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Modeling subject-specific nonautonomous dynamics

Siyuan Zhou1, Debashis Paul2, and Jie Peng2

1The Meet Group, Inc

2University of California, Davis

Abstract

We consider modeling non-autonomous dynamical systems for a group of subjects. The proposed 

model involves a common baseline gradient function and a multiplicative time-dependent subject-

specific effect that accounts for phase and amplitude variations in the rate of change across 

subjects. The baseline gradient function is represented in a spline basis and the subject-specific 

effect is modeled as a polynomial in time with random coefficients. We establish appropriate 

identifiability conditions and propose an estimator based on the hierarchical likelihood. We prove 

consistency and asymptotic normality of the proposed estimator under a regime of moderate-to-

dense observations per subject. Simulation studies and an application to the Berkeley Growth Data 

demonstrate the effectiveness of the proposed methodology.

Keywords

Ordinary differential equation (ODE); gradient function; nonlinear mixed effects models; 
hierarchical likelihood; Levenberg-Marquardt method; phase variation

1 Introduction

Continuous-time smooth dynamical systems arise in modeling biological, physical, and 

chemical processes such as growth of organisms, synthesis of chemicals, disease 

progression, and dynamics of ecological systems. Many of these processes are modeled 

through systems of ordinary differential equations (ODEs). Most of the existing approaches 

assume known functional forms of the dynamical systems that are determined by a small 

number of parameters. Due to insufficient knowledge, sometimes a more flexible approach 

to modeling the gradient function of the dynamical system is necessary. Moreover, if 

observations are on a group of subjects, it may be beneficial to combine information across 

subjects. This can be achieved by including subject-specific effects into the model that 
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enable estimation of the population level dynamics while also estimating the dynamics for 

each individual. Mixed-effects models for ODEs have been used in pharmacokinetics (Li et 

al. (2002)) and in disease dynamics (Huang, Liu and Wu (2006); Guedj, Thiébaut and 

Commenges (2007); Huang and Lu (2008)), where the ODE is assumed to have a known 

parametric form. Recently, Wang et al. (2014) considered a semiparametric mixed-effects 

ODE model assuming a parametric ODE where the estimation is performed by imposing a 

penalty on the trajectories represented by splines.

In this paper, we model the dynamics for a group of subjects simultaneously by ordinary 

differential equations, with a common “baseline” dynamics depending on the current state 

and represented in a spline basis, and time-dependent subject-specific random effects that 

capture both amplitude and phase variation. The observed data for the i-th subject is the 

sample trajectory Xi(·) measured at a set of time points in a finite time interval with 

measurement errors. In many studies, the rate of change  is assumed to be a function of 

the state Xi(·) alone, that is, the dynamics follows an autonomous system. However, many 

dynamics, especially those arising from biological systems, often display certain phase-

variation in addition to amplitude-variation across subjects. This is prominent in the 

dynamics of human growth where some individuals start puberty earlier while for others the 

growth rate peaks at a later age. Since the defining feature of an autonomous system is that 

the rate of change at any given time is only a function of the state at that time, an 

autonomous system is inadequate in describing phase variations.

To model the phase variation in an interpretable way, we propose a system of 

nonautonomous ODEs where the gradient function is the product of two parts: a common 

time-independent fixed effects part (referred to as the baseline gradient function), and a 

time-dependent random effects part, capturing the phase and amplitude variations: 

, where θi is a random vector representing the unobserved subject-

specific effects and Z(·, θ) is a function of time that captures both amplitude and phase 

variations. We represent the common gradient function g(·) in a spline basis and model Z(t, 
θ) as a polynomial in t. Decoupling of these two components requires an appropriate 

identifiability constraint that is discussed in Section 2. Moreover, to avoid singularity in the 

solution of the ODE, we also assume that g is either strictly positive or negative on its 

domain.

We propose an estimator based on the framework of hierarchical likelihood (Lee, Nelder and 

Pawitan (2006)). The model is fitted using the Levenberg-Marquardt nonlinear optimization 

procedure. The hierarchical likelihood-based estimation is computationally a much cheaper 

alternative to the commonly used maximum likelihood procedure for nonlinear mixed 

effects models (cf. Jiang (2007)) due to non-linearity in the ODEs and lack of closed form 

solutions. We adopt an asymptotic framework in which the baseline gradient function g is 

assumed to be exactly represented by a large but fixed number of basis functions, while for 

model fitting, we regularize g through adding a roughness penalty to the objective function. 

Under an appropriate identifiability constraint, we prove consistency of the proposed 

estimator of g when the measurements become dense within a time interval as the number of 

subjects n increases. We also prove that, when the number of measurements per subject 
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grows faster than , the proposed estimator has an asymptotic normal distribution. The 

latter result can be used to determine confidence sets for the baseline gradient function. We 

applied the proposed method to the Berkeley growth data and showed that valuable insights 

about human growth dynamics can be obtained through modeling the growth trajectories at a 

population level. The proposed method also provides an alternative framework for functional 

data analysis when such data are characterized by monotone sample trajectories.

Among related works, in Paul, Peng and Burman (2011) we considered a model with Z(t, θi) 

= θi to capture subject-specific amplitude variations in autonomous ODEs, even though no 

theoretical analysis was presented. The current proposal is seen as an extension of that 

model to nonnautonomous ODEs. Also, in Paul, Peng and Burman (2016), we considered 

nonparametric estimation of g based on a single trajectory. Both the methodology and 

theoretical analysis presented in this paper are substantially different from that in Paul, Peng 

and Burman (2016).

The rest of the paper is organized as follows. The model is described in Section 2 and the 

model fitting procedure in Section 3. The asymptotic theory is established in Section 4. A 

simulation study is reported in Section 5 and the application to Berkeley growth data is 

described in Section 6. Proofs are given in the Appendix. Further details and additional 

numerical and graphical summaries are available in the Supplementary Material.

2 Model

In this section, we describe the proposed model and then discuss the identifiability 

constraint. We assume that the true trajectory Xi(·), corresponding to the i-th subject, follows 

the ODE:

(1)

For simplicity of exposition, we treat the initial conditions ai: = Xi(0), i = 1, …, n, as known, 

though they can also be treated as random effects and estimated in a similar fashion as the 

θi’s. We further assume that the baseline gradient function g in (1) is represented by a finite 

set of spline functions whose combined support covers the range of the observed trajectories:

(2)

where β = (β1, …, βM)T is unknown and Φ(·) = (ϕ1(·), …, ϕM(·))T is a set of spline 

functions. In this paper, we use a cubic B-spline basis with equally spaced knots and a large 

fixed M. Larger values of M provides a more accurate approximation to g while leading to 

higher variability of the estimator. To address this, we regularize g by adding a ridge-type 

roughness penalty term to the objective function (see (8)) to achieve bias-variance trade-off.

We model the subject-specific effect as a polynomial in t with random coefficients;
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(3)

with the working assumption that , μθ = (μ1, …, μp)T and 

 with  for k = 1, …, p. Larger values of p increase model 

variability and consequently require a finer grid for numerically solving of the ODEs to 

overcome numerical instability. Instead of monomials in t, an orthogonal polynomial basis 

may be used to improve computational stability. The key feature of the random effect Z(t, θi) 

needed for theoretical derivations is that Z(t, θi) is linear in the parameter θi.

The observed data are modeled as

(4)

with the working assumption that the εij’s are i.i.d.  and the Tij’s are i.i.d. following 

a distribution with density fT supported on [0, 1]. We also assume that the observational 

errors εij’s and the random parameters θi’s are independent.

The model specified by (1), (2), and (3) is not identifiable without additional constraints, 

since the following transformation

(5)

leaves the trajectories determined by the model invariant. This also suggests that a natural 

way to impose identifiability is to ensure that either the scale of β or the mean of θi1 is kept 

fixed at a given value. The constraint μ1: = (θi1) = 0 is not effective in ensuring the 

asymptotic identifiability of the system, as can be seen from the asymptotic analysis in 

Section 4. We impose identifiability through the constraint

(6)

In Section 4.2, we prove that (6), together with some technical conditions on the sampling 

design, ensures asymptotic identifiability of the parameters.

3 Model Fitting

A common approach to fitting mixed effects models is to integrate out the random effects 

and then maximize the resulting marginal likelihood with respect to the fixed effects. This 
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approach is computationally impractical here as it involves integrating out a random 

parameter (i.e ) in the solution of a nonlinear ODE that does not have an analytical 

form and can only be numerically evaluated. Instead, we adopt a hierarchical likelihood 

(henceforth, H-likelihood) approach (Lee, Nelder and Pawitan (2006)), which is a first-order 

approximation to the marginal likelihood. The H-likelihood approach involves specifying a 

working model for the distribution of random effects and then maximizing the resulting joint 

likelihood for the fixed and random effects. This can also be viewed as a penalized 

maximum likelihood procedure. For dense measurements, the H-likelihood based estimate 

of the fixed effects closely approximates the MLE or its second order approximation through 

Laplace’s method (Jiang (2007)).

3.1 Penalized loss function

Let Xi(·; θi, β) denote the solution to (1) with the gradient function g(·) ≡ gβ(·) specified in 

(2) and Z(·, θi) specified in (3). Then the negative joint log likelihood of the observed data 

Y: = (Yij: 1 ≤ i ≤ mi; 1 ≤ i ≤ n) and the random effects Θ: = (θ1, · · ·, θn) is given by, up to 

multiplicative and additive constants,

(7)

The trajectory Xi(·; θi, β) and its gradients with respect to θi and β can be numerically 

computed using the Runge-Kutta method, as described in Paul, Peng and Burman (2011).

In order to achieve a bias-variance trade-off and higher computational stability, we use a 

fixed large M and impose a roughness penalty on g of the form . Here [d0, 
d1] is the range covered by the trajectories and λβ ≥ 0 is a penalty parameter. This 

formulation is related to penalized spline regression (Ruppert (2002); Yu and Ruppert 

(2002)). Under (2), we have

where Φ(x) = (ϕ1(x),…, ϕM(x))T. Then the penalized loss function is

(8)

The proposed estimator is
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(9)

The estimator of the gradient function g is then , and estimated 

trajectories Xi’s can be evaluated by solving (1) with θi’s replaced by θ̂i’s and g replaced by 

ĝ.

3.2 Fitting algorithm

We use the Levenberg-Marquardt algorithm for nonlinear regression (Nocedal and Wright 

(2006)) to minimize (8). It involves iteratively updating θi’s and β. At each step, we need to 

evaluate Xi(·; θi, β) and its partial derivatives with respect to θi and β. Since these are not 

available in close forms, a 4th order Runge-Kutta method is used to evaluate these functions 

on a fine grid. More details are given in the Supplementary Material.

Let  and βc denote the current estimates of θi and β at each updating step of the 

Levenberg-Marquardt algorithm. Then μk is estimated as the mean of the ’s. The 

variances ’s and  can be viewed as either unknown parameters or as tuning parameters. 

In the former case, they are estimated as the empirical variances of the ’s and the current 

residuals , respectively. In the latter case, these parameters can be 

selected, similarly as the penalty parameter λβ, through cross validation. The penalty 

parameter λβ controls the trade-off between fidelity to the data and the complexity of the 

model. We use an approximate leave-one-subject-out cross-validation score  for 

choosing λβ, described in Section S.6 of the Supplementary Material.

4 Asymptotic theory

In this section, we present results on the asymptotic behavior of the proposed estimator of 

the baseline gradient function g under the model specified by (1) – (4). For simplicity of 

exposition, let ϕ1, …, ϕM be the B-spline basis functions of degree ≥ 3, with equally spaced 

knots, and combined support [d0, d1]. The asymptotic theory remains valid for any well-

conditioned basis with twice continuously differentiable basis functions supported on this 

interval. In order to avoid singularity in the solution of the ODE, we assume throughout that 

g is either strictly positive or strictly negative on its domain.

Throughout we assume that the initial conditions are randomly distributed and known. In 

order to simplify the derivations, we treat μθ = (θi) as known and, without loss of 

generality, equal to zero. If the mean μθ is unknown, additional terms in the expression for 

the Fisher information with respect to β result, which can be neglected asymptotically under 

assumptions A1–A4 and F1 (see Sections 4.1 and 4.2), as indicated in Section S.3.1 of the 

Supplementary Material.

We establish consistency and asymptotic normality of the proposed estimator β̂ of β under 

the identifiability constraint (6). For consistency, we assume that the mi’s, the numbers of 
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measurements per subject, increase to infinity uniformly as the sample size n increases. For 

asymptotic normality, we further assume that min1≤i≤nmi grows faster than . The 

asymptotic theory presented here differs from the standard theory of nonlinear mixed effects 

models (cf. Jiang (2007)) due to the use of H-likelihood estimator rather than marginal 

likelihood estimator, and the imposition of the identifiability constraint on β. Proofs of the 

asymptotic results make use of the profile H-likelihood with respect to β, where the profiling 

is done by substituting θi’s by their local optimizers as a function of β.

4.1 Assumptions

A0
The true parameter β0 satisfies , and gβ0(x) > 0 for all x ∈ (d0, d1).

A1 The distribution Fθ of the θi’s and the distribution Fa of the ai’s have bounded 

support.

A2 The measurement times Tij are randomly distributed on [0, 1] with a density fT 

that is bounded above and below (away from zero). Also, the noise εij are i.i.d. 

.

A3 Let m = min1≤i≤nmi and m̄ = max1≤i≤nmi. Then m →∞ as n →∞ so that m̄/m 
remains bounded.

Condition A0 reduces one degree of freedom in the parameter and can always be achieved 

through a recentering of θi1. Condition A1 helps to ensure the boundedness of the 

trajectories and their derivatives. Moreover, A0 and a refinement of conditions A0 and A1 
(condition F1 in Section A.1) are needed to prove that the Fisher information matrix (19) 

associated with the profile H-likelihood with respect to β is nonsingular (see Section 4.2). 

The latter ensures asymptotic identifiability of the model. Conditions A2 and A3 can be 

replaced by assuming that the observations are on a regular grid with grid spacings 

converging to zero as n→∞. The assumption on the εij’s can be relaxed to that they are i.i.d. 

sub-Gaussian random variables.

4.2 Asymptotic identifiability

We present a detailed analysis of asymptotic identifiability. The identifiability condition (6) 

allows us to reparametrize β as

(10)

where C is an M × (M − 1) matrix satisfying CT1M = 0 and rank(C) = M − 1.

Due to the reparametrization of β, given by (10), we express the likelihood function and its 

derivatives as a function of γ. Let γ0 and  denote the true parameters, and the ai’s denote 

the (true) initial conditions. In the following, we suppress the dependence of the trajectories 

on the initial conditions ai since these are treated as known.

Define the negative penalized log H-likelihoood for the i-th subject by
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(11)

where . Here, , where ℓij 
is as in (7) with μθ = 0.

Due to the lack of convexity of  with respect to θi, in general the value of θi 

minimizing this function for a given γ is not unique. Therefore, throughout, we take

(12)

where ρn = O((log n)−2) and . Thus, θ̂i(γ) is a local 

minimizer of  given γ that is also a global minimizer within a radius ρn of the true 

. See Remark 1 for obtaining an initial estimate of θi that satisfies this. The “estimator” 

θ̂i(γ) can be shown to be uniformly close to  when γ is within a suitably small distance of 

γ0 (see (A.8) for details). Define the negative profile log H-likelihoood for γ by

and θ̂i(γ) is as in (12). Henceforth, we treat  interchangeably as a function of γ or β.

We now discuss the asymptotic identifiability of the model. Let q(t): = (1, t, …, tp−1) so that 

Z(t, θ) = θT q(t). Let

(13)

(14)

(15)

where X(t; a, θ, β) denotes the solution to the equation
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(16)

and  and .

We add a (mild) additional assumption.

A4 For all β in a neighborhood ℬ of β0, and all (a, θ) ∈ supp(Fa × Fθ), the minimum 

eigenvalue of Ξ22(a, θ, β) is bounded below by some constant c > 0.

We take

(17)

(18)

We also make a slight refinement of A0 and A1, stated as condition F1 in Section A.1, that 

ensures that if β is in a neighborhood of β0, then the combined support of the basis functions 

{ϕ1, …, ϕM} is covered by trajectories corresponding to suitably chosen pairs (ai, θi).

Now, we can deduce that (details given in Section A.1) the matrix

(19)

is well-conditioned. Since (γ) is the integrated Fisher information matrix of the profile H-

likelihood LP (γ) for γ, this is equivalent to the asymptotic identifiability of γ, as closeness 

in terms of the values of the objective function implies closeness in terms of the values of γ, 

due to the well-conditioning of (γ).

4.3 Consistency and Asymptotic Normality

We prove consistency of the estimator of β (equivalently, g) by showing that under the 

identifiability constraint (6), and assuming that the roughness penalty parameter λ ≡ λβ is 

sufficiently small, there is a sequence of local minimizers of the loss function (8) that 

converges in probability to the true β0 as n→∞. We also determine its rate of convergence 

and prove its asymptotic normality after appropriate centering and scaling. We introduce the 

notation Õ to mean that if Xn = Õ(cn) then given any C > 0, there exists C′ > 0 such that |

Xn|/cn ≤ C′ with probability at least 1 − n−C for all n.

We make an assumption about the density of measurements.

A5 There is a δ0 > 0 such that lim infn→∞ mn−δ0 > 0 where m = min1≤i≤nmi.
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This condition ensures that in a Taylor expansion of the loss function with respect to the 

parameters, terms beyond quadratics can be ignored asymptotically.

Remark 1—A good initial estimate for the parameters is helpful for convergence of the 

algorithm. We can obtain an initial estimate for each θi by a simple two-stage method 

consisting of first obtaining nonparametric smoothers for Xi(·) and  for each i, then 

using the expansion

(20)

where q(t) = (1, t, …, tp−1)T and the δij’s are approximation errors, to estimate θi through 

regression, while treating log g as an arbitrary smooth function. It can be shown that, under 

the identifiability restriction and conditions A1–A5 and F1, the estimators θ̃i thus obtained 

satisfy , where ρn is as in (12).

Theorem 1: Suppose that A0–A5 and F1 are satisfied and . Then there exists a 

root γ̂ of the equation  that is a local minimizer of LP (γ) and satisfies

(21)

Clearly, (21) also implies that

(22)

The basic strategy of the proof is as follows. For a small αn > 0, we compare the value of LP 

(γ0 + αnδ), where δ is a unit vector in ℝM−1, with that of LP (γ0). Our goal is to show that, 

for an appropriately chosen sequence αn → 0, we have

(23)

We choose the sequence αn to be a constant multiple of max {(log n)1/2(nm)−1/2, 1/m, λ/n}. 

This also establishes the existence of a root γ̂ of  within a radius of αn around 

γ0. The result (21) is obtained by expanding  around γ0 in a Taylor series and 

thereby obtaining an asymptotic representation of γ̂. The details are given in the Appendix.
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We also prove asymptotic normality of the estimator of γ by imposing a stronger condition 

on the rate of growth of mi’s.

A5′ m = min1≤i≤nmi ≫ (log n)6n1/2 as n → ∞.

Theorem 2: Suppose that A0–A4, A5′ and F1 are satisfied and . Let 

. Then there exists a root γ̂ of the equation  that satisfies

(24)

where n(γ0) is a stochastic bias term of the form

(25)

with  as given by (S.1)–(S.4) in the Supplementary Material, and

(26)

and Γ(γ0): = limn→∞ Γn(γ0), assuming the limit exists in probability. If this limit exists in 
probability only along a subsequence, then the limit in (24) holds along the same 
subsequence.

The proof of Theorem 2 is in the Appendix.

Remark 2—If the mi’s are i.i.d. following a distribution (indexed by n) supported on 

[m,m̄], independent of (θi, {εij}), and A5’ holds, then Γ(γ0) in (26) exists almost surely and 

is the integrated Fisher information (γ0) (see equation (19)).

Remark 3—The term Γn(γ0)−1
n(γ0) is a bias term that is of the order OP (m−1). This term 

results from the nonlinearity of X(t; ai, θi, β) with respect to θi. If the measurements per 

subject are sufficiently dense, then this term can be neglected in (24).

Remark 4—By Theorem 2, the asymptotic variance of γ̂ is . We estimate  by

(27)
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where  is the degrees of freedom (since θi is p-

dimensional and β is M-dimensional). We can also estimate Γn(γ0) and n(γ0) from data, as 

is shown in Section S.1 of the Supplementary Material.

5 Simulation Study

In this section, we report on the finite sample performance of the proposed methodology in 

estimating the gradient functions and the trajectories. We also examine the implications of 

mis-specification of the subject-specific effect components Z(·; θi).

We refer to the true baseline gradient function g used here as the “two-peak” function 

according to its shape. The “two-peak” gradient function g and some random realizations of 

the trajectories following model (1) are depicted in Figure S.1 in the Supplementary 

Material. The chosen g is not exactly representable by a finite number of cubic B-spline 

functions with equally spaced knots, though the accuracy of approximation improves with 

more knots.

We considered two different sampling rates: (i) sparse: 3–8 measurements per trajectory/

subject; and (ii) dense: 30–50 measurements per trajectory/subject. For each setting, we 

generated n = 25 sample trajectories. We set the subject-specific functions Z(·, θi) as linear 

functions in t. For the dense case, the random parameters θi’s were i.i.d. Normal with μθ = 

(0, 2) and Σθ = diag(0.12, 0.22). For the sparse case, μθ = (0, 0)T and μθ = (0, 2)T, with the 

variance Σθ the same as in the dense case. Measurement errors εij’s were i.i.d. . 

For the sparse case, we set σε = 0.01. For the dense case, we took σε = 0.01 and σε = 

0.02. For each scenario, 500 independent replicates were generated.

In the fitting procedure, we used M cubic B-spline basis functions with equally spaced knots 

on the combined range of the observed trajectories. We chose M = 30 to allow a high degree 

of flexibility in representing g. Twenty values of the roughness penalty parameter λβ over an 

appropriate range were considered and the “optimal” value λβ,opt was selected by the 

approximate leave-one-subject-out cross validation score . We used ĝ and  to 

denote the estimates of the baseline gradient function and sample trajectories, respectively, 

corresponding to λβ,opt. We also used the true model with p = 2 for the subject-specific 

effect Z(·; θi) and allowed up to 5000 iterations in the Levenberg-Marquardt algorithm.

For performance evaluation, we report summary statistics of integrated squared error (ISE) 

of gradient functions estimation and trajectories estimation, denoted by ISE(ĝ) and ISE(X̂), 
respectively, across the 500 independent replicates. In order to simultaneously evaluate the 

estimated gradient functions across all subjects, we define
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where  is the estimated mean subject-specific effect, 

 is the mean of the true sample trajectories, and 

 is the mean of the estimated sample trajectories. We use the function 

eμ(t)g(X̄(t)) as the benchmark so as to capture the variability in estimation of g and the θi’s 

simultaneously. This function also reflects the derivative of Xi(t) averaged across subjects 

and thus can be seen as an overall measure of the rate of growth. Finally, ISE(X̂) is defined 

as .

Estimation accuracy of the gradient functions and the trajectories, based on 500 independent 

replicates for each scenario, is summarized in Table 1, where  was used for selecting the 

penalty parameter λβ. We report the mean, standard deviation (SD), median and median 

absolute deviation (MAD) of ISE(ĝ) and ISE(X̂). These results show that there is a 

substantial improvement in performance when the sampling rate is increased from the 

sparse case to the dense case. Compare these results with those in Table S.1 of the 

Supplementary Material. The latter reports the results based on the minimization of ISE(ĝ). 

The median ISE(ĝ) under  is within a factor of two to that under “ideal” model selection 

and the difference is smaller in the dense case. In terms of trajectory estimation, there is 

little difference in terms of median ISE(X̂) between these two model selection criteria.

In Figure 1, we depict the estimated gradient functions under the dense case with σε = 0.01. 

On the left panel, we plot the point-wise 5% and 95% percentiles and mean of the function 

g̃(x) := sβĝ(x), along with the true g(x), against x, across 500 independent replicates. Here, 

 and  is the set of basis coefficients of the projected g onto the M = 30 

B-spline basis functions with equally spaced knots used in the model fitting procedure. 

Rescaling by sβ is to account for the scaling in ĝ due to the constraint . On the 

right panel, we plot the point-wise 5% and 95% percentiles and mean of the function 

, along with the point-wise mean of eμ(t)g(X̄(t)), all treated as a function of the 

mean of X̄(t). These plots demonstrate that the gradient function estimation is quite accurate 

and captures the shape of the true gradient functions. The estimation under all the other 

cases are depicted in Figures S.2, S.3 and S.4 of the Supplementary Material. The summary 

for ISE(g̃) := ∫(sβĝ(x) − g(x))2dx, treating g̃(x) = sβĝ(x) as an estimator of g(x), is reported 

in Table S.2 of the Supplementary Material.

We also investigated the impact of misspecification of the subject-specific effects Z(·; θi)’s 

on the estimation accuracy. We used ptr to denote the true order of the Z(·; θi)’s, took ptr = 1 

and ptr = 2, and generated data under the sparse and dense sampling rates for each of the 

two models. We again used the “Two-peak” function as the true baseline gradient function, 

and had n = 25 subjects. The hyperparameters were μθ = 0 and Σθ = 0.12 when ptr = 1, and 

μθ = (0, 0)T (for sparse), or μθ = (0, 2)T (for dense) and Σθ = diag(0.12, 0.22) when ptr = 

2. In all settings, the error variance was . In the fitting procedure, we used M = 30 

Zhou et al. Page 13

Stat Sin. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cubic B-spline basis functions with equally spaced knots and considered p = 1 and p = 2 for 

both models, ptr = 1 and ptr = 2.

We report ISE(ĝ), using p = ptr and the “ideal” model selection for λβ, and ISE(ĝ), and 

using  for the selection of both λβ and p, in Tables S.3 and S.4, respectively, in the 

Supplementary Material.  tends to select larger p, as is evidenced by the fact that in at 

least 95% of the cases the larger model (p = 2) is selected regardless of ptr. However, when 

ptr = 2, the model with p = 1 produces significantly biased estimation and inflated ISE 

(results not reported). When ptr = 1, using the model with p = 2 results in a reasonably good 

fit. Specifically, the median ISE under  is within a factor of three of the median ISE(ĝ) 

under the “ideal” case where ptr is used in model fitting. Moreover, the difference in ISE(ĝ) 

between  and the “ideal” case decreases as the sampling rate increases. These results 

show that when the models are nested, although  tends to select larger models, the 

proposed method is still reliable in terms of estimating the gradient function, especially for 

relatively dense observations. Additional model selection results are reported in Section S.8 

of the Supplementary Material.

6 Application to Berkeley growth data

We applied the proposed method to the Berkeley Growth Data (Tuddenham and Snyder 

(1954)). This data set consists of measurements of heights (in centimeters) of 54 female and 

39 male subjects, measured at 31 time points (same for all subjects) from the age of 1 to 18 

years. Our aim was to estimate the population level common growth dynamics as well as 

individual dynamics using the proposed methodology.

Many statistical analyses have been done to describe the features of human growth. A 

popular approach is curve alignment based on estimation of time-warping functions, 

including landmark registration (Gasser et al. (1991)), continuous monotone registration 

(Ramsay and Li (1998)), “self-modeling” registration (Gervini and Gasser (2004)). Many 

parametric models have been proposed for describing postnatal growth in humans, for 

example, Jenss and Bayley (1937) and Count (1943) for early childhood growth, and Preece 

and Baines (1978), Bock et al. (1973), and Hauspie et al. (1980) for adolescent growth by 

logistic and the Gompertz functions. Several models have been proposed to fit individual 

trajectories at different age intervals (see Hauspie, Cameron and Molinari (2004) for an 

overview). Growth velocities, at the level of individual subjects, for various age groups, have 

also been analyzed nonparametrically by Gasser et al. (1984) and Gasser et al. (1985).

One important difference of these works from the proposed method is that they primarily 

focus on fitting individual growth trajectories rather than estimating the common growth 

dynamics. Our method has the advantage of providing a description of the dynamics at a 

population level while isolating subject-specific phase and amplitude variations. Thus our 

approach contributes to enhancing the understanding of common patterns and variations of 

human growth in a population.

We first carried out a preliminary study to understand the nature of the growth dynamics. We 

plotted the empirical derivatives, denoted by Y′(t), computed by taking successive divided 
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differences, against the observed heights Y (t), across all individuals (Figure S.5 in the 

Supplementary Material). The empirical gradient shows that the growth rate decreases 

rapidly at an early age. Around a mean height of 145cm, the female growth rate peaks again, 

while the male growth rate reaches a peak at a mean height of around 160cm, before slowly 

decreasing to nearly zero at about 160cm for female and 180cm for male subjects.

We made several small modifications in the fitting procedure to improve its stability and 

accuracy. First, to improve the fit at an early age and thereby reduce the boundary effect, we 

linearly extrapolated each trajectory for age below one year. Also, since the rate of growth 

nearly vanishes beyond a certain height, we forced the baseline gradient g to be close to zero 

for large x by adding a tail penalty of the form

where λR >0 and 0 < A < 200 were selected by . To improve convergence of the 

algorithm, we fixed μk = (θik) at zero for k > 1.

We used M = 15 cubic B-splines with equally spaced knots. We considered three models 

with constant (p = 1) (autonomous model), linear (p = 2) and quadratic (p = 3) random 

effects Z(·, θi). Since the estimates are not very sensitive to the specification of the variance 

of the random effects Σθ, after preliminary studies, we set Σθ to be diagonal with diagonal 

elements , with each σθk = 5. We also set the error variance  at 0.25. Initial 

conditions ai’s were treated as known and equal to the value of each (extrapolated) trajectory 

at time zero. We used  to choose various model parameters including λβ, p, A, λR. The 

selected models have p = 3 for both genders and have (A, λR) = (175, 1000) for the female 

group, and (A, λR) = (190, 500) for the male group.

Observed and fitted growth trajectories (under the selected model with p = 3) are plotted in 

Figure S.7 of the Supplementary Material which shows good fits for the selected models. In 

addition, the MISEs between the fitted and observed trajectories with quadratic subject-

specific effects (p = 3) improve upon those with the linear subject-specific effect (p = 2) by 

57.55% (female) and 38.69% (male), respectively, and improve upon those with constant 

subject-specific effect (p = 1, autonomous model) by 75.74% (female) and 61.67% (male), 

respectively. Residual plots of the trajectory fits against time, under p = 1, 2, 3, given in 

Figure S.8 of the Supplementary Material, show improvements in trajectory fitting with 

model larger order (i.e., larger p). We also considered the model with p = 4. Although it 

tends to have even smaller MISE and slightly less spread out residuals, since it yields very 

similar estimate of the gradient function as under p = 3, we place the detailed results under 

this setting in Section S.8 of the Supplementary Material.

Plots of the fitted gradient function  against the mean observed trajectory X̄(t) 
for p = 3 are shown in Figure 2. Notably, both females and males have more prominent 

growth spurts than suggested by the empirical growth dynamics in Figure S.5. Moreover, 
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fitted individual growth rates  versus t and versus the fitted trajectory X̂
i(t), 

respectively, depicted in Figure S.6 in the Supplementary Material, clearly show both phase 

and amplitude variations.

7 Discussion

We propose a flexible approach to modeling a collection of trajectories through ordinary 

differential equations with subject-specific effects. Our model has a time varying 

multiplicative random effect component capturing phase and amplitude variations in the 

trajectories, and a fixed baseline gradient function reflecting population level common 

dynamics. We implement an estimation procedure through the hierarchical likelihood 

framework and provide a detailed asymptotic theory. The proposed method can be used to 

extract both phase and amplitude variations in the dynamics in an interpretable manner, as is 

shown by the application to the Berkeley growth data. A nontrivial extension of the theory 

would be to the setting where the baseline gradient function is treated nonparametrically. 

The method can also be extended to model dynamics of multivariate trajectories and data 

involving covariates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.1 Nonsingularity of observed Fisher information

We make the following assumption that is a slight refinement of A0 and A1. To state it, we 

let supp(Φ) be the set .

F1 There exists an integer K ≥ 1 (not depending on n and mi’s), nonoverlapping intervals 

A1, …, AK ⊂ supp(Fa), and a set Θ0 ⊂ supp(Fθ) such that,

1. ℙ(a ∈ Ak) > 0 for all k, and ℙ(θ ∈ Θ0) > 0;

2. if p > 1, then for all θ ∈ Θ0, θj ≠ 0 for some j ∈ {2, …, p}, where θj denotes the 

j-th coordinate of θ;

3. if (aik, θik) ∈ Ak × Θ0 for k = 1, …, K, and β is in a fixed neighborhood of β0, 

then the ranges of X(t; aik, θik, β) for successive k’s intersect, and one of the 

following holds:

a. ;

b.  where the interval BΦ ⊆ 
supp(Φ) is such that ∫BΦ ϕj(x)dx = 1 for all j = 1, …, M.
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Condition 3(b) in F1 is easily satisfied through proper choice of BΦ and appropriate 

renormalization of .

We write i ∈ ℐ0 to indicate that the set of indices i = (i1, …, iK) is such that aik ∈ Ak and θik 
∈ Θ0 for all k. Define, for a set of indices i ∈ {1, …, n},

We first show that for any i ∈ ℐ0, the matrix G̃
i(γ) is nonsingular, whenever γ 

(correspondingly, β) lies in an appropriate fixed neighborhood of γ0 (correspondingly, β0) 

and satisfies conditions A0, A1, A4, and F1. In the following we establish that the smallest 

eigenvalue of Gĩ, for i ∈ ℐ0, is a positive-valued random variable.

The matrix G̃
i(γ) is singular if and only if there exists a nonzero vector h, such that 

hTG̃
i(γ)h = 0. This condition can be expressed as

where uk(t) = CTXβ(t; aik, θik, β(γ)) and vk(t) = Xθ(t; aik, θik, β(γ)). Therefore, using a 

standard argument from multivariate linear regression, by treating the uk(t) as responses, 

vk(t) as predictors and using the least squares principle, we conclude that there exist p×1 

vectors  such that

(A.1)

This is equivalent to the following condition: for all k = 1, …, K,

(A.2)

Under the reparametrization (10), using (16), we have
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(A.3)

(A.4)

Differentiating (A.2) with respect to t, and combining with (A.3) and (A.4),

(A.5)

Here q(t) is a vector of monomials of t of dimension p, dik ∈ ℝp, and the functions ϕj’s are 

piecewise polynomials. From this, it can be checked that (A.5) holds only if  for 

all k, where the ck’s do not depend on t (see Section S.2 of the Supplementary Material for 

detail). By F1, the ck’s must all be equal since the sets {Xik(t)t ∈ [0, 1]} overlap for 

successive k. Without loss of generality, c1 = ··· = cK = 1. Again by F1, we conclude that 

either, (C(h − γ) − M−11M)TΦ(x) = 0 for all x ∈ supp(Φ) (under F1.3(a)), or (C(h − γ) − M
−11M)TΦ(x) = 0 for all x ∈ BΦ (under F1.3(b)). Consequently, in either case,

The left side of this equation is 0 since , and the right side is 1. This contradiction 

proves that there does not exist a vector h such that hTG̃
i(γ)h = 0, which implies that G̃

i(γ) 

is non-singular.

A.2 Proof of Theorem 1

Some of the proof details are deferred to the Supplementary Material. Throughout, we use 

to denote the true value of θi and drop the reference to the initial value ai, that is assumed to 

be known. We use β(γ) to mean β, where β(γ) = Cγ +M−11M. Also, we use θ̂i(β) and θ̂i(γ) 

interchangeably.

The basic building block is an asymptotic expansion of the restricted optimizer θ̂i(γ) (see 

(A.12)). Let T denote the expectation with respect to T ~ fT. Take
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where ρn and  are as in the definition (12) of θ̂i(γ). Using the fact that 

 and  is a global minimum of , it follows, through a Taylor 

expansion, that uniformly on ,

(A.6)

From (A.6), we deduce that  and that θ̄i(γ) satisfies 

. Using standard arguments, we can now show that under the 

conditions of Theorem 1, as long as || γ − γ0 || = O(αn), θ̂i(γ) satisfies

(A.7)

for all i, with probability tending to 1. Moreover, by the Implicit Function Theorem, θ̂i(γ) is 

a smooth function of γ in this neighborhood of γ0. Furthermore, we can establish that

(A.8)

We then proceed to prove (23). By a Taylor series expansion of LP (γ),

(A.9)

where the sign ≈ means that the difference between the expression on the left and right sides 

of (A.9) is of a smaller order than the right side of (A.9), and hence can be ignored 

asymptotically. The approximation error in the above expansion can be controlled uniformly 

in δ. To justify this, and similar approximations, throughout we use the Hoeffding and 

Bernstein inequalities, without explicitly referring to them. The key fact we need is that the 

expected value of CT (d2LP (β)/dβdβT )C at β0 is a positive definite matrix and is well-

conditioned. This allows us to prove (23) and obtain a rate of convergence for β̂.

Based on the derivations in Section S.3.1 of the Supplementary Material, the following 

expressions are valid for i = 1, …, n:

(A.10)
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(A.11)

Based on the derivation in Section S.4.2 of the Supplementary Material, we have

(A.12)

where r2,i is negligible and the terms , and pi,θ and Pi,θθT are as defined in Section S.

4.5.

Next, from the derivation in Section S.4.3, we have the expansion

(A.13)

where  and , defined in (S.44) and (S.45), contribute primarily to the asymptotic 

variance and asymptotic bias, respectively, and r4,i is a negligible remainder term. Further 

calculations, detailed in Section S.4.5, allow us to conclude that

(A.14)

By the definition of G̃(ai, θi, β) in (18), the empirical Fisher information matrix satisfies

(A.15)

By (A.15), and the fact that (γ), defined in (19), is positive definite at γ0, we conclude that 

for a given c > 0, with probability at least 1 − n−c, the inverse of Fn(γ0) exists and the 

maximum eigenvalue of the inverse is bounded.
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Combining (A.15) with (A.13) and (A.9), and using the fact that , we obtain (23) 

with αn = c max{(log n)1/2(nm)−1/2,m−1} for some suitable positive constant c. This 

establishes that there exists a root γ̂ of  satisfying || γ̂ − γ0 || = OP (αn). Finally, 

we expand the equation  around γ0 to obtain

(A.16)

This concludes the proof of Theorem 1 once we isolate the leading terms in 

(namely, (S.44) and (S.45)) and use the fact that (ai, ) are i.i.d.

A.3 Proof of Theorem 2

The proof follows from a careful treatment of (A.16). We move the contribution of the bias 

term  in (S.45) to the side of γ̂ − γ0 in (A.16), and use the representations (S.37), 

(S.38), (S.39), and (S.42), taking appropriate conditional expectations to derive the form of 

the asymptotic bias n(γ0). Next we use the representation (A.13) of , and the 

expression of the variance term  in (S.44), and a version of martingale central limit 

33 theorem, through the independence of (ai, ) across i, to conclude that 

has an asymptotic Gaussian limit. The condition A5’ ensures that the remainder terms are oP 

(1). The nonsingularity of (γ0) combined with (A.15) concludes the derivation.
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Figure 1. 
Simulation with “Two-peak” gradient function g and linear Z(·, θi) : dense case with μθ = 

(0, 2)T and σε = 0.01. Left panel: X-axis: x; Solid line: true g(x); Dotted line: point-wise 

mean of g̃(x) = sβĝ(x); Dash-dotted line : point-wise 5% and 95% percentiles of g̃(x). Right 
panel: X-axis: mean of X̄(t); Solid line: point-wise mean of eμ(t)g(X̄(t)); Dotted line: point-

wise mean of ; Dash-dotted line : point-wise 5% and 95% percentiles of 

.
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Figure 2. 
Berkeley growth data. Fitted gradient eZ(t,μ̂θ)g(X̄(t)) against X̄(t) under quadratic subject-

specific effects (p = 3) for female group (dashed line) and male group (solid line).
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