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Efficient Algorithms for TrackingMoving
Interfaces in Industrial Applications:
Inkjet Plotters, Electrojetting, Industrial
Foams, and Rotary Bell Painting

Maria Garzon, Robert I. Saye, and James A. Sethian

Abstract Moving interfaces are key components of many dynamic industrial pro-
cesses, in which complex interface physics determine much of the underlying action
and performance. Level set methods, and their descendents, have been valuable in
providing robust mathematical formulations and numerical algorithms for track-
ing the dynamics of these evolving interfaces. In manufacturing applications, these
methods have shed light on a variety of industrial processes, including the design
of industrial inkjet plotters, the mechanics of electrojetting, shape and evolution in
industrial foams, and rotary bell devices in automotive painting. In this review, we
discuss some of those applications, illustrating shared algorithmic challenges, and
show how to tailor these methods to meet those challenges.

Moving interfaces are key components of many dynamic industrial processes,
whose dynamics are critical to the underlying physics. Examples include turbines,
flames and combustion, plastic injection molding, microfluids, and pumping. In each
of these examples, complex physics at the interface, such as between a fluid and a
moving wall, or through a membrane or a transition region, determines much of the
underlying action and performance (Fig. 1).

One approach to propagating interfaces is given by “level set methods”. These
algorithms to track interfaces in multiple dimensions, couple the driving physics
with the interface in a natural way, and smoothly handle topological change due to
merger and breaking. They accurately and robustly compute high order solutions
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Fig. 1 Examples of industrial interfaces

to moving interface problems, and are easily discretized using standard techniques,
such as finite difference, finite element, and discontinuous Galerkin methods.

The paper is a review of the application of these methods to some industrial
problems, and draws from multiple sources [10–17, 26–29, 42–44] to discuss the
design of industrial inkjet plotters, jetting and electrojetting devices, industrial foams,
and rotary bell spray devices. Rather than extensively focus on the equations or the
algorithms, we provide an overview of the approaches, with an emphasis on the
results. References are provided for more in-depth discussions.

1 Modeling Interface Evolution Using Level Set Methods

Level set methods, introduced in [19], have been used in a large number of appli-
cations to track moving interfaces. They are based on both a general mathematical
theory as well as a robust numerical methodology, which relies on exchanging the
typical Lagrangian perspective on front propagation, in which the front is explic-
itly tracked, for an Eulerian view in which the moving interface is embedded as
a particular level set of a higher dimensional function posed in a fixed coordinate
system. The motion of the interface corresponds to solving the evolution of this
higher-dimensional function according to a Hamilton-Jacobi-type initial value par-
tial differential equation.

A brief summary is as follows. Consider a moving interface �(t), parameterized
by N − 1 dimensions.We restrict ourselves to interfaceswhich are closed and simple,
and separate the domain into an “inside” and an “outside”. We recast the problem
by implicitly defining the moving interface �(t) propagating in N − 1 dimensions
as the zero level set of the solution to an evolving level set function φ(x, t), φ :
R

N × t → R, which satisfies a time-dependent partial differential equation. There
are many ways to initialize this implicit function: one approach is to let φ(x, t = 0)
be the signed distance from the interface �(t = 0), linking the interface to the zero
level set.

We assume that the underlying physics specifies a speed F normal to the interface
at every point on the interface. Constructing this speed function typically involves
solving complex physics both on and off the interface.
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Thus, there are two embeddings. First, the interface itself is embedded and implic-
itly defined through a higher-dimensional function φ. Second, tomove the other level
sets, we embed the speed F in a higher-dimensional function, known in the literature
as the “extension velocity” Fext , which defaults to the given speed on the zero level
set corresponding to the interface.

1.1 Equations of Motion

Here, we review the basic ideas behind the derivation and implementations of level
set methods. We follow the derivation and discussion in [35, 36].

We wish to produce an Eulerian formulation for the motion of a hypersurface �

representing the interface and propagating along its normal direction with speed F ,
where F can be a function of various arguments. Let ±d(x) be the signed distance
from the point x ∈ R

N to the interface at time t = 0. Define a function φ(x, t = 0)
by the equation

φ(x, t = 0) = ±d(x). (1)

By requiring that the zero level set of the evolving φ (see Fig. 2, left) always match
the propagating hypersurface, means that

φ(x(t), t) = 0. (2)

Fig. 2 Left: Implicit embedding of level set function. Right: Topological change
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By the chain rule, φt + ∇φ(x(t), t) · x ′(t) = 0, Since x ′(t) · n = Fext , where n =
∇φ/|∇φ| with extension velocity Fext , this yields an evolution equation for φ,
namely,

φt + Fext |∇φ| = 0, given φ(x, t = 0). (3)

This is the level set equation introduced by Osher and Sethian [19]. Propagating
fronts can develop shocks and rarefactions in the gradient, corresponding to corners
and fans in the evolving interface, and numerical techniques designed for hyperbolic
conservation laws can be exploited to construct schemes which produce the correct,
physically reasonable entropy solution, see [32–34].

There are several advantages to this approach. First, the formulation works in
any number of dimensions. Second, topological changes are handled without special
attention: fronts split and merge. Third, geometric quantities along the interface can
be calculated by taking advantage of the embedding and computing quantities in
the fixed Eulerian setting. Fourth, this formulation naturally lends itself to numerical
approximations, for example, through finite difference or finite element formulations
on the fixed background mesh.

1.2 Computational Advances

Since its introduction, a large number of computational advances have been devel-
oped to make this approach efficient, accurate, and economical. These include

• The introduction of adaptive, “narrow band level set methods” [1] which confine
computation to a thin band around the zero level set.

• Fast methods to construct extension velocities [2, 25].
• Incorporation of complex physics [3–5], transport of material quantities [6], and
methods to handle multi-phase flows with a large number of distinct propagating
regions coming together in complex junctions, triple points, etc. [26, 27].

A large number of reviews have been appeared over the years, containing these
and many related ideas. We refer the interested reader to [20, 30, 35, 36, 38–40].

2 Industrial Printing

2.1 Physical Problem and Modeling Goals

Industrial inkjet printing involves ejecting ink housed in a well through a narrow
nozzle, which is then deposited on a material. The ink in the bath is expelled by
an electro-actuator mechanism at the bottom, which quickly propels ink through
the nozzle. The shape of the nozzle, the force and timing of the actuator, and the
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properties of the ink are instrumental in determining the ultimate shape, delivery,
and performance of the printing device.

This is a two-phase incompressible fluid flow problem, with the interface sepa-
rating air and ink. Depending on the constituency of the ink, the flow can either be
Newtonian or visco-elastic. Boundary conditions include both no-slip and no-flow at
solid walls, and triple points where air-ink boundaries meets solid nozzle walls are
subject to typical critical angle dynamics controlling slipping. While a common use
for inkjet printers is in commercial home printing, over the past two decades a large
number of sophisticated industrial applications have appeared, ranging from printing
integrated circuits and the manufacture of display devices on through to construction
of tissue scaffolding and layered manufacturing.

The goal of numerical simulation is to identify and optimize key aspects of the
process, including

• Optimize the design of the nozzle and to control the actuator mechanism to aim,
extend, and focus droplet delivery;

• Characterize wall wetting/non-wetting on the shape and separation of droplets;
• Determine and perhaps minimize the formation of secondary trailing droplets,
which break off from the main ejected bubble as the fluid elongates, due to the
effects of surface tension; and

• Understand how variations in viscosities and impurities affect droplet dynamics.

2.2 Equations of Motion and Computational Challenges

We solve for incompressible flow in a non-rectangular geometry, with no-slip and
no-flowonwalls, with air satisfyingNewtonian flow and ink satisfying a visco-elastic
Oldroyd-B model. The equations of motion [42–44], are given by

(I nk) ρ1
Du1

Dt
= −∇ p1 + ∇ · (2μ1D1) + ∇ · τ 1 , ∇ · u1 = 0 ,

Dτ 1

Dt
= τ 1 · (∇u1) + (∇u1)

T · τ 1 − 1

λ1

(
τ 1 − 2μp1D1

)
.

(4)

(Air) ρ2
Du2

Dt
= −∇ p2 + ∇ · (2μ2D2) , ∇ · u2 = 0 . (5)

Di = 1

2

[∇ui + (∇ui )
T
]
, ui = ui er + vi ez , i = 1, 2 (6)

where, for the ink, τ 1 is the viscoelastic stress tensor, λ1 is the viscoelastic relaxation
time, μp1 is the solute dynamic viscosity and subscript 2 refers to (Newtonian) air.

We use a level set method to track the air-ink interface, starting with the initial
pressure disturbance in the reservoir: the fluid then moves through the nozzle and is
then ejected into the ambient air, and thenmay separate into one ormore droplets.We
compute an approximate solution to the incompressible Navier-Stokes given above
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Fig. 3 Left: Experimental profiles, showing ejected ink and satellite formation; note the formation
of the trailing satellite droplet as the initial bubble stretches, and changes topology. Right: simulation
of full ejection cycle (taken from [43]). Inflow pressure from an equivalent circuit model which
describes the cartridge, supply channel, vibration plate, PZT actuator, and applied voltage. Fluid
is an Epson dye-based ink, with critical advancing θa = 70◦ and receding θr = 30◦ contact angle,
and with ρ1 = 1070 kg/m3, μ1 = 3.34 × 10−3 kg/m s, and σ = 0.032kg/s2. The nozzle geometry
has diameter 26 microns at opening and 65µm at bottom

in both phases simultaneously, with surface tension terms mollified to the right-
hand-side as a forcing term. Thus, the solution accounts for both the ink velocity,
the air-ink interface, and air currents induced in the air by the fluid ejection. We
use a second order projection method [7–9] on a body-fitted logically rectangular
mesh. Calculations are performed in both axi-symmetric two dimensions and full
three-dimensional regimes. For details, see [42–44]. Figure3 shows the results of
both an experiment and simulation.

3 Droplet Formation and Electro-jetting

3.1 Physical Problem and Modeling Goals

A large number of industrial problems involve microjetting and droplet dynamics,
in which small droplets both move through small structures and also transport key
materials, for example, in such areas as deposition of evaporation substances, delivery
of biological materials, and substance separation.

Part of the challenge in computing these problems stems from the critical role of
surface tension and shear forces, which often drive topological change, breakage,
and merger in the evolving droplets. Level set methods, because of their ability to
handle these structural changes, are particularly well-suited for computing droplet
dynamics. Here, we summarize work on microjetting dynamics first presented in
[10], see also [11–17].
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Consider the dynamics of a thin tube of fluid as it pinches off due to surface
tensions effects at a narrowing neck of the fluid (see Fig. 5), where mean curvature
drives the interface inward until it breaks into two separate lobes of fluid. The pinch-
off dynamics reveal considerable intricacy: as the droplet breaks, rapidly moving
capillary waves on the surface cause instabilities and oscillations in the fluid lobes.

3.2 Equations of Motion

Following the arguments in [11, 12], we model the fluid as incompressible and
irrotational with a potential flow formulation. Euler’s equation gives

∇ · u = 0 in �(t) (7)

ut + u · ∇u = −∇ p

ρ
+ bodyforces on �t (s). (8)

Assuming irrotationality (∇ × u = 0), the problem can then be written in terms of a
fluid velocity potential u = ∇ψ , namely


ψ = 0 in �(t) (9)

ψt + 1

2
(∇ψ · ∇ψ) + p − pa

ρ
= 0 on �t (s), (10)

where pa is the atmospheric pressure and ρ is the fluid density.
As shown in [11, 12], this can be reformulated as

u = ∇ψ in �(t), 
ψ = 0 in �(t) (11)
Dψ

Dt
= 1

2

(∇ψ · ∇ψ
) − γ

ρ

( 1

R1
+ 1

R2

)
on �t (s) , (12)

where �(t) is the fluid tube, �t (s) is the boundary of the tube, R1 and R2 are the
principle radii of curvature, and γ is the surface tension.

Although the potential ψ is only defined on the interface, our plan is to build
an extension of both the potential and the interface to all of space, so that we can
then employ the level set methodology. This embedded implicit formulation then
allows calculation of the fluid interface motion through pinch off, and can compute
dynamics of the split fluid lobes.

These embeddings produce a new set of equations, namely
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For details about the derivation of these equations, see [10–12].

3.3 Computational Challenges

The computational challenges that stem from these equations of motion lie in part on
the delicate, sharp singularity at pinch off. The curvature becomes very large, and as
soon as pinch off occurs, the two pieces of the neck retract very quickly. Constructing
correct extension values for the velocity and the potential requires care as well.

We solve these equations through a time-cycle. Given values for the embedded
implicit potential and level set function on a fixed background mesh, we construct
the zero level set corresponding to the interface, place boundary element nodes on
that interface, and then employ a boundary element method to find the new potential
and associated velocity field, suitably extended. These nodes are then discarded, and
the discrete grid values for the level set function, potential, and velocity are updated.

3.4 Example Results

Extensive numerical experiments are given in [12, 14]: the self-similar behavior
of some variables near pinch-off time is checked within the computations and the
computed scaling exponents agreewith experimental and theoretical reported values.
Here we review those results. Figure4 shows a snapshot after pinch-off, revealing
capillary surface waves on the undulating surface. Figure5 shows the fine-scale
structure of droplet dynamics after pinch-off.

3.5 Charged Droplet Separation

The above situation becomes considerably more complicated when the droplets are
electrically charged, in which the droplet motion is driven by a background electrical
field. Applications include electrospray ionization, electrospinning to produce fibers
by drawing charged threads of polymers, particle deposition for nanostructures, drug
delivery systems, and electrostatic rotary bell painting.
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Fig. 4 Droplet dynamics. Left, experiment taken from [41]. Right, level set calculation of surface
capillary waves, taken from [12]

Fig. 5 Simulation: fine-scale structure of droplet dynamics after pinch-off [12]

Fig. 6 Experimental profile of electrically charged droplet motion [18]

The fundamental mechanism relies on the motion of an electrically conductive
liquid in an electric field. The shape of the droplets starts to deform under the action
of the electric field, afterwards the competition between inertial, surface tension and
electric forces drives the dynamics, see Fig. 6.



182 M. Garzon et al.

Fig. 7 Equations for electrically charged droplet motion. Note: In the shown equations, the velocity
potential is labelled � but is labelled by  in the main text

3.6 Equations of Motion and Computational Challenges

The equations of motion are the previous potential formulation for droplet hydrody-
namic motion, plus electrodynamics. We assume a perfectly conducting fluid and an
unlimited dieletric exposed to an external uniform force field. Model equations from
[16] are shown in Fig. 7.

Algorithmic challenges include accurate and reliable computation of the electric
field and handling sharp breakup and fast ejection.

3.7 Example Results

We show a numerical simulation [16] of a free charged droplet carrying a charge
above the critical one, reproducing experimental results before and after jet emission.
Figure8 shows the focused droplet end fromwhich charged tiny droplets are ejected.

4 Industrial Foams

4.1 Physical Problem and Modeling Goals

Many problems involve the interaction of multiply-connected regions moving
together. These include the mechanics and architecture of liquid foams, such as
polyurethane and colloidal mixtures, and of solid foams, such as wood and bone.

The industrial applications of these problems are manifold. Liquid foams are key
ingredients in industrial manufacturing, used in fire retardants and in froth flotation
for separating substances. Solidification of liquid foams results in solid foams, which
have remarkably strong compressible strength because of their pore-like internal
structure; and include lightweight bicycle helmets and automotive absorbers.
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Fig. 8 Time evolution of electrically charged droplet motion, from [16]

Fig. 9 Examples of multiphase problems

In such problems, multiple domains share walls meeting at multiple junctions.
Boundaries move under forces which depend on both local and global geometric
properties, such as surface tension and volume constraints, as well long-range phys-
ical forces, including incompressible flow, membrane permeability, and elasticity.

Foam modeling is made challenging by the vast range of space and time scales
involved [6]. Consider an open, half-empty bottle of beer. It may seem that nothing
is happening in the collection of interconnected bubbles near the top, but currents in
the lamellae separating the air pockets show slow but steady drainage. It can take tens
to hundreds of seconds for the lamellae fluid to drain and then rupture, triggering an
lamella explosion that retracts at hundreds of centimeters a second, after which the
imbalanced configuration rights itself to a new stable structure in less than a second.
Spatially, membranes are barely micrometers thick, while large gas pockets can span
many millimeters or centimeters. All told, the biggest and smallest scales differ by
roughly six orders of magnitude in space and time.

Another example comes from grain metal coarsening, in which surface energy,
often associated with temperature changes, drives a system to larger structures. A
third example comes from foam-foamed fiber networks, found in both industrial
materials such as paper and biological materials, such as plant cells and tissues
(Fig. 9).
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In all of these engineering problems, understanding how such factors as pocket
formation and distribution, tensile strengths, and foam architecture is a key part of
producing mechanisms to optimize foam performance.

4.2 Computational Challenges

Producing good mathematical models and numerical algorithms that capture the
motion of these interfaces is challenging, especially at junctions where multiple
interfaces meet, and when topological connections change. Methods have been pro-
posed, including front tracking, volume of fluid, variational, and level set methods. It
has remained a challenge to robustly and accurately handle thewide range of possible
motions of an evolving, highly complex, multiply-connected interface separating a
large number of phases under time-resolved physics.

The problem is exacerbated by the nature of the mathematical components that
contribute to the dynamics, including: velocities dependent on such factors as cur-
vature, normal directions and anisotropy; the solution of complex PDEs with jump
conditions, source terms, and prescribed values at the interface and internal bound-
ary conditions; area and volume-dependent integrals over phases; thermal effects and
diffusion within phases; and balance of forces at complex junctions.

From a numerical perspective, some of the challenges stem from the vast time and
space scales involved. Using the same spatial resolution to resolve the physics along
interfaces is often impractical in the bulk phases. Sharp resolution of the interface
and front-driven physical quantities located on the interface is required as input to
the bulk PDEs. Accurately resolving interface junctures is critical in order to provide
reliable values for the balances of forces at junctions.

All told, these lead to formidable numerical modeling challenges.

4.3 Voronoi Implicit Interface Methods

Voronoi Implicit InterfacesMethods (VIIM), introduced in [26], provide an accurate,
robust, and reliableway to trackmultiphase physics andproblemswith a large number
of collected, interacting phases. They work in any number of space dimensions,
represent the complete phase structure by a single function value plus indicator at
each discretized element of the computational domain, couple easily to complex
physics, and handle topological change, merger, breakage, and phase extinction in
a natural manner. The underlying equations of motion that represent the evolving
interface and complex physics may be approximated in either a finite difference or
finite element framework. These equations couple level set methods for an evolving
initial value Hamilton-Jacobi-type partial differential equation to a computational
geometry-based Eikonal equation to produce a faithful phase representation. Here,
we provide a brief review of the methods. For details, see [26].
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The starting point is to consider a collection of non-overlapping phases which
divide up the domain. The “interface” consists of places where these phases meet. In
two dimensions, the simplest example is a single curve separating two phases. More
complex structures might have multiple closed curves, each surrounding a separate
phase, which meet in triple points or higher-order junctions. In three dimensions, the
situation is far more complex.

The Voronoi Implicit InterfaceMethod begins by characterizing the entire system
through an implicit representation. For each point x in the plane, define φ(x) as
the distance to the closest interface. Additionally, define χ(x) as an integer-valued
function which indicates the phase. By construction, the interface representing all
possible boundaries is given as the zero level set {φ(x) = 0} of this unsigned distance
function, and the indicator function reveals the type of phase.

Thus, for example, if φ(x) = 5 and χ(x) = 4, then we know that the point x is
located in phase 4, and the closest interface point is located a distance 5 away.

Startingwith this unsigned distance function representation,we execute a two-step
process. With interface speed F in the normal direction:

• Advance φ through k time steps using the standard level set methodology. That is,
produce φn+1 from φn by solving a discrete approximation to

φt + F |∇φ| = 0.

• Use the ε level sets of this time-advanced solution to reconstruct a new unsigned
distance function. This is done by first computing the Voronoi interface from the ε

level sets: this corresponds to the set of all points equidistant from at least two of the
ε level sets from different phases, and closer to any of the non-equidistant phases.
This Voronoi interface is then used to rebuild the unsigned distance function.

These two steps give themethod its name: “Implicit Interface” because of the level
set step for the time evolution, and “Voronoi” because of the reconstruction step used
to rebuild the unsigned distance function and characteristic indicator function.

There are several things to note:

• The method works because of a comparison principle which, for a large fraction
of physically reasonable flows built through the use of extension velocities (see
[2]), keeps the zero level set trapped between the neighboring ε level sets. These
ε level sets may be updated for a short period of time without suffering from the
influence of the non-smooth ridge along the zero level set.

• The Voronoi reconstruction can be accomplished without explicit construction
through two applications of fast Eikonal solvers [25, 37].

• Regions spontaneously disappear (appear) if they become small (large) enough so
that an ε-level set does not exist (can be constructed).

• Careful numerical algorithms can be devised to allow for any non-negative value
for ε, including ε = 0+.

For details, see [26, 27].
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Fig. 10 Collapse of a foam cluster, visualized with thin-film interference taken from [29]

4.4 Application of VIIM to Foam Dynamics

Here, we review some current work applying VIIM to tracking the evolution of liquid
foams. The vast time and space scales mean that one cannot compute over all scales
simultaneously. Instead, we use a scale-separation model which allows us to divide
the foam physics into three distinct stages.
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We characterize the foam structures as represented by thin, interconnected mem-
branes (lamellae) each surrounding pockets of air, and containing fluid. Membranes
can share common walls, and fluid in each lamella drains toward common, shared
Plateau borders that form a network of triple junctions and quadruple points. This
drainage is slow, and once a membrane becomes too thin, it ruptures, causing the
large air pockets to be out of macroscopic balance, which then readjust according to
the equations of incompressible flow driven by interfacial forces along the lamellae.

These events can be thought of as taking places over different scales. The macro-
scopic air-fluid incompressible flow phase takes place over the whole domain, and
evolves to an equilibrium relatively quickly. The lamellae drainage phase is slow, but
takes place only over the very thin membrane walls. Rupture occurs very quickly.

In [28, 29], these three phases were used to develop a mathematical model and
numerical simulation framework for foam evolution. During the macroscopic phase,
a second order projection method is used to solve the incompressible Navier-Stokes
equations on a rectangular mesh, with the interface smoothing its influence to the
right-hand side through a mollified surface tension term. The individual lamellae are
advanced under the incompressible flow by the Voronoi Implicit Interface Method,
with the internal liquid transported by themethod of characteristics.When themotion
is almost gone, the model enters a different phase and assumes that the multi-phase
configuration has essentially reached equilibrium; a fourth order PDE is then solved
for thin film drainage, approximated through a discretized finite element triangula-
tion. The final phase results from membrane rupture, idealized as an instantaneous
disappearance of a lamella when a user-chosen minimal thickness is reached, which
then redistributes the lamella liquid mass and sends the configuration into macro-
scopic disequilibrium.

4.5 Example Results

An example of the complete dynamics developed in the multi-scale foam model
is shown in Fig. 10, which shows the time evolution of a bubble cluster, starting
from 26 separate bubbles and ending up in a single bubble. The bubble colors are
computed from thin film interference determined by the computed fluid thickness in
the lamellae.

5 Rotary Bell Painting in the Automotive Industry

In manufacturing settings, paints are frequently applied by an electrostatic rotary
bell atomizer. Paint flows to a cup rotating at 10,000–70,000 rpm and is driven by
centrifugal forces to form thin sheets and tendrils at the cup edge, where it then tears
apart into dispersed droplets. Vortical structures generated by shaping air currents
are key to shearing these sheets and transporting paint droplets. Advantages of this
manufacturing process include the ability to paint at high volume and to achieve
uniform consistency in the paint application.
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Schematic of paint flow and air currents [21] in rotary bell atomizing applications
Understanding the generation, size distribution, delivery, and adhesion of these

paint droplets is a problem of considerable importance. For example, (a) much of the
energy involved in automotive assembly is associated with the paint process; (b) a
significant amount of paint does not attach to the cars and ends up as pollutants; and
(c) 10–20% of automobiles need to be repainted due to aberrations in the process.

The goal of computational modeling of the rotary bell delivery system includes

• Optimizing the atomization process for higher paint flow rates to obtain more
uniform and consistent atomization in the 30,000 to 60,000 rpm range.

• Studying the atomization process as a function of paint fluid properties (such as
density, viscosity, and surface tension) and physical properties, such as inflow
rates, bell rotation speeds and shaping air currents.

• Analyzing film dynamics, particularly in the immediate atomization zone adjacent
to the cup edge, including the dynamics of filament formation and droplet size and
distribution and their trajectories.

5.1 Computational Challenges

The computational challenges posed by the painting delivery mechanism are
formidable. The range of physical parameters is substantial. The droplet size ranges
from 5 to 100µm, the films are 10–50µm thick, while the rotary bell diameter
is on the order of centimeters. The cup rotates at 200 m/s, droplets breakup over
microseconds, whereas droplet statistics requires milliseconds. As such, modeling
requires tracking droplets across a wide range of length scales, paint fluid mechanics
is subject to high centrifugal and Coriolis forces, and the impact of highly vortical
air structures on film sheeting requires careful resolution.

From a computational point of view, these translate into daunting challenges:

• Interfaces are very contorted and complex.
• Very thin sheets of paint roll off, and then break into droplets.
• Fluid dynamics is highly three-dimensional with gas eddies playing a key role.
• Droplets are tiny, and break off and subsequently merge in highly complex ways.
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• Mass conservation is important: tracking and accurately accounting for small
droplets is critical, since all the paint ultimately breaks into such small objects.

These translate into several modeling/mathematical/algorithmic/numerical chal-
lenges which must be tackled in order to build a workable approach, including:

• High-order accurate fluid solvers and sharp interface physics: The standard level
set approach to tracking two- or multi-phase fluid problems is to solve both the
evolving level set equation and the Navier-Stokes equations on a background fixed
mesh, smearing forces jump conditions, and discontinuities across the air/fluid
interfaces through mollified delta functions into forcing terms on the background
mesh. Because the droplets are so small, and because the viscosity/density jumps
are so large, this approach is too inaccurate. Instead, we need to employ incom-
pressible Navier-Stokes solvers that allow us to represent these forces sharply, by
using implicitly definedmeshes that adapt to themoving geometry of the liquid-gas
interface.

• Develop hybrid interface solvers coupled to high order fluid solvers. Coupling
these high-order fluid solvers to the interface dynamics requires building accurate
methods to allow information transfer between the background Cartesian level set
mesh and the unstructured interface-fitted mesh.

• Non-Newtonian fluids:Another complex challenge stems from the fact that paint is
in fact non-Newtonian. One must carefully design and embed experimental shear
stress models inside numerical calculations.

• Mesh adaptivity: In order to capture the shaping air currents and spinning bell,
which occupy large length scales, as well as the smallest scales of droplets and
thin films, we need to employ aggressive adaptive mesh refinement strategies.

• Multi-core high performance computing:This is an involved calculation, requir-
ing small time steps, many mesh elements, and highly accurate elliptic solvers.
Attention must be paid to parallel implementations on sophisticated computing
architectures.

5.2 Level Set Methods and High-Order Multiphase Flow

The central problem in applying level set methods is that the equations of motion
need to include jump conditions at the air-paint interface, e.g., droplet boundaries.
The usual level set approach of “smearing” forces to a background mesh in order to
provide source terms to the incompressible Navier-Stokes equations is problematic.
The droplets can be so small, and the density/viscosity jumps so large and sharp, that
this mollified approach does not provide the required accuracy.

Instead, we make use of an algorithmic technology building on implicitly-defined
meshes [22–24]. There are several ideas at work in this approach:

• First, two-phase incompressible flow is solved using a discontinuous Galerkin
(DG) approach, with a level set method used to track paint-air interfaces.
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Fig. 11 Implicitly defined meshes using multi-phase cell merging. Left: Phase cells, defined by
the intersection of each phase (blue and green) with the cells of a background Cartesian/quadtree
grid, are classified according to whether they fall entirely within one phase, entirely outside the
domain, or according to whether they have a small or large volume fraction. Right: Small cells
are merged with neighboring cells in the same phase to form a finite element mesh composed of
standard rectangular elements and elements with curved, implicitly defined boundaries. Figures
adapted from [23, 24]

• The level set method is solved using finite differences on a fixed background mesh
in a time-evolving narrow-banded data structure.

• The zero level set corresponding to the paint-air boundaries, which cuts through
the cells of a background octree grid, is used to drive a cell-merging procedure
which creates an implicitly-defined mesh, whose element shapes exactly coincide
with the curved geometry of the interface; see Fig. 11.

• This mesh is used to accurately incorporate the now body-aligned interface jump
conditions in the DG solver.

Adaptivity: The next issue stems from the fact that there is a wide range of physical
space scales involved in the process. The paint comes off the bell as a very thin
film, and then breaks into small bubbles; as such, computing on a uniform mesh is
impractical. Instead, we employ adaptively refined meshes wherein the mesh reso-
lution adapts to such triggers as: (a) the distance to liquid-gas interface; (b) amount
of curvature of interface; (c) the thickness of droplets, tendrils, films; and (d) the
proximity to bell cup. See, for example, Fig. 12.

High performance computing: The above calculations are complex and the time
step, spatial resolution, and physics make it impossible to model the entire bell.
With a numerical framework targeting high performance computing facilities, using
massively parallel MPI and OpenMP techniques, we can conduct high-resolution in-
depth studies of rotary bell atomization on small wedges, about 5 degrees in angle,
using tens of thousands of cores. In Fig. 13 we present one result from a large family
of parameter studies. For further details, see [31].
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Fig. 12 Adaptively refined meshing in the rotary bell atomizing problem

Fig. 13 Three-dimensional model results of rotary bell atomization for time- and spatially-varying
inflow film thickness, high mesh resolution, and shaping air currents simulating nozzle inlets. In
each of the nine panels, two viewpoints at the same time frame are given: a top-down perspective
and a side-on view to show the vertical drifting of the shedding droplets, being pushed upwards by
the shaping air currents. The liquid surface is colored copper, with the bell cup situated beneath
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6 Conclusions and Summary

We have tried to review a few examples in which the interface dynamics are a
profound contributor to the efficiency of the industrial processes, and have focused
on the application of level set methods for interface tracking to these problems. We
have considered only a few contributions and works, and refer the interested reader
to the referenced review articles.
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