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Behavioral/Cognitive

Feature-Selective Attentional Modulations in Human
Frontoparietal Cortex

X Edward F. Ester,1,2 X David W. Sutterer,1,4 X John T. Serences,2,3 and X Edward Awh1,4

1Department of Psychology, University of Oregon, Eugene, Oregon 97403, 2Department of Psychology and 3Neurosciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, and 4Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, Illinois
60637

Control over visual selection has long been framed in terms of a dichotomy between “source” and “site,” where top-down feedback signals
originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in
part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor
outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence
that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations
of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation
or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal
cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to
contain the human homolog of the macaque frontal eye fields). Additionally, representations in many— but not all— of these regions
were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models
that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrat-
ing that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in
many of these areas are modulated by attention.

Key words: frontoparietal cortex; functional neuroimaging; visual attention; visual cortex

Introduction
Behavioral (Treisman and Gelade, 1980; Wolfe, 1994), electro-
physiological (Müller et al., 2006; Andersen et al., 2008; Zhang
and Luck, 2009), and functional neuroimaging studies (Corbetta

et al., 1990; Chawla et al., 1999; Saenz et al., 2002; Liu et al., 2003,
2007; Polk et al., 2008) indicate that attention can selectively
enhance representations of task-relevant features (e.g., color, ori-
entation, shape, or direction) regardless of their location(s) in a
visual scene. This form of feature-based attention (FBA) is inte-
gral to many everyday tasks, as we often know the defining fea-
tures of a target (e.g., my coffee mug is green) but not its location
(e.g., my coffee mug is on the table next to my desk).

Invasive electrophysiological recordings in nonhuman primates
(McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999;
Martinez-Trujillo and Treue, 2004) and functional neuroimaging
studies in humans (Serences and Boynton, 2007; Jehee et al., 2011)
suggest that FBA enhances cortical representations of behaviorally
relevant visual features in early visual areas. These enhancements are
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Significance Statement

Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks.
These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down
control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here,
we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature
property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based
attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and
sensory processing networks on the basis of representational properties.
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thought to result from top-down feedback signals originating in
frontoparietal cortical areas (Serences et al., 2004; Kelley et al., 2008;
Greenberg et al., 2010; Zhou and Desimone, 2011; Baldauf and Desi-
mone, 2014; Gregoriou et al., 2014). For example, Baldauf and Desi-
mone (2014) showed human participants displays containing
semitransparent, spatially overlapping images of faces and houses.
Magnetoencephalographic recordings revealed increased gamma
band synchrony between portions of the inferior frontal junction
(IFJ) and the location-selective parahippocampal place area (PPA)
when participants attended the house image and increased syn-
chrony between the IFJ and the face-selective fusiform face area
(FFA) when participants attended the face image. Moreover, gamma
phases were advanced in the IFJ relative to either FFA or PPA, sug-
gesting that this region was the driver of changes in synchrony.

At present, it is unclear whether frontoparietal cortical areas
implicated in attentional control also encode parametric sensory
representations and, if so, whether these representations vary
with behavioral relevance. On the one hand, single-unit record-
ing studies suggest that many frontoparietal cortical areas encode
task-level variables, such as decision criteria (Kim and Shadlen,
1999) or abstract rules (Wallis et al., 2001). However, other stud-
ies have observed parametric sensory representations in fronto-
parietal cortical areas during perception and working-memory
storage (Buschman et al., 2011; Meyer et al., 2011; Mendoza-
Halliday et al., 2014; Ester et al., 2015). Moreover, recent evidence
from primate and rodent electrophysiology suggests that fronto-
parietal cortical areas may encode both task variables and para-
metric sensory representations in a high-dimensional state space
(Mante et al., 2013; Rigotti et al., 2013; Raposo et al., 2014).

Motivated by these findings, the current study was designed to
examine whether frontoparietal cortical areas typically impli-
cated in attentional control contain continuous or categorical
representations of task-relevant sensory parameters (e.g., orien-
tation) and, if so, whether these representations are modulated by
FBA. Using functional neuroimaging, we combined a roving
“searchlight” analysis (Kriegeskorte et al., 2006) with an inverted
encoding model (Brouwer and Heeger, 2009, 2011) to recon-
struct and quantify representations of orientation in local neigh-
borhoods centered on every gray matter voxel in the human
cortical sheet while participants attended either the orientation
or luminance of a stimulus. We observed robust representations
of orientation in multiple frontal and parietal cortical areas pre-
viously associated with top-down control. Moreover, representa-
tions in many—though not all— of these regions were stronger
(higher amplitude) when participants were instructed to attend
orientation relative to when they were instructed to attend lumi-
nance. Collectively, our results indicate that several frontoparie-
tal cortical regions typically implicated in top-down control also
encode simple feature properties, such as orientation, and that
representations in many of these regions are subject to attentional
modulations similar to those seen in posterior visual areas. These
results challenge models of selective attention that dissociate
“top-down control” from “sensory processing” regions based on
the type of information that they encode.

Materials and Methods
Participants. Twenty-one neurologically intact volunteers from the Uni-
versity of Oregon (ages 19 –33 years, nine females) participated in a single
2 h scanning session. All participants reported normal or corrected-to-
normal visual acuity and were remunerated at a rate of $20/h. All exper-
imental procedures were approved by the local institutional review
board, and all participants gave both written and oral informed consent.
Data from three participants were discarded due to excessive head-

motion artifacts (translation or rotation �2 mm in �25% of scans); the
data reported here reflect the remaining 18 participants.

Experimental setup. Stimulus displays were generated in Matlab using
Psychophysics Toolbox software (Brainard, 1997; Pelli, 1997) and back-
projected onto a screen located at the base of the magnet bore. Partici-
pants were positioned �58 cm from the screen and viewed stimulus
displays via a mirror attached to the MR head coil. Behavioral responses
were made using an MR-compatible button box.

Behavioral tasks. Participants viewed displays containing a full-
contrast, square-wave grating (5° radius, 1 cycle/°) in the upper left or
right visual field (horizontal and vertical eccentricity of �7° and �5°
relative to fixation, respectively; Fig. 1). On each trial, the grating was
rendered in one of two colors (green or yellow) and assigned one of nine
orientations (0 –160° in 20° increments). The grating flickered at 3 Hz
(i.e., 167 ms on, 167 ms off) for the entire duration of each 10 s trial. The
spatial phase of the grating was randomized on every cycle to attenuate
the potency of retinal afterimages. In separate scans, participants were
instructed to attend either the luminance or orientation of the grating
(here, “scan” refers to a continuous block of 36 trials lasting 432 s).
Stimulus color and orientation were fully crossed within each scan. Trials
were separated by a 2 s blank interval.

During attend-orientation scans, participants were required to dis-
criminate the direction (clockwise or anticlockwise) of brief (1 stimulus
cycle) and temporally unpredictable perturbations in stimulus orienta-
tion. A total of four perturbations occurred on each trial, with the con-
straint that no targets appeared during the first and last second of each
trial, and that targets were separated by �2 stimulus cycles (i.e., 667 ms).
During attend-luminance scans, participants were required to report
small upward (i.e., “brighter”) or downward (i.e., “dimmer”) perturba-
tions in stimulus luminance. Changes in luminance were subject to the
same constraints as the attend-orientation task. Each participant com-
pleted 3–5 scans in the attend-orientation and attend-luminance tasks.

To ensure that both tasks were sufficiently challenging, we computed
orientation and luminance discrimination thresholds for each partici-
pant during a separate 1 h behavioral testing session completed 1–3 d
before scanning. Participants performed the luminance and orientation
discrimination tasks described above, but the magnitudes of luminance
and orientation perturbations were continually adjusted using a “three
up, one down” adaptive staircase until a criterion accuracy of 75% was
reached. The resulting thresholds were used to control the magnitudes of
orientation and luminance perturbations and remained constant during
scanning.

fMRI data acquisition and preprocessing. fMRI data were collected us-
ing a 3T Siemens Allegra system located at the Robert and Beverly Lewis
Center for Neuroimaging at the University of Oregon. We acquired
whole-brain echo-planar images (EPIs) with a voxel size of 3 � 3 � 3.5
mm (33 transverse slices with no gap, 192 � 192 field of view, 64 � 64

Figure 1. Stimulus displays. Participants viewed displays containing a single square-wave
grating in the upper left or right visual field. On each trial, the grating was assigned one of nine
orientations (0 –160° in 20° increments) and one of two colors (yellow or green). In separate
scans, participants were instructed to attend either the orientation or luminance of the grating.
During attend-luminance scans, participants discriminated the direction (clockwise or anti-
clockwise) of brief and unpredictable perturbations in stimulus orientation. During attend-
luminance scans, participants discriminated the direction (brighter or dimmer) of brief and
unpredictable perturbations in stimulus luminance.
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image matrix, 90° flip angle, 2000 ms repetition time, 30 ms echo time).
EPIs were slice-time corrected, motion corrected (within and between
scans), high-pass filtered (3 cycles/scan, including linear trend removal), and
aligned to a T1-weighted anatomical scan (1 � 1 � 1 mm resolution) col-
lected during the same scanning session. Preprocessed EPIs were trans-
formed to Talairach space. Finally, the entire time series of each voxel in
retinotopically organized visual areas V1, V2v, V3v, and hV4v (see below,
Retinotopic mapping) and searchlight neighborhood (see below, Searchlight
analysis) was normalized (z-score) on a scan-by-scan basis.

fMRI eye tracking. Continuous eye-position data were recorded for seven
participants via an MR-compatible ASL 6000 infrared eye-tracking system
and digitized at 60 Hz. The eyetracker was calibrated at the beginning of each
scan session and recalibrated as needed (e.g., following a loss of the corneal
reflection; this typically occurred 0–1 times per scan session). Recordings
were filtered for blinks and corrected for linear drift off-line.

Retinotopic mapping. Each participant completed a single retinotopic
mapping scan lasting 480 s. Visual areas V1, V2v, V3v, and hV4v were
identified using standard procedures (Sereno et al., 1995). Participants
fixated a small dot at fixation while a phase-reversing (8 Hz) checker-
board wedge subtending 60° of polar angle rotated counterclockwise
around the display (period, 60 s). Visual field borders in areas V1, V2v,
V3v, and hV4v were identified via a cross-correlation analysis. These data
were projected onto a computationally inflated representation of each
participant’s gray–white matter boundary, and visual field borders were
drawn by hand.

Inverted encoding model. We used an inverted encoding model to re-
construct representations of stimulus orientation from multivoxel re-
sponses in ROIs throughout the cortex. This approach rests on the
assumptions that (1) the measured response in a given voxel is a linear
sum of underlying neural activity, and (2) at least some of the voxels
within an ROI exhibit a nonuniform response profile across orientations
(Kamitani and Tong, 2005; Freeman et al., 2011).

We first extracted and averaged the (normalized) responses of each
voxel in each visual area or searchlight neighborhood (see below, Search-
light analysis) over a period from 6 –10 s after the start of each trial. This
specific window was chosen to account for a typical hemodynamic lag of
6 s, but all results reported here generalized across other temporal win-
dows (e.g., 4 –10 s or 4 – 8 s after the start of each trial). Data were aver-
aged across samples and sorted into one of 18 bins based on stimulus
orientation (0 –160° in 20° increments) and task (attend orientation or
attend luminance). We next divided the data into “training” and “test”
sets and modeled the measured responses of each voxel in the training set
as a linear sum of nine orientation “channels,” each with an idealized
response function. Following the terminology of Brouwer and Heeger
(2009) let B1 (m voxels � n trials) be the observed signal in each voxel in
each trial, C1 (k channels � n trials) be a matrix of predicted responses for
each information channel on each trial, and W (m voxels � k channels)
be a weight matrix that characterizes the mapping from “channel space”
to “voxel space.” The relationship between B1, C1, and W can be de-
scribed by a general linear model of the following form (Eq. 1): B1 �
WC1, where C1 is a design matrix that contains the predicted response of
each channel on each trial. Channel responses were modeled as nine
half-wave rectified sinusoids raised to the eighth power and centered at
the orientation of the stimulus on each trial (e.g., 0, 20, 40°, etc.). These
functions were chosen because they approximate the shape of single-unit
orientation tuning functions in V1, where the half-bandwidth of
orientation-selective cells has been estimated to be �20° (though there is
substantial variability in bandwidth; Ringach et al., 2002; Gur et al.,
2005). Moreover, they act as “steerable filters” that support the compu-
tation of channel responses for any possible orientation (Freeman and
Adelson, 1991).

Given B1 and C1, we estimated the weight matrix Ŵ (m voxels � k
channels) using ordinary least-squares regression as follows (Eq. 2):

Ŵ � B1C1
T�C1C1

T	
1

Given these weights and voxel responses observed in an independent
“test” dataset, we inverted the model to transform the observed test
data B2 (m voxels � n trials) into a set of estimated channel responses,
C2 (k channels � n trials), as follows (Eq. 3):

C2 � �ŴT Ŵ	
1ŴTB2

This step transforms the data measured on each trial of the test set from
voxel space back into stimulus space, such that the pattern of channel
responses is a representation of the stimulus presented on each trial. The
estimated channel responses on each trial were then circularly shifted to
a common center (0°, by convention) and averaged across trials. To
generate the smooth, 180-point functions shown, we repeated the encod-
ing model analysis 19 times and shifted the centers of the orientation
channels by 1° on each iteration.

Critically, different participants completed different numbers of attend-
orientation and attend-luminance scans. We therefore implemented a cross-
validation routine where B1 always contained data from an equal number of
attend-orientation and attend-luminance scans. This ensured that the train-
ing set was unbiased and that the data used to estimate the weight matrix Ŵ
(B1) and channel response matrix C2 (B2) were completely independent.
Data from the remaining attend-orientation and attend-luminance scans
were designated as the test dataset. This procedure was repeated until all

Table 1. Searchlight ROIsa

X Y Z N Size (voxels) p

LH iIPS 
25 (�0.76) 
74 (�0.75) 31 (�0.72) 18 635 (�31) 0.058
RH iIPS 28 (�0.64) 
73 (�0.83) 34 (�0.99) 18 736 (�37) �1e-04
LH sIPS 
23 (�0.84) 
61 (�0.79) 47 (�0.53) 18 666 (�49) 0.004
RH sIPS 24 (�0.86) 
49 (�0.89) 51 (�0.43) 18 721 (�43) 0.013
LH iPCS 
40 (�0.73) 5 (�0.53) 42 (�0.72) 18 518 (�31) 0.008
RH iPCS 45 (�0.76) 4 (�0.96) 30 (�0.64) 17 300 (�30) �1e-04
LH sPCS 
25 (�0.41) 
3 (�1.37) 56 (�0.53) 18 566 (�37) 0.028
RH sPCS 25 (�0.73) 
3 (�1.53) 56 (�0.60) 18 416 (�39) 0.120
LH Cing 
7 (�1.52) 
2 (�0.48) 37 (�1.04) 18 396 (�117) 0.043
RH Cing 5 (�0.10) 3 (�0.56) 37 (�0.76) 18 337 (�21) 0.043
RH IPL 44 (�0.57) 
44 (�0.92) 44 (�0.48) 18 385 (�23) 0.008
RH IT 35 (�0.32) 2 (�0.80) 
28 (�0.48) 18 140 (�10) 0.168
aX, Y, and Z are averaged (�1 SEM) Talairach coordinates across participants. N refers to the number of participants
for whom a given ROI could be unambiguously identified. Size refers to the number of voxels (�1 SEM) present in
each ROI. p corresponds to the proportion of bootstrap permutations where reconstruction amplitudes were �0
(FDR corrected); thus a p value �0 indicates that a given ROI contained a reliable representation of stimulus
orientation. Cing, Cingulate gyrus; iIPS, inferior intraparietal sulcus; iPCS, inferior precentral sulcus; IPL, inferior
parietal lobule; IT, inferior temporal cortex; LH, left hemisphere; RH, right hemisphere; sIPS, superior intraparietal
sulcus; sPCS, superior precentral sulcus.

Table 2. Frontoparietal ROIs supporting above-chance decoding of task set
(attend-orientation vs attend-luminance)a

X Y Z Size (voxels) p

LH iIPS 
23 
77 28 914 0.145
LH sIPS 
24 
57 47 833 0.010
LH IPL 
57 
26 36 842 0.025
LH SPL 
33 
37 58 550 0.033
LH iPCS 
45 
8 47 527 0.026
LH sPCS 
21 
12 61 687 0.064
LH IT 
39 
21 
24 646 0.774
LH OFC 
22 27 
13 376 0.623
LH lPFC 
47 11 30 352 0.145
RH iIPS 26 
73 34 895 �1e-04
RH sIPS 28 
36 60 981 0.003
RH IPL 48 
20 48 534 0.327
RH SPL 28 
36 60 518 0.534
RH iPCS 50 
1 37 658 0.033
RH sPCS 24 
12 59 494 0.067
RH IT 42 1 
28 314 0.222
RH OFC 23 31 
14 358 0.129
RH vlPFC 47 31 10 1092 0.033
RH dlPFC 13 30 48 461 0.338
aX, Y, and Z are Talairach coordinates. We computed a reconstructed representation of stimulus orientation using
multivoxel activation patterns measured in each ROI during attend-orientation scans. p refers to the proportion of
10,000 bootstrap permutations where the amplitude of the reconstructed representation was �0 (FDR corrected).
dlPFC, Dorsolateral prefrontal cortex; IPL, inferior parietal lobule; iIPS, inferior intraparietal sulcus; IT, inferior tem-
poral cortex; LH, left hemisphere; lPFC, lateral prefrontal cortex; OFC, orbitofrontal cortex; RH, right hemisphere;
sIPS, superior intraparietal sulcus; SPL, superior parietal lobule; vlPFC, ventrolateral prefrontal cortex.
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unique combinations of equal numbers of attend-orientation and attend-
luminance scans were included in the training set, and reconstructions were
averaged across permutations.

Searchlight analyses. The primary goal of this experiment was to examine
whether frontoparietal regions typically implicated in top-down control en-
code representations of stimulus orientation and, if so, whether representa-
tions encoded by these regions are modulated by feature-based attention. To
address these questions, we implemented two separate “searchlight” analyses
(Kriegeskorte et al., 2006; Serences and Boynton, 2007; Ester et al., 2015) that
allowed us to reconstruct and quantify representations of stimulus orienta-
tion across the entirety of the cortex. For both analyses, we defined a spherical
neighborhood with a radius of 12 mm around each gray matter voxel in the
cortical sheet. We next extracted and averaged the normalized response of
each voxel within each neighborhood over a period spanning 6–10 s follow-
ing the start of each trial. This specific window was chosen to account for a
typical hemodynamic lag of 4–6 s, but all results reported here generalized
across multiple temporal windows (e.g., 4–8 or 4–10 s following the start of
each trial). Data within each searchlight neighborhood were sorted into 18
bins based on stimulus orientation (0–160° in 20° increments) and partici-
pants’ task set (i.e., attend orientation vs attend luminance). We made no
assumptions regarding the retinotopic preferences of voxels within each
neighborhood, as many regions outside the occipital cortex have large spatial

receptive fields and do not exhibit clear retino-
topy at the visual eccentricities used in this study
(�7° horizontal and �5° vertical). Thus, data
were combined across stimulus locations (i.e., left
vs right visual field).

Searchlight definition of ROIs representing
stimulus orientation. In the first searchlight
analysis, we used an inverted encoding model
to reconstruct representations of stimulus ori-
entation from multivoxel activation patterns
measured within each searchlight neighbor-
hood (reconstructions were pooled and
averaged across attend-orientation and attend-
luminance scans). Reconstructions within each
searchlight neighborhood were fit with an expo-
nentiated cosine function of the following form
(Eq. 4): f(x) � �(ek [ cos( �
x )
1]) � �.

Here, � and � control the vertical scaling
(i.e., signal over baseline) and baseline of the
function, while k and � control the concentra-
tion (the inverse of dispersion; a larger value
corresponds to a “tighter” function) and center
of the function. No biases in reconstruction
centers were expected or observed, so for con-
venience we fixed � at 0. Fitting was performed
by combining a general linear model with a
grid search procedure. We first defined a range
of plausible k values (from 1 to 30 in 0.1 incre-
ments). For each possible value of k, we gener-
ated a response function using Equation 4 after
setting � to 1 and � to 0. Because trial-by-trial
reconstructions of orientation were shifted to a
common center at 0°, we fixed � at this value.
Next, we generated a design matrix containing
the predicted response function and a constant
term (i.e., a vector of ones) and used ordinary
least-squares regression to obtain estimates of
� and � (defined by the regression coefficient
for the response function and constant term,
respectively). We then selected the combina-
tion of k, �, and � that minimized the sum of
squared errors between the observed and pre-
dicted reconstructions.

We next identified searchlight neighborhoods
containing a robust representation of stimulus
orientation using a leave-one-participant-out
cross-validation procedure (Esterman et al.,
2010). The 18 participants were identified as DA,

DB, DC, etc. through to DR. For each participant (e.g., DA), we randomly
selected (with replacement) and averaged amplitude estimates from each
neighborhood from each of the remaining 17 participants (e.g., DB–DR).
This procedure was repeated 1000 times, yielding a set of 1000 amplitude
estimates for each neighborhood. We then generated a statistical parametric
map (SPM) for the held-out participant (DA) that indexed neighborhoods
with amplitude estimates that were �0 on 99% of all permutations [false-
discovery-rate (FDR) corrected for multiple comparisons]. Finally, we pro-
jected each participant’s SPM—which was generated using data from the
remaining 17 participants—onto a computationally inflated representation
of his or her gray–white matter boundary and used BrainVoyager’s “Create
POIs from Map Clusters” function with an area threshold of 25 mm2 to
identify ROIs containing a robust representation of stimulus orientation
(i.e., amplitude, �0). Clusters located in the same general anatomical area
were combined to create a single ROI. Because of differences in cortical
folding patterns, some ROIs could not be unambiguously identified in all 18
participants. Therefore, across participants, we retained all ROIs shared by at
least 17 of 18 participants (Table 1).

In a subsequent analysis, we extracted multivoxel activation patterns
from each searchlight-defined ROI and computed reconstructions of
stimulus orientation during attend-orientation and attend-luminance

Figure 2. Representations of stimulus orientation in retinotopically organized visual cortex. Data have been averaged across
visual areas V1, V2v, V3v, and hV4v and sorted by location relative to the stimulus on each trial (contralateral vs ipsilateral; A and
B, respectively). Shaded areas are �1 within-participant SEM.

Figure 3. Searchlight-defined ROIs encoding stimulus orientation. A leave-one-participant-out cross-validation scheme was
used to generate an SPM of searchlight neighborhoods containing a robust representation of stimulus orientation for each partic-
ipant ( p � 0.01, FDR corrected for multiple comparisons; see Materials and Methods, Searchlight definition of ROIs representing
stimulus orientation). Here, the SPMs for a representative participant (DM) have been projected onto a computationally inflated
representation of his or her cortical sheet. For exposition, neighborhoods containing a robust representation of orientation have
been assigned a value of 1 while neighborhoods that did not have been zeroed out. Across participants, robust representations of
stimulus orientation were present in a broad network of visual, parietal, and frontal cortical areas (Table 1).
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scans using the inverted encoding model approach described above.
Note that each participant’s ROIs were defined using data from the re-
maining 17 participants; this ensured that participant-level reconstruc-
tions of orientation computed from data within each ROI remained
statistically independent of the reconstruction used to define these ROIs
in the first place (Kriegeskorte et al., 2009; Vul et al., 2009; Esterman et al.,
2010). We first identified all ROIs that contained a robust representation
of stimulus orientation during attend-orientation scans (we restricted
our analyses to attend-orientation scans to maximize sensitivity; as
shown in Figs. 4 and 6, many ROIs contained a robust representation of
orientation only when this feature was relevant). Specifically, for each
participant searchlight ROI we computed a reconstruction of stimulus
orientation using data from attend-orientation scans. Within each ROI,
we randomly selected (with replacement) and averaged reconstructions
across our 18 participants. This step was repeated 10,000 times, yielding
10,000 unique stimulus reconstructions. We then estimated the ampli-
tude of each reconstruction and computed the proportion of permuta-
tions where an amplitude estimate �0 was obtained (FDR corrected
across ROIs).

For each ROI containing a robust representation of stimulus ori-
entation during attend-orientation runs (defined as p � 0.05, cor-
rected), we also computed reconstructions of stimulus orientation
using data from attend-luminance scans. We then compared recon-
structions across attend-orientation and attend-luminance scans us-
ing a permutation test. Specifically, for each ROI we randomly
selected (with replacement) and averaged attend-orientation and
attend-luminance reconstructions from our 18 participants. Each av-
eraged reconstruction was fit with the exponentiated cosine function
described by Equation 4, yielding a single amplitude, baseline, and
concentration estimate for attend-orientation and attend-luminance
reconstructions. This procedure was repeated 10,000 times, yielding
10,000 element vectors of parameter estimates for each task. Finally,
we compared parameter estimates across tasks by computing the pro-
portion of permutations where a larger amplitude, baseline, or
higher-concentration estimate was observed during attend-
luminance scans relative to attend-orientation scans ( p � 0.05, FDR
corrected across ROIs; Fig. 4). No reliable differences in reconstruc-
tion concentrations were observed in any of the ROIs we examined;
thus we focus on amplitude and baseline estimates throughout this
manuscript.

Searchlight definition of task-selective ROIs. Although the searchlight
analysis described in the preceding section allowed us to identify ROIs
encoding a robust representation of stimulus orientation throughout the
cortex, it did not allow us to establish whether these ROIs were engaged in
top-down control. We therefore conducted a second (independent)
searchlight analysis where we trained a linear classifier to decode the
participants’ task set (i.e., attend-orientation vs attend-luminance) from
multivoxel activation patterns measured within each searchlight neigh-
borhood. This approach rests on the assumption that ROIs engaged in
top-down control (1) should encode a representation of what feature
participants are asked to attend and (2) can be used to identify neural
sources of cognitive control, as has been demonstrated in several previ-
ous studies (Esterman et al., 2009; Liu et al., 2011; Riggall and Postle,
2012).

We trained a linear support vector machine (SVM; LIBSVM imple-
mentation; Chang and Lin, 2011) to discriminate between attend-
orientation and attend-luminance scans based on multivoxel
activation patterns measured in searchlight neighborhoods centered
on every gray matter voxel in the cortical sheet. Note that the question
of whether a given ROI contains task-selective information is orthog-
onal to the question of whether the same ROI contains orientation-
selective information. Specifically, the dataset used to train the SVM
always contained data from an equal number of attend-orientation
and attend-luminance scans, and each attend-orientation and attend-
luminance scan contained an equal number of trials for each possible
stimulus orientation and location. Finally, data from each voxel in the
attend-orientation and attend-luminance scans were independently
z-scored (on a scan-by-scan basis) before being assigned to training or
test datasets; this ensured that the overall response of each voxel

Figure 4. Reconstructed representations of orientation in frontoparietal cortex are
modulated by task relevance. Each panel plots reconstructed representations of stimulus
orientation measured during attend-orientation and attend-luminance scans in
searchlight-defined ROIs that contained a robust representation of orientation (Table 1).
The p value in each panel corresponds to the proportion of bootstrap permutations where
amplitude estimates were reliably higher during attend-luminance relative to attend-
orientation scans (FDR corrected for multiple comparisons); thus, a p value �0.05 indi-
cates that amplitude estimates were reliably larger during attend-orientation scans
relative to attend-luminance scans. Shaded regions are �1 within-participant SEM. Cing,
Cingulate gyrus; iIPS, inferior intraparietal sulcus; iPCS, inferior precentral sulcus; IPL,
inferior parietal lobule; LH, left hemisphere; RH, right hemisphere; sIPS, superior intrapa-
rietal sulcus.
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during each task had the same mean and SD. The trained SVM was
used to predict participants’ task set (i.e., attend-orientation vs
attend-luminance) on each trial of the test set. To generate a single
estimate of classifier performance for each searchlight neighborhood,
we computed the proportion of test trials for which the trained SVM
accurately predicted the participant’s task.

This procedure was repeated until all unique combinations of equal
numbers of attend-orientation and attend-luminance scans had been
combined in the training set, and the results were averaged across per-
mutations. To find ROIs containing a representation of participants’ task
set, we randomly selected (with replacement) and averaged decoding
accuracies from each searchlight neighborhood across all 18 participants.
This procedure was repeated 1000 times, yielding a set of 1000 decoding
accuracy estimates for each neighborhood. We then generated an SPM
marking neighborhoods where participant-averaged classifier perfor-
mance exceeded chance-level decoding performance (50%) on 99% of
permutations (FDR corrected for multiple comparisons). This SPM was
used to identify a set of candidate ROIs that encoded task set (again via
BrainVoyager’s “Create POIs from Map Clusters” function with a cluster
threshold 25 mm 2; Table 2).

Although this procedure reveals ROIs that support reliable above-
chance decoding performance, it does not reveal which factor(s) are
responsible for robust decoding. For example, above-chance decod-
ing could be driven by unique patterns of activity associated with
participants’ task set (i.e., attend-orientation or attend-luminance)
or unique patterns of activity associated with some other factor (e.g.,
the spatial location of the stimulus on each trial). In the current study,
all relevant experimental conditions (stimulus location and orienta-
tion) were fully crossed within each scan, and the dataset used to train
the classifier always contained data from an equal number of attend-
orientation and attend-luminance scans. It is therefore unlikely that
robust decoding performance was driven by a factor other than par-
ticipants’ task set. Nevertheless, to provide a stronger test of this
hypothesis, we extracted multivoxel activation patterns from each
ROI that supported robust decoding. For each participant and ROI,
we computed a null distribution of 1000 decoding accuracies after
randomly shuffling the task condition labels in the training dataset.
This procedure eliminates any dependence between multivoxel acti-
vation patterns and task condition labels and allowed us to estimate
an upper bound on decoding performance that could be achieved by
other experimental factors or fortuitous noise. For each ROI and
participant, we computed the 99th percentile of this null distribution.
Finally, for each ROI we compared averaged observed decoding per-

formance (obtained without shuffling) with
averaged decoding performance at the 99th
percentile across participants. Empirically
observed decoding accuracies exceeded this
criterion in all 19 ROIs we examined, con-
firming that these regions do indeed support
robust decoding of participants’ task set.

Multivoxel activation patterns from each
task-selective ROI were used to reconstruct
representations of stimulus orientation
during attend-orientation and attend-
luminance scans using the same method de-
scribed above. Note that this analysis does
not constitute “double dipping,” as (1) the
classifier was trained to discriminate be-
tween task sets regardless of stimulus
orientation, (2) an equal number of attend-
orientation and attend-luminance scans
were used to train the classifier, and (3) data
from attend-orientation and attend-
luminance scans were independently
z-scored before training, thereby ensuring
that decoding performance could not be at-
tributed to overall differences in response
amplitudes or variability across tasks.

Results
Reconstructions of stimulus orientation in retinotopically
organized visual cortex
Multiple single-unit (McAdams and Maunsell, 1999; Treue and
Martinez-Trujillo, 1999) and human neuroimaging (Saenz et al.,
2002; Serences and Boynton, 2007; Scolari et al., 2012) studies
have documented feature-based attentional modulations in
retinotopically organized subregions of the visual cortex. We
therefore began by examining whether and how feature-based
attention modulated representations of orientation in these ar-
eas. Reconstructed representations from retinotopically orga-
nized visual areas are plotted as a function of visual area and task
(attend orientation vs luminance) in Figure 2. Reconstructions
have been averaged over visual areas V1, V2v, V3v, and hV4v as
similar results were obtained when each region was examined
separately. Next, we estimated the amplitude, baseline, and con-
centration of each participant’s reconstructions and compared
these values across attend-orientation and attend-luminance
scans using permutation tests (see Materials and Methods, Quan-
tification and comparison of reconstructed representations). Re-
construction amplitudes were reliably higher in contralateral
visual areas during attend-orientation scans relative to attend-
luminance scans (p � 0.039). Conversely, amplitude estimates
did not differ across tasks in ipsilateral visual areas (p � 0.183).
No differences in reconstruction baseline or concentration esti-
mates were observed in either contralateral or ipsilateral ROIs.

Reconstructions of stimulus orientation in searchlight-defined
orientation-selective ROIs
We combined a roving searchlight with an inverted encoding
model to identify ROIs encoding stimulus orientation through-
out the cortical sheet (see Materials and Methods, Searchlight
definition of ROIs representing stimulus orientation). Across
participants, robust representations of stimulus orientation were
observed in a broad network of occipital, parietal, and frontal
cortical areas, including the bilateral occipital cortex, the medial
and superior parietal cortex, the superior precentral sulcus, and
the dorsolateral prefrontal cortex (Fig. 3; Table 1). Next, we ex-

Figure 5. Searchlight-defined ROIs encoding task set. We combined a roving searchlight analysis with an SVM to identify
cortical regions representing participants’ task set (i.e., attend orientation vs attend luminance; p � 0.01, FDR corrected for
multiple comparisons). Here, the resulting map has been projected onto a computationally inflated image of a representative
participant’s brain (DM). For exposition, searchlight neighborhoods containing a robust representation of orientation have been
assigned a value of 1 while neighborhoods that did not have been zeroed out. From this map, we manually defined a set of 19
frontal, parietal, and inferior temporal ROIs that encoded task set (Table 2).
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amined whether (and how) representations of stimulus orienta-
tion were modulated by task goals (i.e., attend-orientation vs
attend-luminance). To do so, we extracted multivoxel activation
patterns from ROIs containing a robust representation of
stimulus orientation (Table 1) and generated separate recon-
structions of stimulus orientation for attend-orientation and
attend-luminance scans. These are shown in Figure 4. Recon-
struction amplitudes were reliably larger during attend-orien-
tation scans relative to attend-luminance scans in the left inferior
and superior precentral sulcus (iPCS and sPCS, respectively;
sPCS is thought to contain the human homolog of the macaque
frontal eye fields; Fig. 4) and the right inferior parietal lobule
(IPL), with similar trends present in right inferior and superior
precentral sulcus. Additionally, reconstruction baselines were re-
liably higher during attend-luminance scans relative to attend-
orientation scans in left iPCS and right IPL (both FDR-corrected
p values �1e-04). Finally, attention had no effect on reconstruc-
tion concentration estimates (where a larger value corresponds to
a “tighter” reconstruction) in any of the regions we examined (all
FDR-corrected p values �0.60). These results indicate that
feature-specific representations encoded by cortical areas typi-
cally regarded as “sources” of top-down control are also modu-
lated by attention.

Representations of orientation in “task-selective” ROIs
Although many of the searchlight-defined frontoparietal ROIs
discussed in the preceding section have been previously impli-
cated in cognitive control (Koechlin et al., 2003; Bressler et al.,
2008; Esterman et al., 2009; Bichot et al., 2015; Marshall et al.,
2015), it is unclear what role(s) they serve in the current experi-
ment. Based on earlier work (Esterman et al., 2009; Liu et al.,
2011; Liu, 2016; Riggall and Postle, 2012), we reasoned that re-
gions engaged in top-down control over visual selection would
contain a representation of what task participants were instructed
to perform, i.e., attend orientation vs. attend luminance. To this
end, we trained a linear SVM to discriminate what task partici-
pants were instructed to perform (i.e., attend-orientation vs
attend-luminance) from multivoxel activation patterns mea-
sured in searchlight neighborhoods centered on each gray matter
voxel in the cortical sheet (see Materials and Methods, Search-
light definition of task-selective ROIs). As shown in Figure 5,
task-selective signals were present in a broad network of bilateral
visual, parietal, inferior temporal, superior precentral, and lateral
prefrontal cortical regions. Here, we focus on ROIs located in the
frontal and parietal cortex as the searchlight-based stimulus re-
construction approach described in the preceding section failed
to identify any ROIs in the temporal cortex that were shared by a
majority of participants. A complete summary of these ROIs is
available in Table 2.

Reconstructions computed from each task-selective ROI con-
taining a robust representation of stimulus orientation during
attend-orientation scans (Table 2) are plotted as a function of
task (attend-orientation vs attend-luminance) in Figure 6. Direct
comparisons between reconstruction parameters within each
ROI revealed higher-amplitude reconstructions during attend-
orientation scans relative to attend-luminance scans in several
areas, including the left inferior parietal lobule, the bilateral infe-
rior precentral sulcus, the right superior intraparietal sulcus, and
the right ventromedial prefrontal cortex (Fig. 6). Similar trends
were observed in the left superior intraparietal sulcus and the left
superior parietal lobule (p � 0.10). Reconstruction baseline es-
timates were reliably larger during attend-luminance scans rela-
tive to attend-orientation scans in the right inferior precentral

sulcus and the right ventrolateral prefrontal cortex (p � 1e-04
and p � 0.006, respectively; p values for all other regions �0.17).
Task had no effect on reconstruction concentrations in any of the
regions shown in Figure 6 (all p values �0.74). These results
dovetail with the results of the searchlight-based reconstruction
analysis described above, and thus provide converging evidence
that representations of stimulus orientation in several— but not
all—ROIs implicated in top-down control over visual selection
were systematically modulated by task set.

Figure 6. Attentional modulations in task-selective frontoparietal ROIs. Each panel plots
reconstructed representations of stimulus orientation from searchlight-defined ROIs containing
a robust representation of participants’ task set (i.e., attend orientation or attend luminance;
see Fig. 5 and Table 2). The p value in each panel corresponds to the proportion of bootstrap
permutations where amplitude estimates were reliably higher during attend-luminance rela-
tive to attend-orientation scans (FDR corrected for multiple comparisons); thus, a p value
�0.05 indicates that amplitude estimates were reliably larger during attend-orientation scans
relative to attend-luminance scans. Shaded regions are �1 within-participant SEM. iIPS, Infe-
rior intraparietal sulcus; iPCS, inferior precentral sulcus; IPL, inferior parietal lobule; LH, left
hemisphere; RH, right hemisphere; sIPS, superior intraparietal sulcus; SPL, superior parietal
lobule; vlPFC, ventrolateral prefrontal cortex.
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Categorical versus continuous representations of orientation
It is well known that portions of the parietal and prefrontal cortex
encode categorical information (Freedman et al., 2001). Al-
though the smooth reconstructions shown in Figure 4 are nom-
inally consistent with a continuous or analog representation,
recall that they were generated using a basis set of nine overlap-
ping sinusoids. This overlap ensures the responses of neighboring
points along each curve are correlated, and will confer smooth-
ness to the reconstructions even if the underlying feature repre-
sentation is categorical or discrete. We therefore recomputed
reconstructions of stimulus orientation measured during attend-
orientation scans using a basis set containing nine orthogonal
Kronecker delta functions, where each function was centered on
one of the nine possible stimulus orientations (i.e., 0 –160°; Sap-
roo and Serences, 2014; Ester et al., 2015). The resulting recon-
structions are plotted for visual (compare Figs. 2, 7), searchlight
amplitude (compare Figs. 4, 8), and task-selective (compare Figs.
6, 9) ROIs. We reasoned that if representations of stimulus ori-
entation are categorical, then reconstructed representations
should exhibit a sharp peak at the stimulus’ orientation and a
uniformly small response to all other orientations. To examine
this possibility, we randomly selected (with replacement) and
averaged participant-level reconstructions from ROIs containing
a robust representation of stimulus orientation (p � 0.05; Tables
1, 2). We then subtracted the average responses of orientation
channels located three and four steps away from the target orien-
tation (i.e., �60° and �80°) from the averaged responses of ori-
entation channels adjacent to the target (i.e., �20° and �40°),
yielding an estimate of reconstruction slope. This procedure was
repeated 10,000 times, yielding a distribution of reconstruction
slopes for each ROI. Slope estimates for many visual and task-
selective ROIs were reliably �0, consistent with a continuous
rather than discrete or categorical representation (Figs. 7, 9). We
were unable to reconstruct robust representations of stimulus
orientation in many searchlight amplitude ROIs (Fig. 8). Slope
estimates in each of these regions were indistinguishable from 0
(all p values �0.40).

Eye-tracking control analysis
To assess compliance with fixation instructions, we recorded
continuous eye-position data for seven participants. We identi-
fied all stable fixations (defined as a 200 ms epoch during which

eye position did not deviate �0.25°) that occurred outside of a
0.5° centered on fixation during the course of each 10 s trial. We
then compared the endpoints, polar angles, and polar distances
of these fixations as a function of stimulus location (i.e., left or
right visual field) and stimulus orientation (repeated-measures
ANOVA with stimulus location and stimulus orientation as
within-participant factors). We observed no main effects or in-

Figure 7. Continuous versus categorical representations in visual cortical ROIs. To examine
whether the orientation-selective representations plotted in Figure 2 are continuous, we re-
computed reconstructions of stimulus orientation from activation patterns measured in con-
tralateral and ipsilateral visual areas during attend-orientation scans using a basis set of
nonoverlapping delta functions. If the representation encoded by a given ROI is discrete or
categorical, then the reconstructed representation computed using this approach should ex-
hibit a sharp peak at the target orientation. We therefore computed the slope of the recon-
structed representation in each ROI (see text for details). A p value � 0.05 indicates a positive
slope and is consistent with a continuous rather than categorical or discrete representation.
Shaded regions are �1 within-participant SEM. *p � 0.05 and ^p � 0.10, FDR corrected for
multiple comparisons across ROIs.

Figure 8. Continuous versus categorical representations in searchlight amplitude ROIs.
Compare with attend-orientation reconstructions in Figure 4. Conventions are in Figure 7. We
were unable to reconstruct a representation of stimulus orientation in many ROIs. Shaded
regions are �1 within-participant SEM *p � 0.05 and ^p � 0.10, FDR corrected for multiple
comparisons across ROIs.
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teractions between these factors on either saccade endpoints or
saccade vectors (all FDR-corrected p values �0.27). We also di-
rectly compared stimulus reconstructions across participants
from whom eye-position data were (N � 7) or were not (N � 11)
collected in each ROI that contained a robust representation of
stimulus orientation (Figs. 2, 4, 6). Specifically, for each ROI we
randomly selected (with replacement) and averaged seven
attend-orientation reconstructions from the seven participants
who underwent eye tracking while in the scanner and 7 of the 11
participants who did not. We then estimated and compared re-
construction amplitudes across these groups. This procedure was
repeated 10,000 times, yielding a 10,000 element vector of group
amplitude differences for each ROI. Finally, we estimated an em-
pirical (FDR corrected) p value for amplitude differences within
each ROI by computing proportion of permutations where the
amplitude difference was �0. A p value �0.025 indicates that
reconstruction amplitudes were reliably smaller in the group of
participants who underwent eye tracking, while a p value �0.975

indicates the converse (two-tailed). With few exceptions (the
right IPS and left sPCS ROIs defined using the searchlight-based
reconstruction procedure; Table 3) were well within these
boundaries. Thus, the reconstructions shown in Figures 2, 4, and
6 cannot be explained by eye movements.

Discussion
Here, we used an inverted encoding model and a roving search-
light analysis to reconstruct and quantify representations of ori-
entation from population-level activity across the entire human
cortical sheet. We observed robust, continuous representa-
tions of orientation in a multitude of visual, parietal, and frontal
cortical areas. Moreover, orientation-selective representations in
many of these areas were enhanced during attend-orientation
relative to attend-luminance scans. Collectively, our results
suggest several frontoparietal cortical regions—long thought to
provide the source of attentional control signals— encode con-
tinuous representations of sensory information, and that the rep-
resentations encoded by many (but not all) of these areas are
modulated by attention.

In a recent study, we reported that multiple frontoparietal
cortical areas encode precise, analog representations of orienta-
tion during a visual working memory task (Ester et al., 2015). The
current study builds upon these findings in several important
ways. In our earlier study, we post-cued participants to remem-
ber one of two lateralized gratings over a brief delay interval and
found representations of the cued, but not the uncued, grating in
multiple regions of posterior sensory and frontoparietal cortical
areas. In the current study, participants were instructed to attend
either the orientation or luminance of a lateralized grating. Ac-
cording to “object-based” models of attention, selecting one fea-
ture of an object enhances cortical representations of that feature,

Figure 9. Continuous versus categorical representations in task-selective ROIs. Compare
with attend-orientation reconstructions in Figure 6. Conventions are in Figures 7 and 8. Shaded
regions are �1 within-participant SEM. *p � 0.05 and ^p � 0.10, FDR corrected for multiple
comparisons across ROIs.

Table 3. Eye-movement control analysesa

Nontracked �–tracked �

Visual cortex (Fig. 2)
Contralateral 0.946
Ipsilateral 0.841

Searchlight ROIs representing orientation (Table 1; Fig. 4)
RH iIPS 0.030
LH sIPS 0.114
RH sIPS 0.310
LH iPCS 0.106
RH iPCS 0.225
LH sPCS 0.036
LH Cing 0.059
RH Cing 0.225
RH IPL 0.567

Searchlight ROIs representing task set (Table 2; Fig. 6)
LH sIPS 0.125
LH IPL 0.195
LH SPL 0.165
LH iPCS 0.165
RH iIPS 0.125
RH sIPS 0.165
RH iPCS 0.125
RH vlPFC 0.125

aFor each ROI shown in Figures 2, 4, and 6, we computed, modeled, estimated, and compared the amplitudes of
reconstructed representations measured during attend-orientation scans across participants who did versus those
who did not undergo eye-tracking while in the scanner. Nontracked �–tracked � corresponds to the proportion of
10,000 bootstrap permutations where reconstruction amplitudes in each ROI were larger for participants who were
not tracked relative to those who were (FDR corrected). No group-level differences in reconstruction amplitudes
were observed in any of these ROIs, suggesting that the attentional modulations shown in Figures 2, 4, and 6 cannot
be attributed to different eye-movement strategies. Cing, Cingulate gyrus; IPL, inferior parietal lobule; iIPS, inferior
intraparietal sulcus; iPCS, inferior precentral sulcus; LH, left hemisphere; RH, right hemisphere; sIPS, superior intra-
parietal sulcus; sPCS, superior precentral sulcus; SPL, superior parietal lobule; vlPFC, ventrolateral prefrontal cortex.
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along with all other features of the same object (Duncan, 1984;
Egly et al., 1994; Roelfsema et al., 1998; O’Craven et al., 1999).
However, we found stronger representations of orientation dur-
ing attend-orientation scans relative to attend-luminance scans
in multiple posterior sensory and frontoparietal cortical areas.
This finding dovetails with other reports suggesting that feature-
based attention can selectively enhance representations of
task-relevant features without enhancing representations of task-
relevant features that are part of the same object (Serences et al.,
2009; Xu, 2010; Jehee et al., 2011), and demonstrates that feature-
based attentional modulations are distributed across the visual
processing hierarchy, including regions typically associated with
attentional control rather than sensory processing.

Traditionally, “sources” and “targets” of attentional control
signals have been distinguished on the basis of univariate re-
sponse properties (e.g., averaged single-unit/population spike
rates or averaged fMRI activation). For example, individual neu-
rons in many frontoparietal cortical areas regarded as sources of
attentional control signals often exhibit selectivity for multiple
task-level variables (e.g., which of multiple stimuli should be at-
tended or what motor outputs are appropriate given the current
context) but not sensory variables or feature properties. Con-
versely, neurons in posterior sensory cortical areas regarded as
targets of attentional control signals exhibit strong selectivity for
specific feature properties, but not other task-level variables. In
the current study, we show that parametric sensory information
is encoded within multivariate activation patterns in posterior
sensory and frontoparietal cortical areas (Mante et al., 2013; Rig-
otti et al., 2013; Raposo et al., 2014; Ester et al., 2015), suggesting
that sources and targets of attentional control signals cannot be
fully dissociated on the basis of their representational properties.

Sources and targets of attentional control signals can also be
distinguished by examining functional interactions between cor-
tical areas. For example, several studies have reported that
feature-based attentional modulations observed in posterior sen-
sory cortical areas lag similar modulations observed in frontopa-
rietal cortical areas by several dozen milliseconds (Buschman and
Miller, 2007; Zhou and Desimone, 2011; Siegel et al., 2015). Oth-
ers have reported direct links between activity in frontoparietal
cortical areas and feature-based attentional modulations in pos-
terior sensory areas. In one example, Baldauf and Desimone
(2014) reported increased gamma band synchrony between pos-
terior sensory areas and the IFJ during an object-based attention
task. Critically, gamma phases were advanced in the IFJ relative to
posterior sensory areas, suggesting that this region was the driver
of changes in synchrony. In a second example, Bichot et al. (2015)
showed that neurons in the ventral prearcuate (VPA) region of
the prefrontal cortex exhibited feature selectivity during a visual
search task. Feature-selective signals in this region emerged be-
fore feature-selective signals in the frontal eye fields (FEFs) or
inferotemporal cortex, and transient deactivation of VPA abol-
ished feature selectivity in the FEF. Thus, while our findings argue
against a clear divide between source and target based on repre-
sentational properties, the timing and order of neural activity in
different regions may still point to a broad distinction between
these two aspects of attentional function.

Single-unit recording studies suggest that feature-based atten-
tional modulations in visual areas V4 and MT are well described
by a feature-similarity gain model, where attention increases the
gain of neurons preferring the attended orientation and decreases
the gain of neurons preferring orthogonal orientation (Treue and
Martinez-Trujillo, 1999; Martinez-Trujillo and Treue, 2004).
These gain changes, in turn, lead to a decrease in the bandwidth of

population-level feature representations. In the current study, we
found that reconstructions of stimulus orientation had a larger
amplitude during attend-orientation scans relative to attend-
luminance scans, but no differences in bandwidth. This likely
reflects important differences between the displays used here and
those used in other studies. For example, Martinez-Trujillo and
Treue (2004) recorded from cells retinotopically mapped to the
location of a task-irrelevant stimulus located in the visual hemi-
field opposite the target. The critical finding was that the re-
sponses of these neurons were contingent on the similarity
between the features of this task-irrelevant stimulus and the tar-
get in the opposite hemifield. Thus, when the features of the
target and task-relevant stimulus matched, responses to the task-
irrelevant stimulus increased. Conversely, when the features of
the target and task-irrelevant stimulus did not match, responses
to the latter were suppressed. In the current study, we presented a
single grating in the upper left or right visual field, with no stimuli
in the opposite hemifield. Thus, there was never a task-irrelevant
sensory signal that needed to be enhanced or suppressed. We
speculate that feature-similarity gain modulations (i.e., an in-
crease in the responses of orientation channels preferring the
stimulus’ orientation coupled with a decrease in the responses of
orientation channels preferring the orthogonal orientation)
would manifest if a task-irrelevant distractor was present in the
visual hemifield opposite the target.

Many influential models of visual processing postulate func-
tionally and anatomically segregated “top-down control” and
sensory processing areas, with perception ultimately dependent
on the coordination of signals originating in these areas. Here, we
show that several frontoparietal cortical regions typically associ-
ated with top-down attentional control encode parametric rep-
resentations of sensory stimuli similar to those observed in
posterior sensory cortical areas. Moreover, we show that these
representations are modulated by task demands in many (though
not all) frontoparietal cortical areas. These findings are inconsis-
tent with classic models of selective attention and cognitive con-
trol that postulate segregated attentional control and sensory
processing networks. However, they are readily accommodated
by generative (e.g., predictive coding; Friston, 2008) or dynamic
inference models where sensory signals are passed between hier-
archically organized cortical systems to compute a probabilistic
representation of the external environment. In these models, at-
tention optimizes the process of perceptual inference by reducing
uncertainty about the likely state of the world. At the level of
single neurons or local cortical circuits, this process can be
achieved by selectively increasing the gain of neurons carrying the
most information about a stimulus (Feldman and Friston, 2010).
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