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Abstract

This paper describes an improved vector manipulation multislope monotone 
upstreamcentred scheme for conservation laws (MUSCL) reconstruction for 
solving the shallow water equations on unstructured grids. This improved 
MUSCL reconstruction method includes a bigger stencil for the interpolation 
and saves time for determining the geometric relations compared to the 
original vector manipulation method, so it is computationally more efficient 
and straightforward to implement. Four examples involving an analytical 
solution, laboratory experiments and field-scale measurements are used to 
test the performance of the proposed scheme. It has been proven that the 
proposed scheme can provide comparable accuracy and higher efficiency 
compared to the original vector manipulation method. With the increasing of 
the number of cells, the advantage of the proposed scheme becomes more 
apparent.

Keywords: Finite volume method, MUSCL scheme, Shallow water, Total 
variation diminishing, Unstructured grids

1. Introduction 

Monotone upstream-centred scheme for conservation laws (MUSCL) [1] is a 
well-known approach for achieving highorder accuracy by data 
reconstruction for solving hyperbolic partial differential equations. In 
hydrodynamics, many researchers use the MUSCL scheme to solve the two-
dimensional shallow water equations (SWEs) due to its monotonicity and 
high order accuracy (e.g. [2–5]). The MUSCL-type schemes are an extension 
of the original Godunov scheme [6]. The variable values along the cell edges 
are extrapolated from the cell centers, and the reconstructed values are 
stored at the edges to calculate the Riemann flux across the edges. In order 
to avoid spurious oscillations and produce physically meaningful results, the 
numerical scheme should be monotonic. The monotonic numerical scheme 
can be deduced by examining the total variation, which is defined as an over
time decreasing summation of the differences between each adjacent cells. 



Early TVD schemes were derived on structured grids. Directly applying them 
on unstructured grids often leads to poor results, because the structured grid
provides a simple stencil layout for figuring out the upwind and downwind 
neighbors. On unstructured grids, the upwind and downwind neighbors are 
often not located along the perpendicular bisector of the edge. This has to be
accounted for in MUSCL reconstructions on unstructured grids.

On unstructured grids, TVD MUSCL schemes can be divided into monoslope 
and multislope methods [2]. The monoslope method was initially presented 
in [7], which calculates a single slope for the entire cell based on the three 
immediate neighbors of the cell [8]. The multislope method calculates a 
slope for each edge based on a three-point stencil. Stencils are set up based 
on the extrapolation in the upwind direction, and the variable values at the 
upwind point can be interpolated [9,4], or set to the value at the cell center 
that is closest to the perpendicular bisector of the considered edge. These 
methods require significant computational effort to determine the upwind 
cells and the upwind point in the stencil. A poor choice of the upwind point 
introduces significant numerical errors, even leading to the loss of the TVD 
property.

As discussed in Hou et al. [5], the multislope method can provide a more 
efficient and straightforward scheme. Although the multislope method may 
not provide a piecewise linear slope for the considered cell, the 
reconstructed values only determine the fluxes across the edges and thus 
will not influence the conservation law. Therefore, the shape of the 
reconstructed function inside the cell is not of importance for the FVM [5].

The vector based manipulation method is proposed by Buffard and Clain [2], 
who provide a very straightforward method on complex unstructured grids, 
especially suitable for multi-dimensional schemes. Based on the idea of 
Buffard and Clain [2], Hou et al. [5] proposed a new vector based 
manipulation multislope method. However, in the authors’ previous work [8],
it was found that their scheme [5] does not include enough downwind 
information for the calculation of the downwind slopes, which may lead to 
the wrong interpolation. In order to overcome this problem, Zhao et al. [8] 
calculate the down-slope value in the downwind direction, which increases 
the robustness and accuracy. A new multislope MUSCL method is devised in 
this work to improve the accuracy, which includes more stencil points to 
maintain the monotonicity of the scheme in different flow conditions.

This study is based on the framework of unstructured Godunov-type cell-
centered FVM. The new MUSCL scheme is compared with the scheme in [8] 
and analytical analyses.

2. Governing equations and numerical model

The two-dimensional shallow water equations (SWEs) are derived from the 
depth-averaged Navier–Stokes equations. They can be written in the 
conservative vector form as:



with vectors defined as

where x and y are the Cartesian coordinates, t is time, q represents the 
unknown variable vector consisting of h, qx and qy denoting the water depth, 
unit-width discharges in x- and y-directions, respectively. u, v are defined as 
depth-averaged velocities in x- and y-directions, respectively; f and g are the
flux vectors in x- and y-directions, respectively; s is the source term that 
includes bed slope and friction contributions, z is the bed elevation and cf is 
the bed roughness coefficient calculated as gn2 /h1/3, g is the gravitational 
acceleration. Viscous and turbulent flux terms are neglected in this equation.

2.1. Finite volume discretization of SWEs on unstructured grids

The shallow water equations (SWEs) in Eq. (1) can be integrated over a cell 
as

where Ω denotes the area of a cell. Applying the divergence theorem and 
replacing the boundary integral with a sum over all edges, Eq. (4) becomes

herein m is the number of edges, l is the length of the edge, and n = (nx, 
ny)T, is the unit normal vector pointing in the outward normal direction of the 
boundary edge, F · n is the flux vector normal to the boundary and can be 
written as



The value of q in cell i is updated using the two-stage explicit Runge–Kutta 
scheme [10–12], where the value at the next time level in cell i, q n+1 i , is 
updated by

with

where κ is a function to represent the updating process to a new time level 
in the considered cell. ∆t is the time step. For this work, the Courant–
Friedrichs–Lewy condition is followed for maintaining the stability,



where Rn is the minimum distance from the cell center to the edge, CFL is 
the Courant–Friedrichs–Lewy number. For explicit time marching algorithms 
CFL ∈ (0, 1]. In this work, CFL = 0.5 is adopted.

3. Multislope MUSCL reconstruction methods

The original Godunov’s theorem used cell-averaged values for calculating the
flux and slope source terms. This is first order accurate. In order to get 
higher accuracy, a linear MUSCL reconstruction is usually used to obtain a 
second-order accurate scheme. Different ways for calculating slopes lead to 
different types of MUSCL reconstructions that give different performance (cf.,
e.g., [13–15,12,16–18]). In the multislope method, slopes are calculated 
towards each edge individually. As shown in Fig. 1, reconstructed values 

along the conjuncted edge are represented by  and . M is the middle 
point of the edge, N1−3 are the vertices of the left cell, cell averaged values of
the left and right cells are represented by qC and qD1, respectively. Based on 

the work in [5],  can be extrapolated from the cell centroid based on a 
one-dimensional multislope MUSCL by

where  is the vector from cell centroid C to edge middle point M, and

 represent the gradients from N3 to cell center and from the 
cell center to edge center, respectively. Ψ is the limiting function for 
restricting the reconstruction scheme to satisfy the total variation 
diminishing condition. The modified Van Albada’s limiter with two arguments 
a and b from [19] is adopted in this work,

Here, e = 10−12 is used to avoid division by zero.

3.1. Vector manipulation methods

The two-dimensional multislope MUSCL schemes can be thought as a one-
dimensional reconstruction process along the median line linking the cell 
center and the edge middle point, with the focus on the method for 
calculating the upwind and downwind slopes of the cell center along the 
median line. In the aforementioned literatures, slopes constructed by 
extrapolating the upwind value along the cell centerlines [4,9,3], and the 
approximated cell averaged method [20] have been studied. Owing to the 
accuracy and the unphysical reconstruction point location at the edge, the 
multislope method still needs to be further investigated.



Buffard and Clain [2] proposed the vector manipulation methods, where 
upwind and downwind slopes can be calculated without the gradient 
calculation for the cells and the interpolation for the upwind points. Hou et al.
[5] simplified the original scheme to make the vector manipulation method 
more straightforward to implement and enhance the robustness and 
accuracy.

As mentioned in [8], the main idea of the vector manipulation method is to 
reconstruct the slopes from the cell centers to the slopes along the line 
passing through the cell center and the edge middle point. It has been shown
that the methods from [2] and [5] include too much information from the 
considered cells and may lead to a wrong reconstruction value along the 
edge center. An improved vector manipulation method introduced in [8] 
overcomes this disadvantage.

The legends are shown in Fig. 1, and the dimensional unit vector can be 
calculated as,

Where  and  are the unit vectors from the considered cell center to 
the vertices and the neighboring cell centers, respectively. It can be easily 

shown that all the vectors  shall pass by the corresponding edge center 
along the reverse direction.

The value slopes for the cell centers can be calculated along  directions,

The upwind and downwind slopes for the MUSCL reconstruction can be 

thought as the slopes along the reverse direction of  from the vertices to 
the cell center and cell center to the edge center. For instance, the 

reconstructed value q l M needs the slope along  and , respectively. 
M represents the middle of the edge. 

In order to get the right information for the reconstruction, the unit vector

 is represented by the surrounding unit vector , with the consideration
of geometric relationship obtained as



wherein, the coefficients α1,2 and β1,2 can be solved by a set of linear 
equations. So that the upwind and downwind slopes can be computed as

In the work of Hou et al. [5], ▽qNC and ▽qCM are directly used as the upwind 
and downwind slopes for the MUSCL reconstruction. An additional step is 



added for obtaining more downwind information. From the geometric 
relationship, it can be concluded that

and then, Eq. (18) can be derived as

Here, k is the local index of the considered cell. This treatment has been 
approved to give more physical reconstructed value and obtain good 
accuracy in [8].

3.2. Improved vector manipulation method

As discussed in the previous section, including solely upwind information 
decreases the stability of the scheme. The improved vector manipulation 
scheme obtains more information from downwind direction. However, the 

slope from cell centers to the edges centers  needs to be calculated 

from the location relationships with the cell centers vectors . Additional 

computational steps are needed to decide  located in which two cell 

centers vectors  before the calculation of Eq. (16), and the slope 
calculation is highly influenced by the geometric distribution rather than the 
physical values in VMM scheme. Therefore, an improved scheme is 
suggested here to overcome the disadvantage of the previous schemes. 

As shown in Fig. 2, all the vectors from the cell centers to the vertices can be
calculated as



and the relationship for the vectors can be easily derived as

considering the unit vectors rk, Eq. (27) can be written into

so that, Eq. (16) can be changed to

the slope of cell centers is introduced, and then the downwind slope can be 
computed as

A local extrema violates the monotonicity principle [21]. The maximum 
principle states that the extrapolated value along the edge midpoints of the 
cell nodes cannot be beyond the range of the local maximum and minimum 
values. It is originally proposed in [22] to avoid over- and undershooting 
when reconstructing the slopes for multi-dimensional problems on 
unstructured grids. For the one-dimensional problem, the maximum principle
can be used as:

For the multi-dimensional problems, the reconstruction processes should try 
to include more multi-dimensional flow physics [23]. The proposed MUSCL 
reconstruction here includes 6 cells in the computational stencils. As shown 
in Fig. 3, the schemes from Buffard and Clain [2] and Hou et al. [5] are based
on 4 cells, while the improved vector manipulation method from Zhao et al. 
[8] is based on 5 cells. The vector manipulation methods satisfy the 



maximum principle. It is hard to say whether more cells will lead to higher 
accuracy, but the more information is included, the maximum principle will 
be extended to a bigger range for the stability conditions, the less sensitive 
to local mesh distribution and faithfully represents multi-dimensional flow 
physics [23]. However, we shall note that the benefit of adding more cells to 
the stencil can be expected to diminish after a certain number.

The aim of MUSCL reconstruction is to give values at the left and right cell 
interfaces that can be used to construct a Riemann problem and calculate 
the slope source term. The solution of the Riemann problem then yields the 
numerical flux in Eq. (6) [16] and the slope source will be added into the 
fluxes across the edge. In this work, a Harten, Lax and van Leer Riemann 
solver with the contact wave restored (HLLC) [24] is used. The positivity 
preserving hydrostatic reconstruction by [25] is used to maintain non-
negative water depth and correct reconstruction of the Riemann states, and 
the C-property preserving divergence form of the bed slope source term 
proposed by Hou et al. [26] is used; the source term treatment does not 
influence the well-balanced property of the MUSCL schemes.

For the friction source term, the most straightforward technique is explicit in 
time. However, this approach yields numerical instabilities unless the time 
step size ∆t satisfies [27]:

where  is the solution after adding the fluxes terms, and the time step 
has to be calculated using

where ∆t, ∆ts and ∆tc are time steps for the system, source term part and 
conservation part, respectively. Depending on the source term, this might 
result in a severe degradation of the time step size. 

To overcome this limitation, in literature, e.g. [26,12], the splitting point-
implicit method is adopted. This avoids the instability of the numerical 
scheme for very shallow water depths. 

In splitting point implicit methods, conserved variables inside the cell are 
updated as

here, n and n + 1 represent the time levels and PI is a matrix equal to



This gives

where  is the magnitude of the unit discharge vector.

In order to preserve the stability, the general treatment from [21] is adopted 
here, which locally switches the second order MUSCL scheme to first order in
a cell when the flow condition satisfying:

here,  and  represent the reconstructed water depth and bottom 
elevation, respectively, along the considered edge; hc and zc are the 
corresponding values at the cell center, ϵwd is the tolerance used to 
distinguish the wet and dry cells, which is set to ϵwd = 10−6 in this study. 

The procedures of MUSCL reconstruction methods for vector manipulation 
method (VMM) and the improved vector manipulation method (IVMM) are 
summarized in Table 1. 

4. Numerical tests 

Five computational test cases published in the literature are presented here 
for verifying the MUSCL reconstruction methods. The performance of MUSCL 
reconstruction methods will be evaluated in terms of accuracy and efficiency.
Two types of meshes, namely the diagonal mesh and the Delaunay mesh, 
are considered in evaluating each MUSCL reconstruction, as seen in Fig. 4.



The first test case considers a Riemann problem from Toro [28] as a 
benchmark to verify the stability and the efficiency of the MUSCL schemes. 
Moving shorelines in a two-dimensional frictional parabolic bowl is chosen as 
the second test case, where the proposed MUSCL schemes are verified for 
the accuracy and the capability to deal with wet and dry interfaces. 
Meanwhile, the performance of the friction source term treatment, and the 
grid convergence performance are investigated based on this test. The third 
and the fourth example are the MUSCL schemes that are tested against the 
dam-break in a 45◦ channel and a two-dimensional dam-break flow against 
an isolated obstacle for evaluating how the MUSCL schemes perform on 
complex geometry for shock wave capturing. The final test cases are the 
near real-world application for the Malpasset dam-break. The accuracy is 
reflected by the L1-error which can be calculated as

which qi and qi,ref are the numerical solution and the reference solution in cell

i, respectively. A characteristic length  is used here for the 
resolution of the meshes, A and N are the total area and the number of cells.

4.1. Dam break problems

Two challenging problems proposed by Toro [28] are used here for 
examining the capability to resolve the linear and non-linear waves on 
unstructured grids. A frictionless rectangular channel with [0, 50] × [0, 0.25] 
m is discretized into 12032 Delaunay triangular meshes. Initial conditions of 



the test cases are summarized in Table 2, where hL, hR, uL and uR denote the 
initial water depth and the velocity in the left and right hand sides of the 
discontinuity, x0 is the location of the discontinuity, tout is the output time. 

Different initial conditions lead to different results after a short period, in 
which the configuration a leads to a result with the left wave as a rarefaction 
wave transport to the left and the right wave as a shock transport to the 
right. Configuration b generates a two rarefaction wave transport in an 
opposite direction, in the middle of the computational domain, a very shallow
water depth keeps a constant value. The results are compared considering 

the water elevation h and hydraulic head calculated via . The exact
solution (—), numerical solutions from VMM (−∗−) and IVMM (−◦−) are 
shown in Fig. 5, it can be observed that the numerical results quite coincide 
with the exact solution from Toro [28], there is a little diffusion at the front of
the waves, the VMM and IVMM provide the same quality results. The 
comparisons of the computational efficiency are based on the averaged 
computational time for a single step ∆t, which is calculated by ∆t = ttotal/n, 
where ttotal is the total computational time and n is the number of time steps 
for the calculation. Each ∆t in VMM is bigger than in IVMM for 3.6%, 2.9% in 
configurations a and b, respectively. This means that IVMM can obtain a 
better efficiency than VMM scheme. The result is as expected in the previous
section, the additional step used for searching the vectors t will increase the 
computational time and decrease the computational efficiency.



4.2. Moving shorelines in a two-dimensional frictional parabolic bowl

The analytical solution of the moving shorelines in a two-dimensional 
frictional parabolic bowl was developed by Sampson et al. [29], it will be 
used to validate the proposed model for the MUSCL reconstruction and 
frictional treatment here. The bed topography is described as,

Here, z(x, y) represent the bottom elevation of the (x, y) point, x0, y0 is the 
coordinate of the geometry center. h0 is the initial water depth at the 
parabola center, and a is a constant value. τ is the bed frictional parameter, 

and . The peak amplitude parameter , if τ < 
p, the analytical solution for the water level is given by

and the analytical solution for the velocities are



where B is a constant as an initial value of v(0), and , in which

.

A square computational domain of 8000 × 8000 m with the center at (0.0, 
0.0) is chosen as the study area. The parameters are set to h0 = 10 m, a = 
3000, B = 5 m/s and τ = 0.002 s−1. The computational domain is discretized 
with two types of meshes with 5 refinement levels for the mesh 



convergence. The boundaries are all set to closed boundaries, and the 
simulation time runs until t = 6000 s, which is almost 4 periods. The initial 
condition can be obtained from Eqs. (45)–(47). 

The contours plot at t = 1500 s, which is almost 1.1 period after the 
simulation begin can be seen in Fig. 6. The difference between VMM and 
IVMM scheme results is quite small, both of the schemes can capture the 
water depth quite well at diagonal grid and Delaunay grid at the first mesh 
level. The cut section plots along the diagonal line of the computational 
domain at t = 500 s and t = 1500 s are shown in Figs. 7 and 8 for the 
Delaunay and diagonal grids, respectively. In order to show the accuracy of 
the MUSCL reconstruction, the results at the first mesh level (finest mesh) 
and the fifth mesh level (coarsest mesh) are chosen for the comparison. The 
water level (wl) and the discharge along x-direction (qx) and y-direction (qy) 
are all captured well with the analytical solution at the finest mesh; for the 
coarsest mesh, water levels wl are captured well for both grids types, but for 
the discharges, it can be observed that the results of diagonal grids agree 
worse than that of Delaunay grids, especially for qx, and the result from IVMM
is slightly better than the VMM scheme.



A mesh convergence study for this test case at t = 1500 s is presented in 
Fig. 9. The L1 errors for h and qy are plotted in the figures for the different 
mesh level (represented by the characteristic length ∆x shown in Table 3). 
The results from VMM and IVMM are represented by the ◦ − ◦ and ▷ − ▷, 
respectively. It can be seen that the order of VMM and IVMM is all slightly 
lower than the slope 2 (solid lines). This is because of the wet and dry 
interfaces, where the order of the scheme will switch to first order, which 
decreases the overall order of accuracy. The VMM and IVMM schemes are 
nearly parallel with the increasing of the mesh level, but the error values for 
the IVMM scheme are almost always smaller than the corresponding error for
the VMM scheme, which can be thought the order of the IVMM scheme and 



VMM scheme is similar but the accuracy of the IVMM scheme is better. As the
characteristic length ∆x is different for the Delaunay and diagonal grids, the 
errors for the diagonal grids are a little bit higher than for the Delaunay 
grids. It was already shown the diagonal grids will significantly influence the 
results for the MUSCL reconstructions in [8], it can be observed here that the
qy for the VMM scheme leads to higher error compared to the results from 
IVMM scheme, which means the IVMM is less influenced from the grid type.





The relative time of VMM against IVMM scheme is shown in Fig. 10. It can be 
clearly observed that IVMM provides a relatively better efficiency than VMM 
scheme, and with the increasing of the mesh number, the advantage 
becomes bigger. The unstructured grids in this work are mainly focused on 
the triangle mesh, where the vector structure in the single cell is still simple, 
but for a more complex mesh, the additional calculation will increase, which 
will decrease the computational efficiency even more. 

4.3. Dam-break in a channel with 45◦ bend 

To assess the performance of the MUSCL reconstructions for the dam-break 
induced waves in non-straight channels, a test case from EU CADAM [31] is 
chosen as the benchmark, which was also considered in [12,32,33] for 
verifying the capability of their model for dam-break simulation. The set up 
and the computational grid used for the simulation of the experiment facility 
can be seen in Fig. 11. The reservoir with the size 2.39 × 2.44 m2 is located 
at the left side of the experiment, the northwest of the reservoir is set to be 
the origin position of the geometry, a 0.495 m wide channel with a 45◦ 
bending corner is connected with the reservoir and with a free outlet for the 
end of the channel. The water depth for the reservoir and the channel is 0.58
m and 0 m, respectively. A 0.33 m high topography step is located between 
the reservoir and the channel. The Manning number is suggested equal to 
0.012 s/m1/3 after the preliminary numerical tests. The computational domain
is discretized into 13038 Delaunay triangles-based meshes.







The simulation results from VMM and IVMM scheme are compared with the 
measurement data for three gauges located as shown in Table 4. As shown 
in Fig. 12, after 40 s, the water elevation is quite well predicted by the 
numerical results, the only overestimated water elevation is after 5s at G6 
and underestimated after 20s at G9, which may come from the three 
dimensional effects after the 45◦ bend. It also can be observed that the 
difference between the IVMM and VMM schemes is quite small, they all 
provide promising result, but again, the IVMM is about 4.1% faster than the 
VMM scheme, which indicates that the proposed scheme is sufficient for 
simulating the dam-break flow over dry bed even discontinuity.



4.4. Two-dimensional dam-break flow against an isolated obstacle

A physical experiment is set up for two-dimensional dam-break flow against 
an isolated obstacle constructed by SoaresFrazao and Zech [30]. It is chosen 
for testing the capability of the MUSCL reconstructions work on asymmetric 
geometry, the water elevation and the velocity will be checked for both 
numerical schemes. The sketch of the experiment is shown in Fig. 13, with a 
trapezoidal bottom for the up and downstream channel and the cut sections 
can be found in Fig. 13, all the boundaries are closed except for the channel 
outlet. The initial water levels for the reservoir and down stream of the dam 
are 0.4 m and 0.02 m, respectively. The dam-break is simulated by removing
the gate in a sudden period. The velocities and water levels are measured in 
the different gauges located in the positions shown in Table 5, and the 
coordinate origin is set at the center of the gate.

The computational domain is discretized into 27 831 triangle cells, relatively 
coarse mesh in the reservoir and a higher resolution for the downstream of 
the dam (see Fig. 14). The velocity field is set to be still for the beginning of 
the simulation. Numerical test will run for 30 s and the Manning coefficient is 
chosen n = 0.01 s/m1/3 by following [30].

After 30 s, the simulation results from VMM and IVMM compared with the 
measurement data are shown in Fig. 15, the water elevation is shown in the 
left column. It can be observed that the measured data is fairly good 
predicted by the numerical results, both MUSCL reconstructions show good 
agreement, but IVMM shows a little bit better results at gauge G2, however, 
the VMM is slightly better at G1. However, the IVMM leads to more stable 
results. The middle column presents the velocity along the x-direction, the 
measurement data agrees well with the numerical results except for the G1, 
this may be caused by the strong three dimensional effects near the 
obstacle. The VMM shows a slightly faster wave front at G5, here VMM may 
give a better prediction because of the faster wave speed, but it is difficult to
say which one is better. The right column shows the velocity along the y-
direction, it can be observed that the range of the velocity value is smaller 
than the measurement data, as the obstacle provides a three dimensional 
influence on the flow field, which is neglected by the shallow water model. 
However, the water level at G6 seen in Fig. 16, shows that the numerical 
results perfectly captured the measured data, which means that both of the 
schemes can capture the long wave well. Again, the single computational 



effort is compared, and the IVMM can save 9.51% computational time 
compared to the IVMM scheme.







4.5. Malpasset dam-break

The last example is chosen to be the Malpasset dam-break for test the 
capability of the numerical model for simulating the field scale case. The 
Malpasset dam is located on the Reyran River valley and the associated 
floodplain in southern France is shown as in Fig. 17(a). The topography is 
provided by [34] and the computational domain is discretized into 28 855 
triangle cells as shown in Fig. 17(b) and the boundaries are set to be solid 
walls except for the downstream boundaries near to the sea which is 
transmissive. The reservoir has a constant water level for 100 m above the 
sea level, and the downstream of the dam is set to be initially dry except for 
the sea. The Manning coefficient is set to 0.033 s/m1/3, following 
[35,5,26,34,36,12]. 

Laboratory studies were carried out by Electricite de France to measure the 
arrival time and the maximum water level ´ at the gauge points G (6–14) and
the police points P (1–17), the measurement data is well matched with the 
field data, and will be used for validating the numerical schemes. Simulation 
runs until 3600 s and the water depth floodplain simulated by IVMM scheme 
are shown as in Fig. 18. 

After 3600 s, the arriving time at the electrical transformers is compared in 
Fig. 19(a), in which the IVMM scheme reaches a little faster than the VMM 
scheme, being closer to the measurement data. The summary of the 
maximum water level of the survey points is shown in Fig. 19(b), it can be 
observed that the simulated results from both MUSCL schemes show fairly 
good agreement with the measurement data. Small discrepancies happen at 
the experiment gauges for the arriving time of the water, this can be due to 
the limitation of the two-dimensional SWEs and certain complex flows with 
threedimensional effects will also influence the measurement results. This 
simulated results also well match the results from the literature, e.g. 
[5,26,12]. However, in general, the simulated results provided by VMM and 
IVMM can well predict the field measurements, there is no negative water 
depth predicted, nor are non-physical velocities created by the proposed 
schemes. To the end, the computational efficiency is compared and the 
IVMM saves 10.5% computation time compared to the VMM scheme.

5. Conclusions

An improved vector manipulation of the multislope MUSCL method is 
proposed in this work to achieve high accuracy and efficiency for the two-
dimensional unstructured cell-centered finite volume modeling of shallow 
water flows. The proposed scheme is proven to be more straightforward 
without including any additional step for judging the geometry relationships. 
Five examples involving analytical solution, laboratory experiments and field-
scale surveys are used for validating the proposed scheme, and all the 
results are compared with those of the original vector manipulation method 
from [8]. The results from the proposed MUSCL reconstruction are shown to 
produce satisfactory results without creating negative water depth and 



infinite velocity. The mesh convergence study shows that the new scheme is 
roughly of second order accuracy. The computational cost is compared in 
each test case, the new IVMM scheme is shown to save about 4%–10% 
computational time compared to the VMM scheme, and the saving is more 
apparent with more computational grid points. To sum up, the new 
reconstruction method exhibits good performance for solving the SWEs on 
unstructured grids.
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