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ORDERED S-MATRIX APPROACH TO THE TOPOLOGICAL 

EXPANSION FOR BARYONS AND f~ONS* 

Henry P. Stapp 

Lawrence Berkeley Laboratory 

LBL-6735· 

University of California, Berkeley, California 94720 

August 16, 1977 

ABSTRACT 

A proposal is made for extending to processes 

involving baryons the ordered Hilbert space approach 

to the topological expansion. The proposal is based 

on a topological classification scheme for baryonic 

processes that is similar to one used previously 

for the lowest~order contributions,but is in terms of 

the minimum number of reggeon closed loops instead of 

handles. 

. This work is supported by the U. S. Energy Research and 

Development Administration under the auspices of the 

Division of Physical Research. 
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1. Introduction 

To perform reliable calculations in strong-interaction 

physics one needs an approximation scheme in which the lowest order 

term is already a fairly good ·approximation, and the higher-order 

corrections fall off rapidly. The main idea for such a scheme has 

been set forth by Veneziano1 under the title "topological expansion." 

Veneziano's idea is that contributions to scattering amplitudes 

should be represented graphically, and that these graphs should be 

grouped in accordance with their genus, which is the number of 

handles on the surface of fewest handles upon which the graph can 

be imbedded in a locally planar fashion. 2 Various arguments have 

been given for expecting the suppression of graphs of higher 

genus, and calculations based on this expectation seem to work 

reasonably we11. 3 

The lowest-order term in the topological expansion had 

originally been conceived to be an appropriate dual amplitude. 

However, no dual amplitude has been found that is both mathematically 

and physically acceptable. Veneziano's recent works4 have focused 

rather on the possiblilty that quantum chromodynamics might provide 

a framework for unifYing various lines of development in strong 

interaction physics. The expansions he considers in this connection 

are not strictly topological, but are expansions in the inverses of 

the numbers of flavors and colors in various combinations. 

Other workers have been calculating characteristics of 

Regge parameters based on a combination of S-matrix ideas and 

topological considerations. 5 These efforts have pointed to the need 
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for a formulation of the topological expansion that does not 

relyeither on the existence of an acceptable dual-model starting 

point, or upon the solubility · of quantum chro1110dynamics. 

6 Recently Chew, Lucht, and _Weissmarm have proposed an 

approach to the topological expansion based on the concept of an 

ordered S-matrix. Their proposal, which deals specifically with the 

meson sector, is based on the introduction of a new Hilbert space in 

which the particles are linearly ordered. That is, each state 

of a basic orthonormal set of states is labelled b,y an ordered 

sequence of particle labels: 

Here the set (pi,lJi,ti) specifies the 1110mentum-energy, the spin 

component, and the particle-type of the ith particle in the 

state lliJa > . Ordinarily the state lliJ:> obtained by inter­

changing (pi' lJi' ti ) with ( p J, lJ J, t J ) is equal to the original 

state up to a possible phase. But in the· ordered Hilbert 

space this change of ordering yields a new state ~hat is orthogonal 

to the original one unless (pi,lJi,ti) = (pJ,lJJ'tJ). 

This new Hilbert space is not the usual one. But Chew, 

Lucht, and Weissmann consider the possibility of constructing in 

this new Hilbert space a unitary S-matrix that satisfies the usual 

S-matrix analyticity requirement that it have only those singu­

larities demanded by uni tari ty. One can then follow through 

the usual S-matrix arguments that lead to cluster decomposition, 
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crossing, and singularity structure. 7 The ordering of the particles 

of the basic vectors of the Hilbert space induces a cyclic ordering 

of the particles associated with each scattering function. That is, 

each scattering function (which is the analytic function_, corresponding 

to the connected part of the S-matrix) is specified by giving both 

a set of particles and a specific cyclic ordering of these particles. 

These amplitudes are called ring amplitudes, .and they are represented 

graphically by a circle or ring drawn on a plane with the particle 

lines attached in the specified cyclic order (See Fig. 1). The 

singularities possessed by a given ring amplitude include only those 

singularities that correspond to Landau diagrams that can be drawn 

as planar diagrams inserted into the ring diagram. A typical Landau 

diagram corresponding to the ring diagram of Fig. 1 is shown in Fig. 2. 

The ring amplitude is analogous to the ordered planar 

contribution in Veneziano's topological expansion. But here it 

is considered to be defined by the unitarity and analyticity proper­

ties stemming from the ordered Hilbert space. Thus _the pole­

factorization property entailed by unitarity and by the general 

analytic! ty assumption ( macrocausali ty) must hold. And there must 

be complete consistency between the-internal poles of the ordered 

amplitude and the particles that define the ordered Hilbert 

space. Thus the ring amplitudes, which are the fundamental buil­

ding blocks of the theory, are defined netther by s~&-yet~to-be 

discovered dual model, nor by the infinite sum of planar contri­

butions to some field theoretic model, but rather as the assumed 

self-consistent solution of the ordered S-matrix equations. 

.. -
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These equations are much simpler than the full S-matrix equations 

because the analytic structure is much simpler: the only singulari­

ties of a ring function are those corresponding to a particular set 

of planar Landau diagrams. 

With the ring amplitudes considered as given one can proceed 

with the construction of the physical amplitudes. The first step 

is to define a "planar amplitude" corresponding to each given set 

of particles. This planar amplitude is defined to be the sum of the 

ring amplitudes over all of the different cyclic orderings of the 

given set of particles. This planar amplitude is considered to be 

the first approximation to the physical scattering amplitude. 

The different orders of approximation are defined by means 

of a topological classification scheme. Each planar amplitude 

is, as just stated, a sum of ring amplitudes. Thus in a uni tari ty 

product of planar amplitudes one will encounter various products of 

two ring amplitudes. And in higher order calculations one will 

encounter similar unitarity-type products of many ring amplitudes. 

A typical product involving four ring amplitudes is indicated dia-
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means that if S is a surface upon which G is minimally im­

bedded then each component (connected part ) of S- G is topologically 

equivalent to a disc. That is, each connected part of S minus 

G resembles a connected open portion of a planar surface. 

For any two-cell imbedding the Euler formula holds •. This 

formula 

( 1.1) 2h 2 + E - V - F 

says that twice the number of handles, 2h, is two plus the number 

E of edges of G minus the number V of vertices of G minus 

the number F of faces of S - G. The faces of S - G are the 

components (connected parts) of S - G. 

In graph theory each edge runs between two vertices, and 

hence one should, in principle, place vertices on the ends of the 

external lines. However, one can ignore these external vertices 

in equation (1.1) if one ignores also the external lines. Thus 

we shall consider the graph of Fig. 4 to have V = 4 and E = 6. 

grammatically in Fig. J. An equivalent, but more compact represen- The number of faces F can be cauputed by a simple pro-

tation is shown in Fig. 4. cedure. One places a point 'on one side of a·line of G and then 

One must now determine the genus of a graph such as the one 

of Fig. 4. The theory of the minimal imbedding of a graph on a sur-

8 face has been given by J. W. T. Youngs Youngs shows that a 

minimal imbedding ( i. e. , an imbedding on a surface with a minimum 

number of handles ) is necessarily a two-cell imbedding. This 

traces a path that stays always next to a line of G, and at 

each vertex moves continuously to a unique adjacent side of a 

unique adjacent line. This unique side of a unique line is 

determined by the condition that the path cross no line that is 

attached to the vertex. The path is traced out in this way until 

it returns to the original starting point. This path lies near 
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the boundary of a single face. An example is shown in Fig. 5. 

(The detours around the external lines should have been drawn -

in Fig. 5, but they are trivial and have been ignored for ease 

of drawing. ) 

Figure 4 has, clearly, only one other face besides the 

one whose boundary is shown in Fig. 5. Thus F = 2, and the number 

of handles is ~ 2 + 6 - 4 - 2) = 1. 

The number of boundaries b in Fig. 4 is one, because 

only one of the two lines that define the two faces encounters 

external lines. In general b is the number of "face lines" 

that encounter external lines. 

Counting the faces is trivial for a graph G that corres­

ponds to a product of ring functions. This is because the rule 

that defines the topological character of G specifies that G 

be imbedded on the surface S in a way such that the lines coming 

into each vertex have the cyclic order specified by the ring 

function corresponding to that vertex. In the case nonnally 

considered in graph theory the cyclic orde~ in which the lines 

should come into a vertex, when G is imbedded in S, is not 

given beforehand. Thus one must, in principle, try each possible 

combination of cyclic orderings at the various vertices, in order 

to find which one gives, via the procedure shown above, the maximum 

munber of faces F, and hence, by formula ( 1.1 ) , the minimum 

number of handles h. This procedure of trying each combination 

of cyclic orderings of the lines at each vertex is precisely 

Youngs' algorithm for computing the genus of a graph. But in 
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our case the ordering corresponding to each vertex is specified, and 

hence there is only one set of orderings to consider. The calculation 

is, therefore, trivial. 

An equivalent rule ror computing the genus could be stated 

in terms of quark lines, but these lines have not been introduced 

into the theory at this stage. We see here rather an indication of 

how quark lines will come out from purely topological considerations. 

Now that the algor! thm has been given for computing h and 

b for any product of ring functions, one may define the topological 

expansion. It is assumed that the scattering function will be 

defined in terms of various discontinuities, and that these 

discontinuities will eventually be represented (formally at least) 

as products of ring amplitudes. Each of these products has a well-

defined b and h. Thus each term is classified. It is then 

assumed that the connected scattering function breaks into a sum 

of terms: 

( 1.2) s c I 
b,h 

Since each term ( Sc >}:. of Sc is classified in terms of the 

classification of its discontinuities one must demand that the 

standard discontinuity formulas derived from unitarity, 9 

(1.3) • disc S 
c 
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should decompose in accordance with the number of boundaries 

and handles: 

(1.4) b [ 1 Jb disc (S ) = S 0 S c n c c h 

The crucial property of the theory, which is what makes the 

ordered Hilbert space idea useful, is that if S~ is identified with 

the planar amplitude constructed from the ring functions defined by 

the ordered Hilbert space equations, then the lowest-order 

contribution to (1.4), namely 

( 1. 5) disc P 

is automatically satisfied by virtue of the discontinuity 

formulas satisfied by the ring functions by virtue of their 

uni tari ty property in the ordered Hilbert space. This property 

- is not immediate because the uni tari ty equation ( 1. 3), and the 

consequent equations ( 1.4) and ( 1.5 ), are formulated in the ordinary 

Hilbert space, whereas the uni ta:ri ty properties of the ring functions 

are formulated in the ordered Hilbert space. However, the algorithm 

for calculating h and b is such that the planar (h = 0, 

b = 1) part of equation ( 1.4), is satisfied by virtue of 

the definition of P as a sum of ring amplitudes together with 

the discontinuity formulas for the ring amplitudes that follow 

from the ordered Hilbert space unitarity. 
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The validity of (1.5) is illustrated for the simplest 

case of a two-particle discontinuity of a two-particle scattering 

function by the diagrams of Figures 6 through 10, as elaborated by 

their captions, 

This very brief description of the work of Chew, Lucht, and 

Weissmann is needed to pose the problem considered in this paper. 

That problem is to extend their ideas to baryons. A proposal 

for doing this is described in the following sections. The problem 

divides into several parts. The first, dealt with in Sections 2 

and 3, is the problem of generalizing the concept of ring amplitudes 

and of the ordered Hilbert space. The second, dealt with in Section 

4, is the problem of ~evising a satisfactory topological classifi­

cation scheme. Further points are discussed in the later sections. 
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2. The Ordered Amplitudes 

The ordered amplitudes are assumed to include those that 

can be represented by surfaces that can be imbedded on spheres 

(h = o), that have ~he minimum number of boundaries (o = b - bmin 0), 

and that have no baryon closed loops(~= 0). These surfaces are 

exactly the ones that correspond to the lowest-order amplitudes in 

the scheme described in refs. 10 and 11 and the notations are 

the same as in that paper. 

The surfaces associated with these "planar" or ordered ampli­

tudes have a simple topological structure. If the capping operation10 

is not performed, so that the single surface breaks into a set of 

disconnected parts, called components, then each of these cam-

ponents is topologically equivalent to a disc with mesons and baryons 

attached to the boundary in a well-defined cyclic order.- A 

typical component is shown in Fig. 11, and is drawn in two slightly 

different forms in Figs. 12 and lJ. The dotted line is one of the 

three "inner lines" associated with each baryon. These three inner 

lines are required to stay together, and ~he triad, taken together, 

is represented as a dotted line in the baryonic quark diagram. 

This dotted line is called a baryon line. 

Each dotted line of Fig. 11 is one of a triad of inner 

lines. Three components, like the one of Fig. 11, must come 

together at each dotted baryon line of a baryonic 

quark diagram. A typical arrangement of canponents is shown in 

Fig. 14. Three oomponent sheets come together at each dotted 
baryon line. 3ut they are not actually joined along this dotted line. 
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A channel can have a nonzero normal threshold discontinuity if 

the corresponding surface o can be cut into two disjoint parts each 

of which is connected and contains precisely one of the two sets of 

particles that define the channel. The cut is to be drawn so that it 

remains outside the capping regions, and cuts either all three inner 

lines associated with a given baryon line or none of them. Then the 

cut defines a tree graph, with one edge for each component that it 

passes through, and one three-line vertex for each baryon line that 

it passes through. For example, a cut that slices through the surface 

of Fig. 14 in the manner shown in Fig. 15a gives the tree graph 

shown in Fig. 15b. This tree graph shows the shape of the intert:ace 

of the two parts of o. These interface tree graphs play an impor­

tant role in what follows. This requirement that the two parts of 

the capped surface o be connected entails that the cut pass through 

no baryon line more than once. The special status given to this 

class of cuts differentiates the present work from that of Ref. 10. 
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In the foregoing discussion each ordered amplitude was 

represented by a surface. However, there is an equivalent graphical 

presentation. Consider first the simple surface shown in Fig. 16. 

A corresponding graph is Fig. 17. Another corresponding graph is 

Fig. lB. The graphs 17 and 18 are equivalent in the sense that they 

are in one-to-one correspondence. One passes from graph 17 to 

graph 18 by removing the dotted lines. One passes from graph 18 

to graph 17 by the rule: if a pair of vertices is joined by two 

solid lines, then join them also by a dotted line. 

Figure 19 is a typical allowed diagram. One should visualize 

three separate sheets coming together at each dotted line. Using 

these dotted lines one can draw the interface tree graph correspond-

ing to any cutting of the surface into two disjoint parts. These 

dotted lines are therefore important. However, they can be 

reconstt•ucted from the solid lines alone. The rule is this: 

if two vertices are joined either by a pair of solid lin~s 

or by a pair of lines each of which is either a solid line or a 

solid line with one or more dotted internal segments then join these 

two vertices by a dotted line. Repeat this operation until no more 

-"· dotted lines are added. 

Every graph that corresponds to a planar or ordered ampli­

tude can be constructed by the following procedure: start with a 

circle (which is what one has in the meson sector) and replace some 

solid segment by a set of three lines in the manner shown in Fig. 20. 

-14-

Apply this procedure repeatedly. One can choose to leave out the 

dotted lines, since they can be reconstructed later from the solid 

lines when needed. 

The graphs generated in this way, without the dotted lines 

are called necklace graphs. The idea that the ordered amplitudes for 

baryons should correspond to quark diagrams that are necklace 

graphs was arrived at by Finkelstein and Weissmann via arguments 

quite different from those used in the present work. The 

presentation of the theory in terms of necklacegraPhs instead of 

surfaces is diagrammatically ~impler and will be done wherever 

feasible. A principal advantage of the presentation in terms of 

necklace graphs is that these graphs can (and always will) be drawn 

as planar graphs. The necklace graphs with added dotted lines 

connecting pairs of baryon vertices also can (and always will) be 

drawn as planar graphs. 
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J. The Ordered Hilbert Space 

The states of the ordered Hilbert space will be called the 

ordered states. The bracket product 

ordered states must be a well-defined ordered amplitude. Thus 

the ordered in and out states should be represented by the two halves 

of the diagrams representing the ordered amplitudes. 

If the surface representing an ordered amplitude is cut 

into two connected parts then, as mentioned in the preceding 

section, the interface is a tree graph. Each half of the surface is 

conveniently represented by a graph obtained by joining the interface 

tree graph to the graph formed from the solid (quark) lines that 

bound the half surface. Thus we write 

(3.1) 

where Fi represents the interface tree graph and Gi represents 

the graph consisting of the quark lines that bound the half surface. 

The product graph F i Gi (where the lines 'are joined in the natural 

fashion defined by original cutting) is a necklace graph. 

Interface graphs that are topologically equivalent are 

considered identical. Thus the two graphs of Fig. 21 are identical. 

More generally, interface tree graphs are considered identical if 

with some numbering of lines and vertices they have the same inci-

dence matrix. 
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Then the complete set of states is constructed by taking 

the complete set of possible interface graphs Fi, and connecting 

each one to all possible graphs Gi such that the product FiGi 

is a necklace graph. This graph can be drawn on a plane with the 

Fi part standing to the left of the Gi part. 

The bra vecto~ ( FjGJutl corresponding to a ket vector 

IFJG~n) is represented by the mirror image of Flr This mirror 

image graph is denoted by G/j• where Fj is the mirror image of 

F J and G j is the mirror image of G j" Under this ~rror imaging 

each line of a graph is taken to its mirror image, but the directions 

of the quark lines (in analogy to spin) are not reversed. The 

- ( out
1
- in) produet FjGj FiGi is zero unless Fi = FJ, in which 

case it is the_amplitude represented by the graph GJGi. 

One can visualize FiGi attached to a right hemisphere, 

with Fi on the flat circular part and Gi on the hemispherical 
~ ~ 

part, and GJFj similarly attached to the left hemisphere. Then 
~ 

the two graph Fj and Fi can be considered to cancel, leaving 

the graph GjGi on the outer (spherical) surface; This graph 

GjGi will be a necklace graph. 

Some examples of these constructiom will now be described. 

Figure 22 shows a typical ordered amplitude graph. It can be separated 

into two connected parts by the closed circle drawn as a dotted line 

in Fig. 22. This separation of the ordered amplitude graph into 

two connected parts by means of a closed circle is the graphical 

equivalent of cutting the corresponding surface into two connected 

parts. 

., r.J 

I. 
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Figure 23 shows the same graph with the dotted lines 

added, and with the cut through the surface shown. The associated 

interface tree graph is shown in Fig. 24. This graph will be called 

F i. The graph formed from the solid (quark) lines on the right- hand 

side of the cut will be called Gi. The product FiGi is 

shown in Fig. 25, with a dotted line added to show the separation 

between Fi and G1• The vertices of the Gi part of the graph 

will be indicated with heavy dots, to indicate connections to 

external particles, whereas the vertices of the Fi side will not 

be dotted, since they show only a topological connection. The 

necklace graphs FiGi that characterize states are called ~ 

~· They should be distinguished from the amplitude graphs 

that characterized the amplitudes. Every vertex of an amplitude 

graph has a heavy dot. 

The left-hand-side of Fig. 22 yields a state graph Gk Fk 

which is shown in Fig. 26. The interface graph Fk is the same as 

F i. Placing the graphs 25 and 26 on right and left hemispheres 

one sees that the graphs Fk and Fi cancel in the sense that they 

have identical structures, but the arrows run in opposite directions. 

< outl in) The amplitude FiGi FiGi corresponds to the graph 

GiGi obtained by joining the graph of Fig. 25 to its mirror image. 

< outl in) ~ The amplitude FjGj FjGJ corresponds to the graph GjGJ 

obtained by joining the graph of Fig. 26 to its mirror image. 
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It is an immediate consequence of these rules that two states 

can couple only if they have the same interface graph Fi. In order 

to preserv~, for ordered amplitudes, the notion of pole dominance, 

which is the essential idea of duality, one must have particles 

corresponding to each interface graph Fi. These particles should 

be represented by vertices with heavy dots. 

But so far all vertices connect either two lines (meson 

vertices) or three lines (baryon vertices). However the interface 

diagram of Fig. 24 connects four lines. Thus four-line vertices 

must be introduced into the formalism. That is, dots with more than 

three lines must be allowed. However, each of these new dots should 

correspond to an interface tree graph. Thus all of the above dis-

cussion in terms of necklace graphs is preserved if one simply 

considers every heavy dot to have an internal structure that is an 

interface tree graph. Each interface tree ·graph continues to have 

only three-line vertices, and hence the necklace structure of ordered 

amplitude graphs is revealed when the interface tree graph associated 

with each heavy dot is exhibited. 
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4. Topological Classification of Products 

A topological classification of every multiple product 

of ordered amplitudes is required. A product of two amplitudes 

means here a product of the type occurring in a unitarity sum: 

the particles of the two amplitudes are paired-up in some specified 

way, and the momentum and spin.variables of paired particles 

are equated, and summed over all physical values. 

. If G1 is one ordered amplitude graph and G2 is another 

ordered amplitude graph then aparticular product is represented by 

a one-to-one pairing of the some of the heavy dots of G with 
1 

corresponding heavy dots-of G2• Such a pairing is indicated in 

Fig. 27. 

The notion of "connecting tubes" is now introduced. Notice 

that the three particles a, b, and c, are linked together in the 

same way in ~ and G2 except that the arrows run in opposite 

directions. More precisely one can, by means of a circle, cut the 

graph G1 to display a state containing precisely the_three par­

ticles a, b, and c, and one can do the same thing for G2• These 

two states are represented by mirror image graphs, FG and GF. 

In such a situation the two structures G and G can be considered 

to cancel out, in the sense as was described in the preceding section, 

and the two spheres, carrying G1 and G2 respectively, can be 

considered to be joined by a tube that carries the uncancelled 

quark lines from one sphere to the other. This construction is 

indicated in Fig. 28 and Fig. 29. The connections e and f 

-20-

of Fig. 27 cannot be combined with anything else, and hence require 

separate connecting tubes. Thus th t 1 i 1 t ' e opo og ca s rucutre associated 

with the product indicated in Fig. 27 is two spheres connected by 

three tubes. The genus of this surface is 2. .Thus this product is 

classified as y = 2. 

Each tube corresponds to a pair of mirror image states 

IF i Gi) and < F i Gi 1. Thus each tube is characterized by a unique 

interface graph Fi. As the energy flowing along the tube in­

creases more states with this same interface graph open up. The 

tube can carry any one of these states, and it is considered to 

represent this entire set of states. Thus, the tube can 

be considered to represent a reggeon in the direct channel. This 

reggeon is characterized by the interface tree graph Fi as­

sociated with the tube. The r~ggeo'n (or tube) can be considered 

to be a surface whose cross section is the associated tree graph Fi. 

·~· 

• 
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Consider now an arbitrary product of two ~rdered amplitudes. 

Each ordered amplitude is represented by a necklace graph that can 

be placed in a locally planar way on a sphere. The unitarity-type 

product of the two amplitudes is represented by making a one-to-one 

correspondence of certain vertices on one sphere with their mates 

on the other sphere. This correspondence is represented by 

wiggly lines, as in Fig. 2:7. The connecting particles can then be 

grouped into disjoint sets so that for each such set r the fol­

lowing condition holds: A circle can be drawn on each sphere so that 

( 1) each of the two circles divides the ordered amplit'Ude graph 

on its sphere into two connected parts, ( 2 ) on each sphere one of 

the two parts defined by the circle contains precisely the set of 

vertices that is associated with the given set r of connecting 

particles, and ( 3) if G
1 

and G2 are the two original ampli-
1 I 

tude graphs, and G
1 

and G2 are the parts containing the vertices 

corresponding to the given set r of connecting particles, then 
I I 

G
1 

is the mirror image of G2. Each such set r of connecting 

particles is represented by a tube that connects one sphere to the 

other sphere. All possible ways of grouping the connecting 

particles, subject to the above conditions, are considered in order 
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to determine the minimum number of tubes needed to connect the 

two spheres. This minimum number is certainly no larger than the 

number of connecting particles. The genus of the final surface, 

which consists simplY of the. two spheres connected by the minimal 

number of connecting tubes t, is y = t - 1. 

The question arises whether the separation of the connecting 

particles into the minimum number of sets satisfying the above 

requirements is unique. The . answer is no. A simple counter example 

is shown in Figs. 30 and 31. 

The genus y has a simple interpretation: it is the 

minimum number of reggeon closed loops associated with the surface. 

Each tube represents a direct channel reggeon that is characterized 

by the interface tree graph F i carried by the tube. Two tubes 

are called 11adjacent" if (1) on each end the two circles that 

define these two tubes can be enlarged, by including some interior seg-

ments of lines, into a single circle that agatn defines a state, 

and ( 2) the states thus defined at each end are represented by mir.ror 

-image graphs FG and GF, In such a case the two adjacent tubes can 

be combined into a single tube that c~ be considered to carry from 

one sphere to the other a surface whose cross section is the common 

tree graph F. By combining adjacent tubes one can reduce the 

number of tubes that connect the two spheres. The genus y ·is 

t - 1, where t is the minimum number of connecting tubes. If 

the various connecting tubes are represented as reggeon lines joined 

together at the spheres, and if the external particles are also 
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placed on tubes corresponding to reggeons then one obtains a reggeon 

graph, and y is the number of independent closed loops in this 

reggeon graph. In other words, y is the Betti number of any 

minimal reggeon graph associated with the original surface, where 

a minimal reggeon graph is a reggeon graph with a minimal number of 

independent closed loops. 

In the general case one has a unitarity-type product of 

many ordered amplitudes. Each of these ordered amplitudes is 

represented by a surface. To obtain an unambiguous topological 

classification one must use the reggeized form. Then each particle 

connection between two surfaces becomes a ( reggeon) connecting 

surface that has as its cross section an associated interface 

tree graph. Each _external particle is connected to the surface 

associated with a single ordered amplitude. It is also reggeized 

and hence is also represented by a surface whose cross section is a 

tree graph. Each original ordered amplitude is thus a surface that 

joins together a set of reggeon lines. Each of these reggeon 

lines is associated with a tree graph, and t-he various tree graphs 

corresponding to the set of reggeons that are connected by the surface 

corresponding to an ordered amplitude fit together to form a 

necklace graph. This necklace graph is the reggeon representation 

of the ordered amplitude. The complement in each of these necklace 

graphs of the tree graph representing any one of the incident 

reggeons must be a connected graph. 
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Starting from this original reggeon graph one tries in 

all possible ways to reduce the number of closed reggeon loops 

by combining adjacent reggeons, which are reggeons represented by 

adjacent tubes. The minimum number of closed reggeon loops is y. 

Further discussion is given later. 

Each reggeon surface is characterized by the number y 

described above, and also by the number 6 = b - bmin' where 

b is the number of boundaries and bmin is a certain minimum 

number of boundaries. 

The number of boundaries b is computed in the manner 

discussed in the preceding paper. That rule translates into a simple 

procedure in the graphical presentation used in this paper. 

The advantage of th~ graphical presentation is that the planar 

amplitudes can be represented by planar graphs. The planar graph 

corresponding to a planar amplitude is in fact unique, apart from 

transformations arising from the fact that the graphs are really 

graphs on a sphere that are merely displayed on a plane. A simple 

example of three equivalent planar graphs is shOifll in Fig. 32. In 

general one can slip lines around the back of the sphere and bring 

them into position on the other side or the planar presentation. 

The planar graphs are drawn on a plane, in a manner such that 

their lines (both solid and dotted) do not cross. This places a 

restriction on the ordering in which the three quark lines come 

into the baryon and antibaryon vertices: the cyclic ordering in 

which the quark lines come into a baryon vertex v is correlated to 

' 
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the cyclic order in which the three quark lines leave the anti­

baryon vertex v that is connected to v by a dotted baryon line. 

This correlation is illustrated in Fig. JJ. 

Because of this correlation the rule for tracing face lines 

given in the preceding paper becomes simple in the graphical presen­

tation. The original rule was that each quark line that enters a 

baryon vertex v is continued, first along the dotted line to 

v and then along the outgoing quark line that fonns part of the 

boundary of the same surface, where the three surfaces near the 

baryon line ar'e the three surfaces that come together along the 

baryon line. In the graphical presentat~on this rule becomes the 

simple rule illustrated in Fig. 34. The graphical rule is that if 

the quark line enters the baryon vertex v next to the dotted 

Une then the continuation from v is along the quark line that 

leaves v on the same side of the dotted line. This rule determines 

how two of the three quark lines continue through the dotted line. 

The continuation of the remaining quark line is thus also deter­

mined: if the incoming quark line at v · is not adjacent to the 

dotted line then its continuation at v is via the outgoing 

quark line that is not adjacent to the other end of the dotted line. 
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5. Formula for y 

Consider first the meson sector. Then a typical product 

is represented in Fig. J. The four solid circles represent the 

four ordered amplitudes, and the wiggly lines are now the reggeons, 

wh~ch can be either external or exchanged. In a pure reggeon diagram 

the solid circles are-contracted to points. 

The formula for y in the pure meson sector is 

( 5.1) y l+E-V-W 

where W is the number-of simple windows in the pure reggeon 

diagram. A simple window is a planar window: it is a window that 

can be drawn on a plane without crossing itself. 

If one writes 

( 5.2) F b + w 

where b is the number of boundaries and w = W + w' is the number 

of windows, then Euler's formula 

( 5.J) 2h 2 + E - V - F 

gives 



( 5.4) 2h+b-l 
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I 

1 + E - V - W - W , 

I 

which can be compared to y. The difference W is the number of 

nonsimple windows. 

Formula (5 .1) is derived by starting with the Betti 

number 

(5.5) 8 1 + E- V 

of the original pure reggeon diagram. It is the number of in-

dependent closed loops in the original diagram. One then subtracts 

the number W of simple windows to give 

( 5.6) y 8 - w. 

The number W is subtracted off because each simple window can 

be contracted out by fusing adjacent reggeon lines, and conversely 

each fusion of adjacent reggeon lines eliminates a simple window. 

The above derivation applies immediately to the product 

of just two ordered amplitudes. If a simple window occurs in the 

graph representing any product of two ordered amplitudes then there 

are two adjacent reggeons in the diagram that can be fused into 

a single reggeon. This is illustrated in Fig. 36. In that diagram 

the two center exchanged reggeons can be placed on a single tube, 

in accordance with the rules described in section 4. They are 
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thereby fused into a single reggeon. On the other hand, if there is 

a pair of adjacent reggeons that can be placed on a single tube, and 1 ~ . 

hence fused into one, then they must be separated by a simple 

window and this window will drop out when these two reggeons 

are fused. Thus y B - W is the number of independent loops 

that will be left when all sets of adjacent reggeons are fused. 

Figure 37 shows a diagram that is equivalent to the one 

of Figure 36 with respect to the number of boundaries b and the 

number of handles h. However, y = 2 for Fig. 36, but y = 3 

for Fig. 37. The usual quark line structures_ corresponding to Figs. 

36 and 37 are shown in Fig. 38 and J9, respect! vely.. Although 

both structures have b = 1 and h = 1 their structures are very 

different, since Fig. 38 has the handles on the boundary line 

whereas Fig. J9 has the handles on the window. Thus this 

window cannot be collapsed to a point and removed from the surface 

in the familiar way. 

Comparing the formulas 

y 1 + E - V - \'1 B - W 

and 

2h+b-l 1 + E - V - w B - w 
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one sees that in the latter the total number of windows is 

subtracted from a whereas in the former it is only the number of 

simple windows that is subtracted. 

The rule that defines adjacent reggeons was specified in 

Section 4 only for diagrams that represent products of two 

ordered amplitudes. A coherent generalization of the earlier 

rule must therefore be supplied. 

In the reggeon diagrams representing products of two 

ordered amplitudes each simple window corresponds to a simple 

window also in the associated quark line diagram. This corres­

pondence was illustrated in Figs. J6a and 38. In products of two 

ordered amplitudes each simple window was removed by fusion of 

adjacent reggeon lines. An analogous treatment of a product of_ 

four ordered amplitudes is illustrated in Fig. 40. And a similar 

treatment of a product'of six ordered amplitudes 

is shown in Fig. 41. These examples suggest th,at the natural 

generalization of the earlier rules to products of more than two 

ordered amplitudes is to again fuse togeth~r the reggeons on the 

periphery of each simple window. Then each simple reggeon window 

becomes replaced by a reggeon star graph, in the manner indicated 

in Fig. 42. This rule entails that the nudler of independent 

closed loops is again reduced by the number of simple reggeon 

windows and hence y = a - w as before. Thus ( 5.1) becomes 

the general formula for the meson sector. 
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In the baryon sector an analogous formula can be obtained, 

provided the number 1 of baryon closed loops is equal to zero. 

Consider first a product of two ordered amplitudes. Each 

of the ordered amplitudes is represented by a necklace graph. Each 

reggeon that is incident upon the necklace is represented by a 

tree graph that can be cut out of the necklace graph by a circle. 

A reggeon is incident upon an ordered amplitude, or upon the 

necklace graph that represents it, if and only if the c001plement in 

the necklace graph of the tree graph associated with the reggeon 

is connected. This property stems fram.the connection of the 

ordered amplitudes to the ordered Hilbert space. 

Originally there is some set of reggeons exchanged 

between the ordered amplitudes. Two of these reggeons are adjacent 

·only if at each end the two circles that define the two tree graphs 

corresponding to the two exchanged reggeons can be enlarged, by 

including some lines of the necklace gr"aph that run between them, 

into a single circle that defines a new reggeon that is incident upon 

the necklace graph. The new reggeons formed in this way at the two 

ends must be the same reggeon. That is, they must be associated with 

the same tree graph F. In this case the two original exchanged 

reggeons are said to be adjacent, and they can be fused together to 

make the new reggeon with tree graph F. 
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An important feature of the situation in the baryon sector 

is illustrated in Figs. 43 and 44. In Fig. 43 two baryon tubes 

connect the necklace graphs that represent the two ordered amplitudes. 

If a fusion of these two tubes is attempted on the left-hand-side 

then the tree graph for the fused reggeon would be the tree graph 

F with two vertices and five lines. If fusion is attempted on 
2 

the right-hand-side then the tree graph for the fused reggeon would 

be the tree graph F
0 

with zero vertices and one line. These 

two tree graphs are not the same, and hence the two exchanged 

· reggeons cannot be fused into a single exchanged reggeon. 

The difference between tree diagrams corresponding to 

the fused reggeons on the right and left arises from the incidence 

requirement. This incidence requirement is stated without reference 

to the dotted lines. However, its effect is to demand that two 

reggeons can be fused Only if their connections via dotted lines 

is the same on the right- and left-hand sides. That is, if two 

reggeons are to be fused, then any pair of junction lines that 

~between the two necklace graphs must.be joined together either 

at both ends or at neither end by the dotted lines that can be 

added (unambiguously} to the two necklace graphs. If the coi;IIlections 

via dotted lines is different at the two ends then the tree diagrams 

at the two ends will not match, and the two reggeons cannot be 

fused into a single one. 

-3?~ 

The expression for y when baryons are present, but no 

baryon closed loops are present (i = 0) is 

( 5. 7) y 6- w , 

where B is the Betti number of the graph a described in 

the preceding paper and W is again the number of simple windows. 

However, the interior face-lines of tadpole diagrams of the_ type 

shown in Fig. 45 should not be counted as simple windows because 

the associated reggeon loop cannot be contracted out, for the reasons 

described in the preceding paragraph. 

An example is given in Fig. 46 and 47. The graph G 
associated with the joined surface 8 indicated in Fig. 46 has 

three components. One has no closed loop, the second has one closed 

loop, and the third has two closed loops. The joining of these 

sUrfaces produces no additional closed loops. The graph has no 

simple windows, hence ( .7) gives y = 3. This agrees with the fact 

that it has four connecting tubes, none of which are adjacent: 

y = t - 1 = 3. 

·I 
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7. Conclusions 

The demand for compatibility with the basic properties of 

the ordered S-matrix approach to the topological expansion leads to 

a classification of amplitudes in terms of the set of numbers (y,o,t'>. 

where y is the minimum number of reggeon closed loops in the sur­
+wosh.l """"" h.H- t .. ,g..t , 

face that represents the amplitude, and t is the number of~baryon 

closed loops. Each reggeon of the theory is characterized by a 

tree graph, each vertex of which Joins exactly three lines. The 

three simplest tree graphs of this kind are the single line that 

represents a meson-type reggeon, a tree of Y shape that represents 

a baryon-type reggeon, and a tree of X shape that represents 

a baryonium-type reggeon. In the lowest order (y = o = ! 1 = 0) term 

there is no coupling between reggeons of different types, and 

hence baryonium cannot decay into mesons, etc.-

The vertices at which several reggeons meet are represented 

by necklace graphs, and a set of reggeons can be incident on a 

vertex only if the various tree graphs corresponding to the reggeons 

fit together to form the necklace graph. Moreover, the complement 

in.the necklace graph of the tree graph corresponding to any 

reggeon incident upon it must be a connected graph. 
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FIGURE CAPTIONS 

Diagrammatic representation of a typical ring amplitude 

with the physical particles represented as wiggly lines. 

The letter R stands for ring. 

Diagram showing a Landau diagram that corresponds to a 

singularity of the ring amplitude of Fig. 1. The wiggly 

lines represent physical particles. The solid circle 

merely defines the ring upon which the external lines meet 

the internal lines of the Landau diagram. 

Diagraumatic representation of a typical product of 

four ring amplitudes. The wiggle lines represent 

particle connections. For each such connection there 

is the usual mass-shel~ integration over the common 

momentum energy vector pi carried by that line, and a 

sum over IJi. A sum over particle-types ti could also 

be included in this sum. 

A graphical representation of. Fig. 4. Each ordered 

amplitude {ring amplitude) is represented by a vertex with 

lines representing particles entering in the specified 

cyclic order. 

The graph of Fig. 4 with a dotted "face line". . This 

face line indicates the boundary of a single face of 

S - G if G is imbedded on S with each vertex locally 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 
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imbedded on S in a way such that the lines enter the 

vertex in the prescribed cyclic order. 

Representation of the planar amplitude as a sum of ring 

amplitudes. The sum is over all different cyclic orderings 

of the lines around the ring. 

Discontinuity formula for ring amplitude R(i,j;k,t) 

across a two-particle cut associated with particles m 

and n. The superscripts 

priate sheets. 

1 and 2 indicate the appro-

The discontinuity formula for the physical scattering 

function Sc(l,2;J,4). The plus sign indicates the physical 

the physical sheet. The letter i indicates the sheet 

reached from the physical sheet by going counter clockwise 

around the ( m,n) threshold. The two sheets specified by 

the superscripts on R 1 and R2 are defined in the same 

way. 

The planar part of the discontinuity formula. represented 

in Fig. 8. If one substitutes Fig. 6 into Fig. 9, then 

on the left-hand-side fo~ terms will contribute • These 

are the first four terms of Fig. 6. The last two terms 

do not have the (1,2) + (J,4) discontinuity. 

Fig. 10: Substitution of Fig. 6 into the right-hand-side of Fig. 9 

gives terms of various topologies, some of which are 

shown in this Figure. Most combinations have h = O, b = 2. 

Only four have h.= 0, b = 1. These four are equal, term 
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by term, to the four surviving terms on the left-hand-side 

of Fig. 9 by virtue of the relations represented in-Fig. 7, 

which originate in the ordered Hilbert space unitarity. 

Fig. 11: A typical component of a surface associated with a planar_ 

(h = o, IS = 0) or ordered amplitude. All lines are 

directed in the same way around the periphery. A vertex 

with a solid (quark) line on each side represents a meson. 

A vertex with a solid line coming in and a dotted line 

going out represents (one third of) a baryon. A vertex 

w1 th a dotted line going in and a solid line going out 

represents (one third of) an anti baryon. The baryon and 

antibaryon linked by a dotted line are called a "linked -

pair." Vertices with dotted lines coming in and going out 

do not occur. 

Fig. 12: The component shown in Fig. 11, but with the mesons now 

represented by pairs of oppositely directed quark lines. 

Fig. 13: The component shown in Fig. U, but with the particles now 

shown as wiggly lines. 

Fig. 14: Three separate components (separate surfaces) come together 

at each dotted line. 

Fig. 15: The tree diagram property of any surface that corresponds to 

an ordered amplitude. ensures that the graph that lies at 

the interface of any cutting of the diagram into two 

connected parts is a tree graph. Each line corresponds 

to a cut through a component. Each vertex corresponds to 

a cut through a dotted (junction) line. Thus three lines 

meet at each vertex of any interface tree graph. 

Fig. 16: A simple surface that corresponds to an ordered amplitude. 

Fig. 17: A graph with dotted lines that corresponds to the surface 

of Fig. 16. 

Fig. 18: A graph without dotted lines thai corresponds to the 

graph of Fig. 17. 

Fig. 19: A typical graph (with dotted lines ) that corresponds to 

an ordered amplitude. 

Fig. 20: Replacement of a line segment by a combination of two 

solid line segments and a dotted line segment. 

Fig. 21: Two identical interface tree diagrams. 

Fig. 22: A typical amplitude graph, with a dotted line showing 

a separation into two connected parts. 

Fig. 23: The amplitude graph of Fig. 22 with the dotted (baryon) 

lines added, and with the cut into two connected parts 

shown. 

Fig. 24: The interface graph Fi corresponding to the separation 

shown in Fig. 23. 

Fig. 25: The state graph corresponding to the state · !F1 G~n) 

associated with the right-hand-side of Fig. 23. 
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The state graph corresponding to the state IF .G~ut \ 
J J I 

associated with the left-hand-side of Fig. 23. 

Fig. 27: A typical "product" of two ordered amplitude graphs G1 

and G2• The wavy lines connect the associated pairs of 

particles in G1 and G2• These associated pairs are 

the pairs that are equated and integrated over the mass 

shell in the functional form of the product. 
I I 

Fig. 28: The structures of the subgraphs a1 and G2 associated 

Fig. 29: 

Fig. J(): 

Fig. 31: 

with the sets of particles a, b, and c are displayed. 

These subgraphs are the parts of G1 and a2 that 

contain a, b, and c~ and no other vertices, and that 

can be defined by separations of G1 and G2, re­

spectively, into two connected parts by means of 

circles. 

The tube associated with the set of connecting particles 

(a,b,c) of Fig. 28. The quark lines that travel along 
I I 

the tube are the lines that enter G1 and leave G2• 

An example in which there are two different ways of 

grouping the connecting Partioles in order to get the 

minimum number of tubes t = 2. 

The connecting lines in Fig. 30 cannot be grouped into a 

one set, giving t = 1, because if one draws the circle 

as in figure (a) the connectedness of the two parts of 

the graph is not maintained, and if one draws the circle 
I 

as in figure (b) then the graph G1 is not the mirror 
I 

image of a2 , which is shown in (c). 

Fig. 32: 

Fig. 33: 

Fig. 34: 
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Three equivalent quark graphs. The basic quark graphs 

are necklace graphs that can be imbedded on a sphere. 

Their presentation as graphs on a plane depends 

on t~e way that the sphere is projected onto the plane. 

The three components that meet at a dotted line are 

drawn in a planar presentation (a). In this presentation 

none of the solid or dotted lines cross. In the nonplanar 

presentation (b) some of the li~es cross. The planar 

presentation imposes a cert'ain connection between the 

cyclic orderings of the lines at v and v. 
The continuation of quark lines through the dotted lines 

is indicated. Incoming quark line 1 is connected to 

outgoing quark line 1, etc. 

Fig· 35: A typical Landau diagram that can be imbedded in the 

Fig. 36: 

component shown in Fig. 11, the solid lines are from 

Fig. 11. The wiggly lines are the lines of the Landau 

diagram. They correspond to physical particles~ 

A diagram in which there is a pair of adjacent reggeons. 

They are separated by a si~le window in the reggeon 

diagram. This window is removed when the two adjacent 

reggeons are fused into one. In this diagram ~ = 3, 

W = 1, and y = 2. 

Fig. 37: A diagram that has the same number of handles h ~•d 

boundaries b as the diagram of Fig. J6, but has 6 = 3, 

W = 0, and y = 3. 
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Fig. 38: Quark line diagram representation of the diagram of Fig. 

36. The simple window in the reggeon diagram of Fig. 36 

corresponds to a simple window in the quark line diagram. 

Fig. 39: Quark line diagram representing the diagram of Fig. 37. 

There is a window, but it is not a simple window. The 

nonsimple window does not correspond to a pair of ad-

jacent reggeons that can be fused. 

Fig. 40: A diagram corresponding to a product of four ordered 

amplitudes. The diagram has one simple window. If 

it is contracted out then one obtains a y = 0 diagram. 

Fig. 41: A diagram corresponding to a product of six ordered 

amplitudes. It has two simple windows. If they are 

contracted out then one obtains a y = 0 diagram. 
-· 

Fig. 42: Each simple reggeon window is replaced by a reggeon 

star graph. 

Fig. 43: Diagram representing two basic graphs connected by two 

tubes. The joining of quark l~nes along the tubes is 

taken to be the one that can be drawn on the plane. 

Fig. 44: Diagram illustrating whY the two tubes cannot be 

contracted into a single tube. The contractions 

at the two ends give different interface tree diagrams. 

Fig. 45: A regge tadpole diagram. The interior face-line is not 

a simple window because it cannot be contracted out 

for the reason illustrated in Fig. 44. The reggeon 

going around the loop has, when represented by a surface, 

one solid (quark) line and one dotted (inner) line. 
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Fig. 46: A surface with y = J. 

Fig. 47: Set of three reggeon graphs corresponding to three 

components of the surface shown in Fig. 46. 
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