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Abstract

The gravity field of a giant planet is typically our best window into its interior structure and composition. Through
comparison of a model planet’s calculated gravitational potential with the observed potential, inferences can be
made about interior quantities, including possible composition and the existence of a core. Necessarily, a host of
assumptions go into such calculations, making every inference about a giant planet’s structure strongly model
dependent. In this work, we present a more general picture by setting Saturn’s gravity field, as measured during the
Cassini Grand Finale, as a likelihood function driving a Markov Chain Monte Carlo exploration of the possible
interior density profiles. The result is a posterior distribution of the interior structure that is not tied to assumed
composition, thermal state, or material equations of state. Constraints on interior structure derived in this Bayesian
framework are necessarily less informative, but are also less biased and more general. These empirical and
probabilistic constraints on the density structure are our main data product, which we archive for continued
analysis. We find that the outer half of Saturn’s radius is relatively well constrained, and we interpret our findings
as suggesting a significant metal enrichment, in line with atmospheric abundances from remote sensing. As
expected, the inner half of Saturn’s radius is less well constrained by gravity, but we generally find solutions that
include a significant density enhancement, which can be interpreted as a core, although this core is often lower in
density and larger in radial extent than typically found by standard models. This is consistent with a dilute core
and/or composition gradients.

Unified Astronomy Thesaurus concepts: Saturn (1426); Planetary interior (1248); Planetary structure (1256); Planet
formation (1241)

1. Introduction

1.1. The Gravity Field as a Probe on the Interior

There are a number of fundamental questions that we would
like to understand about giant planets. Do they have a heavy-
element core? If so, what is its mass? Is it distinct from
the overlying H/He envelope, or partially mixed into it? Is the
H/He envelope enriched in heavy elements compared to the
Sun? Is the envelope fully convective and well mixed?

Unfortunately, the vast mass of a giant planet is completely
hidden from view, so that we must use indirect methods to try
to answer these questions. Most of our knowledge about the
interiors of giant planets comes from interpreting their gravity
fields, as recently reviewed for Saturn by Fortney et al. (2018).
Because the planets are fluid and rapidly rotating, they assume
an oblate shape and their gravitational potential differs from
that of a spherically symmetric body of the same mass. The
external gravitational potential Ve is a function of the colatitude
θ and distance r from the center of the planet, and is typically
written as an expansion in powers of R r,eq where Req is the
equatorial radius of the planet:
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In Equation (1), Pn are Legendre polynomials of degree n. The
coefficients Jn (“the Js”) are measurable for many solar system
bodies by fitting a multiparameter orbit model to Doppler

residuals of spacecraft on close approach. For fluid planets in
hydrostatic equilibrium, where azimuthal and north–south
symmetry hold, only even-degree coefficients are nonzero.
When an interior model for a planet is created, the Jn values

are calculated as integrals of the interior density over the
planetary volume:
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These model Jn can then be compared to measured ones. As is
well known, the different Js sample the density at different
depths (with J2 probing deepest) but with significant overlap,
and with most of the weighting over the planet’s outer half in
radius. This point is illustrated in Figure 1.
The gravity field is a nonunique feature of the interior mass

distribution. In other words, different mass distributions can
lead to identical gravity signals. This complicates the process of
making inferences about the interior structure based only on the
external gravity field. In principle, one should explore a wide
range of possible interior structures, of possible ( )r ¢r in
Equation (2), to see the full range of solutions that fit the
gravity field. Initially, researchers had focused on finding a
single, best-fit solution subject to a host of assumptions, chosen
for computational convenience and not necessarily following
reality. More recently, there have been efforts to explore an
expanded range of interior structures, usually by making
alternative assumptions about the prototypical planet.
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The main contribution of the present work is the introduction
of a different approach to the task of inferring interior structure
from gravity and the application of this approach to Saturn. The
result is a suite of interior structure models of Saturn computed
with fewer assumptions and therefore showing a fuller range of
structures consistent with observation. We describe our method
in detail and compare it with previous work of similar spirit in
Sections 1.2.4 and 2.6.

1.2. Common Assumptions in Planetary Interior Models

There are typically at least three significant assumptions or
choices that modelers make when constructing interior models
of giant planets, thereby implicitly constraining the possible
inferences from these models.

1.2.1. The Planets Have Three Layers

Perhaps the most constraining assumption is the prototypical
picture of three layers, each well mixed enough to be considered
homogeneous. For Jupiter and Saturn, these are a helium-poor
outer envelope, a helium-rich inner envelope, and a heavy-
element, usually constant-density core. Investigators also adjust
the abundance of heavy elements in the He-rich and He-poor
layers, with little physical motivation other than it seems to
facilitate finding an acceptable match to the gravity field.

While a core–envelope structure is certainly a plausible one,
and indeed rooted in well-studied planet formation theories, the
assumption of compositionally homogeneous layers may well
be a significantly limiting oversimplification.

1.2.2. The Interior Pressure–Temperature Profile Is Isentropic

A typical assumption of interior modeling is that the
pressure–temperature profile is isentropic, lying on a single
(P, T) adiabat that is continued from a measured or inferred
temperature at 1bar. This second assumption is likely to be
true over some of the interior, but there are good reasons to
doubt that this holds throughout the interior.

Jupiter and Saturn have an atmospheric He depletion
compared to the Sun, and it has long been suggested that this
is due to He phase separation from liquid metallic hydrogen in
the deep interiors (Stevenson & Salpeter 1977; Fortney &
Hubbard 2003). There is likely a region with a He abundance
gradient starting between 1 and 2Mbar in both planets

(Nettelmann et al. 2015; Mankovich et al. 2016). In models
that attempt to interpret the gravity field, if such a layer is
included at all, it is by interpolation between the outer and inner
homogeneous layers (e.g., Wahl et al. 2017; Militzer et al. 2019),
but this interpolation is unlikely to capture fully the effects of
composition gradients. Composition gradients can inhibit large-
scale convection (Ledoux 1947), implying that heat is
transported via layered convection or radiation/conduction. This
leads to higher internal temperatures that in return allow higher
heavy-element enrichment at a given density–pressure. Indeed,
nonadiabatic structures have been recently suggested for all outer
planets in the solar system (e.g., Leconte & Chabrier 2012;
Vazan et al. 2016; Podolak et al. 2019).

1.2.3. The Inferred Composition Relies on Equation of State
Calculations

As the field progresses, the equations of state (EOSs) used
for modeling giant planet interiors become a better representa-
tion of reality. Nevertheless, the EOSs for all relevant materials
and mixtures are not perfectly known. Simulations from first
principles of hydrogen, helium, and their mixtures over the
conditions relevant for giant planets have been carried out and
partially validated against experimental data (Nettelmann et al.
2008; Militzer & Hubbard 2013). These EOSs for hydrogen
show good agreement with data up to~1.5 Mbar (e.g., Militzer
et al. 2016). However, the pressure at the bottom of Saturn’s
H/He envelope is about 10Mbar and for Jupiter it is about
40Mbar, well beyond the realm of experiment. Recent
structure models used EOSs for hydrogen and helium based
on density functional theory (DFT) simulations (Nettelmann
et al. 2008; Miguel et al. 2016; Militzer et al. 2016). Until
recently, different EOSs led to different inferred compositions
for Jupiter due to different approaches to calculating the
entropy. Today, there is good agreement between state-of-the-
art EOSs (Nettelmann 2017), but it should be kept in mind that
DFT also suffers from approximations (Mazzola et al. 2018),
and there remains an uncertainty of~2% in the hydrogen EOS,
which increases significantly when it comes to predicting
hydrogen–helium demixing (Morales et al. 2009).
The heavy elements must also be represented by an EOS

(typically for water or silicates), which introduces another
source of uncertainty. Therefore, the range of possible
compositions and internal structures from such interior models

Figure 1. Contribution functions of the gravitational harmonics J2 (blue solid), J4 (red dashed), and J6 (yellow dotted) for a typical, three-layer Saturn model. The
contribution “density” ( ( )µJ r dr) is plotted in the left panel and the cumulative contribution in the right panel. The horizontal line intersects the curves at a depth
where the corresponding J reaches 90% of its final value.
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cannot be taken to be the true range of allowed values, even if
the parameter space of possible EOSs, H/He/Z mixing ratios,
and outer/inner envelope transition pressures were thoroughly
explored.

1.2.4. Appreciating the Complexities

The drawbacks of the assumptions discussed above have
long been known and the reality that giant planets are surely
more complicated than the traditional modeling framework
allows for is generally accepted (e.g., Stevenson 1985). More
recent investigations are attempting to allow for a more
complex structure. Interior composition gradients due to
remnants of formation (Leconte & Chabrier 2012; Helled &
Stevenson 2017), core dredge-up (Militzer et al. 2016),
convective mixing of primordial composition gradients (Vazan
et al. 2016, 2018), and He sedimentation (Nettelmann et al.
2015; Mankovich et al. 2016) have been considered and were
found to lead to different structures. Additionally, some
investigators have begun using what may be referred to as
“empirical” models. In this context, an empirical model is one
that is focused on the more direct connection between gravity
and density (e.g., Helled et al. 2009) or gravity and equilibrium
shape (Helled et al. 2015), without invoking the compositional
and thermodynamical origin of these structures.

The work we present here is in the spirit of empirical models.
We explore systematically, in a Bayesian inference framework,
the possible density profiles of Saturn. We limit our assumptions
as much as possible, in order to find the widest range of interior
structures with their probability distribution based on their
gravitational potential matching the observed field.

2. Composition-independent Interior Density Calculation

The premise of removing some assumptions and deriving
composition-free interior density profiles (sometimes referred
to as empirical models) is simple and in fact has been pursued
in previous works (e.g., Marley et al. 1995; Podolak et al. 2000;
Helled et al. 2009). (We discuss similarities and differences
with these works in Section 2.6 below.) The only information
that is needed to calculate a gravity field is the density
everywhere inside the planet, ( )r r , and so this is the only
quantity we will directly vary. In fact, hydrostatic equilibrium
produces level surfaces—closed surfaces of constant density,
pressure, and potential—and therefore a one-dimensional
description of the mass distribution is sufficient: we can use

( ) ( )r r=r s , where s is the volumetric mean radius of the
unique level surface of density ρ.

All other properties of the planet will be inferences, rather
than input parameters. Because there is unavoidable uncertainty
associated with the measurement of the gravity field (and also
with its theoretical calculation from interior models; see
Section 2.4), this means that there must be a continuous
distribution of possible density profiles that fit the gravity
solution, and we must base our inferences on the entire
distribution. In practice, because we can only ever consider a
finite number of solutions, this means that we must base our
inferences on a random sample from this unknown distribution
of allowed solutions.

In this section, we describe the process of obtaining this
random sample, as applied to Saturn. For the most part, the
same process would apply equally well to the other giant
planets. We mention in places modifications that may be

needed if the same method is to be applied to Jupiter, Uranus,
or Neptune.

2.1. Overview

Formally, the distribution we are after is the posterior
probability ( ∣ )r Jp , the probability that the planet’s interior
density follows ( )r r= s given that the gravity coefficients
were measured as J . This consists of several subtasks. First,
we must find a suitable parameterization of ( )r s . This
parameterization should be able to represent all the physically
reasonable ( )r s curves without undue loss of generality, but
this is not particularly difficult. It is also necessary that the
range and behavior of the numeric values of all parameters are
such that they can be efficiently sampled, e.g., with a Markov
Chain Monte Carlo (MCMC) algorithm. This is easier said than
done, and the best parameterization may be different for
different planets.
For Saturn, we find that a piecewise-quadratic function of

density as a function of normalized radius works best for the
bulk of the planet, with a quartic (degree 4) polynomial
required to represent the uppermost region (for P 2 GPa).
We describe this parameterization in detail in Section 2.2. Note
that this is one place where modifications might be needed
before applying the same procedure to Jupiter or the ice giants.
To drive the sampling algorithm, we need a way to evaluate

the relative likelihood of two model planets, and we do this by
comparing how well they match Saturn’s observed mass and
gravity field. The details of this calculation are given in
Section 2.3.
The likelihood calculation requires that we know the

equilibrium shape and gravity field of a given density profile
to sufficient accuracy. Note that in Equation (2) the integrand is
known but the integration bounds are unknown. We need to
first determine the planet’s equilibrium shape. The shape is
determined by a balance between the centrifugal acceleration of
the rotating planet and the gravitational acceleration. This is
therefore a circular problem, requiring an iterative calculation
to converge to a self-consistent solution.
We use an implementation of fourth-order Theory of Figures

(ToF) using the coefficients given in Nettelmann (2017) and
employ optimization techniques that allow us to solve the
hydrostatic equilibrium state to desired precision very quickly.
The details are given below in the Section 2.4.
The emphasis on speed is necessary, as the next subtask is to

employ a suitable MCMC algorithm to draw a large sample
of possible r. There is no generally agreed-upon method of
predicting the number of sampling steps required for
convergence.6 By experimentation, we find that our Saturn
parameterization requires tens of thousands of steps to become
independent of its seed state and has a long autocorrelation
time, requiring a large number of steps following convergence
to obtain the desired effective sample size. Producing a valid
sample required the computation of about 10 million model
planets in total. We give the details of our sampling method
and convergence tests in Section 2.5 and Appendix C.
The last step is calculating some derived physical quantities

of interest, based on the obtained r sample. Given the gravity
field, the pressure on each level surface can be computed from
the hydrostatic equilibrium equation. And with knowledge of
the pressure and density at each level, we may begin to estimate

6 Or even of being sure that convergence was reached.
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other quantities of interest, e.g.,the helium fraction, the heavy-
element content, etc. These quantities are not determined
directly by the gravity field but can be inferred, with additional
assumptions. We discuss the results of this analysis, as applied
to Saturn, in Section 3.

2.2. Parameterization of ( )r s

Our goal is to sample from a space of ( )r s curves that is as
general as possible, making a minimum of assumptions about

( )r s while still restricting the sample to physically meaningful
density profiles and, importantly, keeping the number of free
parameters small, for sampling efficiency. These competing
requirements are not easy to satisfy, and it may be that the best
parameterization depends on the planet being studied as well as
on the available sampling algorithms and computing resources.

When looking for a good parameterization of ( )r s , we were
guided by previously published work on Saturn’s interior.
Traditionally derived models are less general than we would
like, but they are physically sound. Examining them exposes
the major features expected of a ( )r s curve representing
Saturn’s interior. Figure 2 shows the density profiles of several
Saturn models recently published by Mankovich et al. (2019,
hereafter M19). These models assume a three-layer structure
for Saturn along the lines of what was considered by
Nettelmann et al. (2013). They consist of a homogeneous
outer envelope with helium mass fraction =Y Y1 and water
mass fraction =Z Z1, a homogeneous inner envelope with
=Y Y2 and Z=Z2, and finally a central core with Z=1.

These models assume an additive-volume mixture of hydrogen,
helium, and water as described by the Saumon et al. (1995) and
French et al. (2009) EOSs, and are assumed to have adiabatic
temperature profiles throughout the envelope with an iso-
thermal core.

The general feature is a monotonic and piecewise-smooth
function in three segments. This is not surprising, as these
models were all derived with the assumption of three layers of
homogeneous composition, commonly thought of as an upper
envelope, lower envelope, and core. While we do not wish to
make such a strong assumption, we find it necessary to make
the much weaker assumption that ( )r s is a monotonic,
piecewise-smooth function, with no more than (but possibly
fewer than!)two density discontinuities. Further, between
discontinuities, the density appears to follow very smooth
curves, suggesting that it may be well approximated by
a quadratic function of s/Rm for each segment, where

=R 58, 232 kmm is Saturn’s volumetric mean 1 bar radius
(Lindal et al. 1985). By experimentation, we find no advantage
in using higher-order polynomials to approximate any of the
main segments.
This piecewise-continuous model should not be confused

with the traditional three-layer one. The assumption of density
being piecewise continuous is much less strict than that of
composition being piecewise constant, even if they lead to
visually similar plots. Nevertheless, it would be even better to
allow more discontinuities or, better yet, a variable number of
them. While this may seem like a relatively straightforward
generalization, it would in fact greatly increase the computa-
tional cost of sampling the parameter space. To understand
why, consider that each additional discontinuity in ( )r s not
only introduces four additional parameters (the three para-
meters required to describe the quadratic plus the location of
the additional break point), these parameters will also be highly
correlated with the rest. As it turns out, this correlation is
already evident with just two discontinuities. Informally, each
of the two density “jumps” can substitute for the other in the
large subset of models where only a single pronounced
discontinuity appears. This evident “redundancy” is by no
means proof that there cannot be more than two sharp density
jumps in Saturn’s interior. But it helps us accept, at least
temporarily, a compromise between maximum generality and
minimum CPU hours.
When we examine more closely the very top of the density

curves in Figure 2 we find that the uppermost part of the
envelope (by radius, =r r R0.94a m) does not follow the
same quadratic as the rest of the upper envelope. Instead, it is
more similar to a quartic polynomial. This is demonstrated
visually for one density profile in the inset of Figure 2 and in
more detail in Appendix A. In this low-pressure region, the
physical models are based on well-tested EOSs of H and He,
and the assumption of an adiabatic gradient is appropriate, so
we would be well advised to constrain our profiles to make use
of this information. In Appendix A we explain how we derive a
one-parameter family of quartic functions that keeps us
grounded to realistic density values in the region above ra,
while still allowing variation by letting the value of

( )r r= =s ra a be sampled.
It is important to note that to date, all EOS-based models of

Saturn find solutions consistent with the measured gravity field
that predict a concentration of heavy elements in the envelope
of at most a few times the protosolar value (e.g., Helled &
Guillot 2013; Nettelmann et al. 2013; Militzer et al. 2019),
while Saturn’s atmospheric spectra indicate a higher value,
perhaps as high as 10 times the protosolar metallicity (Atreya
et al. 2016). In principle, atmospheric enrichment might not
represent the bulk composition of the outer envelope, as was

Figure 2. Three representative Saturn density profiles from M19. These
profiles were derived using the standard, three-layer assumption, and thus
represent only a subset of possible profiles. On the other hand, they are known
to be in strict agreement (by construction) with theoretical EOSs throughout the
interior. The inset shows a zoomed-in view of the top part of the envelope.
The red solid line is the same curve as in the full-scale figure; the black dotted
line is a quadratic fit, a good approximation of the upper envelope overall, and
the blue dashed line is a quartic fit to the segment >s R 0.94m , a much better
fit there (Appendix A).
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recently suggested for Jupiter (Debras & Chabrier 2019).
Nevertheless, this demonstrates that, while we wish to be
guided by physical models, our parameterization must not be
overly constrained by them.

To summarize, we arrive at the following parameterization,
using =z s Rm:

( )
( [ ])
( [ ( )]) ( )

⎧⎨⎩r
r
r r

=
< <
< <

q q q
Q

z
z z z z z

z z z

, , , , , , 0

, , 1.
3

a

a a

1 2 3 1 2

Here, q1 are the three parameters defining the first (outer-
most) quadratic segment, q2 are the three parameters defining
the second (middle) quadratic segment, and q3 are the three
parameters defining the third (deepest) quadratic segment.
There is more than one way to let three numbers define a
quadratic, and although they are all equivalent, the associated
range of values and degree of correlation make some choices
better suited for MCMC sampling. The precise definition of qi
that we find, by trial and error, to work well in this case is given
in Appendix B. The transition between the first and second
segments is at normalized radius z1 (which we let vary from
0.35 to 0.9 in normalized radius), and the transition between the
second and third segments is at z2<z1 (which we let vary from
0.1 to 0.4). The top of the upper envelope is defined by the
quartic polynomial ( )rQ a for > =z z 0.94a . The values in Q
and their definition are given in Appendix A. The quartic
segments are uniquely determined by the density at za, itself
already determined by the coefficients q1. We thus have 11 free
parameters—three each for the three quadratic segments, plus
the two “floating” transition radii.

2.3. Comparing Model and Observation

MCMC sampling works by comparing, at every iteration, the
likelihood of a proposed vector of parameter values, ( )yL , with
that of the current vector of parameter values, ( )xL , and accepting
or rejecting the proposed values with probability proportional to
the relative likelihoods. If the likelihood function is itself
proportional to the desired (unknown) posterior probability, in
our notation, if ( ) ( ( )∣ )rµx xL p OBS , then the resulting Markov
chain will converge, in the long run, to a sample from that
posterior. For OBS, we substitute any number of observed
quantities that may differ from those calculated in the model.

A likelihood function that is proportional to the desired
posterior is the function ( ) ( ∣ ( ) ( )r=x x xL p pOBS . It is
proportional to the posterior as a consequence of Bayes’ rule.
The prior probability ( )xp is necessary. It is our informed,
subjective assessment of what values the model parameters x
are expected to take, and typically, it is a simple product of the
individual prior probabilities of the independent variables xi,
which in turn are either uniform or normal inside a region of
reasonable values.7 What we need then is to provide the
MCMC algorithm with a function that evaluates the relative
goodness of the match between the observed properties of the
planet and the values of the same properties as calculated for
the model, taking uncertainties from both model and observa-
tion into account.

In this context, the planetary properties that our models need
to match are the gravity coefficients J and the planet’s
mass MSat.

First, the gravity. We assume that the observed values J are
normally distributed about the true, unknown, mean values and

calculate a distance:

( )
⎛
⎝⎜

⎞
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⎛
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⎞
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2
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where the sJi are measures of the uncertainty in either the
measured or the computed values, or both.8

In the work presented here, only J2, J4, and J6 were
considered for the purpose of calculating the likelihood function.
Higher-order coefficients J8–J12, as well as nonvanishing odd-
indexed coefficients J3 and J5, have been measured for Saturn, to
impressive precision, by the Cassini Grand Finale gravity
experiment (Iess et al. 2019). But it seems clear that these reflect
an increasingly large contribution from an asymmetric and/or
time-varying field, deriving either from planet-scale differential
rotation or from deeply rooted zonal winds, or both (Galanti &
Kaspi 2017; Kaspi et al. 2018; Galanti et al. 2019; Iess et al.
2019). These phenomena are important in themselves and offer a
promising avenue for studying further Saturn’s dynamic nature,
but for the purpose of constraining the bulk interior structure,
their net result is to increase the effective uncertainty of the low-
order Js ascribed to solid-body rotation (Guillot et al. 2018).
Studies of differential rotation on Saturn demonstrate that their
contribution to the low-order even harmonics can be significant
(Hubbard 1982; Galanti & Kaspi 2017). As our goal is to capture
the widest range of probable interior structures, we compute
Equation (4) for every model by assuming solid-body rotation
and setting = ´ -J 16290.573 102

6, = - ´ -J 935.314 104
6,

and = ´ -J 86.340 106
6 (Iess et al. 2019), with uncertainties

s = ´ -1.5 10J
5

2
ands s= = ´ -5 10J J

6
4 6 . The values adopted

for the uncertainties come from interpreting the largest contribution
from winds found in Galanti & Kaspi (2017), their Figure 4, as a
symmetric, two-sigma range.
We cannot simultaneously hold fixed both the total planetary

mass and the surface radius while also specifying the density at
all radii. As we use the density ra as one of the sampled
parameters, the converged hydrostatic interior profiles can be
scaled to fix Req orM precisely, but not both. Saturn’s mass and
radius are known to comparable precision,9 and it is convenient
to fix all models to =R 60, 268 km,eq Saturn’s measured
equatorial radius at the 1 bar level (Lindal et al. 1985). The
calculated mass of a converged and scaled density profile will
therefore exhibit a small spread around a nominal value,
leading to another distance term:

( )
⎛
⎝⎜

⎞
⎠⎟s

=
-

D
M M

, 5M
M

2 Sat
2

with = ´M 568.336 10 kgSat
24 and s = ´0.026 10 kgM

24

(Jacobson et al. 2006, https://ssd.jpl.nasa.gov). Then, assum-
ing that sM and σJ are uncorrelated, we use = +D D DJ M

2 2 2 as
a measure of a model’s fit to observation and a natural
likelihood function is

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠µ - xL D pexp

1

2
. 62

7 A full definition of our chosen prior is given in Appendix C.

8 Depending on the source of uncertainties sJi, they may be correlated. In that
case, the definition of DJ would involve a covariance matrix but the rest of the
calculation would remain unchanged.
9 GM is measured with exquisite accuracy, but G is known to ~ -10 4

precision (CODATA 2014, https://physics.nist.gov).
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We need not worry about a normalizing constant as the
sampling algorithm evaluates only ratios of likelihood.

A final minor modification of Equation (4) is worth
mentioning. Because the uncertainty values that define the sJi

are due in large part to the contribution from nonrigid rotation,
and because this contribution, while unknown in detail is very
likely to be nonzero, it seems unwarranted to “privilege” the
point J as the Gaussian likelihood (6) does. Instead, we
measure the distance of a model’s gravity not to the center, J ,
but to the nearest corner of the cube defined by sJi Ji.
Models inside this “1σ cube” are considered equally likely.
This likelihood seems to us more physically justified. It turned
out to have a negligible effect on the derived samples, however.

2.4. Fast Calculation of Gravity Coefficients

The main computational effort involved in the sampling, and
thus the prime candidate for optimization, is the calculation of the
gravity coefficients10 [ ]=J J J J, ,2 4 6 given a particular ( )r s .

The calculation of the Ji for fluid planets has a long and rich
history. In modern times, the choice is between two algorithms.
The faster but less precise method is the ToF (Zharkov &
Trubitsyn 1978). When carried to fourth order in powers of
the small parameter = Wm R GMm

2 3 , where Ω is the uniform
rotation rate and GM is the total gravitational mass, the theoretical
truncation error is ∣ ∣d -J J 102 2

4 and ∣ ∣d -J J 104 4
3. We use

the shape-function coefficients given by Nettelmann (2017) to
( ) m4 and confirm her findings that this level of precision is also

achievable in practice. For Saturn, the Cassini mission’s Grand
Finale orbits provided gravity coefficients to much better
precision,11 but as discussed above, the measured values
include a potentially large contribution from dynamic flow
(winds), greatly increasing the effective uncertainty in the
portion of the gravity field attributed to the underlying density
structure. For J2, the wind contribution becomes the dominant
source of uncertainty, while for J4 and J6, the winds and the
uncertainties associated in the ToF calculation are comparable
in magnitude and are therefore added, in quadrature, to
define sJi.

12

The solid-body rotation period for Saturn is itself still
somewhat uncertain. The rotation period measured long ago
by Voyager as 10h39m24s (Desch & Kaiser 1981) is now
commonly understood to be much too slow to represent the
bulk planetary rotation. More recently several estimates of a
faster rotation rate have been proposed, based on a few
independent methods that seem to point to a period of 10 hr and
between 33 and 34 minutes (Read et al. 2009; Helled et al.
2015; Mankovich et al. 2019; Militzer et al. 2019), but an exact
rotation rate is not available. The uncertainty in rotation rate
can be used to estimate a corresponding correction to the
already large gravity uncertainty, but there is a better way.

We can let the rotation parameter m be itself a sampled
variable, guided by a suitable prior as always. Adding an extra
variable to a sampling problem is a risky proposition, but in
this case it turned out to have minimal performance cost,
because the rotation parameter is uncorrelated with the other
sampled variables and because the likelihood function is not

strongly sensitive to this variable, at least within the range of
values implied by the prior. We use a relatively strong prior of
normally distributed m centered on =m 0.14224 (10h33m30s)
with s = ´ -4.5 10m

4 (~1 minute).
The second option for calculating the Js is the Concentric

Maclaurin Spheroids method (CMS; Hubbard 2012, 2013),
which allows for calculation of Ji of any order and to arbitrary
precision, but at the cost of a much slower computation. The
CMS method was developed in anticipation of the extra-
ordinarily precise data expected from the Cassini Grand
Finale orbits (and similarly precise measurements of Jupiter’s
gravity by Juno). However, although the radio science indeed
determined Saturn’s gravity to very high precision (Iess et al.
2019) as discussed above, the presence of nonuniform rotation
leads to effective uncertainty much higher than the measure-
ment uncertainty. The large uncertainty associated with deep
zonal winds means that the faster ToF method is adequate for
the purpose of calculating the rigid-body Js. In this work, we
therefore let ToF do the majority of the calculation, including
all of the computation embedded in the sampling process. We
use CMS for validation and to compute a subset of some tens
of high-likelihood models.
Both CMS and ToF can benefit from the following

optimization. To achieve the theoretical level of precision,
the integrals involving the mass distribution ( )r s must be
computed with higher accuracy than that required by the rest of
the algorithm. In general, this means that ( )r s must be resolved
on a fine-enough grid in normalized radii, zi, for the numerical
integration to properly converge (e.g., Nettelmann 2017,
Equation B.9). It is not necessary, however, to carry out the
computationally expensive solution of nonlinear equations for
the shape functions, in the case of TOF, or the root finding of
potential as a function of latitude in the case of CMS, on such a
fine grid. Because the shape of the planet deviates only slightly
from spherical even for a fast rotator such as Saturn, the shape
of a level surface, ( )qr z, , is a very smooth function in both z
and colatitude θ. Taken as a function of z for fixed θ, the
function can be interpolated with excellent precision from only
a handful of known values between z=0 and z=1, using a
spline interpolant.
This affords us a significant reduction in the time required to

compute the shape and gravity for a single model. For example,
we find that we can achieve the expected theoretical precision
of fourth-order ToF with ( )r s resolved on N=2048 levels but
with the shape equations solved on only n=64 intermediate
levels, and then interpolated onto the full set. Our implementation
then returns a candidate model’s gravity coefficients in under 1 s
running on a single CPU core. This is a key optimization that
allows the sampling procedure to be completed on modest
hardware.
The same optimization can be implemented for CMS with

even better results, as demonstrated in Militzer et al. (2019).
Unfortunately, for a sampling problem of this scope, this speed-
up is not enough to mitigate the speed disadvantage of CMS
compared with ToF.

2.5. MCMC Sampling of Parameters

There is a wide variety of MCMC sampling algorithms; all
fundamentally seek to sample the posterior distribution by a
sequence of random steps through parameter space. The main
difficulty is constructing an appropriate random-stepping

10 Higher-order Js can be used when appropriate; the computation time is
independent of how many Js are sought.
11 The same would be true for Jupiter, with gravity obtained during the Juno
mission, whereas for Uranus and Neptune the measurement uncertainty would
still be dominant (Hubbard et al. 1995).
12 The values of sJi given in Section 2.3 include both sources.
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algorithm, called a proposal distribution, to efficiently explore a
high-dimensional parameter space.

MCMC can often benefit from parallel execution. A variant
that has proved very useful for this work is the parallel stretch-
move algorithm (Goodman & Weare 2010), as implemented in
the emcee Python package (Foreman-Mackey et al. 2013). In
this algorithm, the proposal distribution is automatically
constructed by taking a step along the line segment (in
parameter space) connecting the current position of two
“walkers” in an ensemble that explores parameter space
simultaneously. This greatly simplifies the most difficult task
of MCMC but if the walkers in the ensemble are run in serial,
the computation time would be too long. Luckily, this approach
can benefit from parallelization with minimal overhead and is
thus perfectly suitable to run on a large supercomputer. The
sampling calculations for this work were run on NASA’s
Advanced Supercomputing facility at the Ames Research
Center.

A critical consideration in the application of any MCMC
algorithm is the issue of convergence. Simply put, we must
decide when it is safe to stop the sampling run and use the
obtained draws to calculate anything of interest, trusting that
the sample distribution is similar enough to the underlying
posterior. Theoretical considerations offer only loose bounds
on the variance of sampled parameters and are rarely useful in
practical work. A number of diagnostic schemes that attempt to
either hint at convergence or to warn of a failure to converge
(e.g., review by Cowles & Carlin 1996) have been suggested.
But even this more limited task is still an open problem in
statistics, and the decision to accept a sample as “converged”
still involves case-by-case, subjective judgment. Appendix C
includes a discussion of the mixing and burn-in length of our
samples.

In our case, examining the traces, autocorrelations, and joint
posteriors of partial samples, we find that we can significantly
accelerate convergence by separating our 12 dimensional
parameter set into two subsets that are sampled in hierarchical
fashion. Recall that of the 11 parameters needed to define a

( )r s curve (Equation (3)), 2 are the normalized radii locating
the points of possible density discontinuity; their values have a
straightforward, physical meaning. The other nine parameters,
defining the geometry of the quadratic segments, take values
whose highly nonlinear effect on the density is entirely
dependent on the value of the first two parameters. In statistical
terms, we have two proper subsets of parameters with very high
correlation between sets but low correlation within each one.
Consequently, fixing values for the transition radii, we can
sample the conditional joint posterior of the nine geometric
parameters efficiently. Of course, we must repeat this sampling
many times, on a fine grid of values for the transition radii, and
finally combine the conditional probabilities to a full joint
posterior. But the gain in sampling efficiency provided by this
hierarchical approach is such that we still come out ahead in
terms of CPU hours and overall length of simulation. There is
more than one way to combine conditional joint probabilities to
a single joint posterior. We use the Bayes Information
Criterion, defined fully in Appendix C.

A final minor optimization is worth mentioning. In
hydrostatic equilibrium, the condition r= -dP dr g requires
that the pressure gradient go to zero at the center of the planet.
For a continuous thermal profile, this implies that the density

gradient likewise vanishes at the center, in our notation:

( ) ( )r
=

 +

d s

ds
lim 0. 7

s 0

Because ( )r s is in our case piecewise quadratic, the linear term
of the innermost quadratic segment should vanish, or
equivalently, that any three parameters used to define the
quadratic are correlated, such that only two independent
parameters are needed. This not only results in more realistic
density profiles but also helps by reducing the dimensionality
of the sample space—always a good idea.

2.6. Relation to Previous Works

While in previous sections we discussed the drawback of
“standard” approaches, here it is worth discussing how our
work compares to previously published alternative approaches.
Helled et al. (2009, 2011a) investigated models for Saturn,

Uranus, and Neptune where the interior ( )r s profile was
parameterized as a high-order polynomial. A single best-fit
polynomial was found, given the gravity field, and the results
were interpreted by comparison with physical EOSs for H, He,
ices, and rock. In other studies, a large range of density profiles
was considered, allowing for different core masses and radii,
with the core being represented by a constant density
(Helled 2011; Helled et al. 2011b; Kaspi et al. 2013). Our
work has a similar spirit but we determine the statistical
distribution of the empirical models while also allowing a more
general structure, and more than one density discontinuity,
which is favored by the gravity solution.
Another approach was that of Leconte & Chabrier (2012),

who investigated Jupiter and Saturn structure models that were
super-adiabatic throughout most of the interior, due to an
ad hoc composition gradient in the planetary interior. These
models yield significantly different interior structures (that
were much richer in heavy elements than standard models), but
there was little exploration of a range of models. Vazan et al.
(2016, 2018) ran evolution models of Jupiter and Saturn with
composition gradients and helium settling for Saturn, and
several models have been presented, not aimed at a statistical
description.
Another approach to interior modeling that is quite similar to

ours in spirit but very different in practice was previously
attempted by Marley et al. (1995) and Podolak et al. (2000). As
a means to forgo as many assumptions as possible, the authors
studied a number of randomly generated interior density
profiles for Uranus and Neptune, matching only the constraints
of mass, radius, J2, and J4. Their model generation was truly
random, not based on a sampling algorithm. Naturally, this
algorithm, while simple, has a very low success rate, i.e.,the
number of valid models per n models generated was quite low,
and the authors were forced to restrict the parameter space in
some arbitrary ways, the most important was forcing a single
value for the core radius and a small range of radii for a
secondary density jump in the envelope.
Even with these restrictions, the investigation was able to

produce only a small number of valid models for each planet,
much too small to draw statistical conclusions from, particu-
larly as this set of empirical density curves was not constructed
to be a representative sample. Nevertheless, the models thus
obtained were different from models generated by the
traditional approach in interesting ways. Most importantly,
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the derived pressure–density relation for both Uranus and
Neptune implied a gradual composition gradient in the outer
shells of both planets (Marley et al. 1995, their Figure 2).

3. Saturn’s Density Profile and Inferred Properties

After obtaining an independent random sample from the
posterior in parameter space, we examine the resulting
distribution of density profiles. Figure 3 is a view of the
sample distribution. Density is plotted against the normalized
level-surface radius. In the left panel, the thick black curve is
the ensemble median density at each radius, and the shaded
regions indicate the width of the distribution. In the right panel,
a subset of the entire sample is plotted, selected to illustrate the
sample range. Regions of higher line density (where the lines
are closer together) correspond to high-likelihood areas in
parameter space, by the nature of the MCMC algorithm. The
EOS-based profiles from Figure 2 (from M19) are overlaid for
comparison.

Two insights are possible by inspection of Figure 3. First,
from the left panel, the observed gravity can constrain the top
half of the planet much more strongly than it can the bottom
half. This was expected (see Figure 1), but it is worth
emphasizing again that it is a fundamental limitation of using
gravity to probe the interior. This limitation is with us to stay; it
will not be completely removed by increasing the accuracy of
measurement or the precision of calculations. The same point is
illustrated quantitatively in Figure 4 where the sample-spread
of density values is shown for each radius. The variation in
density also translates to a spread in moment of inertia values,
which end up approximately normally distributed, with a mean
of 0.2219 and standard deviation 0.0005.

The second interesting feature, easier to spot in the right
panel, is the existence of density discontinuities. Recall that our
parameterization allowed up to two discontinuities; it did not
require any. Indeed, many profiles in the ensemble lack one or
both discontinuities, the interpretation being that they lack a
sharp composition or phase boundary.

The inner discontinuity, at =s s2, was meant to represent the
possibility of a distinct core. Many density profiles indeed
show a discontinuity pronounced enough to clearly indicate
a transition to a heavy-element core, while in many others,
a much smaller density jump is observed instead, indicating a

more subtle composition change, consistent perhaps with the
idea of a fuzzy/dilute core (Helled & Stevenson 2017) or
compositional gradients (Leconte & Chabrier 2012; Fuller
2014). For illustration, subsets from the sample with and
without a pronounced discontinuity are shown in Figure 5 (left
panel). To put a probability value on the existence of a heavy-
element core, we can look at the distribution of r rD at
=s s2, shown in Figure 6, but it is not clear what “cutoff”

value should indicate the core/no-core property. For reference,
we can look at previously published, EOS-based models where
a core was explicitly assumed. In such models, the relative
density jump at the core boundary exhibits a wide range, from
as low as r rD » 0.3 to more than tripling the density (e.g.
Vazan et al. 2016; Mankovich et al. 2019). With this in mind
perhaps the most precise statement to make is that at least half
the density profiles in our sample show a discontinuity
pronounced enough to be consistent with a heavy-element
core transition.

Figure 3. Visualization of the posterior probability distribution of Saturn interior density profiles. Left: the thick black line is the sample median of density on each
level surface. The dashed lines mark the the 16th and 84th percentiles, and the dotted lines mark the 2nd and 98th percentiles; between the lines, the percentile value is
indicated by color. Right: several hundred profiles covering the sampled range. By nature of the MCMC algorithm, regions of the figure where lines are closer together
correspond to high-likelihood areas of parameter space. For comparison, three profiles derived by physical models with a pure H2O core (Mankovich et al. 2019, same
profiles as in Figure 2) are overlaid.

Figure 4. Width of the distribution of density values found in the posterior
sample at each radius. The quantity dr is the difference of 84th and 16th
percentile values, giving the equivalent of a 2σ spread; r is the sample median
density. The flat region near =s R 1m is a consequence of the relatively strong
prior imposed in that region (see Appendix C).
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The outer discontinuity, at =s s1, was meant to represent the
possibility of an abrupt change in density in the envelope,
where the He mass fraction changes from depleted (relative to
protosolar values) to enriched. This transition was expected
based on theoretical considerations about the miscibility of He
in H, in the region of phase space where hydrogen undergoes
a molecular-to-metallic phase transition (Stevenson 1975).
An abrupt change in He mass fraction, Y, is often explicitly
included in interior models, usually as a free parameter.
However, this two-layered envelope is only one possible
arrangement among many, including a continuous Y gradient.
For example, if Saturn’s interior is sufficiently cold for He
phase separation to occur in the first place, then it is true that
helium distribution is determined by the precise solubility of
helium throughout the metallic interior, quantitative predictions
of which have been made from first-principles simulations
(Schöttler & Redmer 2018). Applying these predictions self-

consistently to Saturn interior models, Mankovich & Fortney
(2019) find equilibrium profiles wherein helium abundance
increases continuously with depth inside »P 2 Mbar with the
exception of a single deep discontinuous jump in density
connecting the helium gradient region with a deeper pool of
undissolved helium-rich material.
The sampled profiles include both continuous-density

envelopes as well as those with small density jumps at s1.
While a density jump does not uniquely correspond to a jump
in He abundance, a continuous ( )r s does imply continuous Y
(s). As seen in Figure 6, both possibilities (illustrated in the
right panel of Figure 5) are consistent with the observed
gravity.
Perhaps the most useful aspect of the empirical-model

approach is the possibility of finding unexpected solutions that
can never arise where explicit composition modeling is used.
Figure 7 takes a closer look at the density solutions, this time
focusing on the low-pressure region above ~2 GPa. A long-
standing point of tension in Saturn modeling is that Saturn’s

Figure 5. Left: a subset of profiles from the posterior distribution chosen to illustrate the idea of a compact (solid lines) versus diluted (dashed lines) core. All have
comparable likelihood values. A precise value of r rD marking the difference between compact and diluted cores is hard to define (see discussion in the text). Right:
a subset of profiles from the posterior distribution chosen to illustrate the possibility of continuous He abundance in the envelope (solid lines) as well as the traditional
idea of helium rain separating He-poor and He-rich layers (dashed lines). Again, the likelihood values of both subsets are comparable and, again, a precise cutoff
below which the curve is considered continuous is not obvious.

Figure 6. Histograms of the density increase at the inner (bottom axis) and
outer (top axis) discontinuities, perhaps representing a phase or composition
change.

Figure 7. Density profiles in the upper envelope derived from our composition-
agnostic sample (purple), traditional three-layer models with standard values of
Z 0.05 (M19, red), and two three-layer models that have a much higher

value of Z=0.15 consistent with atmospheric abundances (black dashed and
dotted–dashed) but do not fit the observed gravity field.
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atmosphere is known to be enriched in heavy elements (Atreya
et al. 2016), showing about 10 times the solar abundance for C,
P, and S (seen in CH4, PH3, and H2S). That is, a “metals” mass
fraction of »Z 0.15 for the H/He envelope. However, modern
Saturn models, even after the Grand Finale orbits, find a fit to
the gravity field only with a much lower <Z 0.05 in the outer
H/He envelope (Nettelmann et al. 2013; Iess et al. 2019;
Mankovich et al. 2019). Traditional models cannot match all of
the atmospheric constraints, suggesting that we do not have a
complete picture of Saturn’s interior. In contrast, we find that a
natural outcome of our composition-agnostic approach is
density-enhanced outer layers. For comparison, we show two
traditionally calculated models with Z=0.15 in their envel-
opes, and they fall nicely inside our posterior sample. The
density profiles in our sample (purple lines in Figure 7) fit the
measured gravity field while the traditional model cannot, with
such high Z fraction, because of quite different deeper interior
profiles (Figure 3).

3.1. Inferences on Possible Composition

With each ( )r s profile is associated a corresponding pressure
profile, ( )P s , by assuming hydrostatic equilibrium. Combining
the two profiles to eliminate the radius variable results in a
unique pressure–density relation, often called a barotrope. The
posterior distribution of Saturn barotropes implied by our
sample is shown in Figure 8. By itself, the barotrope
distribution does not provide much new insight; however, it
serves as the basis for the derivation of implied constraints on
composition, by comparison with known EOSs, described next.

So far we have focused our attention on what the gravity
implies directly about the interior, avoiding additional
assumptions. We now wish to see what can be inferred about
the planet’s composition; some assumptions and approxima-
tions become necessary. The reason is that the density and
pressure are not determined solely by composition; the thermal
structure is a separate, and unknown, variable. Although the 1
bar temperature (to be used as a boundary condition) can be
determined by observation, the interior thermal profile is
unknown unless we make the strong and not entirely justified
assumption of a single adiabatic profile extending at least some
fraction of the way down into the planet (Section 1.2).

A possible approach is to compare the empirical barotropes
obtained above to some reference barotrope and examine the

“residual” density for possible constraints on composition.
Deviations of the density in the sampled profiles from this
reference are due to a combination of the actual composition
being different from the assumed reference and of the real
temperature profile being different from adiabatic.13 This
degeneracy means that we can only hope to estimate bounds
on composition, rather than a nominal value.
In detail, the calculation is this: given the density ρ and

pressure P on a level surface with mean radius s, we can
compute ( )r r= Pbg bg using a background (bg) EOS and an
assumed thermal gradient to compute a background barotrope.
The residual density, r r- bg, is already instructive, but we can
further compute ( )r r= Pfg fg using a foreground (fg) barotrope
for heavy elements (water or rock) with the same pressure and
temperature as the background. The heavy-element mass
fraction Z then follows from the additive-volume formula,

( )
r r r

=
-

+
Z Z1 1

. 8
bg fg

The mass fraction Z, calculated with different choices for the
foreground EOS, can be used to constrain the heavy-element
content consistent with the sampled density profiles.
In the simplest case, our background can be a mixture of

only hydrogen and helium in protosolar mass fraction with an
adiabatic temperature gradient. We use the EOS of Saumon
et al. (1995) to generate pressure–density points for H
(X=0.725 by mass) and He (Y=0.275 by mass) with
constant entropy corresponding to a temperature =T 140 K at
a pressure of =P 1 bar. The residual density of the sampled
profiles relative to this background is shown in Figure 9.
Clearly, there is an excess density compared to the adiabat in
the regions of the planet below 70% of the planet’s radius,
which becomes extreme in the inner 30%. If a lower Y
reference adiabat were chosen in the outer layers, larger density
excess would be needed.
Next, using a foreground EOS for either pure water ice

(Thompson 1990; French et al. 2009) or pure rock (Thompson
1990), we apply Equation (8) to each of the sampled profiles.
What we obtain is an empirical probability distribution of the
heavy-element content in Saturn’s interior. In Figure 10, we

Figure 8. Visualization of the posterior distribution of empirical Saturn barotropes (pressure–density relations). Left: the sample median (thick black line), 16th to 84th
percentile range (dark gray shaded), and 2nd to 98th percentile range (light-gray shaded). Right: thinned subset of sampled barotropes. The median barotrope implied
by the physical models of M19 (red dashed line) overlaid for comparison.

13 And if the reference barotrope was constructed using a theoretical equation
of state, then of course there is an additional source for the deviation—the
accuracy of the underlying EOS.
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plot a histogram of this distribution, which should be taken as
an estimated upper bound rather than a precise distribution,
given the assumptions underlying this calculation. These values
are typically higher than those from standard models because
the excess heavy elements, even at high pressure where one
might expect a pure heavy-element core, are here always
determined as an excess density over that of the lower density
H/He.

The same calculation can be repeated for different internal
thermal structures or with different choices of background and
foreground EOS. There is no need to repeat the time-

consuming task of sampling the density profiles. As a second
example, Figure 11 shows the residual density relative to a
background adiabat with a lower value of Y=0.1 and with
heavy elements mixed in with a ratio Z=0.135 in line with
atmospheric constraints at ~ ´9 solar enrichment. This adiabat
was calculated using the Militzer & Hubbard (2013) and
Saumon et al. (1995) EOSs as combined by Miguel et al.
(2016) to treat arbitrary H–He mixtures and ANEOS
(Thompson 1990) for water ice.
The median density of the empirical models is consistent

with the adiabatic density down to »r R 0.95m , is somewhat
lower down to »r R 0.7m , then climbs again. Models in the
distribution that follow these trends may be interpreted as
supporting the idea of an extended stably stratified region
(Fuller 2014). But, again, the median is not the distribution. To
a “1σ” level, the adiabatic density profile is consistent with the
empirical samples down to at least =r R 0.35m .
As a last example, we use as our reference background the

end state of a recent Saturn thermal evolution model
(Mankovich & Fortney 2019). This structure derives from
calculating the cooling of Saturn’s interior, including the phase
separation of He from H in the interior. This leaves the
molecular part of Saturn’s envelope depleted in He (to
Y=0.07) and the inner regions extremely He enriched
( Y 0.9 inside  s R0.24 0.37m ). The model includes a
uniform metallicity Z=0.048 in the envelope, with a dense
Z=1 core below =s R 0.24m . The model matches Saturn’s
present-day radius and intrinsic luminosity but does not attempt
to match the observed gravity field. Subtracting this back-
ground density, we again examine the residual density in the
sampled profiles (Figure 12). Compared with this particular
evolution model, a majority of our gravity solutions produce
quite consistent densities throughout the interior of the planet.
That the density residual is consistent with zero virtually
everywhere in the planet indicates (1) that this rather extreme
level of helium depletion in the molecular envelope is
permitted by Saturn’s observed gravity field, (2) that the
overdensity of our models at depth ( s R 0.2m ) compared to
constant-composition adiabats (Figures 9 and 11) can indeed be
provided by a central core of dense material, as expected, and
(3) a helium-rich shell surrounding such a core is also

Figure 11. Same as Figure 9 but background density derived from adiabat
calculated for Z=0.1 and Z=0.135.

Figure 9. Residual density above a background derived from a reference
adiabat calculated for a H/He mixture with He mass fraction Z=0.275 and

( ) =T 1 bar 140 K . The thick curve is the sample median, and the dark and
light shaded regions include 68% and 96% of the sample, respectively.

Figure 10. Residual mass in heavy elements and corresponding residual bulk
metallicity assuming either pure H2O ice or pure serpentine rock EOS. These
are end-members of what is likely a mixture of both materials in unknown
ratio. The figure shows the mass in heavy elements inferred with a reference
density based on a H/He adiabat with Z=0.275 extending throughout the
planet. It should be interpreted as an upper bound for adiabatic models, as it
excludes the possibility of a pure heavy-element core.
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consistent with the low-order gravity field. These observations
are at the 1σ–2σ level, i.e., solutions also exist that do not
follow these trends.

4. Discussion and Conclusions

In this paper, we presented an empirical approach to using
gravity data to explore the interior structures of fluid planets
and applied it to Saturn using data from Cassiniʼs Grand Finale
orbits. Here we wish to summarize our findings for Saturn, and
about planetary interior modeling in general, and to consider
the strengths and weaknesses of our “density first” approach,
versus traditional, composition-based modeling.

First, a point that was already made above but bears
repeating: gravity data alone offer robust but loose constraints.
The great variety of density profiles included in our sample
may seem surprising and counterintuitive, but it is an
unavoidable consequence of using an integrated quantity, in
this case the external potential, to study the spatial distribution
of local quantities, in this case the interior density and all
properties of the planet that derive from it. Without imposing
additional constraints, we necessarily obtain nonunique solu-
tions, and this is a separate and more fundamental limitation
than the problem of uncertainty in the data and/or calculation.

As a result, the main finding we can report on, with respect
to Saturn, is to confirm the well-known but often under-
appreciated suspicion that solutions to Saturn’s gravitational
potential field exist that do not conform to a simple model of a
few compositionally homogeneous and thermally adiabatic
layers. While this may not be a surprise, it is nevertheless a
previously unproven result. We could not know, a priori,
whether the nonuniqueness of gravity solutions would translate
to a narrow range of allowed interior structures or to a wide
variety, as appears to be the case.

We can contrast this with the seemingly more informative but
less robust outcomes from traditional models. These are often able
to report narrow ranges for a number of key quantities (typically
core mass, bulk metallicity, H/He envelope metallicity, atmo-
spheric helium depletion) that were the free parameters in the
chosen model. The trade-off for these precise, straightforward
estimates is their unknown validity, being tied to very particular
and often very simple a priori modeling framework for the planet.

For example, recent modeling efforts based on Cassini data and
utilizing state-of-the-art EOSs have concluded that no rigidly
rotating models can be found that fit the measured gravity
coefficients J2, J4, and J6 simultaneously to any reasonable
precision, and have interpreted this as strong evidence for
differential rotation in Saturn (Galanti et al. 2019; Iess et al.
2019). In fact, while evidence for differential rotation in Saturn is
indeed strong (most notably the detection of odd harmonics J3 and
J5), it is not true that rigidly rotating models cannot match the
even harmonics. The empirical models in our sample all fit, by
construction, the even gravity harmonics to the prescribed
uncertainty, and we verified, by using the precise but slower
CMS method, that empirical models can be constructed to match
the measured measured harmonics to the full precision of the data.
The existence of such models does not really prove or disprove
anything of substance; what it does is illustrate the risk of drawing
a general conclusion from a specific model.

4.1. Narrowing Down the Posterior Distribution

It is certainly possible that a subset of the sampled density
profiles can be “disqualified” based on other physical
considerations, and indeed we consider this a natural avenue
for future work. Any reduction of the allowed solution space
will be an improvement, as it narrows down the probable actual
structure of Saturn. However, any such reductions must be
considered carefully, so that they do not rely too strongly on
implicit assumptions of the exact kind we decided to avoid in
the first place. Such low-hanging fruit as disqualifying
unphysical density inversions or density extremes had already
been picked by passing an appropriate prior probability
function, ( )xp , to the MCMC sampler (Appendix C). For
instance, that is why the posterior sample does not contain
profiles with stationary points or with central densities much
higher than ´ -2 10 kg m4 3. More subtle constraints, e.g.,
looking for convective instabilities or checking pressure–
density pairs against known EOSs, require knowledge of the
thermal state and inevitably require additional assumptions.
A second and unrelated way to narrow the predicted

distribution somewhat is to “sharpen” the likelihood function
by including higher-order coefficients and/or with tighter
uncertainties. Recall that J2 and J4 are known for Saturn with
better accuracy than was assumed in Equation (4). The same is
true for Jupiter, and higher-order coefficients are also known,
with decreasing accuracy, for both planets. More precise
calculation of the Js for a given density profile can reach this
level of accuracy, with the only downside being increased
computation time. While this would be a worthwhile improve-
ment, it would only be appropriate if and when the actual
rotation state of Saturn is known, including any dynamical
and/or non-rigid-body components, to sufficient accuracy from
independent measurements. That would allow matching
models of rigid rotation with an adjusted gravity measurement
reflecting a known correction due to differential rotation.
Finally, our inferred heavy-element mass for Saturn relied on

the SCVH EOS for H–He. This widely used EOS has been
recently updated to be more thermodynamically consistent
(Chabrier et al. 2019). In the updated version, hydrogen is found
to be denser under Jupiter and Saturn conditions, in agreement
with DFT calculations. Therefore, the heavy-element masses
listed here are likely overestimates. Clearly, a more detailed
investigation of that topic in the future is desirable.

Figure 12. Same as Figure 9 but with the background density defined by the
end state of an evolution model (Mankovich & Fortney 2019).
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What we have accomplished is an understanding of a much
fuller range of interior density profiles for Saturn that are
allowed by the planet’s gravity field as determined by the
Cassini Grand Finale, a data set that will likely not be
surpassed for some decades. We hope that the allowed density
distributions are a long-lived data product that other workers
may find useful as new ideas about planetary formation,
structure, and evolution emerge. Such ideas can be compared
against the allowed interior density distributions that we have
found here. To facilitate this, we archive the data products and
analysis tools used in this study, documented in sufficient detail
to allow reuse and alternative analysis. The archive can be
found at https://doi.org/10.7291/D1P07G.
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through the NASA Advanced Supercomputing (NAS) Division at
Ames Research Center, as well as the lux supercomputer at UC
Santa Cruz, funded by NSF MRI grant AST 1828315.

Software: emcee (Foreman-Mackey et al. 2013).

Appendix A
A Single-parameter Description of the Low-pressure

Region

As explained in Section 2.2, when choosing a parameteriza-
tion, our goal is to find the best compromise between a simple
description, with a small number of parameters suitable for
MCMC sampling, and a general description, letting the
resulting ( )r s curves explore all reasonable profiles. Our
choice of parameterization by piecewise-quadratic functions
was guided by, but is much more general than, previously
published models that were based on physical EOSs and an
adiabatic temperature gradient (Mankovich et al. 2019). We
found that, for the bulk of the planet, a piecewise-quadratic

( )r s is able to capture the profiles derived with a physical EOS
and flexibly explore beyond them.

However, empirical ( )r s profiles derived from this para-
meterization inevitably exhibit a small but significant deviation
from profiles derived by physical models, in a small region at
the top of the upper envelope. Figure 13 illustrates the problem.
An inflection is seen in all the EOS-based ( )r s curves, always
in the neighborhood of »s R 0.95m , and this inflection cannot
be captured if a single polynomial is used to approximate the
entire upper envelope (typically extending down to at least

»s R 0.65m ). Above the inflection point is a small region
where ( )r s seems to follow a different curve. And yet, this
small region of the upper envelope is one where physical
models are most reliable, at a pressure and temperature region
where EOSs are well tested and where an adiabatic temperature
gradient is expected to exist. Closely matching the EOS-based
models in this upper region of the planet is an important way in
which to constrain empirical models.

The obvious solution is to add an additional segment to the
piecewise-polynomial parameterization, but unfortunately this
cannot be implemented. The problem is not simply that this

would require five to six additional parameters and greatly
complicate the sampling process. More seriously, the small region
in question contains relatively little mass. Small changes in density
in this region do not make a big-enough difference in the J values,
at our level of precision, to effectively “drive” the likelihood
function. There is no reason to expect then that profiles from the
resulting posterior would be any more like the EOS-based ones.
Instead, we use a more explicit constraint, ad hoc in nature,

which achieves the desired result of keeping the top of the
envelope in empirical models similar to EOS-based models while
retaining enough flexibility to mimic varying composition.
We examine the shapes of the density profiles of M19 in the

region above = =z s R 0.94a m (Figure 14(a)). We choose this
fixed point, slightly below the inflection seen in the models, to
make sure we always capture the slope accurately. For <z za,
we use the main parameterization by piecewise quadratics
(Equation 3 and Appendix B). Above za, we find that all
profiles can be fit by fourth-degree polynomials (quartics) to
excellent agreement. Further, if we denote ( )r r= za a , we find
that, for  z z 1a , the curves ( )r rz a are equally well fit by
quartics (not surprising), and in fact, that they can all be
adequately approximated by the same quartic polynomial:

( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

r
r

» = ´ - ´

+ ´ - ´ + ´

 z z

z
Q z z z

z z

1
3 10 1.128 10

1.587 10 9.914 10 2.323 10 ,
9

a

a

4 4 5 3

5 2 4 4

shown in Figure 14(b). The profiles in Figure 14(a) can be
recovered, approximately but with high fidelity, by multiplying
the polynomial (9) by a particular value of ra.
In other words, in the region z za the physical, EOS-based

models form a one-parameter family of quartic functions. We
do not see a special physical meaning here. It is simply that the
variation in density that originated from making different
choices about composition (i.e., the envelope’s helium mass
fraction and metallicity) under the severe but, in this region,

Figure 13. A close look at the upper envelope of traditional Saturn models
(Mankovich et al. 2019), the same models seen in Figure 2 in the main text.
The solid black curve is the ensemble median density at each radius, with the
light-gray band denoting the 1σ variation. The red and blue dashed lines are
best-fit polynomials of degree 2 and 4, approximating the density profile in the
upper envelope as a whole. Neither is a good approximation in the small region
where s R0.95 m.
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well-justified adiabatic assumption, can be empirically captured
by varying the value of ( )r r= =s R 0.94a m . To make sure
that our empirical profiles are similar to but not overly
constrained by EOS-based models in the region z za all we
have to do is set an appropriate prior on the parameter ra.
Guided again by the physical models, we choose a uniform
prior in the range r- - 100 kg m 200 kg ma

3 3 with an
exponentially decaying probability outside this range.

Appendix B
Complete Definition of Parameters Sampled by MCMC

As explained in Section 2.2 of the main text, our choice of
parameterization of empirical density profile is a piecewise-
quadratic function. There are two breakpoints, at normalized
radii z1 and z2, where a jump discontinuity is explicitly allowed
(but not required) and between them are three quadratic
segments each defined by three parameters, for a total of 11
free parameters required to define a density profile ( )r s .

There is more than one way to let three numbers define a
quadratic function. In principle, all are equivalent but in
practice MCMC sampling works best (i.e., converges fastest)
when the parameters are minimally correlated, and the
likelihood function is a smooth function of their numerical
values. It is especially important to avoid likelihood “cliffs,”
where a small change in one parameter value results in a
sudden drop in the likelihood value, perhaps because a
physically motivated prior condition has been violated. This
is a real danger and often leads the most intuitive and simple
parameterizations to fail.

For example, defining the quadratic segments by

( ) ( )
⎧
⎨⎪
⎩⎪

r =
+ + <
+ + <
+ +




z
a z b z c z z

a z b z c z z z

a z b z c z z

, ,

, ,

, ,

10
1

2
1 1 1

2
2

2 2 2 1

3
2

3 3 2

would not do. The nine parameters a b c, ,i i i are highly
correlated, meaning a small change in the value of one usually
requires a simultaneous and “coordinated” change in several
others to prevent the resulting density profile from changing
too much and landing in a low-likelihood region. Worse, the
locus of parameter values that yield physically permissible
density profiles (without negative density or any density

inversions) form distinct islands in parameter space, with
zero-likelihood regions between them that are practically
impossible for MCMC algorithms to cross.
By trial and error, we arrive at the following alternative

parameterization, admittedly complicated, but effective. In
addition to z1 and z2, the nine parameters defining the quadratic
segments are

[ ( )
( ) ( )
( ) ( )]

( )

r r r
r r r r
r r r r

= = -
= - = -
= - = -

x a y

a y y

a y y

, , log ,

, log , log ,

, log , log .

11

1 10 11 11 10

2 21 21 11 22 22 21

3 32 32 22 33 33 32

The parameters ai control the curvature of segment i and the
rij are the densities at the segment ends. The segments
are numbered from top to bottom: segment 1 includes
< =z z z 0.94a1 , segment 2 includes < z z z2 1, and

segment 3 includes < z z0 2. (See Appendix A for why
the top segment extends up to za instead of z= 1.)
Next, ( )r r= za10 (top of segment 1) and ( )r r=  + zlimz z11 1

is the right-limit density at z1 (i.e., bottom of segment 1).
Similarly, ( )r r=  - zlimz z21 1

is the left-limit density at z1 (top
of segment 2) and ( )r r=  + zlimz z22 2

is the right-limit density
at z2 (bottom of segment 2). Finally, ( )r r=  - zlimz z32 2

is the
left-limit density at z2 (top of segment 2) and ( )r r= =z 033 is
the density at the bottom of segment 3, the center of the planet.
The use of the curvature-and-endpoints description is less

familiar but more intuitive than the well-known polynomial
coefficients representation. Notice that the endpoint density
values are defined implicitly—the actual parameter values are
the log of the difference of neighboring density values. This
transformation is a common MCMC “trick.” It allows the
sampled parameters to have values in the range [ ]-¥ ¥, and
keeps the corresponding physical parameters in their mean-
ingful range. All values of yij are permissible and lead to
physical, monotonically decreasing density profiles. Larger
values of y21 and y32 lead to more pronounced density jumps
between segments, while more negative values result in the
jumps disappearing and the segments merging into one. Thus,
all possibilities from the canonical, sharp envelope–envelope
and core–envelope transitions to a completely smooth density
profile throughout are representable and reachable by a
continuous variation of parameter values.

Figure 14. The same profiles as in Figure 13 truncated at =s R 0.94m , slightly below the inflection point. The apparently similar curvature motivates us to fit them all
with a single quartic polynomial in =z s Rm by normalizing to the value ( )r r= =z 0.94a a . This polynomial, Equation (9), together with a posterior distribution of
ra generate density profiles that resemble the physical models in shape but are free to explore “around” them.
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The density profile itself is constructed from the parameters
by solving for the polynomial coefficients that reproduce the
endpoint densities:

The prior probabilities set for the above parameters and the
resulting posterior chains are given in Appendix C.

Appendix C
Sampling Procedure

The full list of parameters we need to explore is

{ } ( )=x m a y y a y y y y z z, , , , , , , , , , . 13rot 1 10 11 2 21 22 32 33 1 2

See Appendix B for the meaning of these parameters. Notice that
a3 is apparently missing from the list above. In fact, as explained in
Section 2.5, the requirement that ( )r = + d s dslim 0s 0 con-
strains the innermost segment of ( )r s such that only two
parameters are independent. The curvature of that segment follows

( )
( )
( )
( )
( )

( )
( )

r
r r
r r
r r
r r
r r
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= +
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y
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exp ,
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3
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2
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In Section 2.5, we explain that the high degree of correlation
between the variables in Equation (13) makes it very difficult to
sample from the full posterior simultaneously. We find it
necessary to sample instead from the conditional probabilities,

( ∣ )= ¢ =x Z zp pz , where { }=Z z z,1 2 and ⧹¢ =x x Z. In words:
we fix values for the radii z1 and z2, and sample the remaining
10 parameters, resulting in a conditional distribution. We repeat
this for many values of zi to build a picture of the full posterior.

B.1. Prior Probabilities of Sampled Parameters

The prior for x is a product of independent priors for each
component. The rotation prior is ( )~ ´ -m 0.14224, 4.5 10rot

4 .
The mean corresponds to a rotation period of 10h33m30s and the
deviation is about 1 minute.

The curvature parameters take a uniform prior (~ - ´a 3i
)´10 , 3 106 6 . These limits do not have a special physical

meaning; they are reasonable bounds we find by experimentation.
The parameter r=y a10 has a particularly important prior.

Recall that this is a density at a reference point

( )r r= =z 0.94a a that we use to keep the density in the low-
pressure region of the envelope compatible with values derived
in traditional, EOS-based models. Guided by the models

presented in Mankovich et al. (2019) we set14

( )
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2

and the numerical values are in -kg m 3. In words: it is a
uniform probability inside the 100 to 200 -kg m 3 range with
exponentially decaying probability outside of it with an
e-folding distance of -10 kg m 3.
The other yij parameters are logarithms of density differ-

ences. They can take positive or negative values, and the values
get exponentiated and added to define the densities at the
endpoints of the quadratic segments, rij. It is natural to define
the prior on the actual density values, say a uniform prior in the
0–30,000 -kg m 3 range (merely a guess as to the highest
density achievable in Saturn). We need to be careful though.
The transformation from rij to yij involves a transformation of
the probability; the prior on yij is not uniform. Instead, it
follows from the conservation of probability mass in equivalent
parts of the distribution: ( ) ( )r r¢ ¢ = ¢ ¢rp d p y dyy . The answer is

( )~ -¥ ¥¢y e ,ij
y , but it helps to cut off the uniform

probability outside of a reasonable range.15 The final prior
therefore is

( ) ( )
⎧⎨⎩~

- < <

-¥
p y

y y
log

20 12,

otherwise.
16ij

ij ij

There is no prior on z1 and z2 because they are not MCMC
sampled.

B.2. Sampling from the Conditional Distributions

We obtain a sample from pz for each pair { } Îz z,1 2
{ } { }¼ ´ ¼0.35, 0.4, 0.45, , 0.9 0.1, 0.15, 0.2, , 0.4 subject to
the condition >z z1 2. There are 81 pairs and thus 81 separate
MCMC runs to produce samples from the different conditional
distributions. We use the implementation of ensemble sampling
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14 Happily, we never have to worry about normalizing the probability as only
probability ratios (actually log-probability differences) are ever used.
15 There are, after all, a lot of numbers available between, say, −20 and-¥
that as logarithms all mean simply: rD = 0.
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in emcee, with the default stretch-move algorithm, and run 78
walkers for 60,000 steps each.

Trace plots for one such MCMC run are shown in Figure 15;
similar behavior is exhibited in all runs. Visual inspection of
trace plots is one method of deciding what part of the MCMC
chain we can use to take independent samples from. Inspection
of Figure 15 reveals why we had to use many walkers for so
many steps. Several of the parameters exhibit slow mixing,
taking more than 30,000 steps to fully forget their seed state.
Even worse than the long burn-in time is the low acceptance
rate, which leads to quite long autocorrelation in many
dimensions. In other words, successive steps are not indepen-
dent, requiring about 200 steps to become uncorrelated. This
means that an MCMC run evaluating more than 4.5 million
candidate models produces only about 10,000 usable ones.

It is common practice to display the results of MCMC
sampling in a series of series of two-dimensional histograms of
parameter pairs. This visualization, often called a corner plot, is
a convenient way to quickly make sense of the distribution of
parameters including the relationships between them. In our
case, the parameters are too far removed from a physical
meaning for us to derive any useful insight from their pairwise
histograms. We include the corner plot for one MCMC run
anyway, in Figure 16.

B.3. Combining the Conditional Probabilities into a Single
Posterior

After culling the MCMC chains, we have what we hope are
independent samples from the conditional probabilities pz.
Next, we need to combine subsets from these samples in a way
that approximates a sample from the full posterior, ( )xp . This
task is similar to the model selection problem of Bayesian
inference. We have found parameter distributions for different
statistical models, and we wish to use this information to
evaluate the relative likelihood between the models, in our case
between interior profiles with different locations of discontin-
uous density. If we know the relative likelihoods, we can
combine subsets from the individual models in proportion to
their likelihood to obtain our posterior sample.
Although this is a common and well-studied task, it is

nevertheless a difficult one, and there is no known best method
or even useful error bounds. Nelson et al. (2018) report on a
thorough comparison of many different approaches to this
problem (often referred to as calculating the posterior odds or
the Bayes factor or the evidence integral or simply the
evidence), including the method we chose, which is based on
calculating the Bayes Information Criterion, or BIC:

( ) ( ( ( ))) ( )= - ¢ +z xp NBIC 2 log max log , 17x z

Figure 15. Trace plots from MCMC run with z1=0.65 and z2=0.2.
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where k is the number of model parameters and N is the number
of data points. The relative likelihood is given by

( ( ) ) ( )= - -
p

p
exp BIC BIC 2 . 18z

z
z z

a

b

b a

In our case, k=9 always and »N 104, and the maximum
likelihood is likewise very similar between all 81 conditional
samples. So, it happens that the pairwise relative likelihood
among all the conditional distributions is close to one. We take
random draws from the 81 conditional samples, in almost equal
proportions, to obtain a single set of 20,000 hopefully
independent draws from the unknown posterior, ( ∣ )xp OBS .
Histograms of the 12 parameters (including a3, which is not
sampled but uniquely determined by Equation (14)) are shown
in Figure 17. These are the parameters used to reconstruct the
density profiles shown in Figure 3 and to perform the analysis
in the rest of the paper.

Finally, the distribution of empirical models from our sample
in the -J J2 4 and -J J4 6 planes is shown in Figure 18. In
many previous works that use the gravity field to study the
planetary interior, this is a central result and a similar plot
would be a prominent figure in the main text. In the traditional
modeling approach, this is a useful indication of how the
variation of model parameters (which in traditional models
have important physical meaning) translates to variation in the
model’s gravity. In our empirical, MCMC-driven study,
however, this distribution is much less informative. Recall
that the sampling algorithm is driven by a likelihood function
that compares model values of Ji with observed values. Unless
there is a bug in the implementation, the Ji distribution in the
final sample is determined entirely by the choice of likelihood
function and tells us nothing about the underlying model.
Nonetheless, we include this figure to potentially help a direct
comparison with past or future investigations.

Figure 16. Corner plot of parameters sampled for the z1=0.65 z2=0.2 conditional probability (same run as Figure 15), after discarding the first 30,000 steps from
each walker and thinning the rest by keeping one in every 200 steps. The subplot in the ith row and jth column is the two-dimensional histogram of parameters i and j,
as ordered in Equation (13).
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Figure 17. Histograms of parameter values used to construct the density profiles used in this work.
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