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UNCOVERING THE DISTRIBUTION OF MOTORISTS' PREFERENCES FOR 

TRAVEL TIME AND RELIABILITY: IMPLICATIONS FOR ROAD PRICING 

by Kenneth A. Small, Clifford Winston, and Jia Yan 

August 1, 2002 

Abstract 

Recent econometric advances have made it possible to empirically identify the varied nature of 

consumers' preferences. We apply these advances to study commuters' preferences for speedy 

and reliable highway travel with the objective of exploring the efficiency and distributional 

effects of road pricing that accounts for users' heterogeneity. Our analysis combines revealed 

and stated commuter choices of whether to pay a toll for congestion-free express travel or to 

travel free on regular congested roads. We find that highway users exhibit substantial 

heterogeneity in their values of travel time and reliability. Moreover, we show that road pricing 

policies that cater to varying preferences can substantially increase efficiency while maintaining 

the political feasibility exhibited by current experiments. By recognizing heterogeneity, 

policymakers may break the current impasse in efforts to relieve highway congestion. 
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1. Introduction 

On a given weekday, roughly two hundred million people in the United States use a vehicle for 

work or personal trips. Yet highway authorities have ignored the variety in motorists' preferences 

for speedy and reliable travel, instead offering uniform service financed by the gasoline tax. The 

unfortunate result has been greater congestion on urban and intercity highways during ever

expanding peak periods. The standing recommendation of economists-that road pricing could 

spur motorists to make better use of highway capacity by spreading their travel throughout the 

day-has gone unheeded by policymakers presumably because it would have a negative impact on 

road users. 1 

But what if policymakers recognized that motorists are not homogeneous-that their 

attitudes toward congestion range from loathing to indifference-and offered these motorists 

differentiated prices that catered to their preferences? Indeed, experience with deregulation of 

transportation, telecommunications, energy, and other industries has taught us that firms have 

increased capacity utilization, developed niche markets, and benefited consumers by offering a 

variety of prices and services that respond to consumer desires (Winston (1998)). Could highway 

pricing that recognized the heterogeneity in motorists' preferences increase efficiency and curtail its 

negative welfare effect on motorists? 

Recent pricing experiments in the Los Angeles, San Diego, and Houston areas give 

motorists the option to travel free on regular roads or to pay a time-varying price for congestion-free 

express travel on a limited part of their journey. These experiments, often called "value pricing," 

provide rare opportunities to study motorists' preferences in automobile-dominated environments 

1 For homogeneous users, the full price (equal to the combined effect of the toll and travel time savings) must be 
raised in order to reduce travel and thereby reduce congestion. 
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where real money is at stake.2 At the same time, econometric advances are making it possible to 

identify the varied nature of consumer preferences. These advances include random-parameters 

models of discrete choice that account for unobserved heterogeneity, error-components models that 

control for the correlation among repeated choices by a given individual, methodologies that 

combine the advantages of data generated by consumers' actual and hypothetical choices, and non

parametric techniques that yield plausible characterizations of difficult-to-measure variables such as 

the reliability of travel time. 

This paper measures the preferences of automobile commuters by applying these 

methodological advances to newly collected data concerning route choices in the Los Angeles-area 

pricing experiment. Based on their choice of whether to pay a toll and how high a toll to pay to use 

express lanes, we find that those commuters vary substantially in how they value travel time and 

travel-time reliability. We then study how the efficiency and distributional effects of road pricing 

are affected when commuters' heterogeneity is taken into account. Compared with a uniform price, 

we find that differentiated road prices can significantly reduce the losses in consumer surplus and 

the distributional disparities between groups of motorists, while still producing sizable efficiency 

gains. Such prices enhance the political viability of road pricing because only a modest portion of 

the toll revenues would be necessary to compensate road users. 

2. A Brief Methodological Overview 

At first blush, our empirical question-how do motorists value travel time and 

reliability?-is hardly original or one that calls for a sophisticated methodology. A conventional 

2 The tenn "value pricing" originated as a marketing tool for the first of these experiments. Interestingly the term 
was found so efficacious that the U.S. Congress substituted it for "congestion pricing" in the 1998 reauthorization of 
what was then called the "Congestion Pricing Demonstration Program." See Federal Register, 63 (192), October 5, 
1998, pp. 53487-91. 
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approach would estimate a model of a commuter's choice of whether to pay a toll to use an 

uncongested express lane or use a free but congested lane as a function of the toll, the travel times 

on the lanes, the reliability of travel time on the lanes, and the driver's socioeconomic 

characteristics. This model, however, is likely to be flawed unless one accounts for commuters' 

unobserved heterogeneity, the strong negative correlation between road charges and travel time, and 

the difficulty of obtaining an accurate measure of reliability. Recent advances in econometrics 

enable us to address these issues. 

Unobserved Heterogeneity 

Preference heterogeneity may be explained by observable characteristics and unobserved 

influences. The latter can be captured using models with random coefficients. We will use the 

mixed logit specification, which extends the random-utility model that underlies multinomial logit 

(Brownstone and Train (1999), McFadden and Train (2000)).3 Our version of mixed logit 

introduces three stochastic utility components: one that has the double-exponential distribution 

standard for logit models, a second that represents random variation in coefficients (i.e. unobserved 

heterogeneity in tastes), and a third that represents a panel-type error structure arising from repeated 

choices by a given commuter.. Choice probabilities are estimated using Monte-Carlo simulation to 

integrate the computationally difficult parts of the error distribution. Conditional on the Monte

Carlo draws, the probabilities take the logit form. 

Revealed and Stated Preferences 

Most previous research attempting to determine the value of urban travel time has analyzed 

revealed preference (RP) data based on the choice between travel by car and public transit. This 

3 Based on data generated by hypothetical questions, mixed logit has been used to estimate the value of time in analyses 
oflong-distance commuting (Calfee, Winston, and Stempski (2001)), urban trucking (Kawamura (2000)), and residential 
and workplace location (Rouwendahl and Meijer (2001) ). 
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research has found that travelers' value of time varies with trip purpose, income, trip distance, 

and other observed variables (Small (1992), Wardman (2000)). Some recent studies have 

analyzed stated preferences (SP) that are elicited from individuals who are faced with hypothetical 

commuting situations (Calfee and Winston (1998), Hensher (2001)). 

Both RP and SP data have drawbacks. Use of RP data is often hindered by strong 

correlations among travel cost, time, and reliability, and by the difficulty of obtaining accurate 

values of these variables for all the alternatives faced by each individual. SP data cannot overcome 

the lingering doubt that the behavior exhibited in hypothetical situations may not apply to actual 

choices. Methodologies have been developed to combine both types of data, thereby taking 

advantage of the strengths of each (Ben-Akiva and Morikawa (1990), Hensher (1994), and Bhat 

and Castelar (2002)). 

The key insight of these methodologies is that some parameters or parameter combinations 

are likely to be identical in the choice functions generating RP and SP choices, whereas others are 

likely to be different. For example, the variance of the error term describing the choice process is 

likely to differ across data types, as is the ratio of the coefficients of travel time and cost. The latter 

difference arises because people commonly overstate the time delays they actually incur, and thus 

respond more to a given actual time saving than to a hypothetical time saving of the same amount.4 

By combining data sets, one can greatly improve the precision in estimating common coefficients, 

while allowing important differences in other coefficients to emerge. 

Reliability 

Travel-time reliability is a potentially critical influence on any mode or route choice, but it 

can be difficult to measure (Bates, Polak, Jones, and Cook (2001)). Based on data from actual 

4 Sullivan et al. (2000, p. xxiii) provide evidence of this from questions asked of travelers affected by two California 
road-pricing experiments, including the one used in this study. 
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driving conditions, we use non-parametric methods to develop plausible characterizations of 

reliability to include in our RP estimations. We also specify the reliability of trips in our 

hypothetical (SP) questions. 

3. Empirical Setting 

The commuter route of interest is California State Route 91 (SR91) in the greater Los 

Angeles region. It connects rapidly growing residential areas in Riverside and San Bernardino 

Counties-the so-called Inland Empire-to job centers in Orange and Los Angeles Counties to the 

west. A ten-mile portion of the route in eastern Orange County includes four regular freeway lanes 

(91F) and two express lanes (91X) in each direction. Motorists who wish to use the express lanes 

must set up an account and carry an electronic transponder to pay a toll that varies hourly according 

to a preset schedule. Tolls on westbound traffic during the morning commute hours covered in this 

study ranged from $1.65 (at 4-5 a.m.) to $3.30 (at 7-8 a.m. Monday-Thursday).5 Carpools of three 

or more received a 50 percent discount.6 Unlike the regular lanes, the express lanes have no 

entrances or exits between their end points. 

Samples 

To enrich our analysis, we draw on two samples of people traveling on this corridor. The 

surveys generating the data contain sufficiently similar questions and were conducted at nearly the 

same times, so it has proven feasible to combine them. One is a telephone RP survey composed of 

SR91 commuters obtained by random-digit dialing and observed license plates on the SR91 

5 Morning tolls were slightly lower on Fridays. We accounted for the slight rise in tolls that occurred during our 
surveys. Tolls were subsequently raised after our analysis was completed to a maximum westbound toll of$3.60, 
while eastbound tolls are higher, reaching $4.75 at 5-6 p.m. Monday-Tuesday and 4-6 p.m. Wednesday-Friday. 

6 For this reason the express lanes are known as High-Occupancy/Toll (HOT) lanes. Another discount, of $0.75 per 
trip, was available to people who paid $15/month to be in an "Express Club"; we do not account for the net benefits 
of this promotion. 
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corridor. The survey was conducted by researchers at California Polytechnic State University at 

San Luis Obispo (Cal Poly), under the leadership of Edward Sullivan and with our participation. 7 

The Cal Poly data, collected in November 1999, asked participants about their most recent trip on a 

Monday through Thursday during the morning peak ( 4-1 0a.m.) and included questions concerning 

lane choice (91X or 91F), trip distance, time of commute, vehicle occupancy, mode (drive alone or 

carpool), and whether they had a flexible work-arrival time. They also provided various personal 

and household characteristics. The sample we use consists of 438 respondents. 

The second sample is a two-stage mail survey collected by us through the Brookings 

Institution (Brookings), including both RP and SP elements. For the Brookings sample, a market 

research firm, Allison-Fisher, Inc., mailed a survey custom-designed to our specifications to SR91 

commuters who were members of two nationwide household panels, National Family Opinion and 

Market Facts. A screener was first used to identify motorists who made work trips covering the 

entire 10-mile segment and thus had the option of using either roadway (91F or 91X). Survey 

respondents reported on their daily commute for an entire five-day workweek, providing 

information on the same items as mentioned above. The same people were then asked to complete 

an SP survey containing eight hypothetical commuting scenarios describing the essential 

characteristics of express and regular lanes. For each scenario, they were given hypothetical tolls, 

travel times, and probabilities of delay on the two routes, and asked which they would choose. The 

values presented in the scenarios were roughly aligned with a respondent's normal commute. An 

illustrative scenario is shown in Appendix A. 

7 For more details about the Cal Poly sample see Sullivan et al. (2000). The sample also included people who 
traveled on just a part of route 91 F and then exited onto a new toll expressway going to Irvine and southern Orange 
County; we have not included these people in our analysis. 
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Due to overestimates of how many respondents would actually face a choice between 91F or 

91X, we had to survey three waves of potential respondents-in December 1999, July 2000, and 

September 2000-to assemble an adequate sample. The final Brookings sample consists of 11 0 

respondents: 84 people providing 377 daily observations on actual behavior (RP), and 81 people 

providing 633 separate observations on hypothetical behavior (SP), with 55 people answering both 

surveys. 

Summary Statistics 

Table 1 summarizes responses from both data sets. Values for the Brookings data are 

broadly consistent with population summary statistics, indicating that we have a representative 

sample.8 The median household income (assigning midpoints to the income intervals) is $46,250. 

We estimate the average wage rate to be about $23 per hour.9 The Brookings sample contains 

information for multiple days and indicates that inertia is a powerful force in route choice behavior 

because 87 percent of the RP respondents made the same choice every day during the survey week. 

In fact, about half of the Brookings RP respondents do not have a transponder and thus have 

committed to not choosing the express lanes on any of our survey days. 

8 The distributions of the RP sample's commuting times and route share are close to the ones in 1998 survey data 
collected by University of California at Irvine (Lam and Small (2001)) and 1999 survey data collected by California 
Polytechnic State University at San Luis Obispo (Sullivan et al. (2001)). The socioeconomic data are consistent with 
Census information, and diverge where appropriate. For example, our median income (approximately $46,250) is 
higher than the average income in the two counties where our respondents lived ($36,189 in Riverside County and 
$39,729 in San Bernardino County in 1995, as estimated by the Population Research Unit of the California 
Department of Finance). But this should be expected because our sample only includes people who are employed 
and commute to work by car. The median number of people per household (which can be expected to be stable 
across time) is 2.81 and 3.47 in our RP and SP subsamples respectively; these are not far from the 1990 Census 
figures of2.85 for Riverside County and 3.15 for San Bernardino County. 

9 Data from the US Bureau of Labor Statistics (BLS) for the year 2000 record the mean hourly wage rate by 
occupation for residents of Riverside and San Bernardino Counties. We combine the BLS occupational categories 
into six groups that match our survey question about occupation, then assign to each person in our sample the 
average BLS wage rate for the appropriate occupational group. We then add 10 percent to reflect the higher wages 
likely to be attracting these people to jobs that are relatively far away. 
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The Cal Poly sample's route shares, commuting patterns, respondents' age and sex, and 

so on are closely aligned with the Brookings sample. Respondents in the Cal Poly sample do 

have higher household incomes and shorter trip distances than the Brookings respondents; 

apparently the Brookings sample drew from a wider geographical area including people who 

reside in lower-priced housing. 

Construction of Independent Variables 

Obtaining accurate measures of travel conditions facing survey respondents is a challenging 

part of any travel demand analysis using RP data. Our case is no exception, and is made more 

difficult by the desire to include travel-time reliability. Our strategy is to use actual field 

measurements of travel times on SR91 taken at different times during the six-hour morning period 

covered by our data. Measurements were taken on eleven days, ten of which coincided with the 

days covered by the second and third waves of the Brookings survey; the eleventh day was two 

months prior to the first wave of the Brookings survey and one month prior to the Cal Poly survey. 

We posit that for any given time of day, observed travel times are random draws from a 

distribution that travelers know from experience. By asserting that motorists care about trip time 

and reliability, we maintain that they consider both the central tendency and the dispersion of 

that distribution. 10 Plausible measures of central tendency include the mean and the median; we 

find the median fits slightly better (in terms of log-likelihood achieved by the model). Measures 

of dispersion include the standard deviation and the inter-quartile difference; however, given that 

motorists-especially commuters-are concerned with occasional significant delays, they are 

10 It seems reasonable for several reasons to assume that motorists' lane choices are based mainly on their 
knowledge of the distribution of travel times across days, not on the travel time encountered that day. Previous 
survey results described by Parkany (1999) suggest that whatever information travelers on this road have about 
conditions on a given day is mostly acquired en route through radio reports, and thus has limited value to them 
because it cannot affect their departure time. In addition, there is no sign displaying traffic information, and our 
field observations suggested that the amount of congestion encountered prior to the entrance to the express lanes was 
not a good predictor of the travel delays along the full 10-mile segment. 

8 



likely to pay particular attention to the upper tail of the distribution of travel times. We therefore 

investigate the upper percentiles of our travel time distributions. 

We use non-parametric smoothing techniques to estimate the distribution of travel-time 

savings from taking the express lanes, by time of day. 11 Details are presented in appendix B, and 

some results are shown in Figures 1 and 2. Figure 1 shows the raw field observations of travel

time savings. The non-parametric estimates of mean, median, and 80th percentile are 

superimposed. Median time savings reach a peak of 5.6 minutes around 7:15 a.m. 

Figure 2 shows the same raw observations after subtracting our non-parametric estimate 

of median time savings by time of day. An interesting pattern emerges. Up to 7:30 a.m., the 

scatter of points is reasonably symmetric around zero with the exception of three data points. But 

after that time the scatter becomes highly asymmetric, with dispersion in the positive range (the 

upper half of the figure) continuing to increase until after 8:00 a.m. while dispersion in the 

negative range decreases. This feature is reflected in the three measures of dispersion, or 

unreliability, that are also shown in the figure: the standard deviation and the 80th-50th and 90th-

50th percentile differences. The standard deviation peaks at roughly 7:45 a.m., the other two 

between 8: 15 and 9:30. The reason for these differences is that traffic in the later part of the 

peak is affected by incidents occurring either then or earlier. This mostly affects the upper tails 

of the distribution of travel-time savings and so is most apparent in the percentile differences. 

The standard deviation, by contrast, is higher early in the rush hour because of days with little 

congestion-showing up as negative points in Figure 2. Such dispersion is probably less 

relevant to travelers than dispersion in the upper tails, leading us to prefer the percentile 

11 We never observed any congestion on the express lanes. Thus, to simplify the problem, we assume that travel time 
on them is equal to the travel time we observed on the free lanes at 4:00 a.m., when there was no congestion: 
namely, 8 minutes, corresponding to a speed of 75 miles per hour. 
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differences as reliability measures. These measures are also considerably less correlated with 

median travel time than is the standard deviation. In our estimations, we obtained the best 

statistical fits using the 80th-50th percentile difference. 12 

The express-lane toll for a given trip is from the published toll for the relevant time of 

day, discounted by 50 percent if the trip were in a carpool of three or more. 13 Other potentially 

important variables include trip distance, annual per capita household income, and a dummy 

variable that indicates whether the commuter had a flexible arrival time. 14 We also explored a 

number of others including age, sex, household size, and size of workplace, a few of these 

variables had little explanatory power and did not influence the other coefficients. 

Most variables in the SP model correspond exactly to variables in the RP model. An 

exception is the measure of unreliability, because we did not think survey respondents would 

understand statements about percentiles of a probability distribution. Instead, we specified in our 

SP scenarios the probability of being delayed 10 minutes or more. 15 In addition, SP respondents 

indicated whether they were answering the questions as solo drivers or as part of a carpool of a 

specified size, enabling us to determine vehicle occupancy for the SP choices. 

12 In our RP and joint RP/SP models, the 90th-50t11 percentile difference fit almost as well as the 80t11-50 th difference 
(in terms oflog-likelihood) and resulted in similar coefficient estimates. The 75t11-50t11 percentile difference, an 
additional measure, and the standard deviation fit noticeably less well and gave statistically insignificant results for 
the reliability measure. 

13 Specifically, the toll is for the time of day that the commuter reported passing the sign stating the applicable toll. 
Respondents who did not provide information on vehicle occupancy are assumed not to have carpooled; to guard 
against systematic bias from this, we specified a dummy variable identifying these respondents, but it had no 
explanatory power so it is not included in the models reported here. Due to the uneven quality of answers about 
carpooling, and lack of knowledge of ages or characteristics of passengers, we did not attempt to prorate the toll 
among vehicle occupants. 

14 The question was: "Could you arrive late at work on that day without it having an impact on your job?" 

15 The probability was always stated for the trip as a whole. It was given as 0.05 for all trips using 9 lX, and either 
0.05, 0.1, or 0.2 for trips using 91F. The actual statement is: "Frequency of unexpected delays of 10 minutes or 
more: 1 day in X" where X=20, 10, or 5. 
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4. Econometric Framework 

We assume that a motorist i, facing an actual or hypothetical choice between commuting 

lanes at time t, chooses the option that maximizes a random utility function. Define the choice 

variable as YiF 1 if the express lanes are chosen and O otherwise. Let 

(1) 

be the utility difference, so that the express lanes are chosen whenever Uit>O. Variables included 

in X;, measure the toll difference C;1 , travel-time difference 7';1 , and (un)reliability difference Rit 

between the two alternatives. The values of travel time and reliability are defined as: 

(2) 

As the notation indicates, the models are specified so that VOT and VOR depend on the 

individual traveler i but not on the time t that a choice is made. However, they may depend on 

whether a given individual is answering an RP or an SP question. 

User Heterogeneity and Panel-Type Data 

We can specify the estimable parameters, 8 and [3, to capture observed and unobserved 

heterogeneity. Namely, 

(3) 

(4) 

Observed heterogeneity is captured by variables Wt and Z; , while unobserved heterogeneity is 

captured by the random terms Si and c;i. The scalar Si indicates an individual's unobserved 

alternative-specific preferences, whereas the vector c; i represents an individual's unobserved 

preferences regarding travel characteristics. (These two sources of randomness are called 
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preference heterogeneity and response heterogeneity, respectively, by Bhat and Castelar 

(2002)). Thus the derivatives in (2) depend on variables Zand also contain components of c,i, 

giving VOT and VOR both observable and stochastic variability. 

Equation (3) also accommodates the panel-type data structure arising from individuals' 

repeated observations. We assume ~; and all the components of C,; are distributed normally and 

independently of each other and of f.u: 

(5) 

with Q diagonal. 

Combining Different Sources of Data 

We denote our two data sets by superscripts B (for Brookings) and C (for Cal Poly). The 

Brookings data contain both RP and SP responses (further denoted with superscripts Rand S) 

and contain multiple responses from the same individual. The Cal Poly data are RP only and 

purely cross-sectional. As described later, in the RP portion of the Brookings data we form one 

choice variable from a motorist's multiple-day observations. 

A number of possible sources of correlation must be accounted for to combine the data 

sets without introducing bias. We account for the correlation between the RP and SP error terms 

from the same individual in the Brookings data, for those 55 individuals who answered both the 

RP and the SP survey. To accomplish this we split the corresponding error terms in (1) into two 

independent parts: 

f. _BR =V _BR +-n _BR 
I I 'I, (6) 

f. BS = pY BR +-n BS 
1/ 1 'lit ' 

(7) 
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where p captures the correlation between the error terms for a given individual and the random 

terms ri(R and ll;~s are assumed independent of each other. 

Denoting the error term Ei in the Cal Poly data by ll;c, the full joint model is then 

represented by the following utility differences between express and regular lanes: 

u_BR = 8 _BR + A _BR XBR +v BR +TI BR 
l I t-'1 l l '11 (8) 

u_BS =8.BS + A_BS x_B
1

S + py_BR +TI_B
1

S 
II l J-'1 l l 'II (9) 

(10) 

In these equations, the 8 and ~ parameters are specified to capture observed and unobserved 

heterogeneity as in (3) and (4), except that error terms ~(R and ~;c arising from (3) are omitted 

because, with only one observation per individual, they are redundant given the presence of ri(R 

and ll;c. Index i in (8)-(10) runs through all individuals in the data sets. 

We assume that v tR ~ N( 0,1). We also assume that YJ;BR, ll;~s , and ll;c are independently 

logistic distributed, which yields the familiar logit formula for the choice probability conditional 

on parameters and on v tR • 
16 Our treatment of heterogeneity is therefore an example of a mixed 

logit model. 

As is usual in combining RP and SP data sets, we allow the variances of YJ;BR and ll;~s to 

differ, indicating that there may be different sources for random preferences over revealed and 

stated choices. We also let ll;c have its own variance because the data sets have different 

questionnaire formats: most importantly, the Brookings choice variable is based on choices over 

16 Equivalently, each l]; is the difference between two independent random variates each having the extreme-value 
( double-exponential) distribution. 
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several ( often five) days, so we expect 11 ;BR to have a smaller variance than 11 ;c • All this is 

accomplished by normalizing the variance of 11tR (to 7t 
2 /3 as in the binary logit model) and 

estimating the ratios 

µ Bs = CY BR/ CY Bs (11) 

µ C =CY BR jCY C (12) 

where each CY is the standard deviation of the corresponding 11;. 

Our specification allows considerable generality in how choices are determined in the 

three samples (BR, BS, C) relative to each other. Of course, a model that combines the samples 

can improve statistical efficiency only by imposing some constraints. We therefore assume that 

some coefficients are identical in two or more of the choice processes. This enables us to use the 

RP responses to eliminate some sources of SP survey bias, while using the SP responses to help 

identify some key heterogeneity parameters, whose effects would otherwise be obscured in the 

RP-only data by multicollinearity. 

Estimation 

The parameters of the model are estimated by Simulated Maximum Likelihood 

Estimation (SMLE), as outlined for example by Brownstone and Train (1999). LetF represent 

all the fixed parameters (i.e., those common to all individuals in a given sample), and let 0; 

represent the random components (other than lli); 0; has a joint distribution with parameter 

vector \J1 , represented by density function /(0; I'+'). The likelihood function of our model is 

thus specified as: 

L(F,\Jf)= IT f P(Yu IF,e;)J(e; I\Jl)dei , (13) 
it 0j 
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where P(y;1 IF, e;), the individual's conditional choice probability, takes the binary logit form 

(with parameters µ0i, µ131), i runs through all three data sets, and t runs through the repeated SP 

responses where relevant. 

The integration in (13) is performed using Monte Carlo simulation methods. Given a trial 

value for \jf , we draw e;· from the assumed distribution J(e; [\jf) and evaluate the likelihood 

function conditional on e;·, repeating for r = l, .... R. The simulated likelihood function is: 

(14) 

The SMLE maximizes the log of this simulated likelihood function. Lee (1992) and Hajivassilio 

and Ruud (1994) show that under regularity conditions, the parameter estimates are consistent 

and asymptotically normal and, when the number of replications rises faster than the square root 

of the number of observations, asymptotically equivalent to maximum likelihood estimates. 

5. Estimation Results 

Our primary objective is to estimate distributions of the values of time and reliability 

based on a joint RP/ SP model. The final specification of this model is sufficiently complex that 

it will be easier to understand and justify our findings ifwe proceed in steps. Thus we first 

present estimates of the separate RP and SP models that form the basis of the joint model. 

Revealed Preference Estimates 

The Cal Poly RP sample is a simple cross section, but the Brookings RP sample has a 

panel structure. One way to analyze the Brookings sample is to estimate a binary logit model of 

lane choice on each observation, including those from the same motorist on different days. We 

call this a trip-based model. An alternative approach is to convert each motorist's multiple 
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observations into one and estimate a model whose dependent variable is the frequency of using 

toll lanes. We call this a person-based model. 

The person-based model has certain advantages. First, it correctly assumes that a 

traveler's decision to get a transponder (a prerequisite for choosing the express lanes) is based on 

long-run tradeoffs, not on daily considerations. Second, its simpler error structure makes it easier 

to combine with other data. As noted earlier, few travelers in the Brookings RP sample changed 

behavior from day to day, so little information is gained from the extra observations contributing 

to a trip-based model. Indeed, preliminary estimations indicated that the two models yielded 

similar results; thus, we focus here on the findings from person-based models. We explored 

alternative ways of specifying the person-based dependent variable, and settled on a binary 

outcome defined as 1 if the motorist used the express lanes for half or more of reported 

commuting trips, 0 otherwise. 17 Independent variables are defined as the average value over the 

days reported. 18 

Because commuters persisted in their route choices from day to day, it seemed reasonable 

to combine the Brookings person-based observations with the Cal Poly cross-sectional 

observations. We tested whether the Brookings and Cal Poly respondents react differently to the 

cost, time, and unreliability variables and found that there were no statistically significant 

differences. We do allow the random terms ( rv) to have different variances and we specify 

different alternative-specific constants (8 )in the two data sets. (Note that v:R in (5) is redundant 

17 We omitted the few respondents who have a transponder but traveled two days or less, because defining a 
frequency for them involves too much error. Our specification can be thought of as a special case of an ordered logit 
model that divides the possible [O, 1] interval (for fraction of trips made on the express lanes) into j sub-intervals. 
We explored several ways of doing this; based on Vuong's (1989) test for non-nested models, we could not reject 
any of the specifications we tried in favor of any other one, and all gave similar results for the main parameters of 
interest. 
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and can be set to zero in the RP-only case.) As noted, we expect a 8R<ac because we average 

Brookings motorists' choices over (several) days. 

We follow convention in the systematic part of the specification by interacting travel cost 

with income. We also interact median travel time with distance. (We tried interacting 

unreliability with distance but found no statistically significant effect.) 

Estimation results for this RP-only model are shown in the first column of Table 2. Most 

of the parameter estimates are statistically significant and have the expected signs. Commuters 

are deterred from the express lanes by a higher toll and from the free lanes by longer median 

travel times and greater unreliability. (Despite the interaction terms, this remains true throughout 

the full range of distance in our data.) We also found that women, middle-aged motorists, and 

motorists in smaller households-who may be more willing to indulge their travel preferences 

than motorists in larger households-are more likely to choose the toll lanes. 19 

We were unable to satisfactorily identify unobserved heterogeneity through mixed logit 

( these results are not shown in the table), but observed heterogeneity is indicated by preferences 

that vary in accordance with income and trip distance. Consistent with expectations, motorists 

with higher incomes are less responsive to the toll. The effect of distance on the time coefficient 

is captured well by a cubic form with no intercept (i.e., median travel time is not entered by 

itself). When graphed, the dependence of the value of time on distance is characterized by an 

inverted U, initially rising but then falling for trips greater than 45 miles. We conjecture that this 

pattern results from two opposing forces: the increasing scarcity of leisure time as commuting 

18 An exception is the "flexible arrival time" dummy, which is set to one if the respondent indicated flexible arrival 
for half or more of the reported days. (In fact, only five people reported any daily variation in this variable.) 

19 Parkany (1999), Lam and Small (2001), and Yan, Small, and Sullivan (2001) also find that women are more 
likely to use toll lanes. 
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takes up a greater fraction of it, and the self-selection of people with lower values of time to live 

farther from their workplaces (Calfee and Winston (1998)). 

Stated Preference Estimates 

The dependent variable is the respondent's choice of whether to use the express lanes in a 

given scenario. We can successfully estimate unobserved heterogeneity using SP data because 

the independent variables are, by design, not highly correlated. Mixed-logit estimations were 

performed using 1,500 random draws for the simulations, assuming that the random parameters 

for cost, time, and unreliability have independent normal distributions.20 

The results, presented in the middle column of Table 2, indicate that key parameters have 

the expected signs and are estimated with good precision. As before, respondents trade off tolls 

with travel time and unreliability. Surprisingly, income is statistically insignificant, whether 

entered as a lane-choice shift variable or (as tried but not shown) interacted with the toll. As in 

the RP model, motorists in smaller households are more likely to select the express lanes; but 

here neither age nor sex has a statistically significant effect (at conventional levels) on their 

choices. Surprisingly, the SP estimates indicate that motorists are more likely to use a toll lane if 

they have a flexible arrival time; we speculate that this variable serves as a proxy for unmeasured 

job characteristics ( e.g., managerial responsibility) requiring punctuality on a given day even 

though a commuter is not normally constrained to arrive at a particular time.21 

We allow the coefficient on travel time to differ between people with long or short actual 

commutes to capture observed heterogeneity (these people received different versions of the SP 

20 This assumption leads to the possibility of a traveler having the "wrong" sign for these coefficients. We tried log
normal and truncated nom1al distributions for the random coefficients, but were unable to reach convergence-a 
problem noted by other researchers such as Train (200 I), although Bhat (2000) and Calfee, Winston, and Stempski 
(2001) were successful with the log-normal. 

21 We also explored interactions of this variable with time and reliability, but found that it fit best in the form 
reported. 
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survey, as explained in Appendix A), but the difference is negligible. The parameters indicating 

the standard deviations of random coefficients are comparable in magnitude to the corresponding 

means, implying considerable unobserved heterogeneity.22 

Joint RP/SP Estimates 

Separate RP and SP models suggest that motorists' values of time and reliability vary in 

accordance with observed and unobserved influences. By combining the models, we obtain a 

more precise understanding of preference heterogeneity. 

We assume the random components of the cost and time coefficients are the same across 

RP and SP models, but we cannot invoke this assumption for the unreliability coefficients 

because the measures of unreliability are constructed in different ways. Instead, we assume that 

the ratio of the standard deviation to the mean of the unreliability coefficient is the same across 

samples. Formally, the random parameters in the joint RP/SP model are specified as: 

(15) 

(16) 

where 0; refers to the vector of cost and travel time coefficients; Z; is the matrix of individuals' 

characteristics including income and trip distance; r; is the unreliability coefficient with random 

component ni; Si and ffii are assumed independent normal with variances cr f and cr ~ to be 

estimated; and k=BR, BP, C represent our data sources.23 This specification allows the RP and 

22 We also estimated models with "inertia effects," in which the SP choice is conditioned on the actual choice of 
whether to obtain a transponder. Although this improves the goodness of fit considerably, it may introduce bias 
because the actual choice is not fully exogenous to the SP choice given the likely correlation of their error tem1s. 
Models of this type are discussed by Morikawa (1994, pp. 158-159) and estimated by Bhat and Castelar (2002). 

23 We also impose equality of the parameters j3k, y k, and rk across the two RP samples, as we did for the RP

only model. 
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SP values of time and of reliability to differ, but combines the power of the RP and SP data to 

estimate the random variation in those values. Finally, we assume that the individual 

characteristics affecting alternative-specific preferences (namely sex, age, flexible arrival, and 

household size) have the same effects across data sets. 

We estimate the joint model by simulated maximum likelihood, using 2000 random 

draws. 24 Parameter estimates are presented in the last column of table 2. There is clearly a 

payoff from joint estimation because the coefficients of all the travel characteristics relevant to 

the RP choice are estimated with greater precision than before. The parameters capturing 

unobserved heterogeneity in the coefficients of cost, time and unreliability are also precisely 

estimated, as are the scale and correlation parameters describing the error structure. As expected, 

the scale parameter µ c suggests that there is substantially more noise in the Cal Poly responses 

than in the Brookings RP responses, while the parameter p indicates that SP and RP responses 

from a single respondent are strongly correlated. 

Motorists' Preferences and Heterogeneity 

We use the estimated coefficients of the joint RP/SP model to calculate motorists' 

implied values of time and unreliability and indicate the extent of their heterogeneity (table 3). 

As can be seen from the second column of the table, all estimates are significantly different from 

zero at a 5% confidence level (one-sided test). The median value of time based on commuters' 

revealed preferences is $20.20/hour; at 87 percent of the average wage, it is toward the top of the 

range expected from previous work (Small (1992)). In our data, median time savings at the 

height of rush hour are 5.6 minutes; thus, the average commuter would pay $1.89 to realize these 

24 We found that the calculated standard errors were sensitive to the number of random draws up to 1500, but did not 
change when they were increased to 2000. 
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savmgs. The median value ofreliability is $19.56/hour. Unreliability peaks at 3 minutes; thus, 

the average commuter would pay $0.98 to avoid this possibility of unanticipated delay. Given 

these estimates, the actual peak toll of $3.30 would be expected to attract somewhat fewer than 

half of the total peak traffic-which, in fact, it does. 

We are also interested in how much motorists' preferences vary. We use the interquartile 

difference (the difference between 75th and 25th percentile values) as our heterogeneity measure 

because it is unaffected by high upper-tail values occasionally found in the calculations ofratios. 

This measure of heterogeneity exceeds 60% of the median value of time and is greater than the 

median value of unreliability, indicating that commuters exhibit a wide distribution of 

preferences for speedy and reliable travel. 

It is interesting that the heterogeneity is almost all from unobserved sources, verifying the 

importance of "taste variation" in motorists' behavior and our attempt to capture it. To be sure, 

unobserved heterogeneity reflects limitations on empirical work and presumably could be 

reduced if it were possible to measure all variables that underlie individuals' preferences. 

The implied SP values of time are smaller on average than the RP values. This finding 

may reflect the aforementioned tendency of travelers to overstate the travel time they lose or 

would lose in congestion. For example, suppose a motorist is in the habit of paying $1.56 to 

save 10 minutes, but perceives that saving as 15 minutes. That motorist may then answer SP 

questions as ifhe or she would pay $1.56 to save 15 minutes-yielding an SP value of time that 

understates the value used in actual decisions. The SP value of unreliability may be similarly 

biased, but we have no point of comparison. The median value of $4.17 per incident means that 

the median motorist in our sample would pay $0.42 per trip to reduce the frequency of 10-minute 

delays from 0.2 to 0.1. 
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6. Implications for Road Pricing Policy 

Does preference heterogeneity create a strong case for differentiated services? We use Small 

and Yan' s (2001) simulation model to investigate the potential effects of differential road pricing. 

The model resembles the SR91 road-pricing experiment, in which two 10-mile roadways, Express 

and Regular, connect the same origin and destination and have the same free-flow travel-time. 

Users are of two types: high value of time (i=l) and low value of time (i=2). Each user chooses the 

best option while congestion on each road adjusts endogenously.25 The two user groups are of 

equal size when roads are free. Each has a downward-sloping demand as a function of the full 

price of travel (money cost plus an appropriate value of time and unreliability). 

Because SR91 has twice as many regular lanes as express lanes, in equilibrium the express 

roadway contains only high-VOT users while the regular roadway contains both types of users. 

Equilibrium is therefore achieved when the full cost to high-VOT users is the same on both 

roadways, i.e., when the time difference multiplied by the VOT of group 1 equals the toll. 

In Small and Yan's model, time and unreliability are not distinguished, but can be assumed 

to be functionally related. Thus to use the model with the results in this paper, we specify the full 

price Pirfor a user of type ion roadway r to be P;, ='t, + cp;Y, + f\R,, where 1 is toll, Tis travel-

time delay (time less free-flow time), andR is unreliability. We assume that for each roadway, 

Rr IT,. is fixed at a value s=0.3785, which is the ratio of the average R to average T over the 4-

hour peak period ( 5-9 a.m.) in the unpriced lanes in our data set. Thus p ;, = 1, + a ;I', , where 

a; = cp; +so;. For cp i and o i we use the VOT and VOR estimates in table 3 based on RP 

25 The function describing congestion is the Bureau of Public Roads formula T=0.15T0(VIC)4, where To is free-fow 
travel time, Tis travel time less T0, and VIC is the volume-capacity ratio. 
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behavior, taking the two user groups to be represented by the 75th and 25th percentiles.26 This 

yields values of a. 1 = $40.86 /hr, and a. 2 = $17.62 / hr. 

Letting pi be the lower of the two full prices facing user type i, the demand for trips by these 

users can be written as Ni (pi). We assume this function is linear, with parameters calibrated to 

reproduce real traffic conditions observed on SR91 in summer 1999. Thus each group's money

price elasticity is-0.58, as estimated by Yan, Small, and Sullivan (2001), and the time difference 

between the lanes is 6 minutes when the price on the express lanes maximizes the operator's profit 

subject to the regular lanes being free. These assumptions yield a plausible profit-maximizing 

express-lane toll of $4. This pricing policy may also be regarded as politically feasible because the 

Express Lanes enjoyed wide public acceptance at that time (Sullivan et al. (2000)). 

Based on these parameters, we calculate tolls, travel times, changes in consumer surplus, and 

social welfare under several alternative pricing policies. Our base case has no toll on either 

roadway. The improvement in social welfare is the change (from the base case) in the two groups' 

combined consumer surplus plus toll revenues. Results are presented in table 4. 

The first two policies set a price on the express lanes that maximizes social welfare subject to 

the current constraint that the regular lanes have a zero toll. This "second-best" policy enables 

road pricing to be politically feasible, but sacrifices efficiency by not pricing all lanes. Nonetheless, 

when there is user heterogeneity, welfare improves by $0.16 per vehicle, whereas if users are alike 

there is a negligible gain. Heterogeneity increases the potential efficiency of road pricing because 

those with a high VOT reap more benefits from the priced option, while those with a low VOT find 

it more important not to be subjected to policies aimed at average users. 

26 The third and sixth rows of table 3 show the difference between 75th and 25tl' percentiles. The percentiles 
themselves are: $27.70 and $15.10 for VOT, and $34.79 and $6.66 for VOR. 
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Suppose we wish to increase the welfare gain beyond that achieved by second-best 

policies, but we do not want to raise distributional concerns by, for example, disadvantaging 

low-VOT users more than high-VOT users. Can accounting for heterogeneity help? A first-best 

differentiated toll, shown in the fourth column of the table, achieves a substantial welfare gain of 

$0.86 per vehicle; but it also imposes high direct costs on motorists, especially the low-VOT users, 

undoubtedly creating a major political barrier to implementation. However, we can consider a 

"limited differentiated toll" that charges tolls on both lanes to maximize social welfare subject to a 

political feasibility constraint---defined as keeping the largest consumer surplus loss no greater 

than that in the second-best policy shown in the second column. Compared with the first-best toll, 

the result is a lower but more sharply differentiated toll that causes substantially smaller losses in 

consumer surplus for both groups and that narrows the gap between them. It also achieves a 

welfare gain that is more than one third that of first-best pricing and much larger than that of 

second-best pricing. 

Catering to heterogeneity is apparently the key to softening the distributional effects of more 

efficient road pricing. This is indicated by a "limited uniform toll" policy shown in the last column 

of the table, defined to generate the same efficiency gain as the limited differentiated toll. It harms 

the low-VOT group far more than the high-VOT group. Thus if analysts consider only uniform 

tolls, they are likely to find that policymakers pay little attention to the efficiency gains because 

of large distributional disparities. 

Traffic on SR91 has increased considerably since 1999. We show the effects of 

differentiated pricing with greater congestion by recalibrating the simulation model to double the 

time difference between the lanes that existed in the summer of 1999 (again, assuming that the 

operator's toll maximizes profit). The results, shown in table 5, indicate that the welfare gains 
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from all the policies are more than doubled with increased congestion, yet the consumer-surplus 

losses in constrained policies are only about 50 percent greater. If we ignore heterogeneity, 

distributional concerns also increase as evidenced by the greater disparity among users groups 

with the limited uniform toll (last column). But this disparity is virtually eliminated by the 

limited differential toll. As congestion on major highways continues to grow, the case for 

accounting for heterogeneity will only strengthen. 

7. Conclusion 

Road pricing has been beloved by economists and opaque to policymakers for decades. 

Calfee, Winston, and Stempski (2001) rationalized this state of affairs by arguing that, in fact, 

few long-distance automobile commuters are willing to pay much to save travel time because 

those with a high value of time spend more on housing to live close to their workplace. 

We have applied recent econometric advances to analyze the behavior of commuters in 

Southern California and found that those with very long commutes have substantially lower 

values of time, which is consistent with residential selectivity. But we have also found great 

heterogeneity in motorists' preferences for speed and reliability. One possible explanation is that 

in very expensive and congested metropolitan areas such as Southern California, consumers face 

significant constraints in trading off housing expense for commuting time. In such a situation, 

we find an opportunity to design pricing policies with a greater chance of public acceptance by 

catering to varying preferences. 

Recent "value pricing" experiments have made a start at taking advantage of this 

opportunity. These experiments offer motorists the option to pay for congestion-free travel. But 

these experiments leave part of the roadway unpriced, which severely compromises efficiency. 
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We have demonstrated that pricing policies taking preference heterogeneity explicitly into 

account can realize substantial efficiency gains and ameliorate distributional concerns. By 

reducing the adverse direct impact of combined tolls and time savings on consumer surplus, 

differentiated pricing enhances the political viability of road pricing because policymakers must 

apportion only a modest fraction of the toll revenues to fully compensate road users. Differential 

pricing, embedded in both the design and marketing of recent experiments, may thus be the key 

to addressing the stalemates that impede transportation policy in congested cities. 
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Appendix A. Stated Preference Survey Questionnaire 

Eight hypothetical commuting scenarios were constructed for respondents who travel on 
SR91. Respondents who indicated that their actual commute was less (more) than 45 minutes 
were given scenarios that involved trips ranging from 20-40 (50-70) minutes. An illustrative 
scenario follows: 

Scenario 1 
Free Lanes Express Lanes 

Usual Travel Time: Usual Travel Time: 
25 minutes 15 minutes 

Toll: Toll: 
None $3.75 

Frequency of Unexpected Delays Frequency of Unexpected Delays 
of 10 minutes or more: of 10 minutes or more: 

1 day in 5 1 day in 20 

Your Choice (check one): 

Free Lanes □ Toll Lanes □ 

Appendix B. Construction of RP Variables on Travel Time Savings and Reliability 

Travel times on the free lanes (91F) were collected on 11 days: first by the California 
Department of Transportation on October 28, 1999 ( six weeks before the first wave of our 
survey), and then by us on July 10-14 and Sept. 18-22, 2000 (which are the time periods covered 
by two later waves of our survey). 

Data were collected from 4:00 am to 10:00 am on each day, for a total of210 
observations Yi of the travel-time savings from using the express lanes at times of day denoted 
by Xi, i=l, ... 210. Our objective is to estimate the mean and quantiles of the distribution (across 
days) of travel time y conditional on time of day x. To do so, we use non-parametric methods of 
the class oflocally weighted regressions. In these methods, the range of the independent 
variables is divided arbitrarily into a grid, and a separate regression is estimated at each point of 
the grid. In our case, there is just one variable, x. For given x, the regression makes use only of 
observations with Xi near x, the importance of each being weighted in a manner that declines with 
lxrxJ. The weights are based on a kernel function K( • ), and how rapidly they decline is controlled 
by a bandwidth parameter h; typically only observations within one bandwidth of x get any 
positive weight. 

The specific form oflocally weighted regression we use is known as local linear fit. For 
each value of x, it estimates a linear function y; =a+ b(xrx) + E; in the region [x-h, x+h] by 
minimizing a loss function of the deviations between observed and predicted y. Denote the p-th 
quantile value ofy, givenx, by qp(x). Its estimator is then: 
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(Al) 

where gp(t) is the loss function. Similarly, denoting the mean of y given x by m(x), its estimate is 
given by the same formula but with subscript p replaced by m. 

In the case of mean travel-time savings, we use a simple squared-error loss function, 

gJt) = t 2
, in which case equation (Al) becomes the local linear least square regression. In the 

case of percentiles of travel-time savings, including the median, we follow Koenker and Bassett's 
(1978) suggestion and use the following loss function, which is asymmetric except for the median 
(p=0.5): 

(A2) 

With this loss function, equation (Al) defines the local linear quantile regression (Yu and Jones, 
1997). It can be shown that the estimated percentile values converge in probability to the actual 
percentile values as the number of observations n grows larger, provided the bandwidth h is 
allowed to shrink to zero in such a way that nh ➔ oo. In the case of the median (p=0.5), this is a 
least-absolute-deviation loss function, and therefore the estimator can be thought of as a non
parametric least-absolute-deviation estimator. 

The choice of kernel function has no significant effect on our results. We use the biweight 
kernel function, which has the following form: 

{

15(1 2)2 
K(u)= 16 ~u 

iul ~ i 
lul > 1. 

(A3) 

The choice of bandwidth, however, is important. We first tried the bandwidth proposed 
by Silverman (1985): 

h = 0.9n-0
·
5 min{std(x),..!!_} 

1.34 
(A4) 

where n is the size of the data set, "std" means standard deviation, and dis the difference 
between the 75 th and 25th percentile of x. This bandwidth turns out to be about 0.5 hour for our 
data. However, there is rather extreme variation in our data at particular times of day, especially 
around 6:00 a.m., due to accidents that occurred on two days around that time. While these 
accidents are part of the genuine history and we want to include their effects, they produce an 
unlikely time pattern for reliability when used with the bandwidth defined by equation (A4) -
namely, one with a sharp but narrow peak in the higher percentiles around 5:30 a.m., followed by 
the expected broader peak centered around 7:30 a.m. We therefore increased the bandwidth to 
0.8 hour in order to smooth out this first peak. 

The standard deviation shown in figure 2 of the text is the square root of the estimated 
variance of time saving, obtained by a similar nonparametric regression of the squared residuals 

(Y; -m(x))' on time of day. 
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Table 1. Descriptive Statistics 

Value or Fraction of Sample 
Cal Poly-RP Brookings-RP Brookings-SP 

Route Share: 
91X 0.26 0.25 
91F 0.74 0.75 

One-Week Trip Pattern: 
Never Use 91X 0.68 
Sometimes Use 91 X 0.13 
Always Use 91X 0.19 

Percent of Trips in Each Time Period: 
4:00am-5 :00am 0.11 0.15 
5 :00am-6:00am 0.22 0.13 
6:00am-7 :00am 0.23 0.26 
7:00am-8:00am 0.20 0.21 
8:00am-9:00am 0.14 0.15 
9:00am-1 0:00am 0.10 0.10 

Age of Respondents: 
<30 0.11 0.12 0.10 
30-50 0.62 0.62 0.64 
>50 0.27 0.26 0.26 

Sex of Respondents: 
Male 0.68 0.63 0.63 
Female 0.32 0.37 0.37 

Household Income($): 
<40,000 0.14 0.23 0.24 
40, 000-60, 000 0.24 0.60 0.59 
60,000-100,000 0.40 0.15 0.13 
>100,000 0.22 0.02 0.04 

Flexible Arrival Time: 
Yes 0.40 0.55 0.50 
No 0.60 0.45 0.50 

Trip Distance (Miles): 
Mean 34.23 44.76 42.56 
Standard Deviation 14.19 28.40 26.85 

Number of People in Household: 
Mean 3.53 2.91 3.44 
Standard Deviation 1.51 1.63 1.55 

Number of Respondents 438 84 81 
Number of Observations 438 377 633 
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Table 2. Parameter Estimates 

Dependent Variable: 
1 if chose toll lanes, 0 otherwise 

Independent Variable 

RP Variables 

-BR 
Constant: Brookings sub-sample (8 ) 

-c 
Constant: Cal Poly sub-sample (8 ) 

Cost ($)b,c 

Cost x dummy for medium household 
income ($60,000-$100,000) 

Cost x dummy for high household income 
(>$100,000) 

Median travel time (minutes) x trip distance 
(in units of 10 miles)b 

Median travel time x (trip distance squared) 

Median travel time x (trip distance cubed) 

Unreliability of travel time (minutes /,d 

SP Variables 

-BS 
Constant ( 8 ) 

Standard deviation of constant ( cr ~ ) 

Costb,c 

Cost x dummy for high household income 
(>$100,000) 

Coefficient 
( standard error t 

RP Only SP Only Joint RP/SP 
(binary logit) (mixed logit) (mixed logit) 
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-0.5150 
(0.9674) 

-1.7157 
(0.7827) 

-1.3443 
(0.5312) 

0.4693 
(0.2149) 

0.9047 
(0.3096) 

-0.2618 
(0.0917) 

0.0412 
(0.0162) 

-0.0017 
(0.0007) 

-0.5989 
(0.2298) 

-2.3138 
(1.6335) 

4.7793 
(0.5239) 

-1.5467 
(0.3311) 

0.1625 
(0.8980) 

0.2473 
(0.7799) 

-1.8389 
(0.6860) 

-2.2682 
(0.3589) 

0.6566 
(0.2088) 

1.3147 
(0.2794) 

-0.4933 
(0.1009) 

0.0868 
(0.0189) 

-0.0037 
(0.0009) 

-0.7049 
(0.2550) 

-1.2246 
(0.8856) 

0.1284 
(0.6669) 

-1.0986 
(0.3128) 

0.1915 
(0.6469) 



Cost x dummy for medium household -0.3033 -0.0827 
income ($60,000-$100,000) (0.5840) (0.2948) 

Travel time (minutes) x long-commute -0.2893 -0.1834 
dummy (>45 minl (0.0503) (0.0394) 

Travel time x (1 - long-commute dummy) -0.3022 -0.2127 
(0.0539) (0.0590) 

Unreliability of travel time (probability/'f -8.3054 -5.1686 
(1.7956) (1.1195) 

Variables Pooled in Joint RP/SP Model 

Female dummy 1.1294 1.7598 1.3849 
(0.3904) (1.0554) (0.4046) 

Age 30-50 dummy 1.1951 0.0035 1.3021 
(0.4465) (1.1638) (0.3856) 

Flexible arrival-time dummy 0.2428 2.9487 0.7481 
(0.3774) (1.1179) (0.4179) 

Household size (number of people) -0.3847 -0.8717 -0.5902 
(0.1846) (0.4076) (0.1738) 

Standard deviation of coefficient(s) of costg 0.8774 0.6577 
(part of Q) (0.2162) (0.1826) 

Standard deviation of coefficients of travel 0.2165 0.1268 
timeg (part of Q) (0.0414) (0.0471) 

Standard deviation of coefficient of 8.5383 
unreliabilitl (part of Q) (1.7455) 

Ratio of standard deviation to the mean for 0.9886 
coefficients of unreliabilityh ( cr '°) (0.3136) 

Other Parameters 

Scale parameter:i Cal Poly sample ( µ c) 0.5028 0.3743 
(0.1977) (0.0981) 

Scale parameter:i SP sample ( µ ss) 1.4723 
(0.3585) 

Correlation parameter - RP and SP (p) 2.5493 
0.4969 
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Summary Statistics 

Number of observations 522 633 1155 

Number of persons 522 81 548 

Log-likelihood -267.84 -241.32 -501.28 

Pseudo R2 0.3509 0.4500 0.3708 

a Standard errors are the square root of the corresponding diagonal element in the inverse of the negative Hessian of 
the simulated log-likelihood function (calculated numerically). 

b All cost, travel-time, and unreliability variables are entered as the difference between values for toll lanes and for 
free lanes. In the RP data, the cost for free lanes is zero, travel time for toll lanes is 8 minutes, and unreliability for 
toll lanes is zero. In the SP data, cost, travel time, and unreliability are specified in the questions. 

c Value of"cost" for the toll lanes is the posted toll for a solo driver (for RP data) or the listed toll in the survey 
question (for SP), less 50% discount if car occupancy is 3 or more. 

d Value of "unreliability" for the free lanes in the RP data is the difference between 80th and 50 th percentile travel 
times (see text). 

e The estimation of a standard deviation of constant 8 /s, separate from the standard deviation of the overall random 

term l'];~s, is made possible by the multiple observations for a given individual in the SP data sample (see equation 

(9)). Hence there is no comparable parameter for the RP samples, where a~ would be redundant with a~ and so is 

assumed to be zero (see equations (8) and (10)). 

f Value of "unreliability" for either set of lanes in the SP data is the probability of unexpected delays of IO minutes 
or more, as given in the survey question and applying to the entire trip. 

gThe coefficients on cost and travel time are specified as equation (4) for separate RP and SP models, and as 
equation (I 5) for the joint model. The only difference is that in (15) the variance of(,; is specified as identical for the 
RP and SP samples; hence for each variable (cost and time), we estimated separate RP and SP mean coefficients but 
only a single standard deviation for those coefficients. Note that in our specification for travel time, the "intercept" 

if is set to zero, i.e. travel time is entered only through interactions with individual characteristics Z;. In addition, in 

the RP-only model C,t-=O (i.e. the parameters are not random). 

"The coefficient on unreliability is specified as equation (4) for separate RP and SP models, and as equation (16) for 
the joint model. Note that in our specification for unreliability, y=O, i.e., unreliability has no interactions with 
individual characteristics Z;. In addition, in the RP-only model C,,=0 (i.e. the parameters are not random). 

; Scale parameters are defined in equations (11 )-(12). A value less than one means there is more unexplained 
dispersion in this portion of the data than in the Brookings RP data. 
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Table 3. Values of Time and Reliability from Joint RP/SP Models 

RP Estimates 
Value of time ($/hour) 
Median in sample 
Unobserved heterogeneit/ 
Total heterogeneity in sampleb 

Value ofreliability ($/hour) 
Median in sample 
Unobserved heterogeneit/ 
Total heterogeneity in sampleb 

SP Estimates 
Value o(time ($/hour) 
Median in sample 
Unobserved heterogeneityb 
Total heterogeneity in sampleb 

Value ofreliability ($/incident) 
Median in sample 
Unobserved heterogeneity in sampleb 
Total heterogeneityb 

Median 
Estimate 

20.20 
11.01 
12.60 

19.56 
27.67 
28.13 

9.46 
13.46 
13.56 

4.17 
7.78 
7.79 

90% Confidence lntervala 
[5%-ile, 95%-ile] 

[14.72, 25.54] 
[6.48, 16.74] 
[8.30, 18.12] 

[8.03, 31.17] 
[11.56, 47.64] 
[11.56, 48.58] 

[6.18, 13.53] 
[7.41, 22.02] 
[7.52, 22.99] 

[2.37, 6.30] 
[4.36, 12.64] 
[4.36, 12.66] 

a The confidence interval represents uncertainty due to statistical error, not heterogeneity. It is determined 
by Monte Carlo draws from the estimated statistical distributions of the parameter estimates. This method 
is more accurate than approximation fonnulas based on the standard errors of and correlation between 
coefficient estimates. The distributions of these ratios are skewed, so the standard deviation would give a 
misleading characterization of precision. A positive 5th percentile value means the quantity is significantly 
greater than zero according to a conventional one-sided hypothesis test at a 5 percent significance level. 

b Heterogeneity is measured as the interquartile difference, i.e., the difference between the 75th and 25th 

percentile values, computed from Monte Carlo draws. For unobserved heterogeneity, these draws are 
from the estimated distribution of random parameters c; ; ( for the value of time) or ro; ( for the value of 

unreliability in equations (15)-(16)). For total heterogeneity, the draws are from that distribution and from 
the relevant RP or SP sample. 
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Table 4. Simulation Results-Summer 1999 Traffic Conditions 
PRICING REGIMEa Base case: Second-best toll: Second-best toll: First-best Limited Limited uniform 

no toll heterogeneity heterogeneity differentiated differentiated toll 
present not present toll toll 

Toll: 
Express lanes 0 $1.80 $0.97 $4.51 $1.34 $0.78 
Regular lanes 0 0 0 $4.18 $0.47 $0.78 

Travel time (minutes): 
Express lanes 14 11 12 10 12 13 
Regular lanes 14 15 14 11 14 13 

Consumer surplus:b 
High-VOT users 0 -$0.45 -$2.41 -$0.44 -$0.40 
Low-VOT users 0 -$0.26 -$2.82 -$0.45 -$0.55 
Homogeneous users 0 -$0.23 

Social welfareb 
All users 0 $0.16 $0.06 $0.86 $0.28 $0.28 

a Notes on pricing regimes: "Second-best toll (heterogeneity present)" and "Second-best toll (heterogeneity not present)" maximize social welfare subject to the 
price of the regular lanes being constrained to zero, with and without heterogeneity, respectively. "First-best differentiated toll" maximizes social welfare using 
differentiated tolls, with no constraint. "Limited differentiated toll" maximizes social welfare using differentiated tolls, subject to the consumer surplus loss of the 
worst group being constrained the same as in "Second-best toll (heterogeneity presented)". "Limited uiform toll" is the unifonn toll providing the same total 
welfare gain as "Limited differentiated toll". 

b Consumer surplus and social welfare are measured relative to the no-toll scenario and divided by the number of users in the no-toll scenario to put them in per 
capita terms. Social welfare is equal to the sum of the two groups' consumer surplus plus revenue, divided by total number of users in the no-toll scenario. 
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Table 5. Simulation Results-Increased Congestion 
PRICING REGIMEa Base case: Second-best toll: Second-best toll: First-best Limited Limited uniform 

no toll heterogeneity heterogeneity differentiated differentiated toll 
present not present toll toll 

Toll: 
Express lanes 0 $4.42 $2.68 $8.51 $2.81 $1.43 
Regular lanes 0 0 0 $7.93 $0.77 $1.43 

Travel time (minutes): 
Express lanes 20 14 15 12 16 18 
Regular lanes 

Consumer surplus:b 
20 21 20 13 19 18 

High-VOT users 0 -$0.71 -$2.66 -$0.68 -$0.54 
Low-VOT users 0 -$0.42 -$3.31 -$0.71 -$0.89 
Homogeneous users 0 -$0.38 

Social welfareb 0 $0.48 $0.23 $2.18 $0.67 $0.67 

a,b See the footnotes of Table 5. 
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