prefactor in (4.11) can be
computed via the map

(level of affine g) k— %k (level of affine h(n, ®)) - (4.12a)

(order of g,,)) p— g (order of h(n, ®,0)) (4.12b)

1 1

(prefactor of ’f’gp(,)) (;)(m) (n/u)(2 k+Q)

(prefactor of T} h(n,®,0))

| (4.12¢)
from the prefactor of the orbifold affine-Sugawara construction Tgp(’) in (4.8).

4.5 Twisted (0,0) operators of the interacting coset orbifolds

The untwisted currents J, of a general coset construction g/h are (0,0) operators of Ty,
and this situation applies in the untwisted sector of the general coset orbifold

(g/h) _ A(H)
g <7

hCy, H C Aut(g), H C Aut(h). (4.13)

Then, the duality algorithm of Ref. [1] tells us that the twisted h currents Jn of a general
coset orbifold (see Subsec. 3.2) are also twisted (0,0) operators

Tyn((w) = Oz~ w)) — Typ ()odn(wio) =O((: —w)’)  (414)

in the twisted sectors of the general coset orbifold. In what follows, we verify this explicitly
for our class of interacting cyclic coset orbifolds. -
By explicit computation?*!! with the form (4.11) and the OPE’s (3.15), we find that
T,

95(0)

(2)J5 O (w;030) = Thinee)(2) I8 (w; 03 0) (415a)
L %y JEO (w; 0;0) + O((2 — w)°)

((z—w)2 z—w

€Although h(n, ®,0) in (3.19) is not an orblfold affine algebra, it is the OPE form of an algebra that
determines! the Virasoro constructions.
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(Lo, (), BEOm+ )] = [Lano(m), B (n+ =) (415b)

-7 n/p
— (et Tt
= (n+ "l//-“)HA' (m+ N 77/”')'

8p(c)

[Lgp(,)(m), Eg 4 (n + -’I#ﬂ + Zdiig—))] = [Lh(n,@,a)'(m)’ Ef’ (T)(n‘ + "7;/‘ “ a¢(a) )] (4 15c)
= — T 98(0)\ arr) a¢(a)
= (n+77/ﬂ+ 3 YE! (m+n+n/” ).

......

As expected, the currents of the h(n, @, o) subalgebra are “tw1sted (1,0) opera.tors” of TM,)

and Th(,, #,0), and hence twisted (0,0) operators

Ty oy /1m00) (2) J 0 (w5 05 0) = O((z — w)°) (4.16a)

rR(7) " v— AR, ot adla)y,
[Lgb(a)/h("a(}"’) (m)7 HA (n + m)} - [an(a)/h(‘m‘l’,ﬂ) (m)’ Ea r) (n + WIZ + _X——)] - O
(4.16b)
in each sector of the interacting cyclic coset orbifolds.
In an action formulation of coset orbifolds, one must learn to gauge these twisted h

subalgebras. The twisted (0,0) operators of the cyclic coset copy orbifolds are discussed in
App. A.

5 Examples

The components for g/Zy in (4.8) and h(n, ®)/Z, in (4.9) and (4.11) are now easily assembled
into the stress tensors and ground state conformal weights of the twisted sectors

Tgp(a)/h(ﬂ,{”f’) : AQP(,) - Th(ﬂ,@,d’): o=1,.., A-1 (513)

; = = Azdi ! ! 5.1b

Cgp(a)/h’(mq)ra) - cg/h(‘q,@) = AT lmg(x + ;L - —(L‘ + h) ( . )
(AO)g,,(,)/h(n,@,a) = (Ao)g,,(,) - (Ao)h(q,@,a) - (5.1c)

of these interacting coset orbifolds. The examples below use the orbifold affine-Sugawara
form (4.11) for Th(,,q“,) in terms of the twisted h currents, while the alternate form of
Th(,, ®,0) in (4.9) is used in Appendix C to write the coset stress tensors entlrely in terms of
the inverse inertia tensors L and £ and the ambient algebras g and g,(,)-
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For the first three exa,mplés we return to the gen’eral basis
o=l Jae = UDY . daw = RO}, Jiase = (IO 0)} (52)

of the ambient algebras and their subalgebras. Moreover, we will suppress the sector label
o of the twisted h currents.

5.1 All g, A and 75 for & = {0}
These are the interacting coset orbifolds
g . ( X'\;lgl )
(h'(n’ 0 ) x%’:ogﬁk

= 1 3

where k is the level of g’. In these cases the untwisted subalgebra h(, {0}) is generated by

A
-1

‘]f = Z ,Ja.(nj+R), a= la () dlmg7 R= 0’ ’n __1’ o=0 (54)

so that h(n, {0}) is composed of i copies, labeled by R, of affine g at level %k. The twisted
subalgebra h(n, {0}, 0 # 0) is generated by the twisted h currents

p(a)u

r 2mi rPN(a) A(Jz)_#,.) / '
JR( )= z e T a(uJ+R) S , (553-)
JRA) (my 4 J5O(n 4 - ~ (5.5b)
[ m / — ) (n+ ; /u)] |
— SRSy 3 r+s i’f LT
=0 {Zfab c 7l )+ " (m + n/u)nabam“#nﬁ’o}
o=1,., -1, RS=0,..u—1 r,s:O,...,Z—l (5.5¢)

where y1 = u(n, o) is defined in (3.14). This is the algebra of ;1 copies of an order n/u orbifold
affine algebra with each copy at level Ak/p. .

The stress tensors, central charges and ground state conformal we1ghts of these interacting
cyclic coset orbifolds are

. a b’ A= . ab n-1
To=0 = Tg/nn,{o}) = Z Ja(ny o) : "Z—i— 0 Z : JRJR (5.6a)
: Qe R=0
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A

s ' _ 7 5(r) §(-r) .
Tono = 9p(0)/ R(n,{0}0) = 2p(a)k+p(a)Q Z Z Ja(J)Jb(J)"
i r=0 j=0-
u
- JR’(’)JR(")  (5.6b)
é(o) = ¢ = Azdimg( 1 __1 ) | ~ (5.6c)
z+h 2z + B '
. o2 -1 2 - u? | Azdim
Aofo) =[RS —L__ 1w Jadimg (5.64)

plo)(z+h) n*(3z+h) 24

For the sectors with p(c) = ), the stress tensors of these orbifolds were given in Ref. [11]
where they were called T, /a,-

5.2 All gand X for n=1 and & = {0}

To illustrate our formalism, we include a discussion of the special case n = 1 of the previous
example '

S - (5.7)

which was also discussed in Ref. [1]. The h currents of these orbifolds are

t

h(1,{0}) = Baiag = O : Z Jouy = JE%,  0=0 (5.8a)
. . =0

h(1,{0},0):  JR=O(r=0) _ Z JO, o=1,.,2-1 (5.8b)

The untwisted h currents J*=0 generate the diagonal _éuba.lgebra g of the ambient algebra

=0.(r=0) generate the diagonal subalgebra of the integral affine

subalgebra'® of the ambient orbifold affine algebra g,

g and the twisted A currents JE

The stress tensors, central charges and ground state conformal weights of these orbifolds

are
A=
) neb 1
Tomo = Ty/nrop = E , It ~53E  JEOIEC (5.9a)
Q< |
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s _ #r) F(-r) .
Topo = 9o(c)/R(1{0}0) = k+p(aQ Z Z Ja(J)Jb(J) :
ab
7 FR=0,(r=0) FR=0,(r=0) . =.9b
TOE+Q +Ja Iy (5.95)
1
é(o) = ¢ = Azdim 5.9¢
()= el 3 (5.9¢)
Azdi . '

Rolo) = =28 (1 _ Ly sota-1 (5.94)

24z + 1) (o)
In this case the conformal weights are those of Tgp(a) in (4.8) because the integral affine
* subalgebra {J©} acts'®!}! on |0), as an ordinary affine algebra.

In the twisted sector ¢ = 1, we have ’

plo=1)=r - JO= jﬂ())), - JRRU=0) = O : (5.10)

so the stress tensor simplifies to
a.b A-1

: ab
T - — 7(r) (—r) . _77_____ 7(0) (0) . 11
=Toa 2/\k+)\QZ s DETQ e (5-1)

These are the Kag-Wakimoto coset constructions, given in Ref. {19] and further studied in
Ref. [20]. '

5.3 Allgfor A\=4, n=2 and & = {0}
Another special case of (5.3) is |

(9& XOg XG5 X0k )

92k X B2k . 5.12.
—m (5.12)

These orbifolds have A = 4 sectors labeled by o = 0, 1,2 and 3 with p(0) = 1, p(1) = p(3) =4
and p(2) = 2. The ambient algebra of the untwisted sector ¢ = 0 is g = x3_,g’, and the
generators of the untwisted h subalgebra

h(2,{0},0 =0) = h(2’,{0}) Cyg _ (5.13)
are the combinations |
I = Juo) + Jay, I = Joy + Jua)- (5.14)
These generate the h subalgebra gy, X gq in (5.12).
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The sectors o = 1 and ¢ = 3 both have order p(0) =4and p=1,and N(o =1) =
1, N(c =3) = 3. ‘The ambient orbifold affine algebra in these sectors is g, on simple g,
and the twisted h subalgebras are isomorphic

h(2,{0},0 = 1) = h(2, {0}, 0 = 3) C g)_s (5-152)
JRRRE=0) _ jO gEse=h _ j@ (515

The explicit form of this twisted h subalgebra is

(FR=00) (1 + g), RO 4 _;.)] o (5.16)
= ifal; E= +n+Iii 0
where 7 and s can be 0 or 1. This is the orbifold affine subalgebra called g,_» C gy=4 in

Ref. [11].
- Finally, the sector o = 2 has order p(0 = 2) = p = 2 and N(o = 2) = 1. The ambient
orbifold affine algebra is g, = g3 x g} (see (3.4¢)), and the twisted h subalgebra

h(2,{0},0 =2) C g, = g2 x g} ‘ (5.17)

is generated by
2R=0 (r= 2(0 =1,(r= 0
jR=0,r=0) _ ,i(g), jR=1(r= 0) 7() | (5.18)

This is the integral affine subalgebral® of g,.
The stress tensors, central charges and ground state conformal weights of these orbifolds
are

- ab 3 ab .
To=0=Tynz, 01 = 7 Z O T__ . (JR=0JR=0 jR=1jE=1y, (5.192)
2k+Q s 4k+Q _

R N ab L
Toe1=To=3=Ty,/g, = 8k7-7§- ek L (JOFO L FO FED 4 f@) fER L 5@ jE9y - (5.19b)
.r’ab

( ’R—O,(r—O) IR—O (r= 0)+ ]R—O (r=1) ]R"O )
8k+ 2Q

ab

Foo=T = _" 0) #0) , §(1) F(=1), §0) §©O) , 1) F-1
Ta=2—ng/h(2,{0},2) - m (J((()))Jb(o J(O)JIS(O) +J((1)Jb(1)+Ja(1)J ) . (5.19C)

a a

77r.t.b

(JR—O (T—O)JR—O (1‘—0)+JR_ ,(r=0) JR_]_ (T—O))
Q-
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. 1.1
¢(0) = ¢ = 4zd =) o (s.a9d
doy=c a:_n-ng.(x_*_h 2x+h)A P ‘ ( )

Aolo=1,3)=sdimgl——— — —L 1], Rg(o —é):«ﬁd‘mg L (519e)

’ 32(z+h) 8(2z+h)" 8(z+h) o

54 g=SU(2) for A = 3, n=1and "{gb‘(a)v= 1}

"This interacting coset orbifold

(SU(2)k xSU(2)rxSU(2)x )

SUG)a | 5.20
A (520)

has three sectors labeled by ¢ = 0, 1 and 2 with p(0) = 1 and p(1) = p(2) = 3. We need the
- integers N(o = 1) = 1, N(o = 2) = 2, and for each of these sectors u = 1 because n = 1.
As noted below Eq. (2.15), the untwisted currents of h(n = 1, {¢(a) = 1})

HR=® = Hgy+ Hyy + Hp) - (5.21a)

E{" = Eﬂ:a(O) + €5 Eyo) + €75 Bray) _ (5.21b)

generate SU(2)s;' at level 3k.
The twisted currents of h(n = 1, {¢(a) = 1},0 = 1) are

AR=00=0 _ FO)  RR=0G=0) _ flE) . (5.22a)
[HR._ r=0) (m) R—O (r=0) (n)] — 3km5m+n 0 | ‘ (5.22b)

P ~ R=0 (r= r= | 1
BR=00=0(m), B (0 4 )] = 2aBE D +nt3) (5220

=0, (r= 1, AR=0(r= 1 ~ R=0.(r= 1
[ER =0,( 0)( ig),Egao,( 0)(nq:§)] — +aFR=0( —0)(m+n)+3k(mi§)5m+n,o (5.22d)

and the twisted currents of h(n =1, {¢#(a) = 1},0 = 2) are

AR=00=0) — gO fES0C=0) _ pEy (5.23a)
[ﬂ'R:O,(T:O) (m)’ ﬂ’R:O,(T=0) (’n,)] = 3km6m+n’0 (523b)
[IEIR=0,(r=0) (m), Esz,(r=0)(n T :]?;)] :i:OtER_O (T—O)( +n+ _;.) (5.230)

[ER_O ,(r=0) ( mT ) ER—O (r.—O) n+ %)] — 4+ R=0(r=0) (m + n) + 3k(m F %)5".”_”,0. (523d)

The twisted h subalgebras of sectors ¢ = 1 and 2 are inner-automorphically twisted affine
- Lie algebras on simple g, as are all the twisted h subalgebras with d # 0 and n = 1.
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This gives the following stress tensors, central charges and ground state conformal weights
in each sector o: ' ' '

2 - , ;
- 1 o .
To=o = Tgni1py = 2% + 202 Z :(HayHty+ Eo(n B-ogr) + E_oayEary) :
I=0
1 _ _ —0 s~ R— —0 R=
~ i HTHR + BITER + BB (5.248)
1 e |
3 —_ (O FED L O EED LR By .
Test = Gevoa Z:; HETHTT + BOEL” + BLETT) | (5.24b)
' 1 7y R=0,(r=0) f7R=0,(r=0) , F1R=0,(r=0) {2R=0,(r=0) ~ R=0 (r=0) AR=0,(r=0)
—_ ——— ) W\ WWT= ) 1 E y .
TR 7 BB T B o )
1 & | |
[ - (O FED L pEpen) o ) )y .
To = o 2:; C(AOACD ¢ BOED + BOECD) | (5.24c)
1 . ( FYR=0,(r=0) fTR=0,(r=0) , frR=0,(r=0) {:R=0,(r=0) | R=0,(r=0) ;:R=0,(r=0)) .
~ g | (ARUTVERSOS0 BEmRC=0 BIENCT0 . FELCTO IS0
| &) = ¢ = 9g(—— — —1 ) (5.24d)
T+2 3r+2
5 A z. 3 3 ,
Ag(o =1)=Ag(0=2) = 5[:0 i 2]. , (5.24e)

5.5 g=SU(2) for A\=4, n=2 and {¢(a) = 1}

Finally, we discuss an example with a doubly-twisted h subalgebra

( SU(2)k xSU(2)x x SU(2)k x SU(2)x )
SU(2)ar' XSU(2)az' ' (5 25)
Zs ' '

In this case, the untwisted currents Jy o)
H®™=Hgy+Hg, H¥™'=Hy+Hg | (5.26a)

EE® = Eiop) — Bra@y  EE' = Era) — Eia) (5.26b)

generate the algebra SU(2)ox' xSU(2)2/, which consists of two commutihg copies (labeled by
R=1,2) of an affine SU(2) at level 2k. Note the sign differences in (5.26b) relative to those
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of _the example in Subsec. 5.3. The form of the stress tensor of the untwisted sector

, v
1 < | |
%t o2 D (HoHuy + Bag) E—oqr) + B—anBarn) :

1 1
- ——— :(HEHR 4+ EREE + ER EER). (5.27)
4k + 202

y - T—‘;Tg/ h(2,{1}) =

is not affected by these signs.
~We focus on the twisted sector ¢ = 1 with ambient algebra g,,—1)—4 and N(o = 1) =
p = P = 1. The twisted currents of h(n = 2, {¢(a) =1},0 =1) are

AR=00=0) _ GO [FR=0=1) _ g@) . (5.28a)
ER—O =0 _ g pR=Or=) L BO) (5.28b)

These satisfy the doubly-twisted subalgebra -

=00 (m + 2), AP0 (n 4+ 2)] = 4k(m + D)0 nigeg - (5.290)
) o 1 o 41
[BP=00) (m, + %), BRI (g 2)] = +aBR0+) (g 4y T2 ; 2)  (5.29b)
o + 1 1 _
B m+ 58, B ) (5-29¢)

L

A r4+ s r+ , .
= +aHF=0 ) (m 4 n + —5—) +4k(m + —2—1)6m+n+r_§_€,0v

with order 2 and level 4k. The stress tensor, central charge and ground state conformal
weight of this twisted sector are

' 3
. 1 N N - A ~ -
= - Fr(0) f (=) (ry fol-1) (r) fr(=r)y .
Taé1 T 8a2; C(HAOACD  EDECT 4 BU ECY (5.30a) |
1
1 7 R=0,(r) fyR= R=0,(r) pR=0, - faR=0,(r) HR=0,(r
~ i > (AR FR=DL) 4 FR=0) BRI ) R=0.0)) .
r=0 : )
oo =1) = o= 122( ! Ly (5.30b)
T I+2 2z+2 ' )
Aolo=1) = F(_ 15 2. " " (5.30¢)

5(4(:1:4-2) o+l
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Note that Ag(c = 1) in (5.30c) is not the same as Aq(o = 1) in (5. 19e) for g =SU(2). The
two situations dlﬁer only in that the inner-automorphic vector d # 0 for the present example.

‘The sector ¢ = 3*contains another doubly-twisted # subalgebra similar to (5.28) and
the twisted h subalgebra of sector ¢ = 2 consists of two commuting copies of an mner- _
automorphically twisted affine SU(2) at level 2k.
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Appendix A. (0,0) operators in cyclic coset copy orbifolds

In this appendix, we find the twisted (0,0) operators (which are the tw1sted h currents) in

* the simpler case of the cyclic coset copy orbifolds!41%10,16,11,1,17,18

x324(8/9)" /2. | (A1)
The stress tensors in the untwisted sectors of these orbifolds are sums of A commuting copies

of the coset construction g/, h C g. The Lie algebras involved here are

g=x758", ¢ g =x32h,  bi=pcy (A.2)

and the ambient affine algebra is still given by (2.2). The embedding of the untwisted A
currents J4(ry in the untwisted g currents Jy(r) is

Jamy(2) = M4 Jory(2), (A.3a)
A=1,..dimh, a=1,..dimg, I=0,..,A—1 (A.3b)

where M is the embedding matrix of h C g.
In this case, the induced action Q of Z,(permutation) on the untwisted h currents

JA(I)(Z) "= wIJ(hd)JA(J)(z) = JA(1+0)(Z)’ Q(hcr) = w(h,,), o=0,..,A-1 (A'4)

is the same as the action w in Eq. (2.3) on the g currents. This follows because the embedding
matrix M ,* does not mix values of the index I. Then the duality transformations of Ref. [1] .
tell us that the twisted h currents '],(4( , are the same linear combinations? of the currents of

dThat is, M(0) = M in the language of Subsec. 3.2.
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the ambient orbifold afﬁne algébra gp(,)

T 2mir A‘ Telvee B
(,)(z) MAa ;})I‘(‘z), Jf{&)(zezm) —¢ Tf AN (Asa)
' ’ 2 - g EE Bile N s NEERCER
By = X187 i © By (A 5b)

Here each b’ (o) 1S @ copy of an order p(o), level p(o)k orbifold affine algebra on S1mple b
For these orbifolds, the stress tensor of sector o is?

T%(o)/')p(a) (2) = Tﬂp(a)(z) - T;,p(d)(z) (A.6a)
R 1 ab plo)-1 p(c) -1 ( ) N
Tpoy(2) = p(o) 2 k +Q, Z Z (J)(z b(7) ( ) (A.6b)
r—-O j=0
) 1 AB p(o)-1 —(;5 -1
Thp(a)(z) === Z ,(41‘()3) ( T)(Z) : (AGC)

P(V)2k+Qb e S |
where the untwisted sector is recovered when ¢ = 0 and hence p(c. = 0) = 1. The coset
central charge and the ground state conformal weight of each sector o are!

dimg rdimb | N Co/h 1
— — =, Dg(o) = 1-— A7
Tg+hg TTg+ hy ofe) M ( 9(0)2) ' (A1)

CGp(o’)/hp(a’) = cg/h‘ = Azg(

where r is the index of embedding of § in g. The twisted A currents Jt Ar in (A.5a) are
twisted (1,0) operators of both stress tensors ’f"g and T, Bp(0)? and so they are twisted (0,0)
operators in each sector of each cyclic coset copy orblfold

Appendix B. Induced action of Z) (permutation)'

To obtain the induced action (2.12) of the Zy automorphisms on the untwisted h currents
Jh(n,®), start with Eq. (2.9a) and follow the steps:

21

2mijo(a) .
Z e Mn a(n]+R+a) (Bla')
R+ '
R+o=nq—2 Se{0,..,n—1} (B.1b)
A | .
n - .
R 2rijd(a)
j=0 - :
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R+o

J—=i-1 | | (B.1d)
21| Bt L
R K K S Wi - L
E;' = § . e Mr e RL Ea(m‘+$)‘
jz_LR"ia'J
2mi | B2 14(a) 2mil BE2 [ 4(a)
= e )"7'1 Eg =e N Ef-!'o'. (B].e)

The induced action on the Cartan generators in (2.12) follows similarly without the phases.
The reader may find the identities

6%5+j"l’0 mod n = 9j-1,0 mod “63+(J.7L_'1)P,0 mod -:’; ' (B.2a.)
p—1 . =
Z e_ 21\'1'::'” 6 p 6 6211"N1’il'z——'!E P (B 2b)
s+(E=)P0mod 2 = 7, 9,0 mod £ : .
por ) K oon/p e _

useful in obtaining Eq. (4.9).

Appendix C. Ambient-algebraic form of the stress tensors

We collect here the stress tensors T and T of the class of interacting cyclic coset orbifolds

A-1

Toinme) = Z Lob(L) . Jay oy s o=0 (C.1a)
J,.L=0

. A
plo)-1 5y 1

T5, 0y /0(n,200) = Z Z L2600 () jiz]))jé(j)' V. o=1,.,2—-1 (C:1b)
r=0 J,l:O -
a,b=1,..,dimg (C.1c)

discussed in the text. Here L and £ are the inverse inertia tensors related by the duality

transformations' in Eq. (4.2b), and J,(z, J};) are the currents of the ambient algebras g and

8,(c) respectively. '
Combining Eqs. (2.16) and (2.18), one finds

A-1

Tg/nne) = Z : (LA(J)B(L)HA(J)HB(L) + La(J)ﬂ(L)Ea(J)Eﬂ(L)) : (C.2a)
J,L=0
a0 < gan 9" 8s-romedn) (C.2b)

2%k+Q 22k +Q
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6JL' 0y 2mi(J—L)¢(a)
1,e(BL) = S _ %J-L,0 mod 1 L ) €26
+wolg g 22k +Q ) ( .)
A,B=1,..rankg, a,B-€A(g) (sz)

for the untwisted sectors.” Similarly, comb.ining'}(4.8) and (4.9), one finds

p(o)-1 p(a') -1
Bp(o)/h(m@ o) = Z Z [’A(J)B(l) Hfir() )H (—(lr) + Ea(] ﬁ(l)(U)E o0 E (?5)) (C.32)
T-—O Jy —0
A(])B(l) 6AB —l 0 mod M 27”’X1

1 6'7‘ 5'—! 0 mod p

27ix2

‘CQ(J (l)( )-— a+ﬂ0(

(C.3d)

x1=LINPr,  x2 = (G-D¢(e)l§-Z 1+ LZINPr

for the twisted sectors. Here we have suppressed the o and 7 dependence of p = p(o),
N = N(o), p= pu(n,0) and P = P(n,0). ‘ '
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