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ORDERED S-MATRIX APPROACH TO THE TOPOLOGICAL
EXPANSION FOR BARYONS AND MESONS®
Henry P. Stapp

Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

August 16, 1977

ABSTRACT

A proposal is made for extending to processes
involving baryons the ordered Hilbert space approach
to the topological expansion. The proposal is based
on a topological classification scheme for baryonic
-processes that is similar to one used previously
for the lowest-order contributions,but is in terms of

the minimum number of reggeon‘closed loops insﬁead of

handles.
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1. Introduction

To perform reliable calculations in strong-interaction
physics one needs an approximation scheme %p which the lowest order
term is already a fairly good approximetion, and the higher-order
corrections fall off rapidly. The main idea for such a scheme has
been set forth by Veneziano1 under the title "topological expansion."
Veneziano's idea 1s that contributions to scattering amplitudes
sﬁould be represented graphically, and that these graphs should be
grouped in accordance with their genus, which is the number of
handles on the surface of fewest handles upon which the graph can
be imbedded in a locally planar fashion.2 Various arguments have
been given for expecting the suppression of graphé of higher
genus, and calculations based on this expectation seem to work
reasonably well.3 )

The lowest-order term in-the fopological expansion had
originally been conceived to be an appropriate dual amplitude.
However, no dual amplitude has been found that is both mathematically
and physically acceptable. Veneziano's recent works4. have focused
rather on the possiblilty that quantum chromodynamics might pfovide
a framework for unifying various lines of development in strong
interaction physics. The expansions he cénsiders in this connection
are not strictly topological, but are expansions in the inverses of
the numbers of flavors and colors in various combinations.

" Other workers have been calculating characteristics of
Regge parameters based on a combination of S-matrix ideas and

topological considerations.5 These efforts have pointed to the need



for a formulation of the topological expansion that does not
rely either on the existence of an acceptable dual-model starting
point, or upon the solubility - of quantum chromodynamics.

Recently Chew, Lucht, and.Weissmann6 have proposed an
approach to the topological expansion based on the conqept of an
ordered S-matrix. Their proposal, which deals specifically with the
meson sector, is based on the introduction of a new Hilbert space in
_ which the particles are linearly ordered. That is, each state
of a basic orthonormal set of states is labelled by an ordered

sequence of particle labels:
02 = oyt Dosliystys T P, S

Here the set (pi’ui’ti) specifies the momentum-energy, the spin
component, and the particle-type of the 1th particle in the
state |§ > . Ordinarily the state lw;> obtained by inter-
changing (pi, "i’ti) with (pJ,uJ,tJ) is equal to the original
state up to a possible phase. But in the ordered Hilbert
space this change of ordering yields a new state that is orthogonal
to the original one unless (pyruyoty) = (pj,uJ,tJ).

This new Hilbert space is not the usual one. But Chew,
Lucht, and Welssmann consider the possibility of constructing in
this new Hilbert space a unitary S-matrix that satisfies the usual
S-matrix anélyticity requirement that it have‘only.those singu-
larities demanded by unitarity. One can then follow through

the usual S-matrix arguments that lead to cluster decomposition,

b

crossing, and singularity structure.7 The ordering of the particles

- of the basic vectors of the Hilbert space induces a cyclic ordering

of the particles_associated with each scattering function. That is,
each scattering function (which is the analytic function corresponding
to the connected part of the S-matrix) is specified by giving both
a set of particles and a specific cyclic ordering of these particles.
These amblitudes are called ring amplitudes, and they are represented
graphically by a circle or ring drawn on a plane with the particle
lines attached in the specified cyclic order (See Fig. 1). The
singularities possessed by a given ring amplitude include only those
singularities that correspond to Landau diagrams that can be drawn
as planar diagrams inserted into the ring diagram. A typical Landau
diagram corresponding to the ring diagram of Fig. 1 is shown in Fig. 2.
The ring amplitude is analogous to the ordered planar
contribution in Véneziano's topological expansion. But here it
is considered to be defined by the unitarity and analyticity p}oper-
ties stemming from the ordered Hilbert space.  Thus the pole-
factorization property entailed by unitarity and by the general
analyticity assumption (macrocausality) must hold. And there must
be complete consistency between the~internal poles of the ordered
amplitude and thevparticles that define the ordered Hilbért
space. Thus the ring amplitudes, which are the fundamental buil-
ding ﬁlocks of the theory, are defined nefther by svme -yet-to-be
discovered dual model, nor by the infinite sum of planar contri-
butions to some field theoretic model, but rather as the assumed

self-consistent solution of the ordered S-matrix equations.
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These equations are much simpler tpan the full S;matrix equations
because the analytic structure is much simpler: the only singulari-
ties of a ring function are those corresponding to a particular set
of planar Landau diagrams. '
With the ring Qmplitudes considered as given one can proceed
with the construction of the physical amplitudes. The firs@ step
is to define a "planar amplitude” corresponding to each given set
of particles. This planar amplitude is defined to be the sum of the
ring amplitudes over all of the different cyclic orderings of the
given set of particles. This planar amplitude is considered to be
the first approximation to the phyéical scattering amplitude.

The different orderé of approximation are defined by means
of a topological classification scheme, Each planar amplitude
is, as just stéted,.a sum of ring amplitudes. Thus in a unitarity
product of planar amplitudes one will encounter various products of
two ring amplitudes. And in higher order calculations one will
encounter similar unitarity-type products of many ring amplitudes.
A typical product involving four ring amﬁiitudes is indicated dia-
grammatically in Fig. 3. An equivalent, but more compact represen-
tation is shown in Fig. 4.

One must now determine the genus of a graph;such as the one
of Fig. 4. The theory of the minimal imbedding of a graph on a sur-
face has been given by J. W. T. Youngsg. Youngs show; that a
minimal imbedding (i. e., an imbedding on a surface with a minimum

number of handles ) is necessarily a two-cell imbedding. This

-6

means that if S is a surface upon which G is minimally im-
bedded then each component (connected part) of 8- G is topologically
equivalent to a disc. That is, each comnected part of S minus
G resembles a connected open portion of a planar surface.

For any two-cell imbedding the Euler formula holds. This

formula
(1.1) 2h = 2+E-V-F

says that twice the number of handles, 2h, is two Plus the number
E of edges of G minus the number Vv of vertices of G minus
the number F of faces of S - G. The faces of S - G are the
components (connected parts) of S - G.

In graph theory each edge runs between two vertices, and
hence one should, in principle, place vertices on the ends of the
external lines. However, oné can ignore these external vertices
in equation (1.1) if one ignores also the external lines. Thus
we shall consider the graph of Fig. 4 to have V =4 and .E = 6.

The number of faces F can be computed by a simple pro-
cedure. One places a point on one side of a line éf G and then
traces a path that stays always next to a line of G, and at
each vertex moves continuously to a unique adjacent siﬁe of a
unique adjacent line. This unique side of a unique 1line is
determined by the condition that the path cross no line that is
attached to the vertex. The path is traced out iﬁ‘this way until

it returns to the original starting point. This path 1lies near
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the boundary of a single face. An example is shown in Fig. 5.
(The detours around the external lines should have been drawn -
in Fig. 5, but they are trivial and have been ignored for ease
of drawing.)

Figure 4 has, clearly, only one other face besides the
one whose boundary is shown in Fig. 5. Thus F = 2, and the number
of handles is (2 + 6 - 4 - 2) = 1.

The number of boundaries b in Fig. 4 1is one, because
only one of the two lines that define the two faces encounters
external lines. In general b 1is the number of "face lines"
that encounter external lines.

Counting the faces is trivial for a graph- G that corres-
ponds to a product of ring functions. This is because the rule
that defines the topological character of G. specifies that G
be imbedded on the surface S in a way such that the lines coming
into each vertex have the cyclic order specified by the ring
function corresponding to that vertex. In the case normally
considered in graph theory the cyclic order in which the lines
should come into a vertex, when G 1is imbedded in S, 1is not
given beforehand. Thus one must, in principle, try each.possible
combination of cyclic orderings at the various vertices, in order
to find which one gives, via the procedure shown above, the maximum
number of faces F, and hence, by formula (1.1), the minimum
number of handles h. This procedure of tryiné each combination
of cyclic orderings of the lines at each vertex is precisely

Youngs' algorithm for computing the genus of a graph. But in

our case the ordering corresponding to each vertex is specified, and
hence there 1s only one set of orderings to consider., The calculation
is, therefore, trivial.
An equivalent rule for computing the genus could be stated
in terms of quark lines, but these lines have not been introduced
into the theory at this stage. We see here rather an indication of
how quark lines will came out from purely topological considerations.
Now that the algorithmhas been given for computing h and
b for any product of ring functions, one may define the topological
expansion. It is assumed that the scattering function will be
defined in terms of various discontinuities, and that these
discontinuities will eventually be represented (formally at least)
as products of ring amplitudes. Each of these products has a well-
defined b and h. Thus each term is classified. It is then

assumed that the connected scattering function bresks into a sum

of terms:
_ b
(1.2) S, = (Sc)l1 .

b,h

Since each term (Scjg of S, is classified in terms of the
classification of its discontinuities one must demand that the
standard discontinuity formulas derived from unitarity,9

1 2

(1.3) - dise Sc = Sc 8 Sc ,



should decompose in accordance with the number of boundaries

and handles:
b _ 1 b
(1.4) atse (s, = [s; @ si]h .

The crucial property of the theory, which is what makes the
ordered Hilbert space idea useful, is that if VSiA is identified with
the planar amplitude construcfed from the ring functions defined by
the ordered Hilbert space equations, then the lowest-order

contribution to (1.4), namely
(15)  dtsc P = [F o P

is automatically satisfied by virtue of the discontinuity
formulas satisfied by the ringvfunctions by virtue of their
unitarity property in the ordered Hilbert space. This property
“is not immediate because the unitarity equation (1.3), and the
consequent equations (1.4) and {1.5), are formulated in the ordinary
‘Hilbert space, whereas the unitarity properties of the ring functions
are formulated in the ordered Hilbert space. However, the algorithm
for calculating h and b is such that the planar (h = O,
b =1) part of equation (1.4), is satisfied by virtue of
the definition of P as a sum of ring amplitudes together with
the discontinuity formulas for the ring amplitudes that follow

from the ordered Hilbert space uniiarity.

~-10=-

The ‘validity of (1.5) is illustrafed for the simplest
case of a two-particle discontinuity of a two-particle écattering
function by the diagrams of Figures 6 through 10, as elaborated by
their captions,

This very brief description of the work of Chew, Lucht, and
Weissmann is neededito pose the problem considered in this paper.
That problem is to extend their ideas to baryons. A proposal
for doing this is described in the following sections. The problem
divides into several parts. The first, dealt with in Sections 2
and 3, is the problem of generalizing the concept of ring amplitudes
and of the ordered Hilbert space. The second, dealt with in Section
4, 1s the problem of devising a satisfactory topological classifi-

cation scheme. Further points are discussed in the later sectibns.
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2. The Ordered Amplitudes

The ordered amplitudes are assumed to include those that

can be represented by surfaces that can be imbedded on spheres

= 0)’

(h = 0), that have the minimum nunber of boundaries (6§ =v - bmin

and that have no baryon closed loops (& = 0). These surfaces are
exactly the ones that correspond to the lowest-order amplitudes in
the scheme described in refs. 10 and 11 and the notations are

the same as in that paper.

The surfaces associated with these "planar" or ordered ampli-
tudes have a simple topological structure. If the capping operation10
is not performed, so that tge single éurface breaks into a set of
discomnected parts, called components; then each of these com-
ponents is topologically equivalent to a disc with mesons and baryons
attached to the boundary in a well-defined cyclic order.” A
typical component is shown in Fié; 11, and is drawn in two slightly
different forms in Figs. 12 and 13. The dotted line 1s one of the

three "inner lines" associated with each baryon. These three inner
~ 1lines are fequired to stay together, and the triad, taken togefher,

is represented as a dotted line in the baryonic quark diagram.

This dotted line is called a baryon line.

Each dotted 1line of Fig. 11 is one of a triad of inner
lines., Three components, like the one of Fig. 11, must come
together at each dotted baryon line of a baryonic
quark diagram. A typical arrangement of components is shown in

Fig. 14. Three component sheets come together at each dotted
baryon line. 3ut they are not actually joined along this dotted line.

-12-

A channel can have a nonzero normal threshold discontinuit& if
the corresponding surface g can be cut into two disjoint parts each
of which is connected and contains precisely one of the two sets of
particles that define the channel. The cut is to be drawn so that it
remains outside the capping regions, and cuts either all three inner
lines associated with a given baryon line or none of them. Then the
cut defines a tree graph, with one edge for each component that it
passes through, and one three-line vertex for each baryon line that
it passes through. For example, a cut that slices through the surface
of Fig. 14 in the marmer shown in Fig. 15a gives the tree'graph
shown in Fig. 15b. This tree graph shows the shape of the interface A
of the two parts of 0. These interface tree graphs play an impor-
tant role in what follows. This requirement that the two parts of
the capped surface 6 be connected entails that the cut pass through
no baryon line more than once.

The special status given to this

class of cuts differentiates the present work from that of Ref. 10.

s

[ 4

o
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In the foregoing discussion each ordered amplitude was
represented by a surface., However, there is an equivalent graphical
presentation. Consider first the simple surface shown in Fig. 16.

A corresponding graph is Fig. 17. Another corresﬁonding graph 1is
Fig. 18. The graphs 17 and 18 are equivalent in the sense that they
are in one-to-one correspondence. One passeé from graph 17 to
graph 18 by removing the dotted lines. One passes from graph 18

to graph 17 by the rule: 1if a pair of vertices is joined by two
solid lines, then Join’them also by a dotted line.

Figure 19 is a typical allowed diagram. One shouid visualize
three separate sheets coming together at each dotted line. Using
these dotted lines one can draw the interface tree graph correspond-
ing to any cutting of the surface into two disjoint parts. These
dotted lines are therefore important. However, they can be
reconstructed from the solid lines alone. The rule is this:

if two vertices are Jjoined either by a pair of solid lines
or by a pair of lines each of which is eithgr a solid line or a -
solid line with one or more dotted internal segments then join these
two vertices by a dotted line. Repeat this operation until no more
dotted lines are added.

Every graph that corresponds to a planar or ordered ampli-
tude can be constructed by the following procedure: start with a

circle (which is what one has in the meson sector) and replace some

solid segment by a set of three lines in the manner shown in Fig. 20.

-14-

Apply thils procedure repeatedly. One can choose to leave out the
dotted lines, since they can be reconstructed later from the s;iid
lines when needed.

The graphs generated in this way, without the dotted lines
are called necklace graphs. The idea that the ordered amplitudes for
baryons should correspond to quark diagrams that are necklace
graphs was arrived at by Finkelstein and Weissmann via arguments
quite different from those used in the present work. The
presentation of the theory in terms of nécklacegraphs instead of
surfaces is diagrammatically §imp1er and will be done wherever
feasible. A principal advantage of the_presehtation in terms of
necklace graphs is that these graphs can (and‘always will) be drawn
as planar graphs. The necklace graphs with added dotted lines

connectingA pairs of baryon vertices also can {and always will) be

drawn as planar gréphs.
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3. The Ordered Hilbert Space

The states of the ordered Hilbert space will be called the
ordered states. The bracket product < wgut|win> of two
ordered states must be a well-defined ordered amplitude.- Thus
the ordered in and out states should be represented by the two halves
of the diagrams representing the ordered amplitudes.

If the surface representing an ordered amplitude is cut
into two connected parts then, as mentioned in the preceding
section, the interface is a tree graph. Each half of the surface is
conveniently represented by a graph obtained by joining the interface
tree grarh to the graph formed from the solid (quark) lines that

bound the half surface. Thus we write

(3.1) Ty ) ;6 )

where Fi represents the interface tree graph and Gi represents
the graph consisting of the quark lines that bound the half surface.
The product graph FiGi (where the lines are joined in the natural
fashion defined by original cutting) is a necklace graph.

Interface graphs that are topologically equivalent are
considered identical. Thus the two graphs of.Fig. 21 are identical.
More generally, interface tree graphs are considered identical if

with some numbering of lines and vertices they have the same inci-

dence matrix.

-16-

Then the complete set of states IFiGin> is constructed by taking

the complete set of possible interface graphs F and connecting

i}
each one to all possible graphs Gi such that the product FiGi
is a necklace graph.. This graph can be drawn on a plane with the

Fi part standing to the left of the Gi part.

The bra vector < chgutl corresponding to a ket vector
IFJG§n> is represented by the mirror image of FJGJ' This mirror
image graph 15 denoted by EJFJ’ where EJ is the mirror image of
Fﬁ~ and aj is the mirror imgge of GJ' Under this mirror imaging
each line of a graph is taken to its mirror image, but the directions
of the quark lines (in analogy to spin) are not reversed. The
produet <FJGJ°ut|i"iG§n> is zero unless F, = FJ’ inwhic_h'

i
case it is the amplitude represented by the graph' BJG .

One can visualize FiGi -attached to a right hemisphere,
with F& on the flat circular part and Gi on the hemispherical
part, and ~J~J similarly attached to the left hemisphere. Then
the two graph EJ and Fi can be considered to cancel, leaving
the graph 6jGi on the outer (spherical) surface. This graph
ajGi will be a necklace giaph.

Some examples of these constructiorewill now be described.

Figure 22 shows a typical ordered amplitude graph. It can be separated

into two connected parts by the closed circle drawn as a dotted line
in Fig. 22. This séparation of the ordered amplitude graph into
two connected parts by means of a closed eircle is the graphical

equivalent of cutting the corresponding surface into two comnected

parts.

%]

-
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Figure 23 shows the same graph with the dotted lines
added, and with the cut through the surface shown. The associlated
interface tree graph is shown in Fig. 24. This graph will be called
F;. The graph formed from the solid (quark) lines on the right-hand
side of the cut will be called Gi.' The product F;G, is
shown in Fig. 25, with a dotted line added to show the separation
between Fi and Gi’ The vertices of the Gi part of the graph
will be indicated with heavy dots, to indicate connections to
external particles, whereas the vertiées of the Fi side will not
be dotted, since they show only a topological connéction. The

necklace graphs FiGi that characterize states are called state

' graphs. They should be distinguished from the amplitude graphs

that characterizéd the amplitudes. Every vertex of an amplitude

graph has a heavy dot.
The left-hand-side of Fig. 22 yields a state graph ék}k
which is shown in Fig. 26. The interface graph Fk is the same as

Fi‘ Placing the graphs 25 and 26 on right and left hemispheres
one sees that the graphs %k and F1 cancel in the sense that they

have identical structures, but the arrows run in opposite directions.

The amplitude <:FiGgutlFiGin corresponds to the graph

5161 obtained by joining the graph of Fig. 25 to its mirror image.

The amplitude F.G?utIF cin corresponds to the graph GG
Jd i J°J

obtained by joining the graph of Fig. 26 to its mirror image.

-18-

It is an immediate consequence of these rules that two states
can couple only if they have the same interface graph Fi' In order
to preserve, for ordered amplitudes, the notion of pole dominance,
which is the essential idea of duality, one must have particles
corresponding to each interface grgph Fi’ These particles should
be represented by vertices with heavy dots.

But so far all vértices connect either two lines (meson
vertices) or three lines (baryon vertices). However the interface
diagram of Fig. 24 connects four lines. Thus four-line vertices
must be introduced into the formalism. That is, ﬁots with more than
three lines must be allowed. éowever, each of these new dots should
correspond to an interface tree graph. Thus all of the above dis-
cussion in terms of necklace graphs iebpreserveqrif one simﬁly
considers every heavy dot to have an internal structure that is an
interface tree graph. Each interfacé tree graph continues to have
only three-line vertices, and hence the necklace structure of ordered

amplitude graphs is revealed when the interface tree graph associated

with each heaQy dot is exhibited.
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4. Topological Classification of Products

A topological classification of every multiple product
of ordered amplitudes is required. A product of two amplitudes
means here a product of the type occurring in a unitarity sum:
the particles of the two amplitudes are paired-up in some specified
way, and the momentum and spin.variaﬁles of paired particles
are equated, and summed over all physical values.

- If G1 is one ordered amplitude graph and 62 is another
ordered gmplitude graph then a particular product is represented by
a one-to-one pairing of the'some-of the heavy dots of G1 with
corresponding heavy dots .of Gz. Such a pairing is indicated in
Fig. 27{

The notion of "comnecting tubes"” 1is now introduced. Notice
that the three particles a, b, and c, are linked together in the
same way iq Gl‘ and 02 except that the arrows run in opposite
directions. More precisely one can, by means of a circle, cut the
graph G1 to display a state containing p?ecisely the three par-

ticles a, b, and ¢, and one can do the same thing for G These

5
two states are represented by mirror image graphs, FG and EE.

In such a situation the two structures G and 5 can be considered
to cancel out, in the sense as was described in the preceding section,
and the two spheres, carrying G1 and 62 respectively, can be
considered to be joined by a tube that carries the uncancelled

quark lines from one sphere to the other. This construction is

indicated in Fig. 28 and Fig. 29. The connections e and f

-20-

of Fig. 27 camot be combined with anything else, and hence require -
separate connecting tubes. Thus the topological strucutre asso&iated
with the product indicated in Fig. 27 is two spheres connected by
three tubes. The genus of this surface is 2. .Thus this product is
classified as y = 2;

- Each tube corresponds to a pair of mirror image states
|F1G1> and <(F1Gi|. Thus each tube is characterized by a unique
interface graph Fi’ As the energy flowing along the tube in-
creases more states with this same interface graph open up. The
tube can carry any one of these states, and it is considered to
represent this entire set of states. Thus, the‘tube can
be considered to represent a iéggeon in the direct chammel. This

reggeon is characterized by the interface tree graph F, as-

i
sociated with the tube. The féggedh (or tube) can be considered

to be a surface whose cross section is the associated tree graph Fi'

.
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Consider now an arbitrary product of two ordered ampiitudes.
Each ordered amplitude is represented‘by a necklace graph that can
be placed in a locally planar way on a sphere. The unitarity~-type
product of the two amplitudes is represented by making a one-to-one
correspondence of certain vertices on one sphere with their mates
on the othei sphere. This correspondence is represented by
wiggly lines, as in Fig. 27. The connecting particles can then be
grouped into disjoint sets so that for each such set T the fol-
lowing condition holds: A cirele can be drawn on‘each sphere so that
(1) each of the two circles divides the ordered amplitude graph
on its sphere into two comnected parts, {2) on each sphere one of
the two parts defined by the circle contains precisely the set of
vertices that is associated with the given.set ' of commecting
particles, and (3) if G1 and G, are the two original ampli-
tude  graphs, and Gi and G; are the parts containing the vertices
corresponding to the given set T of connecting particles, then
i is the mirror image of Gé. Each such set T of connecting

particles is represented by a tube that connects one sphere to the

G

other sphere. All possible ways of grouping the connecting

particles, subject to the above conditions, are considered in order

-2

to determine the minimum number of tubes needed to connect the
tw§ spheres. This minimum number is certainly no larger than the
number of connecting particles. The genus of the final surfaqe,
which consists simply of the. two spherés connected by ihe minimal
number of connecting tubes t, is y =1t - 1.

The question arises whether the separation of the comnecting
particles into the minimum number of sets satisfying the above
requirements is unique. The.answer is no.. A simple counter example
is shown in Figs. 30 and 31.

The genus Y has a simple interpretation: it is the
minimum number of reggeon closed loops associated with the surface.
Each tube represents a direct channel reggéon that is characterized
by the interface tree graph Fi carried by the tube. Two tubes
are called "adjacent" if (1) on each end the two circles that
define these two tubes can be enlarged, by including some interior seg-
ments of lines, -into a singleAcircle that again defines a state,
and (2) the states ihus defined at each end are represented by mirror
image graphs FG and GF, In such a case the two adjacent tubes can 7
be combined into a single tube that can be considered tb carry from

one sphere to the other a surface whose cross section is the common
tree graph F. By combining adjacent tubes one can reduce the
number of tubes that connect thé two spheres. The genus vy '1is

t - 1, where t 1is the minimum number of connecting tubes. If

the various connecting tubes‘are represented as reggeon lines joined

together at the spheres, and if the external particles are also
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placed on tubes corresponding to reggeons then one obtains a reggeon Starting from this original reggeon graph one tries in
graph, and y 1is the number of independent closed loops in this all possible ways to reduce the number of closed reggeon loops
reggeon graph. In other words, Yy is the Betti number of any by combining adjacent reggeons, which are reggeons represented by
minimal reggeon graph associated with the original surface, where | adjacent tubes. The minimum number of closed reggeon loops is YA.
a minimal reggeon graph is a reggeon graph with a minimal number of Further discussion is given later.
independent closed loops. Each reggeon surface is characterized _by the number vy

In the general casé one has a unitarity-type product of - deseribed at;ove, and also by the number & =b - b, , where
many ordered amplitudes. Each of these ordered amplitudes is b 1is the number of boundaries and b , 15 a certain minimum
represented by a surface. To obtain an unambiguous topological number of boundaries.
classification one must use the reggeized form. 'l'hén each particle The number of boundaries b 1is computed in the manner
commection between two surfaces becomes a (reggeon) connecting dis_cusséd in the preceding paper. That rule translates into a simple
surface that has as its cross section an associated interface procedure in the graphical presentation used in this paper.
tree graph. Each external particle is connected to the surface The advantage of the ‘graphical presentation is that the planar
associated with a single ordered amplitude. It is also reggeized amplitudes can be represented by planar graphs. The planar graph
and hence is also represented by a surface whose cross section is a corresponding to a planar amplitude is in fact unique, apart from
tree graph. Each original ordered amplitude 1s thus a surface that transformations arising from the fact that the graphs are really
joins together a set of reggeon lines. Each of these reggeon ' graphs on a sphere that are merely displayed on a plane. A simple
lines is associated with a tree graph, and the various tree graphs example of three equivalent planar graphs is shown in Fig. 32. In
corresponding to the set of reggeons that are connecte’é by the surface general one can slip lines around the back of the sﬁhei'e and bring
corresponding to an ordered amplitude fit together to form a them into position on the other side of the planar presentation.
necklace graph. This necklace graph is the reggeon representation The planar graphs are drawn on a plane, in a manner such that
of the ordered amplitude. The complement in each of these necklace their lines (both solid and dotted) do not cross. This places a
graphs of the tree graph representing any one of the incident restriction on the ordering in which the three quark lines come
reggeons must be a connected graph. . into the baryon and antibaryon vertices: the cyclic ordering in

which the quark lines come into a baryon vertex V 1is correlated to
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the cyclic order in which the three quark lines leave the anti-
baryon vertex v that is commected to v by a dotted baryon line.
This correlation is illustrated in Fig. 33.

Because of this correlation the rule for tracing face lines
given in the preceding paper becomes simple in the graphical presen-
tation.” The original rule was that each quark line that enters a
baryon vertex v is continued, first along the dotted line to
v eand then along the outgolng quark line that forms part of the
boundar; of the same surface, where the three surfaces near the
baryon line are the three surfaces that come together along the
baryon line. In the graphical presentatién this rule becomes the

simple rule illustrated in Fig. 34. The graphical rule is that if

" the quark line enters the baryon vertex v next to the dotted

line then the continuation from v is along the quark line that
leaves V on the same side of the dotted line. This rule determines
how two of the three quark lines continue through the dotted line.
The continuation of the remaining quark line is thus also deter-
mined: if the incoming quark line at v’ is not adjacent to the
dotted 1line then its continuation at ¥ is via the outgoing

quark line that is not adjacent to the other end of the dotted line.
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5, Formula for y

Consider first the meson sector. Then a typical product
is represented in Fig. 3. The four solid circles represent the
four ordered amplitudes, and the wiggly lines are now the reggeons,
which can be either external or exchanged. In a pure reggeon diagram
the solid circles are contracted to points.

The formula for vy 1in the pure meson sector is
(5.1) Y = 1+E-V-W ,
where W 1s the number of simple windows in the pure reggebn
diagram. A simple window i1s a planar window: 1t is a window that
can be drawn on a plane without crossing itself.

If one writes

(5.2) F = b+w

where b 1is the number of boundaries and w = W + W' is the number

of windows, then Euler's formula
(5.3) 2h=2+E-V-F

glives



]
(5.4) 2h+4b-1 = 1+E-V-W-W,

1
which can be compared to Y. The difference W 1s the number of
nonsimple windows.
Formula (5.1) is derived by starting with the Betti

number

(5.5) B = 1+E-V
of the original pure reggeon diagram. It is the number of in-
dependent closed loops in the original diagram. One then subtracts

the number W of simple windows to give

(5.6) Yy = B-W.

The number W 1is subtracted off because each simple window can

be contracted out by fusing adjacent reggeon lines, and conversely

each fusion of adjacent reggeon lines eliminates a simple window.
The above derivation applies-immediately to the product

of just two ordered amplitudes. If a simple window occurs in the

graph representing any product of two ordered amplitudes then there

are two adjacent reggeons in the diagram that can be fused into

a single reggeon. This is illustrated in Fig. 36. In that diagram

the two center exchanged reggeons can be placed on a single tube,

in accordance with the rules described in section 4. They are
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thereby fused into a single reggeon. On the other hand, 1if thefe is
a pair of adjacent reggeons that can be placed on a single tube, and
hence fused into one, then they must be separated by a simple
window and this window will drop out when these two ;eggeons
are fused. Thus y = B - W is the number of independent loops
that will be left when all sets of adjacent reggeons are fused;
Figure 37 shows a diagram that is equivalent to the one
of Figure 36 with respect to the number of boundaries b and the
nurber of handles h. However, y = 2 for Fig. 36, but. Yy=23
for Fig. 37. The usual quark line structuresrcorrespondiné to Figs;
36 and 37 are shown in Fig. 38 and 39, respectively. Although
both structures have b =1 and h =1 their structures are very
different, since Fig. 38 has the handles on the boundary line
whereas Fig. 39 has the handles on the window. Thus this

window cannot be collapsed to a point and removed from the surface
in the familiar way.
Comparing the formulas

Y = 1+E-V-W = B-W

and
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one sees that in the latter the total number of windows is
subtracted from B whereas in the former it is only the number of

simple windows that is subtracted.

The rule that defines adjacent reggeons was specified in

Section 4 only for diagrams that represent products of two
ordered amplitudes. A coherent generalization of the ea.rlier
rule must therefore be supplied.

In the reggeon diagrams representing products of two
ordered amplitudes each simple window corresponds to a simple
window also in the associated quark 1line diagram. This corres-
pondence was illustrated in Figs. 36a and 38: In products of two
ordered amplitudes each simple window was removed by fusion of
adjacent reggeon lines. An analogous treatment of a product of.
four ordered amplitudes is illustrated in Fig. 40. And a similar
treatment of a product of six ordered amplitudes ) )
is shown in Fig. 41. These examples suggest that the natural
generalization of the earlier rules to products of more than two
ordered amplitudes is to aga:lh fuse together the reggeons on the
periphery of each simple window. Then each simple reggeon window
becomes replaced by a reggeon star graph, in the manner indicated
in Fig. 42. This rule entails that the number of independent
closed loops 1s again reduced by the number of simple reggeon
windows and hence vy = B8 - W as before. Thus (5.1) becomes

the general formula for the meson sector.

. In the baryon sector an analogous formula can be obtained,A

provided the number £ of baryon closed loops is equal to zero.

Consider first a product of two ordered a.mplitudes.‘ Each
of the ordered amplitudes is represented by a necklace graph. Each
reggeon that is incident upon the necklace is represented by a
tree graph that can be cut out of the necklace graph by a circle.
A reggeon is incident upon an ordered amplitude, or upon the
necklace graph that represents it, if and _only if the complement in
the necklace graph of the tree graph assoclated with the reggeon
is connected. This property stems from the connection of the
ordered amplitudes to the ordered Hilbert space.

Originally there 1s some set of reggeons exchanged

,
between the ordered amplitudes. Two of these reggeons are adjacent

-only if at each end the two circles that define the two tree graphs

corresponding to the two exchanged reggeons can be enlarged, by
including some lines of the ngcklace gr‘aph that run between them,
into a single circle that defines a new reggeon that 1s incident upon
the necklace graph. The new reggeons formed in this way at the two
ends must be the same reggeon. That is, they must be associated with
the same tree graph F. 1In this case the twvorig_inal exchanged .
reggeons are said to be ad,j‘acent, and they can be fused together to

make the new reggeon with tree graph F.
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An important feature of the situation in the baryon sector
is illustrated in Figs. 43 and 44. In Fig. 43 two baryon tubes
connect the necklace graphs that represent the two ordered amplitudes.
If a fusion of these two tubes is attempted on the left-hand-side
then the tree graph for the fused reggeon would be the tree graph
F2 with two vertices and five lines. If fusion is attempted on
the right-hand-side then the tree graph for the fused reggeon would
be the tree graph Fo with zero vertices and one line. These
two tree graphs are not the same, and hence the two exchanged

" reggeons cannot be fused into a single exchanged reggeon.

The difference between tree diagrams corresponding to
the fused reggeons on the right and left arises from the incidence
requirement. This incidence requirement is stated without reference
to the dotted lines. However, its effect 1s to demand that two |
reggeons can be fused only if their connections vié dotted lines-
is the same on the right- and left-hand sides. That is, if two
‘reggeons are to be fused, then any pair of junction lines that
runs between the two necklace graphs must be Jolned together either
at both ends or at neither end by the dotted 1lines that can be
added (unambiguously) to the two necklace graphs. If the connections
via dotted lines is different at the two ends then the tree diagrams
at the two ends will not match, and the two reggeons camnot be

fused into a single one.
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The expression for Yy when baryons are present, but no

baryon closed loops are present (£ = 0) is
(5.7) Yy = B-w,

where £ is the Betti number of the graph G described in

the preceding paper and W is again the number of simple windows.
However, the interior face-lines of tadpole diagrams of the type
shown in Fig. 45 should not be counted as simpie windows because

the associated reggeon loop cannot be eontracted out, for the reasons
described in the preceding paragraph.

An example is given in Fig. 46 and 47. The graph G
associated with the joined surface 6 indicated in Fig. 46 has
Ehree components. One has no closed loop, the second has one closed
loop, and the third has two closed loops. The joining of these
sﬁrfaces produces no additional closed loops. The graph has no
simple windows, hence ( .7) gives y = 3. This agrees with the fact
that it has four cormecting tubes, none of which are adjacent:

y=t-1=3.

i*
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7. Conclusions

The demand for compatibility with the basic properties of
the ordered S-matrix approach to the topological expansion leads to
a classification of amplitudes in terms of the set of numbers (Y,G,f),

where y 1is the minimum number of reggeon closed loops in the sur-

'hul.‘"'l‘ ame h-.l‘—*ﬂ'&f?l

face that represents the amplitude, and 2 is the number ofkbaryon
closed loops. Each reggeon of the theory is characterized by a
tree graph, each vertex of which joins exactly three lines. The
three simplest tree graphs of this kind are the single line that
represents a meson-type reggeon, a tree of Y shape that represents
a baryon-type reggeon, and a tree of )( shape that represents
a baryonium-type reggeon. In the lowest order (y = § = = 0) temm
there is no coupling between reggeons of different types, and
hence baryonium cannot decay into mesons, etc.-

The vertices at which several reggeons meet are represented
by ﬁecklace graphs, and a set of reggeons can be incident on a
vertex only if the various tree graphs corresponding to the reggeons
fit together to form the necklace graph. Moreover, the complement
in.the necklace graph of the tree graph corresponding to any

reggeon incident upon it must be a connected graph.
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FIGURE CAPTIONS

Diagrammatic representation of a typical ring amplitude
with the physical particles represented as wiggly lines.
The letter R stands for ring.

Diagram showing a Landau d;lagram that corresponds to a
singularity of the ring amplitude of Fig. 1. The wiggly
lines represent physical particles. The solid circle
merely defines the ring upon which the external lines meet
the internal lines of the Landau diagram.

Diagrammatic representation of a typical product of
four ring amplitudes. The wiggle lines represent
particle comections. For each such connection there

is the usual mass-shell integration over the common
momenfu.m energy vector Py }carr:led by that line, and a
sum over ui. A sum over particle-types ti could also
be included in this sum,

A graphical representation of' Fig; 4. Each ordered
amplitude (ring amplitude) is represented by a vertex with
lines representing particles entering in the specified
cyelic order.

The graph of Fig. 4 with a dotted "face line".. This
face line indicates the boundary of a single face of

S -G if G 1s imbedded on S with each vertex locally

Fig. 6:

Fig. 7:

Fig. 8:

Fig. 9:

Fig. 10:

-38-

imbedded on S in a way such that the lines enter the
vertex in the prescribed cyclic order.

Representation of the planar amplitude as a sum of ring
amplitudes. The sum is over all different cyclic orderings
of the lines around the ring.

Discontinuity formula for ring amplitude R(1,Jj;k,%)
across a two-particle cut associated with ﬁarticles m

and n. The superscripts 1 and 2 indicate the appro-
priate sheets. }

The discontinuity formula for the physical éca’tter:lng
function sc(1,2; 3,4). The plus sign indicates the physical
the physical sheet. The letter i1 1indicates the sheet
reached ‘from the physical sheet by going counter clockwise
around the (m,n) threshold. The two sheets specified by
the superscripts on rl and R2 are defined in the same
way.

The planar part of the discontinuity formula.represented

in Fig. 8. If one substitutes Fig. 6 into Fig. 9, then
on the left-hand-side four terms will contribute. These
are the firsf féur terms of Fig. 6. The last two terms

do not have the (1,2) » (3,4) discontinuity. -
Substitution of Fig. 6 into the right-hand-side of Fig. 9
gives terms of vafious topologies, some of which are

shoﬁ in this Figure. Most combinations have h =0, b = 2.

Only four have h.= 0, b = 1. These four are equal, term



Fig. 11:

Fig. 12:

Fig. 13:

Flg. 14:

Fig. 15:
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by term, to the four surviving terms on the left-hand-side
of Fig. 9 by virtue of the relations represented in-Fig. 7,
which originate in the ordered Hilbert space unitarity.

A typical component of a surface associated with a planar

(h =0, & =0) or ordered amplitude. All lines are Fig. 16:
directed in the same way around the periphery. A vertex . Fig. 17:
witﬁ a solid (quark) line on each side represents a meson. 7 '

A vertex with a solid line coming in and a dotted line Fig. 18:
going out represents (one third of ) a baryon. A vertex

with a dotted line going in and a solid line going out ) Fig. 19:
represents (one third of ) an antibaryon. The baryon and

antibaryon linke& by a dotted line are called a "linked - Fig. 20:
pair." Vertices with dotted lines coming in and going out

do not occur. Fig. 21:
The component shown in Fig..ll, but with the mesons now Fig. 22:
reprecented by pairs of opﬁositely directed quark lines.

The component shown in Fig. 11, but with the partiéles now Fig. 23:
shown as wiggly lines. ,

Thfee separate components ( separate gsurfaces) come gogether

at each dotted line. ' Fig. 24:
The tree diagram properfy of any surface that corresponds to

an ordered amplitu&ev ensures that the graph that lies at Fig. 25:

the interface of any cutting of the diagram into two

connected parts is a tree graph. Each line corresponds
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to a cut through a component. Each vertex corresponds to
a cut through a dotted ( junction) 1ine. Thus three lines
meet at each vertex of any interface tree graph.

A simple surface that corresponds to‘an ordered amplitude.
A graph with dotted lines that corresponds to the surface
of Fig. 16.

A graph without dotted lines.thai corresponds to the
graph of Fig. 17

A typical graph (with dotted lines) that corresponds to
an ordered amplitude.

Replacement of a line segment by a combination of two
solid line segments and a dotted line segﬁént.

Two identical interface tree diagrams.

A typical amplitude graph, with a dotted 1line showing

a separation into two connected parts.

The amplitude graph of Fig. 22 with the dotted (baryon)
lines added, and with the cut into two connected parts
shown. ‘

The interface graph Fi correspondiné to the separation
shown in Fig. 23.

The state graph corresponding to the state - lFi Gin>

associated with the right-hand-side of Fig. 23.



Fig. 26:

Fig. 27:

Fig. 28:

Fig. 29: 7

Fig. 30:

Fig. 31:
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The state graph corresponding to the state |FngUt)
associated with the left-hand-side of Fig. 23.

A typical "product" of two ordered amplitude graphs dl
and G,. The wavy lines comnect the associated pairs of
particles in G1 and GZ' These associated pairs are .
the pairs that are equated and integrated over the mass
shell in the functional form of the product.

The structures of the subgraphs Gi and G; associated
with the sets of particles a, b, and ¢ are displayed.
These subgraphs are the parts of G1 and G2 that
contain &, b, and ¢, and no other vertices, and that
can be defined by separatiops of G1 and Gz, re-
spectively, into two connected parts by means of
circles. »

The tube associated with the set of connecting particles
(a,b,c) of Fig. 28. The quark lines that travel along
the tube are the lines that enter Gi and leave G;.
An example in which there are two different ways of
grouping the connecting barticles in order to get the
minimum number of tubes t = 2. '
The comnecting lines in Fig. 30 cannot be grouped into a
one set, giving t = 1, because if one draws the circle
as in figure (a) the coﬁnectedness of the two parts of

the graph 1s not maintained, and if one draws the circle

]
as in figure (b) then the graph G1 is not the mirror
]

5 » Which is shown in (e).

image of G

~4,2=

Three equivalent quark graphs. Thebasic quark graphs
are necklace graphs that can be 1mbedded.on a sphere.
Their presentation as graphs on a plane depends.

on t?g way that the sphere is projected onto the plane.
The three components that meet at a dotted line are
drawn in a planar presentation (a). In this presentation
none of the solid or dotted lines cross. In the nonplanar
presentation (b) some of the lines cross. The planar
.presentation imposes a certain commection between the
cyclic orderings of the lines at v and 7.

The continuation of quark lines through the dotted lines
is indicated. Incoming quark line 1 1is connected to
outgoing quark line 1, etc. ‘

A typical Landau diagram that can be imbedded in the
component shown in Fig. 11, the solid lines are from
Fig. 11. 'The wiggly lines are the lines of the Landau
diagram. Théy correspond to phyéical particles,

A diagram in which there is a pair of adjacent reggeons.
They'are separated by a siqple window in the reggeon
@iagram. This window is removed when the two adjacent
reggeons are fused into one. In this diagram B = 3,
W=1, and y = 2,

A diagram that has the same number of handles h and
boundaries b as the diagram of Fig. 36, but has B = 3,

W =0, and y = 3,



Fig. 38:

Fig. 39

Fig. 40:

Fig. 41:

Fig. 42:

Fig. 43:

Fig. 44:

Fig. 45:
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Quark line diagram representation of the diagram of Fig. Fig. 46:

36. The simple window in the reggeon diagram of Fig. 36 Fig. 47:
corresponds to a simple window fn the quark line diagram.
Quark line diagram representing the diagram of Fig. 37.
There is & window, but it is not a simple window. The
nonsimple window does not correspond to a pair of ad-
Jacent reggeohs that can be fﬁsed.

A diagram corresponding to a product of four ordered
amplifudes. The diagram has one simple window. If

it is contracted.out then one obtains a y = 0 diagram.
A diagram corresponding to a product of six ordered
amplitudes. It has two simple windows. If they are
contracted out then one obtains a y = 0 dlagranm.

Each simpie reggeon window is replaced by a reggeon

star graph.
Diagram representing two basic graphs connected by two

tubes. The joining of quark lines along the tubes is

taken to be the one that can be drawn on the plane.

' Diagram 1l1lustrating why the two tubes cammot be

contracted into a single tube. The contractions

at the two ends give different interface tree diagrams.
A regge tadpole diagram. The interior face-line 1s not
a simple window because it cannot be contracted out

for the reason illustrated in Fig. 44. The reggeon
going around the loop has, when represented by a surface,

one solid (quark) line and one dotted (inner) line.

~hdym

A surface with y = 3.
Set of three reggeon graphs corresponding to three

components of the surface shown in Fig. 46.
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