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Fast, Memory-Efficient Cell Location in
Unstructured Grids for Visualization

Christoph Garth and Kenneth I. Joy, Member, IEEE

Fig. 1. A visualization of the complexity of unstructured cell location on a plane in a 3D delta wing dataset using the hierarchical
scheme developed in this paper. In the left image, the color of each pixel encodes the number of tree leaves overlapping the location
point on the plane. The right image maps the number of grid cells that must be tested for point inclusion to locate the correct cell.

Abstract—Applying certain visualization techniques to datasets described on unstructured grids requires the interpolation of variables
of interest at arbitrary locations within the dataset’s domain of definition. Typical solutions to the problem of finding the grid element
enclosing a given interpolation point make use of a variety of spatial subdivision schemes. However, existing solutions are memory-
intensive, do not scale well to large grids, or do not work reliably on grids describing complex geometries. In this paper, we propose
a data structure and associated construction algorithm for fast cell location in unstructured grids, and apply it to the interpolation
problem. Based on the concept of bounding interval hierarchies, the proposed approach is memory-efficient, fast and numerically
robust. We examine the performance characteristics of the proposed approach and compare it to existing approaches using a
number of benchmark problems related to vector field visualization. Furthermore, we demonstrate that our approach can successfully
accommodate large datasets, and discuss application to visualization on both CPUs and GPUs.

Index Terms—Unstructured grids, cell location, interpolation, vector field visualization.

1 INTRODUCTION

Among the many different forms of describing the data resulting from
scientific simulation, unstructured grids represent one of the most
complex and difficult forms. The storage overhead that results from
explicitly representing the connectivity of the grid elements or cells is
however balanced by the ability to aggressively adapt the spatial reso-
lution of such grids to the complexity of the simulation, resulting in an
overall reduction in storage overhead and computational complexity
of performing the simulation.

Many visualization algorithms require access to not only the vari-
able values stored at the vertices of such a grid, but apply interpolation
to reconstruct continuous fields. This is especially true for vector field
visualization, where numerical integration is one of the key techniques
to approximate integral curves that model the trajectories of virtual
massless particles. This integration procedure is based on the interpo-
lation of a vector field at arbitrary locations inside a dataset’s domain
of definition. For unstructured grids, this problem is especially hard:
for every interpolation point, the cell containing that point must be
identified. This cell location problem requires the application of spa-
tial data structures that quickly narrow down the range of candidate
cells that are then tested for the inclusion of the interpolation point.
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In this context, the challenge for such data structures is twofold:
first, they must be able to take into account the greatly varying cell
sizes often found in modern adaptive unstructured grids. Second, and
more importantly, the memory size of this supporting data structure
must not grow beyond a reasonable bound. This latter aspect is espe-
cially important when considering the ever-growing sizes of modern
simulation datasets. Due to the complexity in both design and imple-
mentation of cell location data structures, many interesting methods
of vector field visualization are often not designed for or tested against
unstructured grids. This especially holds true for GPU-based flow vi-
sualization, where the massive computational power available through
such devices is applied to provide advanced real-time and interactive
visualization tools. Unstructured grids are virtually absent from this
innovative field.

In this paper, we present a novel data structure and associated con-
struction scheme for cell location that can accommodate very large
and complex unstructured grids and delivers both good performance
and memory efficiency. It allows the treatment of unstructured grids
with tens to hundreds of millions of unstructured elements of mixed
type on workstation-class machines. Furthermore, it is designed for
both CPUs and GPUs, and the same basic data structure directly ap-
plies to both classes of devices.

The celltree data structure we propose (Section 3) is based on the
bounding interval hierarchy [18, 22] space partitioning scheme, which
we supplement with a fast construction algorithm (Section 3.2) using
a heuristic to determine good spatial partitions. We examine the per-
formance of our system using a number of benchmarks derived from
typical visualization scenarios, and determine the influence of certain
parameters of our construction scheme on memory footprint and the
cell location speed (Section 5), and provide default parameters that



work well over a wide range of grid sizes and complexities. Moreover,
taking advantage of the fact that our data structure can be easily cou-
pled with existing visualization systems, we perform a comparative
performance and robustness analysis (Section 6). Finally, we demon-
strate how our cell location scheme can be used on GPUs to achieve
interactive vector field visualization through massive particle advec-
tion (Section 7).

2 BACKGROUND AND SCOPE

In the following, we assume a basic setting in which an unstructured
grid is described in the form of ordered lists of vertices, where cells
of different types are defined as a tuple of indices. From the cell type
and indices, the topology of the cell is implicitly defined. The cell
type also implies an interpolation scheme, or alternatively a set of ba-
sis functions, which can be used to translate between (cell-)local and
global coordinates. For our purposes, the exact nature of the per-cell
interpolant is not pertinent. Global interpolation of variables over the
grid domain is then performed by first locating the unique cell that in-
cludes the interpolation point, i.e. performing cell location, and then
interpolating the variable locally within the cell. This setting includes
the overwhelming majority of vector-field visualization use cases for
datasets produced by unstructured simulation codes. While we con-
cern ourselves with the three-dimensional case here, all considerations
in this paper apply equally to two-dimensional datasets.

Among the properties of unstructured grids produced by adaptive
simulation codes, the typically highly non-uniform spatial distribution
of vertices is one of the complicating factors in cell location. Other
problematic aspects derive from the geometric properties of the cells
found in such grids: often generated by automated meshing schemes
and aggressively adapted to the complexity of the underlying problem,
individual cells possess very large aspect ratios or are non-convex (e.g.
twisted hexahedra), making the grid complicated to work with from
a numerical point of view. Occasionally, numerical oddities such as
inverted or overlapping cells resulting from errors in grid generation
are encountered in practice.

Performance of cell location data structures is of paramount impor-
tance, since variable interpolation is often among the most frequent op-
erations in visualization algorithms. A typical example is integration-
based visualization, in which integral curves are constructed by eval-
uating a vector field repeatedly. While a single integral curve already
requires hundreds to tens of thousands evaluations, modern visualiza-
tion techniques such as integral surfaces [2, 8, 17] or Lagrangian tech-
niques [14, 8] in turn require the computation of thousands to millions
of integral curves. Furthermore, data structure construction time and
memory overhead should be small, otherwise, a scheme can quickly
become infeasible for larger datasets.

We proceed to survey and discuss previous work under these con-
straints.

2.1 Cell Location

Cell location typically has two stages: first, a spatial data structure is
used to quickly narrow down the number of cell candidates; then, each
of these candidate cells is checked for inclusion of the interpolation
point. This latter operation typically requires the computation of lo-
cal coordinates and must be considered expensive. Thus, keeping the
number of candidate cells small is a crucial property for any cell lo-
cation scheme. Early approaches to this problem [16, 21] employed
uniform spatial subdivision in the form of octrees. Each leaf of the
octree stores the indices of cells whose bounding box overlaps with
the leaf extents. Leaves are subdivided until either a maximum depth
is reached, or, alternatively, if the number of cell indices falls below
an upper bound. Cell location then proceeds by traversing the octree
from the root and descending through appropriate children until a leaf
is reached, which then contains all the candidate cells. This approach
does not work well with non-uniform vertex distributions, requiring
either too many levels of subdivision and thus a considerable memory
overhead, or does not shrink the candidate cell range down to accept-
able levels. An implementation of this technique is the default cell

location algorithm in the VTK library, and we compare it experimen-
tally with our approach (cf. 6).

Using kd-trees instead of octrees facilitates non-uniform subdivi-
sion, at the cost of generally deeper trees and a storage overhead.
Recently, Andrysco and Tricoche [1] presented an efficient storage
scheme for kd-trees and octrees, termed Matrix *Trees, that addresses
the overhead of such data structures by employing an efficient stor-
age scheme based on compressed sparse row (CSR) storage of tree
levels; essentially, the tree is encoded as a sparse matrix in CSR rep-
resentation. This alleviates most of the memory overhead of kd-trees,
and they are able to perform cell location with reduced time and space
complexity, and even demonstrate their scheme on GPUs.

The memory efficiency of both kd-trees and octrees suffers from the
duplication of indices of cells that overlap multiple leaves of the tree;
the corresponding cell index must be stored in each leaf. For large
datasets and deep trees, this can often lead to a significant multiplica-
tion of the overall number of indices stored, and storage for these lists
can exceed the dataset representation in size. To aggravate this prob-
lem, the number of duplications is highly dependent on the geometry
and adjacency of the grid cells, and thus essentially unpredictable.

An innovative approach to cell location was given by Langbein et
al.[12]. They base their spatial subdivision on the vertices of the un-
structured grid to quickly locate a grid vertex close to the interpolation
point. Making use of cell adjacency information, an indicent cell is
identified and a ray is propagated through the grid towards the inter-
polation point using cell walking. Through clever storage of the cell-
vertex incidence information, the storage overhead can be kept reason-
able at the cost of a computational overhead. The authors demonstrate
successful application of their scheme to a number of large and com-
plex adaptive unstructured grids with several millions of cells on work-
station class machines. However, there are a number of shortcomings
to this approach. First, it does not work with unstructured grids that
contain T-junctions or consist of multiple independent parts with dif-
fering vertex indexing, which is often the case for data obtained from
parallel simulations involving decomposed grids. In these cases, the
cell-vertex incidence cannot be reliably constructed, or only with sig-
nificant preprocessing effort. Second, this approach has problems in
the vicinity of sharp object boundaries, since the ray from the initial
point can exit the grid and then has to be restarted from a different
point, which requires complicated logic and renewed traversal of the
point-based kd-tree. Finally, the separation of cell inclusion tests from
cell face intersection tests can result in numerically ambiguous situ-
ations; this is especially problematic for cells with high aspect ratio.
Last, the storage overhead incurred by the cell adjacency information
is still significant, and its construction requires non-negligible compu-
tational effort. This approach is implemented in the FAnToM visual-
ization tool [20], and we directly compare the performance against our
approach (see Section 6).

2.2 GPU-based Vector Field Visualization
Many interesting papers have been presented in the recent years that
take advantage of the massive computational power of GPUs to deliver
interactive visualization of vector fields, using e.g. large amounts of
particles [4, 3], integral surfaces [2], or dye advection techniques [19].
However, most of these techniques have been pioneered on uniform
data representations; and unstructured grids are rarely used in GPU-
based vector field visualization. The notable exception is the work by
Schirski et al. [15], who presented a GPU-based scheme for particle
tracing over purely tetrahedral grids using cell-adjacency based tetra-
hedral walking; however, locating the initial cell for a particle is still
performed on the CPU, and a large overhead is incurred through the
cell adjacency storage. Thus, there is a strong limit for the size of grids
on which this scheme can be applied.

The celltree scheme we present here is directly applicable to GPU-
based vector field visualization algorithms. Our scheme works on arbi-
trary unstructured grids, and no grid transformation such as tetrahedral
decomposition is required to treat large grids on the GPU, resulting
in storage advantages and improved robustness. The celltree is not
geared towards a specific access pattern such as e.g. the cell walking



used in [15] for particle tracing, and can thus support a wide range of
visualization algorithms that rely on unstructured grid cell location.

2.3 Ray Tracing
Spatial subdivision data structures play a very prominent role in the
field of ray tracing. There, the focus is on accelerating ray-triangle
intersection instead of cell location. However, the two problems share
some similar traits. The cell location scheme we present here is quite
similar to the skd-tree approach presented by Wächter and Keller [18]
and Zachmann [22], which among the possible candidate data struc-
tures presents a good trade-off of memory-efficiency and speed.

Furthermore, the construction of efficient bounding-interval or
bounding-volume hierarchies has been investigated thoroughly. For
the specific case of ray tracing, optimal spatial partitions are deter-
mined using the so-called surface area heuristic, first introduced by
Goldsmith and Salmon [9]. This heuristic provides a good model of
the expected cost of traversing a single node of the hierarchy with a
ray for a given choice partition, and various hierarchy construction al-
gorithms have been proposed based on this. An excellent exposition
on this topic, together with a number of theoretical considerations, is
provided by Havran [10]. The approach presented here is related to
some of these ideas.

2.4 Contribution
The celltree scheme we present here is based directly on a spatial de-
composition using a bounding interval hierarchy based on the cell
bounding boxes and offers the following advantages over the previ-
ous cell location methods in a visualization context:

• It allows general unstructured grids, consisting of multiple inde-
pendent parts or with non-manifold structure, and can handle ar-
bitrary cell types. Thus, it accommodates a wide range of dataset
types and formats.

• It is numerically robust, in the sense that cell location does not
suffer from bad numerical properties of individual cells.

• Our scheme does not optimize for a specific access pattern and
can support a wide range of algorithms with good performance.
Furthermore, it naturally supports the computational parallelism
of multi-core CPUs and many-core GPUs.

• Memory overhead can be flexibly balanced against cell loca-
tion performance, allowing fast cell location on very large un-
structured grids with tens to hundreds of millions of cells on
workstation-class machines.

In the following, we describe our data structure and the associated
construction and traversal algorithms, and conduct a variety of exper-
iments to demonstrate its viability under the stated goals.

3 THE CELLTREE

In the following, we assume that an unstructured grid is given as a
list of cells of size N, where for each cell ci, i = 1, . . . ,N the lower
bound cmind

i and upper bound cmaxd
i are known for each dimension

d = 0,1,2 or can be determined. This setting is very general and ac-
commodates unstructured grids consisting of multiple parts, and in
addition does not constrain the topology of the grid.

3.1 Basic Structure
The celltree we describe here is essentially a bounding interval hi-
erarchy (cf. [18, 22]) data structure, with an associated construction
scheme. A bounding interval hierarchy is a binary tree of axis-aligned
boxes, where for each box, its children’s boxes are generated from sub-
dividing the parent box along the split dimension d. In this respect, it
is similar to the kd-tree, and the difference lies in the fact that the child
boxes (in the following called left and right) do not form an exact split
of the parent box along d. Consequently, two axis-aligned bounding
planes must be stored for each inner node of the tree, thus creating a
slightly larger per-node storage requirement than kd-trees, which only
need to store one split plane.

node

LmaxRmin

left 
child

right 
child

Lmax Rmin

left 
child

right 
child

Fig. 2. Different cases when traversing the bounding interval hierarchy.
Points left of Lmax need to traverse the left subtree, points right of Rmin
need to traverse the right subtree. In the top sketch, left and right child
nodes overlap and both sides must be traversed. At the bottom, traver-
sal stops since the left and right nodes bound a volume of empty space.

We apply this concept to construct a hierarchy through the follow-
ing procedure:

1. Initialize the tree as a single leaf containing an indexed list of all
cells in the dataset.

2. For each leaf node, select a split dimension d to form a disjoint
partition of the cell indices contained in it into left and right lists
L and R.

3. Attach two children to this node, each containing the correspond-
ing list, and compute the corresponding bounding planes

Lmax = max
i∈L
{cmaxd

i } and Rmin = min
i∈R
{cmind

i }.

4. Repeat from 2. until no more leaves can be split.

When compared to construction algorithms for octrees and kd-trees,
it is apparent that the lists of cells in left and right children are disjoint;
thus such partitioning can be performed in place, since the overall list
of cell indices in all leaves is a constant. For kd-trees and octrees, in-
dices for cells that overlap the splitting plane(s) must be stored in both
children, creating a multiplication of overall indices stored that can
lead to significant overhead. The bounding interval hierarchy avoids
this, and thus the size of the resulting data structure is much less de-
pendent on the specific form of a given unstructured grid.

In this setting, to perform cell location, the hierarchy is traversed
from the root. At every node encountered, the interpolation point x is
compared against both bounding planes. If xd ≤ Lmax, the left subtree
must be traversed, and correspondingly, the right subtree must be tra-
versed if xd ≥ Rmin. When the traversal reaches a leaf node, the leaf’s
index list indicates candidate cells that must be checked for point in-
clusion. If the point is contained in one of the cells, the traversal is
terminated and the corresponding index returned. If no cell contains x,
the traversal proceeds to other leaves. If no cell is found to contain the
point, it is not contained within the domain described by the grid cells.
The different cases encountered during the traversal are illustrated in
Figure 2.

We note that the traversal of the bounding interval hierarchy is more
complicated than that of a tree with exact splits, since both subtrees
must be traversed in the case where Lmax ≥ x ≥ Rmin. Thus recur-
sive traversal or a stack-based approach must be employed. While this
appears as a disadvantage on first glance, the traversal can be opti-
mized heuristically (see also Section 4). Furthermore, it can be termi-
nated early in the case where x is contained in neither child node, i.e.
Lmax < x < Rmin. We have found this form of empty-space skipping
to be beneficial in the vicinity of grid boundaries, where holes in the
grid are quickly identified.

As is typical for spatial hierarchies, we note here that if successive
interpolations are performed in close spatial proximity, the tree traver-
sal benefits strongly from caching effects since the hierarchy traversal
takes a similar path. While one can optimize specifically for specific
forms of traversal by including ancestor pointers into the tree, the re-
sulting memory overhead and necessary state (i.e. information where



to restart traversal) make this option unappealing. Furthermore, the
stateful nature of restarted traversal complicates parallel interpolation
significantly, which is an important consideration e.g. in the context
of GPU applications (see Section 7).

We next turn to the question of how to partition the cell list during
step 2. of the above algorithm.

3.2 Construction
Choosing a good partition of a node’s cell index list I is a crucial step
in achieving good performance. Assuming that the cost of a cell-point
inclusion test is a unit constant, then the cost of a leaf node for cell
location is

CI = NI ,

where NI denotes the number of indices stored in I. If I is partitioned
into left and right lists L and R with corresponding children, then the
cost changes to

CI = P(L) ·NL +P(R) ·NR + Ctrav.

where P(L) and P(R) denote the respective probabilities that the inter-
polation point is contained in L and R, and that descending one level
of the hierarchy costs Ctrav. Under the assumption that point queries
are uniformly distributed in space, this can be rewritten as

CI = vol(L) ·NL + vol(R) ·NR + Ctrav. (1)

Through recursive substitution, one can construct a global cost func-
tion C and construct the bounding interval hierarchy such that this
function is minimized; however, such global minimization essentially
amounts to brute force search which must be considered infeasible.
Instead, we choose to neglect Ctrav and minimize Equation 1 locally
upon splitting a leaf node. For our bounding interval hierarchy, it is
easily computed that the child volumes vol(L) and vol(R) are propor-
tional to Lmax and Rmin, hence we locally minimize the cost function

C = Ld
max ·NL−Rd

min ·NR (2)

for each potential split dimension d = 0,1,2.
Before we consider the practical aspects of cost minimization, we

will briefly discuss two common choices for splitting a leaf node in
light of Equation 1. The split-middle approach divides the cell indices
such that cells in L and R are left and right of the center of I’s bound-
ing box in the corresponding dimension. While this approximately
balances the volume terms, it might result in a strong imbalance of
NL and NR, such that the overall cost per split node is not minimal
and very unbalanced trees can appear in the presence of strong cell
size variations. Conversely, the split-median approach sorts the cells
along the split dimension, and then divides I into two equally sized

p0 p1 p2 p3

b0 b1 b2 b3 b4

vol(L) vol(R)

NL = 4 NR = 5

1 2 1 2 3

Fig. 3. The fast bucketed split finding algorithm for nb = 5: Cells are
classified into buckets according to their bounding box centers. Then
the plane pi is chosen that minimizes vol(L) ·NL + vol(R) ·NR. In the
shown example, p2 is the optimal plane. vol(L), vol(R), NL and NR can be
directly evaluated from accumulating the counters and bounding boxes
of the buckets.

p2p0 p1 p3

heuristic

split-median

split-middle
vol(L) vol(R)

vol(L) vol(R)

vol(L) vol(R)

Fig. 4. Split-middle divides the cell into L and R list depending on the
position of their center relative to the middle plane p2, whereas split-
median groups the cells in sorted order such the numbers in L and R are
equal. The heuristic approach evaluates the cost function to determine
the best split plane, here p2 (with nb = 5). The lines indicate the extent of
the cells contained in L and R for each approach, and it is apparent the
heuristic approach results in the least overlap – at the cost of balance –
for this specific example.

halves L and R. This ensures a good balance of NL and NR and thus
balanced trees with minimal depth, but can lead to extensive traver-
sal if Lmax � Rmin since many leaf nodes overlap. Thus, while split-
middle and split-median are algorithmically very straightforward, they
are not good choices for the general case of highly-adaptive unstruc-
tured grids.

Practically, it is simplifying to postulate a split plane p and then
sort cell indices into L and R depending on whether the cell center
(or alternatively, its minimum or maximum) is located above or below
the split plane. The location of p that minimizes Equation 2 is then
determined per dimension, and the (p,d) pair with overall minimal
cost is used to perform the split. While the candidate split planes can
be narrowed down to the union over all minima and maxima of the
bounding boxes of cells contained in I, the resulting list is of size NI
in the general case. Evaluating every one of these split plane locations
is computationally intensive, and thus finding a good split plane using
this approach is not feasible

Instead, we propose a fast algorithm based on sorting I into a small
set of nb equidistant buckets that span the entire bounding box of I
along a dimension d. We traverse the set I exactly once, and clas-
sify each cell into a bucket based on the center of its bounding box.
Specifically, the bucket index b for the cell with index i is

b =

⌈
nb ·

cmind
i +cmaxd

i

Id
min + Id

max

⌉
−1,

where Id
min and Id

max denote the bounds of all cells contained in I. Each
bucket records a count and bounding box of the cells that are inserted
into it. Then, we evaluate the cost function for the nb−1 split

pd
j = Id

min +
j +1
nb

(
Id
max− Id

min

)
,

planes separating the buckets and choose the one that minimizes Equa-
tion 2. The effort involved in evaluating C is minimal since it counters
and bounding boxes are accumulated over the small ranges of buckets
left and right of the pi. Figure 3 illustrates this construction. Conve-
niently, this evaluation can be performed simultaneously for d = 0,1,2
with only a single traversal of I by simply keeping three sets of buck-
ets, one set per dimension.

On occasion, this procedure will not yield a viable splitting plane.
For example, in the rare case where all cells fall into one bucket in all
dimensions, all cells would be assigned to L and R would be empty. In
such cases, we fall back to split-median, ordering the cells by bound-
ing box center. We have observed this case in our tests to occur about
once in ten thousand leaf splits, and most frequently in splitting leaves
with very few cells. Note that the case nb = 2 corresponds to split-
middle exactly. Naturally, one wonders how to choose a value for nb.
We have examined this question empirically in Section 5.



When considering the above scheme, the question arises why the
above scheme produces better trees than split-median and split-middle
in the general case, since Equation 1 is only evaluated in a small num-
ber of fixed locations. In general, we find that optimizing Equation 1
results in minimal overlap between the children of a node; thus, while
the resulting trees can be unbalanced, the overall number of leaf nodes
whose cells must be tested is much smaller. Figure 4 illustrates this
argument on an example configuration.

To allow a degree of control the final size of the celltree, we im-
pose a maximum leaf size smax. Leaves whose size falls below this
threshold are not split further. We have found this parameter to be
much more effective that prescribing a maximum tree depth, as the
latter is too closely tied to the assumption that trees are approximately
balanced. Again, we investigate the influence of this parameter in Sec-
tion 5.

Finally, we wish to point out that since both construction and traver-
sal of the celltree rely solely on relational operations and no arithmetic
is involved, the resulting system is very robust and does not suffer from
numerical problems in the presence of badly shaped cells.

4 IMPLEMENTATION

Our implementation is a straightforward realization of the concepts
described in the previous section. To allow for more space efficiency,
we have imposed the following design limitations, aimed at using our
cell location scheme on a typical workstation.

4.1 Data Layout and Construction
The bounding interval hierarchy underlying the celltree is a straight-
forward binary tree, stored in linear array. Each tree node consists of
12 bytes and has the following memory layout (in C notation):

struct celltree_node {
unsigned int dim: 2;
unsigned int child: 30;

union {
struct { float Lmax, Rmin; } node;
struct { unsigned int start, size } leaf;

}
};

Since the split dimension is constrained to three-dimensions (0,1,2),
the value 3 is used in dim to indicate a leaf. We further employ the
convention that both children of a node are consecutive in memory,
such that only one child index into the tree array must be stored. In
the case of an inner node, lmax and rmin denote the corresponding
bounding planes of the children, whereas a leaf node stores a start-
ing index and a size into an array of cell indices, which indicate the
cells that belong to the leaf. Note that we intentionally choose single-
precision floating point storage for the bounding planes due to de-
creased storage requirements for the tree nodes. We have verified the
absence of numerical issues in this respect on the datasets described
below (Section 5.1), and have found virtually no difference between
using single or double precision.

Construction of the above structure is straightforward using the al-
gorithm outlined in Section 3.2 and recursive splitting of children.
New nodes that result from splitting a leaf are appended to the tree
array. Growing this array represents the only memory allocation dur-
ing the construction phase.

The cell index list is partitioned into two disjoint subarrays for left
and right child, and splitting the children can be performed indepen-
dently. Furthermore, most of the computation time spent goes into
scanning the list of cells to determine the best split. This is an ideal
scenario for parallel processing, and we perform celltree builds using
multithreading to take advantage of multi-core and SMP architectures.
Leaf nodes that must be split are recorded in a queue, and multiple
threads fetch leaf nodes from this queue, analyze and split the corre-
sponding leaf, and, if further splitting is required, put the children back
into the queue. While queue access and tree array modification must
be synchronized among the threads such that the structure remains

consistent, we have observed only little contention among the threads.
This parallel build can be significantly faster than a sequential build
(typically 3 - 3.5× using 4 threads). We expect further improvements
by additionally parallelizing the partitioning step for large index list,
but have not implemented this in our system.

There is one caveat, however: since multiple threads append to the
tree array, the ordering of nodes is no longer deterministic. We address
this problem by resorting the tree array after construction such that all
nodes at the same tree level are consecutive in the array, and nodes at
lower levels precede those at higher levels. This resorting step does
not play a significant role in the overall build time. Moreover, we
have found that even for sequential, recursive builds, this resorting is
slightly advantageous with regard to the overall performance of cell
location due to a more balanced memory access pattern.

We employ one further optional optimization. Since the split find-
ing from Section 3.2 heavily relies on the bounding boxes of the cells
in the grid, we have found it beneficial to precompute and cache these
bounding boxes so that they must not be recomputed repeatedly as
a cell is examined during successive splits. We observe build time
improvements of 3− 4× using cached bounding boxes, however, the
memory overhead incurred is non-negligible and may play a role when
dealing with very large unstructured grids. Thus, this feature is op-
tional in our implementation.

4.2 Traversal
Traversal of the bounding interval hierarchy is performed using a
straightforward stack based implementation, and always starts at the
root node. In cases where both subtrees of an internal node must be
traversed, one child index is put on the stack and the other child’s sub-
tree is traversed. If the traversal ends in a leaf and the point is not
contained in any of the leaf’s cells, traversal is resumed at the node on
top of the stack. However, instead of always traversing either subtree
first (e.g. left always before right), we first traverse the subtree whose
bounding plane has the larger distance to the sought point. This results
in less overall traversal, and the correct cell is identified more quickly.

4.3 Point-in-Cell Test and Interpolation
When traversal reaches a leaf node, the query point is tested for inclu-
sion in the candidate cells contained in the leaf. To determine whether
a point is located inside a given cell, the global coordinates of the
query point are typically transformed into a cell-local coordinate sys-
tem where the inclusion test is simplified. For a general treatise of
local coordinates and interpolation over different cell types, we refer
the reader to the finite element literature, e.g. [5].

Our implementation contains corresponding mapping routines for a
number of different cell types commonly found in unstructured grids,
such as linear tetrahedra, tri-linear hexahedra, pyramids, and triangular
prisms (sometimes called wedges). With the exception of tetrahedra
for which local coordinates can be found by inverting a 3× 3 linear
system of equations, we use Newton iteration for numerical robustness
and accuracy, in similarity to the VTK library [16]. Since the celltree
data structure does not rely on the specific nature of the point-in-cell
test, it can accommodate arbitrary cell types, and our implementation
could be easily extended to support e.g. higher-order elements or other
interpolation schemes that rely on the definition of cells.

5 EXPERIMENTS

5.1 Datasets
To cover a broad range of unstructured datasets with different proper-
ties, we make use of six datasets:

Ellipsoid This smaller dataset models the flow around an ellipsoid;
the underlying grid is pseudo-unstructured in the sense that it de-
rived from an originally structured grid over spherical/elliptical
coordinates. We have included this case due to its strong varia-
tion in cells size but otherwise quite uniform distribution of cells.

ICE and BMW These datasets describe the flow of wind around a
high-speed train and a car, respectively. They are of interest to us



Table 1. An overview of the datasets and grid statistics used in the experimental evaluation of the proposed cell location scheme.

Ellipsoid (157MB) ICE (99MB) BMW (898MB)

Nvert 2.6M Nvert 1.0M Nvert 8.6M
Ntet – Ntet 0.9M Ntet 15.6M
Nhex 2.5M Nhex – Nhex –
Nprism – Nprism 1.7M Nprism 11.1M
Npyr 20K Npyr 10K Npyr 0.3M

TDELTA (606MB) Fishtank (1.44GB) F6 (1.65GB)

Nvert 19.3M Nvert 23.8M Nvert 14.8M
Ntet 13.6M Ntet – Ntet 85.9M
Nhex – Nhex 23.6M Nhex –
Nprism 5.7M Nprism – Nprism –
Npyr – Npyr – Npyr –

because the contain large boundary layers composed of very thin
prism cells, which poses a challenge for cell location schemes.

TDELTA Here, the flow of wind around a delta-shaped wing is mod-
eled. The sharp wing edges constitute a strong concave hole
in the grid, and there is a very finely resolved boundary layer
above the wing discretized using prisms. Furthermore, the grid
is strongly adapted to resolve two large vortical systems above
the wing.

Fishtank This dataset studies the turbulent mixing of hot and cold air
in a box-shaped domain. This dataset, simulated using a spec-
tral element code [7], is unusual since it represents the union of
about 67,000 hexahedral subdomains, each in turn discretized by
a 93 rectangular structured grid with non-uniform spacing. Each
subdomain carries its own vertex enumeration, thus there is no
apparent connectivity between the cells of neighboring subdo-
mains. We are especially interested in this grid due to its almost
structured nature.

F6 This purely tetrahedral grid is very large and models the flow
around an airplane. It shows a strong gradient in cell size as
the body of the plane is approached.

Table 1 provides a number of statistics for each dataset. We next
describe a number of benchmarks that we use to evaluate and compare
the proposed cell location scheme.

5.2 Benchmarks
To evaluate and compare the performance our cell location scheme
with real-world visualization applications in mind, we employ the fol-
lowing four benchmarks that represent a mix of typical visualization
scenarios that require interpolation:

Random We interpolate one million points that are uniformly dis-
tributed over the entire grid domain. The points are pre-
generated, and all points lie inside the grid.

Plane We interpolate points on a regular two-dimensional grid. Grid
sizes vary per dataset, but the grid is chosen such that it intersects
with challenging regions of the dataset’s grid, such as e.g. finely
discretized boundary layers and grid boundaries.

Volume Similar to Plane, but using a three-dimensional grid.

Streamlines We integrate a number of streamlines using an adaptive
integration scheme (DOPRI5, [13]). The number of streamlines
is dataset dependent but measures in the thousands. Streamlines
are seeded to traverse challenging regions (e.g. flow around em-
bedded bodies), and integration time is chosen sufficiently long
that the streamlines traverse a significant portion of the grid.

Note that instead of considering cell location performance in isola-
tion, we have opted to focus on the overall interpolation performance
that our approach enables, since the computationally intensive part of

unstructured grid interpolation is contained within the computation of
local coordinates and the point-in-cell test. Furthermore, this allows
us to conduct the data-dependent streamline benchmark which cru-
cially relies on interpolation. For each dataset, we have used the pro-
posed method to perform interpolation of the 3-component velocity
field variable.

Instead of examining absolute running times for each of the above
benchmarks, we instead count the number of interpolations neval per
benchmark and compute the interpolation rate for each benchmark. In
some experiments, we present an average interpolation rate, which is
computed by dividing the total number of interpolations for all bench-
marks by the sum of the running times. All benchmarks were per-
formed on a workstation with an Intel Core i7 2.66 GHz quad-core
processor, equipped with 12GB of RAM.

5.3 Effect of Build Parameters
As promised in Section 3.2, we examine the influence of the build
parameters nb and smax on the speed of cell location and the time re-
quired to build the data structure. Figure 6 illustrates the results for
both benchmarks and build times over all datasets as nb is varied.

It is apparent that nb has a strong influence on both results. It is
interesting to observe that while for some datasets the influence is
quite strong, for others it is more diminished. We suppose that this is
strongly correlated with inherent symmetries within a dataset that are
exploited by a specific choice of nb. To better understand the reason
for these performance differences, we also show the average number
of cells traversed per interpolation. Again, as we expect, this graph is
strongly correlated with overall interpolation performance. Tree mem-
ory usage size was virtually unchanged across all tests and is thus not
shown.

Note that the case nb = 2 corresponds exactly to the split-middle
approach described above. In all datasets except the Fishtank, which
has extremely regular cell distribution, we observe a marked increase
for bucket numbers greater than two, of up to 33% for the F6 dataset,
which is the largest dataset we have included here. For comparison
purposes, we have also included figures for the split-median approach
(denoted with “M” in Figure 6). This case is interesting since it gen-
erates balanced trees of minimal depth. Here, we find that the cell
and node averages for strongly adaptive grids (ICE, BMW, F6) are
literally off the charts, with corresponding bad interpolation rates re-

Fig. 5. A subset of streamlines from the corresponding benchmark in
the BMW dataset.
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sulting. Regarding build time, split-median is the clear winner, which
is of little surprise since this approach requires the least computational
effort. However, we note that it also offers the worst performance; this
indicates that tree depth is not a good quality indicator for cell location
performance. Otherwise, build performance is not affected strongly by
nb. Overall, we observe good performance values at acceptable build
times for nb = 5. We have accepted this value as a default in our con-
struction algorithm and have used it in all successive tests.

Figure 7 depicts the effect of the maximum leaf size smax on per-
formance, memory size and build time. The figures have ideal shape:
while the memory size and build time strongly decrease when dou-
bling smax, performance drops off very gradually, and the performance
penalty that is paid for large values of smax is not overwhelming. This
result seems promising for the treatment of larger datasets than the one
we have used here, since the overhead incurred by the celltree can be
reduced without too much loss of performance. Since we are slightly
biased towards treating large datasets, we choose smax = 8 as a default
value for our implementation, and all further benchmarks were per-
formed with this value. Figure 1 provides a graphical illustration of
the celltree and the cell location statistics discussed here, based on the
above default values.

6 COMPARATIVE EVALUATION

In this section, we compare our cell location schemes against two oth-
ers. Integrating the celltree data structure into existing visualization
frameworks is straightforward; the celltree construction algorithm re-
quires only a method for obtaining the bounding boxes of cells. Note
that we make use of the two systems’ native routines for all grid and
variable access as well as point-in-cell and interpolation routines. This
explains the difference in performance and memory usage for identical
datasets when comparing Tables 2 and 3.

6.1 VTK
The Visualization Toolkit (VTK, [16]) is a widely used general-
purpose framework that allows the rapid development and prototyp-
ing of visualization applications, but is mature enough for production
applications. Several visualization tools and other frameworks (e.g.
VisIt [6] and ParaView [11]) derive from it and make use of its internal
pipeline architecture. VTK comes equipped with built in cell location
capabilities for unstructured grids, encapsulated in the vtkCellLoca-
tor class. Internally, it uses an octree-based subdivision approach. In
order to test the comparative efficiency of our scheme, we have im-
plemented a vtkCellTree class that serves as a drop-in replacement for
vtkCellLocator.

In addition, recent versions of VTK contain a more modern cell
locator in the vtkModifiedBSPTree class that implements a modified
kd-tree where cells overlapping the split plane are stored in an addi-
tional “middle” leaf. While this class is primarily aimed at ray-casting
applications, we have nevertheless included it into our benchmarks. To
ensure a fair comparison, vtkCellTree makes use of VTK’s own cell in-
terpolation and inclusion test routines. It is only the candidate search
that is performed using the celltree data structure. Cell tree builds were
performed serially, and all three classes were measured based on their
default parameters.

The results of our tests, using the benchmarks described in Sec-
tion 5.2, are summarized in Table 2. Some benchmarks did not com-
plete within reasonable time (10 minutes), thus some timings do not
exist. For this reason we choose not to aggregate the performance
of the individual benchmarks. We find that in most benchmarks, we
generally outperform the faster of vtkModifiedBSPTree and vtkCell-
Locator by a significant margin, while at the same time being more
memory-efficient by a factor of 3–5. For the TDELTA, Fishtank and
F6 datasets, the cell tree was the only locator to complete all bench-
marks.

The good comparative performance of vtkCellLocator on the “Ran-
dom” benchmark is explained by the fact that the corresponding inter-
polation points are uniformly distributed across the grid domain, and
thus only rarely fall into complex grid regions. In all other bench-
marks, we observe a strong advantage of our scheme in the presence
of strongly adaptive grids.

6.2 FAnToM

The FAnToM visualization tool [20], developed at the University of
Leipzig, implements the innovative approach described by Langbein
et al. [12]. While not widely in use, its handling of large unstructured
grids is considered state-of-the-art, thus it is an ideal candidate for
comparison here to ensure the practical relevance of our results. Simi-
lar to the VTK comparison above, cell location functionality is encap-
sulated in a dedicated class (FCellLocator), for which we have again
provided a drop-in replacement (FCellTree) that replaces only the cell
candidate search with our approach. The benchmarks were run for
both locators, with the same restrictions as above (serial celltree build,
default parameters), and the results are documented in Table 3.

The default FCellLocator class already offers good performance for
smaller grids (Ellipsoid, ICE); however, the celltree possesses a strong
advantage in memory overhead. It is interesting to note that while
the performance numbers for streamline integration are very similar,
the celltree has significantly better performance in the “Plane” and



Table 2. Results of the comparison of the celltree data structure against VTK’s built-in locators.

Dataset Locator Build time Memory Overhead Random Plane Volume Streamlines
Ellipsoid vtkCellTree 3.34s 22MB (8%) 4.32s 1.91s 11.58s 1.70s

vtkCellLocator 0.61s 90MB (34%) 7.71s 75.68s 559.98 –
vtkModifiedBSPTree 6.72s 236MB (91%) 30.37s 1.90s 116.33s 46.39s

ICE vtkCellTree 3.27s 23MB (13%) 2.51s 1.68s 6.42s 2.66s
vtkCellLocator 0.53s 115MB (65%) 5.95s 89.93s 57.65s 211.45s
vtkModifiedBSPTree 7.65s 246MB (140%) 16.90s 13.43s 69.67s 43.57s

BMW vtkCellTree 40.25s 229MB (14%) 2.34s 3.57s 8.94s 1.97s
vtkCellLocator 5.01s 921MB (56%) 5.15s – – –
vtkModifiedBSPTree 303.23s 2476MB (151%) – – – –

TDELTA vtkCellTree 28.08s 165MB (14%) 1.66s 4.65s 9.48s 25.33s
vtkCellLocator 4.2s 880MB (79%) 3.99s – – –
vtkModifiedBSPTree 77.57s 1770MB (159%) 61.86s – – –

Fishtank vtkCellTree 27.59s 196MB (8%) 3.52s 3.79s 6.85s 27.11s
vtkCellLocator 6.16s 851MB (35%) 7.74s 12.04s 40.04s 28.75s
vtkModifiedBSPTree 199.41s 2162MB (91%) – – – –

F6 vtkCellTree 130.19s 743MB (16%) 1.59s 8.96s 17.63s 9.60s
vtkCellLocator 22.40s 5426MB (124.54%) 5.80s – – –
vtkModifiedBSPTree – – – – – –

Table 3. Results of the comparison of the celltree data structure against FAnToM’s built-in locator.

Dataset Locator Build time Memory Overhead Random Plane Volume Streamlines
Ellipsoid FCellTree 5.19s 22MB (18%) 24.08s 2.28s 29.88s 0.83s

FCellLocator 6.41s 150MB (76%) 21.17s 3.25s 30.14s 0.88s
ICE FCellTree 4.93s 23MB (6%) 4.01s 1.93s 9.10s 3.22s

FCellLocator 3.06s 88MB (85%) 11.87 37.81s 26.62s 4.32s
BMW FCellTree 57.84s 229MB (10%) 7.91s 4.91s 21.36s 4.06s

FCellLocator 24.56s 770MB (122%) 12.48s 51.88s 91.08s 4.01s
TDELTA FCellTree 40.03 165MB (11%) 5.25s 7.33s 24.50s 5.11s

FCellLocator 15.2s 483MB (82%) 11.84s 290.65s – 6.33s
Fishtank FCellTree 43.28s 196MB (5%) 14.37s 5.19s 24.89s 6.93s

FCellLocator – – – – – –
F6 FCellTree 144.92s 734MB (56%) 2.55s 7.59s 25.72s 3.93s

FCellLocator 40.66s 1633MB (81%) 12.04s 119.99s 132.23s 4.36s

“Volume” benchmarks that stress interpolation in complicated grid re-
gions. Here, the increased robustness of our scheme is especially ap-
parent. Note that the Fishtank dataset could not be benchmarked with
the default locator since it does not have consistent cell adjacency (cf.
Section 5.1).

7 GPU INTERPOLATION

The celltree data structure, consisting of essentially two linear ar-
rays containing the tree nodes and cell indices, directly allows the
use of arbitrary unstructured grid interpolation on modern GPUs. To
this purpose, we have implemented a prototype system based on the
CUDA programming language, which uses essentially identical cell-
tree traversal code to the CPU version. In the following, we discuss
a number of possible minor modifications of the overall data structure
and share some observations that affect the performance of the inter-
polation procedure on GPUs.

7.1 Cell Inlining
While GPUs attain impressive memory transfer rates, they are only
achievable for specific memory access patterns. General unstructured
grid representations contain a number of indirections that typically do
not work well with GPU memory architectures. For example, cells are
represented as a list of (start, type) pairs, and to obtain the locations
of all vertices of a cell requires indexing into a cell index array first,
and the resulting indices must be used to fetch the actual coordinates.
The celltree data structure adds an additional level of indirection, since
candidate cell indices in the leaves must be traced to (start, type) pairs.

To remove two levels of indirection, we propose the following stor-
age layout as an ideal unstructured grid representation in conjunction
with the celltree data structure on GPUs. Starting with the observa-
tion that currently available GPU configurations do not possess enough
storage to handle unstructured grids approaching one billion vertices,
we make the assumption that 30 bits are sufficient to represent a ver-
tex index. Further noting that the minimum number of indices in any

cell is 4 (tetrahedron), we replace each cell index in the leaf list by the
full representation of the cell, consisting of all indices, and encoding
the cell type in the most significant two bits of the first vertex. Corre-
spondingly, the start indices in the celltree leaf nodes are adjusted to
reflect the different starting offset in the cell leaf lists. Upon reaching
a leaf during celltree traversal, the first vertex index is read from the
leaf list, and the cell type is computed from the two most significant
bits. Then, a corresponding number of further indices is read from the
list, until the number of indices for the indicated cell type is complete.

This approach yields a more compact representation of the combi-
nation of grid and locator data structure, and removes two memory
indirections at the lowest level of the interpolation procedure. While
the number of possible cell types is reduced to four in this approach, it
is readily generalized to include more cell types by encoding the type
in the unused bits of multiple indices. Table 4 provides an overview of
the memory savings achieved by cell inlining.

7.2 Tree Traversal
Celltree traversal is accomplished very similar to the CPU implemen-
tation, with the only difference being a fixed-size stack with 64 entries.
We estimate that this stack size is sufficient to treat unstructured grids
up to current-generation GPU memory capacity. The stack resides in
local memory, which causes some performance concern, however, we
observe that the stack is rarely read from in the datasets and cases we
tested, and thus the performance impact is negligible.

7.3 Cell Interpolation
In our tests, we employ identical routines to the CPU case to achieve
cell interpolation and inclusion tests. However, the high arithmetic
intensity of the Newton iteration generates high register pressure and
precludes large thread block sizes. Thus, if speed is desired over ac-
curacy and strongly nonlinear cells are not present, we propose to de-
compose cells on-the-fly into tetrahedra, which can be interpolated
with much less effort.



0M/s

10M/s

20M/s

30M/s

40M/s

0 125 250 375 500

evaluation rate

frame

GPU 250K GPU 1M CPU 250K

0

10

20

30

40

0 125 250 375 500

framerate

frame

interpolation rate

Fig. 8. Interpolation and frame rates for the GPU benchmark.

7.4 Examples
In order to demonstrate the suitability of our scheme for interactive
vector field visualization over unstructured grids, we implemented a
particle advection scheme based on a third-order Runge-Kutta method
similar to previous approaches on regular grids [4, 3] and applied it to
visualize particle movement for the datasets described in Section 5.1.

Figure 8 shows the measured frame rates and corresponding inter-
polation rates for an advection of 250K and 1M particles over 500
frames in the Fishtank dataset (illustrated in Figure 9). This dataset
is ideal for testing, since coherently moving particles seeded from the
inlet quickly diverge and traverse different parts of the dataset, thus
reducing the amount of coherence. The test was run on an NVidia
GeForce 285GTX with 2GB VRAM. The total GPU memory con-
sumption for the combined celltree and grid representation as de-
scribed above is 1377MB, which is equivalent to an overhead of 8%
when compared to the original dataset size (cf. Table 1). The inter-
polation rate, i.e. the number of interpolations performed per second,
is around 26-30 million interpolations per second, after a dip that re-
sults from the particles traversing a more highly resolved region of
the grid. Overall, we observe that the initially close particle locations
translate into coherent memory access since the hierarchy traversal
only diverges near the bottom. This effect is reduced after the parti-
cles spread out. Since the overhead for rendering the particles is small,
the interpolation rate roughly translates to frames per second by tak-
ing into account that three interpolations are performed per particle
per frame. For comparison, the figure also includes the performance
achieved by our CPU implementation running an identical test with
250K particles. Overall, we note an average speedup of 16.5× for the
GPU implementation in this example.

Table 4 shows the sizes of the GPU celltree structure and the veloc-
ity variable. With the exception of F6, for which we choose smax = 16,
all datasets fit into GPU memory with the default parameters and show
performance comparable to the Fishtank. Overall, we find that GPU
performance characteristics are very similar to those for CPUs (cf.
Section 5). Please refer to the accompanying video for an illustration
of these examples.

We wish to emphasize the fact that our implementation should be
taken as a proof of concept. Since we obtained good results even with-
out optimizing for the GPU (or even a specific GPU architecture), we
expect that performance can be improved significantly. Since coherent
memory access patterns are a crucial factor in this setting, an investi-
gation of hierarchy memory layout and grid vertex ordering is planned
for future work; however, the chosen example of particle tracing illus-
trates that coherent interpolation patterns cannot be expected for the
general case. We finally note that the routines for point-in-cell testing
are arithmetically complex and account for 90% of the register and
instruction count in our implementation and present additional opti-
mization potential. We attribute the good performance of the present
implementation to the fact that our data structure is designed to use
these routines only a small number of times per interpolation proce-
dure.

Fig. 9. Interactive advection of 1 million particles on the GPU in an
unstructured grid with 23.6 million hexahedra.

8 CONCLUSION

We have presented a novel cell location scheme, the celltree, with as-
sociated construction and traversal algorithms. The proposed scheme
is fast, robust, flexible and memory-efficient, and can be used for in-
terpolation over unstructured grids with good performance. Due to
the flexibility and ease of use of the celltree data structure, we were
able to devise drop-in implementations for two established and widely
used visualization systems, VTK and FAnToM, and found overall per-
formance and robustness increased while memory overhead was re-
duced. Furthermore, we have discussed and demonstrated a fully fea-
tured prototype GPU implementation.

Porting the celltree data structure to the CUDA environment for
GPU computing was straightforward, and despite not performing any
low-level GPU-specific optimizations, we obtain good performance
that should help enable the use of general unstructured grids for GPU-
based visualization applications. We are currently looking into further
implementations targeted at the OpenGL shading language, to enable
unstructured interpolation directly from the rendering phase of visu-
alization applications. We are also interested in exploring our ideas
in the context of the OpenCL framework. Furthermore, we are inves-
tigating the possibility of extending our approach to support parallel,
distributed interpolation over decomposed unstructured grids on clus-
ters.
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Table 4. Memory sizes for the inlined celltree data structure used for
GPU interpolation of the test datasets.

Dataset Grid + Velocity Inlined Celltree + Velocity
Ellipsoid 156MB 149MB
ICE 99MB 92MB
BMW 898MB 821MB
TDELTA 606MB 553MB
Fishtank 1446MB 1377MB
F6 2138MB 1848MB (with smax = 12)
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