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This dissertation addresses the performance issue of Orthogonal Frequency Division Multi-

plexing (OFDM) based WLANs operating in the presence of nonlinear high power amplifiers (HPAs),

narrowband interference (NBI) or jammer and channel estimation error in Rayleigh fading channels

for Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) antennas con-

figurations. Furthermore, to loosen the design criteria of practical HPAs, a novel PAPR reduction

algorithm and receiver structure are proposed in the dissertation to improve the system performance.

In the first part of the thesis, we analyze the performance of a M-ary Quadrature Am-

plitude Modulation (M-QAM) SISO-OFDM system that is impaired by nonlinear HPAs, jammer

and channel estimation error. We also present a more practical jammer model in this part of anal-

ysis. Next, we will consider a M-QAM SISO-OFDM system that is subject to nonlinear HPAs and

channel estimation error in fading channels. In this case, we utilize the channel estimation error

model1 to significantly reduce the complexity of the bit error rate (BER) expression. For the third

part of thesis, we extend the work presented in part one to include the scenario where the system

has multiple transmit antennas while it is still impaired by nonlinear HPAs, NBI and channel esti-

mation error. Finally, we propose a new algorithm to minimize the nonlinear distortion introduced

by nonlinear HPAs and a new receiver structure that offers superior performance in fading channels.

The performance of a SISO-OFDM system which is impaired by nonlinear HPAs, NBI and channel

1The model was proposed by M. Al-Gharabally in his work, M. Al-Gharabally and P. Das, ”On
the Performance of OFDM Systems in Time Varying Channels with Channel Estimation Error”,
IEEE ICC, 2006, pp. 5180-5185
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estimation error is significantly improved when the proposed scheme is deployed. In addition to

the improvement in the system performance, our proposed scheme also loosens the design criteria

of practical HPAs and enables the practical HPAs to operate more efficiently in mobile situations.

For the purpose of simulation, we extend the analytical models that are under study to an IEEE

802.11n WALN system and present both theoretical and simulation results.
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1

Introduction

The root of Orthogonal Frequency Division Multiplexing (OFDM) scheme can be traced

back to 1960’s when it was first proposed by Chang in 1968 [1]. Since then, there has been a vigorous

research effort in developing OFDM-based wireless communication systems. Over the years, OFDM

has become to be the most popular transmission scheme for broadband communication systems that

require high-speed communication. Its increasing popularity is mostly due to its spectral efficiency

and inherent robustness to channel impairments. In addition, the OFDM waveforms offer substan-

tial improvements in performance over traditional single carrier approaches.

For those technical advantages mentioned previously, OFDM had become a part of stan-

dards such as the European digital audio broadcast (DAB) and digital video broadcast (DVB)

schemes. Besides the television broadcasting standards, OFDM has also been adapted as a part of

IEEE 802.11 Wireless Local Area Network (WLAN) standards such as IEEE 802.11a, IEEE 802.11g,

and IEEE 802.11n standards [2–4]. Currently, OFDM is under consideration for the Fourth Gen-

eration (4G) WLAN systems. As mentioned already, OFDM has been adapted in many wireless

communication applications which make research topics related to OFDM technologies more critical.

The chapter is organized as follows. In Section 1.1, a brief review of OFDM systems is presented for

the purpose of completeness. Section 1.2 outlines the organization of the thesis.

1.1 OFDM Review

OFDM can be considered as a special case of Frequency Division Multiplexing (FDM)

which has been used for a long time to carry more than one signal over a telephone line. FDM is

a technique that uses different frequency channels to carry the information of different users. Each

channel is identified by the center frequency of its transmission. To ensure that the signal of one

channel does not overlap with the signal from an adjacent one, guard intervals were added between

two different channels. Like FDM, OFDM uses different frequency channels to carry information. To

1
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Figure 1.1 Simplified OFDM transmitter

understand how an OFDM-based wireless communication system operates, one can imagine that the

bandwidth of the traditional broadband channel is divided into several orthogonal and narrowband

subchannels which are typically referred to as subcarriers in literature. In the frequency spectrum,

signals in subcarriers overlap on top of one another in a fashion that when one signal is at its peak

value, the values for the other signals in the subcarriers are zero. The data symbols are modulated

onto those orthogonal subcarriers. Then, those modulated signals are multiplexed together and sent

through the transmitter. At the receiver end, the receiver will reverse the modulation process in the

transmitter to extract the data symbols. In this section, a simple OFDM transmitter and receiver are

described in Subsection 1.1.1. Subsection 1.1.2 briefly discusses the advantages and disadvantages

associated with OFDM systems.

1.1.1 OFDM Transmitter and Receiver Structures

A simplified version of the OFDM transmitter and receiver are presented for the purpose

of describing the basic structure of an OFDM system. The OFDM transmitter is shown in Fig. 1.1

and consists of a modulator, serial to parallel converter, Inverse Fast Fourier Transform (IFFT), and

parallel to serial converter. Each block will be discussed in the following paragraph.

Assuming the input bits are equiprobable and independent, they are grouped into blocks of

the size log2M where M is the signal constellation size. The modulation scheme is usually chosen by

the system designers or based on the requirements of the wireless communication systems. Each block

of bits is mapped into a modulated symbol, denoted as X [k], using the chosen modulation scheme or

based on the signal constellation. The output signal is then converted from serial order to parallel

order before IFFT and is converted back to serial order again. The mathematical representation for

the transmitted signal, x(n), is

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (1.1)
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Figure 1.2 Simplified OFDM receiver

where N is the total number of subcarriers.

The channel model is omitted for now and it will be discussed in more detail later. The

receiver which is composed of a serial to parallel converter, Fast Fourier Transform (FFT), parallel to

serial converter and demodulation, is shown in Fig. 1.2. In the absence of the channel, the received

signal is what it is being transmitted, namely x(n). After receiving x(n), the signal is converted into

parallel order and processed by FFT. Then it is converted back to serial order. The FFT process is

represented as

X [k] =
N−1
∑

n=0

x(n)e−j 2πnk
N (1.2)

The demodulation process maps the symbols back to bits based on the same mapping that

the modulation uses. Assuming there is no noise or distortion imposed on the transmitted signal,

the receiver is then able to recover the data perfectly. In most literature, the conversions between

serial and parallel formats are often missing from the system block diagrams. The serial and parallel

conversion blocks in the system block diagrams within this document will also be omitted and only

represented by just a single IFFT or FFT blocks.

1.1.2 OFDM Advantages and Disadvantages

OFDM has two main advantages over its competitors. One of which is the high bandwidth

efficiency. Fig. 1.3 illustrates the difference in the bandwidth usage between conventional multi-

carrier systems and OFDM systems. In the conventional mutilcarrier system, each nonoverlapping

tone presents user information that is being transmitted at a particular frequency. To ensure that

signals are not interfering each other, there is a gap between two adjacent tones which potentially

could be used for transmitting additional data. Fig. 1.4 shows the frequency spectrum of an OFDM

system where the blue dotted lines represent the signals in the subcarriers and the black solid line
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represents the OFDM signal. As one can observe from Fig. 1.4, in OFDM systems, the signals in the

subcarriers are orthogonal to each other. Even though signals are overlapping, they are not inter-

fering each other due to the reason that wherever there is a peak in the subcarrier, the magnitudes

of the signals from all the other subcarriers are zero. Since the signals are orthogonal to each other,

the OFDM signals can placed on top of each other without interference. As a consequence, it leads

to a significant saving in the usage of bandwidth compared to the conventional multicarrier systems

which is illustrated in Fig. 1.3.

Another advantage that OFDM has is its robustness against the channel impulse response.

In a typical wireless communication system, the transmitted signal is often severely degraded by the

channel response. For a traditional single carrier system, the transmitted symbol usually occupies

the bandwidth that is almost wide as the channel bandwidth. Within this channel bandwidth, both

the magnitude and the phase of the channel impulse response can vary as a function of time de-

pending on the environment. This would create problems since each part of the symbol experiences

different gain and phase introduced by the channel response. To recover the transmitted symbol
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accurately, the receiver has to be able to track the channel response properly and uses the estimated

channel response to equalize the signal before the demodulation process. Consequently, in order to

maintain a reasonable performance, the complexity in the design of the receiver has to increase in

order to handle the extra workload.

In a multicarrier system such as an OFDM system, the channel bandwidth is split into

N subchannels whose bandwidth are relatively small compared to the channel bandwidth. The

symbol in each subchannel is still degraded by the channel like in the case of a single carrier system.

However, the effect that the channel response has on the transmitted symbol in an OFDM system is

different from a single carrier system. In OFDM systems, since each subchannel has a much smaller

bandwidth compared to the channel bandwidth, the channel response that the subchannel experi-

ences is relatively flat across the bandwidth of the subchannel. Due to this reason, better quality

channel estimation can be obtained and used to remove the channel response that is imposed on the

transmitted symbol. Subsequently, the performance of the system can be improved.

In addition to the reduction in the complexity of the receiver structure, the composition

of OFDM symbols is also different from the conventional symbols. Fig. 1.5 shows the compositions

of conventional symbols and OFDM symbols. In the conventional wireless communication systems,

the modulated symbols often contains pure data bits. Upon receiving the transmitted signals, the

received symbols at the receiver are most likely overlapping each other due to the characteristics of

the wireless channels. This leads to the occurrence of interference which is due to the adjacent sym-

bols, a phenomenon that is known as inter-symbol interference (ISI). Due to the ISI in the received
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symbols, the system performance will degrade.

In the case of OFDM systems, each OFDM symbol is composed of an IFFT part and

a guard interval as shown in Fig. 1.5. The IFFT part represents the signals in the time domain.

Before transmission, a exact copy of the information in the last few samples in the time domain

signals are then inserted at the beginning of the time domain signals to create a guard interval. At

the receiver, even though, OFDM symbols can overlap each other like in the case of conventional

wireless communication systems. However, as long as the duration of the channel impulse response

is shorter than the duration of the guard interval, the overlapping will only occur within the guard

interval. Since guard intervals only contains the copies of the information in the last few samples,

they can be discarded in the receiver which leaves the IFFT part undistorted by the channel re-

sponse. Notice in some literature, the guard intervals are also referred to as cyclic prefixes. In this

thesis, we will assume those two terms are interchangeable.

One of the disadvantages that OFDM has is high sensitivity to frequency offset and phase

noise. The frequency offset is generally due to the frequency deviation between the transmitter and

receiver or by Doppler Shift. As for phase noise, it is often caused by the fluctuation of oscillators

in the system. Fig. 1.6 shows the effect of frequency offset on the OFDM signals. The blue dotted

lines in Fig. 1.6 represent the signals in the subcarriers while the black solid line implies the signal

of a particular subcarrier after experiencing frequency offset. As one can observe, the signals in the

subcarriers are orthogonal to each other when there is no frequency offset. However, when either

frequency offset or phase noise is present in an OFDM system, the subcarriers are no longer orthog-

onal to each other. As shown in Fig. 1.6, wherever there is a peak in the subcarriers, the magnitude

of the black line is no longer zero. As a result, inter-carrier interference (ICI) will occur [5–7] and

the performance of the system will degrade. Another major disadvantage that most multicarrier

systems have including OFDM systems is high peak to average power ratio (PAPR) which will be

discussed in more detail in Chapter 2.

1.2 Thesis Organization

In this section, the outline of the dissertation is discussed and a brief description for each

chapter will be given. The main contributions of this dissertation are contained in Chapters 4, 5, 6,

8, 9, and 11.

In Chapter 2, the concept of high PAPR and how signals that have high PAPR can cause

nonlinearity through nonlinear HPAs are discussed. Two of nonlinear HPA models that are most

widely used are also presented. In addition, a description of the input and output relationships

of those two HPA models is given in the chapter. To illustrate the effect of nonlinear distortion
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produced by nonlinear HPAs on the performance of a system, we present the performance analysis

of a BPSK OFDM system which is impaired by a nonlinear HPA in Additive White Gaussian Noise

(AWGN) channel. Finally, since the bit error rate (BER) contains the variance of the nonlinear dis-

tortion and finding a numerical value of the variance is often difficult, we discuss the procedures of

one method which is proposed by Banelli et al. as a way to obtain the variance of nonlinear distortion.

In Chapter 3, we present the IEEE 802.11n standard that is based on the Worldwide Spec-

trum Efficiency’s (WWiSE) proposal. There are two operation modes, NTX-SDM and NTX-STBC

modes, that the IEEE 802.11n standard operates on. In addition, the transceivers for both NTX-

SDM and NTX-STBC modes are presented. The functionality of each block in both transceivers is

also discussed in detail.

In Chapter 4, we present the performance analysis of a M-ary Quadrature Amplitude

Modulation (M-QAM) OFDM system that is subject to nonlinear distortion provided by nonlinear

high power amplifiers (HPAs), channel estimation error and jammer in Rayleigh fading channels.
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The nonlinear HPA is modeled after the Saleh model. In addition, different from the conventional

jammer model which was presented in literature, we propose a more realistic jammer model by

introducing a separate Rayleigh fading channel between the source of jammer and the receiver. Due

to the reason that not all the subcarriers are affected by the jammer, we derive the BER expression

for the case where the subcarriers are under the influence of the jammer. Then, we show that the

BER for the case where the subcarriers are free from jammer can be obtained from the case where

the jammer is interfering the subcarriers by setting the jamming power to zero. The final BER

expression for the system that is impaired by nonlinear HPA, channel estimation error and jammer

is also presented for various sets of degradation. For the purpose of simulation, the analytical model

is extended to a WLAN system based on IEEE 802.11n standard. The theoretical and simulation

results are also presented with and without channel estimation error.

In Chapter 5, we analyze the performance of a M-QAM OFDM system which is impaired

by nonlinear HPAs, partial band jammer, and channel estimation error in Rayleigh fading channels.

In Chapter 4, we introduce a more realistic jammer model by proposing a separate channel response

for the jamming signals. In this chapter, we extend the jammer model proposed in Chapter 4 to

include the situations where there is a frequency offset between jamming and transmitted signals.

When jammer transmits signals at a frequency that is slightly offset from the subcarrier frequency

that the receiver has locked onto, an additional interference which behaves like ICI is produced

by the jammer and leads to further degradation in the system performance. For the purpose of

simulation, we extend the analytical model to be in compliance with IEEE 802.11n standard. The

theoretical and simulation results are presented for different combinations of impairments with and

without channel estimation error. Finally, based on the theoretical and simulation results, a discus-

sion about the effectiveness of a jammer and how its bandwidth affects the performance if the total

jamming power is one of the design criteria.

In Chapter 6, we present the performance analysis of a M-QAM OFDM system that is

subject to a nonlinear HPA and channel estimation error in a Rayleigh fading channel. The con-

ventional approach of analyzing a wireless communication system such as the one we present in this

chapter always requires solving a triple integral due to the integration of the conditional BER over

the joint probability density function (PDF) of the channel response and its estimate. In addition,

solving a triple integral can sometimes be a very difficult task as Chapters 4 and 5 has shown in

the section of performance analysis. In this chapter, we will make use of the channel estimation

error model which was proposed previously1 to simplify and reduce the complexity in the process

of average BER calculation. In addition, the analytical model is extended to be in compliance with

the IEEE 802.11n standard for the purpose of simulation. We also present simulation results along

1This particular channel estimation error model was first proposed by Al-Gharabally et al. in his
work, ”On the Performance of OFDM Systems in Time Varying Channels with Channel Estimation
Error”, IEEE International Conference on Communications, vol. 11, June 2006, pp. 5180-5185.
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with theoretical values for various cases of channel estimation error and nonlinear distortion.

Chapter 7 presents performance analysis of OFDM systems with more than one transmit

antennas in Rayleigh fading channels. In the first case, we analyze the performance of a M-QAM

Multiple Input Multiple Output (MIMO) OFDM system with the Alamouti code, two transmit an-

tennas and one receive antenna in Rayleigh fading channels. Furthermore, the performance of the

M-QAM MIMO-OFDM system with two transmit antennas and one receive antenna is presented

with and without the normalization in the transmit power. Next, we analyzed another M-QAM

MIMO-OFDM system which has four transmit antennas and one receive antenna in Rayleigh fading

channels. In this case, the performance analysis is also presented with and without the transmit

power being normalized by the number of transmit antennas. In all cases, we simply the BER

expressions by rewriting the conventional Q(·) function in its alternate form. Simulation and the-

oretical results for each case are also presented. In addition, we briefly discuss the advantages and

disadvantages of using more than one transmit antenna in the chapter.

In Chapter 8, we analyze the performance of a M-QAM MIMO-OFDM system that is

subject to nonlinear HPAs, a NBI and channel estimation error in Rayleigh fading channels. The

nonlinear HPA model utilized in the chapter follows closely after the Saleh model. The Alamouti

code is implemented in the Space Time Block Code (STBC) encoder to encode OFDM symbols and

to take the advantages of diversity. In addition, we present a more realistic NBI model than the

proposed models in previous studies by introducing a separate channel impulse response between

the source of NBI and the receiver. Since only some of the data subcarriers are affected by the NBI,

we present the BER derivation for two different cases. One of two cases represents the situation

where the subcarriers are free from the NBI interference. The other case denotes the scenario where

subcarriers are affected by NBI. We will also point out that the similarity between those two BER

expressions for the two cases and how one can be obtained from the other. A brief discussion of

effectiveness of NBI with various bandwidth on the performance of the MIMO-OFDM system under

the assumption that the total power of NBI is held constant is also given. Finally, we will present

simulation and theoretical results of the performance of the MIMO-OFDM system that is subject

to various combinations of impairments with and without channel estimation error.

In Chapter 9, the performance analysis of a M-QAM MIMO-OFDM system that is subject

to nonlinear HPAs, jamming and channel estimation error in Rayleigh fading channels. The Saleh

model is utilized in the nonlinear HPA model. For the STBC encoder, the Alamouti code is used to

encode OFDM symbols. Different from the jammer models presented in Chapter 8 or in literature,

we present a more realistic jammer model by making two distinct assumptions in the chapter. The

first assumption is we assume that the jammer experiences an additional channel impulse response

that is statistically different from the channels that the transmitted signal experiences. This as-
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sumption is based on the fact that the source of jammer usually locates at a far distance, therefore,

the jamming signal must experience a different channel impulse response than the transmitted sig-

nal does. The second assumption that we make is we assume that the jammer has an offset in

frequency with respect to the transmitted signal. This assumption is often valid since the jammer

does not have priori knowledge about the center frequency of the transmitted signal. With those

two assumptions, we are able to present some useful insights about the performance of a M-QAM

MIMO-OFDM system that is under those impairments. In the chapter, an analytical BER expres-

sion is presented. For the purpose of simulation, we extend the analytical model to be in compliance

with IEEE 802.11n standard. We also briefly discuss the advantages and disadvantages of a jammer

with various number of frequency tones on the system performance under the assumption that the

total jamming power is held constant and the most design criterion is the effectiveness of the jammer.

Finally, we presented the theoretical and simulation results for different scenarios such as under the

influence of nonlinear distortion or effect of jamming tones with the condition of constant jamming

power with and without channel estimation error.

Chapter 10 presents the concepts of PAPR and OFDM signal distribution and a review of

PAPR reduction techniques. We first discuss the PAPR by defining PAPR for the continuous time

OFDM signals. As for the discrete case, we introduce the idea of oversampling factor. This is due

to the fact that some of peaks in OFDM signals in continuous time may not get picked up when

the sampling rate is at the Nyquist sampling rate. Next, we quantify the distribution of OFDM

signals by using the complementary cumulative distribution function (CCDF). The CCDFs are also

given with and without the oversampling factor. To avoid nonlinearity in practical HPAs, several

algorithms that are the most popular for PAPR reduction in literature are also presented in the

chapter. A detail description for each PAPR reduction technique is given along with the discussion

for its technical advantages and disadvantages.

In Chapter 11, we analyze the performance of a M-QAM OFDM system with a com-

pander that is subject to nonlinear HPAs, a NBI and channel estimation error in a Rayleigh fading

channel. The nonlinear HPA is modeled as a Saleh model. Different from the NBI model which

is previously proposed in literature, we propose a more realistic NBI model by introducing another

separate channel between the source of NBI and the receiver. Simulating an OFDM system with

the proposed NBI model would provide more useful insights to the performance of OFDM systems

that operate in coexistence with a NBI. In previous chapters, we have shown the effects of nonlinear

distortion on the system performance. To reduce the amount of nonlinear distortion introduced

by the HPAs, we propose a new companding technique that would reduce the PAPR of OFDM

signals and avoid the situations where the HPAs are operating at the nonlinear region. Since the

decompanded signal is highly dependent on the input signal to the decompander, we also propose

a novel receiver structure which would minimize the degradation effects due to the decompression
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in the decompander when the OFDM systems are operating in a Rayleigh fading channel. For the

purpose of simulation, we extend analytical model to an 802.11n WALN system based on the IEEE

802.11n specification. We will also show the effect of the proposed companding algorithm on the

performance of an OFDM system that is subject to nonlinear HPAs. The simulation results show

that the proposed companding technique is highly effective in reducing PAPR and can be used to

loosen the design criteria for the HPA and the cost of production. Finally, theoretical and simu-

lation results are presented for various combined sources of impairments with and without channel

estimation error.

Finally, Chapter 12 summarizes the thesis. In addition, it discusses the contributions

of the thesis.
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Nonlinear High Power Amplifiers

(HPAs)

2.1 Introduction

High peak to average power ratio (PAPR) is a common problem among multicarrier systems

and it is no exception in OFDM systems. In OFDM systems, high PAPR is due to the nature of the

Inverse Fast Fourier Transform (IFFT)/Fast Fourier Transform (FFT) operations. When L number

of signals are added coherently, it produces a peak power that is L times larger than the average

power. To demonstrate the concept of PAPR, Fig. 2.1 shows the PAPR of an all one vector whose

length is six. As one can see from Fig. 2.1, this hypothetically signal vector produces a peak power

that is six times larger than the average power. This implies that the peak power of OFDM signals

can be as much as N time larger than the average power where N is the total number of subcarriers.

Due to the characteristic of high PAPR in OFDM signals, the system would require the

digital/analog (D/A) and analog/digital (A/D) converters to be highly linear, which leads to an

increase in the complexity of the high power amplifier’s (HPA) design and the cost of implementing

them. Often in time, backoff schemes can be applied to ensure that the HPAs operate in the linear

range. However, the backoff scheme dramatically reduces the power efficiency of RF transmitters.

This may have deleterious effects on battery lifetime in mobile systems and could outweigh all po-

tential benefits that OFDM could offer.

In practice, nonlinear HPAs are used in implementation in order to lower the cost of

production. When high PAPR signals such as OFDM signals are amplified by nonlinear HPAs,

the signals will force the nonlinear HPAs to operate at their nonlinear region. Subsequently, the

nonlinear HPAs introduce nonlinear distortion to the system and system performance will degrade.

13
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Figure 2.1 An illustration of peak to average power ratio (PAPR) for [1 1 1 1 1 1]

Over the years, several methods for nonlinearity suppression have been proposed and results have

been presented in the literature [8–13]. In addition, those methods will be discussed in more detail

in Chapter 10. In this chapter, we will present the effect of nonlinear distortion produced by the

high PAPR signals through nonlinear HPAs on the system performance by analyzing a Binary Phase

Shift Keying (BPSK) OFDM system which is impaired by the nonlinear HPA in Additive White

Gaussian Noise (AWGN) channel. Two of most popular nonlinear HPA models are also presented

as well.

The chapter is organized as follows. In Section 2.2, an analytical mode is presented and

each block is discussed. Section 2.3 presents the two popular nonlinear HPA models that are often

utilized in literature. Section 2.4 contains the performance analysis of the analytical model which is

presented in Section 2.2. Finally, Section 2.5 summarizes the chapter.
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Figure 2.2 A system block diagram of a BPSK OFDM system that is impaired by a nonlinear HPA
in Additive White Gaussian Noise (AWGN) channel.

2.2 System Description

Fig. 2.2 shows the block diagram of the analytical model and each block will be discussed

in the following sections.

2.2.1 Transmitter

The transmitter consists of a BPSK modulator, IFFT and a nonlinear HPA. It is a fair

assumption that the input bits to the modulation block are equiprobable and independent of each

other. The BPSK modulator maps binary 0 and 1 to −1 and +1, respectively, and produces BPSK

symbols, denoted as X [k]. The BPSK symbols are then processed by IFFT to yield the corresponding

time domain signal, denoted as x(n). Then, x(n) is given by

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (2.1)

where N is the total number of subcarriers. The discussion about the output signal at the nonlinear

HPA, denoted as s(n), and its statistical property is given in more detail in Section 2.3.

2.2.2 AWAGN Model

The AWGN block, denoted as w(n), represents the thermal noise within the circuits. It is

modeled as a complex Gaussian random process with zero mean and 2σ2
w variance.
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2.2.3 Receiver

Upon receiving, y(n), the time domain received signal, is then fed into FFT. The output

of FFT which is the received signal in frequency domain and is denoted as Y [k], is expressed as

Y [k] =
N−1
∑

n=0

y(n)e−j 2πnk
N

=
N−1
∑

n=0

[s(n) + w(n)] e−j 2πnk
N

=S[k] + W [k] (2.2)

where S[k] and W [k] are FFT of s(n) and w(n), respectively. Next, the BPSK demodulator will

yield an estimated transmitted bits by determining which region Y [k] falls onto.

2.3 Nonlinear HPA Models

The nonlinear HPA in the transmitter shown in Fig. 2.2 represents the nonlinear distortion

imposed on the baseband signal. There are two popular, yet accurate, nonlinear HPA models in the

literature. One of the two models is the Solid State Power Amplifier (SSPA) model which was first

proposed by Rapp [14] and was later widely accepted in literature [15,16]. When utilizing the SSPA

model, the transmitted signal, s(n), can be expressed as

s(n) =x(n)
f(r)

r

=x(n)
A(r)ejΦ(r)

r
(2.3)

where r = |x(n)| and | · | represents the magnitude of the signal. In addition, f(r) denotes the

nonlinear distorting function. A(r) and Φ(r) in (2.3) are typically known as amplitude modu-

lation/amplitude modulation (AM/AM) and amplitude modulation/phase modulation (AM/PM)

conversions, respectively. The AM/AM and AM/PM conversions in the SSPA nonlinear HPA model

are defined as

A(r) =
αAMr

[

1 + (αAM r
AO

)2p
] 1

2p

, Φ(r) = αPM

(
αAMr

AO

)4

(2.4)

where αAM is the small signal gain and AO is the saturating amplitude. p represents a parameter

which controls the smoothness of the transmission from the linear region to the saturation region [16].

Typically, αPM is set to zero and this implies that there is no phase distortion imposed on the

baseband signal. If p is increased, A(r) in (2.4) would produce a curve that is quite similar to the

ideal soft limiter nonlinear transformation which is given as [15]

A(r) =







αAMr, 0 ≤ r ≤ 1√
βAM

AO, r ≥ 1√
βAM

(2.5)
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Figure 2.3 The Input and Output Relationship for Nonlinear HPA which is based on the Saleh
Model. In this case, the αAM and βAM are set to 1 and 0.25, respectively. αPM and βPM are π

12
and 0.25.

Another popular model is the traveling wave tube amplifier (TWTA) nonlinear HPA model,

proposed by Saleh [17], which is also known as the Saleh TWT model in some literature [15,18]. The

relationship between the input and output signals is defined as (2.3). However, the characteristic

functions, namely AM/AM and AM/PM conversions, are defined differently. In this nonlinear HPA

model, A(r) and Φ(r) are defined as

A(r) =
αAMr

1 + βAMr2
, Φ(r) =

αPMr2

1 + βPMr2
(2.6)

where αAM , αPM , βAM and βPM are the parameters that are used to model the actual HPA. To

illustrate the input and output signals relationship based on the Saleh nonlinear HPA model, two

examples are provided and are shown in Fig. 2.3 and Fig. 2.4. For example, as one can see from

Fig. 2.3 that the input voltage is not linearly amplified, especially when the input voltage is greater

than 2 Volts (V). In addition to the nonlinear relationship between the magnitudes of input and

output, the phase distortion is also added onto the phase of the signal. Hence, one can think of
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Figure 2.4 The Input and Output Relationship for Nonlinear HPA which is based on the Saleh
Model. In this case, the αAM and βAM are set to 0.75 and 0.25, respectively, while αPM and βPM

are π
20 and 0.25.

the nonlinear distortion is a combination of nonlinearly amplified input signal with additional phase

distortion being added onto the signal itself. In the rest of thesis, the Saleh nonlinear HPA model

is chosen and adapted for the purposes of performance analysis and simulation.

2.4 Performance Analysis

In this section, we will present the derivation of the bit error rate (BER) of the system

which is later used as a measure of the system performance. To analyze the performance of the

system shown in Fig. 2.2, the characterization of x(n) has to be determined first. Under the

assumption that N is large, by the Central Limit Theorem, x(n) can be considered as a zero mean

Gaussian process [19]. With that assumption of x(n) being a zero mean Gaussian bandpass process,

the output signal of the nonlinear HPA and its corresponding frequency domain signal are given as

s(n) = αGx(n) + dG(n)
FFT←→ S[k] = αGX [k] + DG[k] (2.7)
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where αG is the complex gain. In addition, DG[k] represents the distortion noise introduced by

the nonlinear HPA and is said to be a complex Gaussian random variable with zero mean and 2σ2
D

variance [20]. For two different subcarriers, k1 and k2, DG[k1] and DG[k2] are shown to be mutually

independent. Furthermore, the in-phase and quadrature phase components of DG[k] are shown to

be mutually independent and identically distributed (i.i.d.) [15]. The multiplicative coefficient, αG,

in (2.7) is given by

αG =
E {s(n)∗x(n)}

2σ2
x(n)

=
E {f(r)r}

2σ2
x(n)

=
1

2σ2
x(n)

∫ ∞

0
f(r) r p(r)dr (2.8)

where f(r) is defined in (2.3) and 2σ2
x(n) represents the input signal power. E{·} is the expected

value and (·)∗ represents the complex conjugate operation. In additional, p(r) is the probability

density function (PDF) of the input envelope which is Rayleigh distributed [20].

For simplicity of the mathematical notations, the subcarrier indices will be dropped in

the rest of the derivation. By substituting S[k] which is defined in (2.7) into (2.2), the received

signal in frequency domain, Y [k], is

Y = αGX + DG + W (2.9)

where DG is the FFT of dG. Based on the decision boundary for the BPSK modulation and assuming

X = +1 is transmitted, the BER, denoted PBER, is

PBER =P (αGX + DG + W < 0)

=Q

(√

|αG|2Eb

σ2

)

(2.10)

where Eb is the energy per bit and Q(ν) is defined as

Q(ν) =
1√
2π

∫ ∞

ν
e−t2/2dt, ν ≥ 0 (2.11)

Furthermore, σ2 represents the variance of the noise component of the signal. Since the mean of

noise component is zero, σ2 in (2.10) is found to be

σ2 =E {(DG + W )(DG + W )∗}

=σ2
D + σ2

w (2.12)

The calculation for obtaining σ2
D is usually a difficult task because the numerical value of

σ2
D depends on the parameters that are used in the nonlinear HPA model. To find the numerical

value for σ2
D, Banelli, et al. [20] proposed the following steps.
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1. Express the autocorrelation function of the output signal as a function of autocorrelation

function of the input signal to the nonlinear HPA.

2. Represent f(r), the nonlinear distortion function, as Bessel series expansion.

3. Obtain the power spectral density (PSD) function of the signal at the output of the nonlinear

HPA.

4. Integrating the PSD function of nonlinear distortion over the subcarrier’s bandwidth.

For the purpose of completeness, we will briefly show the procedures as outlined in [20] for obtaining

the numerical value of σ2
D. By the definition of autocorrelation function and denoting Rss(τ) as the

autocorrelation function of output signal which is defined in (2.7), Rss(τ) is found to be

Rss(τ) =E {s(n + τ)s(n)∗}

=E {[αGx(n + τ) + dG(n + τ)] [α∗
Gx(n)∗ + dG(n)∗]}

=|αG|2E {x(n + τ)x(n)∗} + E {dG(n + τ)dG(n)∗}

=|αG|2Rxx(τ) + Rdd(τ) (2.13)

where Rxx(τ) and Rdd(τ) are the autocorrelation functions of x(n) and dG(n), respectively. (2.13)

can also be expressed only as a function of autocorrelation function of the input signal [20], namely,

Rss(τ) =
∞
∑

i=0

ci

[

Rxx(τ)

2σ2
x(n)

]2i+1

=
c0

2σ2
x(n)

Rxx(τ) +
∞
∑

i=1

ci

[

Rxx(τ)

2σ2
x(n)

]2i+1

(2.14)

where ci, the coefficients, are given as

ci =
1

2σ2
x(n)(i + 1)

∣
∣
∣
∣
∣

∫ ∞

0
f(r)

r2

σ2
x(n)

e−r2/2σ2
x(n)L(1)

i

(

r2

2σ2
x(n)

)

dr

∣
∣
∣
∣
∣

2

(2.15)

while L(1)
i

(

r2

2σ2
x(n)

)

can be obtained by evaluating the Laguerre function, which is given as (2.16),

L(k)
i (ν) =

ν−keν

i!

(
d

dν

)i

(νi+ke−ν) (2.16)

with k = 1 and ν = r2

2σ2
x(n)

.

Comparing (2.13) and (2.14), Rdd(τ) is then given by

Rdd(τ) =
∞
∑

i=1

ci

[

Rxx(τ)

2σ2
x(n)

]2i+1

(2.17)
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To further reduce (2.15), the nonlinear distortion function can be represented by the Bessel series

expansion and is given by

f(r) =
L

∑

m=0

bmJ1

(
(2m − 1)π

Rmax
r

)

(2.18)

where Rmax is a normalization factor and J1(·) is the Bessel function of the first kind of order 1 [20].

L in this case represents the number of terms that is required to sufficiently represent the nonlinear

function. Subsequently, the coefficients, ci, are

ci =
1

i!(i + 1)!

∣
∣
∣
∣
∣

L
∑

m=0

bm

(
β

2

)2i+1

e(−β
2 )2

∣
∣
∣
∣
∣

2

(2.19)

where β is defined as

β =
(2m − 1)π

Rmax

√

2σ2
x(n) (2.20)

and bm is found to be

bm =
2
∫ Rmax

0 rf(r)J1

(
(2m−1)π

Rmax
r
)

dr

R2
max

[

J2

(
(2m−1)π

Rmax
r
)]2 (2.21)

Furthermore, the derivation of bm is presented in Appendix 13.1. In practice, the output response

of a practical HPA can be obtained by sending an input signal with various amount of voltage.

Subsequently, one can plot the input and output relationship of a practical HPA such as the one

that is shown in Fig. 2.3 or 2.4. Utilizing both (2.18) and (2.21), one can try to find bm that would

best represent the nonlinear distortion function with the minimum error.

To find the PSD function of dg(n), one can take the FFT of (2.17). Denote the PSD

function for dG(n) as Sdd(f), then Sdd(f) is found to be

Sdd(f)
FFT←→Rdd(τ)

=
∞
∑

i=1

ci

(2σ2
x(n))

2i+1




Sxx(f) ⊗ Sxx(f) ⊗ · · ·⊗ Sxx(f)
︸ ︷︷ ︸

(2i+1) times




 (2.22)

where ⊗ represents convolution operation and Sxx(f) represents the PSD function of the input signal,

x(n). Finally, the variance, σ2
D, is obtained by integrating (2.22) over the subcarrier’s bandwidth,

namely,

σ2
D =

∫

B
Sdd(f)df ≈ Sdd(f)B (2.23)

where B is the bandwidth of the subcarrier. Notice that the last approximation in (2.23), this

approximation is only valid if and only if the PSD function of dG(n) is relatively flat across the
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subcarrier’s bandwidth. By observing the result in (2.23), one can see that this procedure proposed

by Banelli et al is not limited to just BPSK modulation scheme due to the reason that the variance

only depends on the power of the input signal to the nonlinear HPAs and parameters used in

the nonlinear HPA model. In fact, for the same set of parameters used in the nonlinear HPA

model, the only thing needs to be recalculated is the input signal power when the modulation

scheme is switched from BPSK to Quadrature Phase Shift Keying (QPSK) or Quadrature Amplitude

Modulation (QAM).

2.5 Conclusion

In this chapter, we first discussed the concept of high PAPR. Next, we presented the

two most popular, yet practical, nonlinear HPA models used in literature. The input and output

relationships of those nonlinear HPA models were also described. To see the effect of the nonlinear

distortion caused by high PAPR signals through HPAs, we analyzed the performance of a BPSK

OFDM system that is impaired by a nonlinear HPA in AWGN channel. Since obtaining the variance

of nonlinear distortion, σ2
D, is often a complicated task due to its strong dependency on the nonlinear

HPA model, we presented one method which was outlined by Banelli et al. for obtaining a numerical

value for σ2
D. In addition, the advantage of this particular method is also discussed.
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IEEE 802.11n Review

3.1 Introduction

Recent advances in wireless digital communication technology have made the hardware

equipment, used to access WLANs, widely available and more affordable to the general public. Re-

cently, WLANs that are implemented based on IEEE 802.11b standard are most popular and widely

deployed in the market. Unlike the most common IEEE 802.11b standard, there are WLAN hard-

ware that utilize the IEEE 802.11a and 802.11g standards which operate on OFDM technique.

Since OFDM is a multicarrier system, OFDM has become a popular technique for trans-

mission of signals over wireless channels due to its superior performance in fading channels. OFDM

modulation converts the signal from the frequency domain to the time domain before transmission;

and upon receiving, it converts the signal from the time domain back to the frequency domain in

the receiver by using Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT),

respectively. Through this process, OFDM modulation also transforms a frequency-selective channel

into a parallel collection of frequency flat subchannels which makes the system more robust against

known conventional signal degradations which are due to the effects of frequency selectivity. In ad-

dition, in the case of single carrier systems, the structure of an equalizer in the receiver is normally

complicated since the channel frequency response varies within a symbol duration. However, in the

case of a multicarrier system such as OFDM, the frequency flatness in the subchannels makes the

structure of the equalizer in the receiver simpler. In most cases, an one-tap equalizer is sufficient to

remove channel frequency response.

Until recently, Single Input Single Output (SISO) has been the main type of antenna

configuration in wireless communication systems. In literature, OFDM systems with the SISO

antenna configuration are typically known as SISO-OFDM. In SISO-OFDM systems, modulated

OFDM symbols are transmitted or received sequentially. To increase the data rate of the systems,

23
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Multiple Input Multiple Output (MIMO) antennas configuration and Space Time Coding (STC) are

implemented at the transmitter and receiver in systems. For OFDM systems which are equipped

with MIMO and STC, they are widely known as MIMO-OFDM in literature. During operation,

the multiple modulated OFDM symbols are transmitted or received through multiple antennas in

a single time slot. Comparing with SISO-OFDM, MIMO-OFDM yields better performance since it

takes advantage of spatial diversity. Furthermore, MIMO antenna configuration works as a tool that

explores the spatial diversity, therefore, it can be adapted in wireless communication systems with

any signal modulation scheme to enhance the system performance. The topics related to MIMO will

be discussed in more detail in Chapter 7.

In this chapter, we will present the physical layers of the transmitter and receiver that are

implemented based on the Worldwide Spectrum Efficiency’s (WWiSE) proposal to IEEE 802.11n

standard. The IEEE 802.11n will use a combination of MIMO and OFDM to improve the per-

formance. In IEEE 802.11n, there are two modes, NTX-SDM (Spatial Data Multiplexing) and

NTX-STBC (Space Time Block Coding) modes [4]. In NTX-SDM mode, all the transmission rates

for 2 transmit antennas (TX) in 20 MHz mode are mandatory and supports for 3 TX and 4 TX

modes in 20 MHz; 1 TX, 2 TX, 3 TX and 4 TX in 40 MHz are all optional. Transmission supports

described in NTX-STBC mode are all optional in IEEE 802.11n [4]. In this chapter, we will only

focus on the physical layer configurations for 2 TX in 20 MHz in NTX-SDM and NTX-STBC modes

since they are used in simulations in later chapters.

The chapter is organized as follows. Section 3.2 describes the structure of the transmitter

in NTX-SDM mode. In Section 3.3, the structure of the receiver in NTX-SDM mode is discussed.

Next, the physical layer of the transmitter and receiver for the NTX-STBC mode are described in

Sections 3.4 and 3.5, respectively. Finally, Section 3.6 summarizes this chapter.

3.2 Transmitter (NTX-SDM mode)

The physical layer of the transmitter for 2 TX mandatory transmission mode is shown in

Fig. 3.1. Since both spatial streams, denoted as TX Spatial Stream 1 and TX Spatial Stream 2 in

Fig. 3.1, are identical in design, only one of them is shown in Fig. 3.2. Each block is discussed in

more detail in the following sections.

3.2.1 Service Field Insertion

The Service field which is composed of 16 bits is preappended in front of user’s data. The

0th to 6th bits of the Service field have the values zero and are used to synchronize the descrambler

at the receiver. The remaining 9 bits are reserved for future uses and they are all set to zero.
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Figure 3.1 A block diagram of the physical layer of 2 TX transmitter in NTX-SDM mode.
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Figure 3.2 A block diagram of the physical layer of the TX spatial stream as shown in Fig. 3.1

3.2.2 OFDM Symbol Padding

Padding is done in such a fashion that ensures the number of bits in the DATA field in the

Physical Layer Convergence Procedure (PLCP) protocol data unit (PPDU) is a multiple of number

of coded bits per OFDM symbol, denoted as NCBPS . To determine how many padded bits are

required, the number of OFDM symbols has to be determined first. Let NSY M be the number of

OFDM symbols, then NSY M is given as

NSY M =

⌈
16 + 8L + 6NES

NDBPS

⌉

(3.1)

where )·* is the ceiling function and L is the length of the data sequence. NES represents the number

of encoding streams. The number of data bits per OFDM symbol is denoted as NDBPS .

After NSY M is determined, the required number of bits in the data filed, denoted as

NDATA, for a multiple of NCBPS is

NDATA = NSY MNDBPS (3.2)

where NDBPS represents the number of data bits per OFDM symbol. The number of padding bits,

denoted as NPAD, is just the difference between NDATA and the length of actual data sequence,
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Figure 3.3 A delay box block diagram of the polynomial equation, (3.4)

namely

NPAD = NDATA − (16 + 8L + 6NES) (3.3)

The numerical values of padding bits are set to zero and they should be removed from the signal

before calculating the bit error rate (BER). In addition, the numerical values for NCBPS, NES and

NDBPS are different depending what error correction coding rate, data rate and data modulation

scheme are used in the transmission.

3.2.3 Scrambler

After the padding, the data is scrambled using (3.4) which can also be expressed in terms

of delay boxes. Its structure is shown in Fig. 3.3.

S(x) = x7 + x4 + 1 (3.4)

3.2.4 Tail Bits Padding

The purpose of tail bits padding is to force the convolutional encoder to end at the zero

state. Since the convolutional encoder ends up at the zero state, the decoder can exploit this infor-

mation in its algorithm and enhance the system performance. In this case, six zeros are appended

to each set of data to force the convolutional encoder to end at the zero state.

3.2.5 Convolutional Encoder

The purpose of utilizing the convolution code is to take an advantage of error correction

capability that coding has to offer to enhance BER. The convolutional encoder will encode the DATA

field which contains Service field, Physical Sublayer Service Data Units (PSDUs), Tail and Pad bits.

The polynomials for encoding generators are [g0 = 1338, g1 = 1718] in octave notation. Fig. 3.4

shows the corresponding encoding generator with coding rate, R = 1
2 .
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Figure 3.4 A delay box block diagram of a convolutional encoder with the encoding generator
polynomials, [g0 = 1338, g1 = 1718], and R = 1

2

In Fig. 3.4, Tb denotes the period of the bit. The bit comes out from Output A should

be before the bit from Output B in the encoding process. The convolutional encoder will provide

encoding rates at R = 1
2 , 2

3 , 3
4 , and 5

6 . In addition, depending on the performance requirements,

a different encoding rate can be chosen to enhance the performance. Puncturing is required when

higher code rate is desired. To demonstrate puncturing, an example of R = 5
6 is illustrated in Fig.

3.5. At the output of the convolutional encoder, the coded data sequence is then assigned alternately

across the spatial streams, with bit 0 assigned to the TX Spatial Stream 1.

3.2.6 Interleaver

After a convolutional encoder, interleavers are applied to rearrange coded data bits in a

deterministic fashion. Interleavers are generally used in digital data transmission technology such

as magnetic recording or wireless communication. Its purpose is to protect data against burst errors

which often overwrite many data bits in a row, but fortunately, the occurrence is rare. Since the

burst errors often change a lot of bits in a row, they can be prevented from affecting the BER by

interleaving the data sequences. In general, coded data is transmitted with parity bits that would

enable decoders to correct some correctable errors. When a burst error occurs and changes a lot of

bits in the data sequence which has been rearranged by the interleaver, the altered bits are no longer

grouped together after deinterleaving. This will enable the decoder to decode codewords correctly

since now, altered bits are only in part of a codeword.

The input coded sequence is interleaved in the following fashion. Let k be the index

of the coded bits before interleaving and k = 0, 1, ... , (NCBPS − 1), where NCBPS denotes the num-
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Figure 3.5 The Puncturing Example for R = 5
6

ber of coded bits per MIMO-OFDM symbol. In addition, let n be the index of spatial stream and

n = 0, 1, ... , NSS − 1, where NSS represents the number of spatial streams. First, the coded bits are

cycled through NSS based on (3.5).

k = kn · NSS + n (3.5)

where kn is defined as kn = 0, 1, ... ,
(

NCBPS

NSS
− 1

)

. Then, the input sequences to the interleavers

should have a block size of (NCBPS/NSS) bits.

Let i and j be the indices for the kth
n coded data bit after the first and second inter-

mediate interleaving processes, respectively. After the first intermediate interleaving process, the

kth
n coded data bit will be mapped to the ith place where the value for i is given by

i =
NCBPS/NSS

IDEPTH
(kn mod IDEPTH) +

⌊
kn

IDEPATH

⌋

(3.6)
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Table 3.1 Numerical Values of IDEPTH , NSS and NSD

NSS NSD IDEPTH

1, 2, 3, 4 54 6
2, 3, 4 108 6

1 108 12

where +·, represents the floor function. IDEPTH denotes the interleaving depth. In addition, the

value for IDEPTH depends on the numerical value of NSS and the number of data subcarriers per

OFDM symbol, NSD. The numerical values for NSS , NSD and IDEPTH are listed in the Table 3.1.

After the first interleaving process, the second intermediate process will map the ith coded

data bit to jth location in the sequence. The mapping between ith coded data bit to the jth location

is governed by

j = s ·
⌊

i

s

⌋

+

(

i +
NCBPS

NSS
− floor

(
i · IDEPATH

NCBPS/NSS

))

mod s (3.7)

where mod is the modulo operation. Furthermore, s is found to be

s = max

(
NBPSC

2
, 1

)

(3.8)

where NBPSC is the number of bits in each OFDM subcarrier per antenna and max(·, ·) is the

maximum value of the two arguments.

After the second intermediate interleaving process, the sequence will be passed through

the final interleaving process. This process will rearrange the order of the sequence by mapping the

jth coded data to the jth
n location in the sequence according to (3.9)

jn =

(

j +
NCBPS

NSS
− NBPSCDn

)

mod

(
NCBPS

NSS

)

(3.9)

where Dn is denoted as the shift in subcarriers for spatial stream n and it is defined as

Dn = 5n (3.10)

3.2.7 Modulation

The modulation schemes for the IEEE 802.11n follow closely with the modulations used

in the 802.11a standard. The possible modulation schemes are four types of Gray-coded signal

constellations: Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16

Quadrature Amplitude Modulation (QAM) and 64 QAM. For the purpose of illustration, the 16

QAM and 64 QAM signal constellations are shown in Fig. 3.6 and 3.7, respectively.

In the case of M-QAM, the input coded bits are first grouped into blocks size of log2M ,
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Figure 3.6 The Gray-coded signal constellation map for 16 QAM modulation.

Table 3.2 Normalization Factor for Modulations

Modulation Normalization Factor
BPSK 1
QPSK 1√

2

16 QAM 1√
10

64 QAM 1√
42

where M is the constellation size. Next, each block of bits is mapped according to the alphabet,

A = {(2m− 1−
√

M) + j(2n− 1−
√

M)} where {m, n = 1, 2, ...,
√

M}. The signal at the output of

the modulator will be scaled by a normalization factor which is listed in Table 3.2. By multiplying

the output signal at the modulator with the normalization factor, the same average power for all

signal mappings are achieved. However, in practices, an approximation of the normalization factor

is often used if the result of modulation is within the acceptable modulation accuracy.

3.2.8 Pilot Insertion

Before applying the IFFT to transform the signal from frequency domain to time domain,

pilots are inserted in the designated subcarriers for each transmit antenna. The purpose of pilots

insertion is to aid the receiver in estimating the channel response. For all 20 MHz NTX-SDM modes,

the subcarriers, −21 and +21, are dedicated for transmitting pilot signal for each OFDM symbol.
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Figure 3.7 The Gray-coded signal constellation map for 64 QAM modulation.
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Table 3.3 Pilot Values for 20 MHz NTX-SDM Modes

Subcarrier index, k 2 TX-SDM 3 TX-SDM 4 TX-SDM
-21 am−1, n mod 2 bm−1, f(n mod 4) cm−1, f(n mod 4)

+21 am−1, (n+1) mod 2 bm−1, f((n+2) mod 4) cm−1, f((n+2) mod 4)

As for all 40 MHz modes, the subcarriers −42, −14, +14 and +42 are designated for pilot signal

transmission.

Define ai,j , bi,j , and ci,j as the elements on the ith row and jth column of the matrices, A,

B and C, respectively, which are defined as

A =

[

+1 +1 +1 −1

+1 −1 +1 +1

]

(3.11)

B =







+1 +1 −1 −1

+1 −1 +1 −1

−1 +1 +1 −1







(3.12)

C =










+1 +1 +1 −1

+1 +1 −1 +1

+1 −1 +1 +1

−1 +1 +1 +1










(3.13)

For transmitting the nth OFDM symbol from the mth antenna, the numerical value of the pilot signal

is chosen according to Table 3.3 for all 20 MHz modes. In addition, the function f (·) is defined as

f(0) = 0, f(1) = 2, f(2) = 1 and f(3) = 3. After the numerical values are chosen from the matrices,

the values of pilots are then multiplied with the polarity sequence, denoted as pn mod 127, and is

defined as

pn mod 127 = {1, 1, 1, 1,−1,−1,−1, 1,−1,−1,−1,−1, 1, 1,−1, 1,−1,−1, 1,

1,−1, 1, 1,−1, 1, 1, 1, 1, 1, 1,−1, 1, 1, 1,−1, 1, 1,−1,−1, 1, 1, 1,

− 1, 1,−1,−1,−1, 1,−1, 1,−1,−1, 1,−1,−1, 1, 1, 1, 1, 1,−1,

− 1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1,−1,−1,−1, 1, 1,−1,−1,−1,

− 1, 1,−1,−1, 1,−1, 1, 1, 1, 1,−1, 1,−1, 1,−1, 1,−1,−1,−1,

− 1,−1, 1,−1, 1, 1,−1, 1,−1, 1, 1, 1,−1,−1, 1,−1,−1,−1, 1,

1, 1,−1,−1,−1,−1,−1,−1,−1} (3.14)

For the transmission of the nth OFDM symbol from the mth antenna in the 40 MHz modes,

the values for the pilot signal are chosen according to Table 3.4. Then, the signal values are also

multiplied by the polarity sequence before the insertion.
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Table 3.4 Pilot Values for 40 MHz NTX-SDM Modes

Subcarrier index, k 1 TX-SDM 2 TX-SDM 3 TX-SDM 4 TX-SDM
-42 +1 am−1, n mod 4 bm−1, n mod 4 cm−1, n mod 4

-14 +1 am−1, (n+1) mod 4 bm−1, (n+1) mod 4 cm−1, (n+1) mod 4

+14 +1 am−1, (n+2) mod 4 bm−1, (n+2) mod 4 cm−1, (n+2) mod 4

+42 -1 am−1, (n+3) mod 4 bm−1, (n+3) mod 4 cm−1, (n+3) mod 4

Copy and Pre-append

N SubcarriersNG Subcarriers

N + NG Subcarriers

Figure 3.8 An illustration of creating cyclic shift in OFDM system.

3.2.9 IFFT

The IFFT operation on the signal has already been described in Section 1.1 of Chapter 1.

3.2.10 Cyclic Shift

In practical situations, the received signal will experience the channel response which in-

cludes signal distortions such as delays in receiving time. The cyclic shift or Guard Interval (GI)

is designed to help minimize the Intersymbol Interference (ISI) which is one of the effects from

time dispersive channels. By copying the information in the last few samples, denoted as NG, in

the OFDM symbol and placing them in front of the entire time domain signal, a guard interval is

created. Fig. 3.8 illustrates the creation of cyclic shift. Since the received symbols are delayed, they

often overlap a part of previous symbol. In the case where the GIs are not inserted, the result of

overlapping usually leads to performance degradation. If the signal overlapping occurs in the guard

interval, the ISI does not degrade the performance because the guard interval only contains the

duplicated data and will be removed in the receiver.

3.2.11 PLCP Header Insertion

The Physical Layer Convergence Procedure (PLCP) header is composed of two fields. One

of the fields is SIGNL-N (SIG-N) and the other one is SERVICE field which has been discussed

in this chapter, Section 3.2.1. The main functionality that SIG-N field provides for MIMO-OFDM

stations is the signal configuration information such as NSS , NTX and R, etc. How SIGNAL-N is

defined depends on which configuration that the station operates in. The SIG-N field is composed
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Table 3.5 SIG-N Field Bit Assignment

Bits Field Subfield Parameter Values
B0 to B5 RSVD Reserved bits 111111, Bits shall be ignored

at the receiver
B6 to B21 CONFIG Configuration
B6 to B8 NSS Number of spatial

streams
000→1, 001→2, 010→3,
011→4

B9 to B11 NTX Number of transmit
antennas

000→1, 001→2, 010→3,
011→4

B12 to B13 BW Bandwidth 00→20 MHz, 01→40 MHz
B14 to B16 R Code rate 000→ 1

2 , 001→ 2
3 , 010→ 3

4 ,
011→ 5

6
B17 to B18 CT ECC type 00→ Convolutional, 01→

LDPC
B19 to B21 CON Constellation type 000→ BPSK, 001→ QPSK,

010→ 16 QAM, 011→ 64
QAM

B22 to B24 LEN Length Number of bytes in the pay-
load

B35 LPI Last PSDU indica-
tor

1 indicates that this is the last
PSDU to be aggregated into
the current PPDU

B36 REXT Standard or ex-
tended commu-
nication range
configuration

0→ Standard configuration,
1→ Extended Communica-
tion Range Configuration

B37 to B43 RSVD Reserved 0000000, Bits shall be ignored
at the receiver

B44 to B47 CRC Cyclic Redundancy
Check

CRC calculated on bits 0-
43 using generator polyno-
mial x4 + x + 1

B48 to B53 TAIL 000000

of 54 bits and the assignment is listed in Table 3.5. In all 20 MHz operations, the SIG-N field should

be modulated into QPSK signals and encoded with a R=1/2 convolutional encoder. One single

OFDM symbol is produced after the SIG-N is padded and transformed by IFFT. For the second

configuration, extended communication range, the SIG-N is duplicated and total of two OFDM

symbols are used. In addition, the latter configuration is only used when systems are operating in

NTX-STBC mode. In all 40 MHz operations, BPSK modulation is used to modulate the SIGN-N

instead of QPSK modulation. In addition, for both transmission modes in mandatory configuration,

the SIG-N field should not be scrambled. Refer to ( [4], pp. 52-54) for the values of cyclic shifts in

each operation mode.
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3.2.12 Preamble Addition

The PLCP preamble is used for synchronization purpose. It is composed of two training

sequences, short and long sequences. Depending on which transmission mode is being used, the

designs of short and long sequences are different. For example, the short and long sequences for 20

MHz for greenfield 2 TX mode are defined as

SS20[−28, 28] =

√
(

7

3

)

{0, 0, 0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0,−1− j,

0, 0, 0, 1 + j, 0, 0, 0, 0, 0, 0, 0,−1− j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0,

1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 0} (3.15)

LS20[−28, 28] ={1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1,

0, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1,

1, 1,−1,−1} (3.16)

The second antenna will transmit a cyclically shifted version of the same sequences with respect

to the first antenna. In this case, the second antenna will transmit the short and long sequences

that are shifted by 400 and 1600 nsec, respectively. In addition, the delays are with respect to the

transmission time of the first antenna. For readers who are interested in other transmission modes,

a description of numerical values of training sequences and time parameters is given in ( [4], pp.

50-54).

3.3 Receiver (NTX-SDM mode)

In many communication systems, the receiver is always designed to recover the user’s data

by reversing what has been done on the data at the transmitter. In this case, the block diagram

of the corresponding receiver is shown in Fig. 3.9. Since the spatial streams in the transmitter are

identical in design, the spatial streams, denoted as RX Spatial Stream 1 and RX Spatial Stream 2,

are the same as well. The block diagram of the spatial stream in the receiver is shown in Fig. 3.10.

Each block in both figures is discussed in detail in the following sections.

3.3.1 Preamble Removal

The first process that the receiver performs is to initialize the synchronization process. The

synchronization is achieved by locking onto the Preamble sequence, more specifically, the short and

long training sequences as defined in Section 3.2.12. Once the synchronization has been established,

the received signal is decomposed into two parts, PLCP header and PSDU. The Preamble is simply

removed from the received signal and discarded since it does not have any desired data. In addition,

the removal of the Preamble does not affect the system performance.
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Figure 3.9 A block diagram of the physical layer of 2 TX receiver in NTX-SDM mode.
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Figure 3.10 A block diagram of the physical layer of the RX spatial stream as shown in Fig. 3.9

3.3.2 PLCP Header Removal

After the removal of Preamble, the receiver then retrieves information such as length of

user’s data and any configuration related parameters from the PLCP header from SIG-N field. The

information contained in the field is crucial because the receiver needs it for configuring itself to

decode the received signal properly. Once the information is retrieved, the PLCP header is also

discarded for the same reason as removing Preamble.

3.3.3 Cyclic Shift Removal

The cyclic shift is also removed from the signal since its purpose is to prevent ISI and does

not contain additional user’s data. The removal of cyclic shift will not affect the system performance.

3.3.4 FFT

The FFT operation on the signal has already been described in Section 1.1 of Chapter 1.

3.3.5 Pilot Removal

Once the signal has been transformed back to frequency domain, Pilots can be used to

estimate the channel impulse response. The channel estimate is then passed onto the equalizer where
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the channel impulse response can be equalized or removed from the signal. Before demodulating the

signal, the Pilots are then removed from the sequence.

3.3.6 Demodulation

Before the demodulation, the signal has to be renormalized by dividing the symbols by the

normalization factor listed in Table 3.2 in this chapter, Section 3.2.7. Depending on what modulation

is utilized in the transmitter, the same scheme is used to map the symbols back to bits based on

Gray-coded signal constellations. For example, if 16 QAM modulation is used in the transmitter,

then each 16 QAM symbol, ranging from 0 to 15, is mapped to its corresponding 4 binary bits. At

the end, the output of the demodulation contains only 0’s and 1’s and its length is four times longer

than the input sequence.

3.3.7 Deinterleaver

The deinterleavers implemented at the receiver will perform the reverse processes and they

will also perform three deinterleaving processes to obtain the non-interleaved version. Let kd and

id be the indices for the first and second intermediate deinterleaving processes. Then, the first

intermediate deinterleaving process maps the kth
n bit to the kth

d location according to (3.17)

kd =

(

kn +
NCBPS

NSS
+ 2sDn

)

mod

(
NCBPS

NSS

)

(3.17)

where s and Dn are defined in this chapter, Section 3.2.6. After the first intermediate deinterleaving

process, the second process maps the kth
d data bit to the ithd place in the sequence. Furthermore, the

numerical value for the ithd location is defined as

id =

⌊
kd

s

⌋

s +

(

kd +

⌊
IDEPTHkd

NCBPS/NSS

⌋)

mod (s) (3.18)

where the values for IDEPTH is listed in Table 3.1 along with the numerical values for NSS and

NSD. Finally, to obtain the non-interleaved version, the third deinterleaving process rearranges the

order of the sequence by mapping the ithd data bit to the jth
dn data location where the value of jdn is

given by

jdn = IDEPTH id

(
NCBPS

NSS
− 1

)⌊
IDEPTH id

NCBPS/NSS

⌋

(3.19)

3.3.8 Viterbi Decoder

At the outputs of the spatial streams, the sequences are multiplexed alternately across the

streams to produce a single sequence which contains encoded information. To decode the encoded

information, a Viterbi decoder with the same generator polynomials, [g0 = 1338, g1 = 1718], is im-

plemented. The Viterbi algorithm essentially performs maximum likelihood decoding while reducing

the computational load by taking advantage of the trellis structure. The trellis diagram is created
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based on the finite state diagram which can be derived from the encoding generator polynomials.

The algorithm calculates the Euclidian distance between the received signal, at time ti, and all the

trellis paths entering each state at time ti. Next, the result is added to the results obtained from

previous states. The decoder then removes those branches that could not possibly be candidates

for the maximum likelihood choice. When two paths enter the same state, the one having the best

metric is chosen. This particular path is called surviving path. This selection of survival paths

is performed for all the states. The decoder functions in this way as time progresses and makes

decisions by eliminating the least likely paths. Finally, by tracing along the surviving path, the

uncoded bits can be determined.

3.3.9 Tail Bits Removal

The purpose of tail bits is to force the encoder to state zero, hence, it does not contain

any data nor serves any further purpose after the encoder is forced to state zero. The tale bits are

removed from the signal before the next stage.

3.3.10 Descrambler

Before descrambling, it is necessary to establish synchronization in the descrambler. This

can be achieved by using the 0th to 6th bits in the Service field. Once the descrambler declares that

it is in sync, it can start the descrambling process. The same polynomial which is defined as (3.4)

is used to descramble the bits.

3.3.11 OFDM Symbol Padding Removal

The padding bits are removed from the signal as it should be since its purpose to ensure

the transmissions from each antenna are multiples of whole OFDM symbols.

3.3.12 Service Field Removal

As mentioned in this chapter, Section 3.2.1, the sole purpose of the Service field is for

synchronization at the descrambler. After removing the Service field, the estimated data is obtained.

3.4 Transmitter (NTX-STBC mode)

The physical layer for the transmitter in the NTX-STBC mode is shown in Fig. 3.11. In

addition, Fig. 3.12 shows the block diagram of TX Spatial Stream in detail.

Since the majority of the blocks in the diagram have been already discussed in Section

3.2 of this chapter. In this section, we will only focus on the differences in the system when the

WLAN system is operating in the NTX-STBC mode. One of the differences in operating in the
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Figure 3.11 A block diagram of the physical layer of 2 TX transmitter in NTX-STBC mode.
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Figure 3.12 A block diagram of the physical layer of the TX spatial stream as shown in Fig. 3.11.

NTX-STBC mode is the number of OFDM symbols which are generated in the multiples of two

OFDM symbols in each time instance. The reason behind generating multiples of two OFDM sym-

bols is through STBC encoding process, two OFDM symbols are transmitted from two different

antennas in each OFDM symbol duration. The STBC encoding process will be discussed in more

detail in Section 3.4.1 in this chapter. In addition, the process of generating two OFDM symbols

should be conformed to descriptions given in subsections in Section 3.2 of this chapter.

3.4.1 Space Time Block Code (STBC) Encoder

As mentioned already, the signal at the input to the STBC encoder contains the multiples

of two OFDM symbols. The STBC encoder encodes the input signal in the following fashion. Let

so(n) and se(n) be the odd and even number of two OFDM symbols. At time 2t, so(n) and se(n)

are transmitted separately from the first and second antennas, respectively. At time 2t + 1, −s∗e(n)

is transmitted from the first antenna while s∗o(n) is transmitted from the second antenna. This

encoding process can be described in a matrix and is given by

G2 =

[

so(n) se(n)

−s∗e(n) s∗o(n)

]

(3.20)

where the subscript 2 represents the total number of transmitted antennas [21]. (·)∗ implies the

complex conjugation operation. Furthermore, the same encoding process will be applied to the next

set of two OFDM symbols. Chapter 7 discusses the STBC code and the BER performance in more

detail.
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Figure 3.14 A block diagram of the physical layer of the RX spatial stream as shown in Fig. 3.13.

3.5 Receiver (NTX-STBC mode)

Fig. 3.13 shows the corresponding receiver which operates in the NTX-STBC mode. In

addition, the RX spatial stream is shown in detail in Fig. 3.14. Since STBC decoder is the new

block in the system, we will focus on describing the new STBC decoder block in the next section.

3.5.1 Space Time Block Code (STBC) Decoder

After two OFDM symbols transmissions, the received signal in frequency domain is
[

Yo[k]

Y ∗
e [k]

]

=

[

H1[k] H2[k]

H∗
2 [k] −H∗

1 [k]

]

︸ ︷︷ ︸

H

[

So[k]

Se[k]

]

+

[

Wo[k]

W ∗
e [k]

]

(3.21)

where H1[k] and H2[k] are the frequency responses for channel one and two, respectively. In addition,

So[k] and Se[k] are FFT of so(n) and se(n), respectively. Wo[k] represents Additive White Gaussian

Noise (AWGN) at time 2t while We[k] implies AWGN at time 2t + 1. In (3.21), H represents

the matrix. To decouple the signal, i.e. obtaining only So[k] or Se[k], the pseudo inverse of H is

multiplied to the received signal. Chapter 7 gives more details about the decoupling process and

the BER performance of the STBC coding.

3.6 Conclusion

In this chapter, we presented a detailed description of two transceivers, one was for oper-

ating in NTX-SDM mode while the other transceiver was operating in NTX-STBC mode. In both

cases, the transceivers were implemented based on the WWiSE proposal to IEEE 802.11n standard.

In addition, we also discussed the functionality for each block in both transceivers.
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Effects of Nonlinear High Power

Amplifier (HPA) and Jammer on

the Performance of OFDM

4.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) has several technical advantages

such as the ability of delivering high data rate, high bandwidth efficiency and outstanding per-

formance in fading channels over its technical competitors. In addition, OFDM is currently be-

ing considered for the fourth generation (4G) mobile and Wireless Local Area Network (WLAN)

communication system. Different from Single Input Single Output (SISO) antenna configuration,

Multiple Input Multiple Output (MIMO) antenna implementations can be employed to further in-

crease the data rate of the system by utilizing more than one antenna for data transmissions and

receptions. The IEEE 802.11n incorporates both OFDM and MIMO technologies to achieve better

performance [4].

Even though OFDM has some advantages over its competitors, by itself it presents tech-

nical challenges such as high sensitivity to frequency offsets, phase noise [22, 23] and high peak to

average power ratio (PAPR) to engineers. The property of orthogonality between subcarriers is the

foundation of OFDM systems and because of this property, the processes of synchronization and

data extraction are straightforward. However, if the orthogonality between subcarriers is lost due to

the presence of either or both frequency offset and phase noise in the communication chain, inter-

carrier interference (ICI) will occur and the system performance degrades [5]. Another disadvantage

that is associated with OFDM systems is its high PAPR which is due to the nature of Fast Fourier

Transform (FFT) and Inverse Fast Fourier Transform (IFFT) operations. When L number of sig-

41
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nals are being added coherently, IFFT/FFT produces a peak power that is L times larger than the

average power. Practical amplifiers have difficulty reproducing such high PAPR signals and often

introduce clipping and spectral regrowth [24, 25].

Although some papers dealt with the performance of OFDM systems that were impaired

by nonlinear high power amplifiers (HPAs) in the additive white Gaussian noise (AWGN) channel,

very few of them adequately addressed the effects of nonlinearity on the performance of equalized

OFDM systems in the Rayleigh flat fading channel. Even fewer discussed the problem of narrowband

interference or jamming with the combination of nonlinear HPAs in OFDM systems through the

Rayleigh flat fading channel. In [15], the authors presented the performance analysis of an M-ary

Quadrature Amplitude Modulation (M-QAM) OFDM system with a nonlinear HPA and phase noise

in AWGN channel only. Chang, et al. [26] showed the performance of an equalized OFDM system

in Rayleigh flat fading channel for various modulations such as Binary Phase Shift Keying (BPSK),

Quadrature Phase Shift Keying (QPSK), Differential Phase Shift Keying (DPSK) and QAM; how-

ever, the effects of nonlinearity from a HPA and narrowband interference on the system performance

were not considered in the paper.

In [27], the performance of an OFDM system with carrier interferometry spreading codes

and narrowband interference in the Rayleigh fading channel was presented without considering the

nonlinear distortion from HPAs. In addition, the authors assumed that the source of narrowband

interference or jammer was very close to the receiver; hence, the narrowband interference did not ex-

perience any channel effects. This particular approach does not fit many situations where in general,

the jamming sources are usually located in remote areas such as satellites in orbit or battleships

in sea. Therefore, it is reasonable and practical to assume that the jammer experiences another

separate channel which is different from the channel for the transmitted signal. In this chapter,

we analyze the performance of an equalized M-QAM OFDM system that is subject to a nonlinear

HPA, channel estimation error, and jamming in the Rayleigh fading channel. On the contrary to the

jamming model presented in [27], the jammer by itself will experience a separate channel impulse

response. This analytical model is then extended in compliance with the IEEE 802.11n standard for

the purpose of simulation. The simulation results of the extended model are presented and compared

with theoretical results.

The chapter is organized as follows. In Section 4.2, the system model under study is

described in detail. Section 4.3 contains the performance analysis of the analytical model. Section

4.4 describes the simulation setup for the extended model. Section 4.5 provides simulation results

of the model described in Section 4.4. Finally, Section 4.6 summarizes the chapter.
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Figure 4.1 The block diagram of an equalized M-ary QAM OFDM system impaired by a nonlinear
HPA, channel estimation error, and jamming in the Rayleigh fading channel.

4.2 System Description

The analytical system diagram is shown in Fig. 4.1 and is discussed in the following

subsections.

4.2.1 Transmitter

The transmitter consists of a M-QAM modulator, an IFFT, and a nonlinear HPA. In

addition, each block is discussed in detail in following subsections. Assuming binary data bits for

the input to the M-QAM modulator are equiprobable and independent, they are grouped into blocks

of log2M and mapped into M-QAM symbols, X [k], according to alphabet, A = {(2m− 1 −
√

M) +

j(2n− 1−
√

M)} where {m, n = 1, 2, ...
√

M} and M is the signal constellation size. At appropriate

sampling time, the signal at the output of the IFFT, x(n), is

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (4.1)

where N is the number of subcarriers.

4.2.2 HPA Model

The nonlinear HPA model in the transmitter represents the nonlinear distortion imposed

on the signal. In this chapter, the nonlinear HPA model follows the Saleh model which has been
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described in Chapter 2, Section 2.3.

4.2.3 Jammer Model, Channel Model and AWGN

The jammer is modeled as a complex Gaussian random process which has zero mean and

2σ2
Jm

variance. The jamming signal in time domain, denoted as jm(n), is expressed as

jm(n) =
1

N

N−1
∑

k=0

Jm[k]ej 2πnk
N (4.2)

where Jm[k] represents the jamming signal for the kth subcarrier in the frequency domain.

Let h1(n) be the impulse response of the Rayleigh fading channels between the trans-

mitter and the receiver. The in-phase and quadrature components of h1(n) are Gaussian random

variables with zero mean and σ2
H1

variance. In addition, the in-phase and quadrature components

of h1(n) are assumed to be statistically independent of each other. Denote h2(n) as the Rayleigh

fading channel between the jammer and the receiver, h2(n) is then modeled as a complex Gaussian

random process with zero mean and 2σ2
H2

variance. In addition, it is assumed that the in-phase

and quadrature components of h2(n) are statistically independent of each other. The thermal noise

which is denoted as w(n) is an independent additive white Gaussian noise process which has zero

mean and 2σ2
w variance.

4.2.4 Receiver

Assuming perfect synchronization and there is no time delay introduced by the path to the

transmitted signal, the received signal, denoted as y(n), with the jammer interference is given by

y(n) = h1(n)s(n) + h2(n)jm(n) + w(n) (4.3)

Fig. 4.2 shows the effect of a single tone jamming on the OFDM signals. As one can observe, the

jammer is only present in one particular subcarrier and it has no effects on the other subcarriers since

its magnitude at the other subcarriers are zero. This implies, unless the jamming signal is present

in all subcarriers, the received signal in frequency domain can be separated into two cases. One case

represents the scenario where the jamming signal is present in the subcarriers while the other case

denotes the situation where the data subcarriers in the received signal are free from jamming. Let

Y [k] be the received signal in frequency domain, then Y [k] is expressed as

Y [k] =
N−1
∑

n=0

y(n)e−j 2πkn
N

=







H1[k]S[k] + H2[k]Jm[k] + W [k] Jamming

H1[k]S[k] + W [k] Otherwise
(4.4)
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Figure 4.2 An illustration of the effect of jammer in the OFDM signals

where H1[k], S[k], H2[k], Jm[k] and W [k] are FFT of h1(n), s(n), h2(n), jm(n), and w(n), respec-

tively. One can observe from (4.4) that the received signal for the case where the subcarriers which

are not interfered by the jammer can be obtained from the other case by setting Jm[k] to zero.

4.2.5 Equalizer Model

One of the most attractive features of OFDM systems is the simplicity in the equalization

process which is adequately done by using a one-tap equalizer in the frequency domain. Among

many available algorithms, we choose the Zero Forcing algorithm because of its simplicity in imple-

mentation.

Before the equalization process, estimating the channel response is necessary and can be

obtained with the aid of pilots. Let X [P1], X [P2], ..., X [Pp] be the pilot symbols modulated onto the

subcarriers, P1, P2, ..., Pp, where p is the total number of pilots. Using Least Squares, the estimated
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channel response at the pilot subcarriers is found to be

Ĥ [Pi] =
Y [Pi]

X [Pi]
i = 1, 2, ..., p (4.5)

where Y [Pi] is the received signal at the pilot subcarrier, Pi. Once the estimated channel responses

at the pilot subcarriers are found, the estimated channel response at the data subcarriers can be

obtained by interpolating between two consecutive pilots.

After obtaining the estimate, the equalized signal, denoted as Z[k], is given by

Z[k] =
Y [k]

Ĥ1[k]

=









H1[k]S[k]+H2[k]Jm[k]+W [k]

Ĥ1[k]
Jamming

H1[k]S[k]+W [k]

Ĥ1[k]
Otherwise

(4.6)

where Ĥ1[k] is the estimate of the channel, H1[k] and is defined as

Ĥ1[k] = H1[k] + ε[k] (4.7)

where ε[k] represents the error in estimating channel, H1[k], and is modeled as a complex Gaussian

random process with zero mean and 2σ2
ε variance.

4.3 Performance Analysis

In this section, we will present the derivation of bit error rate (BER) which is used later

as a measure of system performance. The performance analysis of the system which is shown in

Fig. 4.1, starts with the characterization of x(n). Under the assumption that N is large and by

the Central Limit Theorem, x(n) is said to be Gaussian distributed with zero mean [19]. With that

assumption, Benelli, et al. had shown that s(n) can be written as a product of a complex gain, αG,

and the input signal, x(n), added with noise distortion dG(n). s(n) and its FFT are expressed as

s(n) = αGx(n) + dG(n)
FFT←→ S[k] = αGX [k] + DG[k] (4.8)

where DG[k] is shown to be a complex Gaussian random variable with zero mean and 2σ2
D variance

[20]. The numerical value of σ2
D can be obtained by following steps outlined in Section 2.4 of

Chapter 2. For two different subcarriers, k1 and k2, DG[k1] and DG[k2] are mutually independent.

Furthermore, the in-phase and quadrature phase components of DG[k] are shown to be mutually

independent and identically distributed (i.i.d) [15]. The multiplicative coefficient αG in (4.8) is given

by

αG =
E{s(n)∗x(n)}

2σ2
x(n)

= αGI + jαGQ (4.9)
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where (·)∗ denotes the complex conjugate operation and 2σ2
x(n) represents the power of x(n) [20].

E{·} is the expected value. The subscripts, I and Q, implies the in-phase and quadrature compo-

nents, respectively.

For the simplicity of mathematical notations, we will drop the subcarrier indices in the

rest of the derivation. As it has been shown in (4.4), the expression of the received signal in fre-

quency domain depends on whether the subcarrier is affected by the jammer and this difference in

the expression of the received signal will yield a different BER expression. Since the theoretical

result for the case where the jammer interference is absent in the subcarrier can be derived from the

case where the subcarrier suffers from jammer interference by setting appropriate terms to zero, we

will continue the derivation of BER expression for the case where the jammer interference is present

in the subcarriers.

Assuming perfect synchronization and after the removal of the preamble sequences and

cyclic prefix, the equalized signal for the case where the jammer is present in the subcarrier, denoted

as ZJ , is given by

ZJ =
H1(αGX + DG) + H2Jm + W

Ĥ1

=
α1

α̂1
ejθ (αGX + DG) +

α2

α̂1
ejφJm +

We−j∠Ĥ1

α̂1

=
α1

α̂1
ejθαGX +

α1

α̂1
ejθDG

︸ ︷︷ ︸

ζ

+
α2

α̂1
ejφJm

︸ ︷︷ ︸

ξ

+
W

α̂1
e−j∠Ĥ1

︸ ︷︷ ︸

υ

=
α1

α̂1
ejθαGX + ζ + ξ + υ (4.10)

where

α1 = |H1|, α̂1 = |Ĥ1|, α2 = |H2|

θ = ∠H1 − ∠Ĥ1, φ = ∠H2 − ∠Ĥ1 (4.11)

α1 and α̂1 are Rayleigh distributed and the phase error is uniformly distributed in [−π, π]. The

joint probability density function (PDF) of α1, α̂1, and θ is given by [28] as

p(α1, α̂1, θ) =
α1α̂1

2π|∆| 12
exp

{

−
[σ2

Ĥ1
α2

1 + σ2
H1

α̂2
1 − 2Rcα1α̂1 cos θ − 2Rcsα1α̂1 sin θ]

2|∆| 12

}

(4.12)

where

σ2
H1

= E{H2
1I
} = E{H2

1Q
}, Rc = E{H1I Ĥ1I} = E{H1QĤ1Q}

σ2
Ĥ1

= E{Ĥ2
1I
} = E{Ĥ2

1Q
}, Rcs = E{H1I Ĥ1Q} = −E{H1QĤ1I}

|∆| =
[

σ2
H1

σ2
Ĥ1

− R2
c − R2

cs

]2
(4.13)
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Since H1 and H2 are independent of each other, the PDF of α2 is

p(α2) =
α2

σ2
H2

e

−α2
2

2σ2
H2 (4.14)

Since ζ, ξ and υ in (4.10) are noise terms with zero mean, their variances are required in

deriving the BER expression. Let σ2
ζ be variance for the in-phase and quadrature components of ζ,

then σ2
ζ is found as

σ2
ζ = E{ζζ∗} = E

{(
α1

α̂1
ejθDG

)(
α∗

1

α̂∗
1

e−jθD∗
G

)}

=
α2

1

α̂2
1

σ2
D (4.15)

Denote σ2
ξ as the variance for the in-phase and quadrature components of ξ, then σ2

ξ is given by

σ2
ξ = E{ξξ∗} = E

{(
α2

α̂1
ejφJm

)(
α∗

2

α̂∗
1

e−jφJ∗
m

)}

=
α2

1

α̂2
1

σ2
Jm

(4.16)

Finally, let σ2
υ be the variance of in-phase or quadrature component of υ, then σ2

υ is expressed as

σ2
υ = E{υυ∗} = E

{(
W

α̂1
e−j∠Ĥ1

)(
W ∗

α̂∗
1

ej∠Ĥ1

)}

=
σ2

w

α̂2
1

(4.17)

Further expanding ZJ into in-phase and quadrature components, ZJ becomes

ZJ =
α1

α̂1
(cos θ + j sin θ)(αGI + jαGQ)(XI + jXQ) + ζ + ξ + υ

=

{
α1

α̂1
[cos θαGI XI − cos θαGQXQ − sin θαGI XQ − sin θαGQXI ] + ζI + ξI + υI

}

︸ ︷︷ ︸

ZJ
I

+j

{
α1

α̂1
[cos θαGI XQ + cos θαGQXI + sin θαGI XI − sin θαGQXQ] + ζQ + ξQ + υQ

}

︸ ︷︷ ︸

ZJ
Q

=ZJ
I + jZJ

Q (4.18)

To continue the derivation, we assume that 16-QAM modulation is utilized in the system.

Nevertheless, the BER expression can be derived in the similar fashion if other rectangular QAM

constellations were chosen to modulate signals. The conditional BER of 16-QAM conditioned on

α1, α2, α̂1, and θ for the case that the jammer exists in the subcarriers is defined as

P J
BER|α1,α2,α̂1,θ =

1

2

(

P J
MSB + P J

LSB

)

(4.19)

where P J
MSB and P J

LSB are the conditional BER of most significant bits (MSB) and least significant

bits (LSB) of 16-QAM symbols conditioned on α1, α2, α̂1, and θ. Based on the decision boundaries

given in [28], the conditional BER of MSB for the case where the jammer is present is given by

P J
MSB =P (ZJ

I < 0|α1, α̂1, θ, α2)

=
1

8

8∑

i=1

Q

(√

(Υi)
2

σ2
ζ + σ2

ξ + σ2
υ

)

(4.20)
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Table 4.1 Numerical Values of Variables in Conditional BER for MSB

Index i XIi XQi Index i XIi XQi

1 d 3d 5 3d 3d
2 d d 6 3d d
3 d −d 7 3d −d
4 d −3d 8 3d −3d

Table 4.2 Numerical Values and Signs of Variables in Conditional BER for LSB

Index i λi κi ζi XIi XQi Index i λi κi ζi XIi XQi

1 + + + d 3d 9 + - - −3d 3d
2 + + - d 3d 10 - + - −3d 3d
3 + + + d d 11 + - - −3d d
4 + + - d d 12 - + - −3d d
5 + + + d −d 13 + - - −3d −d
6 + + - d −d 14 - + - −3d −d
7 + + + d −3d 15 + - - −3d −3d
8 + + - d −3d 16 - + - −3d −3d

where Υi = α1
α̂1

[cos θαGI XIi−cos θαGQXQi−sin θαGI XQi−sin θαGQXIi ] and Q(ν) =
∫∞

ν
1√
2π

e
−t2

2 dt, ν ≥
0. In addition, σ2

ζ , σ2
ξ and σ2

υ are defined as (4.15), (4.16) and (4.17), respectively. The numerical

values for XIi and XQi in (4.20) are listed in Table 4.1. The conditional BER of LSB can be found

in the similar way. Based on the decision boundaries, it is given by

P J
LSB ={P (ZJ

I < −2d|α1, α̂1, θ, α2) + P (ZJ
I > 2d|α1, α̂1, θ, α2)}|LSB=0

+
{

P (−2d < ZJ
I < 2d|α1, α̂1, θ, α2)

}

|
LSB=1 (4.21)

where |LSB=0 and |LSB=1 represent the boundaries for LSB is zero and one, respectively. The

conditional BER of LSB is then given by

P J
LSB =

1

8

16
∑

i=1

λiQ

(√

(κi2d + ζiΥi)
2

σ2
ζ + σ2

ξ + σ2
υ

)

(4.22)

where λi, κi, and ζi are signs of the value for ith quantity and are listed along with values for XIi

and XQi in Table 4.2. Finally, in both Tables 4.1 and 4.2, d2 = 2Eb

5 where Eb is the energy per bit.

As mentioned already, we can obtain the theoretical BER expression for the case where the

jammer does not affect the subcarriers from the case where the subcarriers are under the influence

of jammer by setting σ2
Jm

to zero. Denote PF
BER|α1,α̂1,θ as the conditional BER for the case where

the subcarriers are free from jamming, then PF
BER|α1,α̂1,θ is expressed as

PF
BER|α1,α̂1,θ =

1

2

(

PF
MSB + PF

LSB

)

(4.23)
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where PF
MSB and PF

LSB are the conditional BER for MSB and LSB for 16-QAM symbols and are

given by

PF
MSB =

1

8

8
∑

i=1

Q

(√

(Υi)
2

σ2
ζ + σ2

υ

)

PF
LSB =

1

8

16
∑

i=1

λiQ

(√

(κi2d + ζiΥi)
2

σ2
ζ + σ2

υ

)

(4.24)

In addition, Υi = α1
α̂1

[cos θαGI XIi − cos θαGQXQi − sin θαGI XQi − sin θαGQXIi ] and σ2
ζ and σ2

υ are

defined as (4.15) and (4.17), respectively. The signs and numerical values for XIi and XQi defined

in both PF
MSB and PF

LSB are also listed in Table 4.1 and 4.2.

The overall conditional BER of 16-QAM depends on how many subcarriers are affected

by the jammer and how many of them are not. Let NJ be the number of subcarriers that are

interfered by the jammer and NF = N − NJ be the number of subcarriers that are free from the

jammer interference. The overall conditional BER is given by

PBER|α1,α2,α̂1,θ =
NJ

N

{

P J
BER|α1,α2,α̂1,θ

}

+
NF

N

{

PF
BER|α1,α̂1,θ

}

(4.25)

Finally, the unconditional BER for 16-QAM is found by averaging (4.25) over the two PDFs (4.12)

and (4.14), namely

PBER =
NJ

N

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ π

−π
P J

BER|α1,α2,α̂1,θp(α2)p(α1, α̂1, θ)dα1dα̂1dα2dθ

+
NF

N

∫ ∞

0

∫ ∞

0

∫ π

−π
PF

BER|α1,α̂1,θp(α1, α̂1, θ)dα1dα̂1dθ (4.26)

where the first term shows the BER contribution from all the subcarriers that are interfered by

the jammer and the second term represents the BER contribution from subcarriers which are free

from the jamming effect. For the case where the transmitted signal only suffers from nonlinearity

introduced by the HPA and channel estimation error, i.e. NJ = 0 and NF = N , only the second

term in (4.26) contributes to unconditional BER.

For the perfect channel estimation, i.e. H1 = Ĥ1, (4.26) becomes only a function of

α1 and α2 and (4.26) is reduced to

PBER =

∫ ∞

0

∫ ∞

0

NJ

N
P J

BER|α1,α2
p(α1)p(α2)dα1dα2 +

∫ ∞

0

NF

N
PF

BER|α1
p(α1)dα1 (4.27)

where p(α1) is obtained by substituting α2 and σ2
H2

in (4.14) for α1 and σ2
H1

. If we further assume

that the jammer does not exist in the channel, the unconditional BER for 16-QAM becomes

PBER =

∫ ∞

0
PF

BER|α1
p(α1)dα1 (4.28)

Finally, in the case where the HPA is ideal, i.e. αG = 1 and σ2
D = 0, and perfect channel estimation

is achieved, (4.28) is further reduced to a known result ( [26], Eq:69).
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Table 4.3 Summary of Simulation Cases

Case Jammer Nonlinear Number of
2σ2

εNumber Power HPA Subcarriers
1 0.1 Constant Varying 0
2 Varying Constant 1 0
3 No Varying No 0
4 0.1 Constant 1 Varying
5 0.1 Constant 3 Varying
6 No Constant No Varying

4.4 Simulation Model and Parameters

The simulation model is an extension of the analytical model described in Section 4.2 in

compliance with the IEEE 802.11n standard ( [4], Clause 10.4.4.2 rate code 73); except the con-

volutional encoder, interleaver/deinterleaver and Viterbi decoder are omitted. After pre-appending

16-bit Service Field and padding enough bits to ensure the transmission from each antenna are

multiples of whole OFDM symbols, the resulting signal is scrambled with a scrambler that is based

on the IEEE 802.11a standard and subsequently demultiplexed alternately across the transmitter

spatial streams. In each spatial stream, the data is modulated with the 16-QAM modulation and

processed with the 64-point IFFT, of which subcarriers, ± 21, are designated for pilots. The OFDM

symbol is then cyclically extended and pre-appended with the preamble sequences as specified in [4]

before transmission. To recover the data, the corresponding receiver reverses the encoding procedure

in the transmitter.

The channel, jammer and the equalizer are modeled as described in Section 4.2.3 and

Section 4.2.5, respectively. Without loss of generality, the statistical mean and variance of fading

channels, H1 and H2, are set to 0 and 1, respectively. The simulations are performed based on the

extended model for several cases which are summarized in Table 4.3. In the first case, the jammer

power in the jammed subcarrier is set to a constant value, 0.1, while the number of subcarriers

affected by the jammer varies. In case 2, the jamming power varies while we assume that there

is only one subcarrier that is jammed. In both cases, the αAM and βAM are set to 1 and 0.25,

and the αPM and βPM are 1.2π and 0.01, respectively. For case 3, the narrowband interference is

removed and leaving only the influence of the nonlinear HPA, aside from AWGN, in the system.

The nonlinear HPA is varied based on the parameters in the HPA model, described in Section 4.2.2,

and the numerical values for those parameters are listed in Table 4.4. Note that in Case 3.1 where

αAM is set to unity and the other parameters for the HPA model are set to zero, the nonlinear HPA

becomes an ideal amplifier which has an unity gain with no phase distortion.

In the first three cases, the channel estimation is assumed to be perfect. For cases 4

and 5, the jammer power in the subcarriers is set to 0.1 and the number of affected subcarriers are
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Table 4.4 Simulation Parameters for Nonlinear HPA Model

Case Number αAM βAM αPM βPM

3.1 1 0 0 0
3.2 1 0.25 π 0.25
3.3 1 0.25 1.2π 0.01
3.4 1 0.25 1.5π 0.01

set to 1 and 3, respectively. On the contrary to cases 4 and 5, case 6 presents the situation where

the jammer is not present in the system. In addition, the parameters used in the nonlinear HPA

for case 6 is the same as the one used in cases 1 and 2. In addition, the simulations are performed

based on the settings mentioned for various values of 2σ2
ε .

4.5 Simulation Results

In case 1 where we assume perfect channel estimation, the number of jammed subcarriers

varies from 0, 1, 3, and 5, the simulation results are plotted against the theoretical results obtained

from (4.27) and are shown in Fig. 4.3. Then, instead of varying the number of subcarriers that are

affected by jammer, the jammer power for the subcarrier is increased from 0, 0.1, 0.3 to 0.5 in case 2.

The results of simulation are shown along with the theoretical results in Fig. 4.4. For case 3 where

besides the AWGN, the only noisy interference is the nonlinear distortion from the HPA, the sim-

ulation results are compared with theoretical values acquired by using (4.28) and shown in Fig. 4.5.

In all three cases, the sign of error floor in the performance occurs at around 30 dB.

In addition, the sign of error floor can be explained by examining signal to noise ratio (SNR) either

for MSB or LSB probabilities. At high SNR, the effect of σ2
w is negligible compared to σ2

D and σ2
Jm

.

As a consequence, the SNR for MSB and LSB probabilities in the presence of jammer, denoted as

γJ
MSB and γJ

LSB, are

γJ
MSB -

[αGI XIi − αGQXQi ]
2

σ2
D + α2

2

α2
1
σ2

Jm

γJ
LSB -

(

κi2d + ζi[αGI XIi − αGQXQi ]
)2

σ2
D + α2

2

α2
1
σ2

Jm

(4.29)

where γJ
MSB and γJ

LSB are only a function of XIi , XQi , σ2
D, and σ2

Jm
, of which σ2

D is a constant for a

given set of parameters used in the HPA model and σ2
Jm

only depends on the values of jammer power

for each subcarrier. In addition, XIi and XQi are constants which are multiplied by Eb. Therefore,

at high SNR, the system still sees the same amount of degradation and subsequently produces an

error floor. The same conclusion can be drawn for the case where the subcarrier is free from jammer.

When the channel response is not completely known, the phase error between the true
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Figure 4.3 BER performance of the equalized 16-QAM OFDM system impaired by a nonlinear HPA
and a jammer in the Rayleigh flat fading channel for various number of jammed subcarriers.
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Figure 4.4 BER performance of the equalized 16-QAM OFDM system impaired by a nonlinear HPA
and a jammer in the Rayleigh flat fading channel for various values of jamming power. The jammer
is assumed to be present only in one of data subcarriers.

channel response and estimate introduces more degradation to the system. Fig. 4.6, 4.7 and 4.8

show the effect of channel estimation error on the performance of the system modeled based on the

parameters of cases 4, 5, and 6.

4.6 Conclusion

In this chapter, we analyzed the performance of an equalized 16-QAM OFDM system which

was impaired by a nonlinear HPA, channel estimation error and jammer through a Rayleigh fading

channel. In addition, we proposed a more realistic jammer model by introducing a separate Rayleigh

channel for the jammer. Due to the reason that not all the subcarriers are affected by the jammer,

we derived the BER expression for the case where the subcarriers were under the influence of the

jammer. Then, we showed that the BER for the case where the subcarriers were free from jammer

can be obtained from the case where the jammer was interfering the subcarriers. The final BER

expression for the system that was impaired by nonlinear HPA, channel estimation error and jammer
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Figure 4.5 BER performance of the equalized 16-QAM OFDM system in the Rayleigh flat fading
channel for various levels of degradation introduced by nonlinear HPAs.

was also presented for various sets of degradation. Based on the WLAN system in compliance with

IEEE 802.11n standard, we presented simulation results along with theoretical values for various

sets of parameters used in the system with and without channel estimation error.

The text in Chapter 4 is based on the material as it appears in:

David W. Chi and Pankaj Das, “Effect of Jammer on the Performance of OFDM In the Presence

of Nonlinearity In Rayleigh Fading channel with Application to 802.11n WLAN”, IEEE Military

Communications Conference, October 2006, pp. 1-7.

The dissertation author was the primary researcher and author, and the co-author listed in the

publication directed and supervised the research which forms the basis for this chapter.
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5

Effects of Nonlinear Amplifier and

Partial Band Jammer with

Normalized Frequency Offset on

the Performance of OFDM

5.1 Introduction

Over the years, Orthogonal Frequency Division Multiplexing (OFDM) has gained its pop-

ularity mainly due to its ability to deliver high data rate, high bandwidth efficiency and robustness

in performance in fading channels. It has been chosen as a part of IEEE 802.11a and 802.11g stan-

dards [2, 3] and is currently being considered for the fourth generation (4G) mobile and Wireless

Local Area Network (WLAN) communication systems. Different from the traditional Single Input

Single Output (SISO) antenna configuration, Multiple Input Multiple Output (MIMO) antenna im-

plementation provides an additional tool to further enhance the system’s performance by utilizing

more than one antenna for signal transmission and reception. The IEEE 802.11n incorporates both

OFDM and MIMO technologies to improve the system’s performance [4].

Although, OFDM can offer several technical advantages such as superior performance in

fading channels and high data rate capability, by itself, it also has some design challenges such as

sensitivity to phase noise or frequency offset [22,23] and high peak to average power ratio (PAPR).

The phenomenon of frequency offset is, in general, caused by the frequency deviation between the

transmitter and receiver, or by Doppler shift. Unlike the frequency offset, the phase noise is usu-

ally a random process because the phase noise is often caused by the fluctuation of the receiver
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and transmitter oscillators. When either the phase noise or the frequency offset is present in the

system, the orthogonality between subcarriers is no longer valid. Subsequently, the inter-carrier

interference (ICI) will occur and the system performance degrades [5]. Another disadvantage as-

sociated with OFDM is high PAPR which is due to the nature of Fast Fourier Transform (FFT)

and Inverse Fast Fourier Transform (IFFT) operations. When L number of signals that have the

same amplitude are added coherently in the IFFT and FFT processes, those processes produce a

peak power that is L times larger than the average power as demonstrated in Fig. 2.1 in Section

2.1 of Chapter 2. The high magnitude in the signal forces practical amplifiers to operate at their

nonlinear regions and subsequently, introduces clipping and spectral regrowth to the systems [24,25].

While there are some papers dealing with the effect of nonlinear distortion due to the high

power amplifier (HPA) in OFDM systems in the additive white Gaussian noise (AWGN) channel,

few of them adequately address the performance of an OFDM system in the presence of a nonlinear

HPA through a Rayleigh fading channel. Even fewer analyze the combined effects of partial band

jammer and nonlinear HPAs in OFDM systems through the Rayleigh fading channels. Costa, et

al. [15] presented the performance analysis of an M-ary quadrature amplitude modulation (M-QAM)

OFDM system with impairments from a nonlinear HPA and phase noise in AWGN channel only.

In [26], the authors analyzed an equalized OFDM system in a Rayleigh fading channel for various

modulations such as Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK),

Differential Phase Shift Keying (DPSK) and QAM; however, the nonlinear distortion caused by a

HPA and partial band jammer were not included in the performance analysis. In [27], an OFDM

system with carrier interferometry spreading codes and narrowband interference in a Rayleigh fad-

ing channel was analyzed without considering the effect of nonlinear distortion. In addition, in the

paper, the authors assumed that the source of jamming signal was very close to the receiver; hence,

the jamming signal did not experience any channel effects. This particular assumption does not

provide useful insights to the performance of an OFDM system in the presence of jammer because

in many cases, the jamming sources are usually located in remote areas such as satellites in orbit or

battleships at sea. Therefore, it is more reasonable and practical to assume that the jamming signal

experiences another separate channel.

In Chapter 4, we analyzed the performance of an equalized M-QAM OFDM system that

was subject to a nonlinear HPA, channel estimation error, and jamming in a Rayleigh flat fading

channel. In contrast to the jammer model presented in [27] and to simulate a more realistic situa-

tion, we assumed that the jammer by itself experienced a separate channel response. In this chapter,

we extend the jamming model that was presented in Chapter 4 to include the situations where the

jamming signal is a collection of single tone signals which have an offset in frequency with respect

to the desired signal. This assumption is generally valid because the jammer usually does not have

knowledge of which frequency the desired signal is being transmitted. As a result, the jammer often
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Figure 5.1 The block diagram of an equalized M-ary QAM (M-QAM) OFDM system which is
impaired by a nonlinear HPA, channel estimation error and jamming in the Rayleigh fading channels.

transmits at a frequency that is slightly offset from the frequency that the receiver has locked onto

and introduces varying amounts of interference to the system.

The chapter is organized as follows. In Section 5.2, the analytical model is presented

and each component within is discussed in detail. Section 5.3 contains the performance analysis of

the analytical model. Section 5.4 discusses the simulation setup for the extended model. Section 5.5

provides simulation results of the model described in Section 5.4. Finally, Section 5.6 summarizes

the chapter.

5.2 System Description

The block diagram of the analytical model which consists of a transmitter, a wireless

channel and a receiver is shown in Fig. 5.1. In addition, each component in the model is discussed

in the following subsections.

5.2.1 Transmitter

The transmitter which is shown in Fig. 5.1 consists of a M-QAM modulator, IFFT and

a nonlinear HPA. The input to the M-QAM modulator is assumed to be binary data bits which

are equiprobable and statistically independent from each other. The stream of binary data bits are
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grouped into blocks of size log2M . Each block is then mapped into M-QAM symbols, denoted as

X [k], according to the alphabet, A = {(2m−1−
√

M)+j(2n−1−
√

M)} where {m, n = 1, 2, ...
√

M}
and M is the size of constellation. The output of the modulator is subsequently fed into and processed

by IFFT. At appropriate sampling time, the signal at the output of the IFFT, denoted as x(n), is

x(n) =
1

N

N−1∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (5.1)

where N is the number of subcarriers.

5.2.2 HPA Model

The nonlinear HPA model in the transmitter represents the nonlinear distortion imposed

on the signal. In this chapter, the nonlinear HPA at the transmitter is modeled based on the Saleh

model which has been described in Chapter 2, Section 2.3.

5.2.3 Jammer Model, Channel Model and AWGN

jm(n) represents the jamming signal in time domain and is expressed as

jm(n) =
1

N

N−1
∑

k=0

Jm[k]ej 2πn(k+∆k)
N (5.2)

where Jm[k] represents the jamming signal for the kth subcarrier and has power equal to |Jm[k]|2
2 .

Furthermore, ∆k represents the constant offset in frequency between the transmitted signal and the

jamming signal.

The channel impulse response for the desired signal, s(n), is a Rayleigh flat fading channel

which is denoted as h1(n). The in-phase and quadrature components of h1(n) are modeled as zero

mean and σ2
H1

variance Gaussian random variables. In addition, in-phase and quadrature compo-

nents are assumed to be statistically independent of each other. Let h2(n) be the channel impulse

response between the jammer and the receiver and is assumed to be another Rayleigh fading channel

with zero mean and 2σ2
H2

variance. Furthermore, the in-phase and quadrature components of the

channel impulse response, h2(n), are assumed to be independent of each other. The thermal noise,

denoted as w(n), is modeled as an independent additive white Gaussian noise (AWGN) process

which has zero mean and 2σ2
w variance.

5.2.4 Receiver

The receiver is composed of a FFT, an equalizer and a M-QAM demodulator. Denote y(n)

as the received signal in time domain and assuming perfect synchronization, y(n) is given by

y(n) = h1(n)s(n) + h2(n)jm(n) + w(n) (5.3)
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After the FFT block, the received signal in frequency domain, denoted as Y [k] in Fig. 5.1, is given

by

Y [k] =
N−1
∑

n=0

y(n)e−j 2πkn
N

=H1[k]S[k] + H2[k]Jm[k]
1

N

N−1
∑

n=0

ej 2π∆kn
N

+
N−1
∑

n=0

1

N

N−1
∑

l=0
l "=k

Jm[l]H2[l]e
j 2π(l+∆k−k)n

N + W [k] (5.4)

where H1[k], S[k], H2[k] and W [k] are the FFT of h1(n), s(n), h2(n) and w(n), respectively. In the

case where there is only a single tone jammer present in the channel, Y [k] can be simplified further

and becomes

Y [i] =













H1[k]S[k] + H2[k]Jm[k] 1
N

N−1
∑

n=0

ej 2π∆kn
N + W [k] if i=k

H1[l]S[l] +
N−1
∑

n=0

1

N
Jm[k]H2[k]ej 2π(k+∆k−l)n

N + W [l] if i.=k

(5.5)

where i represents the subcarrier index.

5.2.5 Equalizer Model

One of the most attractive features of OFDM systems is the simplicity in the equalization

process which is adequately done by using a one-tap equalizer in the frequency domain. Among

many available algorithms, we choose the Zero Forcing algorithm because of its simplicity in imple-

mentation.

Before the equalizing the received signal, estimating the channel response is necessary.

The estimate can be obtained with the aid of pilots. Let X [P1], X [P2], ..., X [Pp] be the pilot symbols

modulated onto the subcarriers, P1, P2, ..., Pp, where p is the total number of pilots. Using Least

Squares, the estimated channel response at the pilot subcarriers is

Ĥ [Pi] =
Y [Pi]

X [Pi]
i = 1, 2, ..., p (5.6)

where Y [Pi] is the received signal at the pilot subcarrier, Pi. Afterward, the estimated channel

response at the data subcarriers is obtained by interpolating between two consecutive pilots.

After obtaining the estimate, the equalized signal which is represented by Z[k] is given
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by

Z[k] =
Y [k]

Ĥ1[k]

=
H1[k]

Ĥ1[k]
S[k] +

H2[k]

Ĥ1[k]
Jm[k]

1

N

N−1
∑

n=0

ej 2π∆kn
N

+
1

Ĥ1[k]

N−1
∑

n=0

1

N

N−1
∑

l=0
l "=k

Jm[l]H2[l]e
j 2π(l+∆k−k)n

N +
W [k]

Ĥ1[k]
(5.7)

where Ĥ1[k] is the estimate of the channel, H1[k] and is defined as

Ĥ1[k] = H1[k] + ε1[k] (5.8)

In addition, the variable ε1[k] is modeled as a complex Gaussian random process with zero mean

and 2σ2
ε variance.

5.3 Performance Analysis

In this section, we will present the derivation of the bit error rate (BER) expression. In

addition, the BER will later be used as a measure of system performance. The performance analysis

of the system, shown in Fig. 5.1, starts with the characterization of x(n). Under the assumption

that N is large and applying the Central Limit Theorem, x(n) is said to be Gaussian distributed

with zero mean [19]. With that assumption, Banelli, et al. [20] had shown that s(n) can be written

as a product of a complex gain, αG, and the input signal, x(n), added with noise distortion dG(n).

The transmitted signal, denoted as s(n), and its FFT are given by

s(n) = αGx(n) + dG(n)
FFT←→ S[k] = αGX [k] + DG[k] (5.9)

where DG[k] was shown to be a complex Gaussian random variable with zero mean and 2σ2
DG

variance. In addition, the numerical value of σ2
D can be obtained by following steps outlined in

Section 2.4 of Chapter 2. For two different subcarriers, k1 and k2, DG[k1] and DG[k2] are mutually

independent. Furthermore, the in-phase and quadrature phase components of DG[k] were shown to

be mutually independent and identically distributed (i.i.d) [15]. The multiplicative coefficient αG in

(5.9) is given by

αG =
E{s(n)∗x(n)}

2σ2
x(n)

= αGI + jαGQ (5.10)

where (·)∗ denotes the complex conjugate operation [20] and E{·} is the expected value. The sub-

scripts I and Q represent the in-phase and quadrature components of the signal.

Under the assumption of perfect synchronization and after removing the preamble se-

quences and cyclic prefix, the equalized signal can be obtained by substituting (5.9) into (5.7). With



65

the substitution and mathematical simplification, the equalized signal, Z[k], is found as

Z[k] =
α1

α̂1
ejθαGX [k] +

α1

α̂1
ejθDG[k]

︸ ︷︷ ︸

ΨHP A[k]

+
α2

α̂1
ejφJm[k]

1

N

N−1
∑

n=0

ej 2π∆kn
N

︸ ︷︷ ︸

JD[k]

+
1

Ĥ1[k]

N−1
∑

n=0

1

N

N−1
∑

l=0
l "=k

Jm[l]H2[l]e
j 2π(l+∆k−k)n

N

︸ ︷︷ ︸

Jo[k]

+
W [k]e−j∠Ĥ1[k]

α̂1

=
α1

α̂1
ejθαGX [k] + Ξ[k] (5.11)

where

α1 = |H1|, α̂1 = |Ĥ1|, α2 = |H2|

θ = ∠H1 − ∠Ĥ1, φ = ∠H2 − ∠Ĥ1 (5.12)

and Ξ[k] is defined as

Ξ[k] = ΨHPA[k] + JD[k] + Jo[k] +
W [k]e−j∠Ĥ1[k]

α̂1
(5.13)

In addition, the terms ΨHPA[k], JD[k] and Jo[k] are defined as shown in (5.11).

Fig. 5.2 shows the effect of a single tone jammer on the OFDM signals for the case where

the normalized frequency offset is nonzero. For the purpose of a comparison, Fig. 4.2 in Section 4.2.4

of Chapter 4 shows the situation where the normalized frequency offset is zero. In this particular

case, the jamming signal only has impact on the BER of the subcarriers that it is present. When the

normalized frequency offset is nonzero, the orthogonality between the subcarriers in the jamming

signal is no longer valid. This leads to the situation where the jamming signal is slightly offset from

the frequencies of the subcarriers. As a consequence, all the subcarriers are affected with the varying

amount of jamming power because the magnitude of the jamming signal is nonzero at all subcarriers.

The same conclusion can be drawn by looking at (5.11). One can observe the effect of

the normalized frequency offset that is due to the mismatch between the frequencies of jamming and

desired signals. When the jammer has prior knowledge about the frequency of the desired signal,

i.e. the frequency offset is zero, JD[k] which is due to the jammer is the only source of jamming

interference present in the received signal aside from nonlinear distortion and AWGN. In the case

where the jammer does not have knowledge about the frequency of desired signal and the frequency

offset is nonzero, not only is JD[k] present in the system, but the jammer produces an additional

interference, denoted as Jo[k] in (5.11), which behaves like ICI and causes further degradation in

the BER performance.
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Figure 5.2 An illustration of the effect of a single tone jammer with the normalized frequency offset
= 0.5 on the OFDM signals

In order to calculate the BER of the system, it is necessary to find the means and the

variances of the noise, Ξ[k],which is a sum of ΨHPA[k], JD[k], Jo[k] and W [k]e−j∠Ĥ1[k]

α̂1
. The mean for

each term, conditioned on H1, Ĥ1 and H2, is zero based on the model. Let σ2
Ψ be the variance of

the in-phase or the quadrature components of ΨHPA[k], then conditioned on the channel responses,

σ2
Ψ is found to be

σ2
Ψ =E {ΨHPA[k]Ψ∗

HPA[k]} = E

{(
α1

α̂1
ejθDG[k]

)(
α∗

1

α̂∗
1

e−jθD∗
G[k]

)}

=
α2

1

α̂2
1

σ2
DG

(5.14)

Before calculating the variance of JD, we need to simplify the expression of JD further by utilizing

the Geometric series. By definition, the Geometric series is given by [29]

N−1
∑

i=0

αi =
1 − αN

1 − α
|α| < 1 (5.15)



67

Applying (5.15), JD becomes

JD[k] =
α2

α̂1
ejφJm[k]

1

N

(

1 − ej 2π∆k
N N

1 − ej 2π∆k
N

)

=
α2

α̂1
ejφJm[k]

1

N

[

ejπ∆k(e−jπ∆k − ejπ∆k)

ej π∆k
N (e−j π∆k

N − ej π∆k
N )

]

=
α2

α̂1
ejφJm[k]

1

N
ejπ∆k(1− 1

N ) sin(π∆k)

sin
(

π∆k
N

) (5.16)

Denote σ2
JD

as the variance for the in-phase or the quadrature component of JD conditioned on the

channel responses. The variance, σ2
JD

, is expressed as

σ2
JD

=E {JD[k]J∗
D[k]}

=E

{[

α2

α̂1
ejφJm[k]

1

N
ejπ∆k(1− 1

N ) sin(π∆k)

sin
(

π∆k
N

)

][

α∗
2

α̂∗
1

e−jφJ∗
m[k]

1

N
e−jπ∆k(1− 1

N ) sin(π∆k)

sin
(

π∆k
N

)

]}

=
α2

2

α̂2
1

1

N2

[

sin2(π∆k)

sin2(π∆k
N )

]

|Jm[k]|2

2
(5.17)

The ICI-like interference, Jo[k], which is due to the jammer can also be expanded by using the

Geometric series. Subsequently, Jo[k] becomes

Jo[k] =
1

Ĥ1[k]

1

N

N−1
∑

l=0
l "=k

Jm[l]H2[l]e
jπ(l+∆k−k)(1− 1

N )




sin (π(l + ∆k − k))

sin
(

π(l+∆k−k)
N

)





=
1

Ĥ1[k]

1

N

N−1
∑

l=0

Jm[l]H2[l]e
jπ(l+∆k−k)(1− 1

N )




sin (π(l + ∆k − k))

sin
(

π(l+∆k−k)
N

)





−
1

Ĥ1[k]

1

N
Jm[k]H2[k]ejπ∆k(1− 1

N )

[

sin (π∆k)

sin
(

π∆k
N

)

]

(5.18)

Let σ2
Jo

be the variance for in-phase or quadrature component of (5.18) conditioned on the channel

responses, then σ2
Jo

is found to be

σ2
Jo

=E {Jo[k]J∗
o [k]}

=
1

α̂2
1

1

N2

N−1
∑

l=0

|Jm[l]|2

2
α2

2




sin2 (π(l + ∆k − k))

sin2
(

π(l+∆k−k)
N

)





−
1

α̂2
1

1

N2

[

sin (π∆k)

sin
(

π∆k
N

)

]
N−1∑

l=0

E{Jm[l]J∗
m[k]}α2

2e
jπ(l−k)(1− 1

N )




sin (π(l + ∆k − k))

sin
(

π(l+∆k−k)
N

)





−
1

α̂2
1

1

N2

[

sin (π∆k)

sin
(

π∆k
N

)

]
N−1
∑

l=0

E{J∗
m[l]Jm[k]}α2

2e
−jπ(l−k)(1− 1

N )




sin (π(l + ∆k − k))

sin
(

π(l+∆k−k)
N

)





+
α2

2

α̂2
1

1

N2

|Jm[k]|2

2

[

sin2 (π∆k)

sin2
(

π∆k
N

)

]

(5.19)
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Finally, the conditional variance for W [k]e−j∠Ĥ1[k]

α̂1
, denoted as σ2, is given by

σ2 =E

{[

W [k]e−j∠Ĥ1 [k]

α̂1

][

W ∗[k]ej∠Ĥ1 [k]

α̂1

]}

=
σ2

w

α̂2
1

(5.20)

Further expanding Z[k] into its in-phase and quadrature components, then Z[k] becomes

Z[k] =
α1

α̂1
(cos θ + j sin θ)(αGI + jαGQ)(XI [k] + jXQ[k]) + Ξ[k]

=ZI + jZQ (5.21)

where ZI [k] and ZQ[k] are defined as

ZI [k] =
α1

α̂1
[cos θαGI XI [k] − cos θαGQXQ[k] − sin θαGI XQ[k] − sin θαGQXI [k]] + ΞI [k]

ZQ[k] =
α1

α̂1
[cos θαGI XQ[k] + cos θαGQXI [k] + sin θαGI XI [k] − sin θαGQXQ[k]] + ΞQ[k] (5.22)

To continue the derivation, we assume that 16-QAM modulation is utilized in the system. Never-

theless, the BER expression for other rectangular QAM constellations can be derived in the similar

fashion. It has been mentioned already that all the subcarriers are affected with varying amount

of jamming power due to the nonzero normalized frequency offset that is between the jamming and

desired signals. To obtain the unconditional BER, one needs to first calculate the conditional BER

for each subcarrier and then take an average of the BER contributions over all subcarriers.

Let P k
BER|α1,α2,α̂1,θ be the conditional BER of 16-QAM conditioned on α1, α2, α̂1, and θ

for the kth subcarrier, then P k
BER|α1,α2,α̂1,θ is given by

P k
BER|α1,α2,α̂1,θ =

1

2

(

P k
MSB + P k

LSB

)

(5.23)

where P k
MSB and P k

LSB are the conditional BER of most significant bits (MSB) and least significant

bits (LSB) of 16-QAM symbols conditioned on α1, α2, α̂1, and θ for the kth subcarrier. Based on

the decision boundaries given in [28], the conditional BER of MSB for the kth subcarrier is given by

P k
MSB =P (ZI < 0|α1, α̂1, θ, α2) =

1

8

8
∑

i=1

Q





√

(Υi)
2

σ2
Ξ



 (5.24)

where Υi = α1
α̂1

[cos θαGI XIi − cos θαGQXQi − sin θαGI XQi − sin θαGQXIi ] and σ2
Ξ = (σ2

Ψ + σ2
JD

+

σ2
Jo

+ σ2). In addition, Q(ν) =
∫∞

ν
1√
2π

e
−t2

2 dt, ν ≥ 0. The numerical values for XIi and XQi in

(5.24) are listed in Table 5.1. The conditional BER of LSB can be found in the similar way. Based

on the decision boundaries, P k
LSB is given by

P k
LSB ={P (ZI < −2d|α1, α̂1, θ, α2) + P (ZI > 2d|α1, α̂1, θ, α2)}|LSB=0

+ {P (−2d < ZI < 2d|α1, α̂1, θ, α2)} |LSB=1

=
1

8

16
∑

i=1

λiQ





√

(κi2d + ζiΥi)
2

σ2
Ξ



 (5.25)
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Table 5.1 Numerical Values of Variables in Conditional BER for MSB

Index i XIi XQi Index i XIi XQi

1 d 3d 5 3d 3d
2 d d 6 3d d
3 d −d 7 3d −d
4 d −3d 8 3d −3d

Table 5.2 Numerical Values and Signs of Variables in Conditional BER for LSB

Index i λi κi ζi XIi XQi Index i λi κi ζi XIi XQi

1 + + + d 3d 9 + - - −3d 3d
2 + + - d 3d 10 - + - −3d 3d
3 + + + d d 11 + - - −3d d
4 + + - d d 12 - + - −3d d
5 + + + d −d 13 + - - −3d −d
6 + + - d −d 14 - + - −3d −d
7 + + + d −3d 15 + - - −3d −3d
8 + + - d −3d 16 - + - −3d −3d

where |LSB=0 and |LSB=1 denote the boundaries for LSB is zero and one, respectively. In (5.25), λi,

κi, and ζi are signs of the values for ith quantity and are listed along with values for XIi and XQi

in Table 5.2. Finally, in both Tables 5.1 and 5.2, d2 = 2Eb

5 where Eb is the energy per bit.

To obtain the unconditional BER, we first need to average the conditional BER over the

probability density functions (PDFs) of α1, α̂1, θ and α2 for each subcarrier. Next, we average the

result over all the subcarriers to obtain the final result. Denote PBER as the unconditional BER,

then PBER is found as

PBER =
1

N

N−1
∑

k=0

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ π

−π
P k

BER|α1,α2,α̂1,θp(α1, α̂1, θ)p(α2)dα1dα̂1dθdα2 (5.26)

where p(α1, α̂1, θ) denotes the joint PDF of α1, α̂1 and θ and is defined as

p(α1, α̂1, θ) =
α1α̂1

2π|∆| 12
exp

{

−
[σ2

Ĥ1
α2

1 + σ2
H1

α̂2
1 − 2Rcα1α̂1 cos θ − 2Rcsα1α̂1 sin θ]

2|∆| 12

}

(5.27)

where

σ2
H1

= E{H2
1I
} = E{H2

1Q
}, Rc = E{H1I Ĥ1I} = E{H1QĤ1Q}

σ2
Ĥ1

= E{Ĥ2
1I
} = E{Ĥ2

1Q
}, Rcs = E{H1I Ĥ1Q} = −E{H1QĤ1I}

|∆| =
[

σ2
H1

σ2
Ĥ1

− R2
c − R2

cs

]2
(5.28)

In addition, p(α2) is the PDF of α2 and is defined as

p(α2) =
α2

σ2
H2

e

−α2
2

2σ2
H2 (5.29)



70

Table 5.3 Summary of Simulation Cases

Case |Jm| HPA Jamming Tones ∆k 2σ2
ε

1 Varying Linear 1 Varying 0
2 0 Varying 0 0 0
3 Varying Constant 1 0.5 0
4 0.5 Constant Varying 0.5 0
5 0.1 Constant 1 0.5 Varying

For perfect channel estimation, i.e. H1 = Ĥ1, (5.26) is reduced to a double integral, namely

PBER =
1

N

N−1∑

k=0

∫ ∞

0

∫ ∞

0
P k

BER|α1,α2
p(α2)p(α1)dα1dα2 (5.30)

where p(α1) can be obtained by substituting α2 and σ2
H2

in (5.29) for α1 and σ2
H1

, respectively. If we

further assume that the jammer does not exist in the channel, the unconditional BER for 16-QAM

reduces to

PBER =
1

N

N−1
∑

k=0

∫ ∞

0
P k

BER|α1
p(α1)dα1 (5.31)

Finally, in the case where the HPA is ideal, i.e. αG = 1 and DG = 0, and perfect channel estimation

is achieved, (5.31) is further reduced to the known result ( [26], Eq:69).

5.4 Simulation Model and Parameters

The simulation model, programmed using Matlab Simulink, is an extension of the ana-

lytical model described in Section 5.2 in compliance with the IEEE 802.11n standard ( [4], Clause

10.4.4.2 rate code 73); except the convolutional encoder, interleaver/deinterleaver and Viterbi de-

coder are omitted. After pre-appending 16-bit Service Field and padding enough bits to ensure the

transmission from each antenna are multiples of whole OFDM symbols, the resulting signal is scram-

bled with a scrambler that is based on the IEEE 802.11a standard and subsequently demultiplexed

alternately across the transmitter spatial streams. In each spatial stream, the data is modulated

with the 16-QAM modulation and processed with the 64-point IFFT, of which subcarriers, ± 21,

are designated for pilots. The OFDM symbol is then cyclically extended and pre-appended with the

preamble sequences as specified in [4] before transmission. To recover the data, the corresponding

receiver reverses the encoding procedure in the transmitter.

The channel, jammer and the equalizer are modeled as described in Section 5.2.3 and

Section 5.2.5, respectively. Without loss of generality, the statistical means and variances are set to

0 and 1, respectively, in both Rayleigh fading channels. The simulations are performed for several

cases and the parameters used for all cases are summarized in Table 5.3. In case 1, it is assumed

that there is only a single tone jammer whose jamming amplitude is set to 1, 3 and 5 while ∆k
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Table 5.4 Simulation Parameters for Nonlinear HPA Model

Case αAM βAM αPM βPM

2.1 1 0 0 0
2.2 1 0.25 π 0.25
2.3 1 0.25 1.2π 0.01
2.4 1 0.25 1.5π 0.01

for each amplitude varies from 0 to 1 with 0.1 increment. In addition, the HPA is assumed to be

linear. In case 2, the jammer is removed to consider only the influence from the nonlinear HPA in

the system. The level of nonlinear distortion is varied based on the parameters in the HPA model

which is described in Section 5.2.2 and the numerical values of those parameters are listed in Table

5.4. Note that in Case 2.1, when αAM is set to unity and the other parameters in the model are

zero, the nonlinear HPA becomes a linear amplifier which has an unity gain with no phase distortion.

For case 3, the number of jamming tones in the jammer is assumed to be one and the

jamming amplitude is set to 0, 0.1, 0.3 and 0.5 while ∆k is set to a constant value of 0.5. In case 4,

the jamming amplitude and frequency offset, ∆k, are both set to 0.5 and 0.5, respectively, while the

number of jamming tones in the jammer varies. In the first four cases, it is assumed that there is

no error in estimating the channel response. For the last case, the system is subject to a nonlinear

HPA and a single tone jammer whose amplitude is 0.1 and is transmitted with the frequency offset

that is equal to 0.5. In this case, it is assumed that the error is present in the channel estimation.

Finally, in cases 3, 4 and 5, the HPA is assumed to be nonlinear. For those cases, the αAM and βAM

are 1 and 0.25, and αPM and βPM are 1.2π and 0.01, respectively.

5.5 Simulation Results

In the first case where we assume the frequency offset, ∆k, varies from 0 to 1 with 0.1

increment for three different values of jamming amplitude, the simulation results are plotted against

the theoretical results in Fig. 5.3. The theoretical results for case 1 are obtained from (5.30) with

σ2
DG

equals 0. As one can observe, for a given jamming amplitude, the BER performance becomes

worse as ∆k increases. However, once ∆k is greater than 0.5, the BER performance starts to improve

again. This is due to the fact that the orthogonality between subcarriers is lost when ∆k is not

zero. Subsequently, the magnitude due to the jamming signal at the kth frequency is nonzero at the

other subcarriers. As ∆k increases, the magnitude at all subcarriers, other than the kth subcarrier,

increases since the jammer in time domain is a sinc function. Furthermore, the magnitude is at

the highest when ∆k is 0.5 and starts to decrease once ∆k is greater than 0.5. Hence, for a given

jamming amplitude, the BER of the system is at the worst when ∆k equals 0.5.

Fig. 5.4 shows the simulation and theoretical results for the second case where the jammer
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Figure 5.3 The effect of ∆k on the BER performance of a 16-QAM OFDM system impaired by a
single tone jammer for various jamming amplitudes at Eb/No = 40 (dB).

does not exist and the only nonlinear distortion introduced by a nonlinear HPA is present in the

system besides AWGN. Instead of varying frequency offset or the severity level of nonlinear distor-

tion, in case 3, the amplitude of jamming signal is set t0 0, 0.1, 0.3 and 0.5 while the system is

still subject to nonlinear distortion. The results of the simulation are shown in Fig. 5.5 along with

the theoretical results obtained by using (5.30). In cases 3 and 4, the occurrence of error floor in

the performance occurs at around 30 dB. The occurrence of the error floor can be explained by

examining signal to noise ratio (SNR) for MSB or LSB probabilities. For example, at high SNR,

the effect of σ2
w is negligible compared to σ2

Ψ, σ2
JD

and σ2
Jo

. As a consequence, the SNR for MSB

probability, denoted as SNRMSB, becomes

SNRMSB -
Υi

σ2
Ψ + σ2

JD
+ σ2

Jo

(5.32)

where Υi is defined in (5.24). Furthermore, SNRMSB is only a function of Υi, σ2
Ψ, σ2

JD
and σ2

Jo

of which σ2
Ψ is a constant for a given set of parameters used in the HPA model. As for σ2

JD
and

σ2
Jo

, they both only depend on the amplitude of jammer. Therefore, at high SNR, the system is still

being affected by the same amount of degradation and subsequently produces an error floor. The
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Figure 5.4 BER performance of a 16-QAM OFDM system in the Rayleigh fading channel for various
levels of degradation introduced by nonlinear HPAs in the absence of the jammer.

same conclusion can be drawn if one examines the SNR for LSB probability.

In case 4, the amplitude of the jammer or the total of jamming power is held constant

while we vary the number of jamming tones in the jammer. In addition, the simulation and theo-

retical results for this case are shown in Fig. 5.6. As one can see from Fig. 5.6, a jammer that has

a single tone causes the most degradation in the system performance as compared to other cases

where the jammer has more than one frequency tones. This is because as the number of jamming

tones in the jammer model increases, the jamming power in each frequency tone has to decrease in

order to preserve the condition that the total jamming power is held constant. As a result, σ2
JD

and

σ2
Jo

become smaller in values and have less impact in the system performance.

By looking at results in Fig. 5.6, one might be inclined to use a single tone jammer when it

comes to designing a jammer. Even though, a single tone jammer causes the most degradation, it is

not practical in real situations for two reasons. The first reason is the jammer does not usually have

the perfect knowledge of the center frequency of the desired signal. When that is the case, the jam-
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Figure 5.5 BER performance of a 16-QAM OFDM system impaired by a single tone jammer and
nonlinear HPA in the Rayleigh fading channels for various values of jamming amplitude. In all four
cases, the frequency offset, ∆k, is set to 0.5.

mer often appears at the outside of the frequency spectrum of the transmitted signal and introduces

an ICI-like interference to the system as illustrated in both Fig. 5.7 and 5.8. Even though, the cen-

ter frequency of the jamming signal does not overlap with the desired signal spectrum, the right tail

of the jamming signal still appears within the spectrum of the transmitted signal. As a consequence,

the right tail of the jammer which is referred to as the ICI-like interference causes degradation in

performance. Furthermore, as one can observe by comparing Fig. 5.7 with Fig. 5.8, the effect of the

ICI-like interference on the performance strongly depends on the distance of the jammer’s location

in the frequency spectrum with respect to the desired signal. The further away the jamming signal is

in the frequency spectrum, the smaller magnitude that ICI-like interference has and the less impact

that it has on the system performance. Another reason is that the OFDM system can simply turn off

the subcarrier’s frequency at which the jammer interferes. By doing so, the BER performance can

improve since only the ICI-like interference which is due to the jammer is present in the received sig-

nal. However, the cost of not utilizing a particular subcarrier’s frequency is the decrease in data rate.
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Figure 5.6 BER performance of a 16-QAM OFDM system impaired by a single tone jammer and
nonlinear HPA in the Rayleigh fading channel for various number of jamming tones in the jammer.
In addition, the total power of the jamming signal in each case is held constant.

Finally, when the channel response is not perfectly known at the receiver, the error be-

tween the estimate and the true channel response further degrades the performance. Fig. 5.9

shows the effect of channel estimation error on the performance of a system modeled based on the

parameters of case 5.

5.6 Conclusion

In this chapter, we presented the performance analysis of an M-QAM OFDM system which

had a nonlinear HPA in the transmitter and was subject to jamming and channel estimation error

in a Rayleigh fading channel. The model for the jammer presented in this chapter was more realis-

tic compared to models in previous studies because not only did the jamming signals experience a

separate Rayleigh fading channel, the proposed model incorporated the possibility that the jammer

transmitted jamming signals at a frequency that was offset from the frequency of the desired signal.

By introducing a constant frequency offset between jamming and transmitted signals, the jammer
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Figure 5.7 An illustration of the effect of the center frequency location of the jamming signal with
respect to the center frequency location of the OFDM signals in frequency spectrum

produced an additional interference which behaves like ICI and caused more significant impact on

the system performance compared to the scenario where the normalized frequency offset is zero.

In addition, we simulated a IEEE 802.11n WLAN system that was extended from the analytical

model and presented simulation results along with theoretical values for various sets of parameters

used with and without channel estimation error. Based on the theoretical and simulation results, we

also discussed the impact of a jammer on the performance of M-QAM OFDM systems and how the

bandwidth of the jammer had an effect on the performance if the total jamming power is a design

constraint.

The text in Chapter 5 is based on the material as it appears in:

David W. Chi and Pankaj Das, “Effects of Nonlinear Amplifier and Partial Band Jammer in OFDM

with Application to 802.11n WLAN”, IEEE Military Communications Conference, October 2007,

pp. 1-8.
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respect to the location of center frequency of the OFDM signals in frequency spectrum. In this case,
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signals when compared to the one that is shown in Fig. 5.7.

The dissertation author was the primary researcher and author, and the co-author listed in the

publication directed and supervised the research which forms the basis for this chapter.
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Effect of Channel Estimation Error

and Nonlinear High Power

Amplifier (HPA) on the

Performance of OFDM

6.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is a promising technology for wire-

less communication applications that require high data rate transmission [30]. Due to its technical

advantages, OFDM is currently being considered for the fourth generation (4G) mobile and Wireless

Local Area Networks (WLAN) communication systems. One way to increase the data rate of wireless

communication systems is to employ multiple antennas for data transmission and reception. These

types of systems are also known as Multiple Input Multiple Output (MIMO) systems in literature.

The IEEE 802.11n standard incorporates both OFDM and MIMO technologies to achieve better

performance [4].

In OFDM, the broadband channel is divided into several orthogonal and narrowband sub-

channels which are known as subcarriers. The bandwidth of a subcarrier is usually smaller than the

channel coherence bandwidth; therefore, OFDM systems are able to deliver high data rates with

high bandwidth efficiency and low receiver complexity. However, OFDM is known to be sensitive

to frequency offsets, phase noise [22, 23] and high peak to average power ratio (PAPR). Frequency

offsets are, in general, caused by the frequency deviation between the transmitter and receiver, or by

Doppler shift. Unlike the frequency offset, the phase noise is usually a random process because the

79
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phase noise is often caused by the fluctuation of the receiver and transmitter oscillators. When either

frequency offset or phase noise is present in the system, the orthogonality among the subcarriers is

lost. As a result, inter-carrier interference (ICI) occurs and the system performance degrades [5].

Another problem often associated with multicarrier modulations such as OFDM is the high PAPR.

This particular phenomenon is a direct consequence of using Fast Fourier Transform (FFT) and

Inverse Fast Fourier Transform (IFFT) operations. When L number of signals of the same ampli-

tude are being added coherently, IFFT/FFT produces a peak power that is L times larger than the

average power. Practical high power amplifiers (HPAs) have difficulty reproducing such high PAPR

signals and often introduce nonlinear distortion such as clipping and spectral regrowth [24, 25]. As

a result of inefficient HPAs, the performance is further degraded due to nonlinear distortion.

Although there are some papers dealing with the performance of OFDM systems that

are impaired by nonlinear HPAs in the additive white Gaussian noise (AWGN) channel, few of them

adequately address the effects of nonlinearity in OFDM systems in the Rayleigh fading channel.

In [15], the authors presented the performance analysis of an M-ary Quadrature Amplitude Modula-

tion (M-QAM) OFDM system which is impaired by a nonlinear HPA and phase noise in the AWGN

channel only. Chang, et al. [26] showed the performance of an equalized OFDM system in a Rayleigh

flat fading channel for various modulations with and without channel estimation error. However, the

effect of nonlinear distortion introduced by a HPA on the system performance was not considered in

the paper. The conventional approach for analyzing the performance of an OFDM system which is

subject to channel estimation error in Rayleigh fading channels requires integrating the conditional

bit error rate (BER) over the joint probability density function of the channel impulse response and

its estimate. Subsequently, this approach leads to solving a triple integral which can be a difficult

task to do. In this chapter, we analyze the performance of a M-QAM OFDM system that is subject

to distortion from a nonlinear HPA, and channel estimation error in the Rayleigh fading channel.

Different from the channel estimation error model presented in [26], we make use of the model that

is proposed previously in [31] to help facilitate the derivation of a closed form BER expression.

The chapter is organized as follows. In Section 6.2, the analytical system under study

is described in detail. Section 6.3 contains the performance analysis of the analytical model. Section

6.4 describes the simulation setup for the extended model. Section 6.5 provides simulation results

of the model described in Section 6.4. Finally, Section 6.6 summarizes the chapter.

6.2 System Description

Fig. 6.1 shows the block diagram of the system under study. Each block is discussed in

the following subsections.
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Figure 6.1 The system block diagram of an equalized M-ary QAM OFDM system which is impaired
by a nonlinear HPA, and channel estimation error in the Rayleigh fading channel.

6.2.1 Transmitter

The transmitter is consisted of a M-QAM signal modulator, an IFFT and a nonlinear

HPA. The binary input to the M-QAM modulator is assumed to be equiprobable and independent.

They are subsequently grouped into a block size of log2M and mapped into M-QAM symbols, X [k],

according to alphabet, A = {(2m− 1−
√

M)+ j(2n− 1−
√

M)} where {m, n = 1, 2, ...
√

M} and M

is the signal constellation size. At appropriate sampling time, the signal at the output of the IFFT,

x(n), is

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (6.1)

where N is the number of subcarriers.

6.2.2 HPA Model

The nonlinear HPA model in the transmitter represents the nonlinear distortion imposed

on the signal. In this chapter, the nonlinear HPA modeled proposed by Saleh is utilized in the

system. The detail about the Saleh HPA model can be found in Chapter 2, Section 2.3.
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6.2.3 Channel Model and AWGN

Let h(n) be the impulse response of the Rayleigh fading channel between the transmitter

and the receiver. The in-phase and quadrature components of h(n) are both Gaussian random

variables with zero mean and σ2
H variance. In addition, each component is statistically independent

of the other. The thermal noise, denoted as w(n), is an independent AWGN process which has zero

mean and 2σ2
w variance.

6.2.4 Receiver

Let y(n) be the received signal in time domain and assuming perfect synchronization, y(n)

is given by

y(n) = h(n)s(n) + w(n) (6.2)

The received signal is then fed to the FFT block and consequently, the received signal in frequency

domain, Y [k], is

Y [k] =
N−1
∑

n=0

y(n)e−j 2πkn
N

= H [k]S[k] + W [k] (6.3)

where H [k], S[k], and W [k] are FFT of h(n), s(n), and w(n), respectively.

6.2.5 Equalizer Model

Since the bandwidth of a subcarrier in OFDM signals is usually much smaller than the

channel coherence bandwidth. The equalization process becomes one of the most attractive fea-

tures of OFDM systems and can be adequately done by using an one-tap equalizer in the frequency

domain. Among many available algorithms, we choose the Zero Forcing algorithm because of its

simplicity in implementation and mathematical tractability.

Before equalization, estimating the channel response is necessary and can be obtained

with the aid of pilots. Let X [P1], X [P2], ..., X [Pp] be the pilot symbols modulated onto the subcarri-

ers, P1, P2, ..., Pp, where p is the total number of pilots. Using Least Squares, the estimated channel

response at the pilot subcarriers is given by

Ĥ [Pi] =
Y [Pi]

X [Pi]
i = 1, 2, ..., p (6.4)

where Y [Pi] is the received signal at the pilot subcarrier, Pi. The estimated channel response at the

data subcarriers can be obtained by interpolating between two consecutive pilots [32].
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After obtaining the channel estimate, an estimate of the transmitted signal on the kth

subcarrier, denoted as Z[k], is then given by

Z[k] =
Ĥ∗[k]Y [k]

|Ĥ[k]|2

=
Ĥ∗[k]H [k]S[k] + Ĥ∗[k]W [k]

|Ĥ[k]|2
(6.5)

where Ĥ [k] is the estimate of the channel, H [k], and is a complex Gaussian random process with

zero mean and 2σ2
Ĥ

variance. In addition, (·)∗ denotes the complex conjugate operation.

6.3 Performance Analysis

In this section, we will derive the BER of the system which will be used later as a measure of

system performance. The performance analysis of the system which is shown in Fig. 6.1 starts with

the characterization of x(n). Under the assumption that N is large, by the Central Limit Theorem,

x(n) is said to be Gaussian distributed with zero mean [19]. With that assumption, Banelli, et al.

had shown that s(n) can be written as a product of a complex gain, αG, and the input signal, x(n),

added with noise distortion dG(n), namely,

s(n) = αGx(n) + dG(n)
FFT←→ S[k] = αGX [k] + DG[k] (6.6)

where DG[k] was shown to be a complex Gaussian random variable with zero mean and 2σ2
D vari-

ance. Furthermore, one can follow the steps outlined in Section 2.4 of Chapter 2 to obtain the

numerical value of σ2
D. For two different subcarriers, k1 and k2, DG[k1] and DG[k2] are indepen-

dently distributed. Furthermore, the in-phase and quadrature components of DG[k] were shown to

be mutually independent and identically distributed (i.i.d) [15]. The multiplicative coefficient αG is

given by

αG =
E{s(n)∗x(n)}

2σ2
x(n)

= αGI + jαGQ (6.7)

where E{·} is the expected value [20]. The subscripts, I and Q, represent in-phase and quadrature

components of a signal, respectively.

For simplicity of notations, we will drop the subcarrier index in the rest of the derivation.

After synchronization and the removal of the preamble sequences and cyclic prefix, the estimate of

the transmitted signal on the kth subcarrier, Z, can be obtained by substituting (6.6) into (6.5) and

becomes

Z =
Ĥ∗H(αGX + DG) + Ĥ∗W

|Ĥ|2

=
Ĥ∗H

|Ĥ|2
αGX +

Ĥ∗H

|Ĥ |2
DG +

Ĥ∗W

|Ĥ|2
(6.8)
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In [33], authors analyzed the performance of the estimate of transmitted signal which is defined as

(6.8). In addition, authors assumed that the magnitudes of H and Ĥ are independent of the phase

difference between H and Ĥ . Therefore, the average BER was obtained by first integrating the

conditional BER over the joint probability density function (PDF) of the magnitudes of H and Ĥ .

The integration result is then integrated over the PDF of the phase difference. However, Cao, et

al. [28] argued that the performance analysis presented in [33] was only an approximation because

the magnitudes of H and Ĥ and the phase difference between them statistically depends on each

other. As a result, it is required to solve a triple integral in order to obtain the exact average BER.

Nonetheless, it is sometimes a difficult task to evaluate the triple integral due to the integrand is

a Q function. Here, by making use of the channel estimation error model proposed in the previous

paper [31], we express the channel response as a function of its estimate. This approach greatly

reduces the complexity of performance analysis by avoiding the triple integral calculation and facil-

itates the derivation of a closed form BER expression.

Since H and Ĥ are jointly Gaussian, conditioned on Ĥ , we may write the channel as [31]

H = ρ
σH

σĤ

Ĥ + U (6.9)

where U represents the channel estimation error and is modeled as a complex Gaussian random

variable with zero mean and 2σ2
U variance. In addition, 2σ2

U is given by

2σ2
U = 2σ2

H(1 − |ρ|2) (6.10)

ρ in (6.9) represents the quality of the channel estimate and is measured by the complex corre-

lation coefficient between the channel, H , and its estimate, Ĥ. Furthermore, ρ can take on any

values between 1 and 0. For perfect channel estimation, i.e. ρ is 1, U is subsequently reduced to

zero due to its variance is also reduced to zero and σH = σĤ . Hence, (6.9) yields H = Ĥ as expected.

Substituting (6.9) into (6.8), Z becomes

Z = ρ
σH

σĤ

(αGX + DG) +
Ĥ∗

|Ĥ |2
U (αGX + DG) +

Ĥ∗

|Ĥ |2
W (6.11)

After expanding U and W into in-phase and quadrature components, the estimate of the transmitted

signal on the kth subcarrier, Z, is given by

Z =ρ
σH

σĤ

(αGX + DG) +
Ĥ∗

|Ĥ |2
[UI (αGX + DG) + WI ]

︸ ︷︷ ︸

η1

+j
Ĥ∗

|Ĥ |2
[UQ (αGX + DG) + WQ]

︸ ︷︷ ︸

η2

=ρ
σH

σĤ

(αGX + DG) + η1 + jη2 (6.12)

From (6.12), η1 and η2 are both zero mean Gaussian random variables since they are sums of several

zero mean Gaussian random variables namely, U , DG and W . Denote σ2
η as the variance of η1



85

conditioned on Ĥ, then σ2
η is found to be

σ2
η =E{η1η

∗
1}

=E

{(

Ĥ∗

|Ĥ |2
[UI (αGX + DG) + WI ]

)(

Ĥ∗

|Ĥ |2
[UI (αGX + DG) + WI ]

)∗}

=E

{

1

|Ĥ |2
[

U2
I α2

GX2 + 2U2
I αGXDG + U2

I D2
G + W 2

I

]

}

=
1

|Ĥ |2
(

σ2
Hα2

GE{|X |2}(1− |ρ|2) + 2σ2
Hσ2

D(1 − |ρ|2) + σ2
w

)

(6.13)

The variance of η2 conditioned on Ĥ can easily be shown to be the same as the variance of η1.

As one can notice, (6.13) is a function of modulated symbols, X . For the case where X represents

a M-ary Phase Shift Keying (M-PSK) symbol, the numerical values for σ2
η are the same for all

M-PSK symbols. However, in the situation where the signal constellation is rectangular instead of

circular such as in the case of M-QAM modulation, the numerical values of σ2
η will highly depend

on where the location of X is in the signal constellation. To avoid any confusion when one derives

the BER expression, we will rewrite (6.13) in such a way that the expression of σ2
η explicitly shows

the dependency on modulated symbols, namely

σ2
ηi

=
1

|Ĥ |2
(

σ2
Hα2

GE{|Xi|2}(1 − |ρ|2) + 2σ2
Hσ2

D(1 − |ρ|2) + σ2
w

)

(6.14)

where the subscript i in Xi represents the ith modulated symbol.

After expanding (6.12) by expressing αG as αGI + jαGQ , X as XI + jXQ, and DG as

DGI + jDGQ , (6.12) is further reduced to

Z =

{

ρ
σH

σĤ

[αGX + DGI ] + η1

}

+ j

{

ρ
σH

σĤ

DGQ + η2

}

=ρ
σH

σĤ

(αGI + jαGQ)(XI + jXQ) + β1 + jβ2

=

(

ρ
σH

σĤ

(αGI XI − αGQXQ) + β1

)

︸ ︷︷ ︸

ZI

+j

(

ρ
σH

σĤ

(αGQXI + αGI XQ) + β2

)

︸ ︷︷ ︸

ZQ

=ZI + jZQ (6.15)

where β1 and β2 are defined as

β1 = ρ
σH

σĤ

DGI + η1 β2 = ρ
σH

σĤ

DGQ + η2 (6.16)

In addition, β1 and β2 are both zero mean Gaussian random variables due to the fact that DG, η1

and η2 are zero mean Gaussian random variables. Since σ2
ηi

is a function of modulated symbol, X ,

the variances of β1 and β2 will also be a function of X . Let σ2
βi

be the variance of β1 conditioned
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on Ĥ for the ith modulated symbol, then σ2
βi

is found as

σ2
βi

=E

{(

ρ
σH

σĤ

DGI + η1

)(

ρ∗
σH

σĤ

D∗
GI

+ η∗
1

)}

= ρ2 σ2
H

σ2
Ĥ

σ2
D + σ2

ηi
(6.17)

where σ2
ηi

is defined as (6.14). Due to the fact that DG has the same variance for its in-phase and

quadrature components and both η1 and η2 have the same variances, consequently β2 would have

the same variance as β1.

To continue the derivation, we assume that 16-QAM modulation is utilized for data mod-

ulation in the system. Nevertheless, the BER expression for other rectangular QAM constellations

can be derived in the similar fashion if another modulation scheme is chosen. The BER of 16-QAM

conditioned on Ĥ is given by

PBER|Ĥ =
1

2
(PMSB + PLSB) (6.18)

where PMSB and PLSB denote as the conditional BER of most significant bits (MSB) and least

significant bits (LSB) of 16-QAM symbols conditioned on Ĥ . The average BER is then obtained by

averaging (6.18) over the probability density function (PDF) of |Ĥ |, namely

PBER =

∫ ∞

0
PBER|Ĥp(|Ĥ |)d|Ĥ | (6.19)

where p(|Ĥ |) is defined as

p(|Ĥ|) =
|Ĥ |
σ2

Ĥ

e
− |Ĥ|2

2σ2
Ĥ (6.20)

As one can observe from (6.19), the expression of the average BER is in the form of a single integral

instead of a triple integral which is the common average BER expression for a system that is sub-

ject to channel estimation error in literature. This simplification in the complexity of average BER

calculation can be achieved when (6.9) is utilized as the channel estimation model.

Based on the decision boundaries shown in Fig. 1 in [28], the conditional BER of MSB is

found to be

PMSB =P
(

ZI < 0|Ĥ
)

=
1

8

8
∑

i=1

P

(

ρ
σH

σĤ

(αGI XIi − αGQXQi) + β1 < 0

)

=
1

8

8
∑

i=1

Q







√
√
√
√
√

(

ρσH

σĤ
γi

)2

σ2
βi







(6.21)

where γi = (αGI XIi − αGQXQi) and Q(ν) =
∫ ∞

ν
1√
2π

e
−t
2 dt, ν ≥ 0. The variance σ2

βi
is defined as

(6.17). In addition, the numerical values for XIi , XQi and E{|Xi|2} in (6.21) are listed in Table
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Table 6.1 Numerical Values of Variables in Conditional BER for MSB

Index i XIi XQi E{|Xi|2} Index i XIi XQi E{|Xi|2}
1 d 3d 10d2 5 3d 3d 18d2

2 d d 2d2 6 3d d 10d2

3 d −d 2d2 7 3d −d 10d2

4 d −3d 10d2 8 3d −3d 18d2

Table 6.2 Numerical Values and Signs of Variables in Conditional BER for LSB

Index i λi κi ζi XIi XQi E{|Xi|2}
1 + + + d 3d 10d2

2 + + - d 3d 10d2

3 + + + d d 2d2

4 + + - d d 2d2

5 + + + d −d 2d2

6 + + - d −d 2d2

7 + + + d −3d 10d2

8 + + - d −3d 10d2

9 + - - −3d 3d 18d2

10 - + - −3d 3d 18d2

11 + - - −3d d 10d2

12 - + - −3d d 10d2

13 + - - −3d −d 10d2

14 - + - −3d −d 10d2

15 + - - −3d −3d 18d2

16 - + - −3d −3d 18d2

6.1. The conditional BER of LSB can be obtained in the similar way and based on the decision

boundaries, it is given by

PLSB =
{

P (ZI < −2d|Ĥ) + P (ZI > 2d|Ĥ)
}

|
LSB=0 +

{

P (−2d < ZI < 2d|Ĥ)
}

|
LSB=1

=
1

8

16
∑

i=1

λiQ







√
√
√
√
√

(

κi2d + ζiρ
σH

σĤ
γi

)2

σ2
βi







(6.22)

where |LSB=0 and |LSB=1 imply the boundaries for LSB is zero and one, respectively. In (6.22), λi,

κi, and ζi are signs of the values for ith quantity and are listed along with numerical values for XIi ,

XQi and E{|Xi|2} in Table 6.2. Finally, in both Tables 6.1 and 6.2, d2 = 2Eb

5 where Eb is the energy

per bit.

If we assume that channel response is completely known to the receiver, i.e. ρ = 1 or

H = Ĥ, the average BER can be still obtained by evaluating (6.19). Finally, if we further assume

that the HPA is ideal, i.e. αG = 1 and DG = 0, in addition to having complete knowledge about

channel response, (6.19) is further reduced to a known result ( [26], Eq:69).
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Table 6.3 Simulation Parameters for Case 1

Case Number ρ HPA σ2
H σ2

Ĥ
1-A 1 Linear 0.5 0.5
1-B 0.9999 Linear 0.5 0.5
1-C 0.999 Linear 0.5 0.5
1-D 0.99 Linear 0.5 0.5

Table 6.4 Simulation Parameters for Case 2

Case Number ρ HPA σ2
H σ2

Ĥ
2-A 1 Linear 0.5 0.5
2-B 1 Nonlinear 0.5 0.5
2-C 0.9999 Nonlinear 0.5 0.5
2-D 0.999 Nonlinear 0.5 0.5

6.4 Simulation Model and Parameters

The simulation model is an extension of the analytical model described in Section 6.2 in

compliance with the IEEE 802.11n standard ( [4], Clause 10.4.4.2 rate code 73); except the con-

volutional encoder, interleaver/deinterleaver and Viterbi decoder are omitted. After pre-appending

16-bit Service Field and padding enough bits to ensure the transmission from each antenna are

multiples of whole OFDM symbols, the resulting signal is scrambled with a scrambler that is based

on the IEEE 802.11a standard and subsequently demultiplexed alternately across the transmitter

spatial streams. In each spatial stream, the data is modulated with the 16-QAM modulation and

processed with the 64-point IFFT, of which subcarriers, ± 21, are designated for pilots. The OFDM

symbol is then cyclically extended and pre-appended with the preamble sequences as specified in [4]

before transmissions. To recover the data, the corresponding receiver reverses the encoding proce-

dure in the transmitter.

The simulations are performed based on the extended model for three cases. The pa-

rameters used for each case are listed separately in Tables 6.3, 6.4, and 6.5. For all the subcases

in Case 1 and subcase 2-A where the HPA is assumed to be linear, αAM is set to one and the other

parameters for the HPA model are set to zero. Note that if this is the case, the nonlinear HPA

model reduces to unity gain and there is no phase distortion imposed on the signal, x(n). As for

subcases, 2-B, 2-C and 2-D where the nonlinear HPA is assumed to be present in the system, αAM

and βAM are set to 1 and 0.25 while αPM and βPM are set to 1.2π and 0.01, respectively. For Case

3, ρ is set to one to simulate the situations where the only source of degradation aside from AWGN

is the nonlinear distortion from the HPA. Furthermore, the means and variances for H and Ĥ are

both set to 0 and 1, respectively.
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Table 6.5 Simulation Parameters For Nonlinear HPA Model In Case 3

Case Number αAM βAM αPM βPM

3-A 1 0 0 0
3-B 1 0.25 π 0.25
3-C 1 0.25 1.2π 0.01
3-D 1 0.25 1.5π 0.01

6.5 Simulation Results

In case 1 where we assume the HPA is perfectly linear while varying ρ, the quality of the

channel estimate, the simulation results are plotted against the theoretical values obtained from

(6.19) and are shown in Fig. 6.2. As one can observe, as ρ decreases the BER performance wors-

ens. This is because the value of ρ strongly depends on the accuracy of the channel estimation

algorithm which one uses to estimate the true channel. Intuitively, when ρ or the accuracy of the

channel estimation algorithm decreases, it implies that the power of channel estimation error in-

creases. Therefore, Fig. 6.2 shows the trend of decrease in the BER performance as ρ decreases.

Next, not only the channel estimation error is present in the system, the distortion pro-

duced by the nonlinear HPA which is configured based on the parameters described in Case 2 is also

applied to the system. The simulation results obtained for Case 2 are shown along with the theoret-

ical values in Fig. 6.3. In Case 3 where we assume that the channel response is completely known

to the receiver while we vary the degrees of nonlinear distortion caused by the HPA, the simulation

results are shown in Fig. 6.4. In this case, the theoretical values are obtained by evaluating (6.19)

with ρ = 1.

Depending on how much degradation there is in the system, the sign of error floor in

the performance might occur at higher signal to noise ratio (SNR) than the other cases. In all three

cases, the error floor generally occurs at around 35 dB. The occurrence of the error floor can be

explained by the SNR of either the MSB or LSB probabilities. For example, at high SNR, the effect

of σ2
w is negligible compared to σ2

D and σ2
U . As a consequence, the SNR for MSB BER becomes

SNRMSB -
ρ2 σ2

H

σ2
Ĥ

(αGI XIi − αGQXQi)
2

ρ2 σ2
H

σ2
Ĥ

σ2
D + σ2′

ηi

(6.23)

where

σ2′

ηi
-

σ2
Hα2

GE{|Xi|2}(1− |ρ|2) + 2σ2
Hσ2

D(1 − |ρ|2)
|Ĥ |2

(6.24)

Furthermore, SNRMSB is only a function of Eb, αG, σ2
D and ρ, of which αG and σ2

D are constants for

a given set of parameters applied to the nonlinear HPA model and ρ only depends on the quality of

the channel estimate which is controlled by the channel estimation algorithm that is used to obtain
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Figure 6.2 BER performance of a 16-QAM OFDM system with linear HPAs in the Rayleigh fading
channel for various values of ρ.

the estimate. Therefore, at high SNR, the system would still have the same amount of degradation

and subsequently produces an error floor.

6.6 Conclusion

In this chapter, we analyzed the performance of a M-QAM OFDM system which was im-

paired by nonlinear distortion produced by a nonlinear HPA located in the transmitter and channel

estimation error in a Rayleigh fading channel. The traditional approach for analyzing the perfor-

mance of such system under the same sources of impairments was to integrating the conditional

BER expression over the joint PDF of the channel and its estimate to obtain the exact average

BER. As a result, this approach led to solving a complicated triple integral. In this chapter, the

channel estimation error model we utilized significantly reduced the complexity of the problem by

simplifying the required triple integral down to a single integral. Furthermore, for the purpose of

simulation, we extended the analytical model to be in compliance with the IEEE 802.11n standard.

We then presented simulation results along with theoretical values obtained by using the proposed
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Figure 6.3 BER performance of a 16-QAM OFDM system which is impaired by a nonlinear HPA
and channel estimation error in the Rayleigh fading channel for various values of ρ.

approach for various levels of channel estimation error and nonlinear distortion.

The text in Chapter 6 is based on the material as it appears in:

David W. Chi, Mishal Al-Gharabally and Pankaj Das, “Effects of Channel Estimation Error and

Nonlinear HPA on the Performance of OFDM in Rayleigh Channels with Application to 802.11n

WLAN”, IEEE Wireless Communications & Networking Conference, April 2008, pp. 852-857.

The dissertation author was the primary researcher and author, and the co-authors listed in the

publication directed and supervised the research which forms the basis for this chapter.



92

0 5 10 15 20 25 30 35 40 45 50
10

!5

10
!4

10
!3

10
!2

10
!1

10
0

E
b
/N

o
 vs. BER  ! Equalized OFDM Impaired by HPA in Rayleigh Channel

E
b
/N

o
 (dB)

B
E

R

 

 

Case 3!A (Theory)

Case 3!A (Simulation)

Case 3!B (Theory)

Case 3!B (Simulation)

Case 3!C (Theory)

Case 3!C (Simulation)

Case 3!D (Theory)

Case 3!D (Simulation)

Figure 6.4 BER performance of a 16-QAM OFDM system which is subject to nonlinear distortion
in the Rayleigh fading channel for various levels of nonlinear distortion under the assumption of
perfect channel estimation.
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Multiple Input Multiple Output

(MIMO) Review

7.1 Introduction

Due to the increase in the demand for high data rate and superior performance as wireless

communication systems become more popular and affordable to consumers, the desire for a technol-

ogy that would satisfy the demand has forced research scientists to review and improve the existing

technologies or simply invent a brand new system. Orthogonal Frequency Division Multiplexing

(OFDM) whose root can be traced back to late 1950’s is one of those existing technologies that gets

the second look by research scientists. Even though, OFDM can offer several technical advantages

which were already described in previous chapters, by itself, OFDM might not fully satisfy the in-

crease in demand of higher data rate.

The Single Input Single Output (SISO) antenna implementation has always been the main

type of antenna configuration for mobile or wireless local area network (WLAN) systems until

recently. To further improve OFDM’s capability of delivering high data rate, another antenna im-

plementation called Multiple Input Multiple Output (MIMO) has been proposed. In addition, for

those wireless communication systems that are equipped with multiple antennas, they are typically

known as MIMO systems in literature. Fig. 7.1 shows two possible antenna configurations for

MIMO systems. One of MIMO systems shown in Fig. 7.1 is Multiple Input Single Output (MISO)

systems which have multiple transmit antennas and only a single receive antenna. Another MIMO

system shown in the same figure has both multiple antennas at the transmitter and receiver. Despite

the differences in system performance and hardware physical layer, MISO systems are sometimes

referred as MIMO systems in literature. In this thesis, we will follow the conventional notation and

refer MISO systems as MIMO systems. Furthermore, we will focus on the performance of a MISO

93
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Figure 7.1 A depiction of MIMO systems with two different antenna configurations.

system in the thesis.

In 1998, Alamouti [21] presented a novel transmit diversity technique for a MISO sys-

tem with two transmit antennas and one receive antenna which is shown in Fig. 7.2. The Alamouti

code, proposed by Alamouti, [21] encodes modulated symbols across antennas and over time with

the advantage of linear decoding. The improvement on system performance that the Alamouti code

can offer is surprising. For example, it has been shown that a system with two transmit antennas

and one receive antenna can provide the same diversity order as a system which has maximum ratio

combining and is equipped with one transmit antenna and two receive antennas. Due to this reason,

the Alamouti code has triggered a tremendous amount of research in coding schemes. Other codes

were found for the cases where the systems have three or four transmit antennas and one receive

antenna [34, 35]. Although the coding for three or four transmit antennas and one receive antenna

can offer full diversity, however, they suffer from a loss in data rate since the number of modulated
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Transmitter Recevier

Figure 7.2 A depiction of a MISO system with two transmit antennas and one receive antenna.

symbols that are transmitted is less than the number of time slots that are used for transmissions.

Since the coding schemes proposed in [21, 34, 35] encode modulated symbols across antennas and

over time while providing the advantage of linear decoding, they are often referred to as Space Time

Block Code (STBC) in literature. However, one should know that those coding schemes presented

in [21, 34, 35] are only the subset of the STBC.

Since STBC can bring performance enhancement to wireless communication systems, it

was soon adapted in OFDM systems. Lee et al. [36] presented the performance analysis of an

OFDM system with two transmit antennas and a single receive antenna under the assumption of

perfect channel estimation. In addition, the authors in [37] also presented a new application for

STBC in OFDM. Instead of encoding OFDM symbols in time domain, the authors applied the

Alamouti code to subcarriers of OFDM signals. Even though, both systems provide the same data

rate, it has been shown that when the Alamouti code is applied to subcarriers, the performance is

superior to the case where the Alamouti code is applied to OFDM symbols in time varying chan-

nels [37]. For the OFDM systems that have Alamouti code applied to OFDM symbols, those systems

are typically known as STBC-OFDM or MIMO-OFDM. As for the case where the Alamouti code is

applied to subcarriers, they are generally referred as Space Frequency Block Code (SFBC) OFDM.

In this chapter, we will present the performance analysis of a M-ary Quadrature Amplitude Modu-

lation (M-QAM) MIMO-OFDM with two or four transmit antennas and a single receive antenna in

Rayleigh fading channels with and without the normalization in transmit power.

This chapter is organized as follows. Section 7.2 describes a MIMO-OFDM system with two

transmit antennas and one receive antenna and Section 7.3 will present the MIMO-OFDM system

with four transmit antennas and one receive antenna. In Section 7.4, we analyze the performance of

the MIMO-OFDM system described in Section 7.2 with and without the normalization in transmit

power. In Section 7.5, we will present the performance analysis for the other MIMO-OFDM sys-

tem which is equipped with four transmit antennas instead of two. Simulation models and results
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Figure 7.3 A system block diagram of a M-ary Quadrature Amplitude Modulation (M-QAM) MIMO-
OFDM system with two transmit antennas and one receive antenna in Rayleigh fading channels.

along with theoretical values will be presented for both cases in Section 7.6. Finally, Section 7.7

summarizes the chapter.

7.2 System Description - Two Transmit Antennas

In this section, a description of a MIMO-OFDM system with two transmit antennas and

one receive antenna will be presented and discussed first in detail, then followed by a discussion of

a MIMO-OFDM system with four transmit antennas. Fig. 7.3 shows a MIMO-OFDM system with

two transmit antennas. Each block is discussed in the following subsections.

7.2.1 Transmitter

The transmitter which is shown in Fig. 7.3 consists of a M-QAM modulator, IFFT and a

STBC encoder. The input to the M-QAM modulator is assumed to be binary data bits which are

equiprobable and statistically independent of each other. The stream of binary data bits are grouped

into blocks of size log2M . They are subsequently mapped into M-QAM symbols, denoted as X [k],

according to the alphabet, A = {(2m−1−
√

M)+ j(2n−1−
√

M)} where {m, n = 1, 2, ...
√

M} and

M is the size of constellation. The output of the modulator is then fed into and processed by IFFT.
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At time 2t

Transmit Antenna 1

Transmit Antenna 2

xo(n)

xe(n)

At time 2t+1

Transmit Antenna 1

Transmit Antenna 2

-x*e(n)

x*o(n)

Figure 7.4 An illustration of the Alamouti coding scheme

At appropriate sampling time, the signal at the output of the IFFT, denoted as x(n), is given by

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (7.1)

where N is the number of subcarriers.

7.2.2 STBC Encoder

For two transmit antennas, Fig. 7.4 illustrates how the STBC encoder which is implemented

based on the Alamouti code encodes the OFDM symbols over time and across antennas. Let xo(n)

and xe(n) be the odd and even number of OFDM symbols, respectively. At time 2t, xo(n) and xe(n)

are sent from transmit antenna one and transmit antenna two, respectively. At time 2t + 1, −x∗
e(n)

is transmitted from the first transmit antenna while x∗
o is transmitted from the second transmit

antenna. Let G2 be the matrix that describes the coding scheme, then G2 is [21]

G2 =

[

xo(n) xe(n)

−x∗
e(n) x∗

o(n)

]

(7.2)

where (·)∗ represents the complex conjugate operation and the subscript, 2, implies the number of

transmit antennas.

7.2.3 Channel Model and AWGN

Denote h1(n) as the impulse response of the channel between the first transmit antenna

and the receive antenna. The in-phase and quadrature components of h1(n) are assumed to be two

independent Gaussian random variables with zero mean and σ2
H1

variance. Let h2(n) be the channel

impulse response between the second transmit antenna and the receive antenna and its in-phase and

quadrature components are assumed to be two independent Gaussian random variables with zero

mean and σ2
H2

variance. Both Rayleigh fading channels are assumed to be statistically independent

of each other and are static for the duration of two OFDM symbols transmissions. The additive

white Gaussian noise (AWGN), denoted as w(n), represents the thermal noise and is modeled as an

independent AWGN process which has zero mean and 2σ2
w variance.
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7.2.4 Receiver

For the simplicity of notations, we will drop the time and frequency indices in the rest of

chapter. Assuming perfect synchronization, rt(n), the received signal in time domain at time index

t, is given by

rt =







h1xo + h2xe + wo t = odd

−h1x∗
e + h2x∗

o + we t = even
(7.3)

After rewriting (7.3) in the matrix format, rt(n) and its FFT are given by
[

ro

r∗e

]

︸ ︷︷ ︸

r

=

[

h1 h2

h∗
2 −h∗

1

]

︸ ︷︷ ︸

h

[

xo

xe

]

︸ ︷︷ ︸

x

+

[

wo

w∗
e

]

︸ ︷︷ ︸

w
[

Ro

R∗
e

]

︸ ︷︷ ︸

R

=

[

H1 H2

H∗
2 −H∗

1

]

︸ ︷︷ ︸

H

[

Xo

Xe

]

︸ ︷︷ ︸

X

+

[

Wo

W ∗
e

]

︸ ︷︷ ︸

W

r =hx + w
FFT←→ R = HX + W (7.4)

where the bold face letters represent matrices or vectors. To accurately demodulate the received

signal, estimating channel responses is necessary. In this chapter, we assume the channel impulse

responses are known to the receiver. Denote the output of the FFT as Y, then Y is found as

Y =HHR

=HHHX + HHW (7.5)

where (·)H is the Hermitian operation of matrix and HH is given by

HH =

[

H∗
1 H2

H∗
2 −H1

]

(7.6)

Here, one can notice the advantage of the Alamouti code which is the linear decoding. By multiplying

H with HH , the resulting matrix is an identity matrix with the channel gains, namely

HHH =

[

α2
1 + α2

2 0

0 α2
1 + α2

2

]

(7.7)

where α1 and α2 are the magnitudes of the channels, H1, and H2, respectively. Since (7.7) is a matrix

that has the nondiagonal elements being zero, this implies that Xo and Xe in (7.4) are decoupled

after multiplying R in (7.4) with HH .

7.3 System Description - Four Transmit Antennas

Fig. 7.5 shows the MIMO-OFDM system with Four transmit antennas. Each block is

discussed in the following subsections.
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Figure 7.5 A system block diagram of a M-ary Quadrature Amplitude Modulation (M-QAM) MIMO-
OFDM system with four transmit antennas and one receive antenna in Rayleigh fading channels.

7.3.1 Transmitter

Like in the case where there are two transmit antennas, the transmitter in this case is also

composed of a M-QAM modulator, an IFFT and a STBC encoder. The assumption for the input

signal to the M-QAM modulator is the same as for the case of two transmit antennas. In addition,

the signal at the output of the IFFT, denoted as x(n), has exactly the same expression as in the

case of two transmit antennas and is defined as (7.1).

7.3.2 STBC Encoder

In the case of four transmit antennas, the STBC encoder which is implemented based on

the code proposed by Tarokh et al. [34,35] encodes four OFDM symbols in each time slot and those

four coded OFDM symbols are transmitted from four different transmit antennas in that time slot.

The encoding process for the four transmit antennas is shown in Fig. 7.6. As it is shown in Fig. 7.6,

the same four OFDM symbols are encoded differently by the STBC encoder and are transmitted

from four different antennas in the second time slot. The encoding and transmission process continue

until the transmitter has reached eight transmissions.

Let x1(n), x2(n), x3(n), and x4(n) be the first, second, third and fourth OFDM sym-

bols, respectively. Denote G4 as the matrix that describes such STBC encoding process, then G4 is



100

At time 2t

Transmit Antenna 1

Transmit Antenna 2

x1(n)

x2(n)

Transmit Antenna 3

Transmit Antenna 4

x3(n)

x4(n)

At time 2t+1

Transmit Antenna 1

Transmit Antenna 2

-x2(n)

x1(n)

Transmit Antenna 3

Transmit Antenna 4

-x4(n)

x3(n)

At time 2t+2

Transmit Antenna 1

Transmit Antenna 2

-x3(n)

x4(n)

Transmit Antenna 3

Transmit Antenna 4

x1(n)

-x2(n)

At time 2t+3

Transmit Antenna 1

Transmit Antenna 2

-x4(n)

-x3(n)

Transmit Antenna 3

Transmit Antenna 4

x2(n)

x1(n)
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Transmit Antenna 1
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x*1(n)
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x*4(n)
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At time 2t+6

Transmit Antenna 1

Transmit Antenna 2

-x*3(n)
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x*1(n)
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At time 2t+7

Transmit Antenna 1

Transmit Antenna 2

-x*4(n)

-x*3(n)

Transmit Antenna 3

Transmit Antenna 4

x*2(n)

x*1(n)

Figure 7.6 An illustration of the STBC coding process for four transmit antennas
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given by [34, 35]

G4 =





















x1(n) x2(n) x3(n) x4(n)

−x2(n) x1(n) −x4(n) x3(n)

−x3(n) x4(n) x1(n) −x2(n)

−x4(n) −x3(n) x2(n) x1(n)

x∗
1(n) x∗

2(n) x∗
3(n) x∗

4(n)

−x∗
2(n) x∗

1(n) −x∗
4(n) x∗

3(n)

−x∗
3(n) x∗

4(n) x∗
1(n) −x∗

2(n)

−x∗
4(n) −x∗

3(n) x∗
2(n) x∗

1(n)





















(7.8)

7.3.3 Channel Model and AWGN

Let

• h1(n) be the channel impulse response between the first transmit antenna and the receive

antenna. In addition, h1(n) is modeled as a complex Gaussian random process with zero mean

and 2σ2
H1

variance.

• h2(n) be the channel impulse response between the second transmit antenna and the receive

antenna. h2(n) is also modeled as a complex Gaussian random process with zero mean and

2σ2
H2

variance.

• h3(n) be the channel impulse response between the third transmit antenna and the receive

antenna. Furthermore, the in-phase and quadrature components of h3(n) are Gaussian random

variables with zero mean and σ2
H3

variance.

• h4(n) be the channel impulse response between the fourth transmit antenna and the receive

antenna. In addition, h4(n) is modeled as a complex Gaussian random process with zero mean

and 2σ2
H4

variance.

All four channels and their in-phase and quadrature components are assumed to be statistically

independent of each other and are static for the duration of eight OFDM transmissions. Denote

w(n) as the thermal noise, then w(n) is modeled as an independent AWGN process with zero mean

and 2σ2
w variance.



102

7.3.4 Receiver

Assuming perfect synchronization, the received signal in time domain, denoted as rt(n), is

given by

rt(n) =












































h1x1 + h2x2 + h3x3 + h4x4 + w1 t = 1

−h1x2 + h2x1 − h3x4 + h4x3 + w2 t = 2

−h1x3 + h2x4 + h3x1 − h4x2 + w3 t = 3

−h1x4 − h2x3 + h3x2 + h4x1 + w3 t = 4

h1x∗
1 + h2x∗

2 + h3x∗
3 + h4x∗

4 + w5 t = 5

−h1x∗
2 + h2x∗

1 − h3x∗
4 + h4x∗

3 + w6 t = 6

−h1x∗
3 + h2x∗

4 + h3x∗
1 − h4x∗

2 + w7 t = 7

−h1x∗
4 − h2x∗

3 + h3x∗
2 + h4x∗

1 + w8 t = 8

(7.9)

where t denotes the signal transmission at time index t.

After writing (7.9) in the matrix format, rt(n) is given by




















r1

r2

r3

r4

r∗5

r∗6

r∗7

r∗8





















︸ ︷︷ ︸

r

=





















h1(n) h2(n) h3(n) h4(n)

−h2(n) h1(n) −h4(n) h3(n)

−h3(n) h4(n) h1(n) −h2(n)

−h4(n) −h3(n) h2(n) h1(n)

h∗
1(n) h∗

2(n) h∗
3(n) h∗

4(n)

−h∗
2(n) h∗

1(n) −h∗
4(n) h∗

3(n)

−h∗
3(n) h∗

4(n) h∗
1(n) −h∗

2(n)

−h∗
4(n) −h∗

3(n) h∗
2(n) h∗

1(n)





















︸ ︷︷ ︸

h










x1

x2

x3

x4










︸ ︷︷ ︸

x

+





















w1

w2

w3

w4

w∗
5

w∗
6

w∗
7

w∗
8





















︸ ︷︷ ︸

w

r =hx + w (7.10)

Consequently, the received signal in frequency domain, denote as R, is given by




















R1

R2

R3

R4

R∗
5

R∗
6

R∗
7

R∗
8





















︸ ︷︷ ︸

R

=





















H1 H2 H3 H4

−H2 H1 −H4 H3

−H3 H4 H1 −H2

−H4 −H3 H2 H1

H∗
1 H∗

2 H∗
3 H∗

4

−H∗
2 H∗

1 −H∗
4 H∗

3

−H∗
3 H∗

4 H∗
1 −H∗

2

−H∗
4 −H∗

3 H∗
2 H∗

1





















︸ ︷︷ ︸

H










X1

X2

X3

X4










︸ ︷︷ ︸

X

+





















W1

W2

W3

W4

W ∗
5

W ∗
6

W ∗
7

W ∗
8





















︸ ︷︷ ︸

W

R =HX + W (7.11)
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Let Y be the signal at the output of the FFT. Then, under the assumption of perfect

channel estimation, Y is given by

Y =HHR

=HHHX + HHW (7.12)

where HH in the case of four transmit antennas is given by

HH =










H∗
1 −H∗

2 −H∗
3 −H∗

4 H1 −H2 −H3 −H4

H∗
2 H∗

1 H∗
4 −H∗

3 H2 H1 H4 −H3

H∗
3 −H∗

4 H∗
1 H∗

2 H3 −H4 H1 H2

H∗
4 H∗

3 −H∗
2 H∗

1 H4 H3 −H2 H1










(7.13)

Here, in the case of four transmit antennas, the coding scheme has the same advantage that the

Alamouti code offers. By taking the product of HH and H, the resulting matrix is given by

HHH = 2(α2
1 + α2

2 + α2
3 + α2

4)










1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1










(7.14)

where α1, α2, α3, and α4 are the magnitudes of channels, H1, H2, H3 and H4, respectively. As one

can see from (7.14), this leads to the decouplings of X1, X2, X3 and X4 because (7.14) is an identity

matrix multiplied by a sum of four random variables.

7.4 Performance Analysis - Two Transmit Antennas

In this section, we will derive the bit error rate (BER) of the MIMO-OFDM system which

is described in Section 7.2. In order to make a fair comparison with the performance of SISO-OFDM

systems, we will also present the BER derivation of the MIMO-OFDM system with two transmit

antennas and one receive antenna for the case where there is a constraint of normalization in transmit

power. First, we will present the performance analysis of the system without the normalization in

transmit power, followed by the performance analysis of the same system but with the normalization

in transmit power.
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7.4.1 No Normalization in Transmit Power

After some algebra, the output of FFT, Y, is given by

Y =HHHX + HHW

=
(

α2
1 + α2

2

)

I2×2

[

Xo

Xe

]

+

[

H∗
1 H2

H∗
2 −H1

][

Wo

W ∗
e

]

=
(

α2
1 + α2

2

)

I2×2

[

Xo

Xe

]

+

[

H∗
1Wo + H2W ∗

e

H∗
2Wo − H1W ∗

e

]

︸ ︷︷ ︸

W
′

(7.15)

where I2×2 implies the 2 by 2 identity matrix. W
′

which has zero mean represents the noise

component of the received signal in (7.15). To derive the BER, it is necessary to find the variance

of W
′
. Denote σ2

W
′ as the variance matrix for W

′
, then σ2

W
′ is given by

σ2
W

′ =E
{

W
′

W
′H

}

=E

{[

H∗
1Wo + H2W ∗

e

H∗
2Wo − H1W ∗

e

]
[

H1W ∗
o + H∗

2We H2W ∗
o − H∗

1We

]
}

=
(

α2
1 + α2

2

)

σ2
wI2×2 (7.16)

To arrive the result in (7.16), we assume that the in-phase or quadrature components of Wo and

We have the same variance which is equal to σ2
w . In addition, we make no distinction between even

and odd number of OFDM symbols and we assume that each OFDM symbol has the same average

power, i.e. E{X2
o} = E{X2

e} = E{X2}. (7.15) becomes

Y =
(

α2
1 + α2

2

)

X + W
′

(7.17)

To continue derivation, we choose 16-QAM modulation as the modulation scheme. How-

ever, this derivation can be extended to any rectangular QAM modulation scheme. Denote PBER|α1,α2

as the conditional BER of 16-QAM symbols conditioned on α1 and α2, then PBER|α1,α2
is given by

PBER|α1,α2
=

1

2
(PMSB + PLSB)

=
3

4
Q

(√

(α2
1 + α2

2) d2

σ2
w

)

+
1

2
Q

(√

9 (α2
1 + α2

2) d2

σ2
w

)

−
1

4
Q

(√

25 (α2
1 + α2

2) d2

σ2
w

)

(7.18)

where PMSB and PLSB are the conditional probabilities of most significant bits and least significant

bits of 16-QAM symbols. d2 = 2
5Eb and Eb is energy per bit. Subsequently, let PBER be the

unconditional BER of 16-QAM, then PBER is found as

PBER =

∫ ∞

0

∫ ∞

0
PBER|α1,α2

p(α1)p(α2)dα1dα2 (7.19)
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where p(α1) and p(α2) are probability density functions (PDFs) of α1 and α2, respectively. Both

p(α1) and p(α2) are then given by

p(α1) =
α1

σ2
H1

e

−α2
1

2σ2
H1 p(α2) =

α2

σ2
H2

e

−α2
2

2σ2
H2 (7.20)

In most literature [38–42], (7.19) would be the end result of performance analysis. However,

(7.19) can be simplified further by rewriting the Q(·) function in its alternate form which is given

by ( [43], Eq:(4.2))

Q(x) =
1

π

∫ π
2

0
exp

(
−x2

2 sin2 θ

)

dθ (7.21)

One observation about (7.21) is this alternate form of Q function provides the same exact numerical

value if one evaluates using the conventional definition for the Q function. Substituting (7.20) and

(7.21) into (7.19), PBER then becomes

PBER =
1

π

∫ π
2

0

∫ ∞

0

∫ ∞

0

3

4

α1

σ2
H1

α2

σ2
H2

exp

(

−
(

α2
1 + α2

2

)

d2

2σ2
w sin2 θ

−
α2

1

2σ2
H1

−
α2

2

2σ2
H2

)

dα1dα2dθ

+
1

π

∫ π
2

0

∫ ∞

0

∫ ∞

0

1

2

α1

σ2
H1

α2

σ2
H2

exp

(

−9
(

α2
1 + α2

2

)

d2

2σ2
w sin2 θ

−
α2

1

2σ2
H1

−
α2

2

2σ2
H2

)

dα1dα2dθ

−
1

π

∫ π
2

0

∫ ∞

0

∫ ∞

0

1

4

α1

σ2
H1

α2

σ2
H2

exp

(

−25
(

α2
1 + α2

2

)

d2

2σ2
w sin2 θ

−
α2

1

2σ2
H1

−
α2

2

2σ2
H2

)

dα1dα2dθ (7.22)

Notice that (7.22) might seem to be more complicated than (7.19), however, (7.22) can be simplified

further due to the reason that α1 and α2 are independent of each other. To demonstrate, we will

use the first term in (7.22) as an example,

1

π

∫ π
2

0

∫ ∞

0

∫ ∞

0

3

4

α1

σ2
H1

α2

σ2
H2

exp

(

−
(

α2
1 + α2

2

)

d2

2σ2
w sin2 θ

−
α2

1

2σ2
H1

−
α2

2

2σ2
H2

)

dα1dα2dθ

=
3

4π

∫ π
2

0

∫ ∞

0

α2

σ2
H2

[∫ ∞

0

α1

σ2
H1

exp

(

−α2
1

(
d2

2σ2
w sin2 θ

+
1

2σ2
H1

))

dα1

]

exp

(

−α2
2

(
d2

2σ2
w sin2 θ

+
1

2σ2
H2

))

dα2dθ

=
3

4π

∫ π
2

0

1
[

1 +
σ2

H1
d2

σ2
w sin2 θ

]

∫ ∞

0

α2

σ2
H2

exp

(

−α2
2

(
d2

2σ2
w sin2 θ

+
1

2σ2
H2

))

dα2dθ

=
3

4π

∫ π
2

0

[

1 +
σ2

H1
d2

σ2
w sin2 θ

]−1 [

1 +
σ2

H2
d2

σ2
w sin2 θ

]−1

dθ (7.23)
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Applying the same procedure to the rest of terms in (7.22), PBER is then expressed as

PBER =
3

4π

∫ π
2

0

[

1 +
σ2

H1
d2

σ2
w sin2 θ

]−1 [

1 +
σ2

H2
d2

σ2
w sin2 θ

]−1

dθ

+
1

2π

∫ π
2

0

[

1 +
9σ2

H1
d2

σ2
w sin2 θ

]−1 [

1 +
9σ2

H2
d2

σ2
w sin2 θ

]−1

dθ

−
1

4π

∫ π
2

0

[

1 +
25σ2

H1
d2

σ2
w sin2 θ

]−1 [

1 +
25σ2

H2
d2

σ2
w sin2 θ

]−1

dθ (7.24)

Notice that compared to (7.19), (7.24) provides a much easier way to evaluate the same BER

expression since PBER now is equal to a sum of three single integrals instead of a sum of three

double integrals. However, one can not apply this simplifying approach to the performance analysis

of a system which has the nonlinear high power amplifiers (HPAs) in the transmitter. This is due

to the reason that when the nonlinear HPAs are present in the transmitter, the integration variable

would appear in both the numerator and denominator of the Q function’s argument which prevents

further mathematical simplification.

7.4.2 Normalization in Transmit Power

In this section, we will derive the BER for the MIMO-System which is shown in Fig. 7.3

for the case where the transmit power is normalized by the number of transmit antennas. With

the transmit power normalized by the number of transmit antennas, the received signal, denoted as

rt(n), and its FFT are given by
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At the output of FFT, Y is expressed as
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(7.26)

In addition, the variance for the noise matrix in (7.26) can be obtained by following the procedure

described in the case where the transmit power is not normalized and is found as (7.16). In this case,

we also assume that 16-QAM modulation is utilized to modulate signals. Denote PN
BER|α1,α2

as the



107

conditional BER for 16-QAM symbols conditioned on α1 and α2 for the case where the transmit

power is normalized by the number of transmit antennas, then PN
BER|α1,α2

is given by

PN
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=
1

2
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4
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(7.27)

In addition, let PN
BER be the unconditional BER for 16-QAM for the case where the transmit power

is normalized by the number of transmit antennas, then PN
BER is

PN
BER =

∫ ∞

0

∫ ∞

0
PN

BER|α1,α2
p(α1)p(α2)dα1dα2 (7.28)

where p(α1) and p(α2) are defined as (7.20). By writing Q(·) function as its alternate form, (7.28)

is given by
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7.5 Performance Analysis - Four Transmit Antennas

In this section, we will derive the BER of the MIMO-OFDM system which is described

in Section 7.3 with and without the constraint of normalization in transmit power. We will first

derive the performance of the system when total transmit power is not normalized, followed by the

derivation of the performance of the same system when the normalization is applied to the transmit

power.

7.5.1 No Normalization in Transmit Power

Recall that the output signal at the FFT is given by

Y =HHHX + HHW

=2
(

α2
1 + α2

2 + α2
3 + α2

4

)

I4×4X + W
′′

(7.30)
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where
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Since W
′′

is the noise component of (7.30). We need to find its mean and variance. The mean of

W
′′

is zero and the variance, denoted as σ2
W

′′ , is found as

σ2
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4

)

σ2
wI4×4 (7.32)

To arrive the result in (7.32), we assume that the in-phase and quadrature components of Wt where

t = 1, 2, ...8 have the same variance which equals σ2
w. To make a fair comparison, we will also

assume that the 16-QAM modulation is used to modulate signals, however, the derivation presented

here can be extended to other rectangular QAM modulation schemes. Furthermore, we make no

distinction between the first, the second, the third and the fourth OFDM symbols. We also assume

that the average power of X1, X2, X3 and X4 are the same, namely E{X2
1} = E{X2

2} = E{X2
3} =

E{X2
4} = E{X2}. Denote PBER|α1,α2,α3,α4

as the conditional BER for 16-QAM conditioned on α1,

α2, α3 and α4, then PBER|α1,α2,α3,α4
is expressed as
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(7.33)

Consequently, the unconditional BER, denoted as PBER is given by

PBER =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
PBER|α1,α2,α3,α4

p(α1)p(α2)p(α3)p(α4)dα1dα2dα3dα4 (7.34)

where p(α1), p(α2), p(α3) and p(α4) are PDFs of α1, α2, α3 and α4, respectively. In addition, they

are given by
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With the aid of (7.21), (7.34) is simplified further and becomes
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(7.36)

7.5.2 Normalization in Transmit Power

In the case where the transmit power is normalized by the number of transmit antennas,

the received signal in time domain is given by
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Consequently, the received signal in frequency domain is given by
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Let Y be the signal at the output of FFT, then Y is expressed as

Y =HHHX + HHW
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(7.39)

where W
′′

is the noise component and is defined as (7.31). In addition, its variance is defined as

(7.32).

We assume that the 16-QAM modulation is utilized to modulate signals. Like in pre-

vious cases, we make no distinction between four OFDM symbols and we assume that the average

power of X1, X2, X3 and X4 are the same, namely E{X2
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Subsequently, to obtain the unconditional BER, (7.40) is integrated over four PDFs, namely
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where p(α1), p(α3), p(α2) and p(α4) are defined as (7.35). Finally, rewriting Q(·) function as (7.21),

(7.41) is simplified to
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(7.42)

As one can see that (7.42) is much simpler and easier to evaluate since the BER expression contains

a sum of three single integrals instead of a sum of three quadruple integrals.
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Figure 7.7 BER performance of a 16-QAM MIMO-OFDM system in Rayleigh fading channels for
various number of transmit antennas with and without transmit power being normalized by the
number of transmit antennas. In all cases, there is only a single receive antenna and simulations are
performed under the assumption of perfect channel estimation.

7.6 Simulation Model and Simulation Results

The simulation models are implemented as described in Section 7.2 and 7.3. The input

binary bits are modulated with the 16-QAM modulation and are processed by a 64-point IFFT. The

resulting OFDM symbols are encoded by the STBC encoder based on the number of transmit anten-

nas before transmissions. At the receiver, the received signal is decoupled and the BER performance

is measured. In addition, without loss of generality, the means and variances of all Rayleigh fading

channels are set to zero and one, respectively. Fig. 7.7 shows the simulation and theoretical results

for a 16-QAM MIMO-OFDM system in Rayleigh fading channels for various number of transmit

antennas with and without the normalization in transmit power. In the case where there is only one

transmit antenna, the theoretical result is obtained from (Eq:(5.6)) in [43].

In general, for a given number of transmit antennas, the BER performance is worse when

the transmit power is normalized by the number of transmit antennas. This is due to the reason
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that the transmit power per antenna is smaller in value when compared with the case where the

transmit power is not normalized. Subsequently, when under the same amount of noise, the BER

performance for the case where the transmit power is normalized is worse than the case where the

transmit power is not normalized. There is one exception which is in the case where the number

of transmit antenna is one. In this case, all the transmit power is concentrated in a single antenna

regardless of whether there is a normalization. In addition, for a given signal to noise (SNR) value,

the performance improves as more transmit antennas are utilized for transmissions. Even though,

utilizing the four transmit antennas for data transmissions can offer better performance than in the

case where only two transmit antennas are being used, the transmission rate in the case of four

transmit antennas is less than in the case where two transmit antennas are utilized in the system.

This is because two different OFDM symbols are transmitted in two different time slots in the case

of two transmit antennas, however, in the case of four transmit antennas, four different OFDM

symbols are transmitted in eight different time slots. As a consequence, the transmission rate in

the case where there are two transmit antennas is twice as much as in the case where there are four

transmit antennas.

7.7 Conclusion

In this chapter, we first presented the performance analysis of a M-QAM MIMO-OFDM

system with the Alamouti code and two transmit antennas in Rayleigh fading channels. Furthermore,

the performance analysis of the MIMO-OFDM system with two transmit antennas was analyzed

both with and without the normalization in transmit power. The BER expressions for both cases

where there are two transmit antennas are simplified further by rewriting the Q(·) function as its

alternate form. The final BER expression is a sum of three single integrals and is easier to evaluate

compared to conventional results where the BER expression is a sum of three double integrals. Next,

we analyzed another M-QAM MIMO-OFDM system which has four transmit antennas in Rayleigh

fading channels. In this case, the performance analysis is also presented with and without the

transmit power being normalized by the number of transmit antennas. Furthermore, the complexity

of the BER expression presented for the case of four transmit antennas is significantly reduced to a

sum of three single integrals. We then presented simulation results along with the theoretical values

for 16-QAM MIMO-OFDM systems with various number of transmit antennas in Rayleigh fading

channels with and without the normalization in transmit power. In addition, we briefly discuss the

advantages and disadvantages of utilizing more than one transmit antennas for transmission.
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Effects of Nonlinear Amplifier and

Narrowband Interference on the

Performance of MIMO-OFDM

8.1 Introduction

As mentioned already in previous chapters, Orthogonal Frequency Division Multiplexing

(OFDM) has several technical advantages. Furthermore, due to the technical superiorities such as

high bandwidth efficiency and robustness in fading channels, OFDM has been adapted in IEEE stan-

dards such as IEEE 802.11a/g/n [2–4]. Despite its technical superiorities, one of major drawbacks

associated with OFDM is high peak to average power ratio (PAPR) which is due to the superimposi-

tion of multi-carrier signals. When the multi-carrier signals are added coherently in IFFT and FFT

processes, the output signal would have peak power that is L times larger than the average power

where L is the number of signals in the multi-carrier signal. In practice, this signal which has a high

peak to average power ratio often force practical high power amplifiers (HPAs) to operate at their

nonlinear region when it is amplified. As a consequence, HPAs often introduce nonlinear distortion

such as clipping and spectral regrowth which subsequently degrade the system performance [24,25].

Until recently, a Single Input Single Output (SISO) antenna configuration has always been

the mainstream implementation in wireless communication systems. As technology advances to-

ward the Fourth Generation (4G), the demand for high data rate which is needed in communication

applications has increased dramatically. To satisfy the acute demand for high data rate, Multiple

Input Multiple Output (MIMO) antenna configuration and Space Time coding (STC), more specif-

ically Space Time Block Code (STBC), have been proposed to increase the data rate in literature.

A simple technique that explores the diversity of the system was first proposed by Alamouti [21]

113



114

and was later applied to OFDM systems [36] which are generally referred to as MIMO-OFDM or

STBC-OFDM systems in literature. Furthermore, the performance of such MIMO-OFDM systems

with various sources of impairments has been studied and reported [38, 41, 44].

While there are some papers dealing with the performance of STBC-OFDM systems in

Rayleigh fading channels, very few address the combined effect of nonlinear HPA and narrowband

interference (NBI) on the performance of STBC-OFDM systems with and without channel estima-

tion error. In [41], the authors presented the performance analysis of STBC-OFDM in selective

fading channels without considering the effects of nonlinear HPA, NBI and channel estimation error.

Diao et. al [38] analyzed the performance of a STBC-OFDM system that is subject to channel esti-

mation error only. In [44], only simulation results of a Space-Frequency Block Code (SFBC) OFDM

and a SFBC-OFDM with carrier interferometry systems which were only subject to either nonlinear

HPAs or NBI were presented. In addition, the performance of a SFBC-OFDM system under those

impairments was not analyzed analytically in the paper. In addition, the authors in [44] assumed

that the source of NBI was close to the receiver; hence, NBI did not experience any channel effects.

This particular assumption does not provide useful insights to the performance of a STBC-OFDM

system in the presence of NBI because in many cases, the sources of NBI are usually located in

several city blocks away. Therefore, it is more reasonable and practical to assume that the NBI

signal experiences another separate channel response.

In Chapters 4 and 5 [45,46], we analyzed the performance of a Single Input Single Output

(SISO) M-ary Quadrature Amplitude Modulation (M-QAM) OFDM system that was subject to a

nonlinear HPA, channel estimation error, and jamming in a Rayleigh fading channel. In contrast

to the NBI model presented in [44], we assumed that the NBI by itself experienced a separate

channel response. The theoretical and simulation results of the performance of the OFDM system

were presented for various combination of impairments with and without channel estimation error

in the previous work. In this chapter, we extend our previously studied OFDM systems with mul-

tiple antennas while subjecting the system to nonlinear HPAs, a NBI and channel estimation error.

Then, we create a simulation model that is an extension to the analytical model such that it conforms

to the IEEE 802.11n specification. The simulation results are validated with the theoretical analysis.

The chapter is organized as follows. In Section 8.2, a system block diagram is presented

and each component is discussed in detail. Section 8.3 contains the performance analysis of the an-

alytical system. Section 8.4 discusses the simulation setup. Section 8.5 provides simulation results

of the system described in Section 8.4. Finally, Section 8.6 summarizes the chapter.
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Figure 8.1 The system block diagram of a M-QAM STBC-OFDM system which is subject to
nonlinear HPAs, narrowband interference and channel estimation error in Rayleigh fading channels.

8.2 System Description

The block diagram of an analytical system which has two transmit antennas and one receive

antenna is shown in Fig. 8.1. Each block in the system is discussed in more detail in following

subsections.

8.2.1 Transmitter

The transmitter is composed of a M-QAM modulator, IFFT, Nonlinear HPA and STBC

encoder. The binary input to the M-QAM modulator is assumed to be statistically equiprobable

and independent. They are subsequently grouped into a block size of log2M and mapped into M-

QAM symbols, X [k], according to the alphabet, A = {(2m − 1 −
√

M) + j(2n − 1 −
√

M)} where

m, n = 1, 2, ...
√

M and M is the signal constellation size. At appropriate sampling time, the signal

at the output of the IFFT which is denoted as x(n) is given by

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (8.1)

where N is the total number of subcarriers.

8.2.2 HPA Model

The nonlinear HPA model in the transmitter represents the nonlinear distortion imposed

on the signal. In this chapter, the nonlinear HPA model follows the Saleh model which has been
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described in Chapter 2, Section 2.3.

8.2.3 STBC Encoder

In this chapter, the STBC, or Alamouti code, for two transmit antennas and one receive

antenna is utilized to encode OFDM symbols. The encoding process of Alamouti code has been

described in Chapter 7, Section 7.2.2.

8.2.4 Narrowband Interference Model, Channel Model and AWGN

The NBI signal in time domain, i(n), is expressed as

i(n) =
1

N

N−1
∑

k=0

I[k]ej 2πnk
N (8.2)

where I[k] represents the NBI signal for the kth subcarrier and has power equal to |I[k]|2
2 .

Denote h1(n) as the impulse response of the channel between the first transmit antenna

and the receive antenna. The in-phase and quadrature components of h1(n) are assumed to be

Gaussian random variables with zero mean and σ2
H1

variance. Let h2(n) be the channel impulse

response between the second transmit antenna and the receive antenna and its in-phase and quadra-

ture components are assumed to be Gaussian random variables with zero mean and σ2
H2

variance.

Finally, let h3(n) be the channel impulse response between the source of NBI and the receiver. The

in-phase and quadrature components of h3(n) are Gaussian random variables with zero mean and

σ2
H3

variance. All three Rayleigh fading channels and their in-phase and quadrature components

are assumed to be statistically independent of each other and are static for the duration of two

OFDM symbols transmissions. The additive white Gaussian noise (AWGN) which is denoted as

w(n) represents the thermal noise and is modeled as an AWGN process which has zero mean and

2σ2
w variance.

8.2.5 Receiver

The receiver consists of a STBC decoder, a FFT and a M-QAM demodulator. For the

simplicity of notations, we will drop the time and frequency indices in the rest of chapter. Assuming

perfect synchronization, rt(n) which denotes the received signal in time domain at transmission time

index t is given by

rt =







h1so + h2se + h3i + wo t = odd

−h1s∗e + h2s∗o + h3i + we t = even
(8.3)

where the variables so and se represent the odd and even number of OFDM symbols, respectively. In

addition, (·)∗ implies the complex conjugate operation of the signal in the argument. After rewriting
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(8.3) in the matrix format, rt(n) and its FFT are given by

[

ro

r∗e

]

︸ ︷︷ ︸

r

=

[

h1 h2

h∗
2 −h∗

1

]

︸ ︷︷ ︸

hD

[

so

se

]

︸ ︷︷ ︸

s

+

[

h3 0

0 h∗
3

]

︸ ︷︷ ︸

hN

[

i

i

]

︸ ︷︷ ︸

i

+

[

wo

w∗
e

]

︸ ︷︷ ︸

w

r = hDs + hNi + w
FFT←→ R = HDS + HNI + W (8.4)

where the bold face letters represent either matrices or vectors.

To accurately demodulate the received signal, estimating the channel responses are neces-

sary and can be obtained with the aid of pilots in frequency domain. Let ĤD be the estimate of the

channel response matrix, HD, then ĤD is often expressed as [38]

ĤD =

[

Ĥ1 Ĥ2

Ĥ∗
2 −Ĥ∗

1

]

=

[

H1 + ε1 H2 + ε2

H∗
2 + ε∗2 −H∗

1 − ε∗1

]

(8.5)

where Ĥ1 and Ĥ2 are the channel estimates for channels, H1 and H2, respectively. The variable ε1

in (8.5) represents the error in estimating the channel, H1, and is modeled as a complex Gaussian

random process with zero mean and 2σ2
ε1 variance. The variable ε2 denotes the error in estimating

the channel, H2, and is assumed to be a complex Gaussian random process with zero mean and

2σ2
ε2 variance. In addition, both ε1 and ε2 are statistically independent of all three channels and are

statistically independent of each other as well.

Fig. 8.2 shows the scenario where only one subcarrier in the OFDM signal is under the

influence of NBI. As shown in Fig. 8.2, the NBI does not have impact on the subcarriers, other

than the one that it is present. For the situation where the NBI only affects some subcarriers in

the received signal, this suggests that the received signal can be broken down into two cases. Let

Y be the signal matrix at the output of the FFT, then for the case where the NBI is present in the

subcarrier, Y is found to be

Y =ĤH
DR

=ĤH
DHDS + ĤH

DHNI + ĤH
DW (8.6)

where (·)H denotes the Hermitian operation of the matrix. For the other case where the subcarrier

is not affected by the NBI, Y is obtained by setting I in (8.6) to zero, namely

Y = ĤH
DHDS + ĤH

DW (8.7)

8.3 Performance Analysis

In this section, the bit error rate (BER) of the analytical model shown in Fig. 8.1 is

derived and will later be used to measure the performance of the system. The performance analysis
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Figure 8.2 An illustration of effect of narrowband interference (NBI) on the OFDM signals

of the system starts with the characterization of x(n). Under the assumption that N is large, by

the Central Limit Theorem, x(n) is said to be Gaussian distributed with zero mean [19]. With that

assumption, Banelli, et al. [20] had shown that s(n) can be written as a product of a complex gain,

αG, and the input signal, x(n), added with noise distortion, dG(n). The transmitted signal, s(n),

and its FFT are then given by

s(n) = αGx(n) + dG(n)
FFT←→ S[k] = αGX [k] + DG[k] (8.8)

where DG[k] was shown to be a complex Gaussian random variable with zero mean and 2σ2
DG

variance. The numerical value of σ2
D can be obtained by following steps outlined in Section 2.4 of

Chapter 2.

For two different subcarriers, k1 and k2, DG[k1] and DG[k2] are mutually independent.

Furthermore, the in-phase and quadrature phase components of DG[k] were shown to be mutually

independent and identically distributed (i.i.d) [15]. The multiplicative coefficient αG in (8.8) is given
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by

αG =
E{s(n)∗x(n)}

2σ2
x(n)

= αGI + jαGQ (8.9)

where E{·} is the expected value [20] and (·)∗ denotes the complex conjugate of the signal. In

addition, the subscripts I and Q represent the in-phase and quadrature components.

As mentioned before in Section 8.2.5, the received signal at the output of the FFT de-

pends on whether the particular subcarrier is under the influence of NBI. Since the received signal

at the output of FFT for the case where the subcarrier is free from NBI can be obtained from the

other case where the NBI is present in the subcarrier, we will continue the derivation for the case

where the subcarrier is affected by the NBI. Once the derivation for this case is completed, the per-

formance analysis for the other case where the subcarrier is free from NBI can be found by setting

appropriate terms that are in the case where the subcarriers are interfered by NBI to zero.

After some mathematical simplification, (8.6) becomes

[

Yo

Ye

]

=(α2
1 + α2

2)I2×2

[

So

Se

]

+

[

H1ε∗1 + H∗
2 ε2 H2ε∗1 − H∗

1 ε2

H1ε∗2 − H∗
2 ε1 H∗

1 ε1 + H2ε∗2

][

So

Se

]

+

[

H3(H∗
1 + ε∗1) H∗

3 (H2 + ε2)

H3(H∗
2 + ε∗2) H∗

3 (−H1 − ε1)

][

I

I

]

+

[

H∗
1 + ε∗1 H2 + ε2

H∗
2 + ε∗2 −H1 − ε1

][

Wo

W ∗
e

]

(8.10)

where α1 and α2 are the magnitudes of H1 and H2, respectively. In addition, I2×2 represents a 2

by 2 identity matrix. Substituting (8.8) into (8.10), the received signal matrix, denoted as Y, is

expressed as

[

Yo

Y ∗
e

]

=(α2
1 + α2

2)I2×2

[

αGXo

αGXe

]

+ Ξ + Υ + Ψ + Φ + Ω (8.11)

where

Ξ =(α2
1 + α2

2)I2×2

[

DGo

DGe

]

Υ =

[

H1ε∗1 + H∗
2 ε2 H2ε∗1 − H∗

1 ε2

H1ε∗2 − H∗
2 ε1 H∗

1 ε1 + H2ε∗2

][

αGXo

αGXe

]

Ψ =

[

H1ε∗1 + H∗
2 ε2 H2ε∗1 − H∗

1 ε2

H1ε∗2 − H∗
2 ε1 H∗

1 ε1 + H2ε∗2

][

DGo

DGe

]

Φ =

[

H3(H∗
1 + ε∗1) H∗

3 (H2 + ε2)

H3(H∗
2 + ε∗2) H∗

3 (−H1 − ε1)

][

I

I

]

Ω =

[

H∗
1 + ε∗1 H2 + ε2

H∗
2 + ε∗2 −H1 − ε1

][

Wo

W ∗
e

]

(8.12)
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Since Ξ, Υ, Ψ, Φ, and Ω are noise with zero mean, finding the conditional variance for each term

is required in order to evaluate the performance of the system.

Let σ2
Ξ be the conditional variance for the in-phase or quadrature component of Ξ, then

σ2
Ξ is given as

σ2
Ξ = E

{

ΞΞH
}

= (α2
1 + α2

2)
2σ2

DG
I2×2 (8.13)

Denote σ2
Υ as the conditional variance for the in-phase or quadrature component of Υ, then σ2

Υ is

expressed as

σ2
Υ = E

{

ΥΥH
}

= |αG|2E
{

|X |2
}

(α2
1 + α2

2)(σ
2
ε1 + σ2

ε2)I2×2 (8.14)

One observation about (8.14) is the dependency of σ2
Υ on the choices of data modulation scheme,

more specifically, the signal constellation of the modulation. As already mentioned in Section 6.3 of

Chapter 6, the expression for σ2
Υ which is defined as (8.14) would yield the same numerical values

if the signal constellation is circular. However, in the situation where the signal constellation is not

circular, one should pay more attention to the calculation of σ2
Υ since the numerical values of E{|X |2}

would vary according to the symbols in the constellation. To explicitly show the dependency on

modulated symbols, we rewrite (8.14) as

σ2
Υi

= |αG|2E
{

|Xi|2
}

(α2
1 + α2

2)(σ
2
ε1 + σ2

ε2)I2×2 (8.15)

where the subscript i in Xi represents the ith modulated symbol in the constellation.

Denote σ2
Ψ as the conditional variance for the in-phase or quadrature component of Ψ,

then σ2
Ψ is found to be

σ2
Ψ = E

{

ΨΨH
}

= σ2
DG

(α2
1 + α2

2)(σ
2
ε1 + σ2

ε2)I2×2 (8.16)

Without loss of generality, it is assumed that E
{

X2
o

}

= E
{

X2
e

}

= E
{

X2
}

and σ2
DGo

= σ2
DGe

=

σ2
DG

when calculating (8.13), (8.14), and (8.16),. Denote σ2
Φ as the conditional variance for the

in-phase or quadrature component of Φ, then σ2
Φ is found to be

σ2
Φ = E

{

ΦΦH
}

=
|I[k]|2

2

[

φ11 φ12

φ21 φ22

]

(8.17)

where

φ11 =α2
3(α

2
1 + σ2

ε1 + α2
2 + σ2

ε2), φ21 = σ2
H3

(σ2
H2

+ σ2
ε2 − σ2

H1
− σ2

ε1)

φ12 =σ2
H3

(−σ2
H1

− σ2
ε1 + σ2

H2
+ σ2

ε2), φ22 = α2
3(α

2
2 + σ2

ε2 + α2
1 + σ2

ε1) (8.18)

where α3 is the magnitude of the channel, H3. Finally, let σ2
Ω be the conditional variance for the

in-phase or quadrature component of Ω, then σ2
Ω is

σ2
Ω = E

{

ΩΩH
}

= σ2
w(α2

1 + α2
2 + σ2

ε1 + σ2
ε2)I2×2 (8.19)
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Table 8.1 Numerical Values of Variables in Conditional BER for MSB

Index i XIi XQi E{|Xi|2} Index i XIi XQi E{|Xi|2}
1 d 3d 10d2 5 3d 3d 18d2

2 d d 2d2 6 3d d 10d2

3 d −d 2d2 7 3d −d 10d2

4 d −3d 10d2 8 3d −3d 18d2

Since E
{

X2
o

}

= E
{

X2
e

}

= E
{

X2
}

, (8.11) can be further reduced to

Y =
{

(α2
1 + α2

2)
(

αGI XI − αGQXQ

)

+ ΞI + ΥI + ΨI + ΦI + ΩI

}

+ j
{

(α2
1 + α2

2)(αGI XQ + αGQXI) + ΞQ + ΥQ + ΨQ + ΦQ + ΩQ

}

=YI + jYQ (8.20)

where ΞI , ΥI , ΨI , ΦI and ΩI represent the in-phase component of Ξ, Υ, Ψ, Φ and Ω, respectively.

Furthermore, ΞQ, ΥQ, ΨQ, ΦQ and ΩQ represent the quadrature component of Ξ, Υ, Ψ, Φ and

Ω, respectively.

To continue the derivation, we assume that 16-QAM modulation is utilized to modulate

data bits in the system. Nevertheless, other rectangular QAM constellations can be derived in the

similar fashion if they are chosen to modulate signals. For the case where the subcarrier is affected

by NBI and conditioned on α1, α2, and α3, the conditional BER, denoted as P I
BER|α1,α2,α3

, is

P I
BER|α1,α2,α3

=
1

2
(P I

MSB + P I
LSB) (8.21)

where P I
MSB and P I

LSB are the conditional BER of most significant bits (MSB) and least significant

bits (LSB) of 16-QAM symbols, respectively. Based on the decision boundaries, P I
MSB is given by

P I
MSB =

1

8

8
∑

i=1

Q

(√

Λ2
i

σ2
Ξ + σ2

Υi
+ σ2

Ψ + σ2
Φ + σ2

Ω

)

(8.22)

where Λi = (α2
1 + α2

2)(αGI XIi − αGQXQi) and Q(ν) =
∫∞

ν
1√
2π

e
−t2

2 dt, ν ≥ 0. In addition, σ2
Ξ, σ2

Υi
,

σ2
Ψ, σ2

Φ and σ2
Ω are defined in (8.13), (8.15), (8.16), (8.17) and (8.19), respectively. The numerical

values for XIi , XQi and E{|Xi|2} in (8.22) are listed in Table 8.1. For the case where the subcarriers

are affected by NBI, the conditional BER of LSB can be found in a similar way and it is found to

be

P I
LSB =

1

8

16
∑

i=1

λiQ

(√

(κi2(α2
1 + α2

2)d + ζiΛi)2

σ2
Ξ + σ2

Υi
+ σ2

Ψ + σ2
Φ + σ2

Ω

)

(8.23)

where λi, κi, and ζi are signs of the values for the ith quantity and are listed along with values

for XIi , XQi and E{|Xi|2} in Table 8.2. In both Tables 8.1 and 8.2, d2 = 2Eb

5 where Eb is the

energy per bit. For the case where the subcarrier is free from NBI, the conditional BER, denoted

as PF
BER|α1,α2

, is expressed as

PF
BER|α1,α2

=
1

2
(PF

MSB + PF
LSB) (8.24)
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Table 8.2 Numerical Values and Signs of Variables in Conditional BER for LSB

Index i λi κi ζi XIi XQi E{|Xi|2}
1 + + + d 3d 10d2

2 + + - d 3d 10d2

3 + + + d d 2d2

4 + + - d d 2d2

5 + + + d −d 2d2

6 + + - d −d 2d2

7 + + + d −3d 10d2

8 + + - d −3d 10d2

9 + - - −3d 3d 18d2

10 - + - −3d 3d 18d2

11 + - - −3d d 10d2

12 - + - −3d d 10d2

13 + - - −3d −d 10d2

14 - + - −3d −d 10d2

15 + - - −3d −3d 18d2

16 - + - −3d −3d 18d2

where PF
MSB and PF

LSB can be obtained from (8.22) and (8.23) by setting σ2
Φ to 0.

Finally, since some of data subcarriers in the signal are affected by NBI while some of

them are not, the unconditional BER is obtained by averaging of unconditional BER of the two

cases. Let N I be the number of data subcarriers which are affected by the NBI and NF = N − N I

be the number of data subcarriers which are free from NBI. Then, unconditional BER, denoted as

PBER, is given by

PBER =
N I

N

∫ ∞

0

∫ ∞

0

∫ ∞

0
P I

BER|α1,α2,α3
p(α1)p(α2)p(α3)dα1dα2dα3

+
NF

N

∫ ∞

0

∫ ∞

0
PF

BER|α1,α2
p(α1)p(α2)dα1dα2 (8.25)

where p(αi) is the probability density function (PDF) of αi and is given by [47]

p(αi) =
αi

σ2
Hi

e

−α2
i

2σ2
Hi i = 1, 2, 3 (8.26)

Notice that in (8.25), the first term represents the BER contribution from the case where the

subcarriers are affected by the NBI while the second term represents the BER contribution from the

case where the subcarriers are free from NBI. If we further assume that the NBI is not present in

the channel, i.e. N I = 0, (8.25) is further reduced to

PBER =

∫ ∞

0

∫ ∞

0
PF

BER|α1,α2
p(α1)p(α2)dα1dα2 (8.27)
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Table 8.3 Summary of Simulation Cases

Case Number NBI Power HPA Subcarriers 2σ2
ε

1 0 Varying 0 0
2 Varying Constant 1 0
3 Constant Constant Varying 0
4 Constant Constant 1 Varying

Table 8.4 Simulation Parameters for Nonlinear HPA Model

Case Number αAM βAM αPM βPM

1-A 1 0 0 0
1-B 1 0.25 π 0.25
1-C 1 0.25 1.2π 0.01
1-D 1 0.25 1.5π 0.01

8.4 Simulation Model and Parameters

The simulation model is an extension of the analytical model such as it complies with the

IEEE 802.11n standard ( [4], Clause 10.4.4.2 rate code 118); except the convolutional encoder, in-

terleaver/deinterleaver and Viterbi decoder are omitted from the model. After pre-appending 16-bit

Service Field and padding enough bits to ensure the transmission from each antenna are multiples

of whole OFDM symbols, the resulting signal is scrambled with a scrambler that is based on the

IEEE 802.11a standard. The data is modulated with the 16-QAM modulation and processed with

the 64-point IFFT, of which subcarriers, ±21, are designated for pilots. The OFDM symbols are

then cyclically extended and passed through the nonlinear HPAs. The resulting OFDM symbols

are encoded using STBC encoding scheme as described in Section 8.2.3 and pre-appended with the

preamble sequences as specified in [4] before transmission. To recover the data, the corresponding

receiver reverses the encoding procedure in the transmitter.

The simulations are performed based on the extended model for four cases which are sum-

marized in Table 8.3. In case 1, the transmitted signal is subjected to various degrees of nonlinear

distortion introduced by the nonlinear HPAs while the power of NBI is assumed to be zero. The

numerical values for parameters used in the nonlinear HPA model are listed in Table 8.4. Notice in

case 1-A where αAM is set to one while the rest of parameters are set to zero, the HPA becomes

a perfectly linear HPA which has an unity gain with no phase distortion. Instead of varying the

nonlinearity, in case 2, we vary the power of NBI. Furthermore, we assume that only one subcarrier

is interfered by the NBI. As for case 3, we let the total power of NBI be a constant which is equal

to 52

2 . We then vary the number of subcarriers that are affected by the NBI. For the first three

cases, we assume that the channel estimation is perfect. For case 4, we simulate the system which

is impaired by NBI and nonlinear HPAs for various levels of the channel estimation error. In the

cases 2, 3, and 4, the parameters for nonlinear HPA model for the case 1-C are used in simulations.

Finally, we assume the Rayleigh channels have unity variances. In addition, we let the variances
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Figure 8.3 BER performance of a MIMO-OFDM system that is subject to nonlinear distortion
which is produced by nonlinear HPAs.

of the channel estimation error when estimating both channels, H1 and H2, to be the same, i.e.

σ2
ε1 = σ2

ε2 = σ2
ε .

8.5 Simulation Results

In case 1 where we assume the only source of degradation aside from AWGN is nonlinear

distortion introduced by nonlinear HPAs, the simulation and theoretical results are shown in Fig.

8.3. As one can observe from Fig. 8.3, the BER performance degrades as more nonlinear distortion

is introduced by the nonlinear HPAs to the system. This is due to the reason that as the system

is subject to more nonlinear distortion, the power of nonlinear distortion or overall noise power

increases for a given SNR value. As a result, the BER performance gets worse. For case 2, the

amplitude of NBI varies from 0 to 1.5 with an increment of 0.5. The simulation results are plotted

against the theoretical values obtained from (8.25) and are shown in Fig. 8.3. Depending on how

much degradation there is in the system, the error floor in the performance might occur at higher

signal to noise ratio (SNR) than the other case. In both cases, the error floor generally occurs at
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Figure 8.4 BER performance of a MIMO-OFDM system that is impaired by nonlinear HPAs and
NBI for various amplitude. In addition, it is assumed that there is only one subcarrier which is
interfered by the NBI.

around 25 dB. The occurrence of the error floor can be explained by the SNR of either the MSB or

LSB probabilities. For example, at the high SNR, the effect of σ2
w is negligible compared to σ2

Ξ and

σ2
Φ. As a result, the SNR for MSB BER becomes

SNRMSB -
(α2

1 + α2
2)

2(αGI XIi − αGQXQi)
2

σ2
Ξ + σ2

Φ

(8.28)

where SNRMSB is only a function of Eb, αG, σ2
Ξ, and σ2

Φ of which αG and σ2
Ξ are constants for

a given set of parameters used in the nonlinear HPA model. In addition, σ2
Φ only depends on the

power of NBI. Therefore, at high SNR, the system still has the same amount of degradation and

subsequently produces an error floor in BER performance.

In case 3, the total power of NBI is held constant; however, the number of data subcarriers

that are affected by the NBI are set to 0, 1, 5 and 10. Both simulation and theoretical results are

shown in Fig. 8.5. As one can see from Fig. 8.5, the NBI that has all its energy concentrated in

one data subcarrier causes the most degradation in the system performance as compared to other
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Figure 8.5 BER performance of a MIMO-OFDM system that is impaired by nonlinear HPAs and
NBI for various number of subcarriers that are interfered by NBI. The total power of NBI is assumed
to be constant.

cases where the number of data subcarriers that are affected by NBI is greater than one subcarrier.

This is because as the number of subcarriers that are affected by NBI increases, the power of NBI

per subcarrier has to decrease in order to preserve the condition that the total NBI power is held

constant. As a result, σ2
Φ becomes smaller in value and has less impact on the system performance.

By looking at the results in Fig. 8.5, one might be inclined to use a NBI who has all

its energy concentrated in one data subcarrier when it comes to designing a NBI. Even though,

this particular approach causes the most degradation in the system performance, it is not practical

in real situations for two main reasons. The first main reason is, in order for this type of NBI to

be effective and causes sever degradation in system performance, the NBI must have the perfect

knowledge of the center frequency of the transmitted signal. Otherwise, the system is completely

free from the NBI interference. Another reason is the system can simply turn off the particular

subcarrier’s frequency at which the NBI interferes. By doing so, the BER performance can improve

greatly at the expenses of decreased in data rate.
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Figure 8.6 BER performance of a MIMO-OFDM system that is impaired by nonlinear HPAs and
NBI for various values of 2σ2

ε .

Finally, the BER performance further degrades when there are errors in estimating chan-

nel responses. Fig. 8.6. shows the effect of channel estimation error on the performance of a

MIMO-OFDM system that is subject to nonlinear HPAs and NBI.

8.6 Conclusion

In this chapter, we analyzed the performance of a MIMO-OFDM system that was subject

to nonlinear HPAs, NBI and channel estimation error in Rayleigh fading channels. The model for

the NBI presented in this chapter was more realistic compared to the other models in previous

studies because it experienced a separate channel response. Since the NBI was only affecting some

of the data subcarriers, the received signal in frequency domain can be separated into two cases.

One of which is for the situation where the subcarriers are interfered by the NBI. The other case

represents the scenario which the subcarriers are free from the interference of NBI. In this chapter,

we derived the BER expressions for the two cases and showed how the BER expression of the case
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where the subcarriers were free from the interference of NBI can be obtained from the other case

where the subcarriers are affected by NBI by setting appropriate terms in the SNR expression to

zero. For the purpose of simulation, we also extended the analytical model such that it conforms to a

MIMO-OFDM WLAN system as specified in the IEEE 802.11n specification. We also discussed the

effectiveness of NBI with various bandwidth on the BER performance of the MIMO-OFDM system

under the condition that the total NBI power was held constant. Finally, we presented both simula-

tion and theoretical results for various sets of degradation with and without channel estimation error.

The text in Chapter 8 is based on the material as it appears in:

David W. Chi and Pankaj Das, “Effects of Nonlinear Amplifier and Narrowband Interference in

MIMO-OFDM with Application to 802.11n WLAN”, 2008 IEEE Global Communications Confer-

ence (Submitted).

The dissertation author was the primary researcher and author, and the co-author listed in the

publication directed and supervised the research which forms the basis for this chapter.



9

Effects of Jammer with Normalized

Frequency Offset and Nonlinear

Amplifier on the Performance of

MIMO-OFDM

9.1 Introduction

In Orthogonal Frequency Division Multiplexing (OFDM), the broadband channel is di-

vided into several orthogonal and narrowband subchannels which are known as subcarriers. The

bandwidth of a subcarrier is often smaller than the channel coherence bandwidth; therefore, OFDM

systems are able to deliver high data rates with high bandwidth efficiency and lower receiver com-

plexity. Due to those technical advantages mentioned previously, OFDM has been adopted in IEEE

standards such as IEEE 802.11a/g/n [2–4]. In addition, it is currently being considered for the

fourth generation (4G) mobile and Wireless Local Area Network (WLAN) communication systems.

In the past, the Single Input Single Output (SISO) has always been a main configura-

tion for antenna implementation in wireless communication systems. However, the SISO antenna

implementation can no longer satisfy the demands of high data rate and superior performance as

wireless technology moves toward 4G. To further enhance the system performance, a simple coding

scheme which encodes transmitted symbols in time and across space domain, then transmits mul-

tiple encoded symbols through multiple antennas was first proposed by Alamouti [21]. This simple

coding technique which is generally referred to as Space Time Block Code (STBC) or Alamouti code

was later applied in OFDM systems and its system performance was first presented in [36]. Since

129
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then, OFDM systems with multiple antennas configuration and STBC are generally referred to as

Multiple Input Multiple Output (MIMO)-OFDM or STBC-OFDM systems in literature.

Even though, OFDM has abilities to deliver high data rate and offer robustness in per-

formance in fading channels, by itself, OFDM is also known to have some disadvantages such as

high peak to average power ratio (PAPR) and high sensitivity to frequency offset or phase noise.

The phenomenon of high PAPR is a direct consequence of the superimposition of multi-carrier sig-

nals. Practical high power amplifiers (HPAs) have difficulty reproducing such high PAPR signals

and often introduce nonlinear distortion such as clipping and spectral regrowth which subsequently

degrade the system’s performance [24, 25]. In general, the frequency offset is caused by the fre-

quency deviation between the transmitter and receiver, or by Doppler shift. Unlike the frequency

offset, the phase noise is usually a random process because the phase noise is often caused by the

fluctuation of the transmitter and receiver oscillators. When either the frequency offset or phase

noise is present in the system, the orthogonality between subcarriers is no longer valid. As a result,

the inter-carrier interference (ICI) will occur and the system performance degrades [5]. The perfor-

mance of MIMO-OFDM systems with various degradation sources has been studied extensively and

reported [38, 40, 41, 44].

While there are some papers dealing with the effect of nonlinear distortion and channel

estimation error in MIMO-OFDM systems, very few adequately address the joint effect of nonlinear

HPAs and jammer on the performance of MIMO-OFDM systems in Rayleigh fading channels. Mudu-

lodu, et al. presented the performance of a MIMO-OFDM system in the selective fading channel

without considering the effects of either nonlinear HPAs, jammer or channel estimation error [41].

In [38, 40], the authors only considered the effect of channel estimation error on the performance of

MIMO-OFDM systems. In [44], simulation results of a Space-Frequency Block Code (SFBC)-OFDM

and a SFBC-OFDM with carrier interferometry systems which were only subject to either nonlin-

ear distortion or narrowband interference (NBI) were presented. Nevertheless, the performance of

a SFBC-OFDM system under those impairments was not analyzed analytically in the paper. In

addition, the authors assumed that the source of NBI was close to the receiver; hence, NBI did

not experience any channel effects. This particular assumption does not provide useful insights to

the performance of a MIMO-OFDM system in the presence of jammer because in most cases, the

sources of jamming are often located in remote areas such as satellites in orbit or battleships at

sea. Therefore, it is more reasonable and practical to assume that the jamming signal experiences

another separate channel response.

In previous chapter [45, 46], we analyzed the joint effect of nonlinear HPA and jammer

on the performance of OFDM systems with and without channel estimation error. In contrast to

the jammer model presented in [44], we assumed that the jammer by itself experienced a separated
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channel response. We then extended our work to the case where multiple antennas were included

in the system [48]. In this chapter, we further extend the jamming model that was presented in our

previous work to include the situations where the jammer has an offset in frequency with respect

to the desired signal. This assumption is generally valid because the jammer usually does not have

prior knowledge of which frequency the desired signal is being transmitted. As a consequence, the

jammer, in most cases, transmits at a frequency which is slightly offset from the frequency that the

receiver has locked onto and introduces varying amounts of interference to the system. Using this

proposed jammer model, we present the performance analysis of a MIMO-OFDM system which is

also impaired by nonlinear HPAs. Furthermore, the analytical model is extended to be in compliance

with the IEEE 802.11n standard for the purpose of simulation.

The chapter is organized as follows. In Section 9.2, the block diagram of analytical system

is presented and each component is discussed in detail. Section 9.3 contains the performance analy-

sis of the analytical model. Section 9.4 discusses the simulation setup and parameters for extended

model. Section 9.5 provides simulation results of the model described in Section 9.4. Finally, Section

9.6 summarizes the chapter.

9.2 System Description

The block diagram of an analytical system which has two transmit antennas and one receive

antenna is shown in Fig. 9.1. Each block in the system is discussed in more detail in following

subsections.

9.2.1 Transmitter

The transmitter is composed of a M-ary Quadrature Amplitude Modulation (M-QAM)

modulator, a IFFT, a nonlinear HPA and a STBC encoder. The binary input to the M-QAM

modulator is assumed to be equiprobable and independent. They are subsequently grouped into a

block size of log2M and mapped into M-QAM symbols, X [k], according to alphabet, A = {(2m −
1 −

√
M) + j(2n− 1 −

√
M)} where {m, n = 1, 2, ...

√
M} and M is the signal constellation size. At

appropriate sampling time, the signal at the output of the IFFT, denoted as x(n), is expressed as

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (9.1)

where N is the total number of subcarriers.

9.2.2 HPA Model

The nonlinear HPA model in the transmitter represents the nonlinear distortion imposed

on the signal. In this chapter, the nonlinear HPA model follows the Saleh model which has been
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Figure 9.1 The system block diagram of a M-QAM MIMO-OFDM system which is subject to
nonlinear HPAs, jammer and channel estimation error in Rayleigh fading channels.

described in Chapter 2, Section 2.3.

9.2.3 STBC Encoder

In this chapter, the STBC, or Alamouti code, for two transmit antennas and one receive

antenna is utilized to encode OFDM symbols. The encoding process of Alamouti code has been

described in Chapter 7, Section 7.2.2.

9.2.4 Jammer Model, Channel Model and AWGN

The jamming signal in time domain, denoted as j(n), is expressed as

j(n) =
1

N

N−1
∑

k=0

J [k]ej 2πn(k+f)
N (9.2)

where J [k] represents the jamming signal for the kth subcarrier and has power equal to |J[k]|2
2 .

Furthermore, f in (9.2) represents the normalized frequency offset between the jamming and trans-

mitted signals.

Denote h1(n) as the impulse response of the Rayleigh fading channel between the first

transmit antenna and the receive antenna. The in-phase and quadrature components of h1(n) are

assumed to be Gaussian random variables with zero mean and σ2
H1

variance. Let h2(n) be the chan-

nel impulse response between the second transmit antenna and the receive antenna and its in-phase
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and quadrature components are assumed to be Gaussian random variables with zero mean and σ2
H2

variance. Finally, let h3(n) be the channel impulse response between the jammer and the receiver.

The in-phase and quadrature components of h3(n) are Gaussian random variables with zero mean

and σ2
H3

variance. All three Rayleigh fading channels and their in-phase and quadrature compo-

nents are assumed to be statistically independent of each other and the channel impulse responses

are static for the duration of two OFDM symbols transmissions. The additive white Gaussian noise

(AWGN), denoted as w(n), represents the thermal noise and is modeled as an AWGN process which

has zero mean and 2σ2
w variance.

9.2.5 Receiver

For the simplicity of notation, we will drop the time and frequency indices. Let rt(n) be

the received signal in time domain for the transmission time index t, under the assumption of perfect

synchronization, rt(n) is then given by

rt =







h1so + h2se + h3j + wo t = odd

−h1s∗e + h2s∗o + h3j + we t = even
(9.3)

The odd and even number of OFDM symbols are denoted as so and se, respectively. In addition,

(·)∗ implies the complex conjugate operation of the signal in the argument. Representing (9.3) in

the matrix format, r(n) becomes

[

ro

r∗e

]

︸ ︷︷ ︸

r

=

[

h1 h2

h∗
2 −h∗

1

]

︸ ︷︷ ︸

hD

[

so

se

]

︸ ︷︷ ︸

s

+

[

h3 0

0 h∗
3

]

︸ ︷︷ ︸

hN

[

j

j

]

︸ ︷︷ ︸

j

+

[

wo

w∗
e

]

︸ ︷︷ ︸

w

r = hDs + hNj + w (9.4)

where the bold face letters represent matrices or vectors.

To accurately demodulate the received signal, estimating the channel responses are neces-

sary and can be obtained with the aid of pilots in frequency domain. Let ĤD be the matrix which

presents the estimate of channel matrix, then ĤD is often expressed as [38]

ĤD =

[

Ĥ1 Ĥ2

Ĥ∗
2 −Ĥ∗

1

]

=

[

H1 + ε1 H2 + ε2

H∗
2 + ε∗2 −H∗

1 − ε∗1

]

(9.5)

where Ĥ1 and Ĥ2 are channel estimates for channels, H1 and H2, respectively. In addition, H1 and

H2 are the Fast Fourier Transform (FFT) of h1(n) and h2(n). The variable ε1 in (9.5) represents

the error in estimating the channel, H1, and is modeled as a complex Gaussian random process

with zero mean and 2σ2
ε1 variance. Furthermore, ε2 denotes the error in estimating the channel, H2,

and is assumed to be a complex Gaussian random process with zero mean and 2σ2
ε2 variance. In

addition, both the in-phase and quadrature components of ε1 and ε2 are statistically independent of
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all three channels and are statistically independent of each other.

Denote Y as the signal matrix at the output of FFT, then Y is found to be

Y =

[

Yo

Ye

]

= ĤH
DR (9.6)

where R is the FFT of r which is defined as (9.4). In addition, (·)H implies the Hermitian operation

of the matrix.

9.3 Performance Analysis

In this section, the bit error rate (BER) of the analytical model shown in Fig. 9.1 is

derived and will later be used to measure the performance of the system. The performance analysis

of the system starts with the characterization of x(n). Under the assumption that N is large, by

the Central Limit Theorem, x(n) is said to be Gaussian distributed with zero mean [19]. With that

assumption, Banelli, et al. [20] had shown that s(n) can be written as a product of a complex gain,

αG, and the input signal, x(n), added with noise distortion dG(n). The transmitted signal, denoted

as s(n), and its FFT are given by

s(n) = αGx(n) + dG(n)
FFT←→ S[k] = αGX [k] + DG[k] (9.7)

where DG[k] was shown to be a complex Gaussian random variable with zero mean and 2σ2
DG

vari-

ance which can be obtained by following the steps outlined in [20].

For two different subcarriers, k1 and k2, DG[k1] and DG[k2] are mutually independent

of each other. Furthermore, the in-phase and quadrature components of DG[k] were shown to be

mutually independent and identically distributed (i.i.d) [15]. The multiplicative coefficient αG in

(9.7) is given by

αG =
E{s(n)∗x(n)}

2σ2
x(n)

= αGI + jαGQ (9.8)

where E{·} is the expected value [20]. The subscripts I and Q represent the in-phase and quadrature

components.

After some mathematical simplification, (9.6) becomes
[

Yo

Ye

]

=(α2
1 + α2

2)I2×2

[

So

Se

]

+

[

H1ε∗1 + H∗
2 ε2 H2ε∗1 − H∗

1 ε2

H1ε∗2 − H∗
2 ε1 H∗

1 ε1 + H2ε∗2

][

So

Se

]

+

[

H3(H∗
1 + ε∗1) H∗

3 (H2 + ε2)

H3(H∗
2 + ε∗2) H∗

3 (−H1 − ε1)

] [

JD

JD

]

+

[

H3(H∗
1 + ε∗1) H∗

3 (H2 + ε2)

H3(H∗
2 + ε∗2) H∗

3 (−H1 − ε1)

][

JO

JO

]

+

[

H∗
1 + ε∗1 H2 + ε2

H∗
2 + ε∗2 −H1 − ε1

][

Wo

W ∗
e

]

(9.9)
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where α1 and α2 are the magnitudes of H1 and H2, respectively. In addition, I2×2 represents a 2 by

2 identity matrix. JD and JO in (9.9) are defined as

JD[k] =J [k]
1

N

N−1
∑

n=0

ej2π fn
N

JO[k] =
N−1
∑

n=0

1

N

N−1
∑

l=0
l "=k

J [l]ej2π (l+f−k)n
N (9.10)

As shown in Fig. 5.2 in Section 5.3 of Chapter 5, when the normalized frequency offset

is nonzero, the jammer will affect all the subcarriers in the received signal with varying amount of

jamming power. This can also be seen from (9.9). One can observe the effect of the frequency offset

that is due to the mismatch between the frequencies of jamming and desired signals. When the

jammer has prior knowledge about the frequency of the desired signal, i.e. the frequency offset is

zero, JD[k] which is due to the jammer in the channel is the only source of interference present in

the received signal aside from nonlinear distortion caused by HPAs and AWGN. In the case where

the frequency offset is nonzero, not only is JD[k] present in the received signal, but the jammer

produces an additional interference, JO[k], which behaves like ICI and causes further degradation

in the BER performance.

Substituting S[k] in (9.7) into (9.9), the received signal, Y, is expressed as
[

Yo

Y ∗
e

]

=(α2
1 + α2

2)I2×2

[

αGXo

αGXe

]

+ Ξ + Υ + Ψ + ΦD + ΦO + Ω (9.11)

where

Ξ =(α2
1 + α2

2)I2×2

[

DGo

DGe

]

Υ =

[

H1ε∗1 + H∗
2 ε2 H2ε∗1 − H∗

1 ε2

H1ε∗2 − H∗
2 ε1 H∗

1 ε1 + H2ε∗2

][

αGXo

αGXe

]

Ψ =

[

H1ε∗1 + H∗
2 ε2 H2ε∗1 − H∗

1 ε2

H1ε∗2 − H∗
2 ε1 H∗

1 ε1 + H2ε∗2

][

DGo

DGe

]

ΦD =

[

H3(H∗
1 + ε∗1) H∗

3 (H2 + ε2)

H3(H∗
2 + ε∗2) H∗

3 (−H1 − ε1)

][

JD

JD

]

ΦO =

[

H3(H∗
1 + ε∗1) H∗

3 (H2 + ε2)

H3(H∗
2 + ε∗2) H∗

3 (−H1 − ε1)

][

JO

JO

]

Ω =

[

H∗
1 + ε∗1 H2 + ε2

H∗
2 + ε∗2 −H1 − ε1

][

Wo

W ∗
e

]

(9.12)

Since Ξ, Υ, Ψ, ΦD, ΦO and Ω are noise with zero mean, obtaining the conditional variance for

each term is required in order to evaluate the system performance.
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Let σ2
Ξ be the conditional variance for the in-phase or quadrature component of Ξ, then

σ2
Ξ is given by

σ2
Ξ = E

{

ΞΞH
}

= (α2
1 + α2

2)
2σ2

DG
I2×2 (9.13)

Denote σ2
Υ as the conditional variance for the in-phase or quadrature component of Υ, then σ2

Υ is

expressed as

σ2
Υ = E

{

ΥΥH
}

= |αG|2E
{

|X |2
}

(α2
1 + α2

2)(σ
2
ε1 + σ2

ε2)I2×2 (9.14)

Looking at (9.14), one might notice the dependency on modulated symbols, X , in the expression

for σ2
Υ. As mentioned in previous chapters, the numerical values for σ2

Υ significantly depends on the

shape of the signal constellation. For M-ary Phase Shift Keying (M-PSK) modulations which have

circular signal constellations, E{|X |2} are the same for all M-PSK symbols. However, the numerical

values of E{|X |2} are different when the modulation does not have a circular signal constellation.

Therefore, one shall pay more attention to the calculation of σ2
Υ. To include all possible signal

constellations, we will rewrite (9.14) as

σ2
Υi

= |αG|2E
{

|Xi|2
}

(α2
1 + α2

2)(σ
2
ε1 + σ2

ε2)I2×2 (9.15)

where the subscript i in Xi represents the ith modulated symbol in the constellation.

Denote σ2
Ψ as the conditional variance for the in-phase or quadrature component of Ψ,

then σ2
Ψ is found to be

σ2
Ψ = E

{

ΨΨH
}

= σ2
DG

(α2
1 + α2

2)(σ
2
ε1 + σ2

ε2)I2×2 (9.16)

Without loss of generality, it is assumed that E
{

X2
o

}

= E
{

X2
e

}

= E
{

X2
}

and σ2
DGo

= σ2
DGe

=

σ2
DG

when obtaining (9.13), (9.14), and (9.16). Denote σ2
ΦD

as the conditional variance for the

in-phase or quadrature component of ΦD, then σ2
ΦD

is found to be

σ2
ΦD

= E
{

ΦDΦD
H
}

= σ2
JD

[

φ11 φ12

φ21 φ22

]

(9.17)

where

φ11 =α2
3(α

2
1 + σ2

ε1 + α2
2 + σ2

ε2), φ21 = σ2
H3

(σ2
H2

+ σ2
ε2 − σ2

H1
− σ2

ε1)

φ12 =σ2
H3

(−σ2
H1

− σ2
ε1 + σ2

H2
+ σ2

ε2), φ22 = α2
3(α

2
2 + σ2

ε2 + α2
1 + σ2

ε1) (9.18)

and σ2
JD

can be found by first expanding JD[k] using Geometric series which is defined as [29]

N−1∑

i=0

αi =
1 − αN

1 − α
|α| < 1 (9.19)
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After expansion, σ2
JD

is found to be

σ2
JD

=E{JD[k]J∗
D[k]} =

1

N2




sin2(πf)

sin2
(

πf
N

)




|J [k]|2

2
(9.20)

Let σ2
ΦO

be the conditional variance for the in-phase or quadrature component of ΦO, then σ2
ΦO

can

be found in similar fashion, namely

σ2
ΦO

= E
{

ΦOΦO
H
}

= σ2
JO

[

φ11 φ12

φ21 φ22

]

(9.21)

where φ11, φ12, φ21, and φ22 are defined as (9.18). Applying the same approach, namely expanding

JO[k] using the Geometric series, then σ2
JO

is found to be

σ2
JO

=E{JO[k]J∗
O[k]}

=
1

N2

N−1
∑

l=0

|J [l]|2

2




sin2 (π(l + f − k))

sin2
(

π(l+f−k)
N

)





−
1

N2




sin (πf)

sin
(

πf
N

)





N−1
∑

l=0

E{J [l]J∗[k]}ejπ(l−k)(1− 1
N )




sin (π(l + f − k))

sin
(

π(l+f−k)
N

)





−
1

N2




sin (πf)

sin
(

πf
N

)





N−1
∑

l=0

E{J∗[l]J [k]}e−jπ(l−k)(1− 1
N )




sin (π(l + f − k))

sin
(

π(l+f−k)
N

)





+
1

N2

|J [k]|2

2




sin2 (πf)

sin2
(

πf
N

)



 (9.22)

Finally, let σ2
Ω be the conditional variance for the in-phase or quadrature component of Ω, then σ2

Ω

is found to be

σ2
Ω = E

{

ΩΩH
}

= σ2
w(α2

1 + α2
2 + σ2

ε1 + σ2
ε2)I2×2 (9.23)

Since E
{

X2
o

}

= E
{

X2
e

}

= E
{

X2
}

, (9.11) can further be reduced to

Y =
{

(α2
1 + α2

2)
(

αGI XI − αGQXQ

)

+ ΞI + ΥI + ΨI + ΦDI + ΦOI + ΩI

}

+ j
{

(α2
1 + α2

2)(αGI XQ + αGQXI) + ΞQ + ΥQ + ΨQ + ΦDQ + ΦOQ + ΩQ

}

=YI + jYQ (9.24)

where ΞI , ΥI , ΨI , ΦDI , ΦOI and ΩI represent the in-phase component of Ξ, Υ, Ψ, ΦD, ΦO

and Ω, respectively. Furthermore, ΞQ, ΥQ, ΨQ, ΦDQ, ΦOQ and ΩQ represent the quadrature

component of Ξ, Υ, Ψ, ΦD, ΦO and Ω, respectively.

To continue the derivation, we assume that 16-QAM modulation is utilized in the sys-

tem. Nevertheless, other rectangular QAM constellations can be derived in the similar fashion if
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Table 9.1 Numerical Values of Variables in Conditional BER for MSB

Index i XIi XQi E{|Xi|2} Index i XIi XQi E{|Xi|2}
1 d 3d 10d2 5 3d 3d 18d2

2 d d 2d2 6 3d d 10d2

3 d −d 2d2 7 3d −d 10d2

4 d −3d 10d2 8 3d −3d 18d2

they are chosen for modulating signals. Since all the subcarriers are affected by the jammer with var-

ious degrees of jamming power, we need to calculate the BER for each individual subcarrier. Next,

the conditional BER is obtained by averaging over all subcarriers. Finally, we can obtain the un-

conditional BER by integrating the conditional BER over the probability density functions (PDFs)

of α1, α2, and α3. Let P k
BER|α1,α2,α3

be the conditional BER for the kth subcarrier, conditioned on

α1, α2, and α3, then P k
BER|α1,α2,α3

is given by

P k
BER|α1,α2,α3

=
1

2

(

P k
MSB + P k

LSB

)

(9.25)

where P k
MSB and P k

LSB are the conditional BER of most significant bits (MSB) and least significant

bits (LSB) of 16-QAM symbols conditioned on α1, α2, and α3 for the kth subcarrier. Based on the

decision boundaries, P k
MSB is expressed as

P k
MSB =P (YI < 0|α1, α2, α3)

=
1

8

8
∑

i=1

Q

(√

Λ2
i

σ2
Ξ + σ2

Υi
+ σ2

Ψ + σ2
ΦD

+ σ2
ΦO

+ σ2
Ω

)

(9.26)

where Λi = (α2
1 +α2

2)(αGI XIi −αGQXQi) and Q(ν) =
∫∞

ν
1√
2π

e
−t2

2 dt, ν ≥ 0. Furthermore, σ2
Ξ, σ2

Υi
,

σ2
Ψ, σ2

ΦD
, σ2

ΦO
, and σ2

Ω are defined as (9.13), (9.15), (9.16), (9.17), (9.21), and (9.23), respectively.

The numerical values for XIi , XQi and E{|Xi|2} in (9.26) are listed in Table 9.1. The conditional

BER of LSB can be found in the similar way and it is found to be

P k
LSB =

1

8

16
∑

i=1

λiQ

(√

(κi2(α2
1 + α2

2)d + ζiΛi)2

σ2
Ξ + σ2

Υi
+ σ2

Ψ + σ2
ΦD

+ σ2
ΦO

+ σ2
Ω

)

(9.27)

where λi, κi, and ζi are signs of the values for ith quantity and are listed along with values for XIi ,

XQi and E{|Xi|2} in Table 9.2. In both Tables 9.1 and 9.2, d2 = 2Eb

5 where Eb is the energy per

bit.

With (9.25), (9.26) and (9.27), the unconditional BER is given as

PBER =
1

N

N−1
∑

k=0

∫ ∞

0

∫ ∞

0

∫ ∞

0
P k

BER|α1,α2,α3
p(α1)p(α2)p(α3)dα1dα2dα3 (9.28)

where p(αi) is the PDF of αi and is given by

p(αi) =
αi

σ2
Hi

e

−α2
i

2σ2
Hi i = 1, 2, 3 (9.29)
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Table 9.2 Numerical Values and Signs of Variables in Conditional BER for LSB

Index i λi κi ζi XIi XQi E{|Xi|2}
1 + + + d 3d 10d2

2 + + - d 3d 10d2

3 + + + d d 2d2

4 + + - d d 2d2

5 + + + d −d 2d2

6 + + - d −d 2d2

7 + + + d −3d 10d2

8 + + - d −3d 10d2

9 + - - −3d 3d 18d2

10 - + - −3d 3d 18d2

11 + - - −3d d 10d2

12 - + - −3d d 10d2

13 + - - −3d −d 10d2

14 - + - −3d −d 10d2

15 + - - −3d −3d 18d2

16 - + - −3d −3d 18d2

Table 9.3 Summary of Simulation Cases

Case Number HPA |J [k]| f Jamming Tones 2σ2
ε

1 Vary 0 0 0 0
2 0 Vary Vary 1 0
3 Constant Vary 0.5 1 0
4 Constant Constant 0.5 Vary 0
5 Constant Constant 0.5 1 Vary

9.4 Simulation Model and Parameters

We extend the analytical model to a WLAN system based on the IEEE 802.11n standard

( [4], Clause 10.4.4.2 rate code 118); except the convolutional encoder, interleaver/deinterleaver and

Viterbi decoder are omitted. After pre-appending 16-bit Service Field and padding enough bits to

ensure the transmission from each antenna are multiples of whole OFDM symbols, the resulting

signal is scrambled with a scrambler which is based on the IEEE 802.11a standard. The data is

modulated with the 16-QAM modulation and processed with the 64-point IFFT, of which subcar-

riers, ±21, are designated for pilots. The OFDM symbols are then cyclically extended and passed

through the nonlinear HPAs. The resulting OFDM symbols are encoded by following STBC coding

scheme as described in Section 9.2.3 and pre-appended with the preamble sequences as specified

in [4] before transmission. To recover the data, the corresponding receiver reverses the encoding

procedure in the transmitter.

The extended model is simulated with several different sets of parameters. The param-

eters for each case are summarized in Table 9.3. In Case 1, the jammer is assumed to be absent from

the system. We vary the severity of nonlinear distortion introduced by the nonlinear HPAs. The
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Table 9.4 Simulation Parameters for Nonlinear HPA Model

Case Number αAM βAM αPM βPM

1-A 1 0 0 0
1-B 1 0.25 π 0.25
1-C 1 0.25 1.2π 0.01
1-D 1 0.25 1.5π 0.01

numerical values for parameters used in the HPA model for Case 1 are listed in Table 9.4. Notice

that in Case 1-A when αAM is set to 1 while the rest of parameters are set to zero, the nonlinear

HPA model becomes an ideal HPA which has an unity gain and no phase distortion. In Case 2, the

system is only subject to the effect of a single tone jammer, aside from the effect of AWGN. The

jammer amplitude is varied from 10, 15 to 20. Furthermore, for each jamming amplitude, the nor-

malized frequency offset is varied from 0 to 1 with an increment of 0.1. For Case 3, we simulate the

system under the influence of nonlinear HPAs and a single tone jammer. In this case, the jamming

amplitude is varied from 0, 0.5, 1 to 1.5 while the normalized frequency offset is fixed at 0.5. Next,

in Case 4, instead of varying the jamming amplitude, we assume that the total jamming power is

held constant at |5|2
2 while we vary the number of jamming tones in the jammer. For Case 5, in

addition to nonlinear distortion, a single tone jamming, we introduce various degrees of the channel

estimation error to the system. In Cases 3, 4, and 5, the parameters for Case 1-C are used in the

HPA model. In addition, we assume perfect channel estimation for the first four cases. Finally,

without loss of generality, we set the variances of all three Rayleigh fading channels to unity, i.e.

σ2
H1

= σ2
H2

= σ2
H3

= 1. In addition, we let the variances of the channel estimation error when

estimating both channels, H1 and H2, to be the same, i.e. σ2
ε1 = σ2

ε2 = σ2
ε .

9.5 Simulation Results

In Case 1, we assume the only source of degradation aside from AWGN is the nonlinear

distortion caused by nonlinear HPAs. The theoretical results can be obtained by evaluating (9.28)

with σ2
ΦD

and σ2
ΦO

set to zero. The theoretical and simulation results in this case are shown in Fig.

9.2. As one can see, the BER performance gets worse as more nonlinear distortion is introduced

to the system. This is due to the fact that the numerical values of σ2
DG

and σ2
Ψ increase as more

nonlinear distortion is being introduced. As a result, the BER performance degrades.

For Case 2, instead of varying nonlinearity, we vary the normalized frequency offset, f ,

in (9.2) from 0 to 1 with an increment of 0.1 for three different jamming amplitudes. Then, we plot

the BER performance as a function of normalized frequency offset when Eb/No equals to 40 dB.

The theoretical and simulation results for Case 2 are shown in Fig. 9.3.

As one can observe from Fig. 9.3, for a given jamming amplitude, the BER performance
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Figure 9.2 BER performance of a 16-QAM MIMO-OFDM system for various degrees of nonlinear
distortion introduced by nonlinear HPAs.

gets worse as the normalized frequency offset increases. However, the BER performance starts

to improve once the normalized frequency offset is greater than 0.5. The reason that the BER

performance improves is due to the fact that the orthogonality between subcarriers is lost when

normalized frequency offset is nonzero. As a result, the jamming magnitude due to the kth fre-

quency is nonzero at the other subcarriers. As normalized frequency offset increases, the magnitude

at all subcarriers, other than kth subcarrier, increases. Since the jamming signal in the time do-

main is a sinc function, the magnitude will be at its highest when the normalized frequency offset

is at 0.5. Once the normalized frequency offset is greater than 0.5, the magnitude of the jamming

signal at all subcarriers, other than kth subcarrier, starts to decrease. Hence, for a given jamming

amplitude, the BER performance is at its worst when the normalized frequency offset is equal to 0.5.

In Case 3, the system is subject to not only jamming but also nonlinear distortion produced

by HPAs. The theoretical results are shown in Fig. 9.4 along with simulation results. In addition,

Fig. 9.4 shows that as jamming amplitude increases, the BER performance degrades. When the

jamming amplitude increases, σ2
ΦD

and σ2
ΦO

also increase in value which implies the increase in the
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Figure 9.3 The effect of normalized frequency offset, f , on the BER performance of a 16-QAM
MIMO-OFDM system impaired by a single tone jammer for various jamming amplitudes at Eb/No

= 40 dB.

denominator of the Signal to Noise Ratio (SNR) and degradation in BER performance. In Cases 1

and 3, the error floor in the BER performance occurs at around 30 dB and the occurrence of the

error floor can be explained by examining SNR for MSB or LSB probabilities. For example, at high

SNR, the effect of σ2
w is negligible compared to σ2

Ξ, σ2
Υ, σ2

Ψ, σ2
ΦD

and σ2
ΦO

. As a consequence, the

SNR for MSB probability, denoted as SNRMSB, becomes

SNRMSB -
Λ2

i

σ2
Ξ + σ2

ΦD
+ σ2

ΦO

(9.30)

where Λi is defined in (9.26). Furthermore, SNRMSB is only a function of Λi, σ2
Ξ, σ2

ΦD
and σ2

ΦO

of which σ2
Ξ is a constant for a given set of parameters used in the HPA model. σ2

ΦD
and σ2

ΦO
only

depend on the jamming power and are not functions of SNR. Therefore, at high SNR, the system

is still being affected by the same amount of degradation and subsequently produces an error floor

in the BER performance. The same conclusion can be drawn if one examines the SNR for LSB

probability.
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Figure 9.4 BER performance of a 16-QAM MIMO-OFDM system that is impaired by nonlinear
HPAs and a single tone jammer in Rayleigh fading channels.

In Case 4, the amplitude of the jammer or the total of jamming power is held constant while

the number of jamming tones in the jammer varies. The theoretical and simulation results are shown

in Fig. 9.5. As one can see from Fig. 9.5 , a single tone jammer causes the most the degradation in

the BER performance as compared to a jammer that is composed of more than one frequency tone.

This is because as the number of jamming tones increases, the jamming power per frequency tone

has to decrease in order to preserve the condition that the total jamming power is held constant. As

a consequence, σ2
ΦD

and σ2
ΦO

become smaller in values and have less impact in the BER performance.

By looking at the results in Fig. 9.5, a single tone jammer seems to be the best choice for

designing the most effective jammer. Nonetheless, a single tone jammer is not a practical solution

in real situations for two reasons when the most important design criterion is the effectiveness of

jammer on the performance of the system. The first reason is the jammer does not usually have

the perfect knowledge of the center frequency of the desired transmitted signal. Consequently, the

jamming signal often does not appear within the frequency spectrum of the desired signal. When

that is the case, only the ICI-like interference which is due to the jammer can affect the system and
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Figure 9.5 BER performance of a 16-QAM MIMO-OFDM system that is impaired by nonlinear
HPAs and a jammer in Rayleigh fading channels for various number of jamming tones in the jammer.
The total jamming power is held constant.

cause degradation in BER performance. Furthermore, the effect of the ICI-like interference on the

BER performance solely depends on the location of the jamming signal with respect to the desired

signal in the frequency spectrum. The further away the jamming signal is in the frequency spectrum,

the less impact that ICI-like interference has on the BER performance. Another reason is that the

system can simply turn off the subcarrier’s frequency at which the jammer interferes. By doing

so, the BER performance can improve since only the ICI-like interference is present in the received

signal. However, the cost of not using a particular subcarrier’s frequency is the decrease in data

rate. Based on those two reasons mentioned above, a jammer that has all its energy concentrated in

a one single subcarrier might not be the best design choice, especially in the case where the jammer

does not have the prior knowledge of the center frequency of the desired signal.

Finally, when the channel responses are not perfectly known at the receiver, the error

between the channel estimates and the true channel responses further degrades the BER perfor-

mance. Fig. 9.6 shows the effect of channel estimation error on the BER performance of a 16-QAM
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Figure 9.6 BER performance of a 16-QAM MIMO-OFDM system that is impaired by nonlinear
HPAs and a jammer in Rayleigh fading channels for various values of 2σ2

ε .

MIMO-OFDM system that is subject to nonlinear HPAs, and jamming. From Fig. 9.6, one can

conclude that as the quality of channel estimates worsens, the BER performance degrades. This

is because as the quality of channel estimates decreases, power of the channel estimation error in-

creases which would increase the numerical values of noise variances, σ2
Υi

, σ2
Ψ, σ2

ΦD
, σ2

ΦO
and σ2

Ω.

Subsequently, the BER performance will worsen due to the increases in the noise variances.

9.6 Conclusion

In this chapter, we analyzed the performance of a M-QAM MIMO-OFDM system that was

subject to nonlinear HPAs, jammer and channel estimation error in the Rayleigh fading channels.

Different from the jammer models presented in previous studies, we presented a more realistic jam-

mer model by adding two distinct assumptions. The first assumption which would simulate more

realistic situations was the jammer experienced a separate channel impulse response. Second, we

assumed that the jammer did not have perfect knowledge of the frequency which the desired signal

was being transmitted on. This particular assumption of the frequency offset between the jamming
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and transmitted signals caused the occurrence of an ICI-like interference which was due to the pres-

ence of the jammer in the received signal and further degraded the BER performance. In addition,

an analytical expression for BER performance of such a system that was under combination of these

impairments was presented in the chapter. We also extended the analytical system to be in compli-

ance with IEEE 802.11n standard for the purpose of simulation. Based a design criterion and under

the assumption that the total jamming power was held constant, we discussed the effectiveness of

jamming on the performance of the system when the jammer had one or more than one frequency

tones. Finally, we presented the theoretical and simulation results for different scenarios such as

under the influence of nonlinear distortion or effect of jamming tones with the condition of constant

jamming power with and without channel estimation error.

The text in Chapter 9 is based on the material as it appears in:

David W. Chi and Pankaj Das, “Effects of Jammer and Nonlinear Amplifier in MIMO-OFDM with

Application to 802.11n WLAN”, 2008 IEEE Military Communications Conference (Submitted).

The dissertation author was the primary researcher and author, and the co-author listed in the

publication directed and supervised the research which forms the basis for this chapter.
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PAPR Reduction Techniques

Review

10.1 Introduction

As mentioned in previous chapters, Orthogonal Frequency Division Multiplexing (OFDM)

is known for its high bandwidth efficiency and outstanding performance in fading channels, however,

it suffers from peak to average power ratio (PAPR) problem. The phenomenon of PAPR generally

arises when the wireless communication systems utilize multicarrier modulations such as OFDM.

In the OFDM modulation process, a number of independent signals are added up to produce an

output signal which could potentially give a large peak to average power ratio if all the phases

of independent signals are aligned. This would produce a peak power that is L times larger than

average power where L is the number of the signals. An example of PAPR has been presented in

Fig. 2.1 in Section 2.1, Chapter 2.

Those large PAPR signals bring an increased complexity in designing Radio Frequency

(RF) components such as high power amplifiers (HPAs) due to the fact that the large magnitude

signals saturate HPAs. As a consequence, the HPAs operate at their nonlinear region. When HPAs

are operating in the nonlinear region, the effects of HPAs on the system performance has been

presented and discussed in previous chapters. One obvious approach to solving the PAPR problem

is to employ highly linear HPAs which provide a larger range of linear region for HPAs to operate

and tolerate the large magnitudes of modulated signals before HPAs are saturated. However, those

highly linear HPAs are usually very complicated to build and even if hardware implementation is

feasible, they are often too expensive for massive commercial productions.

Another possible solution is to have a large input backoff (IBO) for HPAs. The IBO

147



148

Nonlinear Region

Li
ne

ar R
eg

io
n

O
B

O

IBO

Input Power

O
u

tp
u
t 
P

o
w

e
r

Pin,maxPin,avg

Pout,max

Pout,avg

Figure 10.1 The relationship between Pin,max, Pin,avg , input backoff (IBO), Pout,max, Pout,avg and
output backoff (OBO).

is defined as [49–51]

IBO =
Pin,max

Pin,avg
(10.1)

where Pin,max represents the maximum input power at which the output power saturation occurs,

and sometimes, it is referred to as input saturation power. Pin,avg denotes the average power of an

input signal. Another term which is proportionally related to IBO is output backoff (OBO) which

is defined as [51]

OBO =
Pout,max

Pout,avg
(10.2)

where Pout,max is the output saturation power and Pout,avg is the average output power. The rela-

tionship between IBO and OBO is shown in Fig. 10.11 based on the input and output responses of

HPAs.

As one can see from (10.1) and (10.2), when there is an increase in IBO, it implies that

Pin,avg becomes smaller in value since the input saturation power is normally fixed for a certain

type of HPA. In addition, this means that the HPA can operate within the linear region, therefore,

less nonlinear distortion would be produced by the HPA. However, a smaller Pin,avg translates to a

smaller Pout,avg and a larger OBO as shown in Fig. 10.1. This is due to the fact that the output

1The figure is drawn based on Fig. 4.12 in [51] with the notations used in (10.1) and (10.2).
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saturation power of a particular class of HPA is also a constant. Operating HPAs with high IBO

results in reduction in the power efficiency of the HPA which is detrimental to the battery life in

mobile applications. Furthermore, the range of transmission is reduced as a consequence of the lower

transmit power.

Since battery life and production cost often dictate engineering designs for wireless com-

munication systems, several other PAPR reduction techniques such as direct clipping [11], selective

mapping (SLM) [52] and partial transmit sequences (PTS) [9] have been proposed and their effec-

tiveness have been reported in literature. In this chapter, we will first give a detail description of

PAPR and its statistical distribution. Then, we present a brief review of some of the most popular

PAPR reduction techniques in literature. This chapter is organized as follows. In Section 10.2, a

discussion of PAPR and its signal distribution is given in detail. Section 10.3 provides a discussion

of some PAPR reduction techniques. Section 10.4 summaries the chapter.

10.2 Distribution of PAPR

In this section, we will present the concepts of PAPR and OFDM signal distribution through

mathematical definitions. Let x(t) be the continuous time OFDM signal in time domain, then x(t)

is given by [53]

x(t) =
1

N

N−1
∑

k=0

X(k)ej2πfkt 0 ≤ t < Ts (10.3)

where X(k) represents the data signal which is modulated onto the kth frequency. N is the number

of subcarriers. Furthermore, fk is the kth frequency and Ts is the OFDM symbol duration. Then,

PAPR is expressed as

PAPR =
max

0≤t<Ts

|x(t)|2

E {|x(t)|2}
(10.4)

From (10.4), we can see that for any input signal, the PAPR is upper bounded by N . For example,

if x(t) is

x(t) = [1 1 1 ... 1
︸ ︷︷ ︸

N times

] (10.5)

then, by the definition of PAPR given in (10.4), the PAPR of x(t) is found to be

PAPR =
1

1/N
= N (10.6)

Hence, the PAPR of any input signal is upper bounded by N .

In the discrete case, oversampling might be necessary if Nyquist-rate samples do not co-

incide with peaks of the continuous time signal. Denote L as the oversampling factor, the discrete



150

time OFDM signal is then sampled at t = n Ts

LN . As a result, the sampled OFDM signal in time

domain, x(n), is given by

x
(n

L

)

= x

(

n
Ts

LN

)

=
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ LN − 1 (10.7)

When L = 1, it is said that the sampling rate corresponds to the Nyquist sampling rate [53]. The

PAPR in this case is defined as

PAPR =
max

0≤n<NL−1
|x

(
n
L

)

|2

E
{

|x
(

n
L

)

|2
} (10.8)

Even though, oversampling may yield a more accurate result for PAPR, however, the difference

between the case where L = 1 and the case where L ≥ 1 is less than 1 dB [53]. In the rest of thesis,

we will use L = 1 to obtain the PAPR of the OFDM signal.

The distribution of PAPR is often measured by Complementary Cumulative Distribution

Function (CCDF). Let L = 1 and since x(n) can be assumed to be a complex Gaussian random

process with zero mean based on Central Limit Theorem, the magnitude of x(n) has a Rayleigh

probability density function (PDF), namely

p(α) =
α

σ2
α

e
−α2

2σ2
α (10.9)

where α represents the magnitude of x(n) and 2σ2
α denotes the variance. The Cumulative Distribu-

tion Function (CDF) of the magnitude is then given by

CDF =

∫ α

0

r

σ2
α

e
−r2

2σ2
α dr

=1 − e
−α2

2σ2
α

=1 − e−PAPRo (10.10)

where PAPRo is a particular PAPR threshold value. For an OFDM symbol with no oversampling,

the CDF is found to be

CDF = P (PAPR ≤ PAPRo) =
(

1 − e−PAPRo
)N

(10.11)

In the case where we oversample by a factor of L, the CDF is given by [10]

CDF = P (PAPR ≤ PAPRo) =
(

1 − e−PAPRo
)LN

(10.12)

Subsequently, the CCDFs for these two cases are

CCDF =1 − CDF

=







1 −
(

1 − e−PAPRo
)N

L = 1

1 −
(

1 − e−PAPRo
)LN

L > 1
(10.13)
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Figure 10.2 The Complementary Cumulative Distribution Function (CCDF) of 16-QAM OFDM
signals.

In this thesis, we will use the CCDF with L = 1 as a measure of PAPR performance.

To obtain the CCDF of OFDM signals in discrete time with any signal modulation through

simulations, one can follow the steps outlined below,

1. Generate K number of statistically independent OFDM symbols with any signal modulation

2. For each OFDM symbol, calculate PAPR as defined in (10.8)

3. Next, calculate the CCDF of OFDM symbols and save the results

4. Repeat previous steps for I times where the product of K and I has to be sufficiently large to

yield an accurate CCDF result

We simulate KI = 108 16-QAM OFDM symbols which are statistically independent of each other.

Subsequently, the result of CCDF is calculated and shown in Fig. 10.2. As one can see from Fig.

10.2, 10% of PAPR is at around 7.9 dB. Assuming the nonlinear HPAs are operating in the nonlinear

region when PAPR is greater than 6 dB, having 10% of the PAPR at around 7.9 dB implies that
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10% of the time, the signal amplitude is large enough to force the HPAs to operate in the nonlinear

region, thereby producing nonlinear distortion in the system. To resolve this problem, one can utilize

one of PAPR reduction techniques which are discussed in detail in the next section to reduce the

maximum amplitude of OFDM signals. By reducing the PAPR, the nonlinear HPAs would have less

chance of operating in the nonlinear region. As a consequence, less amount of nonlinear distortion

is introduced to the system and the system performance is improved.

10.3 PAPR Reduction Techniques

Over the years, there are several algorithms that are proposed for PAPR reduction. Those

techniques can be categorized as follow,

• Clipping [11, 54–57]

• Coding [12, 58–61]

• Interleaving [62–64]

• Partial Transmit Sequences (PTS) [8, 9, 65–67]

• Selective Mapping (SLM) [13, 52, 68–71]

• Predistortion [72–75]

• Companding [76–79]

Each of techniques will be then discussed in the following subsections.

10.3.1 Clipping

The Clipping is the simplest, yet effective, technique to reduce the PAPR. It is done

by limiting the amplitude of the Inverse Fast Fourier Transform (IFFT) output sequences to a

predetermined threshold. Denote x(n) as the output sequence of the IFFT, then the clipped signal

, x
′
(n), is given by

x
′

(n) =













−Aejθ, if |x(n)| < −A

x(n), if −A ≤ |x(n)| ≤ A

Aejθ, if |x(n)| > A

(10.14)

where θ is the phase of x(n) and A represents the maximum amplitude allowed before HPAs operate

at the nonlinear region [11].

Even though, clipping is the simplest method, however, it should be utilized with care

since it is a nonlinear process. By deliberately clipping the signal, another source of distortion
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which is generally referred to as clipping noise is introduced to the system. As a consequence, the

system performance degrades. Depending on the sampling rate of the signal, clipping would create

more in-band distortion if the sampling rate of the signal equals to Nyquist rate. If clipping was

performed on an oversampled signal, there would be less in-band noise while there would be an in-

crease in the out-of-band radiation. This increase in out-of-band radiation leads to a reduction of the

spectral efficiency [54, 55]. The in-band distortion can not be reduced by filtering and subsequently

causes degradation in performance. To remove the out-of-band radiation, the authors in [11, 54]

proposed to use an bandpass finite-impulse response (FIR) filter to filter out the out-of-band noise.

Nevertheless, the price for the out-of-band noise reduction is the possibility of peak regrowth. So,

after clipping and filtering, the resulting signal can sometimes exceed the predetermined threshold

level, A.

More advanced techniques have been developed to reduce PAPR. In [56], authors pro-

posed to regenerate the clipping noise and use it to cancel the clipping noise samples in frequency

domain. The proposed iterative process begins by first detecting the received signal to yield esti-

mated data bits. The estimated data signal branches out in two paths. The estimated data signal

in one path is used to generate the attenuated frequency domain signal by multiplying with the

constant, αG. In another path, the estimated data signal is then transformed to time domain and

clipped by the same clipping process at the transmitter. After transforming the new clipped signal

back to frequency domain, the attenuated frequency domain signal is subtracted from this new gen-

erated clipped signal. The difference between two signals would be the nonlinear distortion. The

resulting nonlinear distortion is then passed through the same channel impulse response and is later

used to subtract the received signal in frequency domain at the next iteration.

This particular method brings two disadvantages to the system. The first disadvantage

is a moderate increase in the complexity of the receiver structure since a pair of IFFT and Fast

Fourier Transform (FFT) is required at the iterative process. Another assumption that the authors

make is the receiver has perfect knowledge about the channel impulse response, hence, the channel

impulse response for the nonlinear distortion signal at the receiver is the same channel impulse

response as the one that is for the transmitted signal. In practice, this particular assumption in

general might not be valid due to the reason that the receiver can not estimate the channel per-

fectly, especially in time varying channels. Therefore, the error in channel estimation would further

degrade the performance. This suggests that the proposed method might not be suitable for mobile

applications in time varying channels.

The authors in [55] presented an alternative method which is based on the iterative decision-

aided reconstruction. In this algorithm, the received signal is equalized in frequency domain. After

equalization, the signal path is separated into two different paths. In one path, the equalized sig-
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nal is transformed back to time domain and is stored in memory for later use. In another path,

the equalized signal is utilized by the demodulator to yield data bits. The estimated data bits are

transformed back to time domain and are used to generated a new time domain sequence. Denote

r
′
(n) as the new time domain sequence, then r

′
(n) is generated in the following fashion

r
′

(n) =







zm(n) |x̂(n)| ≤ A

x̂(n) |x̂(n)| > A
(10.15)

where zm(n) represents the equalized signal that is previously stored in the memory and x̂(n) de-

notes the estimated data bits in time domain. Next, r
′
(n) is converted to the frequency domain

and is used by the demodulator to yield the estimate of data bits for the next iteration. One dis-

advantage is the possible errors in generating r
′

(n). When there is an error in estimating data bits,

this error would be carried over to its time domain signal. In generating a new time domain signal,

the inaccuracy in data estimation leads to a few clipped samples that do not get replaced by the

algorithm mentioned above. As a consequence, the improvement that the proposed algorithm offers

diminishes and the system performance will degrade.

One assumption that both algorithms proposed in [55, 56] share is that the receiver has

perfect knowledge about the clipping threshold, A and is able to use it in the reconstruction or

regeneration process. In practice, the clipping threshold might not be known for all wireless com-

munication applications, hence, an estimation algorithm is required to obtain the numerical value

of A. In [57], the authors proposed to create a lookup table for clipping ratio and clipping noise

to signal ratio (CNSR) and utilize the one to one relationship between them to obtain the clipping

threshold, A. The clipping ratio, γ, is defined as

γ =
A

√

σ2
x(n)

(10.16)

where σ2
x(n) represents the transmit power. The CNSR is defined as

CNSR =
σ2

DG

σ2
X

(10.17)

where σ2
DG

and σ2
X are the power of nonlinear distortion and data symbols, respectively.

By estimating CNSR, the numerical value of A can be obtained through the lookup ta-

ble. To estimate CNSR, the authors proposed to find the nonlinear distortion after channel impulse

response, namely

H [p]DG[p] = Y [p] − αGH [p]P [p] (10.18)

where H [p] and DG[p] are the channel impulse response and nonlinear distortion at the pth pilot,

respectively. αG denotes the complex gain that is due to the nonlinear HPA. Y [p] is the received
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signal at the pth pilot in frequency domain and is given by

Y [p] = αGH [p]P [p] + H [p]DG[p] (10.19)

In addition, P [p] represents the pilot signal. The next step is to take (10.18) and divide it by αGH [p]

to obtain
σ2

DG

α2
G

where
σ2

DG

α2
G

is given by

σ2
DG

α2
G

=
|Y [p]|2 − α2

G|H [p]|2|P [p]|2

α2
G|H [p]|2

(10.20)

Once (10.20) is found, then CNSR can be obtained since σ2
X is known to the receiver. Subsequently,

clipping ratio, γ, and the clipping threshold, A, can both be found through the lookup table.

However, this proposed algorithm has two disadvantages. One disadvantage is that (10.20)

only yields the estimation at the pilot subcarriers, not at the data subcarriers. In which case, possi-

ble other techniques such as interpolation may be required to obtain the values of σ2
DG

at the data

subcarriers. Another problem associated with this technique is the memory required for the lookup

table. To have the most improvement in the system performance, a large memory size is required

to store all the possible values of CNSR and clipping ratio. This might be not be feasible in real

practice. Furthermore, either the error in the estimation of σ2
DG

or the lack of large memory size for

storing CNSR and clipping ratio would degrade the system performance.

10.3.2 Coding

Coding can also be used to reduce PAPR in OFDM systems. Wilkinson et al. [58] ana-

lyzed the effect of a block code on the PAPR reduction of a Binary Phase Shift Keying (BPSK)

OFDM system. The authors noticed that certain data sequences could produce a very high PAPR

and proposed to use a block code to encode data bits in such way that a data symbol with three

bits was mapped onto a four-bit codeword. In this particular coding scheme, the set of possible

codewords follows after an odd parity code. The simulation results in [58] showed that for a BPSK

OFDM system with 8 subcarriers and a code rate2, R = 3/4, the PAPR was 3.01 dB compared to

an uncoded case where the PAPR was 9.03 dB, a reduction of 6.02 dB. However, the authors also

pointed out that the reduction of PAPR was achieved at the expense of an increase in the bandwidth

for the same data rate and a reduction in energy per transmitted bit for the same transmission power.

To further improve the system performance, the authors in [59–61] utilized the block coding

that is based on complementary sequences to suppress high PAPR in OFDM systems. The simula-

tion results showed that the M-ary Phase Shift Keying (M-PSK) OFDM system with 8 subcarriers

and complementary sequences generated PAPR at most 3 dB. In addition to the superior capability

2The code rate is defined as a ratio of the number of information bits to the length of a corre-
sponding codeword [80]. For example, 5 information bits are encoded into a codeword whose length
is 8, then the code rate in this case is 5

8 .
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in PAPR reduction, the complementary sequences also provides the benefits of error correction code

and improvements in bit error rate (BER) performance. Both superior ability of suppressing PAPR

and moderate improvement in performance that are both due to the coding suggest that coding may

be a very attractive and effective feature for suppressing high PAPR in OFDM systems. However,

the proposed coding schemes in [58–61] all share one disadvantage which is significant PAPR re-

duction only limited to small number of subcarriers. For example, 8 subcarriers with PAPR equals

to 3 dB was reported in [60]. The number of subcarriers is too small for any practical uses today

since 64 subcarriers are required in IEEE 802.11a/n [2, 4]. Authors in [12] proposed to break up a

large frame size into M disjoint frames and applied the complementary sequence to each frame in

M frames. Although, good PAPR reduction is achieved, the number of subcarriers that is used in

the paper is still too small to be considered for current wireless communication applications today.

10.3.3 Interleaving

Interleaving is also another simple method that can be used in PAPR reduction. The tech-

nique is based on the idea that highly correlated data sequences produce a large PAPR. By breaking

down the long correlation pattern in the data sequences, the PAPR then can be reduced. Due to the

fact that interleaving is a deterministic process, i.e. an one to one mapping function whose mapping

is predetermined, the permutation pattern has to be carefully selected to be the most effective in

PAPR reduction. In [62], the authors analyzed the effects that interleaving had on reducing PAPR

in Quadrature Phase Shift Keying (QPSK) OFDM systems with 256 subcarriers. In the paper,

the authors proposed a pseudo random interleaver which would generate K − 1 completely differ-

ent sequences. In each sequence, it would contain a different order of permutation indices which

ranges from 0 to N − 1 where N is the number of subcarriers. The order of the original signal is

then rearranged to yield the new sequence based on the permutation indices. After FFT, the new

sequence that has the lowest PAPR among the K different sequences including the original signal

will be chosen for transmission. The simulation results in [62] show that as K increases, the PAPR

statistic improves, for example, for K = 4, 0.1% PAPR is reduced by 2.2 dB and for K = 16, the

reduction is about 3 dB.

To further improve PAPR reduction and BER, the authors in [63] proposed to reduce

PAPR by employing both interleaving and clipping. The structure of the interleaver utilized in the

paper is the same as the one proposed in [62] where K − 1 different versions of an original signal are

generated. In addition, the sequence that has the lowest PAPR after FFT is chosen for transmission.

However, different from [62], the amplitude of the new sequence is clipped at the threshold, A, and

filtered at the frequency domain to avoid spectral regrowth. The resulting signal is then repeat-

edly clipped in time domain and filtered in frequency domain for M times before the transmission.

Utilizing only interleaving, the authors reported that 10% PAPR was reduced by about 2.7 dB for

K = 16 comparing the original sequence. The simulation result cited in the paper showed about
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the same improvement that was reported by [62]. When employing both interleaving and clipping,

an additional improvement can be gained. For K = 16, M = 3 and A = 3 dB, the authors reported

that 10% PAPR was further reduced by about 1 dB.

Even though interleaving is simple and effective, there are some disadvantages associated

with this technique. One disadvantage is a total of K IFFTs are required to compute PAPR for K−1

different versions of the original sequences. Not only there is an increase in hardware complexity,

having a large number of IFFTs places a limit on the battery life of a mobile unit as well. Another

disadvantage is the memory size that is required to store those permutation indices. The memory

size which grows linearly with the number of IFFTs, K, can soon become too large and costly to

build. In addition to these two disadvantages, a side information regarding which permutation in-

dices are used at the transmitter has to be transmitted to the receiver in order to deinterleave the

received signal correctly. To correctly identify which interleaver is used at the transmitter, +log2(K),
number of bits are required for side information [64]. As a consequence, there is a decrease in data

rate.

To solve the problem of loss in data rate due to the side information, the authors in [64]

proposed to use pilots to identify which interleaver is used at the transmitter. The idea behind this

approach is to assign special pilot symbols for each interleaver and insert those pilot symbols among

data subcarriers after interleaving. After IFFT, the sequence with the lowest PAPR is chosen for

transmission. For example, for K = 4, the pilot symbols are

• pilot symbols = [+1 +1] are assigned to Interleaver # 1

• pilot symbols = [+1 -1] are assigned to Interleaver # 2

• pilot symbols = [-1 +1] are assigned to Interleaver # 3

• pilot symbols = [-1 -1] are assigned to Interleaver # 4

Upon receiving, the values at the pilot subcarriers are evaluated to determine which interleaver is

used at the transmitter to randomize the original signal. Even though, there is no transmission of

the side information, this approach might not be practical in real practice. The receiver might make

the wrong decision on the interleaver when pilot symbols are severely corrupted by the channel. In

which case, the information is lost and the BER performance is severely degraded. In addition, the

proposed approach still requires K number of IFFTs for computing PAPR and a large memory size

for storing permutation indices for a large number of subcarriers.

10.3.4 Partial Transmit Sequences (PTS)

Reducing PAPR by utilizing partial transmit sequences (PTS) was first proposed by Muller

et al. [65]. The block diagram of an OFDM system with PTS implementation is shown in Fig.
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Figure 10.3 A block diagram of OFDM systems with partial transmit sequences (PTS) implemen-
tation for PAPR reduction.

10.3 [9]. In the PTS scheme, the data block, denoted as X , is partitioned into M disjoint subblocks

such that

X =
M
∑

m=1

Xm (10.21)

where Xm represents the mth subblock. Subsequently, for each subcarrier in each subblock is

weighted with a vector of phase factors, denoted as bm. After IFFT, the output in time domain is

given by

x
′

=
M
∑

m=1

bmxm (10.22)

where bm is expressed as

bm = ejφm m = 1, 2, ..., M (10.23)

xm in (10.22) is generally referred to as the partial transmit sequence and is defined as IFFT of

Xm. The phase factors, bm, are chosen in such a way that the PAPR of x
′

is minimized. Before

obtaining the optimal phase factors, the algorithm has to search WM−1 different possible sets of

phase factors where W represents the possible values that φm can take on. In general, the search

for the optimal bm that can significantly reduce PAPR is usually complicated and the complexity

increases exponentially as the number of subblocks increases.

In [9], the authors analyzed the effects of PTS that had on reducing PAPR in OFDM

systems that were modulated with QPSK or 16 Quadrature Amplitude Modulation (16-QAM) mod-

ulations and 256 subcarriers. To reduce the complexity of the search for the optimal phase factors,
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the authors proposed a simple method of generating sub-optimal phase factors. For example, if only

binary phase factors such as +1 and −1 are considered, this simple method begins by initialing all

bm = 1 for all m. The PAPR is then computed and retained as a reference. The next step is to invert

the first phase factor, i.e. b1 = −1 while the rest of phase factors stay the same. After inversion,

the new PAPR is computed and compared to the previous case. If the new phase factor sequence

produces a lower PAPR compared to the previous case, then b1 = −1 is saved as a part of final

phase factor. If the new phase factor sequence does not produce a lower PAPR, then b1 is changed

back to +1. This process of flipping the values of phase factors between +1 and −1 continues until

all M phase factors have been explored. Comparing to the original search method, the complexity

of the proposed algorithm which is proportional to (M − 1)W is greatly reduced.

In the simulation results that are presented in [9], it shows that for an QPSK OFDM

system with 256 subcarriers and optimal phase factors, 10% PAPR is reduced to about 6.5 dB,

a 3 dB gain in PAPR reduction for the same QPSK OFDM system that is without PTS. When

employing the binary phase factor and the proposed algorithm described above to search for the

sub-optimal phase factors, 10% PAPR is about 7.5 dB which is only 1 dB loss in performance. How-

ever, by utilizing this method to generate sub-optimal phase factors, the time that is often required

for the search of optimal phase factors can be greatly reduced. In addition, simulation results have

also shown that the numerical value of M is a factor in how much of PAPR reduction is achieved

for a given set of parameters. In general, the more reduction in PAPR, the larger M has to be.

Instead of flipping one phase factor and multiplying xm with an entire new phase fac-

tor each time, the authors in [66] proposed an alternative method to represent x
′

in each iteration

of flipping. Since only the lth phase factor in bm is flipped at any given time, we can conclude that

bi
l = −bi+1

l 1 ≤ l ≤ M (10.24)

where i implies the ith flipping. Furthermore, for l .= m where m = 1, 2, ..., M , we know that

bi
m = bi+1

m (10.25)

With (10.24) and (10.25), x
′
at the (i + 1)th flipping can be expressed as a function of x

′
at the ith

flipping, namely

x
′,i+1 =

M
∑

m=1

bi+1
m xm =

M
∑

m=1
m "=l

bi+1
m xm + bi+1

l xl

=
M
∑

m=1
m "=l

bi
mxm + bi+1

l xl + bi
lxl − bi

lxl =
M
∑

m=1

bi
mxm − 2bi

lxl

=x
′,i − 2bi

lxl (10.26)
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where x
′,i and x

′,i+1 are x
′

at the ith and (i+1)th flips, respectively. The algorithm proposed in [66]

works in exactly the same way as the one described in [9]. The only thing that is different is the

calculation of x
′

after the first iteration. Instead of using (10.22), the new x
′

is calculated based

on (10.26) for the rest of iterations until i > M . Even though, the performance gain based on this

approach is minimal compared to the algorithm which is proposed by Cimini et al., the complexity

in computation is greatly reduced by utilizing (10.26).

Another simple method of generating x
′
which is defined as (10.22) is to cyclically shift xm

by δ samples, namely

x
′

cs =
M
∑

m=1

bmx(m+δ) (10.27)

where x(m+δ) implies the partial transmit sequence that is obtained by cyclically shifting xm [8].

In simulations, 10% PAPR is reduced further by 0.1 dB to 0.2 dB which is minimal compared to

the case where the original search method is utilized. Even though this method of generating x
′

is

simple, the simplicity in the algorithm does not offset the possibility that there can be a degradation

in the BER performance. The degradation in the system performance might occur when there is a

linear phase shift in Xm which is due to the time shift in x(m+δ) by δ samples. If this linear phase

shift is not completely removed, it might cause additional degradation in the system performance.

Han et al. [67] proposed a more advanced search technique for finding a set of suitable

phase factors that would significantly reduce PAPR. The search technique is based on the iterative

gradient search which begins by initializing bm to an all one vector whose length is M . The PAPR is

then computed and stored in memory for comparison later. Next, find another set of phase factors

which has a Hamming weight3 that is less than r compared to the previous set of phase factors. r in

this case is a predetermined parameter chosen by engineers. The PAPR when utilizing the new set

of phase factors is computed and compared to the previous PAPR value that is stored in memory.

If the PAPR value that is based on the previous set of phase factors is less than the new PAPR

value, then the algorithm terminates. Otherwise, the algorithm updates the phase factors and its

PAPR value for the next iteration. When the number of iteration has reached to predetermined

value, denoted as I, then the algorithm will stop. The process can be summarized as follows.

1. Initialize bi=1
m = [1, 1, 1, ..., 1]

︸ ︷︷ ︸

M elements

for iteration counter, i = 1.

2. Compute PAPR based on the phase factors bi=1
m and store the result in a memory.

3. Find another set of phase factors, b
′

m, where the Hamming weight between b
′

m and bi=1
m is less

than r.

3Hamming Weight is defined as the number of elements in which the two sequences differ [81,82].
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4. Compute PAPR based on the phase factors b
′

m and compare the result with the PAPR value

obtained in 2. The next step is determined as follows.

(a) If the new PAPR result obtained based on the phase factors b
′

m is less than the PAPR

result obtained from 2, then update bi=1
m with b

′

m and go to 5.

(b) Otherwise, terminate the algorithm

5. If iteration counter, i, is less than the maximum allowed number of iterations, denoted as I,

then increment i by 1 and go to 3. Otherwise, terminate the search.

The complexity of search in this case is M−1CrW r where aCb is defined as [67]

aCb =

(
a

b

)

=
a!

(a − b)!b!
(10.28)

For the same specification, namely N = 64, M = 8 and W = 4, the simulation results show that

10% PAPR is reduced to about 6.1 dB based on the proposed algorithm with r = 1 and I = 3.

This is about 0.3 dB better than employing the algorithm proposed in [9]. When r = 2 and I = 3,

the performance in PAPR reduction improves, more specifically, 10% PAPR is reduced to about 5.6

dB, about 0.8 dB gain in performance when comparing with the algorithm in [9]. In addition, the

simulation results show that the amount of reduction in PAPR is a dependent of r and I. In general,

the larger r or I is, the more reduction in PAPR is achieved.

All the algorithms that are described in [8, 9, 66, 67] share some major drawbacks. One of

them is the complexity in searching for the optimal phase factor that would greatly reduce PAPR.

Although, some alternatives with various levels of complexity for searching phase factors have been

proposed, the performance of PAPR reduction is still not as good as optimal phase factor. Another

disadvantage is the required memory sizes for storing bm at both transmitter and receiver. As M

increases, the memory sizes that are required to store bm can grow to be too large for implemen-

tation in hardware. Another disadvantage is the number of IFFT operations which are required to

find a sequence that would produce the lowest PAPR. When using the original PTS, WM−1 IFFT

operations are performed before determining which set of phase factors yields the lowest PAPR. In

the case of flipping, (M −1)W IFFT operations are performed before the decision. Nonetheless, this

could have a significant impact on the battery life of the mobile units and might be impractical for

mobile applications. The last problem associated with PTS is the required side information at the

receiver. In order to reconstruct the original OFDM signal without any error, the side information

such as the index of which phase factors is used to generate the lower PAPR has to be transmitted

to the receiver. As a consequence, the transmission of side information will cause a loss in data rate

of the OFDM system.
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Figure 10.4 A block diagram of OFDM systems with selective mapping (SLM) implementation for
PAPR reduction.

10.3.5 Selective Mapping (SLM)

The selective mapping (SLM) was first proposed in 1996 to reduce PAPR in OFDM systems

[68]. The system block diagram of an OFDM system with SLM is shown in Fig. 10.4 [52]. In the

SLM algorithm, the data source, denoted as X , is multiplied by the U different sets of phase factors

element-wise to produce U different copies of X , namely

Xu = BuX u = 1, 2, ..., U (10.29)

where U is the design parameter in SLM. In general, more reduction in PAPR is likely to achieved

when U increases. In addition, Bu is defined as

Bu =
[

Bu,1 Bu,2 Bu,3 ... Bu,(N−1)

]

(10.30)

where N represents the number of subcarriers in IFFT and Bu,k is given by

Bu,k = ejφu,k k = 0, 1, 2, ..., N − 1 (10.31)

After multiplying X with the phase factors, each Xu is processed by IFFTs and its PAPR is then

computed and compared with the others. The resulting signal that yields the lowest PAPR is subse-

quently chosen for transmission. In addition, the Bopt which implies the optimal Bu that produces

the lowest PAPR has to be transmitted to receiver as a side information. The receiver will then use

Bopt to recover the data source, X .

The SLM technique works in the similar way which PTS operates. The commonalities

between SLM and PTS are the requirement of a set of vectors of weighting factors in both schemes
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and only one modified data sequence which has lowest PAPR is chosen for transmission. However,

there are two noticeable differences between the PTS and SLM schemes. The first difference is

there is no subblocks partitioning in the SLM method, i.e. the entire information bearing signal is

processed by IFFT. Another difference is that the phase vector operates differently on data signal.

In PTS, the phase factor, bm, operates on the modulated OFDM symbols while Bu operates on the

subcarrier level in SLM. Since phase factors are also utilized in SLM to reduce PAPR, SLM too

suffers from the same drawbacks such as the high complexity in search for the optimal phase factors

that the conventional PTS has.

The issue related to the complexity in search for optimal phase factors has been discussed

in Section 10.3.4 of this chapter. In addition, alternative search methods have also been presented

and some of search methods such as flipping method described in [9] can be modified and applied to

SLM. In this section, we will focus on another disadvantage that both SLM and PTS share which is

the loss in data rate. The decrease in data rate is due to the transmission of side information which

is required at the receiver to correctly recover the original OFDM signals. Not only the transmission

of side information is required, the integrity of the side information also has a significant impact on

the BER performance.

To avoid a decrease in data rate, Han et al. [13] proposed to estimate the phase factors at

receiver. In this case, the authors considered the linear block code which can be produced by using

systematic encoders with a code rate, R = l
m . In a codeword, the first l will be exactly the same as

the information data bits and the rest of (m − l) bits are redundancy which are generally referred

to as parity bits. The data bits and parity bits in the codewords are then modulated separately

and after modulation, are concatenated into a sequence with N symbols. As the authors pointed

out that the coding in this algorithm was intended to be used for error correction and did not have

effects on the PAPR reduction.

The resulting coded data signal is then processed according to the SLM scheme. How-

ever, the design of the phase factors in the proposed method is different from the ordinary SLM

algorithm. In the ordinary SLM algorithm, there is no restriction on the design of the phase factors,

as long as each set of phase factors is different enough from each other. In this case, Bu is designed

as

Bu =







Bu,k = 1 k = data subcarriers

Bu,k = ejφu,k Otherwise
(10.32)

for all u. Fig. 10.5 demonstrates the concept of the proposed design for Bu where elements in Bu

takes on either {±1,±j}.

At the receiver, authors exploited the fact that only subcarriers that have parity bits were
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1 1 1 -1 j 1 1 1 j -1B3

1 1 1 -j 1 1 1 1 -j jB4

Data Subsarrier Parity Bits Subsarrier

Figure 10.5 An example of design of Bu proposed by Han et al. for N = 10, l = 3, m = 5 and
U = 4.

phase rotated in the transmitter during the process of extracting phase factors. After transforming

the received signal back to frequency domain and removing the channel impulse response, the first l

subcarriers in the received signal are the data bits and the rest of (m− l) subcarriers are parity bits

with unknown phase rotations. To estimate the phase factors, the authors proposed to encode the

data bits in the data subcarriers in the received signal by using the same systematic encoder that

was used at the transmitter. This would produce another sequence whose first l bits are data bits

followed by (m − l) parity bits. Even though, these parity bits are estimates, they are not phase

rotated and can be used to extract phase factors on the received signal. Denoted Yu,k as the received

parity bit in the kth subcarrier which is rotated by the uth set of phase factors and let Ŷu,k be the

estimates of the parity bits which are produced by encoding the data bits in the received signal,

subsequently the phase factor at the kth subcarrier is expressed as

B̂u,k =
Yu,k

Ŷu,k

k = Parity bits subcarriers (10.33)

Of course, (10.33) will most likely produce a phase factor with some errors that are due to either the

additive white Gaussian noise (AWGN) or the residual of removal of the channel impulse response.

However, one can compare the estimate of phase factors with all available phase factors in the mem-

ory in the receiver. In addition, the phase factors in the memory that the estimate is closest to is

chosen to recover parity bits. Afterward, either a MAP or a Viterbi decoder can be used to decode

codewords and recover data source. In simulations, the proposed algorithm produces 10% PAPR at

6.7 dB which is almost the same performance as ordinary SLM can offer. However, 0.1% PAPR is

reduced by 0.3 dB when utilizing the proposed method. Although, it is not required to transmit side
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Figure 10.7 A block diagram of turbo coded OFDM receivers with modified selective mapping
(SLM) implementation for PAPR reduction proposed by Lin et al..

information in this case, the error in estimating phase factors may indirectly cause a degradation in

BER performance through the process of decoding codewords.

In [69], another technique was proposed to replace the search for the optimal phase factors

and to avoid the side information transmission. A block diagram of a turbo coded OFDM trans-

mitter with modified SLM proposed by Lin et al. is shown in Fig. 10.6. The data source is first

encoded by a turbo encoder and then interleaved by U different bit interleavers. Each bit interleaver

will rearrange the input bits differently. The output of a bit interleaver is modulated by any modu-

lation scheme such as BPSK, QPSK or QAM and processed by the IFFT. After PAPR is computed

for each resulting time domain signal, the one which has the lowest PAPR is chosen for transmission.

A block diagram of the receiver structure is shown in Fig. 10.7 [69]. At the receiver,

the received signal is first transformed back to frequency domain and demodulated. The output of

the demodulator is then deinterleaved by U different deinterleavers which have the inverse mappings

of the interleavers at the transmitter. The deinterleaved signals are subsequently processed by turbo

decoder. At the ith decoding iteration, the reliability of the bits in the message for the uth turbo
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decoder, denoted as Ri
u, is computed as

R
i
u =

L
∑

l=1

log

[
p(dl = 1)

p(dl = 0)

]

(10.34)

where L denotes the number of bits in the message [69]. The jth turbo decoder is selected to continue

for the rest of the decoding iteration when Ri
j is greater than Ri

u for u = 1, 2, ..., U and u .= j. The

decoding process is terminated when i has reached to the maximum allowed iterations.

Based on the simulation results, 10% PAPR is reduced to about 7.1 dB and 0.1% PAPR

is reduced to about 10.1 dB for a turbo coded OFDM system with BPSK modulation and coding

rate, R = 1
2 . In this case, the transmission of the side information is avoided, however, the proposed

scheme offers very little gain in the performance of PAPR reduction. In addition, there is a signif-

icant increase in the complexity of the receiver structure and an increase in time delay due to the

array of turbo decoders.

To avoid using multiple turbo decoders at the receiver and the transmission of side in-

formation at the same time, both authors in [70,71] independently proposed this new technique that

relies on convolutional encoders to generate U different copies of same information bearing signal.

In [70], for each frame of data, the dummy sequence, denoted as du where u = 1, 2, ..., U , is inserted

at the beginning of the data frame to yield U different representations of the same information

bearing signal. In addition, each du has ν number of bits where ν = log2(U). The resulting signal is

then encoded by the convolutional encoder with code rate, R. The encoded signal is subsequently

processed by the BPSK modulator and IFFTs. After computing PAPR for each copy, the one that

has the lowest PAPR is chosen for transmission.

At the receiver, the received signal is transformed back to frequency domain and sub-

sequently processed by the BPSK demodulator. Instead of multiple convolutional decoders, only

one convolutional decoder is needed to decode the encoded signal and yield the estimate of data

sequence. The dummy bits in the data sequence is then expunged. For N = 120 subcarriers and

U = 4, 10% PAPR is reduced to 6.4 dB from 8.2 dB which is for the same system that is without

dummy bits insertion. In [71], the authors proposed a technique that is similar to the one proposed

in [70], except 8 Amplitude Shift Keying (8-ASK) is used instead of BPSK. The performance of

PAPR reduction in this case is quite similar to the performance reported in [70]. Nonetheless, the

transmission of side information can be avoided in both algorithms proposed in [70,71], at the same

time with a reduction in complexity of the receiver structure.

In all the algorithms presented in this subsection, the transmission of the side informa-

tion such as which set of phase factors is used to reduce PAPR is not required; hence, there is no

loss in data rate in time domain. Nonetheless, the data rate in the frequency domain is cut by
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Figure 10.8 A block diagram of an OFDM system with predistortion.

the code rate, R, which is due to either the turbo encoders or the convolutional encoders. This

implies that the highest data rate that is achievable is 50% which corresponds to the cases where

R = 1
2 . In addition, a high code rate and superior performance in PAPR reduction usually do not

coexist together, therefore, often this is a tradeoff between the code rate and performance in PAPR

reduction. In addition, the increase in the complexity of the receiver is also an issue since in some

cases, multiple decoders are required at the receiver. The last disadvantage that is associated with

proposed algorithms in [13,69–71] is the delay in time. The delay in time can increase dramatically

due to the relationship between accuracy of the estimated data bits and the number of iterations in

the decoding process since running more iterations implies yielding more accurate estimates.

10.3.6 Predistortion

In general, techniques related to predistortion are not covered under the topic of PAPR

reduction since the predistorted signals do not usually yield better performance in PAPR reduction

than the signals that have not been predistorted. However, it is included in this chapter because

predistortion can be used in offsetting the nonlinearity in practical HPAs which is also the pur-

pose of reducing PAPR. Fig. 10.8 shows OFDM systems with predistortion. The general idea of

predistortion is by using a predistorter in front of a nonlinear HPA, then the desired output of the

nonlinear HPA is the same as the input to the predistorter. In other words, let g(x(n)) represents the

nonlinear function which is implemented in the predistorter and f(x
′
(n)) be the nonlinear function

that is used in nonlinear HPAs, then g(x(n)) is a nonlinear function that satisfies the following

g(x(n)) = min
g(x(n))

|x(n) − s(n)|

= min
g(x(n))

∣
∣
∣x(n) − f(x

′

(n))
∣
∣
∣ (10.35)

where x(n) is the input signal to the predistorter and s(n) is the output of the nonlinear HPA.

Furthermore, the ideal predistortion function in this case is just the inverse of the nonlinear func-

tion, i.e. g(x(n)) = f−1(x
′
(n)). When g(x(n)) is the implemented based on the ideal predistortion

function, this would lead to s(n) = x(n).

In [72], the authors analyzed effects of predistortion on the total degradation in an OFDM

system that is impaired by a nonlinear HPA. The nonlinear HPA in this case is modeled as the Saleh
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model and is given by

A(r) =A2
sat

r

r2 + A2
sat

Φ(r) =
π

3

r2

r2 + A2
sat

(10.36)

where r is the magnitude of the input signal, x(n) and Asat is the input saturation voltage. Notice

that the AM/AM and AM/PM definitions given in (10.36) are different from the definitions given

in (2.6) in Section 2.3 of Chapter 2. However, A(r) in (10.36) can be obtained by setting αAM and

βAM in (2.6) to 1 and 1
A2

sat
, respectively. For Φ(r) in (10.36), it is obtained by setting αPM to π

3A2
sat

and βPM to 1
A2

sat
in (2.6).

To reduce the nonlinearity, the authors proposed to utilize the inverse functions of (10.36)

in predistorter. As pointed out in the paper, A(r) is not a one to one function for all r, hence, the

inversion is only possible when r ≤ Asat

2 and for r > Asat, the amplitude of the predistorter output

is set at Asat. However, such a problem does not exit when inverting the AM/PM function. The

maximum value that Φ(r) takes on is π
6 which is obtained by evaluating Φ(r) with r = Asat. Then,

the inverse functions of (10.36) are given by

|g(x(n))| =A−1(r) =











A2
sat

2r

[

1 −
√

1 −
(

2r
Asat

)2
]

r ≤ Asat

2

Asat r > Asat

2

∠g(x(n)) =Φ−1(r) =











θ(n) − π
6

[

1 −
√

1 −
(

2r
Asat

)2
]

r ≤ Asat

2

θ(n) − π
6 r > Asat

2

(10.37)

where |g(x(n))| and ∠g(x(n)) represent the magnitude and phase of g(x(n)), respectively. θ(n) de-

notes the phase of the input signal, x(n).

Instead of measuring the system performance based on the BER, the performance of the

system is measured based on the amount of total degradation in the system which is given by [72]

Total Degradation = SNR − SNRHPA + Backoff (10.38)

where the unit is in dB. SNR represents the signal to noise ratio (SNR) and SNRHPA represents

the SNR of the signal at the output of the nonlinear HPA. Backoff implies the IBO in the non-

linear HPA. Through simulations, it is shown that an OFDM system with predistortion has a gain

about 3.5 dB in total degradation compared with an OFDM system without predistortion when

both OFDM systems are subject to nonlinear HPAs.

For Solid State Power Amplifier (SSPA), Lee et al. [73] also proposed to predistort sig-

nals by using the inverting the nonlinear HPA. The AM/AM and AM/PM conversions for SSPAs
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are given by

A(r) =
r

(

1 +
(

r
AO

)2p
) 1

2p

Φ(r) ≈ 0 (10.39)

where AO is the maximum output amplitude and p is the parameter that controls the smoothness

of the transition. Since Φ(r) ≈ 0 and maximum amplitude of the signal at the output of nonlinear

HPA is AO, subsequently, the inverse of A(r) is found to be

|g(x(n))| = A−1(r) =











r
„

1−
“

r
AO

”2p
« 1

2p
r < AO

AO r ≥ AO

(10.40)

For AO = 1.5 and p = 1.5, the simulation results show that the OFDM system with predistortion

has a gain about 1.8 dB in SNR compare with the system that is without predistortion for BER

= 10−3. In addition, the simulation shows that the BER performance improves when the IBO is

increased which is what one could expect from an increase in IBO. Even though changing IBO does

not implies a change in the characteristics of the nonlinear function that nonlinear HPAs retain,

with an increase in the numerical value of IBO, the HPA becomes more linear in a sense that now,

the HPA operates in the linear region. This implies that less nonlinear distortion will be introduced

to the system, therefore, the BER performance will improve. However, as it has been mentioned

already, by increasing IBO, the efficiency of the HPA decreases. In addition, the decrease in the

efficiency of the HPA leads to a detrimental effect on battery life. Both inversion techniques pro-

posed in [72, 73] share one disadvantage which is the requirement of knowing the parameters such

as AO, p and Asat that are used in the nonlinear HPA models. If a predistorter does not have prior

knowledge about the numerical values of those parameters, it can not predistort the signal perfectly.

As a result, the signal at the output of the nonlinear HPA would still contain various degrees of

nonlinear distortion which causes a degradation in the BER performance.

To predistort signal without knowing the parameters used in the HPA model, Yoshimi

et al. [74] proposed a technique that was based the combination of PTS and modified predistortion.

The implementation of PTS follows the description given in the subsection 10.3.4 of this chapter.

The flipping technique proposed by Cimini et al. [9] is utilized to obtain the sub-optimal phase

factors. The output of the PTS, x
′
(n), is then processed by the envelope peak detector where the

symbol that has the maximum magnitude, denoted as x
′

max(n), is obtained. x
′
(n) is then normalized

in the following fashion.

x
′′

(n) = x
′

(n)
Asat

x′

max(n)
(10.41)

where x
′′
(n) is the normalized signal and Asat denotes the input saturation voltage. The magni-

tude of x
′′

(n) would correspond to a predistorted magnitude and phase in the lookup table. The
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predistorted magnitude and phase are passed on to the nonlinear HPA and the resulting signal is

subsequently transmitted.

In a BPSK OFDM system that is subject a nonlinear HPA in AWGN channel, about

2.5 dB can be gained in BER performance at BER = 10−2 when using only predistortion. One more

dB can be gained in BER performance if PTS is used in addition to predistortion. Since PTS is

utilized, the proposed technique also suffers from the common drawback that most PTS methods

have which is the loss in data rate. In this proposed algorithm, the side information is still required

to be transmitted to the receiver to recover the original data sequence without any error. Another

disadvantage is the memory size for the lookup table. To perfectly predistort the signal, all possible

numerical values of input magnitudes and predistorted magnitudes and phases have to be stored in

the memory. Furthermore, the size of memory that is required for information storage might not

be feasible to implement in actual hardware as the accuracy of predistortion becomes an important

design criterion.

To reduce the size of required memory for storing all possible input magnitudes, Wesolowski

et al. [75] proposed to quantize the magnitude of the input signal to the predistorter and through

an iterative process, the output of the predistorter can be fine tuned in such a way that the output

of nonlinear HPAs does not contain nonlinear distortion. Denote the signal at the input of the

predistorter as x(n), then x(n) is given by

x(n) = rejθ (10.42)

where r and θ are the magnitude and phase of x(n), respectively. Let yi(n) be the signal at the

output of the predistorter at the ith iteration, then yi(n) is given by

yi(n) =A−1
i (r̂)rej(θ+Φ−1

i (r̂))

=r
′

ie
jθ

′

i (10.43)

where r̂ represents the magnitude of the signal after quantization. A−1
i (r̂) is the predistorted magni-

tude based on the quantized magnitude, r̂, at the ith iteration while Φ−1
i (r̂) denotes the predistorted

phase. Furthermore, r
′

i and θ
′

i are the magnitude and the phase of yi(n), respectively.

Denote s(n) as the output of the nonlinear HPA, then s(n) is given by

s(n) = A(r
′

i)e
j(Φ(r

′

i)+θ
′

i) (10.44)

Ideally, it is desired to have the output of the nonlinear HPA equal to the input signal to the

predistorter, namely, s(n) = x(n). To achieve this, Wesolowski et al. proposed to update A−1
i (r̂)

and Φ−1
i (r̂) in (10.43) through a gradient adaptation algorithm which can be described by the
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Figure 10.9 A block diagram of an OFDM transmitter with compander that is subject to a nonlinear
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Figure 10.10 A block diagram of an OFDM receiver for the transmitter shown in Fig. 10.9.

following two equations, namely

A−1
i+1(r̂) =A−1

i (r̂) − cA

(

A(r
′

i)

r
− 1

)

Φ−1
i+1(r̂) =Φ−1

i (r̂) − cΦ

(

Φ(r
′

i) + θ
′

i − θ
)

(10.45)

where cA and cΦ are the step sizes for A−1(r̂) and Φ−1(r̂), respectively. Not only reducing a small

amount of memory size through quantization, the proposed algorithm updates the predistorted signal

through a simple gradient adaptation process to improve the accuracy of predistorted signal.

10.3.7 Companding

In general, the companding techniques are similar to predistortion in a way that both

types of techniques alter the magnitudes of OFDM signals in such way that nonlinear HPAs are not

forced to operate at the nonlinear region. However, the difference between companding techniques

and predistortion is when utilizing companding techniques, the compensation for companding is

required at receivers while it is not needed in the case where predistortion is employed. Fig. 10.9

shows a block diagram of an OFDM transmitter with compander that is subject to a nonlinear HPA.

The block diagram of corresponding receiver is shown in Fig. 10.10. Let x(n) be the signal at the

input of compander, then the output of compander, denoted as xC(n), is expressed as

xC(n) = u(|x(n)|)ejθ (10.46)

where u(|x(n)|) represents the companding function which is a function of magnitude of x(n). In

addition, θ denotes the phase of the x(n). Subsequently, xC(n) is subject to nonlinear distortion in

the HPA and transmitted from an antenna.
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Let y(n) be the received signal and yD(n) be the signal at the output of the decompander,

then yD(n) is found to be

yD(n) = q(|y(n)|)ejφ (10.47)

where q(|y(n)|) is the decompanding function which is a function of magnitude of y(n). Furthermore,

φ is the phase of y(n). Subsequently, yD(n) is processed by the FFT and demodulated to yield

estimated data bits. In most cases, it is desired to implement the decompander as inverse of the

compander, namely

|x(n)| = q(u(|x(n)|)) (10.48)

However, it is most likely that (10.48) will not hold in practice since y(n) contains various sources

of noise that arise from transmissions through wireless channels. Since the decompander is inverse

of the compander, one of the criteria for designing a compander is the companding function has to

be an one to one function or an invertible function, so the inverse function exists and then can be

implemented in the decompander.

In 1999, Wang et al. [76] proposed to use a µ-Law companding to reduce PAPR of OFDM

signals. For the µ-Law compander, the proposed companding function which is parameterized by µ

and AN is given by

u(r) =
Aµln

(

1 + µ r
AN

)

ln (1 + µ)
(10.49)

where Aµ is the normalization constant and is defined as the maximum of r such that 0 ≤ r
Aµ

≤ 1

where r represents the magnitude of x(n). Furthermore, the optimal value for µ is given as

µ =
√

N − 2 (10.50)

where N is the number of subcarriers. The decompanding function is subsequently given by

q(r
′

) =

Aµ

(

e
r
′
ln(1+µ)

A − 1

)

µ
(10.51)

where r
′
denotes the magnitude of the received signal, y(n). Through simulation, it was shown that

the µ-Law companding technique increases the amplitude of small signals while keeping the large

signals unchanged after companding. As a result, the PAPR of OFDM signals is reduced due to the

increase in the average power.

In [77,78], authors proposed to reduce PAPR of OFDM signals by utilizing an exponential

companding function. The exponential companding function is given as

u(r) = d

√
√
√
√Ae

(

1 − e
−r2

σ2
x(n)

)

(10.52)
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where d is a constant parameter which can be chosen to optimize the PAPR reduction result. Ae is a

normalization constant which keeps the average power of input and output signals of the exponential

compander at the same level. Furthermore, Ae is defined as

Ae =












E{r2}

E







d

√
√
√
√

(

1 − e
−r2

σ2
x(n)

)2

















d/2

(10.53)

In addition, σ2
x(n) in both (10.52) and (10.53) represents the power of input signal, x(n). At the

receiver, the decompanding function is utilized to decompress the received signal and the function

is given by

q(r
′

) =

√

−σ2
x(n)ln

(

1 −
rd

Ae

)

(10.54)

Different from the µ-Law companding where small signals are boosted while keeping the large signals

unchanged, the exponential compander adjusts both small and large signals by various scales. As

a consequence, the PDF of the companded signal is transformed from the Rayleigh distribution to

uniform distribution. The simulation results show that the amount of reduction in PAPR asymp-

totically decreases when d is greater than 2.

Kumar et al. [79] modified the existing exponential compander by introducing two more

parameters in the companding function. The modified companding function is then given by

u(r) = B
1
d
e

(

1 − e
−c1r2

2σ2
x(n)

)c2/d

(10.55)

where Be is a constant parameter that keeps the average power of input and output signals of the

compander constant. In addition, Be is given by

Be =











E{r2}

E
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1 − e
−c1r2

2σ2
x(n)
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d/2

(10.56)

c1 and c2 in both (10.55) and (10.56) are two additional constant parameters that are introduced by

Kumar et al.. Finally, d is still defined as (10.52).The corresponding decompander is implemented

as the inverse of companding function which is given by

q(r
′

) =

√
√
√
√
√

−2σ2
x(n)ln

(

1 −
(

r′d

Be

)1/c2
)

c1
(10.57)
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The simulation results show that as c1 increases, the amount of reduction in PAPR also increases

for fixed d and c2. This is due to the fact that as c1 increases, the peak power becomes equal to the

average power, in which case, the PAPR is reduced to 1. However, the BER performance worsens

as c1 increases. This suggests that there is a tradeoff between the choice of c1 that can significantly

reduce PAPR and the BER performance.

With minimum increase in the complexity of the receiver structure, it seems that PAPR

of OFDM signals can be effectively reduced by choosing an appropriate companding function that

has an one to one mapping and is invertible. Another advantage is that there is no loss in data rate

which makes companding techniques even more attractive. However, from these papers reviewed

here, there might be a disadvantage which is the OFDM system with a compander might not per-

form well in Rayleigh fading channels. This is based on the fact that none of simulation results in

the papers that were presented was simulated with Rayleigh fading channels.

10.4 Conclusion

In this chapter, we first discussed the concept of PAPR by defining PAPR for the continuous

time OFDM signals. To derive the PAPR definition for the discrete case, we introduced the idea of

oversampling continuous time OFDM signals because the peaks of continuous time OFDM signals

may not be picked up when using the Nyquist sampling rate. Next, we represented the PAPR

distribution of OFDM signals by using CCDF. The CCDFs of PAPR were given with and without

oversampling the continuous time OFDM signals. We also introduced the easiest way to avoid

the introduction of nonlinear distortion which was caused by the OFDM signals through practical

HPAs. This was done by increasing IBO of HPAs; however, this led to the problem of efficiency

of power conversion in HPAs. To resolve this problem, we presented several alternatives such as

clipping, coding, interleaving, PTS, SLM, predistortion and companding which were some of the

most popular techniques for PAPR reduction in literature. Finally, Table 10.1 provides a brief

summary of all methods.
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Table 10.1 Summary of PAPR Reduction Techniques

Techniques Advantages Disadvantages

Clipping
" Simplest technique " In-band distortion
" No loss in data rate " Out-of-band radiation
" Can be combined with other techniques " Possible peak regrowth after filtering

Coding
" Moderate effective method " Requires good codes with good code rates
" Can be used to improve BER " Possible large memory size required for look-up tables

" Limited to small number of subcarriers

Interleaving
" Least effective technique " Require side information transmission
" Can be combined with other techniques " Loss in data rate

PTS

" Very effective for PAPR reduction " Searching for optimal phase factors is complicated
" Needs M IFFTs
" Require side information transmission
" Loss in data rate

SLM " Same as PTS " Same as PTS

Predistortion
" Effective for PAPR reduction " Need to invert nonlinear functions
" No side information required " Require knowledge of parameters in nonlinear functions

Companding
" Very effective for PAPR reduction " Require invertible functions, i.e. one to one mapping
" No side information required " Minimal increase in complexity of receiver structure
" No loss in data rate " Might not work in fading channels
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Effects of Narrowband Interference

and Nonlinear Amplifier on the

Performance of Companded

OFDM

11.1 Introduction

Due to its capability of delivering high data rate and superior performance in fading chan-

nels, Orthogonal Frequency Division Multiplexing (OFDM) has become a primary candidate to be

considered in the Fourth Generation (4G) mobile and Wireless Local Area Network (WLAN) com-

munication systems [4]. However, one of disadvantages that OFDM has is high peak to average

power ratio (PAPR) which is due to the superimposition of multi-carrier signals. Practical high

power amplifiers (HPAs) have difficulty reproducing such high PAPR signals and often introduce

nonlinear distortion such as clipping and spectral regrowth [24, 25]. Subsequently, the system per-

formance will degrade.

To reduce PAPR or minimizing the nonlinear distortion produced by the OFDM signals

through practical HPAs, authors in [76] proposed a companding technique for reducing PAPR. The

proposed µ-Law compander which is placed before the nonlinear HPAs compresses the magnitude

of OFDM signals while leaving the phase of the OFDM signals unaltered [76]. By compressing the

magnitude of OFDM signals, we can ensure that the nonlinear HPAs will operate in its linear region.

Therefore, less amount of nonlinear distortion caused by HPAs is introduced to the system and as

a result, the bit error rate (BER) performance is improved. To recover the original uncompressed

176
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OFDM signals at the receiver, the decompander which is the inverse of a compander decompresses

the received signals. In [77], the authors proposed another compander that utilized the exponential

function. The proposed exponential compander worked in the same way as the µ-Law compander

in reducing the PAPR of OFDM signals. In both PAPR reduction schemes, the companding tech-

nique shows some advantages such as requiring no additional Inverse Fast Fourier Transform (IFFT)

operations and transmissions of side information when compared to Selective Mapping (SLM) and

Partial Transmit Sequences (PTS) [9, 83]. Nonetheless, both authors in [76, 77] only presented sim-

ulation results of companded OFDM systems in Additive White Gaussian Noise (AWGN) channels,

and not in Rayleigh fading channels.

Since the bandwidth of available frequency spectrum is limited, it is inevitable that an

OFDM system finds itself operating in coexistence with interference such as narrowband interfer-

ence (NBI). While there are some papers dealing with the effects of nonlinear HPAs on the perfor-

mance of OFDM systems in AWGN channels, very few analyze the combined effect of NBI together

with nonlinear distortion caused by nonlinear HPAs in OFDM systems through Rayleigh fading

channels. Costa, et al. [15] presented the performance analysis of a M-ary Quadrature Amplitude

Modulation (M-QAM) OFDM system with impairment from a nonlinear HPA and phase noise in

AWGN channel only. In [26], the authors analyzed an equalized OFDM system in a Rayleigh fading

channel for various modulations; however, the nonlinear HPAs and NBI were not considered in the

performance analysis. In [27], an OFDM system with carrier interferometry spreading codes and

NBI in a Rayleigh fading channel was analyzed without considering the effect of nonlinear distortion

produced by nonlinear HPAs. In addition, the authors in the paper assumed that the source of NBI

was very close to the receiver; hence, the NBI did not experience any channel effect. This particular

assumption does not provide useful insights to the performance of an OFDM system in the presence

of NBI because in many cases, the sources of NBI are usually located in several city blocks away.

Therefore, it is more reasonable and practical to assume that the NBI signal experiences another

separate channel response.

In the previous work [45, 46], we presented the performance analysis of a M-QAM OFDM

system that was subject to a nonlinear HPA, channel estimation error and NBI in a Rayleigh fading

channel. In contrast to the NBI model presented in [27], we assumed that the NBI by itself expe-

rienced a separate channel response. In this chapter, we extend the previous work and analyze the

combined effect of NBI and a nonlinear HPA on the performance of a M-QAM OFDM system with

a compander in a Rayleigh fading channel. In addition, we propose a new companding function for

the compander and a novel receiver structure which minimizes the degradation effects caused by the

decompander when the OFDM systems operate in a Rayleigh fading channel. For the purpose of

simulation, we extend our analytical model to an 802.11n WLAN system based on IEEE 802.11n

specification . The simulation and theoretical results will be presented for various combined sources
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M-QAM 
Modulator

IFFT
Nonlinear 
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M-QAM
Demodulator
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AWGN

Compander
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Rayleigh Fading 
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Rayleigh Fading 
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+

X[k] x(n) s(n)

i(n)

zD(n)ZD[k]

Transmiter
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y(n)

xC(n)

Equalizer
z(n)

Figure 11.1 The system block diagram of a M-QAM companded OFDM system which is subject to
a nonlinear HPA, channel estimation error and NBI in a Rayleigh fading channel.

of degradation.

The chapter is organized as follows. In Section 11.2, the analytical model is presented

and each component is discussed in detail. Section 11.3 presents the performance analysis of the

analytical model. Section 11.4 discusses the simulation setup. Section 11.5 contains the theoretical

and simulation results of the system described in Section 11.4. Finally, Section 11.6 summarizes the

chapter.

11.2 System Description

Fig. 11.1 shows the block diagram of an analytical model which consists of a transmitter,

a NBI in a wireless channel and a receiver. Each block in Fig. 11.1 is discussed in the following

subsections.

11.2.1 Transmitter

The transmitter consists of a M-QAM modulator, an IFFT, a compander and a nonlinear

HPA. The input to the M-QAM modulator is assumed to be binary bits and the values of the bits

are equiprobable and statically independent of each other. The stream of binary data bits are then
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mapped to M-QAM symbols, denoted as X [k]. The output of the modulator is subsequently fed into

and processed by IFFT. Denote x(n) as the signal at the output of the IFFT, then at appropriate

sampling time, x(n) is given by

x(n) =
1

N

N−1
∑

k=0

X [k]ej 2πnk
N 0 ≤ n ≤ N − 1 (11.1)

where N is the number of subcarriers.

11.2.2 Compander

In this subsection, we propose a new nonlinear companding technique which is used to

eliminate the nonlinear distortion caused by a nonlinear HPA. Denote xC(n) as the companded

OFDM signals at the output of the compander, then xC(n) is expressed as

xC(n) = u(r)ej∠x(n) (11.2)

where r is the magnitude of the input signal, x(n), and ∠x(n) represent the phase of x(n). In

addition, u(r) is defined as

u(r) =
ANr

(1 + ( r
AO

)2p)
1
2p

(11.3)

where AO represents the maximum output magnitude allowed and p is the smoothness controller.

Furthermore, AN is the normalization factor that ensures the average power of x(n) and xC(n) are

equal and is found as

AN =









E{r2}

E

{

r2

(1+( r
AO

)2p)
1
p

}









1/2

(11.4)

where E{·} is the expected value.

11.2.3 HPA Model

The nonlinear HPA model in the transmitter represents the nonlinear distortion imposed

on the signal. In this chapter, the nonlinear HPA model follows the Saleh model which has been

described in Chapter 2, Section 2.3.

11.2.4 Narrowband Interference Model, Channel Model and AWGN

The NBI signal in time domain, denoted as i(n), is expressed as

i(n) =
1

N

N−1
∑

k=0

I[k]ej 2πnk
N (11.5)
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Equalizer

y(n)Z[k]
FFT

1-Tap
Equalization

IFFT
Y[k]z(n)

Figure 11.2 A detail block diagram of an equalizer shown in Fig. 11.1.

where I[k] represents the NBI signal for the kth subcarrier and has power equal to |I[k]|2
2 .

Denote h1(n) as the channel impulse response of the Rayleigh fading channel for the trans-

mitted signal, s(n). The in-phase and quadrature components of h1(n) are modeled as zero mean

and σ2
H1

variance Gaussian random variables. In addition, in-phase and quadrature components are

assumed to be statistically independent of each other. Let h2(n) be the channel impulse response

between the NBI and the receiver and is assumed to be a separate Rayleigh fading channel with

zero mean and 2σ2
H2

variance. Furthermore, the in-phase and quadrature components of the channel

impulse response, h2(n), are assumed to be independent of each other. The thermal noise, denoted

as w(n), is modeled as an independent AWGN process which has zero mean and 2σ2
w variance.

11.2.5 Receiver

In this section, we propose the new receiver structure, shown in Fig. 11.1, consisting of

an equalizer, a decompander, a Fast Fourier Transform (FFT) and a M-QAM demodulator. Each

block is also discussed in detail in following subsections. Denote y(n) as the received signal in time

domain, then y(n) is given by

y(n) = h1(n)s(n) + h2(n)i(n) + w(n) (11.6)

where s(n) represents the transmitted signal.

11.2.6 Equalizer

In conventional OFDM systems, the equalization is usually done in the frequency domain

since the transmitted signal after channel impulse response is a multiplication of two signals in fre-

quency domain. However, when a decompander is preceded by the equalizer, the magnitude of y(n)

after decompander can be enormous due to the decompression in the decompander. Subsequently,

it leads to an unexpected increase in BER even under the assumption of perfect channel estimation.

Therefore, we propose a new equalizer which equalizes the received signal before the decompander.

By equalizing the signal before the decompander, the effect of channel response on the magnitude

of decompanded signal can be greatly reduced. Fig. 11.2 shows the structure of the new proposed

equalizer in detail.
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Since NBI does not affect all the subcarriers in the transmitted signal, the received signal

in frequency domain can be separated into two cases. Let the subcarrier index k represents the case

where the subcarrier is under the influence of NBI. Then, the received signal in frequency domain,

denoted as Y [i], is expressed as

Y [i] =







H1[k]S[k] + H2[k]I[k] + W [k] i = k

H1[l]S[l] + W [l] Otherwise
(11.7)

where H1[k], H2[k], S[k] and W [k] are the FFT of h1(n), h2(n), s(n) and w(n), respectively.

One of the most attractive features of OFDM systems is the simplicity in the equaliza-

tion process which is adequately done by utilizing a one-tap equalizer in the frequency domain.

Among many available algorithms, we choose the Zero Forcing algorithm because of its simplicity in

implementation. Before equalization, obtaining the channel estimate is necessary and can be done

with the aid of pilots and interpolation. After obtaining the channel estimate, the equalized signal,

denoted as Z[i], is given by

Z[i] =
Y [i]

Ĥ1[i]
=








H1[k]

Ĥ1[k]
S[k] + H2[k]

Ĥ1[k]
I[k] + W [k]

Ĥ1[k]
i = k

H1[l]

Ĥ1[l]
S[l] + W [l]

Ĥ1[l]
Otherwise

(11.8)

where Ĥ1[i] is the estimate of H1[i] and is expressed as

Ĥ1[i] = H1[i] + ε[i] (11.9)

where ε[i] represents the error in estimating the channel, H1[i], and is modeled as a complex Gaussian

random process with zero mean and 2σ2
ε variance. At the output of the equalizer, the equalized signal

is converted back to the time domain signal which is denoted as z(n).

11.2.7 Decompander

Let zD(n) be the decompressed signal at the output of the decompander, then zD(n) is

given by

zD(n) = q(r
′

)ej∠z(n) (11.10)

where q(r
′

) is the inverse function of u(r) and is defined as

q(r
′

) =
r
′

(A2p
N − ( r′

AO
)2p)

1
2p

(11.11)

where r
′

represents the magnitude of z(n). Next, the zD(n) is fed into and processed by the FFT

and the M-QAM demodulator.
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11.3 Performance Analysis

In this section, we will derive the BER for the analytical model. The BER will later be

used as a measure of the performance. In addition, for the sake of simplicity in the mathematical

notation, we will drop the time and frequency indices in the derivation. The performance analysis

starts with the characterization of x(n). Under the assumption that N is large and by the Central

Limit Theorem, x(n) is said to be Gaussian distributed with zero mean [19]. With that assumption,

Banelli, et al. [20] had shown that xC(n) can be written as a product of a complex gain, αG1 , and

the input signal, x(n), added with noise distortion, dG1(n). The compressed signal, xC(n), and its

FFT are given by

xC = αG1x + dG1

FFT←→ XC = αG1X + DG1 (11.12)

where DG1 was shown to be a complex Gaussian random variable with zero mean and 2σ2
DG1

vari-

ance. In addition, the numerical value of σ2
D can be obtained by following steps outlined in Section

2.4 of Chapter 2.

For two different subcarriers, k1 and k2, DG1 [k1] and DG1 [k2] are mutually independent.

Furthermore, the in-phase and quadrature phase components of DG1 were shown to be mutually

independent and identically distributed (i.i.d) [15]. The multiplicative coefficient αG1 in (11.12) is

given by

αG1 =
E{x∗

Cx}
2σ2

x

= αG1I
+ jαG1Q

(11.13)

where (·)∗ implies the complex conjugate [20]. The subscripts I and Q represent the in-phase and

quadrature components. The resulting companded OFDM signal is then subject to a nonlinear HPA.

At the output of the nonlinear HPA, s(n) and its FFT are expressed as

s = αG2xC + dG2

FFT←→ S = αG2XC + DG2 (11.14)

where αG2 is defined as

αG2 =
E {s∗xC}

2σ2
xC

= αG2I
+ jαG2Q

(11.15)

and the numerical value of 2σ2
DG2

can be obtained by following steps outlined in Section 2.4 of

Chapter 2. After equalizing and decompressing the received signal, the output of the decompander,

denoted as zD, and its FFT are given by

zD = αG3z + dG3

FFT←→ ZD = αG3Z + DG3 (11.16)

where the value of 2σ2
DG3

can be obtained by following steps outlined in Section 2.4 of Chapter 2.

Furthermore, αG3 is defined as

αG3 =
E {z∗Dz}

2σ2
z

= αG3I
+ jαG3Q

(11.17)
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Since the equalized signal for the case where the subcarriers are free from NBI can be

obtained from the other case where the subcarriers are under the influence of NBI by setting the

power of NBI to zero, we will continue to derive the performance for the case where the subcarriers

are affected by the NBI. Once the derivation is completed, the performance analysis for the other

case is found by setting I[k] to zero. Substituting (11.8), (11.12) and (11.14) into (11.16), then ZD

becomes

ZD =
H1

Ĥ1

αG1αG2αG3X +
H1

Ĥ1

αG2αG3DG1

︸ ︷︷ ︸

β1

+
H1

Ĥ1

αG3DG2

︸ ︷︷ ︸

β2

+
H2

Ĥ1

αG3I

︸ ︷︷ ︸

η

+ αG3

W

Ĥ1
︸ ︷︷ ︸

ξ

+ DG3
︸︷︷︸

β3

=
α1

α̂1
ejθαG1αG2αG3X + β1 + β2 + η + ξ + β3 (11.18)

where α1 and α̂1 are the magnitudes of H1 and Ĥ1, respectively. θ represents the phase difference

between H1 and Ĥ1. Since β1, β2, η, ξ and β3 are noise with zero mean, their conditional variances

are required in analyzing the performance. Let σ2
β1

, σ2
β2

, σ2
η, σ2

ξ and σ2
β3

be the variances for the

in-phase or quadrature component of β1, β2, η, ξ and β3, respectively, then they are given by

σ2
β1

=E {β1β
∗
1} =

α2
1

α̂2
1

α2
G2

α2
G3

σ2
DG1

, σ2
β2

= E {β2β
∗
2} =

α2
1

α̂2
1

α2
G3

σ2
DG2

σ2
η =E {ηη∗} =

α2
2

α̂2
1

α2
G3

|I[k]|2

2
, σ2

ξ = E {ξξ∗} =
σ2

w

α̂2
1

α2
G3

σ2
β3

=E {β3β
∗
3} = σ2

DG3
(11.19)

After further expanding ZD into in-phase and quadrature components, ZD becomes

ZD = [ΛI + β1I + β2I + ηI + ξI + β3I ]
︸ ︷︷ ︸

ZDI

+j
[

ΛQ + β1Q + β2Q + ηQ + ξQ + β3Q

]

︸ ︷︷ ︸

ZDQ

=ZDI + jZDQ (11.20)

where ΛI and ΛQ are defined as

ΛI =
α1

α̂1

(

αGI XI cos θ − αGQXQ cos θ − αGQXI sin θ − αGI XQ sin θ
)

ΛQ =
α1

α̂1

(

αGQXI cos θ + αGI XQ cos θ + αGI XI sin θ − αGQXQ sin θ
)

(11.21)

In addition, αGI and αGQ are given by

αGI =
(

αG1I
αG2I

αG3I
− αG1Q

αG2Q
αG3I

− αG1I
αG2Q

αG3Q
− αG1Q

αG2I
αG3Q

)

αGQ =
(

αG1I
αG2Q

αG3I
+ αG1Q

αG2I
αG3I

+ αG1I
αG2I

αG3Q
− αG1Q

αG2Q
αG3Q

)

(11.22)
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Table 11.1 Numerical Values of Variables in Conditional BER for MSB

Index i XIi XQi Index i XIi XQi

1 d 3d 5 3d 3d
2 d d 6 3d d
3 d −d 7 3d −d
4 d −3d 8 3d −3d

To continue the derivation, we assume that 16-QAM modulation scheme is utilized to

modulate signal. However, the BER can be derived in the similar fashion if other rectangular QAM

modulation schemes are chosen to modulate signal. The BER of 16-QAM conditioned on α1, α2, α̂1

and θ for the case where the subcarriers are affected by NBI is expressed as

P I
BER|α1,α2,α̂1,θ =

1

2
(P I

MSB + P I
LSB) (11.23)

where P I
MSB and P I

LSB are the conditional BER of the most significant bits (MSB) and least

significant bits (LSB) of 16-QAM symbols for the case where the subcarriers are affected by NBI.

Based on the decision boundaries, P I
MSB is found as

P I
MSB =P (ZDI < 0|α1, α2, α̂1, θ)

=
1

8

8
∑

i=1

P (ΛIi + β1I + β2I + ηI + ξI + β3I < 0)

=
1

8

8∑

i=1

Q

(√

(ΛIi)
2

σ2
β1

+ σ2
β2

+ σ2
η + σ2

ξ + σ2
β3

)

(11.24)

where Q(ν) =
∫∞

ν
1√
2π

e
−t2

2 dt, ν ≥ 0. σ2
β1

, σ2
β2

, σ2
η, σ2

ξ and σ2
β3

are defined as (11.19) and ΛIi =
α1
α̂1

(αGI XIi cos θ − αGQXQi cos θ − αGQXIi sin θ − αGI XQi sin θ). In addition, the numerical values

for XIi and XQi are listed in Table 11.1. The conditional BER of LSB for the cases where the

subcarriers are affected by NBI can be found in a similar fashion and P I
LSB is given by

P I
LSB ={P (ZDI < −2d|α1, α̂1, θ, α2) + P (ZDI > 2d|α1, α̂1, θ, α2)}|LSB=0

+ {P (−2d < ZDI < 2d|α1, α̂1, θ, α2)} |LSB=1

=
1

8

16
∑

i=1

λiQ





√

(κi2d + ζiΛIi)
2

σ2
Ξ



 (11.25)

where |LSB=0 and |LSB=1 represent the boundaries for LSB is zero and one, respectively. In (11.25),

λi, κi, and ζi are signs of the values for ith quantity and are listed along with values for XIi and

XQi in Table 11.2. In both Tables 11.1 and 11.2, d2 = 2Eb

5 where Eb is the energy per bit. Denoting

PF
BER|α1,α̂1,θ as the conditional BER for the case where the subcarriers are free from NBI, then

PF
BER|α1,α̂1,θ can be obtained by setting |I[k]| or σ2

η in (11.23) to zero, namely

PF
BER|α1,α̂1,θ = P I

BER|α1,α2,α̂1,θ|σ2
η=0 (11.26)
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Table 11.2 Numerical Values and Signs of Variables in Conditional BER for LSB

Index i λi κi ζi XIi XQi Index i λi κi ζi XIi XQi

1 + + + d 3d 9 + - - −3d 3d
2 + + - d 3d 10 - + - −3d 3d
3 + + + d d 11 + - - −3d d
4 + + - d d 12 - + - −3d d
5 + + + d −d 13 + - - −3d −d
6 + + - d −d 14 - + - −3d −d
7 + + + d −3d 15 + - - −3d −3d
8 + + - d −3d 16 - + - −3d −3d

Let N I be the number of subcarriers that are under the influence of NBI and NF = N−N I

be the number of subcarriers that are free from NBI, the unconditional BER is subsequently given

by

PBER =
N I

N

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ π

−π
P I

BER|α1,α2,α̂1,θp(α2)p(α1, α̂1, θ)dα1dα̂1dθdα2

+
NF

N

∫ ∞

0

∫ ∞

0

∫ π

−π
PF

BER|α1,α̂1,θp(α1, α̂1, θ)dα1dα̂1dθ (11.27)

where p(α2) is defined as

p(α2) =
α2

σ2
H2

e

−α2
2

2σ2
H2 (11.28)

In addition, p(α1, α̂1, θ) is given by [28] as

p(α1, α̂1, θ) =
α1α̂1

2π|∆| 12
exp

{

−
[σ2

Ĥ1
α2

1 + σ2
H1

α̂2
1 − 2Rcα1α̂1 cos θ − 2Rcsα1α̂1 sin θ]

2|∆| 12

}

(11.29)

where

σ2
H1

= E{H2
1I
} = E{H2

1Q
}, Rc = E{H1I Ĥ1I} = E{H1QĤ1Q}

σ2
Ĥ1

= E{Ĥ2
1I
} = E{Ĥ2

1Q
}, Rcs = E{H1I Ĥ1Q} = −E{H1QĤ1I}

|∆| =
[

σ2
H1

σ2
Ĥ1

− R2
c − R2

cs

]2
(11.30)

From (11.27), one can observe that the unconditional BER is composed of two sources. The first term

of (11.27) represents the BER contribution that is due to the effect of NBI on parts of subcarriers,

while the second term denotes the contribution from the subcarriers which are free from NBI. In the

case where NBI is absent from the received signal, (11.27) is reduced to

PBER =

∫ ∞

0

∫ ∞

0

∫ π

−π
PF

BER|α1,α̂1,θp(α1, α̂1, θ)dα1dα̂1dθ (11.31)
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Table 11.3 Summary of Simulation Cases

Case Number HPA Compander |I[k]| 2σ2
ε

2 Varying Yes 0 0
3 Varying No 0 0
4 Nonlinear Yes Varying 0
5 Nonlinear Yes 0.1 Varying

Table 11.4 Simulation Parameters for Nonlinear HPA Model

Case Number αAM βAM αPM βPM

2-A 1 0 0 0
2-B 1 0.25 π 0.25
2-C 1 0.25 1.2π 0.01
2-D 1 0.25 1.5π 0.01

11.4 Simulation Model and Parameters

The simulation model, constructed using Matlab Simulink, is an extension of the analytical

model described in Section 11.2 in compliance with the IEEE 802.11n standard ( [4], Clause 10.4.4.2

rate code 73); except the convolutional encoder, interleaver/deinterleaver and Viterbi decoder are

omitted. After pre-appending 16-bit Service Field and padding enough bits to ensure the trans-

mission from each antenna are multiples of whole OFDM symbols, the resulting signal is scrambled

with a scrambler that is based on the IEEE 802.11a standard and subsequently demultiplexed al-

ternately across the transmitter spatial streams. In each spatial stream, the data is modulated with

the 16-QAM modulation and processed with the 64-point IFFT, of which subcarriers, ± 21, are

designated for pilots. The OFDM symbol is then cyclically extended and pre-appended with the

preamble sequences as specified in [4] before transmission. To recover the data, the corresponding

receiver reverses the encoding procedure in the transmitter.

Without loss of generality, we set the mean of Rayleigh channels, H1 and H2 to zero

and set 2σ2
H1

= 2σ2
H2

= 1. In Case 1, we compare the effectiveness of PAPR reduction of the

proposed compander with two other companders, namely the µ-Law and Exponential companders,

based on the Complementary Cumulative Distribution Function (CCDF) of PAPR. In this case,

we simulate 108 statistically independent 16-QAM OFDM symbols. Furthermore, we assume that

the total number of subcarriers in IFFT is 64. For the rest of simulation cases, we measure and

compare the BER performance of the system which is subject to different sources of impairments.

The simulation parameters used for the rest of simulation cases are summarized in Table 11.3. In

Case 2, we assume that the companded OFDM system is only subject to the nonlinear distortion

caused by the nonlinear HPAs and AWGN. The severity of the nonlinearity in the HPAs is varied

based on the parameters listed in Table 11.4. Notice in Case 2-A where αAM is set to one and

the rest of the parameters are set to zero, the nonlinear HPAs become perfectly linear HPAs which

have an unity gain with no phase distortion. In Case 3, the system is also subject to the nonlinear
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Table 11.5 A Comparison of PAPR Reduction

Original Exponential µ-Law Proposed
10% PAPR 8.2 dB 7.4 dB 6.4 dB 4.2 dB

distortion caused by the nonlinear HPAs. Different from Case 2, the compander and decompander

are removed from the system in this case. In addition, the level of nonlinearity in the HPAs will be

varied according to the same parameters listed in Table 11.4.

In Case 4, we assume that the system is impaired by both nonlinear HPAs and a NBI.

In addition, we assume that there is only one subcarrier which is under the influence of a NBI. In

this case, the amplitude of the NBI is varied from 0, 0.1, 0.3 to 0.5. In Cases 2, 3, and 4, we assume

that there is no error in estimating the channel impulse response. In Case 5, we vary the power

of channel estimation error in the system while subjecting the system to nonlinear distortion and

a NBI whose amplitude is set to 0.1. In both Cases 4 and 5, the parameters used in Case 2-C are

applied in the HPA model. Furthermore, through empirical analysis, AO and p in the compander

and decompander are found to be 0.5 and 1.5, respectively, for all cases.

11.5 Simulation Results

In Case 1, we compare the effectiveness of PAPR reduction of the proposed compander

with µ-Law and Exponential companders by measuring the CCDFs. Furthermore, for the purpose

of comparison, we also include the case where the compander is not present in the system. Before

defining the CCDF, it is necessary to define PAPR and is given by

PAPR =
max

0≤k≤N
|xC [k]|2

E{|xC [k]|2}
(11.32)

Then, the CCDF is defined as

CCDF =P (PAPR > PAPRo)

=1 − (1 − exp(−PAPRo))
N (11.33)

where PAPRo implies the PAPR threshold [84]. The simulation result is shown in Fig. 11.3. As

one can see from Fig. 11.3, the proposed compander has the best performance in PAPR reduction.

When utilizing the Exponential compander, 10% PAPR is reduced to 7.4 dB while same percent-

age of PAPR can be reduced even further to around 6.4 dB when the compander is implemented

based on the µ-Law technique. However, by using the proposed compander, 10% PAPR is reduced

to around 4.2 dB which is 3.2 dB and 2.2 dB improvement when compared with PAPR reduction

results from Exponential and µ-Law companders, respectively. Table 11.5 summarizes the results of

PAPR reduction for Case 1.
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Figure 11.3 The comparison of CCDFs of the signals at the output of µ-Law, Exponential and
proposed companders in a 16-QAM OFDM system.

In Case 2, the system is subject to only nonlinear distortion and AWGN while the level of

nonlinearity in the HPA is varied. The theoretical results can be obtained from (11.27) by setting

σ2
η to zero. The simulation results are plotted along with the theoretical results in Fig. 11.4. As one

observes from Fig. 11.4, the BER performance gets worse as more nonlinear distortion is introduced

to the system by the HPA. This is expected since an increase in nonlinear distortion implies an

increase in the power of nonlinear distortion or overall noise power in the system for a given signal

to noise ratio (SNR) value. As a result, the arguments of the Q functions become smaller in values

and BER performance degrades.

Different from Case 2, the compander and decompander are removed from the system

while the system is still subject to nonlinear distortion introduced by the nonlinear HPA in Case

3. For readers who are interested in theoretical results for Case 3, it can be found in [45, 46]. For

the purpose of comparison, the simulation results for Case 2 and 3 are shown in Fig. 11.5. One can

see from Fig. 11.5, the OFDM system which has a compander and a decompander outperforms the

system that is without the compander and decompander for all levels of nonlinearity in the HPA. In
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Figure 11.4 BER performance of a companded 16-QAM OFDM system in the Rayleigh fading
channel for various levels of nonlinearity in the HPA.

addition, the BER performance improvement is most apparent when the HPA is highly nonlinear.

This suggests that the proposed scheme can be implemented in OFDM systems to loosen the design

criteria for the HPA and reduce the cost of production.

For Case 4, the system is impaired by both a nonlinear HPA and a NBI while we vary

the amplitude of the NBI. This particular case simulates the situation where the system is operat-

ing in coexistence with a NBI. The simulation results are plotted along with the theoretical results

obtained from (11.27) and shown in Fig. 11.6. As one would expect from the situation where the

system is not only impaired by a nonlinear HPA but by a NBI as well, the BER performance degrades

as more power of NBI is introduced to the system. Finally, when the channel impulse response is not

perfectly known to the receiver, the error in estimating channel response further degrades the BER

performance. Fig. 11.7 shows the BER performance of a 16-QAM OFDM system that is subject to

a nonlinear HPA and a NBI in a Rayleigh fading channel for various values of 2σ2
ε .
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Figure 11.5 BER performance of a 16-QAM OFDM system which is subject to various degrees
of nonlinearity in the HPA in the Rayleigh fading channel with and without a compander and a
decompander.

11.6 Conclusion

In this chapter, we presented the performance analysis of a 16-QAM OFDM system which

was subject to a nonlinear HPA, a NBI and channel estimation error in a Rayleigh fading chan-

nel. To simulate practical situations where the system was operating in coexistence with a NBI,

we included a NBI in our channel model. Different from the NBI models presented in previous

studies, we presented a more realistic NBI model by assuming the NBI experiences a separate chan-

nel impulse response. We presented a new compander which was utilized to reduce PAPR in the

OFDM signal and a new receiver structure that would minimize the degradation effects due to the

decompression in the decompander when the OFDM systems operated in a Rayleigh fading channel.

We also extended the analytical system to be in compliance with IEEE 802.11n standard for the

purpose of simulation. In addition, we showed the effectiveness of PAPR reduction of our proposed

compander with the existing models through simulations. We also showed the effect of nonlinear

distortion on the performance of a 16-QAM OFDM system with and without a compander and a
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Figure 11.6 BER performance of a companded 16-QAM OFDM system which is impaired by a
nonlinear HPA and a NBI in the Rayleigh fading channel.

decompander. The simulation results indicated that the proposed companding technique was highly

effective in reducing PAPR and could be used to loosen the design criteria for the HPA and the cost

of production. Finally, we presented the theoretical and simulation results for the system which is

impaired by a nonlinear HPA and a NBI with and without channel estimation error.

The text in Chapter 11 is based on the material as it appears in:

David W. Chi and Pankaj Das, “Effects of Narrowband Interference and Nonlinear Amplifier in

Companded OFDM with Application to 802.11n WLAN”, 2009 IEEE International Conference on

Communications (Submitted).

The dissertation author was the primary researcher and author, and the co-author listed in the

publication directed and supervised the research which forms the basis for this chapter.
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Conclusion and Contributions

In this thesis, we first presented the basic concept of Orthogonal Frequency Division Mul-

tiplexing (OFDM) and then we discussed briefly about its technical advantages such as superior

performance in fading channels and disadvantages which include high peak to average power ratio

(PAPR) and high sensitivity to frequency offset and phase noise. Next, we discussed the causes of

the nonlinear distortion. The occurrence of the nonlinear distortion is due to the high PAPR in

OFDM signals. As mentioned already, the high power amplifiers (HPAs) are often forced to operate

in the nonlinear region due to the high PAPR in OFDM signals. To mathematically demonstrate

the effect of nonlinear distortion on the system performance, we presented the performance analysis

of a Binary Phase Shift Keying (BPSK) OFDM system that was subject to a nonlinear HPA in

the additive white Gaussian noise (AWGN) channel. We also introduced two different HPA models

which were a solid state power amplifier (SSPA) and a traveling wave tube amplifier (TWTA). The

TWTA model which is also known as Saleh model was chosen for modeling a nonlinear HPA for

the rest of thesis. We also presented a detail description of IEEE 802.11n WLAN which was given

in Chapter 3. For the purpose of simulation, all analytical models presented in the thesis were

extended to an 802.11n WLAN system based on the IEEE 802.11n specification. By simulating

an actual WLAN system, it would provide valuable insights to the performance of a system when

it is subject to impairments such as nonlinear HPAs, narrowband interference (NBI), and channel

estimation error.

In Chapter 4, performance analysis of a M-ary Quadrature Amplitude Modulation (M-

QAM) OFDM system that was subject to nonlinear HPAs, jammer and channel estimation error in

a Rayleigh fading channel was presented. Different from other jammer models proposed in litera-

ture, we proposed a more realistic jammer model by introducing a separate channel impulse response

between the source of jammer and the receiver. The theoretical and simulation results were pre-

sented for a M-QAM OFDM system that was subject to various combined sources of impairments

with and without channel estimation error. Next, we analyzed a M-QAM OFDM system that was
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subject to nonlinear HPAs, a partial band jammer and channel estimation error in a Rayleigh fading

channel. In this case, we extended our work to include the situations where the partial band jammer

transmitted jamming signal on a frequency that was slightly offset from the center frequency of the

desired signal. By including this assumption, the jammer model became even closer to a jammer

that systems might encounter in practice. In addition, we briefly discussed the effectiveness of par-

tial band jammer on the system performance for various jamming subcarriers when total jamming

power was held constant.

Based on simulation results, we found that a partial band jammer who had all its en-

ergy concentrated on a single subcarrier caused the most degradation to the performance. However,

we also discussed the reasons of why this type of jammer was not practical in real situations. One of

reasons is the partial band jammer did not have perfect knowledge of the center frequency at which

the desired signal was being transmitted on. This would lead to the situation where the partial

band jammer could only affect the system performance through its inter-carrier interference (ICI)

like interference. In addition, the effect of the ICI-like interference on the system performance highly

depended on the location of the frequencies of subcarriers in the jamming signal with respect to the

desired signal in the frequency spectrum. The further away the partial band jammer was, the less

effective the ICI-like interference on the system performance. Another reason was that the system

could simply turn off the subcarrier’s frequency if the partial band jammer appeared within the fre-

quency spectrum of the transmitted signal. In which case, the performance could improve slightly

at the cost of loss in data rate. In Chapter 6, the performance analysis of a M-QAM OFDM system

that was subject to nonlinear HPAs and channel estimation error in a Rayleigh fading channel was

presented. Following the conventional approach, the unconditional bit error rate (BER) was often

obtained by integrating the conditional BER expression over a joint probability density function

(PDF) of the magnitudes of the channel, its estimate and the phase difference between them. This

inevitably led to the calculation of a triple integral. To facilitate the process of obtaining BER

expression, we made use of the channel estimation error model which was proposed by Mishal et

al. [31]. By utilizing the proposed channel estimation error model, we were able to simplify the BER

expression from a triple integral to a single integral.

Next, we introduced the concepts of multiple input multiple output (MIMO) and Space

Time Block Code (STBC). In addition, we presented performance analysis of a M-QAM MIMO-

OFDM for two and four transmit antennas with one receiver antenna with and without the normal-

ization in the total transmit power. Based on the conventional approach and under the assumption

of perfect channel estimation, the BER expression for two transmit antennas was a sum of three

double integrals while it was a sum of three quadruple integrals for the case of four transmit anten-

nas. To simply the BER expressions, we represented the Q function in its alternative form. Through

mathematical simplification, we were able to reduce the complexity of the BER expressions for both
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two and four transmit antennas to a sum of three single integrals.

In Chapter 8, we extended our work to include multiple antennas and STBC. We ana-

lyzed the performance of a M-QAM MIMO-OFDM system that was subject to nonlinear HPAs,

narrowband interference (NBI) and channel estimation error in Rayleigh fading channels. In this

case, the Alamouti code was utilized since there were two transmit antennas. Furthermore, we con-

tinued to model the nonlinear HPA based on the Saleh model and utilized the jammer model that we

proposed previously in the analysis. The simulations were performed for various sets of impairments

and the simulation results were presented along with theoretical results with and without channel

estimation error. Next, we extended the jammer model in the analysis which was under study in

Chapter 8 to include the possibility of the frequency offset between the jamming and desired signals.

Through simulations, we also found that the jammer which had all its energy concentrated in one

subcarrier caused the most degradation to the system performance which had also been seen in

the case of single antenna. In addition, we briefly discussed the advantages and disadvantages of

implementing such jammer in practice.

In previous chapters, we had shown that the effect of nonlinear distortion caused by prac-

tical HPAs could be detrimental to the system performance. To address this problem, several algo-

rithms such as clipping, coding, interleaving, partial transmit sequences (PTS), selective mapping

(SLM), predistortion, and companding had been proposed in literature. A detail review of these

existing techniques along with the definition of PAPR were given in Chapter 10. Next, we presented

the performance analysis of a M-QAM OFDM system with a compander that was subject to non-

linear HPAs, NBI and channel estimation error in a Rayleigh fading channel. We also proposed a

novel companding technique that was proved to be every effective in reducing PAPR and nonlinear

distortion in the HPA. Due to the nature of highly dependency on the magnitude of the received

signals, we also proposed a new receiver structure which would minimize the degradation effects due

to the decompression process when the OFDM systems operated in fading channels. Through simu-

lations, the proposed algorithm and the novel receiver structure yielded excellent results in reducing

PAPR of OFDM signals and improving BER performance. This suggested that the design criteria

of HPA could be less restrictive and the cost of production could be reduced when employing our

proposed method.

Finally, the contributions of the thesis can be separated into three parts which are summa-

rized as below,

1. Performance Analysis of OFDM Systems

(a) The OFDM systems are subject to impairments such as nonlinear HPAs, jammer, and

channel estimation error.
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(b) We propose a more realistic jammer model by introducing

• Additional fading channel between the jammer and the receiver

• Normalized frequency offset that is between center frequencies of the jamming and

desired signals

(c) We extend the analytical model based on IEEE 802.11n specification for the purpose of

simulations and present simulation and theoretical results for various combined sources

of impairments.

(d) We simplify the BER expressions from a triple integral to a single integral by making use

a channel estimation error model proposed by Mishal et al. [31].

2. Performance Analysis of MIMO-OFDM Systems

(a) We extend our work to include the situations where OFDM systems have multiple trans-

mit antennas, more specifically, an OFDM system that has two transmit antennas and

one receive antenna.

(b) The MIMO-OFDM systems are subject to impairments such as nonlinear HPAs, jammer,

and channel estimation error.

(c) In performance analysis, we utilize the proposed jammer model which is more practical

compared to other models that are studied in literature.

(d) The analytical model is extended to a WLAN system based on the IEEE 802.11n standard

and the simulation results are validated by the theoretical analysis for various combina-

tions of impairments.

3. PAPR Reduction and Performance Enhancement of OFDM Systems

(a) We propose a new companding technique which has been shown to be extremely effective

in reducing PAPR of OFDM signals and nonlinear distortion.

(b) We also propose a novel receiver structure which minimizes the BER that is due to the

decompander when OFDM systems operate in fading channels.

(c) We utilize the proposed NBI model in deriving the performance.

(d) We extend the analytical model to be in compliance of IEEE 802.11n standard and present

simulation results along with theoretical results for various sources of impairments.

(e) Through simulations, we show the potential benefits of proposed companding technique

and receiver structure, i.e. less amount of nonlinear distortion produced by nonlinear

HPAs and superior performance in fading channels.
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Appendix

13.1 Derivation of bm

In this section, we present the derivation of the coefficients of Bessel series expansion, bm.

From (2.18), f(r) is given as

f(r) =
L

∑

m=0

bmJ1

(
(2m − 1)π

Rmax
r

)

(13.1)

After multiplying both sides of (13.1) by rJ1

(
(2n−1)π

Rmax
r
)

and integrating with respect to r from 0

to Rmax, (13.1) becomes

∫ Rmax

0
rf(r)J1

(
(2n − 1)π

Rmax
r

)

dr =
L
∑

m=0

bm

∫ Rmax

0
rJ1

(
(2m − 1)π

Rmax
r

)

J1

(
(2n − 1)π

Rmax
r

)

dr (13.2)

However, the orthogonality of Bessel function gives [85]

∫ Rmax

0
rJ1

(
(2m − 1)π

Rmax
r

)

J1

(
(2n − 1)π

Rmax
r

)

dr =
1

2
δm,nR2

max

[

J2

(
(2n − 1)π

Rmax
r

)]2

(13.3)

Subsequently, (13.2) becomes

∫ Rmax

0
rf(r)J1

(
(2n − 1)π

Rmax
r

)

dr =
bn

2
R2

max

[

J2

(
(2n − 1)π

Rmax
r

)]2

(13.4)

Then bn is given by

bn =
2
∫ Rmax

0 rf(r)J1

(
(2n−1)π

Rmax
r
)

dr

R2
max

[

J2

(
(2n−1)π

Rmax
r
)]2 (13.5)

Changing the subscript, n, to m, (13.5) becomes

bm =
2
∫ Rmax

0 rf(r)J1

(
(2m−1)π

Rmax
r
)

dr

R2
max

[

J2

(
(2m−1)π

Rmax
r
)]2 (13.6)
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[55] D. Kim and G. L. Stüber, “Clipping Noise Mitigation for OFDM by Decision-Aided Recon-
struction,” in IEEE Communications Letters, vol. 3, no. 1, January 1999, pp. 4–6.

[56] H. Chen and A. M. Haimovich, “Iterative Estimation and Cancellation of Clipping Noise for
OFDM Signals,” in IEEE Communications Letters, vol. 7, no. 7, July 2003, pp. 305–307.

[57] C.-T. Lin and W.-R. Wu, “Clipping Ratio Estimation for OFDM Receivers,” in IEEE Vehicular
Technology Conference, vol. 2, June 2005, pp. 797–800.

[58] T. A. Wilkinson and A. E. Jones, “Minimisation of the Peak to Mean Envelope Power Ra-
tio of Multicarrier Transmission Schemes by Block Coding,” in IEEE Vehicular Technology
Conference, vol. 2, July 1995, pp. 825–829.

[59] H. Ochiai and H. Imai, “Block Codes for Frequency Diversity and Peak Power Reduction in
Multicarrier Systems,” in IEEE International Symposium on Information Theory, August 1998,
p. 192.

[60] ——, “Performance of Block Codes with Peak Power Reduction for Indoor Multicarrier Sys-
tems,” in IEEE Vehicular Technology Conference, vol. 1, May 1998, pp. 338–342.

[61] ——, “MDPSK-OFDM with Highly Power-Efficient Block Codes for Frequency-Selective Fading
Channels,” in IEEE Transactions on Vehicular Technology, vol. 49, no. 1, January 2000, pp.
74–82.

[62] A. D. S. Jayalath and C. Tellambura, “Reducing the Peak-to-Average Power Ratio of Orthog-
onal Frequency Division Multiplexing Signal through Bit or Symbol Interleaving,” in IEEE
Electronic Letters, vol. 36, no. 13, June 2000, pp. 1161–1163.

[63] J. Urban and R. Marsalek, “OFDM PAPR Reduction by Combination of Interleaving with
Repeated Clipping and Filtering,” in EURASIP Conference on Speech and Image Processing,
Multimedia Communications and Services, June 2007, pp. 249–252.



202

[64] H.-G. Ryu, S.-K. Kim, and S.-B. Ryu, “Interleaving Method without Side Information for the
PAPR Reduction of OFDM System,” in IEEE International Symposium on Communications
and Information Technology, October 2007, pp. 72–76.

[65] S. H. Müller and J. B. Huber, “OFDM with Reduced Peak-to-Average Power Ratio by Opti-
mum Combination of Partial Transmit Sequences,” in IEEE Electronic Letters, vol. 33, no. 5,
February 1997, pp. 368–369.

[66] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR Reduction of an OFDM Signal by Use
of PTS with Low Computational Complexity,” in IEEE Transactions on Broadcasting, vol. 52,
no. 1, March 2006, pp. 83–86.

[67] S. H. Han and J. H. Lee, “PAPR Reduction of OFDM Signals Using a Reduced Complexity PTS
Technique,” in IEEE Signal Processing Letters, vol. 11, no. 11, November 2004, pp. 887–890.
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