
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Spectrum-Revealing CUR Decomposition

Permalink
https://escholarship.org/uc/item/0vn2n0rb

Author
Ekenta, Onyebuchi

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vn2n0rb
https://escholarship.org
http://www.cdlib.org/

Spectrum-Revealing CUR Decomposition

by

Onyebuchi Ekenta

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ming Gu, Chair
Professor James Demmel
Professor Katherine Yelick

Summer 2022

Spectrum-Revealing CUR Decomposition

Copyright 2022
by

Onyebuchi Ekenta

1

Abstract

Spectrum-Revealing CUR Decomposition

by

Onyebuchi Ekenta

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Ming Gu, Chair

The CUR decomposition is a popular tool for computing a low rank factorization of a matrix
in terms of a small number of columns and rows of the matrix. CUR decompositions are
favored in some use-cases because they have a higher degree of interpretability and are able
to preserve the sparsity of the input matrix. Previous random sampling-based approaches
are able to construct CUR decompositions with relative-error bounds with high probability.
However, these methods are costly to run on practical datasets. We implement a novel
algorithm to compute CUR approximations of sparse matrices. Our method comes with
relative error bounds for matrices with rapidly decaying spectrum and runs in time that is
nearly linear in m and n.

1

Introduction

Data analysis is essential to making scientific progress in the modern world. Scientists often
rely on data collected through massive experiments involving hundreds of sensors or produced
through large simulations to gain insights the structure and behavior of the systems they
study. These datasets can reach enormous sizes. Experiments from the LHC can produce
petabytes worth of data. The ITER project, the world’s largest nuclear fusion project, is
expected to produce two petabytes of data every day by the year 2035. Analyzing such data
sets often necessitates the use of considerable computing resources. Access to and usage of
such computing platforms is a limiting factor for scientific programs conducted across a wide
range of disciplines. Having access to more scalable and efficient procedures for data analysis
provides researchers with greater flexibility by allowing them to analyze their experiments
faster and with more easily accessible computational resources.

Low rank approximation is a common technique in data analysis for reducing the noise
and understanding the relationship between data variables. A common approach to produc-
ing low rank approximations is computing a truncated singular value decomposition. While
this method provides the most accurate approximations, it has drawbacks that make it un-
suitable for certain applications. The resulting singular value vectors will typically be dense
even for sparse input matrices which can result in excessive costs in storage and processing
time. Also, it is sometimes desirable to interpret the singular value vectors as though they
were instances of the data set (e.g. eigengenes for gene-based data). But this interpreta-
tion becomes difficult when using the SVD as the singular value vectors do not conserve
important properties of the matrix such as nonnegativity and sparsity.

The CUR matrix decomposition is an alternative approach that is better suited for han-
dling these issues. CUR decomposition computes a low rank approximation of the form
A ≈ CUR where the matrices C and R consist of columns and rows of A. By approx-
imating the matrix in terms of actual columns and rows it both preserves the sparsity of
the original matrix and allows for the natural interpretation as instances of the data set.
Because of these properties, CUR decompositions have become popular in the data science
community where they have been applied to problems such as feature selection, clustering
and graph mining. [26, 21, 5]

Some random-sampling based methods come with relative-error guarantees [10, 30, 6].
That is to say, with high probability the CUR decomposition will satisfy

∥A−CUR∥2F < (1 + ϵ)∥A−Ak∥2F
where Ak is the optimal rank k approximation. However these methods require computing
sampling O(k/ϵ) columns and rows to achieve their error guarantees which is often impracti-
cal. Some of these methods rely on quantities that are expensive to compute such as singular
value vectors and leverage scores. Computing these quantities for large-scale datasets of in-
terest can require the use of large parallel or distributed platforms. [13]

In this paper we introduce the Spectrum-Revealing CUR decomposition method (SR-
CUR). This algorithm allows for the computation of relative-error CUR decompositions of

2

matrices with a rapidly decaying spectrum. Importantly, for sparse matrices, the algorithm
runs in time that is nearly linear inm and n, making it feasible to compute large factorizations
with modest computing resources. We run experiments verifying the speed and accuracy of
our factorizations. Our code is available on Github [11].

Related Work

CUR decomposition

A CUR decomposition approximates a matrix A ∈ Rm×n as the product of a matrix C ∈
Rm×c consisting of a collection of columns of A, R ∈ Rr×n consisting of a collection of rows
of A and an inner mixing matrix U. The goal is to find a choice of columns and rows which
minimizes the factorization error ∥A−CUR∥ .

A variety of different approaches have been taken to selecting the columns and rows for
the factorization. One approach is to employ deterministic pivoting strategies to make the
selections [25, 7, 17, 3]. Another useful approach is to employ the maximum volume principle,
meaning one seeks to select the columns and rows that maximizes the absolute determinant
of the matrix formed at the intersection of C and R. This principle was employed to develop
a CUR decomposition method known as pseudoskeleton approximation [16, 15, 14]. In [27]
a similar principle known as simplex volume maximization is used.

In [9] the authors propose a linear time CUR decomposition algorithm. A collection of c
columns and r rows are randomly sampled to construct the C and R matrices which are in
turn used to compute U . For a given target rank k, by sampling c = O(log(1/δ)ϵ−4) columns
and r = O(kδ−2ϵ−2) rows the CUR decomposition will satisfy

∥A− CUR∥2 ≤ ∥A− Ak∥2 + ϵ∥A∥2

with probability 1 − δ. Alternatively by sampling c = O(k log(1/δ)ϵ−4) columns and r =
O(kδ−2ϵ−2) rows the above will hold for the Frobenius norm with probability 1− δ.

This method was improved in [10] to yield a relative error factorization method. Here
C and R are randomly sampled and U is set to be the Moore-Penrose pseudoinverse of
their intersection. The sampling probabilities used here depend on the right-singular vectors
of A. In [21] a random-sampling based CUR decomposition method was presented which
employed statistical leverage scores to construct the sample distribution. In [6] and also in
[30] relative-error CUR decompositions running in linear time and requiring O(k/ϵ) row and
column samples are presented.

The RandomizedSVD algorithm introduced in [22, 1] can approximate the singular vec-
tors in O(mn log k) time. In [28, 29] factorization methods were proposed achieving expected
relative error and improved performance compared to existing methods. See [19] for more
information.

3

Rank Revealing Factorizations

Rank-revealing algorithms [7] are low rank matrix approximation algorithms that accurately
capture the rank of a given matrix. One such example is the rank revealing QR factorization.
Given an m× n matrix A this produces a factorization of the form

AP = QR = Q

[
R11 R12

0 R22

]
where Q ∈ Rm×n is orthonormal, R11 ∈ Rk×k, R12 ∈ Rk×n−k and R22 ∈ Rn−k×n−k. The
factorization is called rank-revealing if

σk(A)

p(k, n)
≤ σmin(R11) ≤ σk(A)

σk+1(A) ≤ σmax (R22) ≤ p(k, n)σk+1(A)

where p(k, n) is a low-degree polynomial in k and n. A low rank factorization can be obtained
from RRQR by neglecting R22. The resulting low rank factorization Ã satisfies

∥A− Ã∥2 ≤ p(k, n)σk+1(A)

. A table of achievable values for p(k, n) can be found in [4]. Rank-revealing methods need
not capture the full spectrum of the of the matrix. Mirian and Gu introduced a new low
rank approximation scheme that approximated the full spectrum of the matrix. [23]

Randomized Sketching

Sketching is a technique where a large problem is replaced by a much smaller which can
inform the solution of the original problem. A good example of how randomization can help
improve algorithms in numerical linear algebra can be observed in the problem of linear
regression. Consider an m × n matrix A with n ≪ m. Since the system is overdetermined
the problem Ax = b cannot be solved exactly so we seek to solve the minimization problem
minx ∥Ax − b∥. This problem can be greatly reduced in size by applying a matrix Ω that
is randomly sampled from some distribution to produce the much smaller problem problem
minx ∥ΩAx−Ωb∥. In some cases, solving this smaller system yields an approximate solution
to the original problem.

The sampling matrix Ω can be constructed in a variety of different, the simplest being
forming it out of independent Gaussian distributions. One can also construct sparse linear
maps or maps that have specialized internal structure. [2]

In addition to least-squares problems, randomized techniques have also gained popular-
ity for the problem of low-rank approximation, where certain methods improve upon their
deterministic counterparts. [31, 20, 18].

4

Our Approach

Overview

Given an m× n matrix A our algorithm begins by computing a truncated LU factorization
of the matrix. More precisely, for a choice of rank ℓ, we compute a factorization of the form

PAQ =

(
A11 A12

A21 A22

)
=

(
L11

L21 In−k

)(
U11 U12

S

)

where the submatrixA11 is ℓ×ℓ. The factorizations are computed using the LUSOL software
package [12]. LUSOL provides implementations of threshold complete pivoting (TCP) and
threshold rook pivoting (TRP) pivot strategies which use Markowitz pivoting to maintain
sparsity of the matrix. Either can be used to produce the initial factorization. This LU
decomposition provides us with our initial selection of columns and rows, namely C =(

A11

A21

)
and R =

(
A11 A12

)
. We also retain the Schur complement S which will be

used in the Spectrum-Revealing Pivoting procedure described later.
After the initial factorization the L21 and U12 matrices are discarded and we are left

storing only the factorization A11 = L11U11. Following this, we run the Spectrum-Revealing
Pivoting (SRP) procedure to improve the quality of the factorization. The final CUR de-
composition will be computed with the StableCUR procedure.

Estimating Element with the Largest Magnitude

Computing the maximum entry of a matrix can be expensive if we only have indirect access to
the matrix, such as through a factorization A = BC. We implement a method to estimate
the maximum value in such cases at a reduced cost. We begin by producing a random
matrix sketch via R = ΩA where Ω is a p ×m random matrix whose entries are sampled
independently from the standard normal distribution. EELM then determines the column
of R of maximum norm and returns the maximum element in the corresponding column of
A. When p is small computing the p matrix vector products to compute ΩA can be more
efficient than computing all entries of A.

Using EELM we are able to quickly identify large elements of the Schur complement
which can be used to improve the quality of the factorization. In addition to this, if the
value returned by EELM is small we can bound the error of the factorization with high
probability. The quality of the estimated maximum is given by the following theorem

Theorem 1 For p = Θ(log(n/δ)/ϵ−2) the estimated value x given by Algorithm 1 satisfies

the inequality x ≥
√

1−ε
mn(1+ε)

∥A∥F with probability at least 1− δ.

5

Algorithm 1: Estimating Element with Largest Magnitude (EELM)

Input: A matrix A ∈ Rm×n and its projection R ∈ Rp×n

Output: r, c,m - row index, column index, and value of the largest element
1 c = argmax

i<j<n
∥R(:, j)∥2

2 Compute the c-th column of A
3 r = argmax

i≤j≤m
|A(j, c)|

4 m = A(r, c)

In particular, we only require p = O(log n) to yield good approximations with high
probability. In practice p is set to some reasonable constant (e.g. 20).

Spectrum Revealing Pivoting

In the SRP procedure we identify rows and columns that can be swapped with the rows and
columns chosen during the truncated LU facotorization procedure to improve the quality
of the factorization. We apply the maximum volume principle as a heuristic to judge the
quality of a selection of rows and columns. Thus, we perform a sequence of row and column
swaps with the goal of maximizing | detA11|. Each swap will transform A11 into a new ℓ× ℓ
submatrix A′

11 whose volume is at least a factor f > 1 greater than the volume of A11, where
f is a tolerance parameter. We repeat this process until no appropriate swap can be found.

We determine the swap in two phases. First we extend A11 into a (ℓ+1)× (ℓ+1) matrix
A11 by adding a new row ℓ+ i and column ℓ+ j to the matrix A11, forming a (ℓ+1)× (ℓ+1)
matrix A11. Then we choose a row i′ ∈ {1, . . . , ℓ, ℓ+ i} and column j′ ∈ {1, . . . , ℓ, ℓ+ i} we
wish to remove from A11.

Having identified the relevant rows and columns we swap row ℓ + i with i′ and column
ℓ+ j with column j′, thus transforming A11 into a new ℓ× ℓ matrix A′

11. Note that if either
i′ = ℓ + i or j′ = ℓ + j then the corresponding swap need not be performed. The following
theorem helps guide the selection of the rows and columns.

Theorem 2 Let α = S(i, j) and β = A
−T

11 (i′, j′). Then we have,∣∣∣∣detA′
11

detA11

∣∣∣∣ = |αβ|
.

Thus we have that if |αβ| > f we know the volume of A11 will increase by at least a
factor of f . Ideally, to select the appropriate rows of and columns we’d want to identify the

maximum elements of S and A
−T

11 so as to maximize α and β. However, computing the exact
maximum would be too computationally expensive, so we apply EELM to estimate them.
To do this SRP must keep track of matrix sketches of A−T

11 and S.

6

Algorithm 2: Spectrum Revealing Pivoting

Input: f - tolerance parameter

Ã−T
11 - q × (ℓ+ 1) Sketch of A

−T

11

S̃ - p× n Sketch of Schur Complement
1 while True do

2 (i, j, α)← EELM(S, S̃)

3 Form A11 = A([1 : k, k + i], [1 : k, k + j])

4 (i′, j′, β)← EELM(A−T
11 , Ã−T

11)
5 if |αβ| < f then

6 end
7 Swap rows k + i and i′ and columns k + j and j′ and update the LU

factorization.

8 Update S̃

9 Recompute random sketch Ã−T
11

10 end

After identifying the swap to be performed the LU factorization and the matrix sketches
must be updated to reflect the swap. This means we must update the LU factorization of

A11 and the matrix sketches of S and A
−T

11 . The row and column swaps can be implemented

with LUSOL’s column replacement and row replacement routines. Since A
−T

11 is small it is
cheap to simply recompute a new random projection each step. For the Schur complement
we iteratively update the projection at each step. Let Ω be the random p ×m − ℓ matrix
used to compute the projection of S. In each iteration we compute the projection of the new
Schur complement ΩS′ as an update to the previous projection ΩS. Details are provided in
the next section.

Updating Sketched Schur Complement

Rank One Update In the cases where only a single swap is performed the swap corre-
sponds to a rank one update of the matrix. That is we have that

A′ = A+ vwT

for the appropriate choice of v and w. For example if we are swapping columns j1 and
j2 then v = A(:, j2)−A(:, j1) and w = ej1 − ej2 where ek is the k-th standard basis vector
of Rn. The following theorem allows us describe the update to the Schur complement when
the matrix goes under a rank one update.

Theorem 3 Let B = A + vwT . We partition B, v and w according to the partion for A.
Let S′ = B22 −B21B

−1
11 B12. Then we have S′ = S+ E where

7

E =
1

d
v̂ŵT

v̂ =
(
v2 −A21A

−1
11 v1

)
ŵT =

(
wT

2 −wT
1 A

−1
11 A12

)
d =

(
1 +wT

1 A
−1
11 v1

)
With this, the corresponding update to the sketched Schur complement can be computed

via

ΩS′ = ΩS+
1

d
Ωv̂ŵT

It takes O(ℓ2) steps to compute d. Computing v̂ can be done in O(mℓ) time and comput-
ing ŵ takes O(nℓ) time. Computing the quantity 1

d
Ωv̂ŵT and adding it to ΩS requires an

additional O(mp+np) steps. So the update to the Schur complement takes O((ℓ+p)(m+n))
time to compute.

Rank Two Update Now we consider the case where rows ℓ+ i and i′ and columns ℓ+ j
and j′ are swapped. First we must define some vectors. Let aT

21 and a12 be i-th row of A21

and the j-th column of A12 respectively. Let sc and sTr be the the i-th column and the j-th
row of the Schur complement. Let ei′ be the i′-th standard basis vector in Rℓ and ei be the
i-th standard basis vector of Rm−ℓ. Let eTj′ be the j

′-th standard basis (row) vector of Rℓ and

and eTj be he j-th standard (row) vector of Rn−ℓ. Finally, let α = S(i, j) and β = A
−T

11 (i′, j′),

where A11 is as defined previously. Then we have the following theorem characterizing the
update to S.

Theorem 4 After swapping rows ℓ + i and i′ and columns ℓ + j and j′ the new Schur
complement will be given by

S′ = S− 1

α
scs

T
r +

1

β
vcv

T
r

, where vc and vr are given by

vc = A21A
−1
11 ei′ + ei +

aT
21A

−1
11 ei′

α
sc

vT
r = eTj′A

−1
11 A12 + eTj +

eTj′A
−1
11 a12

α
sTr

Given this result we can update the sketch of the Schur complement via

ΩS′ = ΩS− 1

α
Ωscs

T
r +

1

β
Ωvcv

T
r

8

Algorithm 3: StableCUR

Input: A matrix A ∈ Rm×n, R ∈ Rℓ×n C ∈ Rm×ℓ ∈
Output: Ãk

1 Do QR factorization on RT to obtain a basis of rows of R,R = RrQr

2 Do QR factorization on C to obtain a basis of columns of C,C = QcRc

3 B = QT
c AQT

r

4 Do SV D on B to Compute Bk

5 Ãk = QcBkQr

.
Computing the vectors sc and vc can be done in O(mℓ) time and computing sr and vr

can be done in O(nℓ) time. The corresponding update to the sketched Schur complement
will require an additional O(mp+np) steps to compute. The total time necessary to update
the Schur complement is therefore O((ℓ+ p)(m+ n)).

Spectrum-Revealing CUR

The end result of SRLU gives a selection of columns and rows to use for the CUR decom-
position. The final CUR decomposition is given by the StableCUR procedure described in
Algorithm 3 with the above choice of C and R as input. Since this method requires the
computation of QR factorizations, it comes with an increased memory cost.

Theoretical Analysis

Time Complexity

LU Decomposition

For dense matrices the truncated LU decomposition would take O(ℓmn) time. For sparse
matrices the time varies depending on the size and degree of sparsity of the matrix.

The choice of TCP and TRP affects the overall run time of the algorithm. When threshold
complete pivoting is used, typically the follow-up spectrum-revealing pivoting steps performs
very few or no swaps at all. As a result TCP will typically be the faster choice for smaller
matrices. However if the matrix is too large or too dense TCP can become too expensive to
compute and so TRP will be the better choice.

When TRP is used, the spectrum-revealing pivoting tends to perform many swaps and
the initial factorization will typically only represent a small fraction of the total computa-
tion time. Thus the total computation time will typically be dominated by the SRP and
StableCUR procedures.

9

Spectrum-Revealing Pivoting

Running EELM for the Schur complement requires O(pn) time. Recomputing the sketch
Ã11 and estimating the maximum of A−T

11 requires O(qℓ2) time. The LUSOL routines to
update the factorization require O(ℓ2) steps. The update of the projected Schur complement
requires O((p+ ℓ)(m+n)) steps. Thus the total time for an iteration of one iteration of SRP
takes O(qℓ2 + (p+ ℓ)(m+ n)) time.

With a probability of .99 SRP will require at most O(ℓ log(mn)) iterations [8]. Thus the
total complexity for spectrum-revealing pivoting is O(ℓ log(mn)(qℓ2+(p+ℓ)(m+n)). EELM
procedure yields good approximations for p = O(log n) and q = O(log ℓ). Thus the total time
complexity of the Spectrum-Revealing Pivoting method isO (ℓ log(mn)(ℓ2 log ℓ+ (log n+ ℓ)(m+ n))).

StableCUR

The QR factorization of RT and C requires O(mℓ2) time and O(nℓ2) time respectively to
compute. For dense matrices B = QT

c AQT
r would require O(mnℓ) time. But since A is

sparse significant savings are made. If A is sparse, the matrix-vector product Av can be
computed in time O(nnz(A)). Computing Ã = AQT

r can be done in O(nnz(A)ℓ) time.
Then, computing QT

c Ã requires an additional O(mℓ2) steps to compute.

Error Bounds

Spectrum Revealing Pivoting

Theorem 5 For j ≤ k and γ = O(fk
√
mn), SRP produces a rank k SRLU factorization

with ∥∥∥Π1AΠT
2 − L̂Û

∥∥∥
2
≤ γσk+1(A)∥∥∥Π1AΠT

2 − (L̂Û)j

∥∥∥
2
≤ σj+1(A)

(
1 + 2γ

σk+1(A)

σj+1(A)

)

SR-CUR

Theorem 6 For γ = O(fk
√
mn) the SR-CUR decomposition satisfies

∥A− Â∥2 ≤ ∥A− Â∥F ≤ γσℓ+1(A),∥∥∥A− Âk

∥∥∥2
F
≤

(
1 +

2γ2σ2
ℓ+1(A)∑rank(A)

i=k+1 σ2
i (A)

)
∥A−Ak∥2F ,

∥∥∥A− Âk

∥∥∥2
2
≤
(
1 + 2γ2 σ

2
ℓ+1(A)

σ2
k+1(A)

)
∥A−Ak∥22 ,

with probability .98

10

Figure 0.1: Comparison of SVD, SR-CUR and L2-norm sampling CUR

Experiments

SR-CUR

We provide an experiment demonstrating the capacity of SR-CUR to compute nearly optimal
CUR decompositions. Drawing from the SuiteSparse Matrix Collection we collect a dataset
consisting of matrices exhibiting rapidly decaying spectrum.

We compute factorizations for k = 100, 200, 300, 400, 500. We use TRP for the initial
factorization and set f = 2. For each k we set ℓ = k + 50 to apply the Stable-CUR
algorithm. The SVD computations were computed with Matlab’s svds function for k = 500.
We compute the relative Frobenius error ∥A−Ak∥F/∥A∥F for each factorization. We compare
the results against SVD and the L2-norm based random sampling method described in [9]
with implementation provided by [24]. The results are shown in Figure 0.1. The time spent
on the k = 500 factorization is shown in Figure 0.2. To simulate a low resource environment
the maximum number of MATLAB threads was set to 4 during these computations.

Conclusion

We provide a high quality implementation of a the SR-CUR decomposition algorithm. We see
that for matrices with rapidly decaying spectrum SR-CUR is capable of achieving relative-

11

0

200

400

600

TSOPF_F
S_b

3

ba
ye

r01
.m

at

bc
irc

uit
.m

at

c-6
7.m

at

c-6
9.m

at

ct2
0s

tif.
mat

g7
jac

20
0s

c.m
at

mark
3ja

c1
40

.

ve
nk

at0
1.m

at

SR-CUR SVD

Factorization Times

Figure 0.2: Computation time in seconds for Rank 500 Factorizations

error bounds. For sparse matrices, our approach comes with improved complexity bounds
that allow it to scale easily to large matrices without the use of parallelization. Our experi-
ments verify that our approach offers substantial benefits over alternative methods.

12

Bibliography

[1] “A randomized algorithm for the decomposition of matrices”. In: Applied and Com-
putational Harmonic Analysis 30.1 (2011), pp. 47–68. issn: 1063-5203. doi: https:
//doi.org/10.1016/j.acha.2010.02.003. url: https://www.sciencedirect.
com/science/article/pii/S1063520310000242.

[2] Nir Ailon and Bernard Chazelle. “The Fast Johnson–Lindenstrauss Transform and Ap-
proximate Nearest Neighbors”. In: SIAM Journal on Computing 39.1 (2009), pp. 302–
322. doi: 10.1137/060673096. eprint: https://doi.org/10.1137/060673096. url:
https://doi.org/10.1137/060673096.

[3] Michael W. Berry, Shakhina A. Pulatova, and G. W. Stewart. “Algorithm 844: Com-
puting Sparse Reduced-Rank Approximations to Sparse Matrices”. In: ACM Trans.
Math. Softw. 31.2 (June 2005), pp. 252–269. issn: 0098-3500. doi: 10.1145/1067967.
1067972. url: https://doi.org/10.1145/1067967.1067972.

[4] Christos Boutsidis, Michael Mahoney, and Petros Drineas. “On selecting exactly k
columns from a matrix”. In: (Jan. 2008).

[5] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. “Unsupervised Fea-
ture Selection for Principal Components Analysis”. In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD
’08. Las Vegas, Nevada, USA: Association for Computing Machinery, 2008, pp. 61–69.
isbn: 9781605581934. doi: 10.1145/1401890.1401903. url: https://doi.org/10.
1145/1401890.1401903.

[6] Christos Boutsidis and David P. Woodruff. “Optimal CUR Matrix Decompositions”.
In: SIAM Journal on Computing 46.2 (2017), pp. 543–589. doi: 10.1137/140977898.
eprint: https://doi.org/10.1137/140977898. url: https://doi.org/10.1137/
140977898.

[7] Tony F. Chan. “Rank revealing QR factorizations”. In: Linear Algebra and its Ap-
plications 88-89 (1987), pp. 67–82. issn: 0024-3795. doi: https://doi.org/10.
1016/0024-3795(87)90103-0. url: https://www.sciencedirect.com/science/
article/pii/0024379587901030.

BIBLIOGRAPHY 13

[8] Cheng Chen et al. “Efficient Spectrum-Revealing CUR Matrix Decomposition”. In:
Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings
of Machine Learning Research. PMLR, 26–28 Aug 2020, pp. 766–775. url: https:
//proceedings.mlr.press/v108/chen20a.html.

[9] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. “Fast Monte Carlo Algo-
rithms for Matrices III: Computing a Compressed Approximate Matrix Decomposi-
tion”. In: SIAM Journal on Computing 36.1 (2006), pp. 184–206. doi: 10.1137/
S0097539704442702. eprint: https://doi.org/10.1137/S0097539704442702. url:
https://doi.org/10.1137/S0097539704442702.

[10] Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. “Relative-Error CUR
Matrix Decompositions”. In: SIAM Journal on Matrix Analysis and Applications 30.2
(2008), pp. 844–881. doi: 10.1137/07070471X. eprint: https://doi.org/10.1137/
07070471X. url: https://doi.org/10.1137/07070471X.

[11] Onyebuchi Ekenta. sr-cur. https://github.com/Rioghasarig/sr-cur. 2022.

[12] Philip E. Gill et al. “Maintaining LU factors of a general sparse matrix”. In: Linear
Algebra and its Applications 88-89 (1987), pp. 239–270. issn: 0024-3795. doi: https:
//doi.org/10.1016/0024-3795(87)90112-1. url: https://www.sciencedirect.
com/science/article/pii/0024379587901121.

[13] Alex Gittens et al. “Matrix Factorization at Scale: a Comparison of Scientific Data
Analytics in Spark and C+MPI Using Three Case Studies”. In: CoRR abs/1607.01335
(2016). arXiv: 1607.01335. url: http://arxiv.org/abs/1607.01335.

[14] S. Goreinov et al. “How to find a good submatrix”. In: 2010.

[15] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashkin. “A theory of pseudoskeleton
approximations”. In: Linear Algebra and its Applications 261.1 (1997), pp. 1–21. issn:
0024-3795. doi: https://doi.org/10.1016/S0024-3795(96)00301-1. url: https:
//www.sciencedirect.com/science/article/pii/S0024379596003011.

[16] Sergei Goreinov and E. Tyrtyshnikov. “The maximal-volume concept in approximation
by low-rank matrices”. In: Contemporary Mathematics 208 (Jan. 2001). doi: 10.1090/
conm/280/4620.

[17] Ming Gu and Stanley C. Eisenstat. “Efficient Algorithms for Computing a Strong
Rank-Revealing QR Factorization”. In: SIAM Journal on Scientific Computing 17.4
(1995), pp. 848–869. doi: https://doi.org/10.1137/0917055.

[18] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix Decompositions”. In:
SIAM Review 53.2 (2011).

[19] N. Kishore Kumar and Jan Shneider. “Literature survey on low rank approximation
of matrices”. In: ArXiv abs/1606.06511 (2016).

BIBLIOGRAPHY 14

[20] Michael W. Mahoney. “Randomized Algorithms for Matrices and Data”. In: Found.
Trends Mach. Learn. 3.2 (Feb. 2011), pp. 123–224. issn: 1935-8237. doi: 10.1561/
2200000035. url: https://doi.org/10.1561/2200000035.

[21] Michael W. Mahoney and Petros Drineas. “CUR matrix decompositions for improved
data analysis”. In: Proceedings of the National Academy of Sciences 106.3 (2009),
pp. 697–702. issn: 0027-8424. doi: 10.1073/pnas.0803205106. eprint: https://www.
pnas.org/content/106/3/697.full.pdf. url: https://www.pnas.org/content/
106/3/697.

[22] P.G. Martinsson, V. Rohklin, and M. Tygert. A Randomized Algorithm for the Ap-
proximation of Matrices. Tech. rep. 2006.

[23] L Miranian and M Gu. “Strong rank revealing LU factorizations”. In: Linear Algebra
and its Applications 367 (2003), pp. 1–16. issn: 0024-3795. doi: https://doi.org/10.
1016/S0024-3795(02)00572-4. url: https://www.sciencedirect.com/science/
article/pii/S0024379502005724.

[24] Christopher Schinnerl. pymf3. https://github.com/charlespwd/project-title.
2017.

[25] G.W. Stewart. “Four algorithms for the the efficient computation of truncated pivoted
QR approximations to a sparse matrix”. In: Numerische Mathematikk 83.2 (1999),
pp. 313–323. doi: https://doi.org/10.1007/s002110050451.

[26] Jimeng Sun et al. “Less is More: Compact Matrix Decomposition for Large Sparse
Graphs (Best research paper award!)” In: the 2007 SIAM International Conference on
Data Mining (SDM), Minneapolis, MN. Apr. 2007. url: https://www.microsoft.
com/en-us/research/publication/less-is-more-compact-matrix-decomposition-

for-large-sparse-graphsbest-research-paper-award/.

[27] Christian Thurau, Kristian Kersting, and Christian Bauckhage. “Deterministic CUR
for Improved Large-Scale Data Analysis: An Empirical Study”. In: Proceedings of the
2012 SIAM International Conference on Data Mining (SDM), pp. 684–695. doi: 10.
1137/1.9781611972825.59. eprint: https://epubs.siam.org/doi/pdf/10.1137/
1.9781611972825.59. url: https://epubs.siam.org/doi/abs/10.1137/1.
9781611972825.59.

[28] Shusen Wang and Zhihua Zhang. “A Scalable CUR Matrix Decomposition Algorithm:
Lower Time Complexity and Tighter Bound”. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1. NIPS’12. Lake
Tahoe, Nevada: Curran Associates Inc., 2012, pp. 647–655.

[29] Shusen Wang and Zhihua Zhang. “Improving CUR Matrix Decomposition and the
Nyström Approximation via Adaptive Sampling”. In: J. Mach. Learn. Res. 14.1 (Jan.
2013), pp. 2729–2769. issn: 1532-4435.

BIBLIOGRAPHY 15

[30] Shusen Wang, Zhihua Zhang, and Tong Zhang. “Towards More Efficient SPSD Matrix
Approximation and CUR Matrix Decomposition”. In: Journal of Machine Learning
Research 17.209 (2016), pp. 1–49. url: http://jmlr.org/papers/v17/15-190.html.

[31] David P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: 10.1–2
(Oct. 2014), pp. 1–157. issn: 1551-305X. doi: 10.1561/0400000060. url: https:
//doi.org/10.1561/0400000060.

