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Abstract

Background: Transition to psychosis is among the most adverse outcomes of the clinical high­

risk (CHR) syndromes encompassing ultra-high-risk (UHR) and basic symptoms states. Clinical 

risk calculators may facilitate an early and individualized interception of psychosis, but their 

real-world implementation requires thorough validation across diverse risk populations, including 

young patients with depressive syndromes.

Methods: We validated the previously described NAPLS-2 calculator in 334 patients (26 with 

psychosis transition) with CHR or recent-onset depression (ROD) drawn from the multisite 

European PRONIA study. Patients were categorized into three risk enrichment levels, ranging 

from UHR, over CHR, to a broad risk population comprising CHR or ROD patients (CHR|

ROD). We assessed how risk enrichment and different predictive algorithms influenced prognostic 

performance using reciprocal external validation.

Results: After calibration, the NAPLS-2 model predicted psychosis with a balanced accuracy 

[BAC(sensitivity,specificity)] of 68%(73%,63%) in the PRONIA-UHR, 67%(74%,60%) in CHR, 

and 70%(73%,66%) in CHR|ROD patients. Multiple model derivation in PRONIA-CHR|ROD 

and validation in NAPLS-2-UHR patients confirmed that broader risk definitions produced 

more accurate risk calculators [CHR|ROD-based vs. UHR-based performance: 67%(68%,66%) 

vs. 58%(61%,56%)]. Support-vector machines (SVM) were superior in CHR|ROD (BAC=71%), 

while ridge logistic regression and SVM performed similarly in CHR (BAC=67%) and UHR 

cohorts (BAC=65%). Attenuated psychotic symptoms predicted psychosis across risk levels, while 

younger age and reduced processing speed became increasingly relevant for broader risk cohorts.

Conclusions: Clinical-neurocognitive machine-learning models operating in young patients 

with affective and CHR syndromes facilitate a more precise and generalizable prediction of 

psychosis. Future studies should investigate their therapeutic utility in large-scale clinical trials.

Keywords

Clinical high-risk states; First-episode depression; Psychosis prediction; Risk calculators; 
Reciprocal external validation; Machine learning

INTRODUCTION

Over the last 30 years, diverse research criteria emerged around the globe that defined 

the clinical high-risk (CHR) states for psychosis based on the ultra-high risk (UHR) or 

basic symptoms concepts (1–5). The purpose of these criteria has been to detect young 

persons with an increased risk for psychotic disorders, to study potential disease-modifying 

treatments in these persons and, ultimately to implement this application of preventive 

psychiatry in clinical care (6). Previous research showed that CHR ascertainment identifies 
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vulnerable help-seeking populations with a substantially increased incidence for psychosis 

(7,8). Yet, their observed three-year transition risk steadily dropped from 36% to currently 

22% as more sites adopted early recognition activities following the UHR concept (9). 

Hence, due to its modest prognostic value and dependency on sufficiently risk-enriched 

populations (10), the clinical utility and scalability of this CHR paradigm have been 

questioned (11).

Therefore, previous studies have proposed to augment the actual two-tier risk enrichment 

process—patient referral followed by CHR assessment—using algorithms that accurately 

measure psychosis risk in the individual patient (7,12–19). These studies demonstrated 

that individualized risk quantification could be achieved using Cox regression or machine 

learning models trained to estimate patients’ likelihood of illness transition based on 

sociodemographic, clinical, neurocognitive, neurophysiological, neuroimaging, metabolic 

or genetic information. If these stratification models could operate across different 

risk-enriched cohorts and healthcare environments (20–25) a more personalized clinical 

management of vulnerable persons could be implemented: practitioners could flexibly tailor 

specific disease-interceptive strategies and combine them with treatments that target the 

array of psychiatric comorbidities and functional impairments present in these patients (26).

However, this vision is challenged by the unknown generalizability of most risk calculators 

which have not been vetted using cross-validation, let alone external validation (27,28). 

Exceptions are the clinical-neurocognitive models developed for UHR patients by the 

SHARP (18) and NAPLS-2 studies (16). The NAPLS-2 risk calculator predicted illness 

transition with sensitivity=66% and specificity=72% at a 20% two-year estimated risk cut­

off. It has been validated in single-site UHR cohorts from the US (29,30) (sensitivity=58–

71%, specificity=73–77%) and Shanghai (sensitivity=71.7%, specificity=45.8%) (31). 

Due to these varying sensitivity-specificity tradeoffs, the model’s generalizability and 

calibration should be further tested across healthcare systems and at the international scale. 

Furthermore, attenuated or brief limited intermittent psychotic symptoms—key predictors in 

the NAPLS-2 model—may not mark the only pathway to psychosis (7,17,32–35). Thus, 

more diverse risk cohorts, including young persons with basic symptoms or affective 

disorders, as recently proposed by transdiagnostic studies of psychosis risk, are needed to 

test model generalizability (17,34,36,37). Finally, for clinical implementation, the NAPLS-2 

Cox regression model should be compared with newer machine learning algorithms to 

identify the optimal predictive strategy for designated risk criteria.

By probing and further developing the NAPLS-2 risk calculator, we examined these 

intertwined challenges of individualized psychosis prediction, i.e., measuring model 

generalizability conditional to sociodemographic and clinical differences between model 

derivation and application cohorts, diverse levels of risk for subsequent psychosis 

development, and different algorithmic strategies for risk calculator development. To this 

end, we used the multisite European PRONIA study (www.pronia.eu) which recruited a 

diverse risk population, encompassing young people with CHR states according to UHR 

or basic symptoms criteria, or recent-onset depression (ROD) without CHR criteria (38). 

Originally, ROD patients were enrolled as a clinical comparison group in PRONIA because 

of the high prevalence of depression in psychosis risk syndromes (39–41) and previous 
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findings of shared neurobiology between depression and psychosis (42,43). Then, recently, 

we observed that 20% of the ROD patients developed psychosis-related outcomes during 

follow-up, either de-novo CHR states, or full psychosis (37). Hence, by including these 

patients into the current analysis, we aimed to evaluate how the three distinct levels of risk 

captured by the PRONIA design (Table 1)—ranging from UHR patients to more diverse risk 

samples encompassing patients with UHR, basic symptoms or ROD criteria—moderated 

algorithms’ performance. After testing the NAPLS-2 model across these three risk levels, 

we employed reciprocal external validation and leave-site-out cross-validation to benchmark 

Cox regression, machine learning and combined algorithms (Supplementary Table 4) to 

enhance prognostic accuracy and model generalizability at each risk enrichment level.

METHODS AND MATERIALS

Participants

Nine-hundred-thirty participants (110 [11.8%] with psychosis transition) were drawn from 

the NAPLS-2 (44) and PRONIA databases (38). NAPLS-2 is an 8-site observational study 

examining the predictors and mechanisms related to psychosis transition in clinically 

defined at-risk populations. NAPLS-2 participants met CHR criteria based on UHR 

syndromes as determined by the Structured Interview for Psychosis-risk Syndromes (SIPS; 

Table 1). PRONIA (www.pronia.eu) is an observational study across 7 sites in 5 European 

countries aiming to develop personalized prognostic tools for affective and non-affective 

psychoses (37,38). PRONIA participants experienced (a) CHR syndromes based on UHR 

and/or cognitive basic symptoms criteria (COGDIS) (2,3), or (b) recent-onset depression 

(ROD). ROD patients met criteria for an initial major depressive episode within 3 months of 

intake as determined by the Structured Clinical Interview for DSM-IV-TR (SCID) (45).

HARMONY validation framework

A framework for external validation between NAPLS-2 and PRONIA was established by 

the Harmonization of At Risk Multisite Observational Networks for Youth (HARMONY) 

collaboration, which also includes the PSYSCAN consortium (http://psyscan.eu/) and 

the Philadelphia Neurodevelopmental Cohort (PNC). This framework facilitates the 

development and validation of prognostic/predictive models across independent datasets at 

the international scale. All analyses were performed using the Virtual Pooling and Analysis 

of Research Data (ViPAR) portal (46). This web-based platform utilizes a centralized cloud 

server to retrieve anonymized data securely and temporarily from remote servers. Once 

analyses are complete, results can be accessed by the user and the data are removed from 

server’s random-access memory. The use of ViPAR was approved by the ethics committees 

of the 15 study sites across NAPLS-2 and PRONIA.

External validation of the NAPLS-2 risk calculator

We followed the external validation guidelines by Royston and Altman (47) and first 

assessed the baseline group-level differences in sociodemographic, clinical, and functional 

variables between psychosis transition and non-transition patients in NAPLS-2 and PRONIA 

(Table 2 and Supplementary Table 2). Then, we evaluated the effect of consortium-level 

differences in transition criteria on diagnostic outcomes: In PRONIA, a transition event 

Koutsouleris et al. Page 5

Biol Psychiatry. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pronia.eu/
http://psyscan.eu/


was determined by ≥1 of the 5 SIPS positive symptom items reaching psychotic intensity 

daily for ≥7 days. SCID-based diagnoses were assessed at the follow-up visit after transition 

and corroborated in the ensuing visits. NAPLS-2 used the standard SIPS transition criteria 

(48), with diagnoses being evaluated at the time of transition. We assessed the impact 

of these differences on diagnostic outcomes by comparing distributions of schizophrenia­

spectrum, affective and other psychoses between NAPLS-2 and PRONIA (Supplementary 

Table 1). Then, we assessed follow-up and transition intervals (Table 2, Supplementary 

Table 2) and conducted a Kaplan-Meier analysis to compare the transition dynamics 

between PRONIA-UHR, PRONIA-CHR and NAPLS-2 cohorts (Figure 1). Finally, we used 

the PRONIA-CHR|ROD sample to assess the risk calculator’s capacity to generalize to a 

broader, transdiagnostic risk population encompassing patients with basic symptoms and 

depressive syndromes (17,49,50).

The original NAPLS-2 risk calculator was developed with 8 preselected variables (16). Of 

these, 6 were also available in PRONIA: age; severity of the SIPS positive items ‘unusual 

thought content’ (P1) and ‘suspiciousness’ (P2); score on the Brief Assessment of Cognition 

in Schizophrenia (BACS) symbol coding test (51); score on the Hopkins Verbal Learning 

Test-Revised (HVLT-R) (52); decline in social functioning over the past year as measured by 

the Global Functioning Scale: Social (GFS) (53); and family history of psychotic disorders 

in a first-degree relative. The missing variables ‘number of types of trauma endorsed’ and 

‘undesirable life events score’ were non-significant psychosis predictors in NAPLS-2 (16) 

and have not been regularly included in validation studies (31) or recent work (54,55).

In NAPLS-2, the 6-variable risk calculator performed with sensitivity=55%, 

specificity=79%, and balanced accuracy (BAC)=67% at an 0.2 estimated risk cutoff 

(BAC=68.5% in the 8-variable model). We used the Cox regression coefficients of these 

6 variables to compute risk estimates for the PRONIA patients (Figure 2A). Before applying 

these coefficients to PRONIA-CHR|ROD (n=334), CHR (n =167) or UHR cohorts (n=126), 

we imputed missing values (26 [1.3%] out of 2004) using a standardized Euclidean distance­

based nearest-neighbor approach. Due to differences in related sample characteristics 

(Table 2; Supplementary Table 2), we evaluated a consortium-level calibration procedure. 

Specifically, we mean-centered each PRONIA predictor to the respective NAPLS-2 variable 

by computing the difference of means between variables and subtracting this difference 

from the respective PRONIA predictor. This procedure mitigated mean differences while 

preserving within-sample variance used by the regression model to determine transition 

(Supplementary Table 2 and Supplementary Figure 1; i.e., calibration globally increased the 

SIPS-P1P2 scores and reduced HVLT, DSST scores and age of PRONIA patients). Then, we 

re-applied the risk calculator to the adjusted PRONIA data to recompute risk estimates and 

prognostic group assignments for the CHR|ROD, CHR, and UHR patients (Figure 2B). This 

procedure was repeated by using the PRONIA-UHR sample as reference for data calibration 

(Figure 2C) to determine the level of diagnostic specificity required for calibration. The 

performance of the NAPLS-2 model was measured in terms of sensitivity, specificity, 

balanced accuracy (BAC), positive and negative likelihood ratios, and area-under-the curve 

(Table 3). These metrics were also computed per PRONIA site (Supplementary Table 3). 

Finally, we evaluated the distribution and calibration of the model’s estimates in the three 

PRONIA samples (Supplementary Figures 2 and 3). Model calibration was measured using 
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the Expected Calibration Error (ECE) which is the weighted average difference between 

the fraction of correctly predicted outcomes and predicted probabilities across the binned 

probability range (56).

Machine learning analyses

We integrated our machine learning software NeuroMiner (version 1.05; http://

proniapredictors.eu/neurominer/index.html) into ViPAR to evaluate the interactions between 

different prognostic algorithms and the three risk enrichment levels. To improve the 

calibration of Cox Proportional Hazards (Cox-PH) regression to the different risk levels in 

NAPLS-2 and PRONIA, we extended NeuroMiner with an adaptive Cox-PH algorithm that 

identifies an optimal risk estimate cutoff for prediction based on the test cases’ distribution 

of risk estimates. Thus, the algorithm learns to calibrate itself to risk samples with divergent 

absolute risks distributions. Due to the unbalanced transition and non-transition samples, 

we also tested whether combining this algorithm with an adaptive synthetic up-sampling 

method for the transition minority class would improve prediction. To this end, we employed 

the Adaptive Synthetic (ADASYN) algorithm (57) which creates a weighted distribution of 

psychosis transition samples according to their difficulty of being correctly predicted and 

then produces a larger number of synthetic samples in the neighborhood of difficult-to-learn 

patients. We used ADASYN with pre-defined parameters β=0.7, kSMOTE=5, and kdensity=11, 

which respectively determine desired class balance, number of nearest neighbors used to 

create artificial samples for the minority class, and number of nearest neighbors irrespective 

of class membership.

We compared these Cox-PH algorithms with different forms of logistic regression and 

support vector machines (SVM), which are commonly used for predictive modelling 

(27) (Supplementary Table 4). Additionally, we tested whether meta-learning algorithms 

based on stacked generalization (58) outperformed single prediction strategies by optimally 

combining single algorithms’ predictions (Supplementary Figure 4). The methods used 

for training, validating and comparing these algorithms are detailed in the Supplementary 

Material.

RESULTS

Group-level differences between samples

Eighty-four out of 596 NAPLS-2-UHR participants developed psychosis during follow-up 

(transition rate: 14.1%). In PRONIA, the transdiagnostic transition rate was significantly 

lower: 26 (22 UHR, 1 CHR and 3 ROD) out of 334 participants (167 CHR and 167 

ROD) developed psychosis (transition rate: 7.8%; χ(1)2=4.83, P=.028). However, neither 

did CHR- or UHR-specific transition rates differed between PRONIA and NAPLS-2 (CHR: 

23 out of 167 [13.8%,] χ(1)2=0.25, P=.621; UHR: 22 out of 127 [17.3%], χ(1)2=2.32, 

P=.128) nor did transition dynamics distinguish both cohorts (Figure 1). The PRONIA 

and NAPLS-2 cohorts differed on almost all examined sociodemographic, clinical, and 

neurocognitive baseline variables, including the NAPLS-2 risk calculator features, as well as 

in the follow-up intervals (Table 2, Supplementary Table 1). Specifically, PRONIA patients 

were more than 5 years older, had more years of education, were more likely to be female 
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in the transition group, and less likely to be of non-white ethnicity. PRONIA patients 

scored significantly lower on the SIPS-P1P2 summary item. In the BACS symbol coding 

and HVLT tests, the PRONIA transition cases scored between the NAPLS-2 transition and 

non-transition patients. Furthermore, comorbid DSM-IV diagnoses differed between both 

cohorts, with PRONIA patients showing a higher prevalence of psychiatric multi-morbidity 

and respective differences between transition and non-transition groups (Table 2). Besides 

more prevalent major depression due to the inclusion of ROD patients, the PRONIA samples 

had a higher frequency of other affective diagnoses and eating disorders, while the NAPLS-2 

cohort showed an increased prevalence of substance abuse and anxiety disorders. Baseline 

psychometric depression scores did not differ between transition and non-transition groups 

in either cohort (Table 2). Finally, diagnostic outcomes of transition cases did not differ 

between PRONIA and NAPLS-2 (Supplementary Table 1).

External validation of the NAPLS-2 model in the PRONIA study

In the unadjusted PRONIA-CHR|ROD, CHR, and UHR samples, the performance of 

the NAPLS-2 model as determined by the original 0.2 cutoff in predicted risk ranged 

below the levels reported in the original publication due to unbalanced sensitivity­

specificity relationships (BAC=58.4%−63.9%, sensitivity=38.5%−45.5%, specificity=71.4%

−89.3%, Table 3 and Figure 2A). The mean-centering of the PRONIA variables to the 

NAPLS-2 data significantly increased performance across all PRONIA samples, with the 

broadest risk definition being associated with the highest prognostic accuracy (CHR|ROD: 

BAC=69.7%, sensitivity=73.1%, specificity=66.2%; CHR: BAC=67.1%, sensitivity=73.9%, 

specificity=60.3%; UHR: BAC=67.8%, sensitivity=72.7%, specificity=62.9%; Table 3 

and Figure 2B). When the PRONIA-UHR group served as reference sample for offset 

removal, the NAPLS-2 model performed best in the CHR|ROD sample (BAC=73.3%, 

sensitivity=61.5%, specificity=85.1%) followed by CHR (BAC=70.2%, sensitivity=69.6%, 

specificity=70.9%) and UHR samples (BAC=67.8%, sensitivity=72.7%, specificity=62.9%; 

Table 3 and Figure 2C). The sensitivity-specificity relationships of the latter calibration 

approach were less balanced in the CHR|ROD and CHR samples than those of the former 

approach.

Reciprocal external validation analyses

The reciprocal model discovery and validation of 9 different algorithms replicated the 

prognostic accuracy gains seen in the CHR|ROD and CHR cohorts during the external 

validation of the NAPLS-2 model (Supplementary Table 5, Supplementary Figure 4). 

This effect was particularly apparent when the NAPLS-2 UHR sample served as 

external validation cohort (Figure 3A): When algorithms were derived from PRONIA­

CHR|ROD patients, their average performance measured BAC=67.8% (sensitivity=69.6%, 

specificity=65.9%). Among these, the two stacking models achieved the highest BAC 

(69.2%−69.8%). In contrast, algorithms performed at BAC=57.1% (sensitivity=45.0%, 

specificity=69.4%) when trained on PRONIA-UHR patients, with the linear SVM producing 

the highest BAC (65.1%). Classifier comparisons confirmed these observations by showing 

that (1) algorithm derivation including PRONIA-CHR|ROD outperformed more confined 

risk enrichment levels (BACCHR|ROD=68.4%; BACCHR=64.9%; BACUHR=58.7%), and (2) 

machine learning models based on SVM or ridge logistic regression were superior to other 
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approaches (Supplementary Figure 4). When derived from NAPLS-2 and tested in the three 

PRONIA samples, ridge logistic regression produced a mean [SD] BAC of 70.4% [2.0%], 

outperforming the other strategies, including the NAPLS-2 risk calculator (mean [SD] 

BAC=68.2% [1.3%]; Figure 3B). The supplementary leave-site-out analysis corroborated 

these findings by showing that mean cross-site prognostic performances increased from 

UHR to CHR and CHR|ROD (Supplementary Table 9, Supplementary Figure 6).

The adaptive Cox-PH model showed better calibration compared to the NAPLS-2 risk 

calculator (Supplementary Figure 3A vs. 3D): the lowest ECE was observed when the 

model was trained on the PRONIA-CHR|ROD sample and tested in NAPLS-2 (ECE=0.04; 

Supplementary Figure 3C). The event-per-variable simulation analysis performed for 

Cox-PH, ridge logistic regression and linear-kernel SVM in the CHR|ROD sample 

demonstrated that algorithms largely generated stable external validation performances 

(Supplementary Figure 5). Finally, non-regularized logistic regression produced inferior 

models (Supplementary Figure 4).

Predictive feature relevance, as measured across 6 linear algorithms and the three risk 

enrichment levels (Supplementary Figure 4C) was highest for ridge logistic regression and 

linear-kernel SVM and lowest for the Cox-PH and linear SVM models. Particularly, for the 

former two algorithms, the broadening of risk from UHR to CHR|ROD patients increased 

the predictive value of younger age, a positive family history for psychosis, decline in global 

functioning, more pronounced attenuated psychotic symptoms, and lower performance 

in the BACS digital symbol test. Across the three risk levels, SVM or ridge logistic 

regression models showed a higher relevance compared to Cox-PH or non-regularized 

logistic regression when integrated using stacked generalization (Supplementary Figure 7).

DISCUSSION

The external validation of prognostic models has been identified as bottleneck, yet 

mandatory translational step for their clinical implementation (59). In this regard, a 

standardized framework for model comparison between independent projects may mitigate 

multiple sources of bias caused by the idiosyncrasies of study purposes, patient recruitment 

strategies and predictive model designs (60). To our knowledge, HARMONY is the first 

initiative to set up such a secure international forum for collaborative model discovery and 

validation in early recognition research.

HARMONY allowed us to test the generalizability and prognostic value of the NAPLS-2 

psychosis risk signature (16) both at the international scale and across diverse risk 

samples provided by the European PRONIA project (38). We encountered significant 

consortium-level differences, which were likely fueled by systematic variation in participant 

referral, ascertainment, enrolment, and retainment, resulting in two cohorts that differed 

on sociodemographic, clinical parameters, treatments, and psychiatric comorbidities. A key 

observation was that these differences reduced the generalizability of the NAPLS-2 risk 

calculator but could be overcome by a simple data calibration procedure that replicated the 

derivation sample performance of the NAPLS-2 model (BAC=67%) in the corresponding 

PRONIA-UHR sample (BAC=68%). Importantly, we found evidence that calibration 
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facilitated generalizability of the risk calculator beyond its original UHR scope, i.e., to 

risk samples that included patients with basic symptoms (BAC=67%) and even extended to 

patients with a first lifetime episode of major depression (BAC=70%; Figure 1B). Further 

BAC increases of +3.6% (CHR|ROD) or +3.1 (CHR) could be achieved in these broader 

risk samples by calibrating based on mean differences between UHR patients instead of 

adjusting for the mean differences between the NAPLS-2 UHR patients and respective 

target risk samples (Figure 1C). However, these increases came at the cost of lower 

prognostic sensitivity (Table 3) and would result in transition cases being undetected. In 

this regard, our recent work indicated that prognostic models with high sensitivity would be 

preferable because they complement the high prognostic specificity of clinical raters, leading 

potentially to more accurate predictions in the clinical setting (37).

Based on the observation of project-level differences between NAPLS-2 and PRONIA and 

related literature on population-specific model re-calibration strategies (61), we developed 

a new Cox-PH algorithm which uses an optimal relative risk cut-off compared to the 

absolute risk threshold (ER=0.2) of the original model (16). The algorithm’s precision and 

calibration performed well across the risk enrichment levels of the PRONIA sample (CHR|

ROD: BAC=70%, ECE=13%; CHR: BAC=70%, ECE=9%; UHR: BAC=66%, ECE=8%). 

This finding is highly relevant for model implementation because target populations will 

inevitably differ in their absolute risk levels, as encountered in the NAPLS-2 sample 

(optimal estimated risk cut-off for transition prediction: ER=0.267) compared with the 

PRONIA-UHR cohort (ER=0.184).

An important caveat for the clinical implementation of these adaptive Cox-PH models 

should be considered: they require that youth mental health services have access to 

calibration data that represent their given help-seeking population. The following solution 

may facilitate model deployment to clinical sites without these legacy data: a public 

library of risk populations with algorithm-specific estimated risk distributions would be 

established through international collaboration. When new sites implement a risk prediction 

model from the library, they can extract the estimated risk distribution of the ‘template 

population’ that most closely approximates the sociodemographic and clinical characteristics 

of their (expected) target population. Then, following the principles of online machine 

learning (62), risk estimates generated during the clinical application of the model could 

be used to continuously update the template distribution, thus increasingly replacing the 

template with the optimal target risk distribution. Further improvements could be achieved 

by developing pre-test risk decomposition methods that analyze the sociodemographic and 

clinical parameters of the given risk person and inform the adaptive Cox-PH model of the 

most appropriate risk distribution (63,64). Such methods would also address the limitation of 

mean centering, which requires a reference target sample for calibration.

However, our analyses also showed that the NAPLS-2 risk calculator could be further 

enhanced by replacing the underlying methodology with linear-kernel SVM (CHR|ROD, 

CHR) or ridge logistic regression (UHR). The analysis of feature relevance indicated 

that these regularized algorithms yielded more complex, yet stable clinical-neurocognitive 

patterns, while the Cox-PH methods put less emphasis on neurocognitive information. 

Higher pattern complexity may have facilitated increased prognostic accuracy in the CHR|
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ROD and CHR cohorts. Interestingly however, the use of kernelized SVM for predicting 

psychosis in UHR patients induced a drastic loss of sensitivity in the reciprocal external 

validation (Supplementary Figure 4). This indicates that kernel projections might have 

amplified residual between-consortia differences, and thus compounded the challenge of 

delineating the UHR minority class with a transition to psychosis (22 [17.3%]) from the 

majority of UHR patients, who did not develop psychosis but also did not recover from the 

risk syndrome (68 out of 105 [64.8%]). On the other hand, in the leave-site-out analyses 

we found that kernelized and stacking algorithms outperformed Cox-PH methods in terms 

of modestly higher prognostic performance (4–5% BAC) and lower cross-site variability 

(−5.3% to −7.4% BAC; Supplementary Table 9). These modest gains are expected because 

the analyzed risk space spanned just 6 variables, pre-selected among many other potential 

sociodemographic, clinical, behavioral and neurocognitive predictors through a decade-long 

literature-driven and expert-based process (9,16,65,66). Still, the observed performance 

differences may considerably impact on the success of model-informed early intervention 

strategies targeting at-risk populations at the international scale, and they may further 

increase in high dimensional data, when no a priori knowledge about variable relevance 

exists (36).

Strikingly, the present study showed that model derivation from a heterogeneous help­

seeking population comprising CHR states or recent-onset depression, leads to more precise 

and generalizable outputs. Of note, higher prognostic performance was not driven by the 

‘easy’ prediction of non-transition in depressed patients, but by increased sensitivity for true 

transition events. This finding provides an independent replication of our recent work in 

the currently largest UHR sample provided by NAPLS-2 (37). These results also align with 

previous studies (17,34), suggesting that psychosis risk is not confined to UHR states but 

gradually increases from ‘neighboring’ affective conditions which typically co-occur with 

these syndromes, over cognitive basic symptoms to attenuated and brief limited intermittent 

psychosis. This finding may also point to an increased representational power of CHR|ROD­

trained models due to the extension of the risk spectrum towards lower-risk individuals 

with early-onset affective disorders, who may share bio-behavioral features of psychosis 

(43,67–70). Because depressive and negative symptoms overlap (e.g., anhedonia or blunted 

affect), the results may alternatively suggest an unrecognized negative-symptom risk state 

or high-risk group within depression—although other research would suggest that risk will 

be generalized across help-seeking populations (17,49). Therefore, future studies should 

investigate whether this enrichment effect is specific to affective disorders or includes other 

conditions which evolve in adolescence and young adulthood (71,72).

In summary, we found that the NAPLS-2-derived risk pattern may generate internationally 

scalable, machine learning-based tools for psychosis risk ascertainment in youth with 

diverse psychosis risk syndromes. The clinical application scope of this risk signature 

extended beyond the prevailing UHR-focused concepts of the current early recognition 

literature. This may have important consequences for the implementation of precision 

medicine tools in the youth mental health field, potentially facilitating more targeted 

and accessible preventive strategies in the near future (73). The HARMONY initiative 

provided a useful resource for integrated model discovery and validation at the highest 

level of validity achievable with retrospective data. Future studies should compare the 
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generalizability of different clinical-neurocognitive risk signatures, their clinical utility for 

treatment stratification and the potential value of dynamic and biological information for 

further improving individualized predictions (37,74,75). Importantly, additional layers of 

biological data may not only increase prognostic accuracy, but also models’ sensitivity 

to systematic covariate shifts between high-risk populations. Therefore, in-depth model 

validation based on international collaboration is pivotal to study these effects in greater 

detail and engineer sophisticated solutions (76) towards a more precise early detection and 

prevention of psychosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Kaplan-Meier analysis of cumulative non-transition rates (survival curves) between the 

PRONIA-UHR (upper chart) and PRONIA-CHR (lower chart) risk enrichment cohort (blue 

curves) and the NAPLS-2 sample (red curve). Log-rank tests were performed to test survival 

curves for statistical differences. Statistical significance was determined at α=0.05.
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Figure 2. 
NAPLS-2 risk calculator estimates for the 2-year transition risk in patients who developed 

(red) or did not develop psychosis (blue) in three different risk cohorts of PRONIA (CHR|

ROD: Sample comprising both CHR and ROD patients, CHR: Sample consisting only of 

CHR patients, UHR: Sample consisting only of patients fulfilling UHR criteria). Predictor 

variables were either not adjusted for mean differences to the NAPLS-2 data (A), adjusted 

using the respective PRONIA sample (B), or adjusted using the PRONIA-UHR sample as 

reference group (C).
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Figure 3. 
PRONIA risk enrichment effects on psychosis prediction in the NAPLS-2 cohort and 

algorithm effects on the balanced accuracy of psychosis prediction in the PRONIA risk 

enrichment samples. A: Balanced accuracy of the 9 different prognostic algorithms in the 

NAPLS-2 cohort as a function of the PRONIA risk enrichment level used to train these 

algorithms. B: Differences in balanced accuracy as a function of type of algorithm applied 

to the three different PRONIA samples. The NAPLS-2 model with mean-centering to each 

PRONIA target sample was included in the comparisons. Additionally, means and standard 

errors were depicted for both A and B.
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Table 1.

Definition of the three risk enrichment levels (UHR, CHR, and CHR|ROD).

Risk 
enrichment 
levels

Represented in Definition

UHR PRONIA and 
NAPLS-2

Meeting Criteria of Prodromal States (COPS) based on the Structured Interview for Psychosis-risk 
Syndromes (SIPS) which defines three risk groups: (a) Attenuated Psychotic Symptoms, (b) Brief 
limited intermittent psychotic symptoms, (c) Genetic-risk functional deterioration syndrome

CHR PRONIA Meeting criteria for the UHR enrichment level
OR
Meeting Criteria for the COGnitive DISturbances (COGDIS) pattern based on the Schizophrenia 
Proneness Instrument for Adults (SPI-A) or Children and Youth (SPI-CY)

CHR|ROD PRONIA Meeting criteria for the CHR enrichment level
Or
Meeting Criteria for Recent-Onset Depression based on the Structured Clinical Interview for DSM­
IV-TR and the following items: (a) First life-time depressive episode, and (b) duration of current 
depressive episode no longer than 24 months, and (c) diagnostic criteria fulfilled within past three 
months.
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Table 2.

Sociodemographic, clinical, and functional differences between non-transition and transition cases in the 

NAPLS-2 and PRONIA samples.

Variable NAPLS-2 PRONIA Wald χ2/t(df) P

Non-transition Transition Non-transition Transition

Age†, mean (SD) 18.6 (4.4) 18.1 (3.6) 24.7 (5.8) 23.5 (5.9) χ2(3) = 352.6 .008

Sex, % Female 43% 38.1% 49.1% 61.5% χ2(3) = 8.8 .033

Race, % non-white 41.8% 44% 13% 7.7% χ2(3) = 76.9 .017

Years of education, mean (SD) 11.3 (2.9) 11.0 (2.5) 14.3 (2.9) 13.3 (2.5) χ2(3) = 228.9 .008

Family history, % no history 84.4% 81% 90.6% 80.8% χ2(3) = 8.7 .042

Baseline positive symptoms (p1+p2), mean 
(SD)

5.9 (2.2) 7.1 (2.3) 2.6 (2.6) 5.5 (2.8) χ2(3) = 466.5 .008

HVLT, mean (SD) 25.8 (5.1) 24.2 (5.5) 28.5 (2.7) 26.5 (3.0) χ2(3) = 93.8 .008

BACS, mean (SD) 57.4 (13.2) 53.2 (11.6) 61.1 (11.8) 55.0 (13.0) χ2(3) = 33.1 .025

Change in GFS, mean (SD) 0.70 (1.0) 0.99 (1.2) 0.75 (0.9) 0.96 (1.1) χ2(3) = 7.6 .054

BDI‡, mean (SD) -- -- 23.9 (10.8) 25.6 (11.8) t(29.3) = −0.7 .45

CDSS, mean (SD) 5.9 (4.6) 5.7 (4.8) -- -- t(110) = 0.3 .73

Treatment with antipsychotics at baseline, 
% treated

17.1% 26.9% 17.2% 38.5% χ2(3) =12.5 .006

Treatment with antidepressants at baseline, 
% treated

28.4% 23.1% 56.8% 50.0% χ2(3) = 80.2 <.001

Follow-up interval [days] (SD) 563.6 (199.3) 216.7 (171.1) 697.5 (293.7) 246.9 (244.5) χ2(3) = 430.5 <.001

SCID-I Diagnosis at study inclusion

Any comorbid affective, substance, anxiety, or eating disorder, No. (%)

No diagnosis 127 (28.2) 16 (20.5) 28 (9.1) 5 (19.2)

χ2(3) = 41.7 <.001
1 diagnosis 168 (37.3) 32 (41.0) 131 (42.5) 5 (19.2)

2 diagnoses 103 (22.8) 19 (24.4) 85 (27.6) 9 (34.6)

3 or more diagnoses 53 (11.7) 11 (14.1) 62 (20.1) 7 (26.9)

Comorbid major depressive disorder, No. (%)

Yes 192 (42.6) 40 (51.3) 251 (81.5) 17 (65.4)
χ2(3) = 137.6 <.001

No 259 (57.4) 38 (48.7) 55 (17.9) 9 (34.6)

Comorbid affective disorders (excluding major depressive disorder), No. (%)

No diagnosis 419 (92.9) 73 (93.6) 200 (64.9) 12 (46.2)

χ2(3) = 140.7 <.0011 diagnosis 32 (7.1) 5 (6.4) 93 (31.8) 14 (53.8)

2 diagnoses 0 (0.0) 0 (0.0) 8 (2.6) 0 (0.0)

Comorbid substance use disorders, No. (%)

No diagnosis 424 (94.0) 70 (89.7) 302 (98.1) 25 (96.2)

χ2(3) = 14.8 .002
1 diagnosis 22 (4.9) 5 (6.4) 3 (1.0) 1 (3.8)

2 diagnoses 5 (1.1) 0 (0.0) 0 (0.0) 0 (0.0)

3 or more diagnoses 0 (0.0) 1 (1.3) 1 (0.3) 0 (0.0)
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Variable NAPLS-2 PRONIA Wald χ2/t(df) P

Non-transition Transition Non-transition Transition

Comorbid anxiety disorders, No. (%)

No diagnosis 237 (52.5) 38 (48.7) 212 (68.8) 17 (65.4)

χ2(3) =11.1 .01
1 diagnosis 157 (34.8) 29 (37.2) 59 (19.2) 7 (26.9)

2 diagnoses 49 (10.9) 9 (11.5) 25 (8.1) 1 (3.8)

3 or more diagnoses 8 (1.8) 2 (2.6) 10 (3.2) 1 (3.8)

Comorbid eating disorders, No. (%)

No diagnosis 444 (98.4) 78 (100.0) 290 (94.2) 24 (92.3)
χ2(3) =14.1 .003

1 or more diagnosis 7 (1.6) 0 (0.0) 16 (5.2) 2 (7.7)
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Table 3.

External validation of the original NAPLS-2 risk calculator in the three PRONIA risk enrichment samples 

(CHR|ROD, CHR, and UHR) with and without prior centering of the predictor variables to the means of 

the respective NAPLS variables. Mean centering parameters were either computed by calculating the mean 

variable differences between the NAPLS-2 and each PRONIA cohort and subtracting them from the respective 

PRONIA sample, or by using the PRONIA UHR group for mean difference derivation and applying these 

parameters to each PRONIA sample.

PRONIA samples TP TN FP FN Sens [%] Spec [%] BAC [%] LR+ LR− AUC

PRONIA data not mean-centered to NAPLS-2

CHR|ROD 10 275 33 16 38.5 89.3 63.9 3.59 0.69 0.64

CHR 10 110 31 13 43.5 78.0 60.7 1.98 0.72 0.61

UHR 10 75 30 12 45.5 71.4 58.4 1.59 0.76 0.58

PRONIA data mean-centered to NAPLS-2 using respective PRONIA sample as reference

CHR|ROD 19 204 104 7 73.1 66.2 69.7 2.16 0.41 0.70

CHR 17 85 56 6 73.9 60.3 67.1 1.86 0.43 0.67

UHR 16 66 39 6 72.7 62.9 67.8 1.96 0.43 0.68

PRONIA data mean-centered to NAPLS-2 using the PRONIA UHR sample as reference

CHR|ROD 16 262 46 10 61.5 85.1 73.3 4.12 0.45 0.73

CHR 16 100 41 7 69.6 70.9 70.2 2.39 0.43 0.70

UHR 16 66 39 6 72.7 62.9 67.8 1.96 0.43 0.68

Abbreviations: TP number of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, Sens 
Sensitivity, Spec Specificity, BAC Balanced Accuracy, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, AUC Area-under-the Curve.
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KEY RESOURCES TABLE

Resource Type
Specific 

Reagent or 
Resource

Source or Reference Identifiers Additional 
Information

Add additional rows as 
needed for each resource 
type

Include 
species and 
sex when 
applicable.

Include name of manufacturer, company, 
repository, individual, or research lab. Include 
PMID or DOI for references; use “this paper” 
if new.

Include catalog 
numbers, stock 
numbers, database 
IDs or accession 
numbers, and/or 
RRIDs. RRIDs are 
highly encouraged; 
search for RRIDs at 
https://scicrunch.org/
resources.

Include any 
additional 
information or 
notes if 
necessary.

Antibody

Bacterial or Viral Strain

Biological Sample

Cell Line

Chemical Compound or 
Drug

Commercial Assay Or Kit

Deposited Data; Public 
Database

Genetic Reagent

Organism/Strain

Peptide, Recombinant 
Protein

Recombinant DNA

Sequence-Based Reagent

Software; Algorithm

Cox Proportional Hazards Regression 
coefficients of the NAPLS-2 risk calculator 
as described in Cannon et al. 2016 
(PMID: 27363508); NeuroMiner Machine 
Learning software (www.proniapredictors.eu/
neurominer/index.html); ViPAR cloud-based 
analysis platform described in Carter et al 
(PMID: 26452388); this paper

Transfected Construct

Other
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