
UC Davis
IDAV Publications

Title
A Survey and Performance Analysis of Software Platforms for Interactive Cluster-Based 
Multi-Screen Rendering

Permalink
https://escholarship.org/uc/item/0vn5b2sm

Authors
Staadt, Oliver G.
Walker, Justin E.
Nuber, Christof
et al.

Publication Date
2003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vn5b2sm
https://escholarship.org/uc/item/0vn5b2sm#author
https://escholarship.org
http://www.cdlib.org/


1

Ninth Eurographics Workshop on Virtual Environments (2003)
A. Kunz, J. Deisinger (Editors)

© The Eurographics Association 2003

A Survey and Performance Analysis of Software 
Platforms for Interactive Cluster-Based 

Multi-Screen Rendering

Oliver Staadt, Justin Walker, Christof Nuber, and Bernd Hamann

Center for Image Processing and Integrated Computing (CIPIC) and Department of Computer Science
University of California, Davis

Abstract
We present a survey of different software architectures designed to render on a tiled display. We provide an in-
depth analysis of three selected systems, including their implementation of data distribution, sort-first render-
ing, and overall usability. We use various test cases to analyze the performance of these three systems.
Categories and Subject Descriptors (according to ACM CCS): C.4 [Performance of Systems]: Performance
Attributes, I.3.2 [Computer Graphics]: Distributed/Network Graphics, I.3.4 [Computer Graphics]: Graphics
Packages, I.3.7 [Computer Graphics]: Virtual Reality.

1.  Introduction

Traditionally, multi-screen display environments have been
driven primarily by powerful graphics supercomputers,
such as SGI’s Onyx systems. With features including
shared-memory multi-processing and multiple synchro-
nized graphics pipelines, they provided a stable and flexible
development platform for high-performance virtual reality
and visual simulation applications. Unfortunately, these fea-
tures come at high cost. Hence, the use of multi-screen pro-
jection environments has been limited to a small number of
users. 

During the past several years, high-performance and fea-
ture-rich PC graphics interfaces have become available at
low cost. This development enables us to build clusters of
high-performance graphics PCs at reasonable cost. An
important issue, however, is that the programming model
for shared-memory systems and clusters differ significantly.
In shared-memory graphics systems, the programmer does
not have to worry about issues such as sharing data amongst
different processors or distributing rendering information to
different graphics engines. In cluster environments, it is
necessary to deal with these issues explicitly. The use of
clusters for computationally intensive simulations and
applications has lead to the development of interface stan-
dards such as the Message Passing Interface (http://
www.mpi-forum.org) and OpenPBS (http://www.open-
pbs.org). We focus on rendering in a multi-display environ-
ment. There are two important application areas where
multi-display environments are used 14:

• displaying images at very high resolutions exceeding
those of available monitors and/or graphic cards and

• providing a larger field-of-view and better immersion
into the scenery. 

A larger image can be obtained by using special purpose
video processors that split the incoming video signal and
distribute it to the connected display systems. This
approach, however, increases the area covered by a single
pixel, which is not always desired. Increasing the resolution
of a displayed image requires the combination of several
display-devices into a single display-environment, provid-
ing a higher resolution by combining several images. In the
past, high-performance computers, such as SGI’s Infinite
Reality with multiple graphics pipes have been used to
drive multi-tiled displays. With the availability of afford-
able PC-based high-performance graphics cards like the
NVidia GeForce- or the 3DLabs Wildcat-series, high-qual-
ity rendering is available at relatively low cost. Using a
cluster-based approach requires the solution of problems
like data-management and -distribution, output-synchroni-
zation and event handling. Solving these problems for an
application can be very tedious, time-consuming and error-
prone, so the usage of libraries providing the necessary sup-
port should be considered.

The design and development of platforms for cluster-
based multi-screen rendering has become increasingly pop-
ular during the past few years 1,4,5,6,7,10,15,16, but a standard
solution has yet to be found. Nevertheless, many developers
are eager to port existing applications to cluster environ-



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

2 © The Eurographics Association 2003

ments or to develop new ones. Although development of
those platforms has only begun recently, various different
architectures have been proposed, some are available as
open-source software 1,7,10,15,16.

We provide a survey of different systems designed to
render on a tiled display and discuss potential implications
on the application development as well as advantages and
disadvantages of these designs. We present detailed descrip-
tions of three systems followed by a performance analysis.
We defined a set of test-cases and conducted a quantitative
evaluation of the usefulness of these systems for different
kinds of application scenarios. Our goal is to help develop-
ers with the selection of a software platform that is appro-
priate for their particular application requirements. We do
not discuss hardware-related issues, which are also impor-
tant for building commodity clusters for rendering. We refer
the reader to 19 for an overview of different hardware archi-
tectures. 

The remainder of this paper is structured as follows:
After discussing different applications for cluster-based
rendering environments in Section 2, we will present the
survey of different software platforms in Section 3. Three
selected platforms will be evaluated in detail in Section 4.
Section 5 contains the results and interpretations of our per-
formance analysis, followed by conclusions in Section 6. 

2.  Cluster-based Rendering

Cluster-based rendering in general can be described as the
use of a set of computers connected via a network for ren-
dering purposes, ranging from distributed non-photorealis-
tic volume rendering over ray tracing and radiosity-based
rendering 17 to interactive rendering using application pro-
gramming interfaces (APIs) like OpenGL 18 or DirectX 11.
We use the same terminology as is used by X-Windows. A
client runs the application while the server renders on the
local display.

Most of the recent research on cluster-based rendering
focuses on different algorithms to distribute the rendering
of polygonal geometry across the cluster. Molnar et al.9
classified these algorithms into three general classes based
on where the sorting of the primitives occurs in the transi-
tion from object to screen space. The three classes are

• sort-first,
• sort-middle, and
• sort-last.
In sort-first algorithms, the display is partitioned into dis-

crete, disjoint tiles. Each rendering node of the cluster is
then assigned one or more of these tiles and is responsible
for the complete rendering of only those primitives that lie
within one of its tiles. To accomplish this, primitives are
usually pre-transformed to determine their screen space
extents and then sent only to those tiles they overlap with.
The required network bandwidth can be high when sending
primitives to the appropriate render server, but utilizing
knowledge of the frame-to-frame coherency of the primi-
tives can reduce the amount of network traffic significantly.
Sort-first algorithms suffer from load balancing due to

primitive clustering. Samanta et al. 13 investigated methods
to improve load balancing by dynamically changing the til-
ing. Sort-first algorithms also do not scale well when the
number of nodes in the cluster increases. Every primitive
that lies on the border of two tiles must be rendered by both
tiles. As the number of tiles increases, the number of these
primitives increases. Samanta et al. 12 solved this problem
by using a hybrid sort-first, sort-last approach.

Sort-middle algorithms begin by distributing each graph-
ics primitive to exactly one processor† for geometry pro-
cessing. After the primitive has been transformed into
screen space, it is forwarded to another processor for ren-
dering. Similar to the sort-first approach the screen space is
divided into tiles, but each processor is only responsible for
rasterization of primitives within that tile. This approach
requires a separation of rasterization engine and rendering
pipeline, so that primitives can be redistributed. Currently
this approach can only be implemented using specialized
hardware, such as SGI’s InfiniteReality engine.

In sort-last approaches, each primitive is sent to exactly
one node for rendering. After all primitives have been ren-
dered, the nodes must composite the images to form the
final image. This usually requires a large amount of band-
width because each node must send the entire image to a
compositor. 

Tiled displays lead naturally toward a sort-first approach.
The screen is already partitioned into tiles, with each tile
being driven by a single cluster node. Other approaches
require to distribute the primitives to the rendering nodes
and distributing the final image to the nodes responsible for
tile-rendering. For these reasons the majority of software
systems designed for rendering on a tiled display imple-
ments a sort-first algorithm.

3.  Systems Survey

In our survey we analyzed systems designed to support ren-
dering on a tiled display. All systems evaluated implement
to some extent a sort-first method. They vary widely with
respect to the way data is distributed among the cluster
nodes. Chen et al. 2,3 first looked at the problem of data dis-
tribution. Two general models have emerged:

• client–server and
• master–slave. 
In the client–server model a user interacts with a single

instance of the application that runs on a client node. This
client is responsible for generating the geometry and dis-
tributing it to the render servers (see Figure 1a). We can dis-
tinguish between two rendering modes - immediate mode
and retained mode. In immediate mode the client sends the
primitives over the network every frame. In retained mode
each render server stores primitives it has already been sent
to locally for re-use. The client then needs to send only
changes to the geometry. This method is usually accom-
plished through the use of a scene graph.

†The term processor is used in a more general sense, not re-
stricted to CPUs or GPUs.



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

3© The Eurographics Association 2003

In the master–slave model the application executes on
every cluster node. Execution of the application on all
nodes must be synchronized to insure consistency among
all application instances. Typically, a master node handles
all user interaction and synchronizes state changes between
all other nodes (see Figure 1b).

The master–slave approach usually requires the least
amount of bandwidth. The results of user interactions and
other state changes are sporadic and relatively simple to
transmit over a network. This approach, however, is not
transparent as everything affecting program execution must
be considered as input. Timers, random number generation,
system calls, or any variables influencing program execu-
tion need to be distributed and synchronized among the
nodes. This limits the types of inputs a programmer is
allowed to use.

The client–server approach is usually fairly transparent
to the programmer. The program can be implemented as if it
were running on a single machine and the system will han-
dle the rest.

In the next section, we will present software systems
from each of the two classes. We will describe their
intended uses, how they implement the sort-first algorithm,
and potential performance impacts.

3.1.  Client–Server

Aura (Broadcast). Aura 16 is a multi-platform API
designed for scientific visualization on a tiled display. In
Broadcast-mode it implements a client-server model. It pro-
vides the user with a scene graph interface to take advan-
tage of frame to frame coherency. In addition to Broadcast-
mode, Aura also provides a master-slave configuration
called Multiple Copies; see Section 3.2 for details. The
Broadcast implementation replicates the scene graph on all
cluster nodes. Any changes to the scene graph are then
broadcast to every node to insure consistency across the
nodes. Aura uses MPI for communication between nodes.

Syzygy (Scene Graph). Syzygy 15 is a VR library designed
specifically to run on a cluster. It provides support for sound
and input device handling. Syzygy provides two program-
ming interfaces, a scene graph API and a master-slave
framework; see Section 3.2 for details. The scene graph is
implemented as a distributed database that is modified
using Syzygy’s own messaging protocol, allowing Syzygy
to run as a multi-threaded applications. The user may add

and remove render servers during application execution. It
is also possible to reuse existing clients when switching
applications.
Parallel iWalk. iWalk 4 is a system for visualizing
extremely large models for Linux or Windows. It uses an
out-of-core algorithm and storage scheme to visualize mod-
els that are too large to be loaded into main memory. A cli-
ent application handles user interaction; each rendering
server executes the basic iWalk code which uses the priori-
tized-layered projection algorithm 8 to determine a set of
nodes visible only to that server.

For and in-depth analysis of OpenSG 10 and Chromium 8
see Section 4.1 and Section 4.2, respectively.

3.2.  Master–Slave
Aura (Multiple Copies). Like its broadcast counter part,
the multiple copies version of Aura 16 also provides a scene
graph API. Following the master–slave model all cluster
nodes run an instance of the application. All supported user
interactions are broadcast to every slave and frame-buffer
swaps are synchronized.
Syzygy (Master–Slave). Syzygy 15 presents an alternate
framework for when the scene graph approach is inappro-
priate. The master-slave framework provides automatic
sharing of certain data across multiple instances such as
user input, timestamps, random number seeds, and a view-
ing matrix. Syzygy also provides a mechanism for sharing
other types of data as well.

VRJuggler 1 will be discussed in Section 4.3.

4.  Systems Evaluation

We chose three systems for an in depth comparison and per-
formance analysis. The systems were chosen for the follow-
ing reasons:

• They were designed to execute on a multi-platform,
heterogeneous cluster. 

• They were designed to be used with little or no modifi-
cation by the user. 

• They were all being widely used by members of the
graphics community. 

• They were all open source.
We discuss how the system implements the sort-first

algorithm and potential performance ramifications. We also

client
application, I/O

network

server #1
rendering

server #2
rendering

server #3
rendering

server #n
rendering

master
app, render, I/O

slave #1
app, render

slave #2
app, render

slave #n
app, render

network

Figure 1:  Different setups for interactive rendering cluster: a) client–server setup. b) master–slave.

a) b)



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

4 © The Eurographics Association 2003

discuss ease of use and flexibility, i.e., whether the system
supports trapezoidal or overlapping tiles that are useful for
tiled displays in which the projector’s tiles are trapezoidal
or overlapping projection tiles. Finally we discuss how the
three systems compare to each other.

4.1.  OpenSG
OpenSG 10 is a scene graph API, similar to Open Inventor
and OpenGL Performer, designed to support simultaneous
multithreading in a scene graph. Whenever the user makes
changes to the scene graph it must explicitly be stated
which nodes and fields have been changed. Each of the
threads can then use this information to update their local
copies of the scene graph. The mechanisms used to support
simultaneous multi-threading are easily extended to support
rendering on a cluster. OpenSG uses a client-server setup
with the scene graph replicated on every node. The user
interacts with the client, manipulating the scene graph.
These changes are stored in a change list and broadcast to
every cluster node every frame.

OpenSG provides a sort-first algorithm to use a cluster to
display an image on a single display, and an algorithm for
rendering on a tiled display. The sort-first algorithm dynam-
ically changes the tile extents to balance the rendering load
across all cluster nodes. When rendering on a tiled display,
OpenSG divides the screen into M x N evenly spaced rect-
angular tiles with a render server assigned to each tile.
OpenSG also supports trapezoidal or different sized tiles,
but the configuration of these tiles is difficult. It is also dif-
ficult for OpenSG to support a cluster that does not easily
fit into a M x N configuration.

Rendering is performed by the cluster servers. Each
server is assigned a single tile of the display and adjusts its
viewing frustum accordingly. Bounding boxes are calcu-
lated for each geometry node and view frustum culling is
performed on a per-node basis. This can lead to problems
when the complete geometry is in a single node, e.g., when
rendering an isosurface. In this case every server must push
the entire geometry through the pipeline and rely on
OpenGL to perform clipping. This results in a big perfor-
mance loss when servers need to process and render geome-
try that do not lie in their tile.

By storing the scene graph on each server and transmit-
ting only changes to the scene graph, OpenSG does not
require a high bandwidth for static scene graphs. The cost to
transmit a few transformation matrices is small when com-
pared to the cost of transmitting the geometry every frame.
A highly dynamic scene graph with changing geometry and
textures results in a large amount of information being sent
every frame, putting a strain on networking resources. 

4.2.  Chromium
Chromium 7 is the successor to WireGL 5,6, a system to
support OpenGL applications on a cluster. Chromium
replaces the system’s OpenGL library with its own, directly
operating on the stream of OpenGL graphics commands.
Chromium provides Stream Processing Units (SPU). Each
SPU has as its input a stream of graphics commands, per-
forms some operation on these commands, and passes them
on. SPUs can be chained together to perform combined

operations. Some basic SPUs include render which passes
the stream to the system’s local implementation, pack
which packs the stream into a buffer for transmission to
cluster servers, and print which outputs the stream in a
human readable format.

By replacing the OpenGL library Chromium can theoret-
ically run any application using OpenGL. In the current ver-
sion Chromium does not completely implement all features
of the OpenGL 1.2 specifications. Chromium does not
implement OpenGL 1.2 imaging functions related to histo-
gram, min/max, convolution and colortables, and display
lists are not completely conformant (Chromium tracks
changes to the OpenGL state, and changes to the state
within a display list are not visible to the state tracker). Any
OpenGL extensions the user uses must also be implemented
by Chromium.

Chromium supports rendering on a tiled display via the
tilesort SPU. The user can specify rectangular tiles of dif-
ferent sizes, overlapping tiles, and tiles that do not lie on a
grid. It is also possible to specify a geometric transforma-
tion in the form of a matrix to support trapezoidal and
sheared tiles.

To render geometry Chromium pre-transforms each ver-
tex and maintains a screen-space bounding box of all geom-
etries. When the send-buffer is filled, Chromium
determines which tiles the bounding box overlaps with and
sends the data to those tiles. The send-buffer can be explic-
itly flushed using glFlush. Chromium assumes that geome-
try which lies together temporally also lies together
spatially. This is a reasonable assumption when rendering
an isosurface or other types of mesh data. In the worst case,
the bounding box of the geometry covers all tiles, requiring
the data be transmitted to all tiles. Since Chromium trans-
mits the geometry every frame, it is possible that substantial
network traffic is generated.

4.3.  VRJuggler
VRJuggler is a framework for virtual reality applications
that handles window and viewport management, user inter-
actions via various input devices, sound, and cluster
support1.

VRJuggler implements a master-slave model for cluster
support. The application is started on each cluster node; one
of the nodes is designated as a master and waits for all
slaves to connect. The master node is responsible for syn-
chronizing execution of all slave nodes, user input can
occur at any node. The input is then broadcast to all other
nodes in order to maintain a consistent application state.
VRJuggler provides support for a large number of commer-
cial interaction devices, such as trackers by Ascension,
Polyhemus, and InterSense. It does not provide inherent
support for random number generators or system calls. For
any input device that is not supported by VRJuggler, an
input device interface must be provided. Currently three
types of input devices are supported: digital, analog, and
positional.

Each cluster node can drive one or more tiles. The four
corners of each tile are specified by the user, allowing the
use of overlapping tiles and trapezoidal tiles.



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

5© The Eurographics Association 2003

VRJuggler does not perform any geometry culling; it
simply lets OpenGL clip to the window borders. This
means that running VRJuggler on a cluster will show little
to no performance improvement. Each tile must still send
the complete geometry through the pipeline. 

4.4.  Comparison

Of the three systems compared VRJuggler is expected to be
running at the most consistent frame rates, running at about
the same rate as running on a single machine, not faster and
not much slower. Broadcasting user interactions requires
very little bandwidth and should not affect the performance
of VRJuggler at all. VRJuggler’s lack of geometry culling
results in a lot of duplication and unnecessary work being
done. Tiles render geometry that does not lie within their
viewing volume.

OpenSG performs well when rendering static geometry
that is distributed among several nodes. Nodes will only be
rendered by tiles their bounding boxes overlap with. With
increasing bounding box size, more tiles will be forced to
render that node and more redundant work must be done. In
the worst case the bounding box covers all tiles and it takes
as long to render on a cluster as it does on a single machine.
If the geometry changes, these changes must be broadcast
to all cluster nodes. Frequent changes can significantly slow
down system performance.

Since Chromium transmits the geometry every frame it
requires a large amount of bandwidth. By creating bound-
ing boxes for the geometry and transmitting it to only those
nodes it overlaps with, Chromium attempts to speed up ren-
dering and reduce the amount of data sent over the network.
This only works if the primitives lie close together spatially
and temporally. If they do not the data must be sent to all
servers.

5.  Performance Analysis

We split our analysis in two parts. The first part covers sys-
tem behavior and performance with a static number of poly-
gons (Section 5.2). For the second part we used a highly
dynamic environment with objects being created and
deleted every frame (Section 5.3). 

5.1.  Test Environment
Our test-environment comprises 5 Linux-PCs, each running
RedHat 7.3 with a GeForce3 graphics card, a 2GHz Intel
Pentium Processor, and 512 MByte of memory. The
machines were connected to a 100 MBit switch. While one
PC was used to control the application, the remaining four
were used to drive a two-by-two tiled display wall (see
Figure 2), with each tile driven at a resolution of 1280 x
1024.

For each system we used OpenSG as the underlying ren-
dering API. This is possible because OpenSG uses OpenGL
as its underlying graphics API. Since Chromium replaces
the OpenGL library, Chromium is able to support OpenSG
applications. VRJuggler also supports OpenSG as a possi-
ble graphics API. Using OpenSG on all systems insures that
any performance differences are the same on all systems.
For instance, when OpenSG loads certain geometric model
files it attempts to optimize the geometry by turning indi-
vidual triangles into triangle strips. Since each of the test
systems use OpenSG to load the model, all of them make
use of the geometry optimization.

Figure 3 shows frame rates for each system running
locally on a single machine when rendering a single static
object that overlaps every tile. The results show that there is
virtually no difference in performance between each of the
three systems when rendering on a local machine, indepen-
dent of the number of triangles per object. It can be seen
that Chromium is slightly slower on the smaller models. A
possible reason for this slight performance hit on programs
with high frame rates is the fact that Chromium must moni-
tor all changes to the OpenGL state. This overhead for mon-
itoring state changes is mitigated by longer rendering times
on high-resolution models. However, it becomes significant

Figure 2:  Setup of our test bed showing the two-by-two tiled display wall and the rendering cluster.

Control-PC Render-Cluster Power-Wall

10
0 

M
B

it
H

ub



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

6 © The Eurographics Association 2003

when rendering times become shorter and a relatively larger
amount of time is spent monitoring the state and not doing
rendering. 

5.2.  Tests with Static Numbers of Objects
These tests are used to analyze how the systems’ perfor-
mance and network utilization scale when the number of
polygons increases, how they handle synchronization
between cluster nodes during runtime, and how long it takes
to load and initialize all cluster nodes.

W chose three different models, two of them at different
resolutions, giving us 5 different objects with different com-
plexity to use. This way we could see how system-perfor-
mance correlated to model size and complexity. Table 1
contains an overview of the number of vertices and trian-
gles of the static models used during performance analysis. 

We carried out five different tests for each model, each
test lasting 500 frames. The tests can be described as fol-
lows (see Figure 4 for illustrations):
1a: Rendering a static model overlapping every tile, pro-

viding us with a good baseline. 
1b: Rendering a single model overlapping every tile, this

time rotating around a central axis. Rotating the model
allows us to detect synchronization problems between
cluster nodes and balances the rendering load by con-
stantly changing the number of polygons each cluster
node has to render.

1c: Rendering a single object, initially centered in one of
the tiles. The model is then moved from tile to tile in
straight lines. This indicates how the systems handle
geometry distribution.

1d: Rendering four identical objects, each instance is ini-
tially centered in a different tile; the objects move from
tile to tile, following straight lines. This tests geometry
distribution, but requires four times the number of
polygons to be rendered.

1e: Rendering four identical objects, each instance cen-
tered in a different tile; each instance rotates in place.
This comparison determines the impact of objects
lying on the boundary of two tiles.

Figure 5 shows the frames-per-second measured for each
system and every model when rendering a single static
model in cluster mode. We noticed a large performance
drop of Chromium when compared to the other two sys-
tems. OpenSG and VRJuggler perform almost identically,
but Chromium runs 91%–98% slower. All three systems
showed similar results for all five tests, with OpenSG and
VRJuggler achieving the same frame rate and Chromium
clocking in at over 90% slower.

The primitives in the model are not organized spatially.
As a result Chromium must transmit every primitive to
every cluster node every frame. This fact can be verified by
enabling rendering of Chromium’s bounding boxes. Net-
work traffic accounts for 100% of the slowdown in Chro-
mium.

Chromium’s inability to handle certain function calls
within display lists was the main motivation for not using
them in our tests. Chromium however is the most likely sys-
tem to benefit from the use of display lists. In retained mode
applications such as rendering a high resolution model, cre-
ating a display list on each cluster node can speed up ren-
dering. For Chromium a display list could be generated on
each node during the first frame; for each subsequent frame
only the view transformations would then need to be sent to

Model # Vertices # Triangles

Skeleton Hand, low res 5356 2178
Stanford Bunny, low res 6135 3155

Stanford Bunny, high res 81539 74457

Skeleton Hand, high res 808654 719594
Dragon 1120192 981038

Table 1:  Models used for performance analysis, sorted by
number of triangles (models are available at Georgia Insti-
tute of Technology, Large Geometric Models Archive
(http://www.gatech.edu/projects/large_models).

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Stanford Bunny,

low res

Skeleton Hand,

low res

Stanford Bunny,

high res

Skeleton Hand,

high res

Dragon

Average Frame Rate on a Single Machine (fps)

OpenSG

Chromium

VRJuggler

Figure 3:  A baseline comparison of the three test systems.
The table shows the average frames per second for each
system rendering a single static model on a single machine.

Figure 4:  Tests performed for each model: a) static, b) ro-
tating, c) moving from tile to tile, d) moving between tiles, e)
rotating in each tile. 

b)a)

e)

d)c)



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

7© The Eurographics Association 2003

each node, saving a large portion of the frame time. In
OpenSG and VRJuggler the display lists would also be cre-
ated on each cluster node. The only performance gain
would be the typical gain achieved when using a display list
as opposed to issuing all commands every frame.

When comparing the results of test 1a on the cluster
(Figure 5) to the results on a single machine (Figure 3),
there is no performance gain for tests run on a cluster. In an
ideal situation with n cluster nodes, each cluster node
should render 1/nth of the scene and the entire rendering
time should be n times faster. Since all of the geometry for a
single model is located inside a single scene graph node,
none of the geometry is culled out by OpenSG. As we dis-
cussed earlier, since the geometry is not organized spatially,
Chromium also does not experience any speedup when
using a cluster.

Test 1b showed no different results than test 1a. When
comparing test 1c to test 1a, there was no remarkable differ-
ence for OpenSG and VRJuggler, whereas Chromium
showed an average speedup of a factor of three, with a
speedup of four when the object was in one tile only, and a
speedup of two when the object was crossing tile bound-
aries.

Tests 1d and 1e were designed to measure each systems’
ability to render multiple objects in different tiles. Figure 6
shows the speedup for each system running test 1e on a
cluster when compared to running it on a local machine. In
this case each node of the cluster is responsible for render-
ing exactly 1/4th of the entire scene. OpenSG and VRJug-
gler show the expected speedups of a factor close to four,
especially for high polygon models. The speedup from
VRJuggler is due completely to using OpenSG as its under-
lying API. Chromium, which is still hindered by network
performance, does not show an improvement when com-
pared to running on a single machine; network bandwidth is
still the limiting factor. Comparing the results of test 1d
with the results of test 1e shows that Chromium performs
bucketing correctly. In test 1d, when the bunnies overlap
tiles, rendering slows down to approximately 50%.

Figure 7 shows the average number of kilobytes sent per
frame for test 1d. OpenSG and VRJuggler both show a con-
stant amount of network traffic for all models. OpenSG
only has to update four transformation matrices every

frame, and VRJuggler only has to synchronize execution of
the program. Both operations are model-size independent.

Chromium, as explained earlier, has to transmit the
geometry every frame. In this test it sends only the geome-
try for each object to one tile, except during times when the
object spans two tiles. In this case it must send the geometry
for each object to both tiles.

Table 2 shows the average number of kilobytes per sec-
ond sent from the client to the cluster nodes during test 1d.
Chromium is close or over the theoretical limit for a 100
Mbps Ethernet network. The two low-resolution models are
slightly below the limit, but all three high resolution models
completely saturate the network. OpenSG and VRJuggler
both show a decreasing number of bytes per frame as the
rendering time for a single frame is increasing, while the
amount of network data being sent remains constant. 

By multiplying the average number of bytes per frame
required by Chromium with the theoretically achievable
frame rate of OpenSG, we can calculate the required net-
work bandwidth in order to eliminate the network as a bot-
tleneck. The smallest bandwidth required to run any of the
five tests and models is 36 Mbytes per second. This is
required to render a single, low-resolution hand model

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

Stanford Bunny,

low res

Skeleton Hand,

low res

Stanford Bunny,

high res

Skeleton Hand,

high res

Dragon

Average Frame Rate on a Cluster (fps)

OpenSG

Chromium

VRJuggler

Figure 5:  Average number of frames-per-second for each
system rendering a single static model on the tiled display.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Stanford Bunny,

low res

Skeleton Hand,

low res

Stanford Bunny,

high res

Skeleton Hand,

high res

Dragon

Speedup on a Cluster

OpenSG

Chromium

VRJuggler

Figure 6:  The speedup for each system rendering four ro-
tating models on the tiled display over a single machine
(test 1e).

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

1000000.0000

Stanford Bunny,

low res

Skeleton Hand,

low res

Stanford Bunny,

high res

Skeleton Hand,

high res

Dragon

Average Network Traffic (Kbps)

OpenSG

Chromium

VRJuggler

Figure 7:  The average number of Kbytes per frame sent
over the network when rendering four moving objects on
the tiled display.



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

8 © The Eurographics Association 2003

moving from tile to tile. The bandwidth required to display
a single, static, low res hand in full screen is 110 Mbytes per
second, barely below the capacity of gigabit Ethernet. In
order to display the dragon in full screen, a network capable
of 894 Mbytes per second is required.

We also tried to determine system initialization time, but
measuring this value is very difficult. Each system requires
starting up each of the render servers and the application
client. All synchronization for Chromium is performed
before the application begins executing its first line of code.
OpenSG uses a function call within the application to con-
nect to each of the cluster nodes, but the scene graph is not
synchronized between all of the nodes until the first frame
is rendered. For VRJuggler, each of the slave nodes syn-
chronize with the master before any execution of applica-
tion code, while the scene graph is synchronized after
executing some of the application’s code.

We decided to measure the amount of time it takes from
executing the first line of code in the application until the
first frame has been rendered. All render servers are started
first, then the application client is started. This method of
measuring startup time insures that we include the scene
graph synchronizations of OpenSG and Chromium.

Figure 8 shows the times required by each system to syn-
chronize for test 1d. These numbers were calculated by first
measuring the time it takes from the first line of code until
the end of rendering the first frame for both cluster and a
single machine. In order to eliminate the time it takes to
render the scene we subtracted the average time per frame
from the startup time for the cluster. Finally, we used the
difference between that number and the startup time for a
single machine to eliminate the time it takes to load and
process the model files.

Chromium performs no synchronization of data, and
therefore shows no extra start-up time. Any extra time
appearing in Figure 8 is due to random variations in loading
the file, optimizing the geometry and rendering.

OpenSG requires virtually no additional time when load-
ing the low resolution models, but it does require a signifi-
cant amount of time to transmit the high resolution models
to each of the cluster nodes. OpenSG, however, is able to
compress its internal data structures for transmission over
the network, allowing OpenSG to send almost four million
triangles to four different machines in under forty seconds.

5.3.  Tests with Dynamic Number of Polygons
This test is designed to measure how well the systems han-
dle a dynamically changing environment and how they syn-
chronize these geometry changes among the cluster nodes.
The emphasis here is on runtime performance and network
usage and less on initialization.

We decided to implement Conway’s “Game of Life” 20.
The “Game of Life” is a simple, but highly dynamic simula-
tion of objects populating a screen. The simulation starts
with a set of seed-objects, and after each frame objects are
generated and removed according to the algorithm shown
below.

Depending on the starting configuration the simulation
stabilizes after a relatively small number of steps. A stable
world is defined as a configuration where the number of
objects remains constant. For our simulation we used the R-
pentomino configuration which is known to stabilize after
1103 steps. Figure 10 shows the initial configuration and
the result after running two iterations. We let the simulation
run for 1200 frames with one step per frame.

The “Game of Life” was run on a 100 x 100 grid. The
scene graph consists of a root node with 10 children. Each
child is a transformation node that forms the top row of the
grid. Each of these 10 children has a daisy chain of children

Model OpenSG
Kbytes / sec

Chromium
Kbytes / sec

VRJuggler
Kbytes / sec

Skeleton Hand, low res 115 10206 1266
Stanford Bunny, low res 89 10480 955
Stanford Bunny, high res 45 11324 485
Skeleton Hand, high res 8 11506 91
Dragon 6 11517 62

Table 2:  The average number of bytes per second sent over
the network for each system rendering a single static model
on the tiled display.

0.10

1.00

10.00

100.00

1000.00

Stanford Bunny,

low res

Skeleton Hand,

low res

Stanford Bunny,

high res

Skeleton Hand,

high res

Dragon

Startup Time (seconds)

OpenSG

Chromium

VRJuggler

Figure 8:  The amount of time (in seconds) required to con-
nect to and synchronize each of the cluster nodes.

Figure 9:  “Game-of-Life”-algorithm

for each square do
if (object in square)
then

if (2 or 3 objects in neighborhood)
then

object remains
else

object dies
fi

else
if (3 entities in neighborhood)
then

create new object
fi

fi
done



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

9© The Eurographics Association 2003

forming the columns of the grid. Pointers to each grid cell
are stored in an array for direct access. Every time a new
sphere is created in the simulation, the geometry for the
sphere is regenerated and stored as a new geometry node.
This node is then attached to the appropriate transformation
node. Every time a sphere is removed in the simulation it is
detached from the transformation node and its memory is
deallocated. This requires all changes to the scene graph be
sent over the network.

Figure 11 shows the average frame rate for each system
running the simulation on the cluster. Once again Chro-
mium is the slowest, but this time OpenSG is much slower
than VRJuggler.

Chromium once again must transmit all geometry infor-
mation every frame. The spheres are each contained within
a single scene-graph node which means that Chromium per-
forms a screen space bounding box test per sphere. Chro-
mium sends each sphere only to the node responsible for
rendering that sphere. Despite this efficiency there is still
too much data sent over the network for Chromium to avoid
network bandwidth as the bottleneck.

Since we decided to create and delete spheres instead of
reusing geometry or sharing geometry nodes, OpenSG is
forced to send a lot of data over the network. OpenSG must
send the geometry for all spheres that are going to be added
to all cluster nodes. It must also send the ID of all spheres
that are going to be deleted. Since each sphere is contained
within its own node, frustum culling allows each of the ren-
der server to render only the spheres within its tile. This
results in a speedup on rendering, however the geometry
must still be sent to every cluster node.

Since the application is deterministic there is no data
VRJuggler needs to synchronize between cluster nodes
other than synchronizing the frames. If this program were
based on random numbers then the random number would
be declared as an input device and synchronized between
each of the nodes. Synchronizing a single random number
however requires much less network traffic than sending
large amounts of geometry.

6.  Conclusions

We have presented a survey of software systems designed
to render on a tiled display. We have provided an in-depth
analysis of three of the more popular systems. For each of
these systems we have ran a series of performance analysis
tests to measure their performance in different circum-
stances.

VRJuggler produced the fastest frame rates on all tests
by keeping network traffic to a minimum. However VRJug-
gler was only able to produce frame rates consistent with
OpenSG on tests 1d and 1e because VRJuggler was able to
make use of OpenSG’s node culling abilities. Without
OpenSG as an underlying API VRJuggler’s frame rates will
not improve as the number of cluster nodes increases.
VRJuggler also took an order of magnitude longer than
OpenSG, and two orders of magnitude longer than Chro-
mium to initialize the cluster.

OpenSG produced the second best frame rates of the
three systems tested. Frame rates for tests with static geom-
etry equal those produced by VRJuggler, and the frame
rates scale with the number of cluster nodes provided the
screen space size of the bounding boxes of the geometry is
comparable to the size of a single tile. The frame rate of
applications with dynamically changing geometry were
much lower than that of VRJuggler, and the network
became saturated. OpenSG required an order of magnitude
longer than Chromium to initialize the cluster.

Chromium was able to run the OpenSG application with
very few modifications, and it’s startup times were the best
of all systems. Chromium produced the slowest frame rates
of all systems tested. In all cases, the available bandwidth
was too small to support the network traffic generated by
Chromium, and the network became a severe bottleneck.

Both, VRJuggler and OpenSG are well suited for appli-
cations with complex and large geometries, while Chro-
mium can only be used for smaller models or in connection
with a high-speed network. While VRJuggler performed
best, it requires similar machines driving the tiles, as the
applications run fully duplicated. For applications where
large datasets need to be transmitted on a regular basis or
computing power is not available, OpenSG would be the
best solution in connection with a high-performance node
running as client and several servers running the render-
engine only.

7.  Acknowledgments

This work was supported by the National Science Founda-
tion under contract  ACI 9624034 (CAREER Award),
through the Large Scientific and Software Data Set Visual-

Figure 10:  Configurations for ‘”Game of Life”-simulation:
a) start-configuration, b) step 1, c) step 2. Deleted objects
shown with white circles, created objects shown in grey.

a) b) c)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

OpenSG Chromium VRJuggler

Game of Life Simulation

Average Frame Rate on a Cluster (fps)

Figure 11:  The average number of frames rendered per
second by each system running the “Game of Life.”



Staadt et al. / Performance Analysis of Software Platforms for Interactive Cluster-Based Multi-Screen Rendering

10 © The Eurographics Association 2003

ization  (LSSDSV) program under contract ACI 9982251,
through the National Partnership for Advanced Computa-
tional  Infrastructure (NPACI), and a large Information
Technology Research (ITR) grant. We thank the members
of the Visualization and Graphics Research Group at the
Center for Image Processing and Integrated Computing
(CIPIC) at the University of California, Davis.

The geometric models of the bunny, dragon, and hand
are courtesy of the Graphics Group at Stanford University. 

8.  References

1. A. Bierbaum, C. Just, P. Hartling, K. Meinert, A.
Baker, and C. Cruz-Neira. “VR Juggler: A Virtual Plat-
form for Virtual Reality Application Development.”
IEEE Virtual Reality, 89-96, 2001.

2. H. Chen, Y. Chen, A. Finkelstein, T. Funkhouser, K.
Li, Z. Liu, R. Samanta, and G. Wallace. “Data Distribu-
tion Strategies for High Resolution Displays.” Comput-
ers and Graphics Vol. 25, 811-818, 2001.

3. Y. Chen, H. Chen, D. W. Clark, Z. Liu, G. Wallace, and
K. Li. “Software Environments For Cluster-based Dis-
play Systems.” IEEE Symposium on Cluster Comput-
ing and the Grid, 202-210, 2001.

4. W. T. Correa, J. T. Klosowski, and C. T. Silva. “Out-
Of-Core Sort-First Parallel Rendering for Cluster-
Based Tiled Displays.” EGPGV, 2002.

5. G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan.
“Distributed Rendering for Scalable Displays.” IEEE
Supercomputing, 2000.

6. G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Ever-
ett, and P. Hanrahan. “WireGL: A Scalable Graphics
System for Cluster.” SIGGRAPH, 129-140, 2001.

7. G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, and J. T. Klosowski. “Chromium: A
Stream-Processing Framework for Interactive Render-
ing on Clusters.” SIGGRAPH, 693-702, 2002.

8. J. T. Klosowski and C. T. Silva. “The Prioritized-lay-
ered Projection Algorithm for Visible Set Estimation.”
IEEE Transactions on Visualization and Computer
Graphics, 365-379, 2000.

9. S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. “A
Sorting Classification of Parallel Rendering.” IEEE
Computer Graphics and Applications, 23-32, 1994.

10. G. Voss, J. Behr, D. Reiners, and M. Roth. “A Multi-
thread Safe Foundation for Scene Graphs and its Exten-
sion to Clusters.” Eurographics Workshop on Parallel
Graphics and Visualization, 33-38, 2002.

11. R. Samanta, T. Funkhouser, K. Li, and J. Singh. “Sort-
First Parallel Rendering with a Cluster of PCs.” SIG-
GRAPH 2000 Technical Sketches, 2000.

12. R. Samanta, T. Funkhouser, K. Li, and J. Singh.
“Hybrid Sort-First and Sort-Last Parallel Rendering
with a Cluster of PCs.” Eurographics/SIGGRAPH
workshop on Graphics hardware, 99-108, 2000.

13. R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P.
Singh. “Load Balancing for Multi-Projector Rendering

Systems.” Eurographics/SIGGRAPH workshop on
Graphics hardware, 107-116, 1999.

14. D. R. Schikore, R. A. Fischer, R. Frank, R. Gaunt, J.
Hobson, and B. Whitlock. “High-Resolution Multi-
projector Display Walls.” IEEE Computer Graphics
and Applications, 38-44, 2000.

15. B. Schaeffer and C. Goudeseune. “Syzygy: Native PC
Cluster VR.” To appear in IEEE Virtual Reality, 2003.

16. T. van der Schaaf, L. Renambot, D. Germans, H.
Spoelder, and H. Bal. “Retained Mode Parallel Render-
ing for Scalable Tiled Displays.” Immersive Projection
Technologies Symposium, 2002.

17. I. Wald, P. Slusallek, and C. Benthin. “Interactive Dis-
tributed Ray Tracing of Highly Complex Models.”
Eurographics Workshop on Rendering, 277-288, 2001.

18. M. Woo, J. Neider, and T. Davis. Open GL Program-
ming Guide, Second Edition, 1998. Addison Wesley,
ISBN 0-201-46138-2.

19. M. Knorich Zuffo. SIGGRAPH 2002 Course 47: Com-
modity Clusters for Immersive Projection Environ-
ments. SIGGRAPH, 2002.

20. M. Gardner. “Mathematical Games: The Fantastic
Combinations of John Conway’s New Solitarire Game
‘Life’.” Scientific American, Volume (4)223, 120-123,
Oct. 1970




