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TherapeuTic advances in 
infectious disease

The problem of granulomatous amebic 
encephalitis
Granulomatous amebic encephalitis (GAE) is an 
uncommon, highly morbid, and poorly under-
stood infectious syndrome. The two known etio-
logic agents of GAE are the free-living amebae 
(FLA) Balamuthia mandrillaris and Acanthamoeba 
species. GAE is an infection of the central nerv-
ous system (CNS) characterized by encephalitis 
or meningoencephalitis, often including the 
development of space-occupying lesions. GAE 
caused by B. mandrillaris or Acanthamoeba has a 
mortality rate of >90%, making it one of the 
deadliest infectious syndromes.1,2 The optimal 
treatment for these infections is currently not well 
defined.

The first case of human Acanthamoeba infection 
was reported in 1972.3 Multiple species of 
Acanthamoeba have been implicated in human 
infection, and the term Acanthamoeba will be used 
in this article to describe any of the known patho-
genic species.4 A total of 122 cases of Acanthamoeba 
GAE have been identified in the United States 
between 1956 (diagnosed nearly 20 years 

post-mortem) and 2020.2 Acanthamoeba GAE 
disease generally presents as an encephalitis  
syndrome with gradual onset.2 Acanthamoeba  
primarily causes invasive disease in immunocom-
promised patients, especially those living with 
human immunodeficiency virus (HIV), malig-
nancy, or who have undergone solid organ or 
stem cell transplant.2 In addition to GAE, 
Acanthamoeba can cause rhinosinusitis, cutane-
ous disease, or disseminated disease, involving 
multiple organ systems. More commonly, it 
causes a destructive form of keratitis that affects 
immunocompetent hosts who use contact lenses.2 
Acanthamoeba has a worldwide distribution and is 
found throughout the environment including soil 
and tap water samples.5 In the United States, 
most non-keratitis Acanthamoeba cases have been 
reported in California, Texas, New York, and 
Georgia.2

B. mandrillaris was identified in 1990 in a neuro-
logically devastated female mandrill at the San 
Diego Zoo, and noted to be distinct from 
Acanthamoeba based initially on morphology and 
antigenic analysis.6 However, cases in the United 
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States were found to date back to 1974 upon ret-
rospective review.1 Acanthamoeba and B. mandril-
laris have since been found to be closely related by 
ribosomal ribonucleic acid (RNA) analyses.7 
Both of these FLA have a proliferative, motile 
trophozoite stage, and a thick-walled, dormant 
cyst form. The cyst form is thought to be more 
resistant to antimicrobials than the trophozoite.

Since its discovery, B. mandrillaris has been 
reported in more than 200 human cases world-
wide, in every continent except Antarctica. Similar 
to Acanthamoeba, GAE due to B. mandrillaris usu-
ally presents as the subacute onset of neurological 
symptoms.1 Besides GAE, B. mandrillaris can 
cause cutaneous disease.1 In rare case reports, it 
has also been described as causing pulmonary 
infection, endophthalmitis, and disseminated dis-
ease.8,9 B. mandrillaris can also be found in soil 
and water, and while the mechanism of infection 
in most cases is not known, a history of soil expo-
sure is common.1 Humans are usually a dead-end 
host for the ameba, except in rare cases of B. man-
drillaris transmission via organ transplant.10,11 B. 
mandrillaris is also known to cause fatal infections 
in a variety of non-human mammals, including 
tigers,12 great apes,13 and dogs.14 Case incidence 
and clinical presentation vary by geographic loca-
tion. Most cases of B. mandrillaris infections in the 
United States have been in California, Texas, and 
Arizona.1 Outside the United States, the largest 
case series have been reported from Peru15 and 
China.16 Patients diagnosed outside North 
America are more apt to present with a cutaneous 
lesion than patients in the United States, who typ-
ically present with GAE without a preceding skin 
lesion.1,15 The first case of B. mandrillaris GAE in 
Africa was reported in 2022.17

Naegleria fowleri is another pathogenic FLA that 
infects humans. It causes primary amebic menin-
goencephalitis (PAM), a rapidly progressive and 
highly fatal CNS infection with only seven well-
characterized survivors reported among 182 labo-
ratory-confirmed cases (4% survival).18,19 Of the 
three FLA species, only N. fowleri has a clearly 
defined mode of acquisition. This ameba infects 
humans when water forcefully enters the nose, 
through participation in aquatic activities or nasal 
rinsing with contaminated tap water. Because 
PAM cases are readily distinguished from GAE, 

both by epidemiology and clinical presentation, 
this article focuses solely on the treatment of B. 
mandrillaris and Acanthamoeba CNS infections. A 
recent review of PAM was published in 2021.19

The treatment for GAE is based largely on case 
studies of survivors. The Centers for Disease 
Control and Prevention (CDC) currently sug-
gests an antimicrobial regimen for GAE com-
prised of five or six drugs: pentamidine, 
sulfadiazine, flucytosine, fluconazole, and milte-
fosine; for B. mandrillaris GAE, a macrolide 
(azithromycin or clarithromycin) is added (Table 
1).1,2,20 In addition to this core regimen, survivors 
of GAE have received many other empiric thera-
pies, including acyclovir, albendazole, ampho-
tericin B, doxycycline, ethambutol, ketoconazole, 
isoniazid, minocycline, pyrazinamide, posacona-
zole, rifampin, trifluoperazine, thioridazine, tri-
methoprim–sulfamethoxazole, voriconazole, and/
or various steroid formulations.1,21 The wide vari-
ety of treatments used may reflect both delay in 
the diagnosis (and therefore empiric treatment for 
hypothesized viral, bacteria, mycobacterial, or 
fungal etiologies) and a paucity of available evi-
dence to guide treatment.

Mortality remains high despite therapy, and many 
of the recommended medications have significant 
toxicities, especially pentamidine, sulfadiazine, 
and flucytosine. Large-scale in vitro drug screens 
have identified new drugs that may be more clini-
cally effective and less toxic than those historically 
used. This article reviews the clinical, pharmaco-
logical, and laboratory data underlying the cur-
rent antimicrobial agents used for GAE, novel 
studies in this area, and future directions.

Challenges of evaluating therapies for rare 
and deadly infections
There has never been a randomized, controlled 
medication trial for GAE, nor is one realistically 
feasible. Cases are exceptionally rare, and the 
randomized allocation of potentially lifesaving 
medications is impossible in the face of a condi-
tion with mortality exceeding 90%. Thus, thera-
peutic advances for this condition have relied 
primarily on case studies of survivors, despite 
their known potential for bias, supplemented by 
in vitro studies.

https://journals.sagepub.com/home/tai
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Table 1. Association of medications received and survival in patients with granulomatous amebic encephalitis in the United States 
diagnosed antemortem and reported to CDC, 1955–2020.

Acanthamoeba GAEa B. mandrillaris GAEb

Total survivors (%) 7/112 (6%) 12/123 (10%)

Total survivors among those 
diagnosed antemortem (%)

7/42 (17%) 12/76 (16%)

Total survivors among those 
diagnosed antemortem who 
received any recommended 
treatment (%)

7/30 (23%) 11/48 (23%)

 Patients with Acanthamoeba GAE diagnosed 
with antemortem who received at least one 
recommended medication (n = 30)

Patients with B. mandrillaris GAE diagnosed 
antemortem who received at least one 
recommended medication (n = 48)

Drug Received 
drug
(n survived, 
% survival)

Did not 
receive drug
(n survived, 
% survival)

p Valuec Received 
drug
(n survived, 
% survival)

Did not 
receive drug
(n survived, 
% survival)

p Valuec

Currently recommended regimen

 Pentamidine 3/13 (23%) 4/17 (24%) 1.00 8/31 (26%) 3/17 (18%) 0.72

 Sulfadiazine 5/14 (36%) 2/16 (13%) 0.20 9/32 (28%) 2/16 (13%) 0.29

 Flucytosine 6/13 (46%) 1/17 (6%) 0.02 10/30 (33%) 1/18 (6%) 0.04

 Fluconazole 5/16 (31%) 2/14 (14%) 0.40 10/36 (28%) 1/12 (8%) 0.25

 Miltefosine 6/15 (40%) 1/15 (7%) 0.08 6/22 (27%) 5/26 (19%) 0.73

 Azithromycind 4/11 (36%) 3/19 (16%) 9/32 (26%) 2/16 (13%) 0.29

Candidate drugs

 Nitroxolinee No data No data No data No data  

 Voriconazole 1/5 (20%) 6/25 (24%) 1.00 1/5 (20%) 10/43 (23%) 1.00

 Isavuconazole No data No data No data No data  

 Posaconazole No data No data No data No data  

 Itraconazole 1/3 (33%) 6/27 (22%) 1.00 0/4 (0%) 11/44 (25%) 0.56

 Plicamycin No data No data No data No data  

 Ponatinib No data No data No data No data  

a10 patients were excluded due to unknown survival outcomes.
b7 patients excluded due to unknown survival outcome.
cFisher exact test was used, as ⩾25% of the cells had expected counts of ⩽5 for all comparisons.
dAzithromycin is not currently part of the recommended regimen for Acanthamoeba GAE.
eData presented in this table includes patients diagnosed through 2020. The two patients treated with nitroxoline were diagnosed in subsequent 
years.
CDC, Centers for Disease Control and Prevention; GAE, granulomatous amebic encephalitis.

https://journals.sagepub.com/home/tai


Volume 11

4 journals.sagepub.com/home/tai

TherapeuTic advances in 
infectious disease

Patients with confirmed or suspected GAE infec-
tion are typically treated with multiple medica-
tions simultaneously.1,2,22 It is challenging to 
distinguish the clinical effects of individual  
medications of a multiple-agent anti-amebic regi-
men and identify the most active compound[s]. 
Publication bias is also a substantial concern; 
case reports describing survival are more likely to 
be published than those describing death. CDC 
maintains records of all reported U.S. GAE 
cases, but FLA infections, are not nationally 
notifiable; hence, some cases may be unreported. 
Furthermore, patients who receive early diagno-
ses and prompt, guideline-directed therapy may 
systematically differ from those who do not. 
Large medical centers are more likely to have had 
experience in treating GAE patients and there-
fore accumulated the institutional expertise and 
resources to expedite diagnosis, involve public 
health officials, and manage the expected toxici-
ties of anti-amebic regimens.

Given the limitations of case studies, in vitro stud-
ies of potential anti-amebic medications have 
been key to identifying potential treatments for 
GAE; however, challenges and limitations also 
exist for in vitro data. First, culturing FLA is tech-
nically challenging. Also, early studies of anti-
amebic medications in the 1970s, 1980s, and 
1990s often equated amebic death in culture to 
the cessation of movement, an experimental out-
come likely susceptible to error. Finally, different 
FLA isolates are thought to have potentially dif-
ferent drug susceptibility patterns, potentially 
limiting the findings of the FLA cultured in any 
single laboratory study.23

Classically, drug discovery progresses from in 
vitro compound identification, through chemical 
optimization by structure activity relationship 
experiments, and pre-clinical safety and efficacy 
testing in animal models of disease, and culmi-
nates in human trials. Yet for GAE, there is lim-
ited in vivo animal data. Acanthamoeba keratitis 
has been simulated in rodent models,24 and a 
small number of studies have trialed intranasal 
instillation of Acanthamoeba in mice to simulate 
rodent GAE.25 A model of B. mandrillaris was 
developed in immunocompetent26 and immuno-
deficient mice27 but has not been widely used to 
assess drug efficacy.

Clinical data of anti-amebic medications  
in GAE
The Infectious Disease Society of America 
encephalitis guidelines, released in 2008, initially 
recommended either a combination of trimetho-
prim–sulfamethoxazole, rifampin, and ketocona-
zole, or a combination of fluconazole, sulfadiazine, 
and pyrimethamine for the treatment of 
Acanthamoeba GAE.28 Since then, CDC experts 
have formalized a recommended five-drug regi-
men consisting of pentamidine, flucytosine, flu-
conazole, sulfadiazine, and miltefosine.2 Among 
patients with non-keratitis Acanthamoeba infec-
tion, receipt of those five drugs has been signifi-
cantly associated with survival.2

The first two U.S. patients reported to survive B. 
mandrillaris GAE were diagnosed in 1996 and 
2000. These patients were treated with a regimen 
of pentamidine, flucytosine, fluconazole, a mac-
rolide (azithromycin or clarithromycin), and sul-
fadiazine.29,30 This five-drug regimen remained 
the standard of care until 2009 when miltefosine 
was added after it was used in several patients 
with B. mandrillaris GAE who survived.31,32 
Miltefosine was initially available under investiga-
tional new drug (IND) status for each patient; it 
was then made available through CDC33 and is 
now commercially available in the United States, 
primarily as a treatment for leishmaniasis.

To examine clinical evidence underlying the cur-
rently recommended GAE regimens, data from 
the CDC Free-Living Ameba database were ana-
lyzed. Comparative analyses were restricted to 
U.S. patients reported to the database from 1955 
to 2020 with GAE (with or without disease at 
other sites) who were diagnosed with antemor-
tem, and for whom treatments and survival out-
comes were reported. All B. mandrillaris GAE 
cases were laboratory confirmed. Acanthamoeba 
cases included those with confirmed GAE and 
those with suspected GAE in patients with con-
firmed Acanthamoeba in another organ system.2 
Fisher exact tests were used to assess the associa-
tion between receipt of medication and survival. 
Data regarding dosage, duration, and timeliness 
of starting each drug were not available. 
Significance was defined as p < 0.05. This activity 
was reviewed by CDC and was conducted con-
sistent with applicable federal law and CDC  

https://journals.sagepub.com/home/tai


N Spottiswoode, JC Haston et al.

journals.sagepub.com/home/tai 5

policy (see e.g. 45 C.F.R. part 46.102(I)(2),  
21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C. 
§552a; 33 U.S.C §3501 et seq.).

A total of 122 patients with Acanthamoeba GAE 
were reported to the CDC during this time period 
and 42 (34%) of those received antemortem diag-
noses. Seven patients survived, which represents 
6% of those with known outcomes, and 17% of 
those who were diagnosed with antemortem 
(Table 1). Treatment with any anti-amebic medi-
cations was associated with an increased likeli-
hood of survival. For patients with Acanthamoeba 
GAE, survival improved to 23% among those 
diagnosed with antemortem who received at least 
one recommended medication.

Between 1974 and 2020, 130 U.S. cases of B. 
mandrillaris GAE were reported, 76 (58%) of 
which were diagnosed as antemortem. Survival 
among patients with B. mandrillaris GAE was also 
rare. Twelve of 123 (10%) patients with a known 
outcome survived, representing 16% of patients 
diagnosed with antemortem. Of patients with 
Balamuthia GAE who received any anti-amebic 
medications, 23% survived.

To avoid confounding due to the association of 
receipt of any anti-amebic medication and survival, 
only patients who received at least one recom-
mended medication were included in the analyses 
that evaluated the association between survival and 
receipt of each medication. For patients with 
Acanthamoeba GAE (n = 30 who received at least 
one medication), the percentage of patients who 
survived was higher among those who received flu-
cytosine (46%) compared with those who did not 
(6%) (p = 0.02). A non-statistically significant asso-
ciation was noted between survival and receipt of 
miltefosine (p = 0.08). Pentamidine was not associ-
ated with survival, with 23% survival among those 
who received the drug, and 24% among those who 
did not (p = 1.0). Among patients with B. mandril-
laris GAE (n = 48 who received at least one medica-
tion), flucytosine was statistically associated with 
survival, with 33% survival in those patients who 
received it, as compared with 6% in those who did 
not (p = 0.04). Other recommended medications 
did not show a statistically significant association 
with survival, including pentamidine (p = 0.72).

There are several limitations to consider with this 
analytic approach. First, surveillance data are 
observational and therefore may contain missing, 

incomplete, or inaccurate information. Also, 
while confounding due to treatment with any 
medication was addressed, the survival analysis 
does not account for many other potential con-
founders, including duration of therapy, stage of 
illness at the time of therapy initiation, age, and 
comorbidities. Furthermore, drug combinations 
and a number of drugs received were not assessed 
given the very low number of patients available 
for analysis, but may be relevant to survival.

Of note, no clinical data were available in this 
database for GAE candidate drugs identified in 
vitro screens and discussed subsequently, includ-
ing nitroxoline, isavuconazole, posaconazole, pli-
camycin, and ponatinib. Data available for 
voriconazole and itraconazole were limited.

Surveying in vitro data underlying the 
medication regimens used to treat GAE
To identify studies that had tested the core anti-
microbials used to treat GAE, including penta-
midine, sulfadiazine, fluconazole, flucytosine, 
miltefosine, and azithromycin or clarithromycin; we 
performed a literature search for the terms 
‘Acanthamoeba’ or ‘Balamuthia’ and the drug of 
interest. We selected studies that included in vitro 
and/or mouse model experiments. Articles were first 
screened by title and abstract, then a full-text review 
was performed. Articles were included if effective 
amebicidal concentration was reported after the 
treatment of trophozoites with the given drug. 
Studies that examined the effects of drugs on the 
cyst life stage only were excluded, and rodent exper-
iments that focused exclusively on keratitis models 
were also excluded. When more than five articles 
were available for an ameba/drug combination 
(applicable to B. mandrillaris/pentamidine only), 
only five references were cited; preference was given 
to larger-scale studies performed in recent years.

The studies were heterogeneous, varying by FLA 
species, strain, and time the amebae were sub-
jected to drug treatment (Supplemental Table 1). 
The endpoints of these studies also varied. Early 
studies described minimal motility inhibitory 
concentration, defined as the amount of drug 
needed to stop the subjective determination of 
trophozoite motility. Most recent studies report 
results as the minimum concentration of drug 
needed to reduce trophozoite growth to 50% of 
control. This is reported as minimal inhibitory 
concentration (MIC), inhibitor concentration 
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needed for 50% effect (IC50), or half-maximal 
concentration as otherwise defined.34

We report here (Table 2) the 50% maximal effect 
against Acanthamoeba or B. mandrillaris trophozo-
ites according to the authors’ definition (MIC, 
IC50, or half-maximal concentration as defined) 
in different studies. If authors reported drug con-
centrations in grams per milliliter, we converted 
this using the compound molar weight to micro-
molar equivalent and reported the result as micro-
molar. If the authors performed tests only at fixed 
drug concentrations, or if they described their 
results as ‘no effect at the limit of assay’ or ‘100% 
amebic inhibition’, we characterized growth at a 
given drug concentration as <50% or >50% 
inhibition at the concentration tested.

A key limitation of this approach is that given the 
heterogeneity in experimental assays and report-
ing, we do not believe that these numbers can be 
considered direct comparisons but we believe it is 
useful to tabulate the approximate inhibitory con-
centrations of each drug across studies. We also 
gathered from the literature the estimated serum 
and cerebrospinal fluid (CSF) concentrations of 
each drug.

Acanthamoeba in vitro studies
Pentamidine was found in multiple studies to be 
effective in vitro against Acanthamoeba species, 
with anti-trophozoite effects generally reported in 
the low micromolar range (<5 µM, Table 2).38,37 
Pentamidine, however, is not thought to pene-
trate the CNS well and may only achieve CSF 
concentrations that are lower than the effective 
amebicidal range.36,74

A study from 1993 found an IC50 for sulfadiazine 
of 6.0 µM against Acanthamoeba.46 A study from 
1974 examined the effects of flucytosine on 
Acanthamoeba in vitro and in vivo and found that 
flucytosine had no reliable effect in vitro at their 
limit of assay. The same authors found a positive 
effect of flucytosine dosing on survival in a mouse 
model of Acanthamoeba infection but only when 
flucytosine was given on the same day as amebic 
inoculation.25 The studies that tested the effects 
of fluconazole on in vitro trophozoite growth 
found no or negligible effects of fluconazole at  
the highest doses tested, which amply exceeded 
the maximum estimated CSF fluconazole  

concentrations.51,52 Miltefosine in vitro had mod-
erate micromolar efficacy, at concentrations less 
than its maximum estimated serum concentra-
tions (CSF/plasma ratio is not known), and vary-
ing by ameba strain.23,55–57

B. mandrillaris in vitro studies
Multiple studies report in vitro activity of penta-
midine against B. mandrillaris with IC50 estimates 
below 20 µM,30,40–42 or inhibition >50% at a low 
concentration,30,42,43 although in several studies 
the effective IC50 concentration exceeded the esti-
mated maximum CSF concentrations of the 
drug.40,41 Studies that tested in vitro effects of sul-
fadiazine on B. mandrillaris found no effect at the 
highest concentration tested,40,42 although the 
maximum of these assays was lower than the esti-
mated maximum CSF concentrations of sulfadia-
zine.45 One study reported that flucytosine was 
amebicidal at IC50 86 µM,41 which is lower than 
its estimated CSF concentrations.48,49 Other 
reports found minimal effect but tested only to a 
maximum concentration that was lower than the 
CSF concentrations that flucytosine is capable of 
achieving.40,42 Fluconazole had poor efficacy, 
with all studies reporting no or minimal (<50%) 
effect at the highest concentrations tested, includ-
ing at levels that exceed estimated CSF concen-
trations.30,40–42 Two studies found that miltefosine 
was effective with IC50 values of approximately 
65 µM,40,55 one study noted the effect at a concen-
tration below 250 µM,43 while one study found no 
effect at the limit of the assay.41 Finally, azithro-
mycin was active at a high concentration (IC50 
244 µM) in one study,40 which exceeds the esti-
mated CSF concentrations. Other studies found 
no activity.30,34,41

Evaluating the current treatments for GAE
A limited number of patients have survived GAE 
after treatment with the currently recommended 
agents. However, the mortality rate remains 
high.1,2 More efficacious and less toxic regimens 
may help to improve the prognosis of patients 
with GAE. We therefore summarize the existing 
evidence for the current anti-amebic regimens, 
and then turn to discussing potential novel agents.

Of the current antimicrobial regimen for GAE, 
clinical data are most supportive of an association 
with survival with flucytosine. In vitro, flucytosine 

https://journals.sagepub.com/home/tai


N Spottiswoode, JC Haston et al.

journals.sagepub.com/home/tai 7

Table 2. In vitro studies of anti-amebal agents against Acanthamoeba and B. mandrillaris. Theoretical maximum CSF concentration 
is calculated by multiplying known serum maximum concentration (µM) by the maximum reported CSF/plasma ratio. If the CSF/
plasma ratio is not known (relevant for miltefosine, nitroxoline, and plicamycin), a ratio of 1 is assumed, acknowledging that the true 
penetration of the three agents may be lower.

Agent Original 
indication

Serum 
maximum 
concentration 
(µM)

Reported 
CSF/plasma 
ratio

Theoretical 
maximum 
CSF 
concentration 
(µM)

Acanthamoeba 
species in 
vitro drug 
concentration 
to reduce 
trophozoite 
growth to 50% 
(µM)

Balamuthia 
mandrillaris 
in vitro drug 
concentration 
to reduce 
trophozoite 
growth to 50% 
(µM)

Currently recommended regimen

 Pentamidine Antiparasitic:
trypanosomiasis, 
leishmaniasis, 
pneumocystis

1.8035 0.5–0.836 1.4 3.437

0.638

<183.6–734.439,a

9.140

18.441

<2.930

<2.942

<500.043

 Sulfadiazine Antiparasitic:
toxoplasmosis

241.344 0.27–0.3345 79.6 6.046 >40.042

>20.040

 Flucytosine Antifungal:
cryptococcal 
meningitis

542.247 0.74–0.8448,49 455.3 >309.825 >77.542

>20.040

86.341

 Fluconazole Antifungal:
Candida, 
cryptococcus, 
and others

21.950 0.5–149 21.9 >50.051

>218.152
>32.630

>32.642

>163.341

>20.040

 Miltefosine Antiparasitic:
leishmaniasis

91.353 Unknown54 91.3 3.9–62.523,a

<80.055

<80.056

31.3–25057,a

65.055

<250.043

62.240

>122.741

 Azithromycinb Antibacterial:
pneumonia, 
others

2.358 0–0.01559 0.035 2.234 >12.830

244.140

>66.841

>10.034

Candidate drugs

 Nitroxoline Antibacterial:
urinary tract 
infections

30.060 Unknown 30.0 11.261 2.840

7.861

  Isavuconazole
 (isavuconazonium)

Antifungal:
endemic fungi, 
aspergillus, 
others

16.962 0.23–0.3863 6.4 0.001–0.0351,a

0.001–0.0464,a

0.0965

0.934

–

 Voriconazole Antifungal:
endemic fungi, 
aspergillus, 
others

6.666 0.22–0.8867 5.8 2.734

2.8–5.752,c

0.651

>143.141

>20.040

(Continued)
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has been shown in a single study to have effective-
ness against B. mandrillaris but only at high con-
centrations (one study found an IC50 of 86 µM; 
others stated greater than the limit of assay). 
However, flucytosine has excellent CNS penetra-
tion and may achieve high CSF concentrations 
that exceed the amounts tested in vitro. In vitro 
efficacy of flucytosine against Acanthamoeba has 
not yet been demonstrated, but only one study 
was reported, which also did not extend to the 
high concentrations that flucytosine may achieve. 
Miltefosine also may be associated with survival, 
although with borderline clinical significance. It 
has moderate in vitro activity against both 
Acanthamoeba and B. mandrillaris in most reported 
studies and a favorable side effect profile.

Fluconazole and azithromycin are two medica-
tions with relatively favorable side effect profiles 
but little evidence of efficacy. We were unable to 
find any in vitro studies that identified fluconazole 
as amebicidal for either B. mandrillaris or 
Acanthamoeba nor do the clinical data presented 

here support an association of fluconazole and 
survival among patients who were treated. 
Similarly, azithromycin (recommended currently 
for B. mandrillaris but not Acanthamoeba) appears 
to have weak in vitro activity against both FLA 
species, poor CNS penetration, and no clear link 
to survival in our analyses.

Pentamidine and sulfadiazine are two agents with 
minimal reported evidence of efficacy and signifi-
cant toxicities. In our bivariate analysis, pentami-
dine was not associated with survival in GAE of 
either etiology. It has in vitro effective amebicidal 
concentrations that are the lowest of the current 
regimen but the limited studies that have charac-
terized pentamidine CSF concentrations suggest 
that it may reach concentrations that are compara-
ble to, or even lower than, its amebicidal in vitro 
concentrations.36,74 Moreover, pentamidine is the 
most toxic medication of the core antimicrobials 
used, with one study noting adverse events in 
71.7% of patients treated intravenously, primarily 
nephrotoxicity, dysglycemia, and hepatotoxicity.75

Agent Original 
indication

Serum 
maximum 
concentration 
(µM)

Reported 
CSF/plasma 
ratio

Theoretical 
maximum 
CSF 
concentration 
(µM)

Acanthamoeba 
species in 
vitro drug 
concentration 
to reduce 
trophozoite 
growth to 50% 
(µM)

Balamuthia 
mandrillaris 
in vitro drug 
concentration 
to reduce 
trophozoite 
growth to 50% 
(µM)

 Posaconazole Antifungal:
endemic fungi, 
aspergillus, 
others

4.068 0.01–2.2567 9.0 0.003–0.0751,a

0.638
49.641

>20.040

 Itraconazole Antifungal:
endemic fungi, 
aspergillus, 
others

2.869,70 0–0.1249,67 0.34 22.752

50.051
49.241

>20.040

  Plicamycin 
(mithramycin)

Antibiotic/
oncology: 
testicular cancer

1.671 Unknown 1.6 6.161 11.361

1.534

>20.040

 Ponatinib Oncology:
tyrosine kinase 
inhibitor

0.1472 073 0 1.661 0.361

aVaries by strain or species tested.
bAzithromycin is currently recommended for B. mandrillaris only. Searches were also performed for clarithromycin.
cReported as a range.
CSF, cerebrospinal fluid.

Table 2. (Continued)
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Similarly, sulfadiazine was not found to be associ-
ated with survival in this bivariate analysis. There 
is no evidence supporting sulfadiazine as effective 
against B. mandrillaris, and efficacy against 
Acanthamoeba has only been demonstrated in one 
small study from 1993 that has not been repli-
cated. Moreover, sulfadiazine has significant tox-
icities, including renal failure, which may preclude 
the use of other anti-amebal agents.

Taking these data together, and acknowledging 
significant uncertainties due to limitations in all 
data, the cumulative in vitro, pharmacologic, and 
clinical evidence of efficacy is most supportive of 
the agents miltefosine and flucytosine for the 
treatment of GAE. Of the remaining four cur-
rently recommended agents, pentamidine has 
such significant and frequent toxicities that it 
should be used with caution and potentially 
stopped if toxicities arise. Sulfadiazine, similarly, 
has minimal in vitro or clinical evidence of effi-
cacy, and its primary toxicity (renal failure) can 
preclude the use of other anti-amebic agents, as 
was our clinical experience.76 Therefore, this 
agent should also be used with caution.

Identification and evaluation of leading 
candidate drugs for GAE
Prior to the 2010s, most studies reviewed were 
designed to test a small number of compounds. The 
development of drug screens against Acanthamoeba 
and B. mandrillaris permitted larger-scale analyses. 
Using this approach, new compounds of potential 
efficacy were identified and tested in comparison to 
medications in the current core regimen. We high-
light here the results of larger-scale studies (>50 
compounds) that tested compound libraries against 
in vitro amebic cultures.

We identified seven published papers that fit this 
criterion, including one drug screen that tested a 
400 compound library against Acanthamoeba 
only,38 three drug screens that examined com-
pound libraries (85, 800, and 2,177 compounds) 
against B. mandrillaris only,40,41,77 and three drug 
screens (159, 400, and 12,000 compounds) that 
looked at both B. mandrillaris and Acanthamoeba 
isolates.34,61,65 We highlight a limited number of 
drug candidates here (Table 2) that fulfill the fol-
lowing criteria: (1) approved by the U.S. Food 
and Drug Administration (FDA) or internation-
ally for systemic administration and (2) in vitro 
efficacy against one or both FLA.

The quinolone metal-chelating antibiotic nitroxo-
line was identified in a large-scale screen as hav-
ing activity against B. mandrillaris trophozoites at 
low concentration (IC50 2.8 µM)40 relative to its 
known serum concentrations in humans. 
Nitroxoline is in use in Europe and China for the 
treatment of urinary tract infections and has a 
robust safety and tolerability profile after decades 
of use.78 A study comparing drug efficacy across 
all three pathogenic FLA species confirmed effi-
cacy in B. mandrillaris, Acanthamoeba (IC50 
11.2 µM), and N. fowleri (IC50 ~ 1.5 µM).61

Voriconazole and isavuconazole, which are  
non-fluconazole medications in the azole  
class, had robust in vitro activity against 
Acanthamoeba,34,51,52,64,65 but not against B. man-
drillaris.40,41 Posaconazole was effective at low 
concentration in Acanthamoeba but less so in a 
study of B. mandrillaris (half-maximal activity at 
0.003–0.63 and 49.5 µM, respectively).41 
Itraconazole showed moderate activity against 
both Acanthamoeba51,52 and B. mandrillaris.41

Of other potential candidate drugs, two studies 
found that plicamycin (mithramycin) had activity 
against B. mandrillaris,34,61 and in one study, also 
Acanthamoeba61 but at higher concentrations than 
it likely achieves in serum.71 This drug is not cur-
rently available in the United States. Ponatinib, a 
tyrosine kinase inhibitor, was identified in a single 
screen to have activity against both FLA but its 
CNS penetration is thought to be poor.61

Experience with nitroxoline: from in vitro 
identification in an unbiased screen to 
clinical use
As described by Spottiswoode et  al (2022),76 a 
patient with B. mandrillaris GAE was initially 
started on the core regimen of pentamidine, flu-
conazole, flucytosine, azithromycin, miltefosine, 
and sulfadiazine. Albendazole was also included.76 
His lesions initially demonstrated mild improve-
ment by magnetic resonance imaging (MRI) but 
the patient suffered significant medication-related 
toxicities, including bone marrow suppression, 
renal failure, and severe hypoglycemia, necessi-
tating the cessation of pentamidine and sulfadi-
azine and dose reduction of flucytosine. On 
fluconazole, azithromycin, miltefosine, albenda-
zole, and dose-reduced flucytosine, his lesions 
enlarged. The decision was made to treat  
with nitroxoline based on in vitro data, 
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the medication’s long safety record, and urgent 
clinical need.40 Nitroxoline was obtained under 
an emergency IND protocol approved by the 
FDA. After the addition of nitroxoline, the patient 
had a marked, sustained improvement clinically 
and radiologically. Flucytosine, fluconazole, and 
albendazole were stopped after 14 months, and 
nitroxoline, azithromycin, and miltefosine were 
stopped after an additional 7 months. He is  
now living independently 2 years post-initial 
presentation.

The potential identification of a novel anti-ame-
bic agent with in vitro activity and minimal toxic-
ity sparked interest among physicians caring for 
other GAE patients. A second, pediatric patient 
with B. mandrillaris GAE received nitroxoline in 
2022 due to the progression of the disease, evi-
denced by the increasing number and size of brain 
lesions on brain MRI, despite approximately 
9 months of standard therapy as well as surgical 
excision of the primary lesion. Preliminary data 
suggest radiographic and clinical improvement 
after the addition of nitroxoline to the drug regi-
men, despite toxicities necessitating the discon-
tinuation of miltefosine, fluconazole, flucytosine, 
and pentamidine over time. The patient has been 
on nitroxoline for approximately 1 year and con-
tinues to show improvement [unpublished].

Novel GAE medications and areas of further 
investigation
Much remains to be learned about the optimal 
treatment of GAE. Priorities include characteriza-
tion of potential and current anti-amebic agents, 
coupled with rigorous collection of clinical data. 
We suggest several areas for further study.

First, ongoing studies of nitroxoline may offer 
clinical promise. Nitroxoline remains the only 
agent identified in an unbiased screen to have 
been used clinically to date,76 and preliminary 
clinical data are promising, although only a small 
number of cases have been treated with this agent. 
The combination of compelling in vitro activity,40 
limited but positive clinical data, and well-defined 
safety profile78 makes nitroxoline an attractive 
option for future use for GAE for at least B. man-
drillaris and, potentially, Acanthamoeba. Key areas 
of future study include assessing the effectiveness 
of nitroxoline against Acanthamoeba and explor-
ing the mechanism of action, which may help 

generate more effective compounds. Finally, 
nitroxoline concentrations in the CSF or brain 
parenchyma of patients on nitroxoline, for GAE 
or any other indication, have not been reported. If 
brain tissue or CSF becomes available from a 
patient treated with nitroxoline, measuring drug 
levels may help to inform future use.

While nitroxoline is commercially available in 
several countries, it is not available in the United 
States nor is it FDA approved. Hence, to use 
nitroxoline to treat B. mandrillaris GAE patients, 
it must be obtained under an emergency use 
authorization. This single-patient approval pro-
cess is labor-intensive and time-consuming, and 
thus too slow for many critically ill patients.

Non-fluconazole azole agents, such as isavucona-
zole and voriconazole, have robust efficacy against 
Acanthamoeba in vitro but not for B. mandrillaris. 
Given that fluconazole has minimal effects on 
both amebae in vitro, it is possible that substitu-
tion of another azole, such as isavuconazole or 
voriconazole, may improve outcomes in 
Acanthamoeba GAE specifically. Of the other 
potential agents highlighted in this article, most 
have unfavorable CNS penetration data, unfa-
vorable side effect profiles, or both.

Finally, ongoing close communication with 
experts in the field and the detailed collection of 
clinical data are essential to advancing our under-
standing of this disease. We recommend that cli-
nicians treating any patient with suspected or 
confirmed GAE contact the CDC Emergency 
Operations Center promptly at 770-488-7100 to 
request clinical guidance. Other platforms that 
can help clinicians to archive and disseminate 
information about rare diseases and repurposed 
treatments include CURE ID, a website and app 
developed by the FDA and the National Institutes 
of Health initially to share information about 
treatments for SARS-CoV-2, and now main-
tained for sharing information about repurposed 
treatments for neglected infectious diseases.79
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