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Abstract

Computations of the cohomological Brauer group of some algebraic stacks

by

Minseon Shin

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Martin C. Olsson, Chair

The theme of this dissertation is the Brauer group of algebraic stacks. Antieau and Meier
showed that if k is an algebraically closed field of char k 6= 2, then Br(M1,1,k) = 0, where M1,1

is the moduli stack of elliptic curves. We show that if char k = 2 then Br(M1,1,k) = Z/(2).
In another direction, we compute the cohomological Brauer group of Gm-gerbes; this is an
analogue of a result of Gabber which computes the cohomological Brauer group of Brauer-
Severi schemes. We also discuss two kinds of algebraic stacks X for which not all torsion
classes in H2

ét(X,Gm) are represented by Azumaya algebras on X (i.e. Br 6= Br′).



i

Contents

Acknowledgements iii

Introduction iv

1. Generalities 1

1.1. Skolem-Noether for locally ringed sites 1

1.2. Azumaya algebras and the Brauer group 3

1.3. Gerbes and twisted sheaves 7

1.4. Brauer map 11

1.5. The cup product and cyclic algebras 13

2. Brauer groups of algebraic stacks: generalities and examples 17

2.1. Surjectivity of Brauer map 17

2.2. Low-dimensional stacks 19

2.3. Quotient stacks by discrete groups 20

2.4. Classifying stack of an elliptic curve 21

2.5. Classifying stack of diagonalizable groups 22

2.6. Classifying stack of GLn 26

3. The Brauer group of the moduli stack of elliptic curves 30

3.1. Introduction 30

3.2. Preliminary observations 30

3.3. The case char k is not 2 32

3.4. The case char k is 2 37

4. The cohomological Brauer group of Gm-gerbes 49

4.1. Main theorem and introductory remarks 49

4.2. Gerbes and the transgression map 50

4.3. Picard groups of (Laurent) polynomial rings 52

4.4. Unit groups of Laurent polynomial rings 59

4.5. Proof of the main theorem 61

5. Variants 66

5.1. The Azumaya Brauer group of a Brauer-Severi scheme 66

5.2. The Azumaya Brauer group of a Gm-gerbe 67

5.3. A1-homotopy invariance of the Brauer group 68

Appendix A. Torsors under torsion-free abelian groups 71

Appendix B. Cohomology and spectral sequences 71

B.1. Cohomological descent spectral sequence 72

B.2. Higher direct images of sheaves on classifying stacks of discrete groups 72

Appendix C. Inverse image of gerbes 73

Appendix D. The Weierstrass and Hesse presentations of M1,1 77

D.1. Full level N structures 77

D.2. Comparing the Weierstrass and Hesse presentations 78



ii

Appendix E. Computation using Magma 84

References 85



iii

Acknowledgements

I would like to thank my advisor Martin Olsson. He suggested this research topic, gen-
erously shared his ideas, and patiently answered my questions. I greatly admire his mathe-
matical style and taste and hope to continue learning from him.

I had many helpful conversations with friends, for whom I am very grateful. They taught
me many things, mathematical and otherwise, and they continue to humble me.

I thank my family for their support in general.

I received support from NSF grant DMS-1646385 (the Berkeley RTG in Arithmetic Geom-
etry and Number Theory) during Fall 2017 and Fall 2018, and the Raymond H. Sciobereti
Fellowship (the Berkeley mathematics department spring fellowship) during Spring 2017.



iv

Introduction

The Brauer group of a field k is a classical invariant which classifies central simple k-
algebras, and the Brauer group of an algebraic variety X classifies Azumaya OX-algebras,
which are “twists” of the matrix algebra Matn×n(OX) over the structure sheaf OX . In
complex geometry, the fact that the Brauer group is an invariant for birational maps can be
used to determine whether a variety is rational. In number theory, the Tate conjecture for
divisors for a smooth projective surface X over a finite field is known to be equivalent to the
finiteness of BrX.

In this dissertation, we are interested in Brauer groups of algebraic stacks. An Azumaya
algebra on a moduli stack corresponds to a family of Azumaya algebras on the objects of
the moduli stack compatible with all morphisms between the objects. The Brauer group of
a quotient stack [X/G] corresponds to Azumaya algebras on X that are equivariant with
respect to the G-action. The Brauer group of stacks may sometimes be used to answer
questions about algebraic varieties; for example, Lieblich [61] considered the Brauer group
of classifying stacks Bµn to prove new cases of the period-index conjecture for function fields
of curves over local fields.

For the moduli stack of elliptic curves M1,1,k over an algebraically closed field k, Antieau
and Meier had shown that Br(M1,1,k) = 0 if char k 6= 2. In Section 3 we compute Br(M1,1,k)
in the characteristic 2 case:

Theorem A1 ([4, 11.2] in char k 6= 2). Let k be an algebraically closed field. Then Br M1,1,k

is 0 unless char k = 2, in which case Br M1,1,k = Z/(2).

Theorem A2. Let k be a finite field of characteristic 2. Then

Br M1,1,k =

{
Z/(12)⊕ Z/(2) if x2 + x+ 1 has a root in k

Z/(24) otherwise.

The methods of [4] do not apply to the characteristic 2 case since they rely on the finite
Galois cover of M1,1,k obtained by fixing a full level 2 structure. We study the char k = 2 case
by considering full level 3 structures instead, which comes at the cost of increasing the size
of the group (by which M1,1,k is a quotient stack) from |GL2(F2)| = 6 to |GL2(F3)| = 48.

Gabber proved that, given a Brauer-Severi scheme π : X → S, the cohomological Brauer
group Br′(X) is the quotient of Br′(S) by the class [X]. In Section 4 we prove an analogous
result on the cohomological Brauer group of Gm-gerbes:

Theorem B. Let S be a scheme and let πG : G → S be a Gm,S-gerbe with [G] ∈ Br′ S. Then
the sequence

H0
ét(S,Z)→ Br′ S

π∗G→ Br′ G → 0

is exact, where the first map sends 1 7→ [G].

This is one of the first computations of the Brauer group of an algebraic stack that is not
a Deligne-Mumford stack. It may be viewed as a generalization of Gabber’s result since the
image of a Brauer-Severi scheme X under the coboundary H1

ét(S,PGLn) → H2
ét(S,Gm) is

a torsion Gm-gerbe. Assuming additional hypotheses on S (i.e. that it is regular and its
fraction field has characteristic 0), we give another proof of Gabber’s result.
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We discuss two kinds examples of algebraic stacks for which Br 6= Br′, namely the classi-
fying stack of Z⊕ Z over a regular local ring (see Example 2.3.5), and the classifying stack
of an elliptic curve (see Corollary 2.4.6).

In Section 5 we explore some questions related to the Brauer group of algebraic stacks.
Whereas in Gabber’s result and our Theorem B we are concerned with the cohomological
Brauer group, it would also be interesting to ask whether the same statements hold with
“Br′” replaced by “Br” (the Azumaya Brauer group). Partial positive results are discussed
in Section 5.1 and Section 5.2.

In Section 5.3 we discuss whether the Brauer group functor is an “A1-homotopy invariant”,
namely whether BrS → BrA1

S is an isomorphism. This is a question that arises naturally
when trying to compute the Brauer group via the descent spectral sequence associated to
a smooth covering; it may be viewed as being part of a collection of questions asking when
the étale cohomology functor Hi

ét(−,Gm) for i ≥ 0 is invariant with respect to polynomial
extensions of the ground ring. It is known that the unit group (i.e. the i = 0 case) is
invariant exactly when the ring is reduced, and the Picard group (i.e. the i = 1 case) is
invariant exactly when the ring is seminormal; it would be nice to find a similar, purely
ring-theoretic criterion which corresponds exactly to those cases in which the Brauer group
(roughly the i = 2 case) is invariant. The only unknown part is concerning the `-torsion for
primes ` that are not invertible in the base. We extend a result of Knus and Ojanguren to
show that the Brauer group is A1-homotopy invariant if the base is a monoid algebra over a
small class of regular rings.
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1. Generalities

In this section we discuss Azumaya algebras on locally ringed sites. Some standard refer-
ences are Giraud [40], Lieblich [59], and the Stacks Project [88].

1.1. Skolem-Noether for locally ringed sites.

Definition 1.1.1 (Locally ringed site, locally ringed topos). 1 A locally ringed site is a
ringed site (C,O) such that, for every object U ∈ C and f ∈ Γ(U,O), there exists a covering
{Ui → U}i∈I of U such that for each i ∈ I, either f |Ui or (1− f)|Ui is a unit of Γ(Ui,O).

Lemma 1.1.2. [88, 04ES] Let (X ,OX ) be a locally ringed topos Definition 1.1.1. Let U ∈ X
be an object and f1, . . . , fn ∈ Γ(U,OX ) elements which generate the unit ideal of Γ(U,OX ).
Then there exists a covering {Ui → U}i∈I such that for each i ∈ I there exists some ` ∈
{1, . . . , n} such that f`|Ui is invertible in Γ(Ui,OX ).

Example 1.1.3. Here is an example of a ringed site which is not a locally ringed site
Definition 1.1.1. Let X denote the Zariski site of an integral domain A, and let OX denote
the constant sheaf associated to Z on X . Since X is irreducible, the constant presheaf Zpre

is a sheaf, hence Γ(U,OX ) = Z for all U ∈ X . Consider the section 3 ∈ Γ(X ,OX ); there
does not exist an object U ∈ X such that 3|U ∈ Γ(U,OX ) is invertible, and the same is true
for 1− 3. Alternatively, consider any ringed (topological) space which is not a locally ringed
(topological) space.

Remark 1.1.4. [88, 0409] Let (X ,OX ) be a ringed site, and let L be an OX -module.

(1) We say that L is invertible if the tensor product functor

−⊗OX L : (OX -mod)→ (OX -mod)

is an equivalence of categories.
(2) We say that L is locally free of rank 1 if there exists a covering {Xi → X}i∈I and
OXi-linear isomorphisms L|Xi ' OXi for all i.

In general, locally free of rank 1 implies invertible, and the converse holds if (X ,OX ) is
locally ringed [88, 0B8Q], [50, Exercise 19.2].

A counterexample to the converse in case (X ,OX ) is not locally ringed can be constructed
as follows. Let A be a ring for which Pic(A) 6= 0, and let M be a finitely generated A-module
of everywhere rank 1 corresponding to a nontrivial element of Pic(A). Let X be the small
Zariski site of a DVR, let OX be the constant sheaf A on X , and let L be the constant sheaf
M , which is naturally an OX -module. It may be checked that L is invertible but not locally
free of rank 1.

Definition 1.1.5 (GLn,PGLn). Let X be a ringed site. For any quasi-coherent OX -module
E , we denote

GL(E) := AutOX -mod(E)

and denote
PGL(E) := GL(E)/Gm,X

the sheaf quotient via the scalar multiplication map, and set GLn(OX ) := GL(O⊕nX ) and
PGLn(OX ) := PGL(O⊕nX ).

1References: [88, 04EU, 04H8], [7, Exp. IV, Exercise 13.9], [40, V, §4], [41, §2], [37, page 153]
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Definition 1.1.6 (Adjunction morphism). An OX -module automorphism of E defines an
OX -algebra automorphism of EndOX -mod(E) by conjugation, so there is a morphism

GL(E)→ AutOX -alg(EndOX -mod(E)) (1.1.6.1)

of sheaves of groups on X , which descends to a morphism

PGL(E)→ AutOX -alg(EndOX -mod(E)) (1.1.6.2)

of sheaves of groups on X .

Lemma 1.1.7. The map (1.1.6.2) is injective for any ringed site.

Proof. For this it suffices to show that the kernel of (1.1.6.1) is Gm,X . We may reduce to the
case when E is free. Since we may show injectivity pointwise, it suffices to show that, for
any X ∈ X , setting A = Γ(X,OX ), the homomorphism

GLn(A)→ AutOX |X -alg(Matn×n(OX |X))

of groups has kernel A×; we have an identification

AutOX |X -alg(Matn×n(OX |X)) ' AutA-alg(Matn×n(A)) (1.1.7.1)

since OX -algebra automorphisms of Matn×n(OX ) are determined by their global sections.
Now we conclude using the fact that the center of Matn×n(A) is A. �

Theorem 1.1.8 (Skolem-Noether for locally ringed topoi). [40, V.4.1] 2 Let X be a locally
ringed topos. The canonical homomorphism (1.1.6.2) is an isomorphism for any finite type
locally free OX -module E . �

Example 1.1.9 (Skolem-Noether fails for non-locally ringed topoi). Here is an example of
a ringed site X and a finite locally free OX -module E for which (1.1.6.2) is not surjective.
As in Example 1.1.3, let X be the Zariski site of a nonzero integral domain, let A be a ring
for which GLn(A)→ PGLn(A) is not surjective (e.g. the coordinate ring of PGLn itself), let
OX denote the constant sheaf associated to A, and set E := O⊕nX . Since the underlying site
of X is irreducible, every constant presheaf is a sheaf. Thus PGLn,X is the constant sheaf
assigning X 7→ GLn(A)/A× for all X ∈ X , and AutOX -alg(Matn×n(OX )) is the constant sheaf
assigning X 7→ AutA-alg(Matn×n(A)) ' PGLn(A) for all X ∈ X (here the last isomorphism
follows from Skolem-Noether for schemes).

Lemma 1.1.10. 3 Let X be a locally ringed site, let F ,G be finite locally free OX-modules
of finite positive rank such that there exists an isomorphism

ϕ : EndOX -mod(F)→ EndOX -mod(G)

2This is the generalization of the classical Skolem-Noether theorem to local rings by Auslander-Goldman
[8, Thm. 3.6], to arbitrary schemes by Grothendieck [41, Thm. 5.10], and to arbitrary locally ringed
topoi by Giraud [40, V.4.1]. Antieau-Williams [5, Prop. 1] have given another proof by observing that the
Skolem-Noether theorem holds for the universal locally ringed topos. The result is also found in Lieblich
[59, 2.1.5.3].
3In other words, the sequence of pointed sets

H1
ét(X,Gm)→ H1

ét(X,GLn)→ H1
ét(X,PGLn)

is exact. In [88, 0A2K], there is an outline of an argument when X is a scheme; we give the details here. See
also https://mathoverflow.net/q/128364 and http://mathoverflow.net/a/144947. This is proved for
affine schemes in [52, 2.2 Proposition].

https://mathoverflow.net/q/128364
http://mathoverflow.net/a/144947
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of OX-algebras. Then there exists an invertible OX-module L and an OX-module isomor-
phism

ξ : F ⊗OX L → G
which induces the given isomorphism ϕ.

Proof. The last claim that ξ “induces the given isomorphism ϕ” means that ϕ may be
factored as

EndOX -mod(F)→ EndOX -mod(F ⊗OX L)→ EndOX -mod(G)

where the first map is the canonical isomorphism and the second map is conjugation by ξ.

Let P denote the presheaf of sets which assigns to every object U ∈ X the subset

Γ(U,P) ⊂ HomOU (F|U ,G|U)

of OU -linear isomorphisms f : F|U → G|U such that the conjugation-by-f map

cf : EndOU -mod(G|U)→ EndOU -mod(F|U)

is equal to ϕ|U . We check that P is a Gm-torsor. By the Skolem-Noether theorem Theo-
rem 1.1.8, the sequence

1→ Gm,S → GL(G)
ρ→ AutOX -alg(EndOX -mod(G))→ 1 (1.1.10.1)

is exact (only left exact in general), where ρ denotes the conjugation map α 7→ {M 7→
αMα−1}.

Given f1, f2 ∈ Γ(U,P), their difference f2f
−1
1 is an element of Γ(U,GL(G)) and we have

an equality
ρf1f−1

2
= cf1c

−1
f2

= (ϕ|U) ◦ (ϕ|U)−1 = id

of elements of AutOU -alg(EndOU -mod(G|U)); this implies f2f
−1
1 ∈ Γ(U,Gm) by left exactness

of (1.1.10.1). This shows that P is a pseudo Gm-torsor.

Let U be any object of X. There is a covering U = {Ui → U}i∈I such that there are
OUi-linear isomorphisms f ′i : F|Ui → G|Ui for all i. On Ui, the composite ϕ|Ui ◦ cf ′i is an
OUi-algebra automorphism of EndOX -mod(G)|Ui , so by right-exactness of (1.1.10.1), we may
(after possibly refining the cover U) choose αi ∈ Γ(Ui,GL(G)) such that ραi = ϕ|Ui ◦ cf ′i .
This implies that P(Xi) 6= ∅, since it contains in particular cαif ′i . This shows that P is a
Gm-torsor, which corresponds to an invertible sheaf L. �

1.2. Azumaya algebras and the Brauer group.

Definition 1.2.1 (Azumaya algebra). [41, §2], [40, V, §4], [59, 2.1.5.1] An Azumaya OX-
algebra is a quasi-coherent (non-commutative, unital) OX-algebra A such that there exists
a covering {Xi → X}i∈I , positive integers ni, and isomorphisms

A|Xi ' Matni×ni(OXi)
of OXi-algebras.4

Remark 1.2.2. In case X is an algebraic stack, we will (unless otherwise specified) only
consider Azumaya algebras on the site of X-schemes equipped with the smooth topology.
If X is even a scheme, it is equivalent to consider the étale or fppf topology [41, 5.1], [69,

4In particular, we do not require that the rank of A as a quasi-coherent OX -module be constant (it is only
locally constant).
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IV, 2.1], but not the Zariski topology (see [74], [26], [31] for examples of nontrivial Azumaya
algebras that are Zariski-locally trivial). �

Remark 1.2.3. We note that Hilbert’s Theorem 90 does not hold for algebraic stacks,
namely the canonical map

H1
Zar(X,GLn)→ H1

ét(X,GLn)

is not necessarily surjective. Schröer [83] showed that there exists an algebraic space X for
which Pic(XZar)→ Pic(Xét) is not surjective.

For another example, let k be a field, let G be a finite group, and set X := BGk. There is
a correspondence between quasi-coherent OX-modules and G-representations over k, i.e. k-
vector spaces V equipped with a group homomorphism G→ Autk(V ), and a quasi-coherent
OX-module F is locally free if and only if the pullback ξ∗F is a locally free OSpec k-module,
where ξ : Spec k → X is the map corresponding to the trivial G-torsor. Thus every quasi-
coherent OX-module is étale-locally free. Then X has coarse moduli space π : X → Spec k.
Thus the topological space associated to X is a single point, thus there is only one open
substack of X. Thus Zariski-locally free OX-modules are in fact free. This shows that
étale-locally trivial vector bundles are not necessarily Zariski-locally trivial. �

Definition 1.2.4 (Equivalence relation between Azumaya algebras). [40, §V.4, eqn (4)] Two
Azumaya algebras A1 and A2 are Brauer equivalent if there exist locally free OX-modules
E1 and E2 of finite rank and an isomorphism

A1 ⊗OX EndOX -mod(E1) ' A2 ⊗OX EndOX -mod(E2)

of OX-algebras.

Remark 1.2.5 (Relationship between Brauer and Morita equivalence). [59, 2.1.4] Let A be a
unital, associative OX-algebra. Let Modfp(A) denote the Γ(X,OX)-linear category of locally
finitely presented A-modules. The assignment U 7→ Modfp(A|U) defines a fibered OX-linear

category M odfp
A → X over X. Two OX-algebras A1,A2 are fibered Morita equivalent if

there is an equivalence M odfp
A1
' M odfp

A2
of fibered OX-linear categories. If A1,A2 are

Azumaya OX-algebras, then A1,A2 are Brauer equivalent if and only if A1,A2 are fibered
Morita equivalent [59, 2.1.5.8]. �

Definition 1.2.6 (Brauer group). The set of Brauer equivalence classes of Azumaya algebras
is denoted

BrX

and is called the (Azumaya) Brauer group of X. There is an (abelian) group structure on
BrX given by tensor product of Azumaya algebras, the inverse is given by [A ]−1 = [A op],
and the identity element is the class of trivial Azumaya algebras [EndOX -mod(E)].

Note 1.2.7 (Determinant of Kronecker product). 5 Let A be a ring, and for i = 1, 2 let Mi

be an ni×ni matrix with entries in A. The determinant of the n1n2×n1n2 matrix M1⊗AM2

is
det(M1 ⊗AM2) = (det(M1))n2 · (det(M2))n1

since we have a factorization

M1 ⊗AM2 = (M1 ⊗A idn2) ◦ (idn1 ⊗AM2)

5From http://math.stackexchange.com/q/1316594/.

http://math.stackexchange.com/q/1316594/
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of Kronecker products and determinant is multiplicative for products of matrices.

In particular, it may be checked that, if M is an n× n matrix, then

det(M⊗s) = (det(M))sn
s−1

for all positive integers n.

Lemma 1.2.8. Let X be a locally ringed site. Let

α : EndOX (O⊕nX )→ EndOX (O⊕nX )

be an OX-algebra automorphism of EndOX (O⊕nX ). The sheaf Pα of liftings α to GLn is a
Gm-torsor and the class [Pα] is n-torsion in Pic(X).

Proof. The first claim follows from the Skolem-Noether theorem Theorem 1.1.8. In particu-
lar, there exists a covering U = {Xi → X}i∈I such that each restriction

α|Xi : EndOXi
(O⊕nXi )→ EndOXi

(O⊕nXi )

is induced by conjugation by some element Mi ∈ GLn(OXi). On the pairwise intersections
Xi1,i2 := Xi1 ×X Xi2 , there exists a unique γi1,i2 ∈ Γ(Xi1,i2 ,Gm) such that

(Mi1|Xi1,i2 ) · (Mi2|Xi1,i2 )−1 = γi1,i2 idn (1.2.8.1)

for all i1, i2. Since Mi are n× n matrices, taking determinants in (1.2.8.1) implies

det(Mi1)|Xi1,i2 · det(M−1
i2

)|Xi1,i2 = γni1,i2

in Γ(Xi1,i2 ,Gm) for all i1, i2 ∈ I. The collection {γi1,i2}i1,i2∈I constitutes a 1-cocycle in Gm

which defines a class [α] ∈ H1(X,Gm); to show that n[α] = 0 in H1(X,Gm), it suffices to
show that the Gm-torsor of liftings of

α⊗n : EndOX ((O⊕nX )⊗n)→ EndOX ((O⊕nX )⊗n)

to GLnn is trivial, i.e. has a global lifting. The same covering U is a trivialization cover
for α⊗n; each restriction α⊗n|Xi is induced by conjugation by M⊗n

i , and on the pairwise
intersections we have

(M⊗n
i1
|Xi1,i2 ) · (M⊗n

i2
|Xi1,i2 )−1 = γni1,i2 idnn (1.2.8.2)

so n[α] is equivalent to the 1-coboundary {det(Mi)}i∈I . Thus the collection

{ 1
det(Mi)

M⊗n
i }i∈I

agree on pairwise intersections, hence glues to give a global section M ∈ Γ(X,GLn) which
induces the automorphism α. We may check by Note 1.2.7 that det( 1

det(Mi)
M⊗n

i ) = 1, hence

also det(M) = 1. �

Lemma 1.2.9 (Azumaya algebra of rank n2 is n-torsion). 6 Let X be a locally ringed site.
Let A be an Azumaya OX-algebra of constant rank n2. There exists a finite locally free
OX-module E of rank nn and an isomorphism

A⊗n ' EndOX (E)

of OX-algebras. Thus the class of A in BrX is annihilated by n.

6This argument is inspired by, but different from, the argument given in [88, 0A2L] (for schemes), which
references [81]. The arguments of [40, §V.4.6] and [5, Thm. 3] assume that the nth power morphism
Gm → Gm is an epimorphism, so that also SLn → PGLn is an epimorphism. For the case of fields, see [62,
§30, Theorem 3] (crossed products and cocycles) and [38, 4.4.8] (finiteness of group cohomology).
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Proof. Choose a covering U = {Xi → X}i∈I for which there exist isomorphisms

αi : A|Xi → EndOXi
(O⊕nXi )

of OXi-algebras. On the pairwise intersections Xij := Xi ×X Xj, we obtain OXij -algebra
automorphisms

βij := (αi|Xij) ◦ (αj|Xij)−1

of EndOXij
(O⊕nXij). Let

Pij ⊂ AutOXij
(O⊕nXij)

be the sheaf of liftings7 of βij to GLn; this is a pseudo-Gm-torsor in any ringed topos and is
locally nonempty, i.e. is a Gm-torsor, by Skolem-Noether Theorem 1.1.8 since X is locally
ringed. We have that Pij is n-torsion in H1(Xij,Gm) by Lemma 1.2.8. For any integer s, let

(Pij)×s ⊂ AutOXij
(O⊕nXij)

denote the sheaf associated to the presheaf sending

U 7→ {P1 · · ·Ps : Pi ∈ Γ(U,Pij)}
for any U ∈ (X/Xij). Then (Pij)×s is again a Gm-torsor and we have

[(Pij)×s] = s[Pij] = 0

in H1(Xij,Gm). Since (Pij)×n is the trivial torsor, we may choose a global section

Nij ∈ Γ(Xij, (Pij)×n)

which is locally on Xij of the form Pn. We have

βjk|Xijk ◦ βij|Xijk = βik|Xijk
corresponding to an equality

(Pjk|Xijk · Pij|Xijk)# = Pik|Xijk
of subsheaves of AutOXijk

(O⊕nXijk), where (−)# denotes sheafification. Let

Rij ⊂ Pij
denote the sheaf of nth roots of Nij; then Rij is a µn-torsor, since it is locally nonempty by
assumption on Nij. Let

Tij ⊂ AutOXij
((O⊕nXij)

⊗n)

be the sheaf of liftings of the OXij -algebra automorphism β⊗nij of EndOXij
((O⊕nXij)

⊗n) to

AutOXij
((O⊕nXij)

⊗n); it is a Gm-torsor by the Skolem-Noether Theorem. Since Rij is a µn-

torsor, for any U ∈ (X/Xij) and R1,R2 ∈ Γ(U,Rij) we have R⊗n1 = R⊗n2 in Γ(U, Tij), hence
glue to give some

Mij ∈ Γ(Xij, Tij)
which restricts to each R⊗n; in particular the Gm-torsor Tij is trivial. Moreover we have

β⊗njk |Xijk ◦ β
⊗n
ij |Xijk = β⊗nik |Xijk

corresponding to an equality

(Tjk|Xijk · Tij|Xijk)# = Tik|Xijk

7It is useful to consider first the case when each Pij is trivial.
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of subsheaves of AutOXijk
((O⊕nXijk)

⊗n). For any U ∈ (X/Xij), we have det(R1) = det(R2) for

any R1,R2 ∈ Γ(U,Rij); thus det(Γ(U,Rij)) glue to give a global section

aij ∈ Γ(Xij,Gm)

restricting to det(Γ(U,Rij)) on U and such that anij = det(Nij). For any U ∈ (X/Xijk) and
Rij ∈ Γ(U,Rij), Rik ∈ Γ(U,Rik), Rjk ∈ Γ(U,Rjk), we have that

Rjk · Rij · R−1
ik

is an element of Γ(U,Gm) whose nth power

bijk ∈ Γ(U,Gm)

is independent of choice of Rij,Rik,Rjk since Rij,Rik,Rjk are µn-torsors. Moreover one may
check that

Mjk|Xijk ·Mij|Xijk = bijkMik|Xijk
and

ajk|Xijk · aij|Xijk = bijkaik|Xijk
which implies that the collection

{ 1
aij

Mij}i,j∈I
satisfies the cocycle condition, which allows us to glue the finite free sheaves

{(O⊕nXi )⊗n}i∈I
to get a finite locally free E . �

Definition 1.2.10 (Locally nonzero). Let X be a site. Let A be a torsion free abelian group
and let A be the constant sheaf on X associated to A.

(1) We say that a section n ∈ Γ(X,A) is locally nonzero if there is a nonempty covering
{Xi → X}i∈I and nonzero integers ni ∈ A such that for each i ∈ I the restriction
n|Xi is equal to the image of ni under the sheafification map A→ Γ(X,A).

(2) Given a Γ(X,A)-module M , we say that an element α ∈ M is Γ(X,A)-torsion if
there exists a locally nonzero section n ∈ Γ(X,A) such that nα = 0.

We will usually be interested in the case A = Z and M = Hi(X,Gm,X). See the definition
of the cohomological Brauer group Definition 1.4.2 and Appendix A.

Lemma 1.2.11. The group BrX is Γ(X,Z)-torsion (see Definition 1.2.10).

Proof. Given an Azumaya OX-algebra A, the assignment U 7→
√

rankA|U defines a locally
nonzero section n ∈ Γ(X,Z) and [A] is n-torsion in BrX by Lemma 1.2.9. �

1.3. Gerbes and twisted sheaves.

Definition 1.3.1. Let S be a site, and let π : G → S be a category fibered in groupoids.
We view G as a site with the Grothendieck topology inherited from S [7, III, 3.1]. For any
object U ∈ S, let G(U) denote the fiber category of G over U .

The inertia stack of π : G → S is the 2-fiber product IG/S := G ×∆G/S ,G×SG,∆G/S G of the
diagonal ∆G/S : G → G ×S G with itself. The inertia stack IG/S is fibered in sets over G
via either projection IG/S → G, hence we may identify IG/S with the sheaf of groups on G
associating x 7→ AutG(x).

We say that π is a gerbe if the following conditions are satisfied:
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(i) The fibered category G is a stack over S.
(ii) For any U ∈ S, there exists a covering {Ui → U}i∈I such that G(Ui) 6= ∅ for all i ∈ I.

(iii) For any U ∈ S and x1, x2 ∈ G(U), there exists a covering {Ui → U}i∈I such that for
all i ∈ I there exists an isomorphism x1|Ui ' x2|Ui in G(Ui).

Let A be an abelian sheaf on S. We say that a gerbe π is an A-gerbe if it is equipped with
an isomorphism

ι : AG → IG/S (1.3.1.1)

of sheaves of groups on G.

If S is equipped with a sheaf of rings such that (S,OS) is a locally ringed site, we set
OG := π−1OS ; then the pair (G,OG) is a locally ringed site.

An A-gerbe G is called trivial if it has a global section, i.e. the fiber category G(S) is
nonempty. In this case, for each global object x ∈ G(S), there is a morphism of A-gerbes
BA→ G from the classifying stack to G, which is necessarily an isomorphism by [76, 12.2.4].
Thus for any object x ∈ G lying over U := π(x), the restriction GU of G to the slice category
S/U is a trivial AU -gerbe. �

Theorem 1.3.2. [40], [76, 12.2.8] Let S be a site and let A be an abelian sheaf on S.
There is a bijective correspondence between isomorphism classes of A-gerbes and classes in
H2(S,A).

1.3.3 (Pullback of gerbes). Let f : X → Y be a morphism of sites, let A (resp. B) be an
abelian sheaf on X (resp. Y ), let ϕ : B→ f∗A be a morphism of abelian sheaves on Y , and
let Y be a B-gerbe on Y . Let

X := f−1Y

denote the inverse image gerbe (see Appendix C) of Y by ϕ. It is an A-gerbe naturally
equipped with a morphism

F : X → Y

of sites. Suppose P is a property of morphisms of locally ringed sites which is local on
the target (e.g. flat, finite locally free). If f has P, then F has P, since locally on Y the
morphism F is of the form BGm,X → BGm,Y , which is locally on Y a pullback of f .

For the remainder of this section, we will assume the following setup:

Setup 1.3.4. Let S be a locally ringed site, let A be an abelian sheaf on S, let π : G → S
be an A-gerbe.

Definition 1.3.5 (Inertial action, eigensheaves, twisted sheaves). [59], [60] Let F be an
OG-module. For an object x ∈ G and a ∈ Γ(x,AG), let ι(a)∗ : Γ(x,F ) → Γ(x,F ) be the
restriction map of the sheaf F via the automorphism ι(a) : x→ x; such x and a defines an
OG/x-linear automorphism of F |G/x by {y → x} 7→ ι(a|y)∗; thus we have a homomorphism
AG → AutOG(F ) of group sheaves on G corresponding to an OG-linear AG-action on F ,
called the inertial action.

Let
Â := HomAb(S)(A,Gm,S)

denote the group of characters of A. Given an OG-module F and a character χ ∈ Â, the
χth eigensheaf is the subsheaf

Fχ ⊆ F
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defined as follows: for all objects x ∈ G, a section f ∈ Γ(x,F ) is contained in Γ(x,Fχ) if
for any morphism y → x and any a ∈ Γ(y,AG) we have

(ι(a)∗)(f |y) = χG(a) · f |y (1.3.5.1)

in Γ(y,F ). The OG-module F is called χ-twisted if the inclusion Fχ ⊆ F is an equality.

(By this definition, the zero module 0 is χ-twisted for any χ ∈ Â.) The eigensheaf Fn is an
OG-submodule of F since AutG(π(x))(x) acts trivially on Γ(x,OG) by definition of OG. We
have a canonical map ⊕

χ∈Â Fχ → F (1.3.5.2)

which is in general neither injective nor surjective for arbitrary locally ringed sites (e.g.
Example 1.3.10).

In case A = Gm,S , for any integer n ∈ Z we have a character χn : Gm → Gm corresponding
to the nth power map, and the eigensheaf Fχn is denoted Fn and χn-twisted sheaves are
called n-twisted. For any OS-module M , the pullback π∗M is 0-twisted; in particular the
structure sheaf OG is 0-twisted. �

Lemma 1.3.6. [22, 2.11], [60, 3.1.1.7] For i = 1, 2, let Fi be a χi-twisted OG-module. Then
HomOG-mod(F1,F2) is (χ−1

1 · χ2)-twisted and F1 ⊗OG F2 is (χ1 · χ2)-twisted.

Proof. Let x ∈ G be an object and let

ϕ ∈ Γ(x,HomOG-mod(F1,F2)) = HomOG |x(F1|x,F2|x)
be a section. For any morphism y → x and element a ∈ Γ(y,AG), the restriction (ι(a)∗)(ϕ|y)
sends χ1(a) · s 7→ χ2(a) · ϕ(s), which is the same as sending s 7→ (χ1(a)−1 · χ2(a)) · ϕ(s).

Sections of Γ(x,F1 ⊗OG F2) are locally sums of elements of the form s1 ⊗ s2 for si ∈
Γ(x,Fi), and we have (ι(a)∗)(s1 ⊗ s2) = (ι(a)∗)s1 ⊗ (ι(a)∗)s2 = (χ1(a) · s1)⊗ (χ2(a) · s2) =
(χ1(a) · χ2(a)) · (s1 ⊗ s2). �

Lemma 1.3.7 (Pushforward of twisted sheaves). Assume the setup of 1.3.3, and let F be

a χA-twisted OX -module. For any character χB ∈ B̂ making the diagram

f∗A f∗Gm,X

B Gm,Y

f∗χA

χB

ϕ f [

commute, the pushforward F∗F is χB-twisted.

Proof. See C.0.6. �

Lemma 1.3.8 (Functoriality under localization). Assume the setup of Definition 1.3.5. Let
F be an OG-module, let χ : A → Gm,S be a character, and let {Si → S}i∈I be a covering.
The following are equivalent:

(i) F is χ-twisted.
(ii) F |Si is χ|Si-twisted for all i.
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Proof. (i)⇒(ii): by definition (see (1.3.5.1)).

(ii)⇒(i): Let x ∈ G be an object and let f ∈ Γ(x,F ) be a section. Let y → x be a
morphism in G; then the covering {Si → S}i∈I defines coverings {xi → x}i∈I and {yi → y}i∈I
by pullback. For any section a ∈ Γ(y,AG), we have

((ι(a)∗)(f |y))|yi = (ι(a|yi)∗)(f |yi)
†
= χG(a|yi) · f |yi = (χG(a) · f |y)|yi

where equality † follows from (ii); hence (ι(a)∗)(f |y) = χG(a) · f |y. �

Proposition 1.3.9. Assume the setup of Definition 1.3.5. If S is an algebraic stack and F is
quasi-coherent and A is a diagonalizable group scheme, the map (1.3.5.2) is an isomorphism.

Proof. This is proved in [11, 4.7]; we give the outline here. The case when S is a scheme is
[59, 2.2.1.6]. For any scheme S admitting a map S → S, the restriction G|S of G to (Sch /S)
is a AS-gerbe, and the map (1.3.5.2) is an isomorphism for the restriction F |G|S , thus we
obtain the desired result by Lemma 1.3.8. �

Example 1.3.10. Here we give examples of a locally ringed site S, a Gm,S-gerbe G, and a
quasi-coherent OG-module F for which (1.3.5.2) is not an isomorphism. Let k be a field,
and let S be the topological space consisting of a single point {∗} and let OS = k (the
small Zariski site of k). Let G := BGm,S be the trivial Gm,S-gerbe; then G is the groupoid
consisting of a single object ξ and AutG(ξ, ξ) ' k×, equipped with the ring Γ(ξ,OG) = k, and
each element of k× acts on Γ(ξ,OG) by the identity. Quasi-coherent OG-modules are k-vector
spaces V equipped with a group homomorphism ρ : k× → Autk(V ). The nth eigensheaf is
the subspace Vn ⊆ V consisting of elements v such that (ρ(u))(v) = unv for all u ∈ k×.

(i) Let k = Q, let V = k, and let ρ be the map sending u 7→ {v 7→ −v} if u is
negative and u 7→ idV if u is positive. Suppose v is a nonzero vector contained in
Vn for some n. Then (ρ(2))(v) = v = 2nv, so n = 0 since v 6= 0. But we have
(ρ(−1))(v) = −v = (−1)nv, which is a contradiction. Hence Vn = 0 for all n ∈ Z.
Thus (1.3.5.2) is injective but not surjective.

(ii) Let k = Fp, let V = k, and let ρ be the standard representation, i.e. (ρ(u))(v) = uv
for all u ∈ k×. Thus V1 = V , however V1+n(p−1) = V1 for all n ∈ Z, hence (1.3.5.2) is
surjective but not injective.

Remark 1.3.11. We will most frequently apply Lemma 1.3.7 in the case A = Gm,X and
B = Gm,Y and χA = idGm,X and χB = idGm,Y .

Definition 1.3.12 (Category of χ-twisted modules). For a character χ ∈ Â, let

Mod(G, χ)

denote the full subcategory of Mod(G) consisting of χ-twisted OG-modules. �

Remark 1.3.13. Given two OG-modules F and G , any OG-linear morphism ϕ : F → G
restricts to an OG-linear morphism ϕχ : Fχ → Gχ; the assignment F 7→ Fχ defines a
functor Mod(G) → Mod(G, χ) which is right adjoint (and a retraction) to the inclusion
Mod(G, χ)→ Mod(G).

Remark 1.3.14 (Modules on trivial gerbes). We say that an A-gerbe G is trivial if there is
an isomorphism G ' BA. In this case we have the usual equivalence of categories between
sheaves on G and sheaves on S equipped with an A-action. For a sheaf F ∈ Sh(BA), the
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pushforward π∗F is identified with the subsheaf of F of sections invariant under the action
of A. For any sheaf M ∈ Sh(S), the inverse image π−1M ∈ Sh(BA) corresponds to the sheaf
M equipped with the trivial A-action. If s : S → BA is the section of π corresponding to
the trivial A-torsor, then s−1 : Sh(BA)→ Sh(S) is the functor forgetting the A-action.

Remark 1.3.15. For any OG-module F , the counit map

π∗π∗F → F

is injective and its image coincides with F0. Indeed, this can be checked locally on S, in
which case we may assume G is the trivial gerbe and use Remark 1.3.14.

Lemma 1.3.16. Let S be a locally ringed site, let A be an abelian sheaf on S, and let
π : G → S be an A-gerbe. The pullback functor

π∗ : Mod(S)→ Mod(G, 0)

is an equivalence of categories with quasi-inverse π∗. If P is a property of modules preserved
by pullback via arbitrary morphisms of sites (e.g. quasi-coherent, flat, locally of finite type,
locally of finite presentation, locally free), an OS-module M has P if and only if the OG-
module π∗M has P.

Proof. For the first assertion, it suffices to show that for any OS-module M the unit map

M → π∗π
∗M

is an isomorphism, and that for any 0-twisted OG-module F the counit map

π∗π∗F → F

is an isomorphism. Both of these claims are local on S, hence we may assume that G is
trivial, in which case the claims follow from Remark 1.3.14 and Remark 1.3.15. The second
assertion is also local on S, hence we may assume that G is trivial, in which case there is
a section s : S → G of π. For any 0-twisted OG-module F , we have π∗F ' s∗F by the
discussion in Remark 1.3.14. �

1.4. Brauer map. Giraud [40] defined a functorial map from the Brauer group BrX to the
étale cohomology group H2

ét(X,Gm), called the Brauer map. In cases where the Brauer map
is an isomorphism, we may compute BrX using cohomological techniques. In this section we
define the Brauer map and record a necessary and sufficient condition (Lemma 1.4.5) which
allows us to determine when a class α ∈ H2

ét(X,Gm) lies in the image of the Brauer map.

Definition 1.4.1 (Gerbe of trivializations). [40, IV, §4.2], [41, §2], [76, 12.3.5, 12.3.6] There
is a natural way to associate, to every Azumaya OX-algebra A, a Gm,X-gerbe

GA
called the gerbe of trivializations of A. An object of GA is a triple

(U, E , σ)

consisting of an object U ∈ X, a finite type locally free OU -module E (necessarily everywhere
positive rank), and an isomorphism σ : EndOU -mod(E)→ A|U of OU -algebras. A morphism

(f, f ]) : (U1, E1, σ1)→ (U2, E2, σ2)

consists of a morphism f ∈ MorX(U1, U2) and an isomorphism f ] : f ∗E2 → E1 of OU1-
modules such that σ2 = σ1 ◦ ρf] where ρf] denotes conjugation by f ]. The category GA
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comes equipped with a projection pA : GA → X sending (U, E , σ) 7→ U on objects and
(f, f ]) 7→ f on morphisms, and pA presents GA as a stack in groupoids over X. For any
object (U, E , σ) ∈ GA there is a canonical injection

ι(U,E,σ) : Gm,U → Aut(U,E,σ)

of sheaves on X/U , sending u 7→ (idU , u). This injection is an isomorphism, since if
(idU , f

]) ∈ AutGA(U)((U, E , σ)) then f ] ∈ Z(EndOU -mod(E)), which coincides with OU since
Z(Matn×n(A)) = A for any commutative, unital ring A.

By the Skolem-Noether theorem Theorem 1.1.8, any two local trivializations of A are
locally related by an automorphism of the trivializing vector bundle E , i.e. any two objects
of GA are locally isomorphic. Furthermore, according to the definition, an Azumaya algebra
is locally trivial, i.e. for any U ∈ X there exists a covering {Ui → U} such that the fiber
category GA(Ui) is nonempty. The above considerations show that GA is a Gm,X-gerbe.

Definition 1.4.2 (cohomological Brauer group, Brauer map). [40, V, §4] The assignment
A 7→ GA of the gerbe of trivializations to an Azumaya algebra induces a group homomor-
phism

α′X : BrX → H2(X,Gm,X) (1.4.2.1)

whose image is contained in the Γ(X,Z)-torsion subgroup (see Definition 1.2.10)

Br′X := H2(X,Gm,X)tors

which is called the cohomological Brauer group. The restriction

αX : BrX → Br′X (1.4.2.2)

is called the Brauer map. The map α′X (hence also αX) is injective (a Gm,X-gerbe is trivial
if and only if it has a global object).

1.4.3 (Functoriality of the Brauer map). Let

(f, f ]) : (X,OX)→ (Y,OY )

be a morphism of locally ringed sites. The diagram

BrX H2(X,Gm,X)

BrY H2(Y,Gm,Y )

α′X

α′Y

f∗ f∗ (1.4.3.1)

commutes, as verified in C.0.7.

1.4.4 (Tautological line bundle). On the classifying stack BGm,X , there is a canonical in-
vertible sheaf χ, called the tautological line bundle, which assigns to every Gm,U -torsor
U ∈ BGm,X(U) the global sections Γ(U,L) of the associated invertible OU -module L.

For a general trivial gerbe X , one can associate an invertible OXU
-module χU to every

global object U by pushing forward via the induced isomorphism of Gm,U -gerbes BGm,U →
XU the tautological bundle on BGm,U . For any morphism U1 → U2, there is an isomorphism

χU2|XU1
→ χU1 (1.4.4.1)

which is compatible with compositions U1 → U2 → U3.
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Lemma 1.4.5. [76, 12.3.11], [60, 3.1.2.1] Let X be a Gm,X-gerbe over a locally ringed site
X. The class [X ] ∈ H2(X,Gm,X) is in the image of α′X if and only if X admits a 1-twisted
finite locally free OX -module of positive rank.

Proof. Let A be an Azumaya OX-algebra and let X := GA be its gerbe of trivializations
Definition 1.4.1. Let E be the OX -module assigning

(U, E , σ) 7→ Γ(U, E)

on objects and

{(f, f ]) : (U1, E1, σ1)→ (U2, E2, σ2)} 7→ {f ] : Γ(U2, E2)→ Γ(U1, E1)}
on morphisms of X . Then E is finite locally free sheaf of everywhere positive rank, and it
is 1-twisted since an automorphism (idU , u) ∈ AutX (U)((U, E , σ)) with u ∈ Γ(U,Gm,X) acts
on Γ(U, E) by multiplication-by-u.

Conversely, suppose X is a Gm,X-gerbe admitting a 1-twisted locally free sheaf of every-
where positive rank, say E . The endomorphism algebra

A := EndOX -mod(E )

is an OX -algebra which is 0-twisted Lemma 1.3.6 and finite locally free as an OX -module;
set

A := π∗A

which is an Azumaya OX-algebra such that the canonical map π∗A → A is an isomorphism
by Lemma 1.3.16. To show that X is isomorphic to GA, it suffices by [76, 12.2.4] to construct
a morphism of Gm,X-gerbes X → GA over X. Given an object U ∈ X, let XU denote the
restriction of X to the slice category X/U and let πU : XU → X/U denote the restriction
of π. Let U ∈X (U) be an object of the fiber category. Recall 1.4.4 that χU is a 1-twisted
invertible OXU

-module associated to U ; then

EU := πU,∗(E |XU
⊗OXU

χ−1
U )

is a finite locally free OU -module which trivializes A|X/U via the isomorphism

σU : A|X/U ' πU,∗(A |XU
) ' πU,∗(EndOXU

(E |XU
)) ' EndOU (EU )

of OU -algebras. Let X → GA be the functor sending

U 7→ (π(U ), EU , σU )

on objects and

{U1 → U2} → ({π(U1)→ π(U2)}, {EU2|π(U1) → EU1})
on morphisms, where EU2|π(U1) → EU1 is the map induced by (1.4.4.1). �

1.5. The cup product and cyclic algebras. In this subsection, we discuss cyclic algebras
on arbitrary locally ringed sites.

1.5.1 (Cyclic algebras via cocycles). Let X be a locally ringed site, let n be an integer, let
Z/(n) denote the constant sheaf on X associated to Z/(n). The natural bilinear map

Z/(n)× µn → µn

of sheaves defined by (α, ξ) 7→ ξα induces the cup product

∪ : H1(X,Z/(n))× H1(X,µn)→ H2(X,µn)
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in cohomology. We can represent the classes

α ∈ H1(X,Z/(n))

and
ξ ∈ H1(X,µn)

as Cech 1-cocycles
α := {αi0,i1}i0,i1∈I

and
ξ := {ξi0,i1}i0,i1∈I

for some covering
U := {Xi → X}i∈I

after a common refinement, if necessary; here αi0,i1 ∈ Γ(Xi0 ×X Xi1 ,Z/(n)) and satisfies the
usual cocycle condition on the triple intersections Xi0 ×X Xi1 ×X Xi2 , and similarly for ξi0,i1 .
Then there is a commutative diagram

Ȟ1(U,Z/(n))× H1(U, µn) Ȟ2(U, µn)

H1(X,Z/(n))× H1(X,µn) H2(X,µn)

∪

∪

of abelian groups and the cup product α ∪ ξ is given by the Cech 2-cocycle

(α ∪ ξ)i0,i1,i2, := (ξi1,i2)
αi0,i1

for i0, i1, i2 ∈ I.

We construct the Azumaya OX-algebra Aα,ξ by gluing the trivial Azumaya OXi-algebras
Matn×n(OXi) on the intersections Xi1 ×X Xi2 .

(1) Definition of Aα,ξ|Xi0 : Given a ring A, the A-module A⊕n is a ring with coordinate-
wise addition and multiplication; let {ei}i∈Z/(n) be the standard A-basis of A⊕n as an
A-module; the diagonal map A→ A⊕n endows A⊕n with the structure of A-algebra.
Let

Cn(A) := (A⊕n)〈x〉/(xn = 1, {eix = xei+1}i∈Z/(n))

be the noncommutative associative A-algebra where the structure map A → Cn(A)
is via the A-algebra structure on A⊕n. We have that Cn(A) is a free A-module of
rank n2, and the collection

{eixj}i,j∈Z/(n)

constitutes a basis for Cn(A) as an A-module. One may check that the multiplication
structure on Cn(A) satisfies

ei1x
j1 · ei2xj2 = (ei1 ·A⊕n ei2+j1)x

j1+j2

for all i`, j` ∈ Z/(n).

(2) Verification that Cn(A) ' Matn×n(A) as A-algebras: There is an A-algebra map

Cn(A)→ Matn×n(A) (1.5.1.1)

sending
ei 7→ Ei,i
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and
x 7→

∑
i∈Z/(n) Ei,i+1

where Ei,j ∈ Matn×n(A) for i, j ∈ Z/(n) is the n × n matrix with 1 as the (i, j)th
entry and 0s everywhere else.

(3) Algebra automorphism on double intersections: Suppose given α ∈ Z/(n) and ξ ∈
µn(A). After decomposing A into connected components, we may assume that α is in
the image of the sheafification map Γ(A, (Z/(n))pre) → Γ(A,Z/(n)). The A-module
map

ϕα,ξ : Cn(A)→ Cn(A)

sending
eix

j 7→ ei+α(ξx)j

respects the multiplication law8 on Cn(A), thus ϕα,ξ is an A-algebra automorphism
of Cn(A). Under the identification (1.5.1.1), this corresponds to the algebra auto-
morphism of Matn×n(A) given by the conjugation-by-PαDξ map

s 7→ (PαDξ)
−1s(PαDξ)

where Pα := (
∑

i∈Z/(n) Ei,i+1)α and Dξ :=
∑

i∈Z/(n) ξ
iEi,i. One may check that

DξPα = ξαPαDξ (1.5.1.2)

so it does not matter whether we conjugate by PαDξ or DξPα.

(4) Cocycle condition on triple intersections: Given

α12, α23, α13 ∈ Z/(n)

and
ξ12, ξ23, ξ13 ∈ µn(A)

such that
α13 = α12 + α23

and
ξ13 = ξ12ξ23

we have

ϕα13,ξ13 = ϕα12,ξ12 ◦ ϕα23,ξ23 (1.5.1.3)

since the image of eix
j under the LHS is ξj13ei+α13x

j and the image of eix
j under the

RHS is ξj12ξ
j
23ei+α12+α23x

j for all i, j ∈ Z/(n).

Using the above, we obtain the desired cyclic Azumaya OX-algebra Aα,ξ.

We verify that the diagram

8Details: This comes down to the equality

(ei1+α(ξx)j1) · (ei2+α(ξx)j2) = (ei1+α ·A⊕n ei2+j1+α)(ξx)j1+j2

for all i`, j` ∈ Z/(n).
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H1(X,Z/(n))× H1(X,µn) H2(X,µn)

BrX H2(X,Gm)

∪

f1

f2 f3

commutes (here f1 is the Brauer map and f2 is the cyclic algebra construction as above and
f3 is the natural map induced by the inclusion µn → Gm). Given a 1-cocycle α for Z/(n) and

a 1-cocycle ξ for µn as above, the image f1(f2(α, ξ)) is the Gm-gerbe Xα,ξ of trivializations
of the algebra Aα,ξ as above. We again assume that the covering U trivializes both α and
ξ. By (1), we have that the fiber categories Xα,ξ(Xi) are nonempty; choose trivializations of
Aα,ξ|Xi as in (2); on double intersections Xi0 ×X Xi1 , we obtain algebra automorphisms as
in (3); on triple intersections Xi0 ×X Xi1 ×X Xi2 , we note that

(Pα12Dξ12)(Pα01Dξ01) = ξα01
12 Pα02Dξ02

by (1.5.1.2), where the difference ξα01
12 is the Cech 2-cocycle obtained via the composition

f3 ◦ ∪. �
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2. Brauer groups of algebraic stacks: generalities and examples

2.1. Surjectivity of Brauer map. In this section we investigate the surjectivity of the
Brauer map αX (1.4.2.2).

For a scheme X, it is known that αX is surjective (hence an isomorphism) in the following
cases:

(1) if X is a 1-dimensional or 2-dimensional and regular (Grothendieck [42, Corollaire
2.2]),

(2) if X is quasi-compact and admits an ample line bundle (Gabber, see [22] and [80]),
(3) if X is the semi-separated union of two affine schemes (Gabber [37], see also [60,

3.1.4.5]),
(4) if X is a smooth toric variety over an algebraically closed field of characteristic 0

(DeMeyer-Ford [27, Theorem 1.1]),
(5) if X is a separated geometrically normal algebraic surface (Schröer [82]).

Recently S. Mathur proved a generalization of Schröer’s result [82], removing the condition
that X be of finite type over a field and allowing algebraic spaces:

Theorem 2.1.1 (Mathur). [65, Theorem 4.3.2] Let X be a separated, Noetherian algebraic
space whose regular locus contains a dense open subset. Then for any α ∈ Br′(X) there
exists an open U ⊂ X with codim(X \ U) ≥ 3 and α|U ∈ Br(U).

The first example of a scheme for which Br 6= Br′ was given by Edidin, Hassett, Kresch,
Vistoli:

Example 2.1.2. [28, Corollary 3.11] Let X be two copies of SpecC[x, y, z]/(xy − z2) glued
along the nonsingular locus (i.e. the origin). Then BrX 6= Br′X. (In [12] it is shown that
BrX = 0 and Br′X = Z/(2). For the proof of [12, Lemma 4], we may also cite Gubeladze’s
theorem [46, Theorem 2.1].)

The following result states that a class in H2
ét(X,Gm) may be represented by an Azumaya

algebra after pulling back by a proper birational morphism. (In caseX is finite type separated
over a Noetherian affine scheme, we may also use Chow’s lemma [88, 0200] and Gabber’s
theorem [22] to give the desired result.)

Theorem 2.1.3 (Bogomolov-Landia). [13] LetX be a Noetherian scheme, let γ ∈ H2
ét(X,Gm)

be an element. There is a proper birational morphism f : X → X such that f ∗γ is in the
image of αX .

Lemma 2.1.4. Let f : X → Y be a finitely presented, finite, flat, surjective morphism of
algebraic stacks. A class β ∈ H2(Y,Gm,Y ) is in the image of α′Y if and only if its pullback
f ∗β ∈ H2(X,Gm,X) is in the image of α′X .

Proof. (This is well-known, see [37, page 165, Lemma 4], [22, 2.14], [60, 3.1.3.5], etc.) Let
Y be the Gm,Y -gerbe corresponding to β. As in 1.3.3, let X be the inverse image of Y
by f , and let F : X → Y be the induced morphism of algebraic stacks; here F is finite
flat surjective by C.0.4. If X is in the image of α′X , then by Lemma 1.4.5 it admits a 1-
twisted finite locally free OX -module of everywhere positive rank, say E . The pushforward
F∗E is a finite locally free OY -module of everywhere positive rank, which is 1-twisted by
Lemma 1.3.7. Hence by Lemma 1.4.5 we have that Y is in the image of α′Y .
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The other direction follows from commutativity of the diagram (1.4.3.1). �

Corollary 2.1.5. Let X be a smooth separated generically tame Deligne-Mumford stack
over a field k with quasi-projective coarse moduli space. The Brauer map αX is surjective.

Proof. By Kresch and Vistoli [56, 2.1,2.2], such X has a finite flat surjection Z → X where Z
is a quasi-projective k-scheme. By Gabber’s theorem [22, 1.1], the Brauer map is surjective
for Z. Thus the Brauer map is surjective for X by Lemma 2.1.4. �

Corollary 2.1.6. Let X be a scheme and let G be a finite discrete group with associated
constant sheaf GX . Then αBGX is surjective if and only if αX is surjective.

Proof. Suppose αX is surjective. The morphism X → BGX is a finite locally free morphism
so we may apply Lemma 2.1.4. Conversely, if αBGX is surjective, then αX is surjective by
functoriality (1.4.3.1). �

Theorem 2.1.7. [4, 2.5 (iv)] Let X be a regular Noetherian algebraic stack, and let U ⊆ X
be a dense open substack. Then the restriction map

H2
ét(X,Gm,X)→ H2

ét(U,Gm,U)

is injective.

Proof. In [4] the result is stated only for Deligne-Mumford stacks, but the proof applies more
generally, the point being that reflexive sheaves of rank 1 on regular Noetherian algebraic
stacks are invertible. �

Lemma 2.1.8. [4, 2.5 (iii)] Let X be a regular Noetherian Deligne-Mumford stack. Then
H2

ét(X,Gm,X) is a torsion group.

Proof. The following argument is only superficially different than that of [4]. By [58, (6.1.1)],
there exists a dense open substack U ⊆ X such that U is isomorphic to the quotient stack
[U/G] where U is an affine scheme (necessarily regular) and G is a finite group. Since the
restriction H2

et(X ,Gm,X )→ H2
ét(U ,Gm,U) is an injection by Theorem 2.1.7, it suffices to prove

the result for X = U . The cohomological descent spectral sequence (B.1.1.2) implies the
desired result since H2

ét(U ,Gm,U) has a filtration whose successive quotients are subquotients
of

H0(G,H2
ét(U,Gm,U)),H1(G,H1

ét(U,Gm,U)),H2(G,H0
ét(U,Gm,U))

which are all torsion. �

Remark 2.1.9. In Lemma 2.1.8 we cannot replace “Deligne-Mumford stack” with “algebraic
stack”: there are examples showing that regular Noetherian algebraic stacks need not have
torsion Brauer group. Let A be a regular local ring. The classifying stack BA(Z ⊕ Z) is a
regular Noetherian Deligne-Mumford stack whose diagonal is not quasi-compact, and

H2
ét(BS(Z⊕ Z),Gm) ' Br(S)⊕ A×

by Example 2.3.5; then we may take any A such that A× not a torsion group. For another
example, let E be an elliptic curve over a field k, and let BkE be the classifying stack. We
have

H2
ét(BkE,Gm) = Br(k)⊕ Pic0(E)

by Proposition 2.4.4; then we may take any E such that Pic0(E) contains nontorsion ele-
ments. �
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2.2. Low-dimensional stacks. Grothendieck proved [42, II.2.2] that, for a scheme X, the
Brauer map αX is an isomorphism if X has dimension 1 or has dimension 2 and is regular.
Here we consider the stack-theoretic analogues of the corresponding statements.

Remark 2.2.1. The literal analogue of Tsen’s theorem fails to hold. More precisely, there
exists a separated Deligne-Mumford stack X of dimension 1 and of finite type over an
algebraically closed field k such that Br′(X ) 6= 0. See for example Lemma 3.2.3. See Poma’s
[77] which gives more detailed computations.

Question 2.2.2. Let X be a separated Deligne-Mumford stack of dimension 1. Is the Brauer
map αX surjective?

Remark 2.2.3. One approach to Question 2.2.2 would be to try to follow Lieblich’s proof
[60, 3.1.3.7] of the result for schemes. Let X be a separated Noetherian Deligne-Mumford
stack of dimension 1, i.e. there is an étale cover U → X where U is a scheme of dimension
1. Let π : X → X be the coarse moduli space. Suppose X is integral and has the property
that there is a Zariski covering X =

⋃
Xi for which X ×X Xi ' [Ui/Gi] for a (necessarily

1-dimensional) scheme Ui and a finite discrete group Gi acting on Ui (this is true in general
only for the étale topology). Let G → X be a Gm,X -gerbe corresponding to a torsion class in
H2

ét(X ,Gm,X ). By Lemma 2.1.4, there exists a 1-twisted finite locally free OG×XXi-module
Ei. It suffices to glue these Ei together. In the scheme case, there is no problem since there
exists at most one isomorphism class of 1-twisted finite locally free OGη -module (essentially
by Wedderburn’s theorem). However, Wedderburn’s theorem does not generalize to stacks.
Precisely, if X is a 0-dimensional separated Deligne-Mumford stack, then there may exist
more than one isomorphism class of 1-twisted finite locally free OG-modules of a given rank
(for example, if G is trivial, then there is a correspondence between 1-twisted invertible
OG-modules and invertible OX -modules).

Lemma 2.2.4. 9 Let X be a separated Noetherian Deligne-Mumford stack admitting a
smooth surjection π : X → X where X is regular Noetherian and has dimX ≤ 2. Then the
Brauer map BrX → Br′X is surjective for X .

Proof. By [58, (6.1.1)], there exists a dense open substack U ⊆ X such that U is isomorphic
to the quotient stack [U/G] where U is an affine scheme and G is a finite group. Note that
the Brauer map is surjective for U since the Brauer map is surjective for U and U → [U/G]
is a finite flat cover. Let G be a Gm-gerbe corresponding to a torsion class in H2

ét(X ,Gm).
Let j : U → X be the inclusion and let j′ : G |U → G be the pullback to G . Since the Brauer
map is surjective for U , there exists a 1-twisted locally free sheaf E0 on G |U . By [22, 2.12] we
have that j′∗(E0) is the filtered direct limit of its coherent 1-twisted subsheaves; there exists
a coherent 1-twisted subsheaf F ⊆ j′∗(E0) such that F|U ' E0. Let E := F∨∨ be the double
dual, which is a coherent 1-twisted reflexive sheaf on G . It remains to check that E is locally
free. We have that reflexive sheaves are preserved by flat pullback [67, 3.1]. The property of
being locally free can be checked on a faithfully flat cover [88, 05B2]. After replacing X by
an étale cover, we may assume that G is the trivial Gm-gerbe BGm,X . Let ξ : X → BGm,X
be the canonical cover corresponding to the trivial torsor; then π∗ξ∗E is a reflexive coherent
sheaf on X, which is locally free by [88, 0B3N] since X is regular Noetherian scheme of
dimension ≤ 2. �

9This is claimed (without the “separated” hypothesis) in [55, Proposition 2.1 (ii)].
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2.3. Quotient stacks by discrete groups.

Question 2.3.1. For which pairs (k,G, ρ) where k is a field and G is a discrete group and
ρ : G× k → k is an action of G on k is it true that BrX = Br′X for X := [(Spec k)/G]?

Remark 2.3.2. If G is a finite group, then we can use the fact that Spec k → [(Spec k)/G]
is a finite flat cover and apply Lemma 2.1.4. If G is infinite, then there are counterexamples,
see for example Example 2.3.5.

Antieau and Meier computed the low-dimensional cohomology of classifying stacks by
finite cyclic groups, and in particular proved the following:

Lemma 2.3.3 (Classifying stack of cyclic group). [4, Proposition 3.2] Let n be a positive
integer, and let S be a scheme. Then we have an exact sequence

0→ H2
ét(S,Gm)→ H2

ét(B(Z/(n))S,Gm)→ H1
fppf(S, µn)→ 0

which is canonically split.

2.3.4 (Group cohomology for Z ⊕ Z). 10 We denote by A := Z[t±1 , t
±
2 ] the group ring of the

group G := Z⊕ Z. Then the A-module

Z ' A/(t1 − 1, t2 − 1)A

has an A-module resolution

· · · → 0→ Ae2,1
f2→ Ae1,1 ⊕ Ae1,2

f1→ Ae0,1 → Z→ 0

where f2(e2,1) = (t2 − 1)e1,1 − (t1 − 1)e1,2 and f1(e1,i) = (ti − 1)e0,1 for i = 1, 2. Applying
HomA(−,M) to the above resolution gives a complex

M
f∗1→M⊕2 f∗2→M → 0→ · · ·

of A-modules, and taking cohomology at the ith cohomological degree gives Hi(G,M). In
particular we have

H2(G,M) ' coker(M⊕2 f∗2→M)

where the map f ∗2 : M⊕2 →M sends (m1,m2) 7→ (t2 − 1)m1 − (t1 − 1)m2. �

Example 2.3.5 (A special case of Question 2.3.1). Here we discuss an example of a non-
separated regular Deligne-Mumford stack X with Br(X ) → Br′(X ) not an isomorphism.
This can be modified to have any dimension.

Let A be a ring for which all vector bundles are trivial (e.g a semi-local ring or a polynomial
ring over a PID), set S := SpecA, and let G := Z⊕ Z. We view G as acting trivially on A.
Let X := [S/G] ' BSG be the classifying stack. We have the cohomological descent spectral
sequence

Ep,q
2 = Hp(G,Hq

ét(S,Gm,S)) =⇒ Hp+q
ét (X ,Gm,X )

with differentials Ep,q
2 → Ep+2,q−1

2 . We have H1
ét(S,Gm,S) = Pic(S) = 0, and furthermore

Ep,q
2 = 0 if p ≥ 3 by 2.3.4, thus we have an direct sum decomposition

H2
ét(X ,Gm,X ) = H2

ét(S,Gm,S)⊕ H2(G,A×)

10There should be a way to do this using Kunneth formulas for group cohomology. This is copied from my
answer at https://math.stackexchange.com/q/2611736/.

https://math.stackexchange.com/q/2611736/
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of abelian groups (a priori only an exact sequence but it is split as the projection π : X → S
has a section s : S → X ). We have a direct sum decomposition Br(X ) = Br(A) ⊕ ker(s∗ :
Br(X )→ Br(A)).

An element of ker(s∗ : Br(X ) → Br(A)) corresponds to an Azumaya OX -algebra A such
that s∗A is a trivial Azumaya A-algebra; this corresponds to a group homomorphism G →
PGLr(A) where A has rank r2. A vector bundle on X of rank r corresponds to a group
homomorphism G→ GLr(A). Since Pic(A) = 0, the map GLr(A)→ PGLr(A) is surjective.
Since G is a free abelian group, the map H1(G,GLr(A)) → H1(G,PGLr(A)) is surjective.
Thus such A is trivial, in other words the pullback π∗ : Br(A)→ Br(X ) is an isomorphism.

On the other hand, we have H2(G,A×) = A× by 2.3.4, thus Br′(X ) = Br′(A) ⊕ (A×)tors.
There are regular local rings A such that A× has a lot of torsion (take a local ring of a smooth
k-scheme where k is an algebraically closed field of characteristic 0, for example). �

2.4. Classifying stack of an elliptic curve.

Lemma 2.4.1. Let k be a field, let E be an elliptic curve over k. Let L be a line bundle on
E of degree zero. Then for any k-point x : Spec k → E, we have t∗xL ' L.

Proof. By [48, IV, Lemma 1.2], it suffices to show that Γ(E, t∗xL ⊗OE L∨) 6= 0; for this we
may replace k by its algebraic closure and assume that k is algebraically closed. There exists
a point y ∈ E(k) such that L ' OE(e − y), where e ∈ E is the identity with respect to
the group law; we have OE(e− y) ' OE(e)⊗OE OE(y)∨ ' OE(e)⊗OE t∗yOE(e)∨. Then the
statement is that

t∗xM⊗OE t∗yM'M⊗OE t∗x+yM
for M = OE(e), which is the Theorem of the Square [71, II, §6, Corollary 4]. �

Lemma 2.4.2. Let k be a field and let E be an elliptic curve over k. If G is a k-group
scheme admitting a closed immersion ξ : G → E which is a group homomorphism, then G
is either finite over k or ξ is an isomorphism.

Proof. This follows from the following more general fact: if E/k is a finite type k-scheme
which is dimension 1 and geometrically integral and ξ : G→ E is a closed immersion, then
either G is finite over k or ξ is an isomorphism. If the underlying map |ξ| : |G| → |E| is not
surjective, then G is 0-dimensional and finite type over k, hence finite. If |ξ| is surjective,
then it must be an isomorphism since E is reduced. �

Lemma 2.4.3. 11 Let k be a field, let E be an elliptic curve over k. Let m : E ×k E → E
be the group law and let pi : E ×k E → E be the ith projection. Let us denote by

ξ := m∗ − p∗1 − p∗2 : Pic(E)→ Pic(E ×k E)

the map sending a line bundle to its associated Mumford bundle. Then ker ξ = Pic0(E), the
subgroup of degree zero line bundles on E.

Proof. Let L be a line bundle on E. Let K(E,L) ⊂ E be the subgroup scheme representing the
functor (Sch/k)op → (Set) sending S to ∗ if L|ES is the pullback of a line bundle on S, and ∅
otherwise. Then K(E,L) is representable by a subgroup scheme of X [29, (2.18) Proposition].

11This is proved here: see [71, IV, §8, (i) and (iv)] and https://math.stackexchange.com/q/2446400 and
https://mathoverflow.net/q/282435 and Lemma 1 (a) of https://www2.mathematik.hu-berlin.de/

~bakkerbe/Abelian9.pdf.

https://math.stackexchange.com/q/2446400
https://mathoverflow.net/q/282435
https://www2.mathematik.hu-berlin.de/~bakkerbe/Abelian9.pdf
https://www2.mathematik.hu-berlin.de/~bakkerbe/Abelian9.pdf
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We have that L ∈ ker ξ if and only if K(E,L) → E is an isomorphism. If degL > 0, then
L is ample by [48, IV, Corollary 3.3]; then K(E,L) is finite over k by [29, (2.19) Lemma]. If
degL = 0, then K(E,L) → E is an isomorphism by Lemma 2.4.1 and Lemma 2.4.2. �

Proposition 2.4.4. Let k be a field and let E be an elliptic curve over k. We have an
isomorphism

H2
ét(BE,Gm) ' Br(k)⊕ Pic0(E)

of groups.

Proof. We compute H2
ét(BE,Gm) using the cohomological descent spectral sequence

Ep,q
1 = Hq

ét(E
×p,Gm) =⇒ Hp+q

ét (BE,Gm)

with differentials Ep,q
1 → Ep+1,q

1 . We have H0
ét(E

×p,Gm) = k for all p, and the complex
H0

ét(E
×•,Gm) is acyclic except at p = 0. The map E2

∞ → E0,2
1 corresponds to the pullback

H2
ét(BE,Gm) → H2

ét(Spec k,Gm), which is a split surjection since the composite Spec k →
BE → Spec k is the identity. We have E1,1

2 ' Pic0(E) by Lemma 2.4.3. �

Proposition 2.4.5. Let k be a field and let E be an elliptic curve over k. The Azumaya
Brauer group of BE is Br(BE) = Br(k).

Proof. Let Spec k → BE be the morphism corresponding to the trivial E-torsor. There
is a direct sum decomposition Br(BE) = Br(k) ⊕ ker(ξ∗) where ξ∗ : Br(BE) → Br(k) is
the pullback map. A class in ker(ξ∗) corresponds to an Azumaya OBE-algebra A which
is trivialized after pullback by ξ; this is the data of a positive integer n and an element
ϕ ∈ PGLn(E) which satisfies the cocycle condition on E×kE, more precisely m∗ϕ = p∗1ϕ·p∗2ϕ
where m, p1, p2 are as in Lemma 2.4.3. Since PGLn is affine, the pullback PGLn(Γ(E,OE))→
PGLn(E) is an isomorphism; similarly PGLn(Γ(E,OE))→ PGLn(E×kE) is an isomorphism
as well. Since E is geometrically integral, we have k → Γ(E,OE) and k → Γ(E×kE,OE×kE)
are isomorphisms. Thus ϕ is an element of PGLn(k) which satisfies ϕ = ϕ ·ϕ, in other words
ϕ = id. Thus A is isomorphic to Matn×n(OBE). �

Corollary 2.4.6. Let k be a field and let E be an elliptic curve over k. Then the Brauer
map αBE : Br(BE)→ Br′(BE) is an isomorphism if and only if Pic0(E) is torsion-free.

Proof. This follows from Proposition 2.4.4 and Proposition 2.4.5. �

Remark 2.4.7. Heinloth and Schröer [49, §3] show that there exists a Gm-gerbe over BE
which does not lie in the image of the so-called “bigger Brauer group” but this gerbe cor-
responds to a nontorsion class in H2

ét(BE,Gm) so it does not provide a counterexample to
Br = Br′. �

2.5. Classifying stack of diagonalizable groups. We consider the Brauer groups of
classifying stacks by diagonalizable groups associated to finite cyclic groups and finitely
generated torsion-free abelian groups.

Lemma 2.5.1. Let (A,m) be a local ring and let G be a finite subgroup of the group of
units A×. If |G| is invertible in A, then G is a cyclic group.

Proof. This is a generalization of the case when A is a field. Let k := A/m be the residue
field. If G is not a cyclic group, then there exists an integer n dividing |G| and such that the
polynomial Xn − 1 has more than n roots in A. Since n is invertible in k, the polynomial
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Xn− 1 is separable over k. By [88, 06RR], the polynomial Xn− 1 has more than n roots in
k, contradiction. �

Lemma 2.5.2. 12 Let A be a strictly henselian local ring, let n be an integer invertible in
A. Then H2(Bµn,A,Gm) = 0.

Proof. There exist pairwise distinct ξ1, . . . , ξn ∈ A× such that we have the factorization

tn − 1 = (t− ξ1) · · · (t− ξn)

in A[t]; by Lemma 2.5.1, there exists some ξ ∈ A× such that tn − 1 =
∏n−1

i=0 (t − ξi);
thus µn is (noncanonically) isomorphic to Z/(n) as abelian sheaves; thus we conclude using
Lemma 2.3.3. �

Remark 2.5.3. It would be nice to remove the “strictly henselian” hypothesis in Lemma 2.5.2.
For this, we would have to compute the unit groups of A[T1, . . . , Tp]/(T

n
1 − 1, . . . , T np − 1) for

p = 1, 2, 3 in case the polynomial T n − 1 does not split completely over A.

Lemma 2.5.4 (Sheaf of units on Gm over an integral scheme). Let X be an integral scheme.
Then the canonical map

Γ(X,Gm,X)⊕ Z⊕n → Γ(X ×Z G×nm,Z,Gm)

is an isomorphism.

Proof. We have the result when X is affine. In general, let X =
⋃
i∈I Xi be an affine open

cover of X. We have a commutative diagram

0 0

Γ(X,Gm)⊕ Z⊕n Γ(X ×Z G×nm,Z,Gm)

∏
i∈I Γ(Xi,Gm)⊕ Z⊕n

∏
i∈I Γ(Xi ×Z G×nm,Z,Gm)

∏
i1,i2∈I Γ(Xi1,i2 ,Gm)⊕ Z⊕n

∏
i1,i2∈I Γ(Xi1,i2 ×Z G×nm,Z,Gm)

f1

f2

f3

where the columns are equalizer sequences. By the affine case, we have that f2 is an iso-
morphism; hence f1 is an injection. Applying this argument to Xi1,i2 , we have that f3 is an
injection. Thus f1 is an isomorphism by a diagram chase. �

Lemma 2.5.5. Let M be a finitely generated torsion-free abelian group, let

T := D(M)Z = SpecZ[M]

12This is a generalization of [61]; the proof there (which is ring-theoretic) works if one replaces “separably
closed field” by “strictly henselian local ring”. Lieblich only considers Brauer classes of order prime to the
characteristic but this restriction is unnecessary. See also [63, VI.6], “Cohomology of free abelian groups”,
regarding the Koszul complex associated to the regular sequence {t1 − 1, . . . , tn − 1} in Z[t±1 , . . . , t

±
n ].
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be the associated Z-group scheme. Let X be an integral scheme, let BTX be the classifying
stack, and let ξ : X → BTX be the morphism corresponding to the trivial T-torsor. For
p ≥ 0, let

Xp := X ×X · · · ×X X

be the (p+1)-fold fiber product of X over X . The bottom row of the cohomological descent
spectral sequence gives a complex

Γ(X0,Gm)
d0

→ Γ(X1,Gm)
d1

→ Γ(X2,Gm)
d2

→ Γ(X3,Gm)→ · · · (2.5.5.1)

of abelian groups. Then (2.5.5.1) is acyclic in degrees p ≥ 1.

Proof. We have Xp ' X ×Tp for all p. Since X is an integral scheme, by Lemma 2.5.4 the
map

Γ(X,Gm)⊕M⊕p → Γ(X ×Tp,Gm) (2.5.5.2)

is an isomorphism. With the identification (2.5.5.2), the differential dp is the alternating
sum of p + 2 maps, each of which is the identity on the Γ(X,Gm) summand; the map
M⊕p → M⊕(p+1) is given by the formula

dp([a1, . . . , ap]) = [0, a1, . . . , ap]− (
∑p

i=1(−1)i[a1, . . . , ai, ai, . . . , ap]) + (−1)p+1[a1, . . . , ap, 0]

where “[a1, . . . , ai, ai, . . . , ap]” is the vector obtained by replacing “ai” with “ai, ai” in [a1, . . . , ap].
A computation shows that if p is odd, then the image of [a1, . . . , ap] under dp is given by

[0, a2, a2, a4, a4, . . . , ap−1, ap−1, 0]

and if p is even, then the image of dp is given by

[−a1, 0, a2 − a3, 0, a4 − a6, 0, . . . , 0, ap−2 − ap−1, 0, ap]

which gives exactness for p ≥ 1. �

Lemma 2.5.6. Let A be a Noetherian normal ring. Then the pullback

Pic(A)→ Pic(A[t±])

is an isomorphism.

Proof. After taking connected components, we may assume that A is a Noetherian normal
domain. We have an exact sequence

0→ Pic(A)→ Pic(A[t])⊕ Pic(A[t−1])→ Pic(A[t±])→ LPic(A)→ 0

by [93, Lemma 1.5.1], and an isomorphism LPic(A) ' H1
ét(SpecA,Z) by [93, Theorem

5.5]; we have H1
ét(SpecA,Z) = 0 by [45, Exp. VIII, Prop. 5.1] since A is geometrically

unibranch. �

Lemma 2.5.7. Let S be a locally Noetherian, integral scheme such that, for every point s ∈
S of codimension 1, the local ring OS,s is regular. Set T := SpecZ[t±] and TS := S×SpecZT,
and let π : TS → S be the projection. Then the pullback map

π∗ : Pic(S)→ Pic(TS)

is an isomorphism.
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Proof 1. 13 We check the conditions of [44, IV4, (21.4.9)]. The projection π is faithfully
flat and has a section, hence π∗ is injective; the map π is both quasi-compact and open.
Given a codimension 1 point s ∈ S, set A := OS,s; since A is seminormal, the pullback
Pic(A) → Pic(A1

A) is an isomorphism by Traverso’s theorem [91, Theorem 3.6]; since A is
regular, for any open subscheme U ⊆ A1

A we have an isomorphism Pic(U) ' Cl(U); the
restriction map Cl(A1

A)→ Cl(U) is surjective; we take U := SpecA[t±]. �

Proof 2, if S is normal and quasi-compact. After taking connected components, we may as-
sume that S is a Noetherian normal integral scheme. Since the projection π has a section, it
is clear that π∗ is injective. For any quasi-compact scheme Y , let n(Y ) be the minimal size
of an affine open covering of Y .

We proceed by induction on n(S). The case n(S) = 1 (in other words S is affine) is
Lemma 2.5.6.

In general, suppose S = S1 ∪ S2 where S1, S2 are open subschemes of S such that n(Si) <
n(S). Let πi : TSi → Si be the projections. Suppose L is an invertible sheaf on TS; by the
induction hypothesis, there exist invertible OSi-modules Mi and isomorphisms

ϕi : L|TSi → π∗iMi

of OTSi
-modules. Set S12 := S1 ∩ S2 and π12 : TS12 → S12 the projection; since Pic(S12) →

Pic(TS12) is injective, there is an isomorphism

α :M1|S12 →M2|S12

of OS12-modules; moreover, since the inclusion

Γ(S12,Gm)× tZ → Γ(TS12 ,Gm)

is an isomorphism (by Lemma 2.5.4), we may multiply α by a unit in Gm(S12) and multiply
M1 by a character tn so that π∗12α corresponds to (ϕ2|TS12 )◦ (ϕ1|TS12 )−1. Thus the invertible
OS-module obtained by gluing M1,M2 along α gives the desired element of Pic(S) whose
image in Pic(TS) is L. �

Proposition 2.5.8. Let X be a Noetherian normal scheme. Let M be a finitely generated
torsion-free abelian group, and let

T := D(M)Z = SpecZ[M]

be the associated diagonalizable Z-group scheme. Let BTX be the classifying stack and let
ξ : X → BTX be the morphism corresponding to the trivial T-torsor. Then the pullback
map

ξ∗ : H2
ét(BTX ,Gm)→ H2

ét(X,Gm)

is an isomorphism.

Proof. The cohomological descent spectral sequence associated to the covering ξ gives a
spectral sequence

Ep,q
1 = Hq

ét(T
p
X ,Gm) =⇒ Hp+q

ét (BTX ,Gm) (2.5.8.1)

with differentials dp,q1 : Ep,q
1 → Ep+1,q

1 .

13Following comments by user “Heer” in https://mathoverflow.net/q/84414.

https://mathoverflow.net/q/84414
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...
...

...
...

H3
ét(T

0
X ,Gm) H3

ét(T
1
X ,Gm) H3

ét(T
2
X ,Gm) H3

ét(T
3
X ,Gm) · · ·

H2
ét(T

0
X ,Gm) H2

ét(T
1
X ,Gm) H2

ét(T
2
X ,Gm) H2

ét(T
3
X ,Gm) · · ·

H1
ét(T

0
X ,Gm) H1

ét(T
1
X ,Gm) H1

ét(T
2
X ,Gm) H1

ét(T
3
X ,Gm) · · ·

H0
ét(T

0
X ,Gm) H0

ét(T
1
X ,Gm) H0

ét(T
2
X ,Gm) H0

ét(T
3
X ,Gm) · · ·

Note that each differential d0,q
1 : E0,q

1 → E1,q
1 is the 0 map since the two projection maps

T1
X ⇒ X are equal (since T acts trivially on X). By Lemma 2.5.4, the map

Γ(X,Gm)⊕M⊕p → Γ(Tp
X ,Gm) (2.5.8.2)

is an isomorphism. Note that there are p + 2 projection maps Tp+1 → Tp. Since X is
Noetherian normal, by Lemma 2.5.7 we have that dp,11 : Ep,1

1 → Ep+1,1
1 is 0 if p is even and

an isomorphism if p is odd; thus Ep,1
2 = 0 for p ≥ 1.

Via the identification (2.5.8.2), we obtain a complex E•,01 which is exact in degrees p ≥ 1
by Lemma 2.5.5.

The above considerations show that the desired map ξ∗ is an isomorphism. �

Remark 2.5.9. In Section 4 we will remove the “normality” hypothesis in the case M = Z.
The difficulty in working with torsion-free abelian groups M of higher rank is that Pic(A[M])
can be large (see Weibel [93]). �

Lemma 2.5.10. In the setup of Proposition 2.5.8, if X is quasi-compact and admits an
ample line bundle, then the Brauer map αBTX : Br BTX → Br′ BTX is an isomorphism.

Proof. The projection π : BTX → X has a section ξ : X → BTX . We have a commutative
diagram

BrX Br BTX BrX

Br′X Br′ BTX Br′X

π∗ ξ∗

π∗ ξ∗

αX αBTX αX

where the morphisms on the bottom row are isomorphisms by Proposition 2.5.8. We have
that αX is an isomorphism by [22]. Thus αBTX is an isomorphism. �

2.6. Classifying stack of GLn.

Setup 2.6.1. Let A be a ring, let

X := {Xi,j}i,j=1,...,n

be n2 variables, let A[X] be the polynomial ring. The localization A[X, 1
det

] is the coordinate
ring of GLn,A.
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There is a map

ΦA : A× ⊕ Γ(SpecA,Z)→ (A[X, 1
det

])× (2.6.1.1)

sending (a, n) 7→ a detn. �

Lemma 2.6.2. Assume the notation of Setup 2.6.1. The map

A→ A[X]/(det)

is faithfully flat.

Proof 1. It suffices to take the case A = Z. Then it suffices to show that Z[X]/(det) is
torsion-free. Suppose ` ∈ Z and a ∈ Z[X] such that `a ∈ (det); since Z[X]/(det) is an
integral domain [17, (2.10) Theorem], either ` ∈ (det) or a ∈ (det), but it is not possible
that ` ∈ det since ` has degree 0 whereas det has degree n. �

Proof 2. We can make a change of coordinates Xi,i 7→ Xi,i + X1,1 for i ≥ 2. Let f be the
polynomial that det gets sent to; then f is monic of degree n in the variable X1,1, hence
A[X, 1

det
] is finite locally free over A[X \ {X1,1}], which is smooth over A. �

Lemma 2.6.3. Assume the notation of Setup 2.6.1. The element det is a nonzerodivisor of
A[X].

Proof. Since Z[X] is an integral domain, we have that det is irreducible element of the UFD
Z[X]; hence it is a nonzerodivisor on Z[X]; hence the sequence

0→ Z[X]→ Z[X]→ Z[X]/(det)→ 0 (2.6.3.1)

is exact; here Z[X]/(det) is flat over Z by Lemma 2.6.2; tensoring (2.6.3.1) with −⊗ZA gives

0→ A[X]
∗→ A[X]→ A[X]/(det)→ 0

where the map ∗ is injective by e.g. [88, 00HL]. �

Lemma 2.6.4. The map (2.6.1.1) is injective.

Proof. The element det is a nonzerodivisor on A[X] by Lemma 2.6.3. �

Lemma 2.6.5. Assume the notation of Setup 2.6.1. If A is an integral domain, the map
(2.6.1.1) is an isomorphism.

Proof. Suppose a1
detf1

is a unit of A[X, 1
det

], with inverse a2
detf2

. Then a1a2 = detf1+f2 since det
is a nonzerodivisor Lemma 2.6.3. Since A is an integral domain, we may assume that a1, a2

are homogeneous. We have that det is a prime element of A[X] by [17, (2.10) Theorem]. �

Lemma 2.6.6 (Units of GLn). 14 Assume the notation of Setup 2.6.1. The map ΦA (2.6.1.1)
is an isomorphism if and only if A is reduced.

Proof. If A is an integral domain, we have that ΦA is an isomorphism by Lemma 2.6.5. More
generally, if A is the finite product of integral domains, then ΦA is an isomorphism.

14Broughton [16] shows that the units of the coordinate ring of an algebraic group over any algebraically
closed field are given by characters.
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Suppose that A is reduced. By limit arguments, we may assume that A is (reduced and)
a finite type Z-algebra. We may assume that SpecA is connected. Let p1, . . . , pr be the
minimal primes of A. Then the total ring of fractions of A is

Q(A) = k(p1)⊕ · · · ⊕ k(pr)

by e.g. [88, 02LX]. Let
β1

detf1
,
β2

detf2

be two elements of A[X, 1
det

] with βi ∈ A[X] and f1, f2 ∈ Z≥0 such that

β1β2

detf1+f2
= 1

in A[X, 1
det

]. Then β1β2 detf3 = detf1+f2+f3 in A[X] for some f3, but det is a nonzerodivisor
in A[X] (by Lemma 2.6.3) so

β1β2 = detf1+f2 (2.6.6.1)

in A[X]. Plugging in X = T · idn for a variable T into (2.6.6.1) gives

β1|T ·idn · β2|T ·idn = T n(f1+f2)

so β1|T ·idn , β2|T ·idn are units of A[T±]; thus (since A is connected and reduced) we have by
[73, Corollary 6] that β1|T ·idn , β2|T ·idn are homogeneous.

The image of βi in (Q(A)[X, 1
det

])× is contained in the image of ΦQ(A) so by limit arguments

there exists a nonzerodivisor si ∈ A such that the image of βi in (A[ 1
si

][X, 1
det

])× is contained

in the image of ΦA[ 1
si

]; in other words, there exist ai,1, . . . , ai,mi ∈ A[ 1
si

] (say ai,1 6= 0) and

integers 0 ≤ ei,1 < · · · < ei,mi such that

βi =
∑mi

`=1 ai,`detei,`

in A[ 1
si

][X]; here βi ∈ A[X] implies ai,` ∈ A for all `. Since βi|T ·idn =
∑mi

`=1 a`T
nei,` is

homogeneous in A[ 1
si

][X], all but one ai,` is nonzero, in other words βi = ai,1 detei,1 . This
means

a1,1a2,1dete1,1+e2,1 = detf1+f2

in A[ 1
s1s2

][X]; thus a1,1a2,1 = 1 in A, so a1,1, a2,1 are units of A.

(Thanks to Justin Chen for pointing out the following.) If a ∈ A is nonzero and satisfies
a2 = 0, then

(det +a)(det−a) = det2

so det +a
det

is a unit of A[X, 1
det

] which is not in the image of (2.6.1.1). �

Lemma 2.6.7. Let S be a locally Noetherian, integral scheme such that, for every point
s ∈ S of codimension 1, the local ring OS,s is regular. For any positive integer p, the pullback

Pic(S)→ Pic(S ×SpecZ (GLn,Z)×p) (2.6.7.1)

is an isomorphism.

Proof. We check the conditions of [44, IV4, (21.4.9)]. Let π : S×SpecZ (GLn,Z)×p → S be the
projection; it is faithfully flat and has a section, hence (2.6.7.1) is injective; the map π is
both quasi-compact and open. Given a codimension 1 point s ∈ S, set A := OS,s; since A is

seminormal, the pullback Pic(A)→ Pic(Apn2

A ) is an isomorphism; since A is regular, for any
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open subscheme U ⊆ Apn2

A we have an isomorphism Pic(U) ' Cl(U); the restriction map

Cl(Apn2

A )→ Cl(U) is surjective; we take U := SpecA×SpecZ (GLn,Z)×p. �

Proposition 2.6.8 (Brauer group of classifying stack BGLn). Let S be a locally Noetherian,
integral scheme such that, for every point s ∈ S of codimension 1, the local ring OS,s is
regular. Let ξ : S → BS GLn be the morphism corresponding to the trivial GLn-torsor.
Then the pullback map

ξ∗ : H2
ét(BS GLn,Gm)→ H2

ét(S,Gm)

is an isomorphism.

Proof. We set G := GLn,S for convenience. The cohomological descent spectral sequence
associated to the covering ξ : S → BG gives a spectral sequence

Ep,q
1 = Hq

ét(G
p,Gm) =⇒ Hp+q

ét (BG,Gm) (2.6.8.1)

with differentials dp,q1 : Ep,q
1 → Ep+1,q

1 .

...
...

...
...

H3
ét(G

0,Gm) H3
ét(G

1,Gm) H3
ét(G

2,Gm) H3
ét(G

3,Gm) · · ·

H2
ét(G

0,Gm) H2
ét(G

1,Gm) H2
ét(G

2,Gm) H2
ét(G

3,Gm) · · ·

H1
ét(G

0,Gm) H1
ét(G

1,Gm) H1
ét(G

2,Gm) H1
ét(G

3,Gm) · · ·

H0
ét(G

0,Gm) H0
ét(G

1,Gm) H0
ét(G

2,Gm) H0
ét(G

3,Gm) · · ·

Note that each differential d0,q
1 : E0,q

1 → E1,q
1 is the 0 map since the two projection maps

G⇒ S are equal (since G acts trivially on S). By Lemma 2.6.5, there is an isomorphism

A× ⊕ Z⊕p → Γ(Gp,Gm) (2.6.8.2)

sending the ith generator to the determinant of the ith component of Gp, and furthermore
the complex E•,01 becomes identified with the corresponding complex for BGm via the map
BG→ BGm defined by the determinant, hence is acyclic in degrees p ≥ 1 by the argument in
Lemma 2.5.5. Moreover we have Ep,1

1 = H1
ét(G

p,Gm) = Pic(Gp) and the pullback Pic(S)→
Pic(Gp) is an isomorphism for all p ≥ 0 by Lemma 2.6.7. The above considerations show
that the canonical pullback map

H2
ét(BG,Gm)→ H2

ét(S,Gm)

is an isomorphism. �

Corollary 2.6.9. In the setup of Proposition 2.6.8, if S is quasi-compact and admits an
ample line bundle, then the Brauer map αBS GLn is an isomorphism.

Proof. The argument of Lemma 2.5.10 applies, using Proposition 2.6.8. �
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3. The Brauer group of the moduli stack of elliptic curves

The material in this section is more or less the same as in [84].

3.1. Introduction. The moduli stack of elliptic curves M1,1,Z is a Deligne-Mumford stack
which parametrizes elliptic curves over arbitrary base schemes (not necessarily fields). For
any scheme S, we may study its restriction M1,1,S := M1,1,Z ×Z S to the category of S-
schemes. Mumford [70, §6] showed that Pic(M1,1,k) = Z/(12) for an arbitrary algebraically
closed field k with char k 6= 2, 3. Fulton and Olsson [36] generalized this computation to
schemes S that are either reduced or on which 2 is invertible.

This section is devoted to the computation of the (cohomological) Brauer group of the
moduli stack of elliptic curves M1,1,S over various base schemes S. Antieau and Meier [4,
11.2] computed the Brauer group Br M1,1,S for various base schemes S, and in particular
proved that for any algebraically closed field k of characteristic not 2 the Brauer group
Br M1,1,k is trivial. We compute Br M1,1,k in the characteristic 2 case. This then completes
the calculation of Br M1,1,k over algebraically closed fields k. We summarize the result in
the following theorem.

Theorem 3.1.1 ([4, 11.2] in char k 6= 2). Let k be an algebraically closed field. Then
Br M1,1,k is 0 unless char k = 2, in which case Br M1,1,k = Z/(2).

To prove the theorem, we calculate the cohomology groups H2
ét(M1,1,k, µn) for varying n.

There are essentially two ways to approach this calculation: (1) using the coarse moduli
space, and (2) using a presentation of M1,1,k as a quotient stack. In this paper we give a
new proof of the Antieau-Meier result using approach (1), and calculate in characteristic 2
using approach (2).

We also compute the Brauer group of M1,1,k where k is a finite field of characteristic 2:

Theorem 3.1.2. Let k be a finite field of characteristic 2. Then

Br M1,1,k =

{
Z/(12)⊕ Z/(2) if x2 + x+ 1 has a root in k

Z/(24) otherwise.

Remark 3.1.3. In [4] it is shown that Br(M1,1,Z) = 0 by first showing that Br(M1,1,Z[ 1
2

]) =

Br(Z[1
2
]) ⊕ Z/(2) ⊕ Z/(4) then showing that these classes do not extend to M1,1,Z. The

computation of Br(M1,1,Z[ 1
2

]) is achieved via a description of M1,1,Z[ 1
2

] as a “two-fold quotient

stack”; more precisely, they show (in our notation D.1.1) that M1,1,Z[ 1
2

] ' [[Γ(2)]/S3] and

that [Γ(2)] ' BY (2)(Z/(2)) where Y (2) := SpecZ[1
2
, t±, (t − 1)−1]. Thus it is natural to ask

whether M1,1,Z has a presentation as a quotient stack by a finite group, namely whether
M1,1,Z ' [X/G] where X is a scheme and G is a finite discrete group acting on X. As Will
Chen explained to me in [19], the answer is “no”, using the fact that the étale fundamental
group of M1,1,Z is trivial (see [92]).

3.2. Preliminary observations. Let M1,1,Z be the stack of (relative) elliptic curves. For
any scheme S, let M1,1,S := M1,1,Z×Z S denote the restriction to the category of S-schemes.
The stack M1,1,Z is a Deligne-Mumford stack smooth and separated over Z [76, 13.1.2]; hence
if S is a regular Noetherian scheme then M1,1,S is a regular Noetherian stack. If S is a locally
Noetherian scheme, the morphism

π : M1,1,S → A1
S
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sending an elliptic curve to its j-invariant identifies A1
S with the coarse moduli space of

M1,1,S [36, 4.4].

In general, if X is a separated Deligne-Mumford stack and π : X → X is its coarse moduli
space, then π is initial among maps from X to an algebraic space, so the map G(X)→ G(X )
is an isomorphism for any group scheme G; moreover if U → X is an étale morphism, then
πU : X ×X U → U is a coarse moduli space. Applying these observations to G = Ga,Gm, µn
implies that the canonical maps OX → π∗OX , Gm,X → π∗Gm,X , µn,X → π∗µn,X are
isomorphisms; thus we will omit subscripts and denote µn,Gm for the corresponding sheaves
on either M1,1,S or A1

S.

Lemma 3.2.1. Let S be a quasi-compact scheme admitting an ample line bundle. Then the
Brauer map αM1,1,S

: Br M1,1,S → Br′M1,1,S is an isomorphism.

Proof. By Lemma 2.1.4, it suffices to show that there is an affine scheme Z with a finite flat
surjection Z →M1,1,Z. Indeed, in this case the base change ZS := Z ×Z S is quasi-compact
and admits an ample line bundle [88, 0892], hence the Brauer map αZS is surjective by
Gabber’s theorem (see [22]). Since the map ZS → M1,1,Z is finite locally free, we have by
Corollary 2.1.5 that αM1,1,S

is surjective.

Since M1,1,Z is a separated Deligne-Mumford stack, its diagonal is finite; thus by [28,
Theorem 2.7] (or [58, (16.6)]) there exists a scheme Z and a finite surjection f : Z →M1,1,Z.
Here the composite Z → M1,1,Z → A1

Z is a proper and quasi-finite morphism between
schemes, hence finite; hence Z is an affine scheme of finite type over Z. We may replace Z
by its reduction Zred and assume that Z itself is reduced. Since Z is finite type over Z, the
normalization map Z → Z is finite; here Z decomposes as a disjoint union of finitely many
affine normal integral schemes Z = Z1 t · · · t Zr; by replacing Z by some Zi for which the
composite Zi → Z → Z → A1

Z is surjective (e.g. some Zi which intersects the fiber over
the generic point of A1

Z), we may assume that Z is an affine normal integral scheme. Since
Z → A1

Z is finite surjective, we have dimZ = 2 and hence Z is Cohen-Macaulay (e.g. [66,
Exercise 17.3]). Since f : Z → M1,1,Z is a finite map where Z is integral Cohen-Macaulay
and M1,1,Z is a regular Deligne-Mumford stack, we have that f is flat (reduce to the case
of schemes by taking a smooth cover of M1,1,Z by a scheme smooth over Z; then use [66,
Theorem 23.1]).

One can give an alternate argument in case at least one prime is invertible on S. By [51,
4.7.2], for N ≥ 3 the moduli stack of full level N structures is representable by an affine
Z[ 1

N
]-scheme Y (N), and we proceed as above. �

Lemma 3.2.2. Let U := SpecZ[t, (t(t−1728))−1] ⊂ A1
Z and let M ◦

1,1,Z := U×A1
Z
M1,1,Z. Then

the restriction π◦ : M ◦
1,1,Z → U of π to U is a trivial Z/(2)-gerbe, i.e. M ◦

1,1,Z ' B(Z/(2))U .

Proof. Let S be a scheme and let E1, E2 be two elliptic curves over S. If j(E1) = j(E2) ∈
Γ(S,OS) and j(Ei), j(Ei) − 1728 are units of Γ(S,OS), then by [23, 5.3] one can find a
finite étale cover S ′ → S such that there is an isomorphism S ′ ×S E1 ' S ′ ×S E2 of elliptic
curves over S ′. For any connected scheme S and an elliptic curve E/S for which j(E) and
j(E) − 1728 are invertible, we have Aut(E/S) ' Z/(2) by [51, (8.4.2)]. It suffices now to
show that there is an elliptic curve EU over U with j-invariant t. For this we may take the
elliptic curve EU defined by the Weierstrass equation

Y 2Z +XY Z = X3 − 36
t−1728

XZ2 − 1
t−1728

Z3
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which satisfies ∆(EU) = t2

(t−1728)3
and j(EU) = t (see [86, Proposition III.1.4(c)]). �

Lemma 3.2.3. Let k be an algebraically closed field and let U be a smooth curve over k. If
Pic(U) = 0, then Br′ B(Z/(2))U ' (Gm(U))/(2).

Proof. The cohomological descent spectral sequence associated to the cover U → B(Z/(2))U
is of the form

Ep,q
2 = Hp(Z/(2),Hq

ét(U,Gm)) =⇒ Hp+q
ét (B(Z/(2))U ,Gm) (3.2.3.1)

with differentials Ep,q
2 → Ep+2,q−1

2 . We have by [69, III.2.22 (d)] that Hq
ét(U,Gm) = 0 for all

q ≥ 2. Moreover, we have H1
ét(U,Gm) = Pic(U) = 0 by assumption. Thus the only row of

the E2-page of (3.2.3.1) containing nonzero entries is q = 0, which gives an isomorphism

H2
ét(B(Z/(2))U ,Gm) ' H2(Z/(2),H0

ét(U,Gm)) ' (Gm(U))/(2)

of abelian groups. �

Lemma 3.2.4. Let k be an algebraically closed field. If char k 6= 2, 3, then Br′M1,1,k is a
subgroup of Z/(2)⊕ Z/(2). If char k is 2 or 3, then Br′M1,1,k is a subgroup of Z/(2).

Proof. We have that M1,1,k is regular Noetherian and that M ◦
1,1,k := M ◦

1,1,Z ×Z k is a dense
open substack; thus by Theorem 2.1.7 the map

Br′M1,1,k → Br′M ◦
1,1,k

induced by restriction is an injection. Here Lemma 3.2.2 implies Br′M ◦
1,1,k = Br′ B(Z/(2))U

for U = Spec k[t, (t(t − 1728))−1], and Lemma 3.2.3 implies Br′ B(Z/(2))U is Z/(2) ⊕ Z/(2)
if char k 6= 2, 3 and Z/(2) otherwise (here we use that k× = (k×)2 since k is algebraically
closed). �

3.3. The case char k is not 2. Antieau and Meier [4] compute the Brauer group Br M1,1,S

for various base schemes S, including algebraically closed fields k of odd characteristic [4,
11.2] (the case char k 6= 2 in Theorem 3.1.1). In this section we give a proof via a dévissage
argument, using the fact that the coarse moduli space morphism π : M → A1

k is a trivial
Z/(2)-gerbe away from 0, 1728 ∈ A1

k (see Lemma 3.2.2). Our proof is divided into two cases,
depending on whether char k = 3 or char k 6= 3 (this will determine whether we puncture A1

k

at one or two points, respectively). We first fix notation and record some observations that
apply to both cases.

3.3.1. We abbreviate M := M1,1,k. By Lemma 3.2.1, the Brauer map αM : Br M → Br′M
is an isomorphism. By Lemma 3.2.4, the main task is to show that the 2-torsion in Br M is
0.

For any integer n ≥ 1, the étale Kummer sequence

1→ µ2n → Gm
×2n→ Gm → 1

gives an exact sequence

0→ (Pic M )/(2n)→ H2(M , µ2n)→ H2(M ,Gm)[2n]→ 0 (3.3.1.1)

of abelian groups. Since we have Pic M ' Z/(12) by [36], we wish to compute H2(M , µ2n).

Set
U := Spec k[t, (t(t− 1728))−1] = A1

k \ {0, 1728}
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with inclusion j : U → A1
k and let i : Z → A1

k be the complement with reduced induced
closed subscheme structure. (Thus, if char k is 2 or 3 then Z ' Spec k, otherwise Z '
Spec k q Spec k.) Set

M ◦ := U ×A1
k
M

MZ := Z ×A1
k
M

with projections π◦ : M ◦ → U and πZ : MZ → Z. We have a commutative diagram

M ◦ M MZ

U A1
k Z

j

π◦ π

i

πZ (3.3.1.2)

with cartesian squares.

We have a distinguished triangle

j!j
∗Rπ∗µ2n → Rπ∗µ2n → i∗i

∗Rπ∗µ2n
+1→ (3.3.1.3)

in the derived category of bounded-below complexes of abelian sheaves on the étale site of
A1
k, whose associated long exact sequence has the form

H0(A1
k, j!Rπ

◦
∗µ2n) H0(M , µ2n) H0(Z, i∗Rπ∗µ2n)

H1(A1
k, j!Rπ

◦
∗µ2n) H1(M , µ2n) H1(Z, i∗Rπ∗µ2n)

H2(A1
k, j!Rπ

◦
∗µ2n) H2(M , µ2n) H2(Z, i∗Rπ∗µ2n)

(3.3.1.4)

since j∗Rπ∗µ2n ' Rπ◦∗µ2n and

Hs(A1
k,Rπ∗µ2n) ' Hs(M , µ2n)

Hs(A1
k, i∗i

∗Rπ∗µ2n) ' Hs(Z, i∗Rπ∗µ2n)

for all s. We will first compute the groups Hs(A1
k, j!j

∗Rπ∗µ2n) in the left column of (3.3.1.4).

Lemma 3.3.2. Let k be an algebraically closed field, let x1, . . . , xr ∈ A1
k be r distinct k-

points, set
Z := Spec k(x1)q · · · q Spec k(xr)

and let U = A1
k \ Z be the complement with inclusion j : U → A1

k. For any positive integer
` invertible in k, we have

Hs(A1
k, j!µ`) =

{
0 s 6= 1

(µ`(k))⊕(r−1) s = 1
.

Proof. Let i : Z → A1
k be the inclusion. We have a distinguished triangle

j!µ`|U → µ` → i∗i
∗µ`

+1→
in the derived category of bounded-below complexes of abelian sheaves on the big étale site
of A1

k, which gives a long exact sequence
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H0(A1
k, j!µ`|U) H0(A1

k, µ`) H0(Z, µ`)

H1(A1
k, j!µ`|U) H1(A1

k, µ`) H1(Z, µ`)

H2(A1
k, j!µ`|U) H2(A1

k, µ`) H2(Z, µ`)

H3(A1
k, j!µ`|U) · · ·

in cohomology. The map H0(A1
k, µ`)→ H0(Z, µ`) is identified with the diagonal map µ`(k)→

(µ`(k))⊕r. Since k is algebraically closed, the étale site of Z is trivial, hence Hs(Z, µ`) =
0 for s ≥ 1. By [24, Exp. 1, III, (3.6)] we have Hs(A1

k, µ`) = 0 for s ≥ 2. We have
Gm(A1

k) ' Gm(k) and the multiplication-by-` map ×` : Gm(k) → Gm(k) is surjective; thus
H1(A1

k, µ`) = H1(A1
k,Gm)[`] = (PicA1

k)[`] = 0 by the Kummer sequence. �

Lemma 3.3.3. In the setup of Lemma 3.3.2, let n be any positive integer and let π◦ :
B(Z/(n))U → U be the trivial Z/(n)-gerbe over U . Then

Hs(A1
k, j!Rπ

◦
∗µ`) =


0 if s = 0 ,

(µ`(k))⊕(r−1) if s = 1 ,

(µgcd(n,`)(k))⊕(r−1) if s = 2 .

Proof. We set
C := j!Rπ

◦
∗µ`

for convenience. We will compute the groups Hs(A1
k, C) using the fact that the canonical

truncations τ≤sC satisfy

Hs(A1
k, τ≤tC) ' Hs(A1

k, C) (3.3.3.1)

for s ≤ t. For any s ∈ Z, the distinguished triangle

τ≤s−1C → τ≤sC → (hsC)[−s] +1→ (3.3.3.2)

gives a long exact sequence

H0(A1
k, τ≤s−1C) H0(A1

k, τ≤sC) H0−s(A1
k, j!R

sπ◦∗µ`)

H1(A1
k, τ≤s−1C) H1(A1

k, τ≤sC) H1−s(A1
k, j!R

sπ◦∗µ`)

H2(A1
k, τ≤s−1C) H2(A1

k, τ≤sC) H2−s(A1
k, j!R

sπ◦∗µ`)

(3.3.3.3)

where
hsC ' j!R

sπ◦∗µ`
since j! is exact.

Since π◦ : B(Z/(n))U → U is a trivial Z/(n)-gerbe, by Lemma B.2.2 we have

Rsπ◦∗µ` '


µ` s = 0

µ`[n] s = 1, 3, 5, . . .

µ`/(n) s = 2, 4, 6, . . .

(3.3.3.4)
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where µ`[n] and µ`/(n) are defined by the exact sequence

1→ µ`[n]→ µ`
×n→ µ` → µ`/(n)→ 1

of abelian sheaves. Since k is algebraically closed of characteristic prime to `, the sheaves
µ`[n] and µ`/(n) are both isomorphic to µgcd(n,`), but for us the difference is important for
reasons of functoriality (as ` is allowed to vary). More precisely, if `1 divides `2, then the
inclusion µ`1 → µ`2 induces an inclusion

µ`1 [n]→ µ`2 [n]

whereas

µ`1/(n)→ µ`2/(n) (3.3.3.5)

is not necessarily injective since an element x ∈ µ`1 which is not an nth power of any y1 ∈ µ`1
may be an nth power of some y2 ∈ µ`2 (in particular, if `2 = n`1, then (3.3.3.5) is the zero
morphism).

We have
τ≤0C ' h0C ' j!R

0π◦∗µ` ' j!π
◦
∗µ` ' j!µ`

since π◦ is a coarse moduli space morphism and R1π◦∗µ` ' µgcd(n,`) by (3.3.3.4). Applying
Lemma 3.3.2 to the case s = 1 in (3.3.3.3) implies H0(A1

k, τ≤1C) = 0 and gives isomorphisms
H1(A1

k, j!µ`) ' H1(A1
k, τ≤1C) and H2(A1

k, τ≤1C) ' H1(A1
k, j!µgcd(n,`)).

Since R2π◦∗µ` ' µgcd(n,`) by (3.3.3.4) and Hs(A1
k, j!µgcd(n,`)) = 0 for s = −2,−1, 0, the case

s = 2 in (3.3.3.3) gives isomorphisms Hs(A1
k, τ≤1C) ' Hs(A1

k, τ≤2C) for s = 0, 1, 2, which
implies the desired result. �

3.3.4 (Proof of Theorem 3.1.1 for char k = 3). If char k = 3, then Z consists of one point,
so taking r = 1 in Lemma 3.3.3 implies

Hs(A1
k, j!Rπ

◦
∗µ2n) = 0 (3.3.4.1)

for s = 0, 1, 2. Therefore, to compute H2(M , µ2n), it now remains to compute H2(Z, i∗Rπ∗µ2n)
in (3.3.1.4). The stabilizer of any object of M lying over i : Z → A1

k is the auto-
morphism group of an elliptic curve with j-invariant 0, which is the semidirect product
Γ = Z/(3)oZ/(4) since k has characteristic 3. The underlying reduced stack (MZ)red is the
residual gerbe associated to the unique point of |MZ | and is isomorphic to the classifying
stack BΓk. We have natural isomorphisms

H2(Z, i∗Rπ∗µ2n) ' i∗R2π∗µ2n
1' H2(MZ , µ2n)

2' H2(BΓk, µ2n)
3' H2(Γ, µ2n(k))

where isomorphism 1 follows from proper base change [75, 1.3], isomorphism 2 is by Lemma 3.3.5,
and isomorphism 3 is by the cohomological descent spectral sequence for the covering Spec k →
BΓk (and the fact that Hi(Spec k, µ2n) = 0 for i > 0 since k is algebraically closed). The
Hochschild-Serre spectral sequence for the exact sequence

1→ Z/(3)→ Γ→ Z/(4)→ 1

gives an isomorphism

H2(Γ, µ2n(k)) ' H2(Z/(4), µ2n(k)) ' µ2n(k)/(4)

where Hi(Z/(3), µ2n(k)) = 0 for i > 0 since 3 is coprime to the order of µ2n(k). Since the
first term in the last row of the diagram (3.3.1.4) is zero by (3.3.4.1), the above observations
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imply that we have natural inclusions

H2(M , µ2n)→ µ2n(k)/(4)

compatible with the inclusions µ2n ⊂ µ2n+1 for all n. The inclusion µ2n ⊂ µ2n+2 induces the
zero map µ2n(k)/(4) → µ2n+2(k)/(4), so H2(M , µ2n) → H2(M , µ2n+2) is the zero map as
well, hence

lim−→n∈N H2(M , µ2n) = 0

which by (3.3.1.1) gives H2(M ,Gm)[2n] = 0 for all n.

Lemma 3.3.5. Let X be a Deligne-Mumford stack, let I ⊆ OX be a square-zero ideal, and
let π : X0 → X denote the closed immersion corresponding to I. If n is an integer which is
invertible on X, then for all i ≥ 1 the reduction map

Hi
ét(X,µn)→ Hi

ét(X0, µn)

is an isomorphism.

Proof. We have an exact sequence

1→ 1 + I → Gm,X → π∗(Gm,X0)→ 1

of abelian sheaves on the (small) étale site of X. Since n is invertible on X, we have by the
snake lemma that µn,X → π∗(µn,X0) is an isomorphism, thus it remains to show that the
map

Hi
ét(X, π∗(µn,X0))→ Hi

ét(X0, µn,X0)

is an isomorphism. For this it suffices to show that Riπ∗(µn,X0) = 0 for i ≥ 1. The stalk of
Riπ∗(µn,X0) = 0 at a geometric point x ∈ X is the cohomology Hi

ét(SpecA, µn,Ared
) of the

reduction of some strictly henselian local ring A, which is 0 if i ≥ 1. �

3.3.6 (Proof of Theorem 3.1.1, for char k 6= 2, 3). We describe the terms in (3.3.1.4). For
the right column, we have

Hs(Z, i∗Rπ∗µ2n) ' Hs(Z/(4), µ2n(k))⊕ Hs(Z/(6), µ2n(k))

by [1, A.0.7]. For the middle column, we have

H0(M , µ2n) ' H0(A1
k, µ2n) ' µ2n(k)

since A1
k is the coarse moduli space of M , and we have

H1(M , µ2n)
1' H1(M ,Gm)[2n]

2' (Z/(12))[2n]
3' Z/(4)

where isomorphism 1 follows since k× = (k×)2n , isomorphism 2 is by [70], and isomorphism
3 holds for n� 0. For the left column, we have

Hs(τ≤1j!Rπ
◦
∗µ2n) =


0 s = 0

µ2n s = 1

µ2 s = 2

by Lemma 3.3.3.
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To summarize, (3.3.1.4) simplifies to

0 µ2n µ2n ⊕ µ2n

µ2n Z/(4) µ4 ⊕ µ2

µ2 H2(M , µ2n) µ2n/(4)⊕ µ2n/(6)

(3.3.6.1)

for n� 0, and counting the number of elements in each group in (3.3.6.1) implies that the
last morphism

H2(M , µ2n)→ µ2n/(4)⊕ µ2n/(6)

is injective. Furthermore, the inclusion

µ2n ⊂ µ2n+2

induces the zero map

µ2n/(4)⊕ µ2n/(6)→ µ2n+2/(4)⊕ µ2n+2/(6)

so the map H2(M , µ2n)→ H2(M , µ2n+2) is the zero map as well, hence

lim−→n∈N H2(M , µ2n) = 0

which by (3.3.1.1) gives H2(M ,Gm)[2n] = 0 for all n.

3.4. The case char k is 2. In this section we prove Theorem 3.1.1 (in case char k = 2) and
Theorem 3.1.2. For convenience, we denote GLn,p := GLn(Z/(p)) and SLn,p := SLn(Z/(p)).
We denote by e the identity element of GLn,p.

3.4.1 (Hesse presentation of M1,1,k). By [36, 6.2] (and explained in more detail in D.2.3),
there is a left action of GL2,3 on the Z[1

3
]-algebra

AH := Z[1
3
, µ, ω, 1

µ3−1
]/(ω2 + ω + 1)

sending [
1 0
0 −1

]
∗ (µ, ω) = (µ, ω2)[

1 0
−1 1

]
∗ (µ, ω) = (ωµ, ω)[

0 −1
1 0

]
∗ (µ, ω) = (µ+2

µ−1
, ω)

(3.4.1.1)

for which the corresponding right action of GL2,3 on the Z[1
3
]-scheme

SH := SpecAH

gives a presentation

M1,1,Z[ 1
3

] ' [SH/GL2,3] (3.4.1.2)

of M1,1,Z[ 1
3

] as a global quotient stack. The morphism

SH →M1,1,Z[ 1
3

] (3.4.1.3)

is given by the elliptic curve
X3 + Y 3 + Z3 = 3µXY Z
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over SH.

3.4.2 (Cohomological descent). Let k be an algebraically closed field of characteristic 2.
The Brauer map αM1,1,k

: Br M1,1,k → Br′M1,1,k is an isomorphism by Lemma 3.2.1. By
Lemma 3.2.4, there is only 2-torsion in Br M1,1,k. By Grothendieck’s fppf-étale comparison
theorem for smooth commutative group schemes [43, (11.7)], it suffices to compute the 2-
torsion in H2

fppf(M1,1,k,Gm). Since Spec k is a reduced scheme, we have

H1
fppf(M1,1,k,Gm) = Pic(M1,1,k) = Z/(12)

by [36, 1.1]. Thus, for any integer n, the fppf Kummer sequence

1→ µ2 → Gm
×2→ Gm → 1 (3.4.2.1)

gives an exact sequence

1→ Z/(2)
∂→ H2

fppf(M1,1,k, µ2)→ H2
fppf(M1,1,k,Gm)[2]→ 1 (3.4.2.2)

of abelian groups. It remains to compute the middle term H2
fppf(M1,1,k, µ2).

The cohomological descent spectral sequence associated to the cover (3.4.1.3) is of the
form

Ep,q
2 = Hp(GL2,3,H

q
fppf(SH,k, µ2)) =⇒ Hp+q

fppf(M1,1,k, µ2) (3.4.2.3)

with differentials Ep,q
2 → Ep+2,q−1

2 .

Let
ξ ∈ k

be a fixed primitive 3rd root of unity. By the Chinese Remainder Theorem, there is a
k-algebra isomorphism

AH,k = k[µ, ω, 1
µ3−1

]/(ω2 + ω + 1)→ k[ν1,
1

ν31−1
]× k[ν2,

1
ν32−1

] (3.4.2.4)

sending µ 7→ (ν1, ν2) and ω 7→ (ξ, ξ2). Since SH,k is a smooth curve over an algebraically
closed field, we have by [69, III.2.22 (d)] that Hq

ét(SH,k,Gm) = 0 for all q ≥ 2; since
SH,k is a disjoint union of two copies of a distinguished affine open subset of A1

k, we have
H1

ét(SH,k,Gm) = Pic(SH,k) = 0. By [43, (11.7)] we have Hq
fppf(SH,k,Gm) = Hq

ét(SH,k,Gm) for

all q ≥ 0; thus the fppf Kummer sequence implies Hq
fppf(SH,k, µ2) = 0 for all q ≥ 2. Fur-

thermore, we have H0
fppf(SH,k, µ2) = 0 since SH,k is the product of two integral domains of

characteristic 2. Thus the only nonzero terms on the E2-page of (3.4.2.3) occur on the q = 1
row, so we have an isomorphism

Hp+1
fppf(M1,1,k, µ2) ' Hp(GL2,3,H

1
fppf(SH,k, µ2)) (3.4.2.5)

for all p ≥ 0. We are interested in the case p = 1.

3.4.3 (Description of the GL2,3-action on H1
fppf(SH,k, µ2)). We describe the abelian group

M := H1
fppf(SH,k, µ2)

and the left GL2,3-module structure it inherits from (3.4.1.1). Since k[µ, (µ3 − 1)−1] is a
principal localization of the polynomial ring k[µ] by a polynomial µ3−1 = (µ−1)(µ−ξ)(µ−ξ2)
splitting into three distinct irreducible factors, we have an isomorphism

(k[µ, 1
µ3−1

])× ' k× · (µ− 1)Z · (µ− ξ)Z · (µ− ξ2)Z (3.4.3.1)
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of abelian groups. Thus (3.4.2.4) and the Kummer sequence (3.4.2.1) gives an isomorphism

M ' (Z/(2))⊕6 (3.4.3.2)

of abelian groups, with generators given by the classes of νi − ξj for i = 1, 2 and j = 0, 1, 2.

The isomorphism (3.4.2.4) is given by the map

s1(µ)ω + s0(µ) 7→
(
s1(ν1)ξ + s0(ν1), s1(ν2)ξ2 + s0(ν2)

)
(3.4.3.3)

for s0, s1 ∈ k[µ, 1
µ3−1

]. The inverse of (3.4.2.4) is given by the map

(f1(ν1), f2(ν2)) 7→ f1(µ)

(
ω

ξ − ξ2
+

ξ

ξ − 1

)
+ f2(µ)

(
−ω
ξ − ξ2

+
−1

ξ − 1

)
(3.4.3.4)

where fi(νi) ∈ k[νi,
1

ν3i −1
]. (Note that, if we set A1(t) := t

ξ−ξ2 + ξ
ξ−1

and A2(t) := −t
ξ−ξ2 + −1

ξ−1
,

then A1(t) + A2(t) = 1 and Ai(ξ
j) is the Kronecker delta function.)

A computation with (3.4.1.1), (3.4.3.3), (3.4.3.4) shows that the action of GL2,3 on the
right hand side of (3.4.2.4) is given by[

1 0
0 −1

]
∗ (f1(ν1), f2(ν2)) = (f2(ν1), f1(ν2))[

1 0
−1 1

]
∗ (f1(ν1), f2(ν2)) = (f1(ξν1), f2(ξ2ν2))[

0 −1
1 0

]
∗ (f1(ν1), f2(ν2)) = (f1(ν1+2

ν1−1
), f2(ν2+2

ν2−1
))

(3.4.3.5)

for fi(νi) ∈ k[νi,
1

ν3i −1
]. A computation with (3.4.3.5) (and using that char k = 2) shows that

the action of GL2,3 on (3.4.3.2) is given by (3.4.3.6), where every element is considered up
to multiplication by k×.

ν1 − 1 ν1 − ξ ν1 − ξ2 ν2 − 1 ν2 − ξ ν2 − ξ2

M1 :=

[
1 0
0 −1

]
ν2 − 1 ν2 − ξ ν2 − ξ2 ν1 − 1 ν1 − ξ ν1 − ξ2

M2 :=

[
1 0
−1 1

]
ν1 − ξ2 ν1 − 1 ν1 − ξ ν2 − ξ ν2 − ξ2 ν2 − 1

i :=

[
0 −1
1 0

]
1

ν1 − 1

ν1 − ξ2

ν1 − 1

ν1 − ξ
ν1 − 1

1

ν2 − 1

ν2 − ξ2

ν2 − 1

ν2 − ξ
ν2 − 1

(3.4.3.6)

3.4.4. We compute H1(GL2,3,M). (In Appendix E we provide Magma code that can be
used to verify this computation, using (3.4.3.6).) We have a filtration of groups

Q8 E SL2,3 E GL2,3 (3.4.4.1)

where each is a normal subgroup of the next. Here Q8 denotes the quaternion group

Q8 = {±e,±i,±j,±k : ijk = i2 = j2 = k2 = −e}
and is identified with the subgroup of GL2,3 as follows:

i =

[
0 −1
1 0

]
j =

[
−1 −1
−1 1

]
k =

[
1 −1
−1 −1

]
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The quotient GL2,3 / SL2,3 is cyclic of order 2 and is generated by M1 in (3.4.3.6). The
quotient SL2,3 /Q8 is cyclic of order 3 and is generated by M2 in (3.4.3.6). For i = 1, 2, let
〈Mi〉 denote the subgroup of GL2,3 generated by Mi. We note that SL2,3 is generated by i
and M2.

Let
F : (Z[GL2,3] -Mod)→ (Z[SL2,3] -Mod)

be the forgetful functor. An inspection of (3.4.3.6) implies that F (M) is the direct sum N1⊕
N2 where Ni is the SL2,3-submodule of F (M) generated by the classes of νi−1, νi−ξ, νi−ξ2,
and moreover M1 switches the summands N1 and N2. Under the adjunction

HomSL2,3(F (M), N1) ' HomGL2,3(M, Ind
GL2,3

SL2,3
(N1))

the projection map F (M) ' N1⊕N2 → N1 onto the first factor corresponds to a morphism

M → Ind
GL2,3

SL2,3
(N1) (3.4.4.2)

of GL2,3-modules. Given m ∈ M , write m = n1 + n2 for ni ∈ Ni; then the image of m
under (3.4.4.2) is the function ϕm ∈ HomZ[SL2,3](Z[GL2,3], N1) such that ϕm([e]) = n1 and
ϕm([M1]) = M1 · n2; thus (3.4.4.2) is an isomorphism.

A computation using (3.4.3.6) and the identities

k = M−1
2 · i ·M2

i = M−1
2 · j ·M2

j = M−1
2 · k ·M2

(3.4.4.3)

shows that the action of an element g ∈ SL2,3 on N1 is by left multiplication by the matrix
Tg as in (3.4.4.4), with elements of N1 being viewed as vertical vectors. We note T−e = T 2

i =
T 2
j = T 2

k = idN1 , i.e. −e acts trivially on N1.

g M2 i j k

Tg

0 1 0
0 0 1
1 0 0

 1 1 1
0 0 1
0 1 0

 0 1 0
1 0 0
1 1 1

 0 0 1
1 1 1
1 0 0

 (3.4.4.4)

Since M is an induced module, the restriction map

H1(GL2,3,M)→ H1(SL2,3, N1) (3.4.4.5)

is an isomorphism so we reduce to computing H1(SL2,3, N1).

The Hochschild-Serre spectral sequence for the inclusion Q8 E SL2,3 degenerates on the E2

page since the order of the quotient group 〈M2〉 is coprime to the order of N1. In particular
the restriction map

H1(SL2,3, N1)→ H0(〈M2〉,H1(Q8, N1)) (3.4.4.6)

is an isomorphism.

Let Ci(Q8, N1) := Fun((Q8)i, N1) denote the group of inhomogeneous i-cochains. By
Remark 3.4.5, the group SL2,3 has a natural left action on Ci(Q8, N1) (by entrywise conju-
gation on the source (Q8)i and by its usual action on N1) such that the differentials in the
inhomogeneous cochain complex

C0(Q8, N1)
d0→ C1(Q8, N1)

d1→ C2(Q8, N1)→ · · ·
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are SL2,3-linear. Since the order of the subgroup 〈M2〉 is coprime to the orders of Ci(Q8, N1),
we have that H0(〈M2〉,H1(Q8, N1)) ' (H1(Q8, N1))M2 is isomorphic to the middle cohomology
of the sequence

(C0(Q8, N1))M2
(d0)M2

→ (C1(Q8, N1))M2
(d1)M2

→ (C2(Q8, N1))M2

i.e. cohomology commutes with taking M2-invariants.

We now describe ker((d1)M2) and im((d0)M2).

An element f ∈ (C1(Q8, N1))M2 is a function f : Q8 → N1 satisfying

f(g) = M2 · f(M−1
2 gM2) (3.4.4.7)

for all g ∈ Q8. We have that f ∈ ker d1 if

f(g1 · g2) = g1 · f(g2) + f(g1) (3.4.4.8)

for all g1, g2 ∈ Q8.

Suppose f ∈ ker((d1)M2) = (ker d1) ∩ (C1(Q8, N1))M2 ; taking (g1, g2) = (e, e) in (3.4.4.8)
implies f(e) = 0; taking g = −e in (3.4.4.7) and using (3.4.4.4) implies that

f(−e) = (s, s, s)

for some s ∈ Z/(2); taking (g1, g2) = (−e,−e) in (3.4.4.8) and using the fact that −e acts
trivially on N1 implies that 2f(−e) = 0, which imposes no condition on s. We note that

g · f(−e) = f(−e)
for any g ∈ SL2,3.

Setting g = i, j, k in (3.4.4.7) and using (3.4.4.3) gives

f(i) = M2 · f(k)

f(j) = M2 · f(i)

f(k) = M2 · f(j)

(3.4.4.9)

respectively; thus we have

f(i) = (s1, s2, s3)

f(j) = (s2, s3, s1)

f(k) = (s3, s1, s2)

for some s1, s2, s3 ∈ Z/(2).

Setting either g1 = −e or g2 = −e in (3.4.4.8) implies

f(−g) = f(g) + f(−e) (3.4.4.10)

for any g ∈ Q8.

Setting (g1, g2) = (±i,±j), (±j,±k), (±k,±i) in (3.4.4.8) (where the signs can vary inde-
pendently of each other) all impose the condition

s2 = 0 (3.4.4.11)

for s, s2 (check the case (g1, g2) = (i, j), then use (3.4.4.10) to show that changing the signs
don’t give new relations, then use (3.4.4.9) to show that one can permute using left multi-
plication by M2).
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Setting (g1, g2) = (±j,±i), (±k,±j), (±i,±k) in (3.4.4.8) (where the signs can vary inde-
pendently of each other) all impose the condition

s = s3 (3.4.4.12)

for s3 (check the case (g1, g2) = (j, i), then use (3.4.4.10) to show that changing the signs don’t
give new relations, then use (3.4.4.9) to show that one can permute using left multiplication
by M2).

Setting (g1, g2) = (±g,±g) for g = i, j, k (where the signs can vary independently of each
other) all impose the condition

s = s2 + s3 (3.4.4.13)

on s, s2, s3 (check the case g = i, then use (3.4.4.10) to show that changing the signs don’t
give new relations, then use (3.4.4.9) to show that one can permute using left multiplication
by M2), but (3.4.4.13) is implied by (3.4.4.11) and (3.4.4.12).

These are the only relations satisfied by the s, s1, s2, s3. Thus we have

ker((d1)M2) ' Z/(2)⊕ Z/(2)

since there are no relations on s, s1 ∈ Z/(2).

An element of (C0(Q8, N1))M2 corresponds to an element (t, t, t) ∈ N1; since every ele-
ment of SL2,3 fixes elements of this form (see (3.4.4.4)), the image of (t, t, t) under (d0)M2

corresponds to the function f : Q8 → N1 sending every element to (0, 0, 0), in other words

im((d1)M2) = 0

which implies

H0(〈M2〉,H1(Q8, N1)) ' Z/(2)⊕ Z/(2) (3.4.4.14)

and so

Br M1,1,k = H2
fppf(M1,1,k,Gm)[2] = Z/(2) (3.4.4.15)

by combining (3.4.4.14) with (3.4.4.6), (3.4.4.5), (3.4.2.5), and (3.4.2.2). �

Remark 3.4.5 (The inhomogeneous cochain complex admits a left G-action). Let G be a
group, let H E G be a normal subgroup, and let M be a left G-module. Set Pi := Z[H i+1];
we denote by [h0, . . . , hi] the canonical Z-basis of Pi. We view Pi as a left H-module via the
diagonal action h · [h0, . . . , hi] = [hh0, . . . , hhi]; then Pi is a free left Z[H]-module with basis
consisting of elements of the form [e, h1, . . . , hi]. Applying the functor HomH(−,M) to the
bar resolution

· · · → P2 → P1 → P0 → Z→ 0

gives the usual homogeneous cochain complex

HomZ[H](P0,M)
δ0→ HomZ[H](P1,M)

δ1→ HomZ[H](P2,M)→ · · ·
whose cohomology gives Hi(H,M).

We note that there is a natural left G-action on HomZ[H](Pi,M) for which the differential
δi : HomZ[H](Pi,M) → HomZ[H](Pi+1,M) is G-linear. Namely, the action of g ∈ G on
ϕi ∈ HomZ[H](Pi,M) is described by

(gϕi)([h0, . . . , hi]) := g · (ϕi([g−1h0g, . . . , g
−1hig]))
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for all h0, . . . , hi ∈ H. Let
Ci(H,M) := Fun(H i,M)

denote the abelian group of functions H i →M . Via the usual abelian group isomorphism

HomZ[H](Pi,M) ' Ci(H,M)

sending ϕi 7→ {(h1, . . . , hi) 7→ ϕi(e, h1, h1h2, . . . , h1 · · · hi)}, the abelian group Ci(H,M) in-
herits a left action of G described by

(gfi)(h1, . . . , hi) = g · (fi(g−1h1g, . . . , g
−1hig)) (3.4.5.1)

for g ∈ G and fi ∈ Ci(H,M). The inhomogeneous cochain complex

C0(H,M)
d0→ C1(H,M)

d1→ C2(H,M)→ · · ·
is G-linear as well.

For f0 ∈ C0(H,M), we have (d0f0)(h1) = h1 · f0(e)− f0(e).

For f1 ∈ C1(H,M), we have (d1f1)(h1, h2) = h1 · f1(h2)− f1(h1h2) + f1(h1).

Let Σ := G/H be the quotient; then there is an induced left action of Σ on the cohomology
hi(C•(H,M)). In case G → Σ has a section, in which case G is the semi-direct product
G ' H o Σ, then this Σ-action coincides with the one obtained by restricting the G-action
on C•(H,M) to Σ.

Remark 3.4.6. The arguments used in 3.4.3 and 3.4.4 are similar to those of Mathew and
Stojanoska [64, Appendix B], who show H1(GL2,3, (TMF (3)0)×) = Z/(12) where GL2,3 acts
on

TMF (3)0 = Z[1
3
, ζ, t, 1

t
, 1

1−ζt ,
1

1+ζ2t
]/(ζ2 + ζ + 1) (3.4.6.1)

as in [89, §4.3].

Note 3.4.7 (Explicit description of inhomogeneous 1-cocycles). We describe the 1-cocycles
GL2,3 → M obtained via the compositions (3.4.4.6) and (3.4.4.5). By our computation in
3.4.4, the 1-cocycles

fQ8 : Q8 → N1

are of the form

e 7→ (0, 0, 0) −e 7→ (s, s, s)

i 7→ (s1, 0, s) −i 7→ (s1 + s, s, 0)

j 7→ (0, s, s1) −j 7→ (s, 0, s1 + s)

k 7→ (s, s1, 0) −k 7→ (0, s1 + s, s)

for some s, s1 ∈ Z/(2). Suppose
fSL2,3 : SL2,3 → N1

is a 1-cocycle such that fSL2,3 is fixed by the action of M2 (see (3.4.5.1)) and which satisfies
fSL2,3(g) = fQ8(g) for g ∈ Q8. We have

M2 · fSL2,3(M
−1
2 · g ·M2) = fSL2,3(g)

for all g ∈ SL2,3; taking g = M2 gives M2 · fSL2,3(M2) = fSL2,3(M2). Taking g1 = g2 = M2 in
the 1-cocycle condition (3.4.4.8) then gives fSL2,3(M2) = 0. Thus we have

fSL2,3(g ·M2) = fSL2,3(g) (3.4.7.1)
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for any g ∈ SL2,3, again by (3.4.4.8).

By Shapiro’s lemma (3.4.4.5), there is a 1-cocycle

fGL2,3 : GL2,3 → Ind
GL2,3

SL2,3
(N1)

such that precomposing with the inclusion SL2,3 ⊂ GL2,3 and postcomposing with the pro-

jection Ind
GL2,3

SL2,3
(N1) → N1 gives fSL2,3 . After altering fGL2,3 by a 1-coboundary, we may

assume by 3.4.8 that fGL2,3 is given by the formula (3.4.8.1), namely

fGL2,3(g ·Mi
1)([Mj

1]) := fSL2,3(M
j
1 · g ·M

−j
1 ) (3.4.7.2)

for any i, j ∈ {0, 1} and g ∈ SL2,3. Any element g ∈ GL2,3 may be expressed in the form

h ·Mi2
2 ·Mi1

1

where i1 ∈ {0, 1} and i2 ∈ {0, 1, 2} and h ∈ Q8. We have formulas

M1 ·M−1
2 ·M1 = M−1

2

M1 · i ·M−1
1 = −i

M1 · j ·M−1
1 = −k

M1 · k ·M−1
1 = −j

(3.4.7.3)

and so

fGL2,3(h ·Mi2
2 ·Mi1

1 )([Mj
1])

1
= fSL2,3(M

j
1 · h ·Mi2

2 ·M
−j
1 )

= fSL2,3((M
j
1 · h ·M

−j
1 ) · (Mj

1 ·Mi2
2 ·M

−j
1 ))

2
= fSL2,3(M

j
1 · h ·M

−j
1 )

3
= fQ8(M

j
1 · h ·M

−j
1 )

where equality 1 is by (3.4.7.2) and equality 2 is by (3.4.7.1) and (3.4.7.3) and equality 3 is
since Mj

1 · h ·M
−j
1 ∈ Q8 (see (3.4.7.3)). This is summarized in (3.4.7.4) below.

fGL2,3(e) = (fQ8(e), fQ8(e)) = ((0, 0, 0), (0, 0, 0))

fGL2,3(i) = (fQ8(i), fQ8(−i)) = ((s1, 0, s), (s1 + s, s, 0))

fGL2,3(j) = (fQ8(j), fQ8(−k)) = ((0, s, s1), (0, s1 + s, s))

fGL2,3(k) = (fQ8(k), fQ8(−j)) = ((s, s1, 0), (s, 0, s1 + s))

(3.4.7.4)

3.4.8 (The Shapiro isomorphism and inhomogeneous 1-cocycles). 15 Let G be a group, let
H ⊆ G be a normal subgroup of finite index such that the projection G→ G/H has a section
G/H → G whose image corresponds to a subgroup Σ of G. Let N be a left H-module and
let IndGHN := HomZ[H](Z[G], N) denote the associated induced left G-module. We recall

that the left G-action on IndGHN sends ϕ 7→ gϕ where (gϕ)(x) = ϕ(xg).

We describe the inverse of the Shapiro isomorphism H1(G, IndGHN)→ H1(H,N) in terms
of inhomogeneous cochains. Suppose given a function

f : H → N

which satisfies
f(h1h2) = h1 · f(h2) + f(h1)

15Ehud Meir’s MathOverflow post [68] was helpful in working out the details of this section.
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for all h1, h2 ∈ H. We construct a 1-cocycle

s : G→ IndGH(N)

which restricts to f , i.e. satisfies s(h)(1 · [e]) = f(h) for all h ∈ H. Note that every element
of g ∈ G may be written uniquely in the form

g = hσ

for h ∈ H and σ ∈ Σ, hence the collection {[σ]}σ∈Σ forms a basis for Z[G] as a left Z[H]-
module. We set

s(hσ)([ξ]) := f(ξhξ−1) (3.4.8.1)

for h ∈ H and σ, ξ ∈ Σ and extend Z[H]-linearly. Given g1, g2 ∈ G where gi = hiσi with
hi ∈ H and σi ∈ Σ, for any ξ ∈ Σ we have

s(g1g2)([ξ]) = s(h1σ1h2σ2)([ξ])

= s(h1(σ1h2σ
−1
1 )σ1σ2)([ξ])

= f(ξh1(σ1h2σ
−1
1 )ξ−1)

and

(g1 · s(g2))([ξ]) = s(h2σ2)([ξh1σ1])

= s(h2σ2)([(ξh1ξ
−1)ξσ1])

= (ξh1ξ
−1) · s(h2σ2)([ξσ1])

= (ξh1ξ
−1) · f((ξσ1)h2(ξσ1)−1)

and

s(g1)([ξ]) = s(h1σ1)([ξ]) = f(ξh1ξ
−1)

which implies
s(g1g2) = g1 · s(g2) + s(g1)

by Z[H]-linearity and since f is a 1-cocycle; hence s is a 1-cocycle. �

3.4.9 (Proof of Theorem 3.1.2). Let ksep be a fixed separable closure of k and let Gk :=

Gal(ksep/k) ' Ẑ be the absolute Galois group. Set M := M1,1,k and M sep := M1,1,ksep . We
have Br M = Br′M by Lemma 3.2.1. The Leray spectral sequence for the map M → Spec k
is of the form

Ep,q
2 = Hp(Gk,H

q
ét(M

sep,Gm)) =⇒ Hp+q
ét (M ,Gm)

with differentials Ep,q
2 → Ep+2,q−1

2 . Here we have Γ(M sep,Gm) = Γ(A1
ksep ,Gm) = (ksep)×

since M sep → A1
ksep is the coarse moduli space map. Since k is a finite field, we have that

H0
ét(M

sep,Gm) is a torsion group. Moreover H1
ét(M

sep,Gm) ' Pic(M sep) ' Z/(12) is a
torsion group by [36]. Thus by e.g. [34, 4.3.7] we have Ep,q

2 = 0 for (p, q) ∈ Z≥2 × {0, 1}.
This means there is an exact sequence

0→ E1,1
2 → H2

ét(M ,Gm)→ E0,2
2 → 0 (3.4.9.1)

of abelian groups.
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By [36], we have that Pic(M sep) ' Z/(12) is generated by the class of the Hodge bundle;
since Gk acts trivially on invariant differentials of elliptic curves E → S where S is a k-
scheme, the action of Gk on Pic(M sep) is trivial. Hence we have

E1,1
2 = H1(Gk,H

1
ét(M

sep,Gm))
1
= Homcont(Gk,Pic(M sep))

2
= Z/(12)

where equality 1 is by [34, 4.3.7] and equality 2 is since Gk ' Ẑ. We have

E0,2
2 = H0(Gk,H

2
ét(M

sep,Gm))
1
= (Z/(2))Gk 2

= Z/(2)

where equality 1 is by the computation for an algebraically closed field (Theorem 3.1.1) and
also the fact that H2

ét(M
sep,Gm) is a torsion group (see [4, Proposition 2.5 (iii)]) and equality

2 is because any group action on the group of order 2 is necessarily trivial. Thus (3.4.9.1)
reduces to a natural extension

0→ Z/(12)→ Br M → Z/(2)→ 0 (3.4.9.2)

and it remains to see whether (3.4.9.2) is split. It suffices to compute the size of (Br M )[2],
since (Br M )[2] has 4 or 2 elements depending on whether (3.4.9.2) is split or not, respec-
tively.

As in 3.4.2, the fppf Kummer sequence

1→ µ2 → Gm
×2→ Gm → 1 (3.4.9.3)

gives an exact sequence

1→ Z/(2)
∂→ H2

fppf(M , µ2)→ (Br M )[2]→ 1 (3.4.9.4)

of abelian groups. We compute H2
fppf(M , µ2) using the Leray spectral sequence which is of

the form
Ep,q

2 = Hp(Gk,H
q
fppf(M

sep, µ2)) =⇒ Hp+q
fppf(M , µ2)

with differentials Ep,q
2 → Ep+2,q−1

2 . We have

Hq
fppf(M

sep, µ2) =


0 if q = 0

Z/(2) if q = 1

Z/(2)⊕ Z/(2) if q = 2

from the fppf Kummer sequence on M sep, where the q = 0 case follows since we are in
characteristic 2 and Γ(M sep,Gm) = Γ(A1

ksep ,Gm) = (ksep)×, the q = 1 case is since the
multiplication-by-2 map on Γ(M sep,Gm) = (ksep)× is an isomorphism, and the q = 2 case
is by the computation in the algebraically closed case (combine (3.4.2.5), (3.4.4.5), (3.4.4.6),
(3.4.4.14)).

Since k has characteristic 2, the 2-cohomological dimension of k satisfies cd2(k) ≤ 1 by
e.g. [38, 6.1.9]; hence Ep,q

2 = 0 for p ≥ 2 and any q ∈ {0, 1, 2}. Hence there is an exact
sequence

0→ H1(Gk,H
1
fppf(M

sep, µ2))→ H2
fppf(M , µ2)→ H0(Gk,H

2
fppf(M

sep, µ2))→ 0 (3.4.9.5)

of abelian groups. As above, the Gk-action on H1
fppf(M

sep, µ2) is necessarily trivial so we

have an isomorphism H1(Gk,H
1
fppf(M

sep, µ2)) ' Homcont(Gk,Z/(2)) ' Z/(2).

To describe H0(Gk,H
2
fppf(M

sep, µ2)), we describe the Gk-action on H2
fppf(M

sep, µ2). Let

ξ ∈ ksep
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be a fixed root of x2 + x+ 1 (i.e. a primitive 3rd root of unity).

If ξ ∈ k, then Gk acts trivially on H2
fppf(M

sep, µ2) by the description in 3.4.3; hence

H0(Gk,H
2
fppf(M

sep, µ2)) has 4 elements, hence H2
fppf(M , µ2) has 8 elements by (3.4.9.5), hence

(Br M )[2] has 4 elements by (3.4.9.4), hence Br M ' Z/(2)⊕ Z/(12).

Suppose ξ 6∈ k. The k-algebra map

k[µ, ω, 1
µ3−1

]/(ω2 + ω + 1)→ ksep[ν1,
1

ν31−1
]× ksep[ν2,

1
ν32−1

]

sending µ 7→ (ν1, ν2) and ω 7→ (ξ, ξ2) induces an isomorphism

k[µ, ω, 1
µ3−1

]/(ω2 + ω + 1)⊗k ksep → ksep[ν1,
1

ν31−1
]× ksep[ν2,

1
ν32−1

] (3.4.9.6)

of ksep-algebras. The inverse to (3.4.9.6) sends

(f1(ν1), f2(ν2)) 7→ f1(µ)

(
ω ⊗ 1

ξ − ξ2
+ 1⊗ ξ

ξ − 1

)
+f2(µ)

(
(−ω)⊗ 1

ξ − ξ2
+ (−1)⊗ 1

ξ − 1

)
for fi(νi) ∈ k[νi,

1
ν3i −1

].

Let
λ ∈ Gk

be an automorphism of ksep such that λ(ξ) = ξ2. Then the k-algebra automorphism of
ksep[ν1,

1
ν31−1

]× ksep[ν2,
1

ν32−1
] induced by (3.4.9.6) sends (ν1, 0) 7→ (0, ν2) and (0, ν2) 7→ (ν1, 0)

and (ξ, 0) 7→ (0, ξ2) and (0, ξ) 7→ (ξ2, 0). We see that the action of λ on M (see (3.4.3.2)) is
given by (3.4.9.7).

ν1 − 1 ν1 − ξ ν1 − ξ2 ν2 − 1 ν2 − ξ ν2 − ξ2

λ ν2 − 1 ν2 − ξ2 ν2 − ξ ν1 − 1 ν1 − ξ2 ν1 − ξ
(3.4.9.7)

A computation with (3.4.9.7) and (3.4.3.6) shows that

λgλ−1 ·m = g ·m (3.4.9.8)

for any m ∈M and g ∈ GL2,3.

Let fGL2,3 : GL2,3 → M be an inhomogeneous 1-cocycle as in Note 3.4.7. Multiplying the
1-cocycle condition (3.4.4.8) on the left by λ gives

λ · fGL2,3(g1 · g2) = λg1 · fGL2,3(g2) + λ · fGL2,3(g1)

1
= g1 · (λ · fGL2,3(g2)) + λ · fGL2,3(g1)

where equality 1 follows from (3.4.9.8). Hence the function λ · fGL2,3 : GL2,3 → M sending
g 7→ λ · fGL2,3(g) is a 1-cocycle as well. Using (3.4.9.7) and (3.4.7.4), we have that

(λ · fGL2,3)(e) = ((0, 0, 0), (0, 0, 0))

(λ · fGL2,3)(i) = ((s1 + s, 0, s), (s1, s, 0))

(λ · fGL2,3)(j) = ((0, s, s1 + s), (0, s1, s))

(λ · fGL2,3)(k) = ((s, s1 + s, 0), (s, 0, s1))

(3.4.9.9)
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and so
fGL2,3(e)− (λ · fGL2,3)(e) = ((0, 0, 0), (0, 0, 0))

fGL2,3(i)− (λ · fGL2,3)(i) = ((s, 0, 0), (s, 0, 0))

fGL2,3(j)− (λ · fGL2,3)(j) = ((0, 0, s), (0, s, 0))

fGL2,3(k)− (λ · fGL2,3)(k) = ((0, s, 0), (0, 0, s))

(3.4.9.10)

for the same s, s1 ∈ Z/(2) as in (3.4.7.4).

Suppose fGL2,3 and λ · fGL2,3 differ by a 1-coboundary, in other words there exists an
element

m := ((m1
1,m

1
2,m

1
3), (m2

1,m
2
2,m

2
3)) ∈M

such that

fGL2,3(g)− (λ · fGL2,3)(g) = g ·m−m (3.4.9.11)

for all g ∈ GL2,3. By (3.4.9.10), taking g = M2 in (3.4.9.11) gives mi := mi
1 = mi

2 = mi
3 for

i = 1, 2; then taking g = M1 gives m1 = m2; then taking g = i gives m = 0. We see that
fGL2,3 and λ · fGL2,3 differ by a 1-coboundary if and only if s = 0.

Hence we have that H0(Gk,H
2
fppf(M

sep, µ2)) ' Z/(2), hence H2
fppf(M , µ2) has 4 elements

by (3.4.9.5), hence (Br M )[2] has 2 elements by (3.4.9.4), hence Br M ' Z/(24). �

Question 3.4.10. In Theorem 3.1.1, “describe” the Azumaya OM1,1,k
-algebra corresponding

to the unique nontrivial class in Br M1,1,k ' Z/(2). Is it a cyclic algebra? Is the cup product
map

H1
fppf(M1,1,k,Z/(2n))× H1

fppf(M1,1,k, µ2n)→ H2
fppf(M1,1,k, µ2)

surjective for some n ∈ N?

Remark 3.4.11. In Theorem 3.1.1, the nontrivial Brauer class may be represented by an
Azumaya OM1,1,k

-algebra of rank 482. Indeed, let G →M1,1,k be the Gm-gerbe corresponding
to the nontrivial class in Br(M1,1,k). Let GSH

be the fiber product G ×M1,1,k
SH (where the

second projection is (3.4.1.3)), and let π : GSH
→ G be the projection. Since Br(SH) = 0,

there exists a 1-twisted invertible sheaf L on GSH
. The pushforward π∗L is a 1-twisted finite

locally free sheaf on G of rank 48, since π is finite locally free of rank |GL2,3 | = 48. Then
the endomorphism algebra EndOG(π∗L) is a 0-twisted Azumaya OG-algebra. �
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4. The cohomological Brauer group of Gm-gerbes

The purpose of this section is to prove Theorem 4.1.2. This material is more or less the
same as in [85].

4.1. Main theorem and introductory remarks. Gabber in his thesis described the coho-
mological Brauer group of a Brauer-Severi scheme X → S as a quotient of the cohomological
Brauer group of the base scheme S. More precisely, he proved the following:

Theorem 4.1.1. [37, II, Theorem 2] Let S be a scheme, let πX : X → S be a Brauer-Severi
scheme. Then the sequence

H0
ét(S,Z)→ Br′ S

π∗X→ Br′X → 0 (4.1.1.1)

is exact, where the first map sends 1 7→ [X].

In this section we prove an analogue of the above theorem for torsion Gm-gerbes.

Theorem 4.1.2. Let S be a scheme, let πG : G → S be a Gm,S-gerbe corresponding to a
torsion class [G] ∈ Br′ S. Then the sequence

H0
ét(S,Z)→ Br′ S

π∗G→ Br′ G → 0 (4.1.2.1)

is exact, where the first map sends 1 7→ [G].

Remark 4.1.3. Let A be an Azumaya OS-algebra and let πX : X → S and πG : G → S be
the associated Brauer-Severi scheme and Gm-gerbe of trivializations, respectively. By [78,
§8, 4] there exists a finite locally free OX-module J and an OX-algebra isomorphism π∗XA '
EndOX (J)op. There is an OX-algebra isomorphism EndOX (J)op ' EndOX (J∨) sending ϕ 7→
ϕ∨. Since G is the gerbe of trivializations of A, we have an S-morphism f : X → G; this
induces a commutative triangle π∗X = f ∗π∗G on the cohomological Brauer groups of S,G, X.
Since [G] ∈ kerπ∗G ⊆ kerπ∗X and ker π∗X is generated by [G] by Theorem 4.1.1, we have
exactness of (4.1.2.1) at Br′ S. The difficulty of Theorem 4.1.2 is in showing that π∗G is
surjective.

Remark 4.1.4. Our Theorem 4.1.2 provides a class of algebraic stacks G for which the Brauer
map αG is surjective. Indeed, if S is a scheme for which αS is surjective and πG : G → S is
a torsion Gm-gerbe, then αG is surjective by Theorem 4.1.2 and functoriality of the Brauer
map. On the other hand, if S is a scheme for which αS is not surjective, then αG is not
surjective for G = BGm,S. This follows from the observation that the projection πG : G → S
has a section σG : S → G.

Remark 4.1.5. By Theorem 4.1.2 and Remark 4.1.3, the pullback map

f ∗ : Br′ G → Br′X (4.1.5.1)

is an isomorphism, in other words the cohomological Brauer groups of a Brauer-Severi scheme
and its associated Gm-gerbe are isomorphic. It would be interesting to give a more direct
proof that (4.1.5.1) is an isomorphism. Indeed, smooth-locally on X, the map f : X → G is
isomorphic to An+1 \ {0} and we give a proof using this fact in 4.5.6, under the additional
hypotheses that the base S is regular and that its function field has characteristic 0. To
remove these hypotheses, it would be necessary to study the differential E0,2

3 on the 3rd page
of the Leray spectral sequence associated to f . We note however that showing that (4.1.5.1)
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is an isomorphism for arbitrary bases S would not be enough to prove Theorem 4.1.2 in case
the Brauer map αS : BrS → Br′ S is not surjective, i.e. there exist torsion Gm,S-gerbes not
corresponding to any Azumaya OS-algebra.

4.1.6. We outline the proof of Theorem 4.1.2. As in [37], the desired exact sequence (4.1.2.1)
comes from the Leray spectral sequence for the map πG and sheaf Gm,G. One step in the
proof of Theorem 4.1.2 is to show the vanishing of the higher pushforwards R2πG,∗Gm,G. The
stalk of R2πG,∗Gm,G at a geometric point s of S is isomorphic to H2

ét(BGm,A,Gm,BGm,A) where

A = Osh
S,s is the strict henselization of S at s. We compute H2

ét(BGm,A,Gm,BGm,A) using the
descent spectral sequence associated to the covering ξ : SpecA → BGm,A, whose qth row
is the Čech complex associated to the cosimplicial abelian group obtained by applying the
functor Hq

ét(−,Gm) to the simplicial A-scheme {G×pm,A}p≥0 obtained by taking fiber products

of ξ. In Section 4.3 and Section 4.4, we show that the E1,1
2 and E2,0

2 terms of this spectral
sequence vanish, respectively. It is harder to show that E1,1

2 = 0, which comes down to
showing that

m∗ − p∗1 − p∗2 : Pic(A[t±])→ Pic(A[t±1 , t
±
2 ])

is injective, where m, p1, p2 : A[t±]→ A[t±1 , t
±
2 ] are the A-algebra maps sending t 7→ t1t2, t1, t2

respectively. If A is a normal domain, then Pic(A) ' Pic(A[t±]) ' Pic(A[t±1 , t
±
2 ]) so the result

is trivial. In case A is not normal, we use the Units-Pic sequence associated to the Milnor
square of the normalization A→ A.

4.2. Gerbes and the transgression map. The purpose of this section is to prove Lemma 4.2.2,
a description of the higher pushforward R1π∗Gm,G for a gerbe π : G → S, and Proposi-

tion 4.2.3, a description of the differential d0,1
2 : E0,1

2 → E2,0
2 in the Leray spectral sequence

associated to π in terms of torsors and gerbes. This map d0,1
2 is called the transgression map

[40, V, §3.2].

In order to describe the higher pushforwards R1π∗Gm, we will use the following result on
the Picard group of A-gerbes.

Remark 4.2.1 (Picard group of A-gerbes). Assume the setup of Lemma 1.3.16. By [15,
5.3.4], for any invertible OG-module L, there exists a unique character

χL ∈ Â

such that the diagram

AG × L L

Gm,G × L L

π∗χL × idL idL (4.2.1.1)

commutes, where the top row is the inertial action and the bottom row is the restriction of
the OG-module structure on L. The condition that (4.2.1.1) commutes is equivalent to the
condition (1.3.5.1), in other words L is a χL-twisted sheaf. For two invertible OG-modules
L1,L2 we have χL1⊗L2 = χL1 · χL2 by [15, 5.3.6 (2)], hence the assignment L 7→ χL defines a
group homomorphism

βG : Pic(G)→ Â
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of abelian groups. By [15, 5.3.6 (3)], we have that χL = 0 if and only if L is of the form
π∗M for an invertible OS-module M ; in other words there is an exact sequence

0→ Pic(S)
π∗→ Pic(G)

βG→ Â (4.2.1.2)

where injectivity of π∗ follows from Lemma 1.3.16. The sequence (4.2.1.2) is functorial on S
in the following sense: if p : T → S is a morphism of locally ringed sites and πT : GT → T
is the AT -gerbe obtained by pullback, then the diagram

0 Pic(S) Pic(G) Â

0 Pic(T ) Pic(GT ) ÂT

π∗ βG

π∗T βGT

p∗ p∗ p∗

commutes.

In case G := BA, by [15, 5.3.7] the map βG is surjective and the sequence (4.2.1.2) is

split; the map βG admits a natural section Â → Pic(G) taking a character χ to the trivial
OS-module equipped with the A-action corresponding to χ via the isomorphism Gm,S '
AutOS (OS).

Lemma 4.2.2. Let S be a locally ringed site, let A be an abelian sheaf on S, let π : G → S
be an A-gerbe. There is a natural isomorphism

R1π∗Gm,G ' HomAb(S)(A,Gm,S) (4.2.2.1)

of abelian sheaves on S.

Proof. Let U ∈ S be an object. Taking T := S/U and p : S/U → S the inclusion of
categories, we obtain an exact sequence

0→ Pic(S/U)
π∗S/U→ Pic(GS/U)

βGS/U→ ÂS/U (4.2.2.2)

of abelian groups. Letting U range over the objects of S, we obtain an exact sequence of
abelian presheaves whose value on U is (4.2.2.2), and sheafifying this sequence gives the
desired isomorphism. �

We specialize to the case A = Gm,S .

Proposition 4.2.3. Let S be a locally ringed site and let π : G → S be a Gm,S-gerbe. Let

d0,1
2 : H0(S,R1π∗Gm,G)→ H2(S,R0π∗Gm,G) (4.2.3.1)

be the differential in the Leray spectral sequence associated to the map π and sheaf Gm,G. Un-

der the identification (4.2.2.1), the differential d0,1
2 sends the identity idGm,S ∈ HomAb(S)(Gm,S ,Gm,S)

to the class −[G] ∈ H2(S,Gm,S).

Proof. Let c ∈ H0(S,R1π∗Gm,G) be the class corresponding to the identity section χ :=
idGm,S ∈ HomAb(S)(Gm,S ,Gm,S) via the isomorphism (4.2.2.1). As in [40, V, 3.1.6], let

D(c)→ S
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denote the category fibered in groupoids whose fiber category (D(c))(U) for an object U ∈ S
consists of the invertible OGS/U -modules whose image under the map

H1(GS/U ,Gm,S)→ H0(U,R1π∗Gm,G)

is equal to the image of c under the restriction map

H0(S,R1π∗Gm,G)→ H0(U,R1π∗Gm,G)

of the sheaf R1π∗Gm,G. By [40, V, 3.2.1], the category D(c) is a Gm,S-gerbe, and the
assignment c 7→ [D(c)] coincides with the differential (4.2.3.1). By the above description of
D(c) and by the definition of the isomorphism (4.2.2.1) as the one obtained by sheafifying the
maps βGS/U in (4.2.2.2), we have that an invertible OGS/U -module L is contained in (D(c))(U)

if and only if it is χ|S/U -twisted.

An arbitrary invertible OGS/U -module L arises as the pullback of the tautological bundle
under a morphism of stacks ϕL : GS/U → BGm,S/U . If uL : Gm,S/U → Gm,S/U is the morphism
induced by ϕL on bands [40, IV, 2.2.3], then L is uL-twisted. Hence we have an isomorphism
of Gm,S-gerbes D(c) ' HOMid(G,BGm,S) in the notation of [40, IV, 2.3.1]; the class of the
latter in H2

ét(S,Gm,S) is equal to −[G] by [40, IV, 3.3.2 (iii)]. �

Remark 4.2.4. The category D(c) in the proof of Proposition 4.2.3 may also be described
in the following way. Let Pic(G/S) denote the relative Picard stack of G/S, namely the
category over S whose objects lying over some U ∈ C is the groupoid of invertible GS/U -
modules. Let PicG/S ' R1π∗Gm,G denote the relative Picard functor of G/S, namely the
sheaf associated to the presheaf on S sending U 7→ Pic(GS/U)/Pic(U). There is a functor
F : Pic(G/S)→ PicG/S sending an invertible OGS/U -module to its isomorphism class. Then

D(c) is equivalent to the pullback of F along the morphism S → PicG/S corresponding to
the class c. �

4.3. Picard groups of (Laurent) polynomial rings. In this section we prove Lemma 4.3.11.
For us, the main difficulty is that there are rings A for which the pullback map Pic(A) →
Pic(A[t]) is not an isomorphism. The ring A is called seminormal [90, p. 210], [94, p. 29] if
for every b, c ∈ A satisfying b3 = c2 there exists a ∈ A such that a2 = b and a3 = c. Semi-
normal rings are automatically reduced [57, VIII, §7]. By Traverso’s theorem [91, Theorem
3.6], [94, Theorem 3.11], the map Pic(A) → Pic(A[t]) is an isomorphism if and only if the
reduction Ared is a seminormal ring. Taking the strict henselization of the cuspidal cubic
k[x, y]/(y2 = x3) at the cusp gives an example of a reduced strictly henselian local ring A
which is not seminormal; by Remark 4.3.9, in this case we also have Pic(A[t, t−1]) 6= 0.

Throughout this section and Section 4.4, we will use Notation 4.3.1 and Notation 4.3.2.

Notation 4.3.1 (∆,C•G, hn(C•G)). Let ∆ be the category with objects [n] := {0, . . . , n}
for each nonnegative integer n ≥ 0 and whose morphisms ϕ : [m] → [n] correspond to
nondecreasing maps ϕ : {0, . . . ,m} → {0, . . . , n}.

For n ≥ 0 and 0 ≤ i ≤ n+ 1, we denote δni : [n]→ [n+ 1] the injective nondecreasing map
whose image does not contain i.

For n ≥ 0 and 0 ≤ i ≤ n, we denote σni : [n + 1] → [n] the surjective nondecreasing map
satisfying (σni )−1(i) = {i, i+ 1}.

A cosimplicial set (resp. abelian group, resp. ring) is a covariant functor from ∆ to (Set)
(resp. (Ab), resp. (Ring)).
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If G is a cosimplicial abelian group, we denote by

C•G

the cochain complex where CnG := G([n]) for n ≥ 0 and where the nth differential dnG :

CnG→ Cn+1G is the alternating sum
∑n+1

i=0 (−1)iG(δni ). We denote by

hn(C•G) := ker(dnG)/ im(dn−1
G )

the cohomology of C•G at CnG.

Notation 4.3.2 (LA,PA). Let A be a ring, let π : BGm,A → SpecA be the trivial Gm,A-
gerbe, let ξ : SpecA→ BGm,A be the section of π corresponding to the trivial Gm,A-torsor.
The Čech nerve of the covering ξ corresponds to a cosimplicial A-algebra

LA : ∆→ (A-alg)

where
LA([p]) := A[t±1 , . . . , t

±
p ]

is the Laurent polynomial ring in p indeterminates over A (where by convention LA([0]) :=
A).

For p ≥ 0 and 1 ≤ i ≤ p, the ith degeneracy map LA(δpi ) : LA([p]) → LA([p + 1]) is
the A-algebra map sending (t1, . . . , tp) 7→ (t1, . . . , titi+1, . . . , tp+1); the 0th degeneracy map
LA(δp0) sends (t1, . . . , tp) 7→ (t2, . . . , tp+1) and the (p + 1)th degeneracy map LA(δpp+1) sends
(t1, . . . , tp) 7→ (t1, . . . , tp).

For p ≥ 0 and 0 ≤ i ≤ p, the ith face map LA(σpi ) : LA([p+ 1])→ LA([p]) is the A-algebra
map sending (t1, . . . , tp+1) 7→ (t1, . . . , ti, 1, ti+1, . . . , tp).

We also have the cosimplicial A-algebra

PA : ∆→ (A-alg)

where
PA([p]) := A[t1, . . . , tp]

is the polynomial ring in p indeterminates over A, viewed as the subalgebra of LA([p]),
and for which the A-algebra map PA(ϕ) : PA([m]) → PA([n]) is obtained by restricting
LA(ϕ) : LA([m])→ LA([n]).

We make explicit the formulas PA(δpi ) for p = 0, 1, 2 and PA(σpi ) for p = 0, 1. For 0 ≤ i ≤ 1,
the A-algebra map PA(δ0

i ) : A→ A[t1] is the unique one. For 0 ≤ i ≤ 2, the A-algebra map
PA(δ1

i ) : A[t1]→ A[t1, t2] sends t1 to t2, t1t2, t1 respectively. For 0 ≤ i ≤ 3, the A-algebra map
PA(δ2

i ) : A[t1, t2]→ A[t1, t2, t3] sends (t1, t2) to (t2, t3), (t1t2, t3), (t1, t2t3), (t1, t2) respectively.
For 0 ≤ i ≤ 0, the A-algebra map PA(σ0

i ) : A[t1] → A sends t1 to 1. For 0 ≤ i ≤ 1, the
A-algebra map PA(σ1

i ) : A[t1, t2]→ A[t1] sends (t1, t2) to (1, t1), (t1, 1) respectively.

Notation 4.3.3 (NxF,Nx1,x2F). Given a functor

F : (Ring)→ (Ab) (4.3.3.1)

we define new functors
NxF,Nx1,x2F : (Ring)→ (Ab)

by

NxF(A) := ker(F(x = 1) : F(A[x])→ F(A))

Nx1,x2F(A) := ker((F(x2 = 1),F(x1 = 1)) : F(A[x1, x2])→ F(A[x1])⊕ F(A[x2]))
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for any ring A, where x, x1, x2 are indeterminates. The notation “NxF” was defined by
Weibel in [93, §1].

The operation “Nx” can be iterated, for example if x1, x2 are indeterminates, then Nx1(Nx2F)
is a functor (Ring)→ (Ab).

Lemma 4.3.4. In Notation 4.3.3, we have

Nx1,x2F(A) = Nx1(Nx2F)(A) = Nx2(Nx1F)(A)

for any ring A.

Proof. The claim follows from considering the commutative diagram

0 0 0

0 Nx1,x2F(A) Nx1F(A[x2]) Nx1F(A) 0

0 Nx2F(A[x1]) F(A[x1, x2]) F(A[x1]) 0

0 Nx2F(A) F(A[x2]) F(A) 0

0 0 0

x2 = 1

x2 = 1

x2 = 1

x1 = 1 x1 = 1 x1 = 1

(4.3.4.1)

where each row and column is (split) exact. �

Lemma 4.3.5. Assume Notation 4.3.1, Notation 4.3.2, and Notation 4.3.3. We have

d1
FPA

(Nt1F(A)) ⊂ Nt1,t2F(A)

for any ring A.

Proof. For 0 ≤ i ≤ 2, the composition PA(σ1
0)PA(δ1

i ) correspond to the A-algebra maps
A[t1]→ A[t1] sending t1 7→ 1, t1, t1, respectively; thus F(PA(σ1

0))(d1
FPA

(Nt1F(A))) = 0. By a
similar argument, we have F(PA(σ1

1))(d1
FPA

(Nt1F(A))) = 0. �

Lemma 4.3.6. Assume Notation 4.3.1, Notation 4.3.2, and Notation 4.3.3. We have

h1(C•(PicPA)) = 0

for any ring A.

Proof. Since PA(δ0
0) = PA(δ0

1), the differential d0
PicPA

: Pic(A) → Pic(A[t1]) is the 0 map.
Hence it suffices to show that

d1
PicPA

: Pic(A[t1])→ Pic(A[t1, t2])

is injective.

We have that A is the filtered colimit of subrings of A which are finite type Z-algebras,
hence by e.g. [88, 0B8W] we may reduce to the case when A is a finite type Z-algebra.
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In particular A has finite Krull dimension. We proceed by induction on dimA. Since the
Picard group of a ring is invariant under nilpotent thickenings, we may assume that A is
reduced. If dimA = 0, then A is a finite product of fields, hence ker d1

PicPA
= 0 (since in fact

Pic(A[t]) = 0 in this case).

Suppose dimA > 0 and let
α ∈ Pic(A[t1])

be a class such that d1
PicPA

(α) = 0. We have a direct sum decomposition Pic(A)⊕Nt1Pic(A) '
Pic(A[t1]), and PA(δ1

0),PA(δ1
1),PA(δ1

2) are A-algebra maps, so in fact α ∈ Nt1Pic(A). Let
Q(A) denote the total ring of fractions of A, and let

Asn ⊂ Q(A)

denote the seminormalization [90, Lemma 2.2] of A in Q(A). Write

Asn = lim−→λ∈Λ
Aλ

where each A ⊂ Aλ ⊂ Asn is a finitely generated subextension of Asn; then A ⊂ Aλ is a finite
extension of rings since it is an integral extension. Thus

Nt1Pic(Asn) ' lim−→λ∈Λ
Nt1Pic(Aλ)

by e.g. [88, 0B8W]. By [90, Corollary 3.4], we have thatAsn is seminormal, thus Nt1Pic(Asn) =
0 by Traverso’s theorem [94, Theorem 3.11]. Hence there exists some λ ∈ Λ for which α lies
in the kernel of Nt1Pic(A)→ Nt1Pic(Aλ).

16 Let

I := {x ∈ A : xAλ ⊂ A} = AnnA(Aλ/A)

be the conductor ideal of A ⊂ Aλ; it is the largest ideal of Aλ contained in A so in particular
it is also an ideal of A. We denote

U(A) := A×

the group of units of A. Let S denote the commutative cartesian diagram

A Aλ

A/I Aλ/I

(4.3.6.1)

of rings (called a “Milnor square”). By Milnor’s theorem [9, IX, (5.3)] there is an exact
sequence

G(S) =

1→ U(A)
∆→ U(A/I)⊕ U(Aλ)

±→ U(Aλ/I)

∂→ Pic(A)
∆→ Pic(A/I)⊕ Pic(Aλ)

±→ Pic(Aλ/I)

 (4.3.6.2)

of abelian groups, called the Units-Pic sequence [94, I, Theorem 3.10]; here we denote by
∆ the diagonal map and by ± the difference map. For any flat A-algebra B we obtain a
corresponding Units-Pic sequence G(S⊗AB), and for a morphism B1 → B2 of flat A-algebras
we obtain a morphism of complexes G(S ⊗A B1) → G(S ⊗A B2) since the boundary map
∂ of (4.3.6.2) is functorial for morphisms between Milnor squares. We have a morphism of

16Here, instead of using the limit argument, we may also use that the extension A ⊂ Asn is finite since A is
a Nagata ring (it is a finite type Z-algebra) and thus has finite normalization, hence has finite seminormal-
ization.
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complexes
d1
G(PS) : G(S[t1])→ G(S[t1, t2])

consisting of the maps d1
FPB

as F ranges over U(−),Pic(−) and B ranges over the rings in S.
Let Nt1G(S) be the kernel of the morphism of complexes G(S[t1]) → G(S) sending t1 7→ 1;
it is an exact sequence since G(S[t1]) → G(S) admits a section. Considering the diagram
(4.3.4.1), we obtain a similar exact sequence Nt1,t2G(S), and the map d1

G(PS) above restricts
to a map

d1
G(PS) : Nt1G(S)→ Nt1,t2G(S)

by Lemma 4.3.5. In particular, we have a commutative diagram

Nt1U(A/I)⊕ Nt1U(Aλ) Nt1,t2U(A/I)⊕ Nt1,t2U(Aλ)

Nt1U(Aλ/I) Nt1,t2U(Aλ/I)

Nt1Pic(A) Nt1,t2Pic(A)

Nt1Pic(A/I)⊕ Nt1Pic(Aλ) Nt1,t2Pic(A/I)⊕ Nt1,t2Pic(Aλ)

d1
UPA/I

⊕ d1
UPAλ

d1
UPAλ/I

d1
PicPA

d1
PicPA/I

⊕ d1
PicPAλ

±t1

∂t1

∆t1

±t1,t2

∂t1,t2

∆t1,t2

(4.3.6.3)

with exact columns, where we denote by ±t1 , ∂t1 ,∆t1 and ±t1,t2 , ∂t1,t2 ,∆t1,t2 the corresponding
maps in Nt1G(S) and Nt1,t2G(S) respectively.

By Lemma 4.3.7 below, we have that I contains a nonzerodivisor of A; hence I is not
contained in any minimal prime of A by [3, Lemma (14.10)]; hence A/I has smaller Krull
dimension than that of A (c.f. [94, p. 15]); the image of α under Nt1Pic(A)→ Nt1Pic(A/I)
is contained in ker d1

PicPA/I
, which is 0 by the induction hypothesis since dimA/I < dimA.

Hence ∆t1(α) = 0, so by exactness of the left column of (4.3.6.3), there exists

ξ ∈ Nt1U(Aλ/I)

such that α = ∂t1(ξ). By e.g. [94, I, Lemma 3.12] we have that ξ is of the form

ξ = 1 + β(t1)

where
β ∈ t1(nil(Aλ/I)[t1])

is a polynomial with nilpotent coefficients and whose constant coefficient is zero. We have

d1
UPAλ/I

(ξ) = (1 + β(t1))(1 + β(t1t2))−1(1 + β(t2)) (4.3.6.4)

in Nt1,t2U(Aλ/I). Since ∂t1,t2(d
1
UPAλ/I

(ξ)) = d1
PicPA

(∂t1(ξ)) = d1
PicPA

(α) = 0, by the exactness

of the right column of (4.3.6.3) there exists

γ ∈ Nt1,t2U(A/I)⊕ Nt1,t2U(Aλ)
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such that d1
UPAλ/I

(ξ) = ±t1,t2(γ). Here by [94, I, Lemma 3.12] the inclusion U(Aλ) ⊂
U(Aλ[t1, t2]) is an equality since Aλ is reduced, hence Nt1,t2U(Aλ) = 0. Moreover A/I →
Aλ/I is injective (since I is the largest ideal of Aλ contained in A), hence (4.3.6.4) is in fact
contained in Nt1,t2U(A/I). Thus in fact

β ∈ (A/I)[t1]

as can be seen for example by setting t2 = 0 in (4.3.6.4). In other words, we have that ξ is
in the image of ±t1 ; since ∂t1 ◦ ±t1 = 0, we conclude α = 0. �

In the following lemma, we write out the details of a claim in [94, p. 15].

Lemma 4.3.7. Let A be a ring with total ring of fractions Q(A), and let A ⊂ B ⊂ Q(A) be
a subring.

(i) The inclusion A ⊂ B preserves nonzerodivisors, and any nonzerodivisor of B is of
the form r/u where r, u ∈ A are nonzerodivisors of A.

(ii) The total ring of fractions of B is Q(A).
(iii) If A ⊂ B is a finite extension, the conductor ideal I = {x ∈ A : xB ⊂ A} =

AnnA(B/A) contains a nonzerodivisor of A.

Proof. (i) If x ∈ A is a nonzerodivisor of A, then its image in Q(A) is a nonzerodivisor of
Q(A), hence its image in B is a nonzerodivisor of B. An arbitrary element of B is of the
form r/u where r, u ∈ A and u is a nonzerodivisor of A. If x ∈ A is an element such that
rx = 0 in A, then u(r/u)x = 0 in B and u is a nonzerodivisor of B (by the first part) so
(r/u)x = 0 in B; then x = 0 since r/u is by assumption a nonzerodivisor of B; hence r is a
nonzerodivisor of A.

(ii) Let ϕ : B → S be a ring homomorphism such that ϕ sends nonzerodivisors of B to
units of S. By the first part, ϕ sends nonzerodivisors of A to units of S, hence there exists
a ring map ξ : Q(A)→ S such that ξ|A = ϕ|A. By definition of ξ, for any a/u ∈ B we have
ξ(a/u) = ϕ(a) · (ϕ(u))−1 = ϕ(a/u); hence ξ|B = ϕ.

(iii) Let x1/u1, . . . , xn/un be elements of B which generates B as an A-module; then
u1 · · ·un is a nonzerodivisor of A which is contained in I. �

Remark 4.3.8. In the proof of Lemma 4.3.6, we may use the normalization instead of the
seminormalization. If A is a reduced finite type Z-algebra, then its normalization A ⊂ Q(A)
is a finite extension of A; thus A is a Noetherian reduced ring which is integrally closed in
its total ring of fractions (by e.g. Lemma 4.3.7 (ii)), hence it is finite product of Noetherian
normal integral domains [88, 030C]. It is easily checked from the definition of a seminormal
ring that normal domains are seminormal.

Remark 4.3.9. For any ring R, by [93, Lemma 1.5.1] and [93, Theorem 5.5] we have an
exact sequence

0→ Pic(R)
f→ Pic(R[t])⊕ Pic(R[t−1])

Σ→ Pic(R[t±])→ H1
ét(SpecR,Z)→ 0 (4.3.9.1)

of abelian groups, where f denotes the map sending α 7→ (α,−α) and Σ denotes the addition
map. For any ring R, by [93, Theorem 2.4] and [93, Theorem 5.5] we have isomorphisms

H1
ét(SpecR,Z) ' H1

ét(SpecR[t],Z) ' H1
ét(SpecR[t±],Z) (4.3.9.2)

of abelian groups.
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The following is stated in [93]; we write out the details here.

Lemma 4.3.10. Let A be a strictly henselian local ring. Then the canonical map⊕
(`,3)∈{1,2}×{+,−}

Pic(A[t3` ])⊕
⊕

(31,32)∈{+,−}2
Nt

31
1 ,t

32
2

Pic(A)→ Pic(A[t±1 , t
±
2 ])

induced by the inclusions A[t3` ]→ A[t±1 , t
±
2 ] and A[t31

1 , t32
2 ]→ A[t±1 , t

±
2 ] is an isomorphism.

Proof. For notational convenience, we denote t+ = t and t− = t−1, etc. Since A is strictly
henselian local, by (4.3.9.2) the exact sequence (4.3.9.1) reduces to an isomorphism

Pic(A[t+])⊕ Pic(A[t−])
∼→ Pic(A[t±]) (4.3.10.1)

and split exact sequences

0→ Pic(A[t32 ])→ Pic(A[t+1 , t
3
2 ])⊕ Pic(A[t−1 , t

3
2 ])→ Pic(A[t±1 , t

3
2 ])→ 0 (4.3.10.2)

and

0→ Pic(A[t±1 ])→ Pic(A[t±1 , t
+
2 ])⊕ Pic(A[t±1 , t

−
2 ])→ Pic(A[t±1 , t

±
2 ])→ 0 (4.3.10.3)

by taking R := A,A[t32 ], A[t±1 ] respectively for 3 ∈ {+,−}. The sequence (4.3.10.2) induces
a natural isomorphism

Pic(A[t32 ])⊕ Nt+1
Pic(A[t32 ])⊕ Nt−1

Pic(A[t32 ])
∼→ Pic(A[t±1 , t

3
2 ]) (4.3.10.4)

of abelian groups. The isomorphism (4.3.10.4) restricts to an isomorphism

Pic(A[t32 ])⊕ Nt+1 ,t
3
2
Pic(A)⊕ Nt−1 ,t

3
2
Pic(A)

∼→ Nt32
Pic(A[t±1 ]) (4.3.10.5)

by taking the subgroups of elements annihilated by setting t32 = 1. The sequence (4.3.10.3)
induces a natural isomorphism

Pic(A[t±1 ])⊕ Nt+2
Pic(A[t±1 ])⊕ Nt−2

Pic(A[t±1 ])
∼→ Pic(A[t±1 , t

±
2 ]) (4.3.10.6)

of abelian groups. We combine (4.3.10.6) and (4.3.10.1) and (4.3.10.5) (for 3 ∈ {+,−}) and
Lemma 4.3.4 to obtain the desired result. �

Lemma 4.3.11. We have
ker(d1

PicLA
) = 0

for any strictly henselian local ring A.

Proof. The inclusion Nt1Pic(A) ⊆ Pic(A[t1]) is an equality since A is a local ring; recall that
d1

PicPA
(Nt1Pic(A)) ⊆ Nt1,t2Pic(A) by Lemma 4.3.5. We have a commutative diagram

(Pic(A[t1]))⊕2 Pic(A[t±1 ])

(Nt1,t2Pic(A))⊕2 Pic(A[t±1 , t
±
2 ])

'
f1

f2

(d1
PicPA

)⊕2 d1
PicLA

where f1 and f2 are the addition maps induced on the Picard groups by the A-algebra maps
A[t1]→ A[t±1 ] sending t1 to t1, t

−1
1 andA[t1, t2]→ A[t±1 , t

±
2 ] sending (t1, t2) 7→ (t1, t2), (t−1

1 , t−1
2 )

respectively. Here f1 is an isomorphism by (4.3.9.1) since A is strictly henselian local, and f2
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is injective by Lemma 4.3.10. Since d1
PicPA

is injective by Lemma 4.3.6, we have that d1
PicLA

is injective. �

4.4. Unit groups of Laurent polynomial rings. The purpose of this section is to prove
Lemma 4.4.2. As in Section 4.3, when it is convenient we will denote U(A) := A× the group
of units of a ring A.

Lemma 4.4.1. Let {Aλ}λ∈Λ be a filtered inductive system of rings, and let

A := lim−→λ∈Λ
Aλ

be the colimit ring. In the notation of Notation 4.3.1 and Notation 4.3.2, the induced
morphism of complexes

lim−→λ∈Λ
C•(ULAλ)→ C•(ULA)

is an isomorphism.

Proof. For any n ≥ 0, the functor (Ring)→ (Ab) sending A 7→ (A[t±1 , . . . , t
±
n )× is locally of

finite presentation. �

Lemma 4.4.2. For any ring A, we have h2(C•(ULA)) = 0.

Proof. By writing A as the filtered colimit of subrings which are finite type Z-algebras, by
Lemma 4.4.1 we may reduce to the case when A is a finite type Z-algebra. By replacing
SpecA by a connected component, we may assume that SpecA is connected. Let n ⊂ A be
the nilradical of A. By [73, Corollary 6], a unit ξ of A[t±1 , t

±
2 ] is of the form

ξ = ute11 t
e2
2 + x(t1, t2) (4.4.2.1)

where u ∈ A× is a unit and (e1, e2) ∈ Z⊕2 is an ordered pair of integers and x(t1, t2) ∈
nA[t±1 , t

±
2 ] is a Laurent polynomial all of whose coefficients are nilpotent. We have that

each unit u ∈ A× ⊂ (A[t±1 , t
±
2 ])× is in the image of d1

ULA
, namely the image of the unit

u ∈ A× ⊂ (A[t±1 ])× since u · u−1 · u = u. Hence we may assume that the unit u of (4.4.2.1)
is equal to 1. We have

d2
ULA

(ute11 t
e2
2 ) = (ute12 t

e2
3 ) · (u(t1t2)e1te23 )−1 · (ute11 (t2t3)e2) · (ute11 t

e2
2 )−1

= t−e11 te23

by the description of the maps PA(δ2
i ) in Notation 4.3.2. Suppose ξ ∈ ker d2

ULA
; then

t−e11 te23 = 1, hence e1 = e2 = 0. This implies that h2(C•(ULA/n1)) = 0.

We have a sequence

A/ns → A/ns−1 → · · · → A/n2 → A/n1

where each map is a surjective ring map with square-zero kernel. Hence, since the complex
C•(ULA) is functorial in A, it suffices to show that, for any ring A and ideal I ⊂ A satisfying
I2 = 0, if h2(C•(ULA/I)) = 0 then h2(C•(ULA)) = 0. The quotient A → A/I induces
a morphism C•(ULA) → C•(ULA/I) of complexes of abelian groups, part of which is a
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commutative diagram

(A[t±1 ])× (A[t±1 , t
±
2 ])× (A[t±1 , t

±
2 , t
±
3 ])×

((A/I)[t±1 ])× ((A/I)[t±1 , t
±
2 ])× ((A/I)[t±1 , t

±
2 , t
±
3 ])×

d1
ULA

d2
ULA

d1
ULA/I

d2
ULA/I

π1 π2 π3 (4.4.2.2)

where each vertical arrow π1, π2, π3 is surjective since I is square-zero. By a diagram chase
on (4.4.2.2), to show that the top row is exact it suffices to show that every element of
(ker d2

ULA
) ∩ (kerπ2) is in the image of d1

ULA
. We have ker π2 = 1 + IA[t±1 , t

±
2 ]; moreover,

since I is square-zero, the (multiplicative) condition that 1+x(t1, t2) ∈ ker d2
ULA

is equivalent
to the (additive) condition that the element

x(t1, t2)− x(t1, t2t3) + x(t1t2, t3)− x(t2, t3) (4.4.2.3)

of A[t±1 , t
±
2 , t
±
3 ] is equal to zero. Let

H0 := {e3 = 0}
H1 := {e2 = e3}
H2 := {e1 = e2}
H3 := {e1 = 0}

be hyperplanes of Z⊕3 = {(e1, e2, e3)} defined by the equations corresponding to the maps
LA(p2

0),LA(p2
1),LA(p2

2),LA(p2
3) in the sense that the image of Z⊕2 under LA(p2

i ) is Hi ⊂ Z⊕3.
Then the pairwise intersections

H0 ∩ H1 = Z(1, 0, 0) H1 ∩ H2 = Z(1, 1, 1)

H0 ∩ H2 = Z(1, 1, 0) H1 ∩ H3 = Z(0, 1, 1)

H0 ∩ H3 = Z(0, 1, 0) H2 ∩ H3 = Z(0, 0, 1)

are all distinct. Let
xe1,e2 ∈ I

be the coefficient of te11 t
e2
2 in x(t1, t2). Then if (e1, e2) ∈ Z⊕2 is an ordered pair for which

xe1,e2 6= 0, then we must have

(e1, e2) ∈ Z(1, 0) ∪ Z(1, 1) ∪ Z(0, 1)

in Z⊕2. Moreover, saying that (4.4.2.3) is equal to zero translates to the collection of equa-
tions

xe,0 − xe,0 = 0 xe,e − xe,e = 0

xe,e + xe,0 = 0 x0,e + xe,e = 0

x0,e − xe,0 = 0 x0,e − x0,e = 0

for all e ∈ Z, which simplifies to

xe,0 = x0,e = −xe,e
for all e ∈ Z. Then

1 + x(t1, t2) = d1
ULA

(1−
∑

e∈Z xe,et
e
1)

so we have the desired result. �
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4.5. Proof of the main theorem. In this section we prove Theorem 4.1.2.

Our argument, in outline, is that of the proof of [37, II, Lemma 1′]. Namely, we compute
H2

ét(G,Gm,G) using the Leray spectral sequence associated to the map π and sheaf Gm,G,
which is of the form

Ep,q
2 = Hp

ét(S,R
qπ∗Gm,G) =⇒ Hp+q

ét (G,Gm,G) (4.5.0.1)

with differentials dp,q2 : Ep,q
2 → Ep+2,q−1

2 .

The stalks of R2π∗Gm,G are described by Lemma 4.5.2.

Setup 4.5.1 (Descent spectral sequence for BGm). Let A be a ring and let

ξ : SpecA→ BGm,A

be the smooth cover associated to the trivial Gm,A-torsor. The cohomological descent spectral
sequence associated to ξ gives a spectral sequence

Ep,q
1 = Hq

ét(G
×p
m,A,Gm) =⇒ Hp+q

ét (BGm,A,Gm) (4.5.1.1)

where the qth row E•,q1 = Hq
ét(G

×•
m,A,Gm) can be realized as the complex C•(FLA) (see

Notation 4.3.1 and Notation 4.3.2) where the functor F : (Ring) → (Ab) is defined by
F(R) := Hq

ét(SpecR,Gm). The lower-left part of the E1-page of the spectral sequence
(4.5.1.1) is

H3
ét(G

×0
m,A,Gm) H3

ét(G
×1
m,A,Gm) H3

ét(G
×2
m,A,Gm) H3

ét(G
×3
m,A,Gm)

H2
ét(G

×0
m,A,Gm) H2

ét(G
×1
m,A,Gm) H2

ét(G
×2
m,A,Gm) H2

ét(G
×3
m,A,Gm)

H1
ét(G

×0
m,A,Gm) H1

ét(G
×1
m,A,Gm) H1

ét(G
×2
m,A,Gm) H1

ét(G
×3
m,A,Gm)

H0
ét(G

×0
m,A,Gm) H0

ét(G
×1
m,A,Gm) H0

ét(G
×2
m,A,Gm) H0

ét(G
×3
m,A,Gm)

where d0,q
1 is the zero map for all q ≥ 0 since BGm,A is the quotient of SpecA by the trivial

action of Gm,A.

Lemma 4.5.2. Assume the setup of Setup 4.5.1. For any strictly henselian local ring A, we
have H2

ét(BGm,A,Gm) = 0.

Proof. We have E0,q
1 = Hq

ét(SpecA,Gm) = 0 for any q ≥ 1 since A is strictly henselian. We

have E1,1
2 = 0 by Lemma 4.3.11 and E2,0

2 = 0 by Lemma 4.4.2. �

Remark 4.5.3. We show that, in the proof of Lemma 4.5.2, it is possible to reduce to the case
when A is a reduced ring; the reducedness assumption simplifies the proof of Lemma 4.4.2.
By standard limit arguments, we may assume that A is a finite type Z-algebra. Then the
reduction A→ Ared can be factored as a finite sequence of square-zero thickenings. Thus we
reduce to showing that if A→ A0 is a surjection of rings whose kernel I is square-zero, then
the reduction map

H2
ét(BGm,A,Gm)→ H2

ét(BGm,A0 ,Gm) (4.5.3.1)

is an isomorphism. Set X := BGm,A and X0 := BGm,A0 and let i : X0 → X be the closed
immersion. We may use either the big étale site (Sch/X )ét or the lisse-étale site Lis-Et(X )
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to compute cohomology on X , since the inclusion functor of sites

u : Lis-Et(X )→ (Sch/X )ét

induces a restriction functor on abelian sheaves

u−1 : Ab((Sch/X )ét)→ Ab(Lis-Et(X ))

which is exact and admits an exact left adjoint u! (see [88, 0788 (1)]). There is an exact
sequence

1→ 1 + I → Gm,X → i∗Gm,X0 → 1

of abelian sheaves on Lis-Et(X ); here left exactness follows from the fact that for any scheme
X and smooth morphism X → X the composition X → X → SpecA is flat. We have an
induced long exact sequence

· · · → Hp
ét(X , I)→ Hp

ét(X ,Gm,X )→ Hp
ét(X , i∗Gm,X0)→ Hp+1

ét (X , I)→ · · ·
in cohomology. We have Hp

ét(X , i∗Gm,X0) ' Hp
ét(X0,Gm,X0) for p ≥ 0 since pushforward

along a closed immersion in the étale topology is exact (using e.g. [88, 04E3]); see also [15,
A.3.5]. It suffices now to show that if F is any quasi-coherentOX -module then Hp

ét(X ,F ) =
0 for all p > 0. The category of quasi-coherent OX -modules corresponds to the category C
of Z-graded A-modules. Denoting by π : X → SpecA the structure map, the pushforward
functor π∗ : QCoh(X ) → QCoh(A) corresponds to sending a Z-graded module M• =⊕

n∈ZMn to the degree zero component M0. Since this is an exact functor, we have that π
is cohomologically affine [2, Definition 3.1]. Since π has affine diagonal, we have the desired
result by [2, Remark 3.5].

4.5.4 (Proof of Theorem 4.1.2). For any strictly henselian local ring A, we have

H2
ét(BGm,A,Gm,BGm,A) = 0

by Lemma 4.5.2, hence
R2πG,∗Gm,G = 0

since its stalks vanish. By Lemma 4.2.2, we have

R1πG,∗Gm,G ' HomAb(S)(Gm,S,Gm,S) = Z
so the Leray spectral sequence (4.5.0.1) gives an exact sequence

H0
ét(S,Z)

†→ H2
ét(S,Gm,S)

π∗G→ H2
ét(G,Gm,G)→ H1

ét(S,Z) (4.5.4.1)

where by Proposition 4.2.3 the first map † sends 1 7→ [G].

Suppose β ∈ H2
ét(G,Gm,G) is a class annihilated by some locally nonzero n ∈ Γ(G,Z). Since

π : G → S is a gerbe morphism, the pullback π∗ : Γ(S,Z)→ Γ(G,Z) is an isomorphism and
a section n ∈ Γ(S,Z) is locally nonzero if and only if π∗n ∈ Γ(G,Z) is locally nonzero. By
Lemma A.0.3 the last term H1

ét(S,Z) is n-torsion free, hence there exists α ∈ H2
ét(S,Gm,S)

such that β = π∗G(α). Then π∗G(nα) = nπ∗G(α) = nβ = 0, hence nα = m[G] for some
m ∈ Γ(S,Z) (not necessarily locally nonzero); by assumption there exists locally nonzero
n′ ∈ Γ(S,Z) such that n′[G] = 0, hence n′nα = 0, hence α ∈ Br′ S; in other words the
restriction π∗G : Br′ S → Br′ G is surjective. Hence we have the desired result. �

Remark 4.5.5. As pointed out to me by Siddharth Mathur, in Theorem 4.1.2, the restriction
map

π∗G : Br′(S)→ Br′(G)
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is not necessarily surjective if [G] ∈ H2
ét(S,Gm,S) is a nontorsion class. Let S be a scheme

for which H2
ét(S,Gm,S) is not a torsion group; let α ∈ H2

ét(S,Gm,S) be a nontorsion element,
and let πG : G → S be the Gm,S-gerbe corresponding to the class 2α ∈ H2

ét(S,Gm,S). Then
π∗G(α) is a 2-torsion class of H2

ét(G,Gm,G). We show that there does not exist any torsion
element β ∈ H2

ét(S,Gm,S) such that π∗G(α) = π∗G(β). If so, then α− β = n[G] = 2nα for some
n, which means (2n− 1)α is torsion, which contradicts our assumption that α is nontorsion.
Taking as our S above the normal surface of Mumford [42, Remarques 1.11, b] for which
H2

ét(S,Gm,S) is not a torsion group, we obtain an example of a Gm,S-gerbe πG : G → S for
which the restriction

π∗G : H2
ét(S,Gm,S)→ H2

ét(G,Gm,G)

is surjective (by (4.5.4.1), using that H1
ét(S,Z) = 0 by [45, VIII, Prop. 5.1] since S is

geometrically unibranch) but the restriction to the torsion subgroups is not surjective. �

4.5.6 (Alternate proof of Theorem 4.1.2 under additional hypotheses). We give an alternate
proof of Theorem 4.1.2 in case the base scheme S and the Gm,S-gerbe G satisfy the following
conditions:

(i) the scheme S is regular Noetherian,
(ii) the function field of S has characteristic 0, and

(iii) the class [G] lies in the image of Brauer map αS : BrS → Br′ S.

By (iii), there exists an Azumaya OS-algebra A (say of rank r2, where we may assume r ≥ 2)
such that αS([A]) = [G]. Let πX : X → S be a Brauer-Severi scheme corresponding to A.
By Lemma 4.5.7, there exists an S-morphism

f : X → G
and the induced pullback morphism

f ∗ : Br′ G → Br′X

is an isomorphism by Lemma 4.5.8, whose hypotheses are satisfied by Lemma 4.5.7 and
conditions (i), (ii) above. �

Lemma 4.5.7 (Comparing Brauer-Severi scheme and Gm-gerbe). Let S be a scheme and
let A be an Azumaya OS-algebra of rank n2. Let X → S be the Brauer-Severi scheme
associated to A, and let X → S be the Gm,S-gerbe of trivializations of A. There is a
natural S-morphism

π : X →X

which is smooth-locally on X isomorphic to the projection An
S \ {0} → S (in particular, it

is flat and surjective).

Proof. The first claim follows from [78, §8, 4], as explained in Remark 4.1.3. We give a
description here using the functor of points of X. For an S-scheme T , the set X(T ) consists
of the isomorphism classes of pairs (P , η) where P is a left AT -module which is of rank n as
an OT -module, and η : AT → P is a surjective AT -linear map; two pairs (P1, η1) and (P2, η2)
are isomorphic if there exists an AT -linear isomorphism ζ : P1 → P2 such that η2 = ζη1.

The map π(T ) : X(T ) → X (T ) sends the pair (P , η) to the pair (P , cη) where cη :
AT → EndOT -mod(P) is the OT -algebra isomorphism sending a 7→ ma where the latter is left
multiplication by a.
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We prove that there exists a scheme S ′ and a smooth surjection S ′ → X such that
S ′ ×X X is S ′-isomorphic to An

S′ \ {0}. After an étale base change on S, we may assume
that A = Matn×n(OS). In this case we have a 2-commutative diagram

Pn−1
S X

BGm,S X

ω1

ω2

π′ π

where, if we view Pn−1
S as the functor parametrizing pairs (L, s) where L is a line bundle

and s = (s1, . . . , sn) is an ordered tuple of globally generating sections and BGm,S as the
stack of line bundles, the map ω1 sends (L, s) 7→ (L⊕n, ηs) where ηs : Matn×n(OS) → L⊕n
is the map sending the matrix Ei,i to the section si in the ith component of L⊕n, the map
ω2 sends a line bundle L to the pair (L⊕n, σcan

L ) where σcan
L : Matn×n(OS)→ EndOS(L⊕n) is

the canonical isomorphism, and π′ is the functor forgetting s. The horizontal maps ω1 and
ω2 are isomorphisms.

If ρ : S → BGm,S denotes the section corresponding to the trivial line bundle, then the
2-fiber product S ×ρ,BGm,S ,π′ PnS is the scheme representing ordered n-tuples s of sections of
OS that are globally generating; this is representable by An

S \ {0}. �

Lemma 4.5.8. Let π : X → S be a morphism of algebraic stacks such that there exists
a smooth surjection S ′ → S, where S ′ is a scheme and X ′ := S ′ ×S X is isomorphic to
Am
S′ \ {0}. Assume that m ≥ 2, that S ′ is regular Noetherian, and that the function field of

S ′ has characteristic 0. Then the pullback

Br′(S)→ Br′(X)

is an isomorphism.17

Proof. The Leray spectral sequence for the map π and sheaf Gm,X is of the form

Ep,q
2 = Hp

ét(S,R
qπ∗(Gm,X)) =⇒ Hp+q

ét (X,Gm,X)

with differentials Ep,q
2 → Ep+2,q−1

2 . The induced map Gm,S → π∗Gm,X is an isomorphism.
Thus it suffices to show that R1π∗(Gm,X) = 0 and R2π∗(Gm,X) = 0. For this we may
replace S by S ′ and assume that S is a regular Noetherian scheme whose function field has
characteristic 0 and that X ' Am

S \ {0}. Let s be a geometric point of S, and let A := Osh
S,s

be the strict henselization of S at s. We have

(R1π∗(Gm,X))s ' Pic(Am
A \ {0})

1' Pic(Am
A )

2' Pic(A) = 0

where we have isomorphism 1 since the codimension of the origin is at least 2 and isomor-
phism 2 follows by e.g. [48, Proposition II.6.6] since A is regular. We have

(R2π∗(Gm,X))s ' H2
ét(Am

A \ {0},Gm)
1' H2

ét(Am
A ,Gm)

2' Br(Am
A )

3' Br(A) = 0

where isomorphism 1 follows from purity for the cohomological Brauer group on regular
Noetherian schemes (see Gabber [35] and Česnavičius [18]), isomorphism 2 holds since Am

A

17A similar result is proved in [33, Proposition 1.3].
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is regular Noetherian and affine, the isomorphism 3 holds by [8, 7.7] since the function field
of S has characteristic 0. �
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5. Variants

5.1. The Azumaya Brauer group of a Brauer-Severi scheme. In this section we
investigate the Azumaya Brauer group of a Brauer-Severi scheme. This question was asked
by Pieter Belmans in his blog post [10].

5.1.1. Let S be a scheme, and let π : X → S be a Brauer-Severi scheme of relative dimension
d. We are interested in the Azumaya Brauer group Br(X). In general, we have a commutative
diagram

Γ(S,Z) Br(S) Br(X) 0

Γ(S,Z) Br′(S) Br′(X) 0

ξ π∗

ξ′ (π∗)′

αS αX (5.1.1.1)

where the map ξ sends 1 7→ [X] and the map ξ′ is the composite αS ◦ ξ. The bottom row
is exact by Gabber [37, I, Theorem 2]. This implies that the top row of (5.1.1.1) is exact at
Br(S). Indeed, given a class α ∈ kerπ∗, we have (π∗)′(αS(α)) = 0 so there exists β ∈ Γ(S,Z)
such that ξ′(β) = αS(α); then αS(ξ(β)) = αS(α), but αS is injective so ξ(β) = α.

We may investigate Br(X) by asking whether αX is an isomorphism and whether π∗ is
surjective. We have only partial answers to these questions:

(1) If X is isomorphic to projective space, then π∗ is an isomorphism.18 Indeed, there is
a section s : S → X of π, which induces a commutative diagram

Br(S) Br(X) Br(S)

Br′(S) Br′(X) Br′(S)

π∗ s∗

(π∗)′ (s∗)′

αS αX αS (5.1.1.2)

where the vertical arrows are injective and the composites of the horizontal arrows
are the identity. We know that (π∗)′ is an isomorphism, hence (s∗)′ is also an iso-
morphism; given α ∈ ker s∗, we have αX(α) ∈ ker(s∗)′ = 0, hence α = 0. Thus π∗, s∗

are isomorphisms.
(2) If αS is an isomorphism, then αX is an isomorphism and π∗ is surjective. Indeed, we

have that (π∗)′ is surjective by Gabber’s result.
(3) (The following was explained to me by Siddharth Mathur.) If S is quasi-compact

quasi-separated, then π∗ is surjective.19 Write S as a filtered inverse limit S '
lim←−λ∈Λ

Sλ where each Sλ is of finite type over Z and the transition maps Sλ → Sλ′

are affine morphisms, then descend the Brauer-Severi scheme π : X → S to Brauer-
Severi schemes πλ : Xλ → Sλ. In this case Br(X) ' lim−→λ∈Λ

Br(Xλ) and Br(S) '

18It may be true that π∗ is an isomorphism if more generally X is a “trivial Brauer-Severi scheme”, more
precisely, the projectivization of a vector bundle on S. However, the argument given here does not apply in
that situation since π : X → S would not necessarily have a section (take a scheme S and a vector bundle
E for which there does not exist any line bundle L and surjection E → L, then apply [44, II, (4.2.3)]).
19This is proved in [79, Proposition 1.1], which cites [28, Theorem 3.6], who assume that the base S is
Noetherian.
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lim−→λ∈Λ
Br(Sλ), so after replacing S by Sλ we may assume that S is a Noetherian

scheme.
Let A be an Azumaya OX-algebra; let GX → X be the Gm,X-gerbe corresponding

to the gerbe of trivializations of A. The surjectivity of (π∗)′ implies that GX is the
pullback of a Gm-gerbe over S, namely there exists a Gm,S-gerbe GS → S such that
GS ×S X ' GX ; let πG : GX → GS be the projection. It suffices to show that GS
admits a locally free 1-twisted sheaf. We know that on GX there is a 1-twisted finite
locally free sheaf EX . Choose a π-relatively ample invertible OX-module L and let
L|GX be its pullback to GX . Set EX(n) := EX ⊗OGX (L|GX )⊗n for n ∈ Z; we will show

that (πG)∗(EX(n)) is finite locally free for sufficiently large n ∈ Z. This is local for
the étale topology on S; let S ′ → S be a quasi-compact étale surjection such that
GS ×S S ′ is the trivial Gm,S′-gerbe; after replacing S by S ′, we may assume that GS
is trivial. Let ξS : S → GS and ξX : X → GX be the sections corresponding to the
trivial Gm-torsor.

X GX X

S GS S

ξX

ξS

π πG π

There is a natural map

(ξS)∗(πG)∗(EX(n))→ (π)∗(ξX)∗(EX(n))

which is an isomorphism for n� 0 by [30, Lemma 5.4], and (π)∗(ξX)∗(EX(n)) is finite
locally free for n � 0 by cohomology and base change [48, III, Theorem 12.11] and
Serre vanishing [48, III, Theorem 5.2]

�

5.2. The Azumaya Brauer group of a Gm-gerbe.

5.2.1. Let S be a scheme, and let π : X → S be a Gm,S-gerbe corresponding to a torsion
class [X ] ∈ H2

ét(S,Gm,S). We are interested in the Azumaya Brauer group Br(X ). In general,
we have a commutative diagram

Br(S) Br(X )

Br′(S) Br′(X )

π∗

(π∗)′

αS αX (5.2.1.1)

where αS and αX are the Brauer maps. We may investigate Br(X ) by asking whether αX is
an isomorphism and whether π∗ is surjective. (We observe that there is no natural candidate
for the kernel of π∗, as opposed to the case of Brauer-Severi schemes 5.1.1.) We have only
partial answers to these questions:

(1) If X is trivial, then π∗ is an isomorphism, as in 5.1.1.
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(2) If αS is an isomorphism, then αX is an isomorphism and π∗ is surjective. Indeed, we
have that (π∗)′ is surjective by Theorem 4.1.2. Hence αX must be surjective, hence
an isomorphism.

(3) On the other hand, it may be the case that αX is an isomorphism even though αS
is not. Let S be the example of [28, Corollary 3.11]. By Hoobler’s comment to the
Corollary (or Bertuccioni’s proof [12, §3]), we have Br(S) = 0 and Br′(S) = Z/(2).
Let X be the Gm,S-gerbe corresponding to the nontrivial class in Br′(S). Then
Br′(X ) = 0 since the kernel of (π∗)′ is generated by [X ]. Thus αX is an isomorphism
(see (5.2.1.1)).

�

Remark 5.2.2. We give a ring-theoretic argument to show that Br(BGm,k) ' Br(k) for any
field k. Let π : BGm,k → Spec k be the projection and let s : Spec k → BGm,k be the section
corresponding to the trivial Gm-torsor. It suffices to show that ker(s∗ : Br(BGm,k)→ Br(k))
is trivial. Let A be an Azumaya OBGm,k-algebra of rank r2 such that s∗A is a trivial Azumaya
algebra over k; this corresponds to Z-grading on the matrix algebra Matr×r(k), and it is
trivial if and only if it is isomorphic as Z-graded algebras to the endomorphism algebra
Endk(V ) of a Z-graded k-vector space V (which is necessarily of dimension r). This follows
from Proposition 1.2 and Corollary 1.5 of [21]. �

5.3. A1-homotopy invariance of the Brauer group. To investigate questions regarding
the (cohomological) Brauer group of an algebraic stack X , one approach is to choose a
scheme U and a smooth surjection U → X , then study the properties of the pullback
Br′(X ) → Br′(U). Locally for the smooth topology on both X and U , the map U → X is
isomorphic to affine space. Hence we are fundamentally interested in the Brauer groups of
polynomial rings:

Question 5.3.1. For which rings A is the pullback

Br(A)→ Br(A[t]) (5.3.1.1)

an isomorphism?

Remark 5.3.2. We have that A× = (A[t])× if and only if A is reduced, and Pic(A) =
Pic(A[t]) if and only if Ared is seminormal (by Traverso’s theorem). It would be interesting
to find a similar ring-theoretic condition on A which is equivalent to saying Br(A) = Br(A[t]),
or H2

ét(SpecA,Gm) = H2
ét(SpecA[t],Gm). �

Theorem 5.3.3. [39, 4.5] 20 Let k be a field of positive characteristic p > 0 and let d ≥ 1
be an integer. Then we have

Br(k[t1, . . . , td]) = Br(k)⊕ (Z[1
p
]/Z)⊕I

where the set I is nonempty if and only if k is not perfect or d ≥ 2. �

Remark 5.3.4. Here we list some known cases of Question 5.3.1.

(1) If A is a field, then (5.3.1.1) is an isomorphism if and only if A is perfect.

20This is a generalization of [54, Theorem 5.7]. Negron [72, 6.4] proves that if char k ≥ 3 and d ≥ 2 then
Br(k[t1, . . . , td]) contains the additive group of k.
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(2) For every prime p which is invertible in A, the p-primary subgroups of Br(A) and
Br(A[t]) coincide (see Lemma 5.3.5); thus if A contains Q, then (5.3.1.1) is an iso-
morphism.

(3) If A is a regular Noetherian domain whose fraction field has characteristic 0, then
(5.3.1.1) is an isomorphism.

(4) For any field k of positive characteristic and A = k[t], the map (5.3.1.1) is not
surjective (see Theorem 5.3.3).

Lemma 5.3.5. 21 [32, 13.6.4] Let A be a ring. If p is invertible on A, then the inclusion

Br(A)[p∞]→ Br(A[t])[p∞]

is an isomorphism.

Proof. For any ` we have a commutative diagram

H2
ét(A[t], µp`) Br(A[t])[p`]

H2
ét(A, µp`) Br(A)[p`]

β γ

where the horizontal arrows are surjective and β is an isomorphism by acyclicity [69, VI,
4.20] since p is invertible on A. �

We also have the following positive result by Knus and Ojanguren:

Theorem 5.3.6. [53, Theorem 3.6] Let A be a Dedekind domain of characteristic 0 and
such that its residue fields are characteristic 0 or perfect and C1. Let R be a finite, faithfully
flat A-algebra. Then the inclusion R → R[t1, . . . , tn] induces an isomorphism α : Br(R) →
Br(R[t1, . . . , tn]). �

Using the results of [53], we can describe more rings A (on which no prime is invertible)
for which (5.3.1.1) is an isomorphism:

Theorem 5.3.7. 22Let A be a Noetherian integral domain with normalization A and con-
ductor a. Suppose

(i) char(Frac(A)) = 0,
(ii) the inclusion A→ A is finite,

(iii) the rings A, (A/a)red, (A/a)red are regular rings whose fraction fields have character-
istic 0,

(iv) the induced map (A/a)red → (A/a)red is an isomorphism, and
(v) vector bundles on polynomial rings over A, (A/a)red, (A/a)red are trivial.

Then Br(A) ' Br(A[t1, . . . , tn]).

21This is proved in [79, 1.5] under the hypotheses that A is normal, integral Noetherian and all the strict
henselizations of local rings of polynomial rings over A are UFDs.
22This is a variant of Theorem 5.3.6. See Proposition 5.3.8 for an example of a ring A satisfying these
conditions.
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Proof. We denote A[t] := A[t1, . . . , tn], etc. Note that if A satisfies the above five conditions,
then A[t] also satisfies the same five conditions since A[t] is the normalization of A[t] and
a⊗A A[t] is the conductor of A[t]/A[t]. We have the Milnor square

A A

A/a A/a

which we call S. We apply [53, Theorem 2.2] to the morphism of Milnor squares S → S[t],
which will show that there is a commutative diagram

Pic(A/a) Br(A) Br(A/a)⊕ Br(A) Br(A/a)

Pic((A/a)[t]) Br(A[t]) Br((A/a)[t])⊕ Br(A[t]) Br((A/a)[t])

ξ1 ξ2 ξ3 ξ4

with exact rows. Here Pic(A/a) = 0 and Pic((A/a)[t]) = 0 by (v), and ξ3 and ξ4 are
isomorphisms by (iii) and [8, Proposition 7.7].

In the notation of [53], we haveK0FP(A/a) ' Z andK0FP(A/a) ' Z andK0CRP(A/a) '
K0FP(A/a) ' Z and Pic(A/a) = 0 by (v). Here vector bundles on polynomial rings over
A/a, A/a are trivial since there are no nontrivial deformations of the trivial vector bundle
over a square-zero thickening of affine schemes. This verifies the conditions of [53, Theorem
2.2]. �

Proposition 5.3.8. LetR be a regular Noetherian domain with Pic(R) = 0 and char(Frac(R)) =
0 and such that vector bundles on polynomial rings over R are trivial. Let M ⊂ Zd be a
submonoid M ⊂ Nd such that the complement Nd \M is a finite set (e.g. the submonoid
generated by two coprime natural numbers 〈m,n〉 ⊆ N). Set A := R[M], the monoid algebra
associated to M over R. Then (5.3.1.1) is an isomorphism.

Proof. We verify the conditions of Theorem 5.3.7. The normalization of A is A = R[t1, . . . , td]
and the conductor is a = 〈{χm}m∈M\{0}〉A, thusA/a ' R andA/a ' R[{χm}m∈Nd ]/〈{χm}m∈M\{0}〉
so (A/a)red = R. �
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Appendix A. Torsors under torsion-free abelian groups

In [93, Corollary 7.9.1], it is proved that H1
ét(S,Z) is a torsion-free abelian group if S is

a quasi-compact quasi-separated scheme. In this section, we record a different proof which
works over an arbitrary site. This argument is from [88, 093J].

Let S be a site. For any set S, let S denote the constant sheaf on S associated to S.

Lemma A.0.1. Let f : S→ T be a surjective function between sets. Then the induced map

Γ(S, f) : Γ(S, S)→ Γ(S,T)

is surjective.

Proof. Choose a function g : T → S satisfying fg = idT. By functoriality of the “constant
sheaf” functor, we have Γ(S, f) ◦ Γ(S, g) = idΓ(S,T). �

Lemma A.0.2. Let 0 → A → B → C → 0 be an exact sequence of abelian groups. Then
the induced map

H1(S,A)→ H1(S,B)

is injective.

Proof. As part of the long exact sequence in cohomology, we obtain an exact sequence

Γ(S,B)→ Γ(S,C)→ H1(S,A)→ H1(S,B)

where the first arrow is surjective by Lemma A.0.1, hence the third arrow is injective. �

Lemma A.0.3. Let A be a torsion-free abelian group. For any locally nonzero (see Defini-
tion 1.2.10) section n ∈ Γ(S,A), the Γ(S,A)-module H1(S,A) is n-torsion free.

Proof. We first consider the case when n is in the image of A→ Γ(S,A). Let n be a positive
integer. Applying Lemma A.0.2 to the exact sequence

0→ A
×n→ A→ A/nA→ 0

implies that the multiplication-by-n map on H1(S,A) is injective.

In general, for ` ∈ A, let S` ⊆ S be the full subcategory consisting of objects U ∈ S for
which the restriction n|U ∈ Γ(U,A) equals the image of ` under A → Γ(U,A). We have a
functor ∐

`∈A S` → S
and the morphism of topoi

Sh(S)→
∏

`∈A Sh(S`)
induced by restriction is an equivalence; the point is that any object U ∈ S admits a covering
by objects lying in at least one of the S`, and if an object U ∈ S lies in two subsites S`1
and S`2 , then the sheafification map A → Γ(U,A) is not injective so the empty family is a
covering of U in S, hence Γ(U,F) is a singleton for every sheaf F [88, 04B6] (in this case U
is said to be “sheaf theoretically empty”). In particular, an A-torsor P is trivial if and only
if each A|S`-torsor P|S` is trivial. �

Appendix B. Cohomology and spectral sequences

In this section, we recall some tools we require for explicit computations. The material in
this section is standard and we claim no originality.
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For a category C, we denote by PSh(C) (resp. PAb(C)) the category of presheaves (resp.
abelian presheaves) on C. If C is a site, we denote by Sh(C) (resp. Ab(C)) the category of
sheaves (resp. abelian sheaves) on C.

B.1. Cohomological descent spectral sequence.

B.1.1. [76, 2.4.25, 2.4.26], [69, III, Proposition 2.7] 23 Let C be a site, let X be a stack over
C, let π : X →X by a covering be a sheaf of sets X over C. Let

Xn := X ×X · · · ×X X

be the (n+ 1)-fold 2-fiber product of X over X , and let

{X•}n∈Z≥0

be the simplicial sheaf of sets thus obtained. For an abelian sheaf A on X , we have a
spectral sequence of the form

Ep,q
1 = Hq(Xp,A|Xp) =⇒ Hp+q(X ,A) (B.1.1.1)

with differentials Ep,q
1 → Ep+1,q

1 .

Suppose that X = [X/G] for a sheaf of groups G acting on X. In this case, the E2 page
of (B.1.1.1) is of the form

Ep,q
2 = Hp(G,Hp(X,A)) =⇒ Hp+q([X/G],A) (B.1.1.2)

with differentials Ep,q
2 → Ep+2,q−1

2 . �

B.2. Higher direct images of sheaves on classifying stacks of discrete groups.

Setup B.2.1. Let C be a site, let G be a finite (discrete) group, let BGC be the classifying
stack associated to G over C. Let

π : BGC → C
be the projection and let

ϕ : C → BGC
be the canonical section of π. We view any fibered category p : F → C as a site via the
Grothendieck topology inherited from C via p.

Lemma B.2.2. Assume Setup B.2.1. For any abelian sheaf F ∈ Ab(BGC) the higher
pushforward Riπ∗F is naturally isomorphic to the sheaf associated to the presheaf whose
value on an object U ∈ C is Hi(G,Γ(U,ϕ∗F )).

Proof. Let PGC denote the category whose objects are the objects of C and where a morphism
X1 → X2 in PGC is a pair (ϕ, g) where ϕ ∈ MorC(X1, X2) and g ∈ G. (In other words,
there is an equivalence of categories PGC ' C × [∗/G] where [∗/G] is the category with
one object ∗ and where Hom[∗/G](∗, ∗) is isomorphic to G.) The fibered category PGC is a
(separated) prestack whose associated stack is BGC, and the inclusion PGC → BGC induces
an equivalence of topoi Sh(PGC) ' Sh(BGC). Hence in the statement of the lemma we may
replace BGC by PGC where by abuse of notation we also denote

π : PGC → C
the projection morphism. Since sheafification is an exact functor, the diagram

23This is also called the “Cech-to-global spectral sequence” [1] and the “spectral sequence relative to a
covering” [15, A.2.1].



73

PAb(PGC) PAb(C)

Ab(PGC) Ab(C)

πpre
∗

π∗

sh sh

is (2-)commutative. For the same reason, we have a natural isomorphism

(Rπpre
∗ (F ))sh ' Rπ∗(F

sh) (B.2.2.1)

in D+(Ab(C)) for any abelian presheaf F ∈ PAb(PGC). Presheaves on PGC correspond to
presheaves F on C equipped with a G-action, and under this identification πpre

∗ (F ) = FG

where Γ(U,FG) := (Γ(U,F ))G for all U ∈ C. Let F ∈ Ab(PGC) be an abelian sheaf, and
let

F → I0 → I1 → I2 → · · ·
be a resolution of F by injective abelian presheaves I i ∈ PAb(PGC). Then Rπpre

∗ (F ) is
isomorphic to

(I•)G = {(I0)G → (I1)G → (I2)G → · · · } (B.2.2.2)

in D+(PAb(C)), and Γ(U,Rπpre
∗ (F )) is isomorphic to

Γ(U, (I•)G) = {(Γ(U, I0))G → (Γ(U, I1))G → (Γ(U, I2))G → · · · } (B.2.2.3)

in D+(PAb(C)). Furthermore Γ(U, I i) ' (iU)∗I i is an injective G-module for all i by
Lemma B.2.3, thus we have an isomorphism

hi(Γ(U, (I•)G)) ' Hi(G,Γ(U,F ))

of abelian groups. �

Lemma B.2.3. Let C be a category, let U ∈ C be an object, let AC,U denote the full
subcategory of C containing exactly U , and let iU : AC,U → C denote the inclusion. The
inverse image functor (iU)∗ : PAb(C)→ PAb(AC,U) preserves injectives.

Proof. The functor (iU)∗ : PAb(PGC) → PAb(AC,U) has an exact left adjoint, namely the
“extension by zero” functor iU,! : PAb(AC,U) → PAb(PGC) which sends M ∈ PAb(AC,U) to
the abelian presheaf iU,†(M) where Γ(V, iU,†(M)) = M if V = U and 0 otherwise (with the
only nontrivial restriction morphisms being those corresponding to the endomorphisms of
U). �

Appendix C. Inverse image of gerbes

C.0.1. Let f : X → Y be a morphism of sites, let A (resp. B) be an abelian sheaf on
X (resp. Y ), and let ϕ : B → f∗A be a morphism of abelian sheaves on Y . For a B-
gerbe G, let ϕ∗G be denote the A-gerbe corresponding to the image of G under the pullback
morphism ϕ∗ : H2(Y,B) → H2(X,A). The purpose of this section is to describe ϕ∗G and
the accompanying morphism of sites ϕ∗G → G, in order to verify that the pushforward
of an n-twisted sheaf is n-twisted Lemma 1.3.7 and that the Brauer map is functorial for
morphisms of sites 1.4.3. For a more general notion of inverse image of a fibered category
via a morphism of sites, see [40, II, 3.1.5] and [88, 04WA].
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C.0.2. Let
f = (f−1, f∗) : X → Y

be a morphism of sites, i.e. induced by a continuous functor

u : Y → X

which commutes with finite limits [88, 00X6]; in this case f−1 = us and f∗ = us in the
notation of [88, 00WU]. In particular Γ(V, f∗F ) = Γ(u(V ),F ) for any sheaf F on X and
any object V ∈ Y .

C.0.3. Let A (resp. B) be an abelian sheaf on X (resp. Y ), and let ϕ : B → f∗A be a
morphism of abelian sheaves. There are induced pullback morphisms

ϕ∗ : Hi(Y,B)→ Hi(X,A)

for all i ≥ 0 on cohomology. There is a bijective correspondence between classes in H2(X,A)
(resp. H2(Y,B)) and isomorphism classes of A-gerbes (resp. B-gerbes) [40], [76, 12.2.8].
Let G be a B-gerbe with corresponding class [G] ∈ H2(Y,B); we describe the A-gerbe ϕ∗G
corresponding to the class ϕ∗[G] ∈ H2(X,A).

Let A → I• (resp. B → J •) be a resolution of A (resp. B) by injective abelian sheaves
on X (resp. Y ); then ϕ lifts to a chain map ϕ• : J • → f∗I• since each f∗I i is an injective
sheaf on Y .

f∗A f∗I0 f∗I1 f∗I2 · · ·

B J 0 J 1 J 2 · · ·
d−1
J d0J d1J

f∗d
−1
I f∗d

0
I f∗d

1
I

ϕ ϕ0 ϕ1 ϕ2 (C.0.3.1)

Set Zi
I = ker diI and Zi

J = ker diJ ; let β ∈ Γ(Y, Z2
J ) be a lift of [G] ∈ H2(Y,B). The desired

A-gerbe ϕ∗G corresponds to (Γ(Y, ϕ2))(β) ∈ Γ(Y, f∗Z
2
I) = Γ(X,Z2

I) and the continuous
functor

uG : G → ϕ∗G (C.0.3.2)

has the following description. We use the explicit construction of a gerbe given a second
cohomology class [22, 2.5]. An object of G corresponds to a local lift of β to J 1, namely a
pair

(V, ξ)

where V ∈ Y is an object and ξ ∈ Γ(V,J 1) is a section such that

(Γ(V, d1
J ))(ξ) = β|V

as elements of Γ(V,J 2). A morphism

(a, ρ) : (V1, ξ1)→ (V2, ξ2)

consists a morphism a ∈ MorY (V1, V2) and a section ρ ∈ Γ(V1,J 0) such that

(Γ(V1, d
0
J ))(ρ) = ξ1 − a∗ξ2

as elements of Γ(V1,J 1). The isomorphisms

ι(V,ξ) : Γ(V,B)→ AutG(V )((V, ξ))
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of (1.3.1.1) are induced by d−1
J . It may be verified that (G, {ι(V,ξ)}) is a Gm,Y -gerbe. The

analogous construction applied to (Γ(Y, ϕ2))(β) in place of β gives our desired Gm,X-gerbe
(ϕ∗G, {ι(U,ω)}). The functor uG sends

(V, ξ) 7→ (u(V ), (Γ(V, ϕ1))(ξ))

on objects and
(a, ρ) 7→ (u(a), (Γ(V1, ϕ

0))(ρ))

on morphisms. This makes sense as

(Γ(u(V1), d0
I))((Γ(V1, ϕ

0))(ρ)) = Γ(V1, ϕ
1)Γ(V1, d

0
J )(ρ)

= Γ(V1, ϕ
1)(ξ1 − a∗ξ2)

= Γ(V1, ϕ
1)(ξ1)− a∗Γ(V2, ϕ

1)(ξ2)

as elements of Γ(u(V1), I1) = Γ(V1, f∗I1).

For all objects (V, ξ) with image (U, ω) := (u(V ), (Γ(V, ϕ1))(ξ)), the diagram

Γ(V,B) AutG(V )((V, ξ))

Γ(U,A) Autϕ∗G(U)((U, ω))

ι(V,ξ)

ι(U,ω)

Γ(V, ϕ) uG (C.0.3.3)

commutes.

C.0.4. If V ∈ Y is an object such that G|Y/V is trivial (i.e. isomorphic to BB|Y/V ), then
(ϕ∗G)|X/u(V ) is trivial, and the functor (C.0.3.2) is isomorphic to the canonical morphism of
gerbes BB|Y/V → BA|X/u(V ); locally on BB|Y/V , this isomorphic to the localization Y/V →
X/u(V ). A trivialization cover for G pulls back by u to a trivialization cover for ϕ∗G.

C.0.5. There is a commutative diagram

G ϕ∗G

Y X

uG

u

pG pϕ∗G (C.0.5.1)

of functors on the underlying categories, where pG and pϕ∗G are the projections. The functors
u and uG induce morphisms of topoi f : X → Y and F : ϕ∗G → G [88, 00XC] and the functors
pG and pϕ∗G induce morphisms of topoi PG : G → Y and Pϕ∗G : ϕ∗G → X [88, 06NW].

C.0.6 (Proof of Lemma 1.3.7). Assume the notation of C.0.2 and C.0.3 and set X := G and
Y := ϕ∗G and F := uG. Let ρF : OX ×F → F be the action map of F as an OX -module.
The OY -module structure on F∗F is given by the composition ρF∗F := (F∗ρF ) ◦ (f [ × id)
as in the following diagram:

OY × F∗F F∗F

F∗OX × F∗F F∗F

ρF∗F

F∗ρF

f [ × id (C.0.6.1)
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We show that F∗F is χB-twisted. Let (V, ξ) ∈ Y be an object, let t ∈ Γ((V, ξ), F∗F )
be a section, let (V ′, ξ′) → (V, ξ) be a morphism in Y , and let b ∈ Γ((V ′, ξ′),BY ) be a
section. Let F ((V ′, ξ′)→ (V, ξ)) = (U ′, ω′)→ (U, ω) and let s ∈ Γ((U, ω),F ) be the section
corresponding to t under the identification Γ((V, ξ), F∗F ) ' Γ((U, ω),F ). We have

(ιY (b)∗)(t|(V ′,ξ′))
1
= (ιX (ϕ(b))∗)(s|(U ′,ω′))
2
= ρF (χA(ϕ(b)), s|(U ′,ω′))
3
= ρF (f [(χB(b)), s|(U ′,ω′))
4
= ρF∗F (χB(b), t|(V ′,ξ′))

where equality 1 is by definition of ιY , equality 2 is since F is χA-twisted, equality 3 is by
hypothesis on χB, equality 4 is by definition of ρF∗F . �

C.0.7. We verify that the diagram (1.4.3.1) commutes. Assume the situation of C.0.3 with
A := Gm,X and B := Gm,Y and ϕ := f [ : Gm,Y → f∗Gm,X . Let B be an Azumaya OY -
algebra, letA := f ∗B be the AzumayaOX-algebra obtained by pullback, let YAZ (resp. XAZ)
be the Gm,Y -gerbe (resp. Gm,X-gerbe) of trivializations of B (resp. A), let β ∈ Γ(Y, Z2

J ) be
a cohomology class corresponding to YAZ, and set YCO := G and XCO := ϕ∗G as in C.0.3.

By construction, there is an isomorphism of Gm,Y -gerbes YAZ ' YCO. The desired claim
reduces to showing that there is an isomorphism of Gm,X-gerbes XAZ 'XCO.

We will construct the isomorphism locally on XAZ then glue. For convenience, we will
assume B has constant rank r2. Let

V = {Yi → Y }i∈I
be a covering such that there exist isomorphisms

αi : Matr×r(OYi)→ B|Yi
of OYi-algebras. On Yi1,i2 := Yi1 ×Y Yi2 , there are OYi1,i2 -algebra automorphisms

αi1,i2 := (αi2|Yi1,i2 )−1 ◦ (αi1|Yi1,i2 ) ∈ AutOYi1,i2
(Matr×r(OYi1,i2 ))

which, by the proof of Lemma 1.1.10, corresponds to a Gm,Yi1,i2
-torsor Pi1,i2 naturally embed-

ded as a subsheaf of GLr(OYi1,i2 ). Moreover, on triple intersections Yi1,i2,i3 := Yi1×Y Yi2×Y Yi3 ,
the equality

αi1,i3|Yi1,i2,i3 = αi2,i3|Yi1,i2,i3 ◦ αi1,i2|Yi1,i2,i3
of algebra automorphisms corresponds to the equality

Pi1,i3|Yi1,i2,i3 = Pi2,i3 |Yi1,i2,i3 · Pi1,i2|Yi1,i2,i3 (C.0.7.1)

of Gm,Yi1,i2,i3
-torsors, with respect to the group law on GLr(OYi1,i2,i3 ). Set Xi := u(Yi) and

Xi1,i2 := u(Yi1,i2) and Xi1,i2,i3 := u(Yi1,i2,i3); since the functor u is continuous, the collection

f−1U = {Xi → X}i∈I
is a covering of X and satisfies Xi1,i2 ' Xi1 ×X Xi2 and Xi1,i2,i3 := Xi1 ×X Xi2 ×X Xi3 . The
triple

(Yi,O⊕rYi , αi)
is an object of YAZ. Let

(Yi, ξi)
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be the corresponding object of YCO and let

(Ui, ωi) := (u(Yi), (Γ(Yi, ϕ
1))(ξi))

be its image in XCO. For each i, we may define an isomorphism of Gm,Xi-gerbes

f−1αi : BGm,Xi →XCO|Xi
sending the trivial Gm,Xi-torsor to (Ui, ωi). The transition map

BGm,Xi1
|Xi1,i2 → BGm,Xi2

|Xi1,i2
is given by the Gm,Xi1,i2

-torsor f [(Pi1,i2), which is identified with a subsheaf of GLr(OXi1,i2 );
these transition maps satisfy the cocycle condition analogous to (C.0.7.1), and hence, via
stackification, the f−1αi glue to give the desired morphism XAZ →XCO of Gm,x-gerbes.

Appendix D. The Weierstrass and Hesse presentations of M1,1

The purpose of this section is to prove Proposition D.2.1 below, which we could not find
proved in the literature. For completeness of exposition, we first recall the definition of a
full level N structure on an elliptic curve E/S.

D.1. Full level N structures.

D.1.1. [51, Ch. 3] Let N be a positive integer. We define [Γ(N)] to be the category of pairs

(E/S, ξ)

where
E/S = (f : E → S, e : S → E)

is an elliptic curve and
ξ : (Z/(N))2

S → E

is a morphism of S-group schemes inducing an isomorphism (Z/(N))2
S ' E[N ]. A morphism

(E1/S1, ξ1)→ (E2/S2, ξ2)

is a pair
(α : E1 → E2 , β : S1 → S2)

of morphisms of schemes such that the diagram

E1 E2

(Z/(N))2
S1

(Z/(N))2
S2

S1 S2

α

β

id×β

ξ1 ξ2

f1

f2 (D.1.1.1)

commutes, where the morphism id×β is the one induced by the identity on (Z/(3))2
Z and β,

and such that α induces an isomorphism of S1-group schemes E1 ' S1 ×β,S2 E2.

There is a functor
[Γ(N)]→M1,1,Z
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sending (E/S, ξ) 7→ E/S on objects and (α, β) 7→ (α, β) on morphisms. If E/S admits
a full level N structure, then N is invertible on S by [51, 2.3.2], hence the above functor
factors through M1,1,Z[ 1

N
]. If N ≥ 3, then for any scheme S the fiber category [Γ(N)](S) is

equivalent to a set by [51, 2.7.2], so [Γ(N)] is fibered in sets over the category of schemes.

D.1.2 (The GL2(Z/(N))-action on [Γ(N)]). Fix a scheme S. For any element

σ =

[
σ11 σ12

σ21 σ22

]
in GL2(Z/(N)), let

ϕσ : (Z/(N))2
S → (Z/(N))2

S

be the S-group scheme automorphism of (Z/(N))2
S corresponding to the abelian group ho-

momorphism (Z/(N))2 → (Z/(N))2 defined by[
x1

x2

]
7→
[
σ11 σ12

σ21 σ22

] [
x1

x2

]
=

[
σ11x1 + σ12x2

σ21x1 + σ22x2

]
for x1, x2 ∈ Z/(N), i.e. acting by multiplication on the left on (Z/(N))2 viewed as vertical
vectors. We have

ϕσ1ϕσ2 = ϕσ1σ2
for σ1, σ2 ∈ GL2(Z/(N)).

Fix an object (E/S, ξ) ∈ [Γ(N)](E/S); then (E/S, ξ◦ϕσ) is another object of [Γ(N)](E/S),
i.e. corresponds to another full level N structure on E/S. This implies that there is a natural
action of GL2(Z/(N)) on each fiber category [Γ(N)](E/S); the action is a right action since
it is defined by precomposition.

Theorem D.1.3. [51, 4.7.2] If N ≥ 3, the category [Γ(N)] is representable by a smooth
affine curve Y (N) over Z[ 1

N
].

D.2. Comparing the Weierstrass and Hesse presentations. We are primarily inter-
ested in the case N = 3. The 3-torsion points of an elliptic curve correspond to its inflection
points (also “flex points”). In [51, (2.2.11)] it is shown that Y (3) ' SpecAW where

AW := Z[1
3
, B, C, 1

C
, 1
a3
, 1
a31−27a3

]/(B3 − (B + C)3)

and the universal elliptic curve over AW with full level 3 structure is the pair{
EW := ProjAW[X, Y, Z]/(Y 2Z + a1XY Z + a3Y Z

2 = X3)

[0 : 0 : 1], [C : B + C : 1]
(D.2.0.1)

where

a1 = 3C − 1 (D.2.0.2)

a3 = −3C2 −B − 3BC . (D.2.0.3)

The formulas (D.2.0.2) and (D.2.0.3) are obtained by imposing the condition that the line
Y = X+BZ is a flex tangent to EW at [C : B+C : 1]. The ringAW is isomorphic to TMF (3)0

(3.4.6.1), with mutually inverse ring isomorphisms TMF (3)0 → AW and AW → TMF (3)0

given by (ζ, t) 7→ (B+C
C
, 1

3C
) and (B,C) 7→ ( 1

3(ζ−1)t
, 1

3t
) respectively.

In this paper, however, we use the “Hesse presentation” of Y (3) as in [36, 5.1]. The
following is claimed without proof in the Introduction to [25] and [47, 5.2.30].
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Proposition D.2.1. There is an isomorphism Y (3) ' SpecAH where

AH := Z[1
3
, µ, ω, 1

µ3−1
]/(ω2 + ω + 1)

and the universal elliptic curve over AH with full level 3 structure is the pair{
EH := ProjAH[X, Y, Z]/(X3 + Y 3 + Z3 = 3µXY Z)

[−1 : 0 : 1], [1 : −ω : 0]
(D.2.1.1)

with identity section [1 : −1 : 0].

The explicit Z[1
3
]-algebra isomorphisms AH → AW and AW → AH are given in (D.2.5.7)

and (D.2.5.8) respectively.

D.2.2. By [87, §4], the group law of an elliptic curve E = ProjA[X, Y, Z]/(X3 + Y 3 +Z3 =
3µXY Z) in Hessian form over a ring A is as follows. If P = [x : y : z], then 2P = [x′ : y′ : z′]
where

x′ = y(z3 − x3)

y′ = x(y3 − z3)

z′ = z(x3 − y3)

and if Pi = [xi : yi : zi] are points of EH for i = 1, 2, 3 satisfying P1 + P2 = P3, then

x3 = x2y
2
1z2 − x1y

2
2z1

y3 = x2
1y2z2 − x2

2y1z1

z3 = x2y2z
2
1 − x1y1z

2
2

which only makes sense if P1 6= P2.

Using the above formulas, we may check that the full level 3 structure ξH : (Z/(3))2
AH
→ EH

is given by the table (D.2.2.1).

ξH


(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)


 =

 [1 : −1 : 0] [−1 : 0 : 1] [0 : 1 : −1]

[1 : −ω : 0] [−ω : 0 : 1] [0 : 1 : −ω]

[1 : −ω2 : 0] [−ω2 : 0 : 1] [0 : 1 : −ω2]

 (D.2.2.1)

The Hesse presentation (D.2.1.1) is sometimes easier to work with than the Weierstrass pre-
sentation (D.2.0.1) since the equation of the universal elliptic curve is symmetric in X, Y, Z,
which means that there is also considerable symmetry in the 3-torsion points (D.2.2.1).

D.2.3. We describe the GL2(Z/(3))-action on EH/AH. Set SH := SpecAH. The functor
[Γ(3)] being representable by SH means explicitly that for any Z[1

3
]-scheme T and object

(E/T, ξ) ∈ ([Γ(3)])(T ), there exists a unique pair (α, β) of morphisms of schemes α : E → EH

and β : T → SH such that the diagram
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E EH

(Z/(3))2
T (Z/(3))2

SH

T SH

α

β

id×β

ξ ξH

fT

fSH

commutes and induces an isomorphism of T -group schemes E ' T ×β,SH
EH as in (D.1.1.1).

As in D.1.2, for every σ ∈ GL2(Z/(3)), let ϕσ be the SH-automorphism of (Z/(3))2
SH

induced by σ; then precomposition ξHϕσ defines another full level 3 structure on EH/SH.
Taking T = SH and ξ = ξHϕσ above, there is a unique pair (ασ, βσ) of morphisms of schemes
ασ : EH → EH and βσ : SH → SH such that the diagram

EH EH

(Z/(3))2
SH

(Z/(3))2
SH

SH SH

ασ

βσ

id×βσ

ξHϕσ ξH

fSH

fSH

commutes and induces an isomorphism of SH-group schemes EH ' SH×βσ ,SH
EH. Given two

elements σ1, σ2 ∈ GL2(Z/(3)), we have a commutative diagram

EH EH EH

(Z/(3))2
SH

(Z/(3))2
SH

(Z/(3))2
SH

SH SH SH

ασ1 ασ2

βσ1 βσ2

ξHϕσ1ϕσ2 ξHϕσ2 ξH

fSH fSH

fSH

which implies
βσ2βσ1 = βσ1σ2

since ϕσ1σ2 = ϕσ1ϕσ2 (see D.1.2). Thus the assignment

σ 7→ βσ (D.2.3.1)

defines a right action of GL2(Z/(3)) on the scheme SH.
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In terms of the generators

M1 =

[
1 0
0 −1

]
, M2 =

[
1 0
−1 1

]
, i =

[
0 −1
1 0

]
of GL2(Z/(3)), the action of GL2(Z/(3)) on EH/AH is as follows. (We refer to (D.2.2.1) for
the additive structure on EH[3].)

(1) For σ = M1, the new level 3 structure ξHϕM1 is[
[−1 : 0 : 1] [1 : −ω : 0]

] [1 0
0 −1

]
=
[
[−1 : 0 : 1] [1 : −ω2 : 0]

]
and the scheme morphisms αM1 : EH → EH and βM1 : SH → SH correspond to the
ring homomorphisms sending{

(X, Y, Z)←p (X, Y, Z)

(µ, ω2)←p (µ, ω)

respectively.

(2) For σ = M2, the new level 3 structure ξHϕM2 is[
[−1 : 0 : 1] [1 : −ω : 0]

] [ 1 0
−1 1

]
=
[
[−ω2 : 0 : 1] [1 : −ω : 0]

]
and the scheme morphisms αM2 : EH → EH and βM2 : SH → SH correspond to the
ring homomorphisms sending{

(X, Y, ω2Z)←p (X, Y, Z)

(ωµ, ω)←p (µ, ω)

respectively.

(3) For σ = i, the new level 3 structure ξHϕi is[
[−1 : 0 : 1] [1 : −ω : 0]

] [0 −1
1 0

]
=
[
[1 : −ω : 0] [0 : 1 : −1]

]
and the scheme morphisms αi : EH → EH and βi : SH → SH correspond to the ring
homomorphisms sending{

(ωX + ω2Y + Z, ω2X + ωY + Z,X + Y + Z)←p (X, Y, Z)

(µ+2
µ−1

, ω)←p (µ, ω)

respectively.

Remark D.2.4. According to our convention, the action of GL2(Z/(3)) on the fiber category
[Γ(3)](EH/ SpecAH) is by precomposition, hence the action of GL2(Z/(3)) on pairs of points
on the right hand side of (D.2.2.1) is a right action; thus the induced action of GL2(Z/(3))
on the scheme SpecAH is a right action (as described in (D.2.3.1)) and the corresponding
action of GL2(Z/(3)) on the coordinate ring AH is a left action.

D.2.5 (Proof of Proposition D.2.1). In fact, it turns out that the identities

a3
1 − 27a3 = (3C + 9B − 1)3 (D.2.5.1)

a3 = B(6C + 9B − 1) (D.2.5.2)
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hold in AW which yields a simpler description

AW ' Z[1
3
, B, C, 1

C
, 1

3C+9B−1
, 1

6C+9B−1
]/(C2 + 3CB + 3B2)

of AW. (For (D.2.5.1), write out a3
1 − 27a3 in terms of B,C and notice that it is of the

form 9C + 27B − 1 plus higher order terms; then check that the naive guess works. To see
(D.2.5.2), substitute C2 = −3CB − 3B2 into (D.2.0.3).)

We follow the argument of [6, 2.1]; see also [20, §1.4.1, §1.4.2]. Working “generically”, we
will assume that a1 is a unit to obtain the coordinate change formula (D.2.5.9), then observe
that it applies also to the case when a1 is not a unit. Starting with

Y1Z1(Y1 + a1X1 + a3Z1) = X3
1 (D.2.5.3)

we define X2, Y2, Z2 by the systemX1

Y1

Z1

 =

u2

u3

1

X2

Y2

Z2


where u = a1/3 and substitute into (D.2.5.3) to get

Y2Z2(Y2 + 3X2 + 27a3
a31
Z2) = X3

2 . (D.2.5.4)

We define X3, Y3, Z3 by the system1 1
1 27a3

a31
1

X2

Y2

Z2

 =

 ω ω2

ω2 ω
1

X3

Y3

Z3


where ω = C+B

B
24 and substitute into (D.2.5.4) to get

(ωX3 + ω2Y3 − Z3)(ω2X3 + ωY3 − Z3)(−X3 − Y3 + Z3) = 27a3
a31
Z3

3

or equivalently

X3
3 + Y 3

3 +
27a3−a31

a31
Z3

3 = −3X3Y3Z3 . (D.2.5.5)

We know that the coefficient of Z3
3 in (D.2.5.5) is a cube (D.2.5.1) so we normalize by defining

X4, Y4, Z4 by the system X3

Y3

Z3

 =

1
1

−a1
3C+9B−1

X4

Y4

Z4


and substitute into (D.2.5.5) to get

X3
4 + Y 3

4 + Z3
4 = 3 a1

3C+9B−1
X4Y4Z4 . (D.2.5.6)

To summarize the above, there is a ring homomorphism ϕ21 : AH → AW sending

µ 7→ 3C − 1

3C + 9B − 1

ω 7→ C +B

B

(D.2.5.7)

24Since 3 is invertible, if x is a root of the polynomial T 2 + 3T + 3 then x + 1 is a root of the polynomial
T 2 + T + 1, thus it is natural to take C+B

B as our ω.
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and solving for B,C in terms of µ, ω implies that the inverse ϕ12 : AW → AH sends

B 7→ µ− 1

3(ω + 2)(µ− ω)

C 7→ (ω − 1)(µ− 1)

3(ω + 2)(µ− ω)

(D.2.5.8)

where ω + 2 is a unit of AH since (ω + 2)(ω − 1) = −3 and µ − ω is a unit of AH since
µ3 − 1 = (µ− 1)(µ− ω)(µ− ω2). We may check that the productu2

u3

1

1 1
1 27a3

a31
1

−1  ω ω2

ω2 ω
1

1
1

−a1
3C+9B−1


is “projectively equivalent” to the matrix

X :=

 0 0 −3
3C+9B−1

ω ω2 3u
3C+9B−1

ω2

a3
ω
a3

3u
a3(3C+9B−1)

 (D.2.5.9)

whose determinant is a unit of AW. Given a section [sX : sY : sZ ] of (D.2.5.3), the corre-
sponding section of (D.2.5.6) is X−1 · [sX : sY : sZ ]T where

X−1 =


−a1

3
B
C

−9CB−18B2−C
3

−a1
3

−B
C+3B

−9CB−9B2+C+3B
3

−3C−9B+1
3

0 0

 .

The above implies that the sections

[0 : 1 : 0] , [0 : 0 : 1] , [C : B + C : 1]

of (D.2.5.3) (i.e. the identity section and ordered basis for the 3-torsion) correspond to the
sections

[1 : −ω : 0] , [1 : −ω2 : 0] , [−1 : 0 : 1] (D.2.5.10)

of (D.2.5.6). We may apply an automorphism of the pair (AH, EH/AH) ∈M1,1,Z of the form
D.2.3(2) (for Y instead of Z) to (D.2.5.10) to get

[1 : −1 : 0] , [1 : −ω : 0] , [−1 : 0 : 1] (D.2.5.11)

and using the fact that there is a simply transitive action of GL2(Z/(3)) on the set of ordered
bases of the 3-torsion in EH/AH, we may switch the second and third sections of (D.2.5.11)
to obtain

[1 : −1 : 0] , [−1 : 0 : 1] , [1 : −ω : 0] (D.2.5.12)

as desired. �

Remark D.2.6. For (D.2.5.1), see also Stojanoska’s derivation [89, §4.1].

Remark D.2.7. There are coordinate change formulas in [87, §3] transforming a Weierstrass
equation into Hesse normal form, but there it is assumed that the base ring is a finite field
Fq where q ≡ 2 (mod 3), in order to take cube roots of a3

1 − 27a3, but from this description
it is not clear that the cube root is an algebraic function. As shown in (D.2.5.1), it turns
out that in fact a3

1 − 27a3 is a cube in the ring AW. One suspects that this is the case after
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tracing through the proof of [6, 2.1] and arriving at the equation x3 + y3 +
27a3−a31

a31
z3 = 3xyz,

in which case we know that
27a3−a31

a31
is a cube by Lemma D.2.8.

Lemma D.2.8. Let k be a field of characteristic not 3, and let

x3 + y3 + β = 3xy (D.2.8.1)

be a curve in A2
k. Suppose that

ax+ by + c = 0 (D.2.8.2)

is the tangent line to a flex point of E and suppose that a3 6= b3. Then β is a cube in k.

Proof. If a = 0, then b 6= 0 and substituting y = − c
b

into (D.2.8.1) and rearranging gives

x3 + 3c
b
x−( c

b
)3 +β = 0 which by assumption is of the form (x+`)3 for some ` ∈ k. Comparing

coefficients, we have ` = 0 and so β = ( c
b
)3.

By symmetry we may assume that a, b 6= 0. By scaling (D.2.8.2), we may assume that
b = −1. Substituting y = ax+ c into E gives

(a3 + 1)x3 + 3(a)(ac− 1)x2 + 3(c)(ac− 1)x+ (c3 + β)

and dividing by the leading coefficient gives

x3 + 3

(
a(ac− 1)

a3 + 1

)
x2 + 3

(
c(ac− 1)

a3 + 1

)
x+

(
c3 + β

a3 + 1

)
and comparing this to

x3 + 3`x2 + 3`2x+ `3

gives either ac − 1 = 0 in which case c3 + β = 0 as well (so that β = (−1/a)3 = (−c)3),
otherwise if ac− 1 6= 0 then

c

a
= a

(
ac− 1

a3 + 1

)
which implies c = −a2 so that the original equation of the tangent line is y = ax − a2.
Substituting this back into E gives β = (−a)3. �

Appendix E. Computation using Magma

We compute H1(GL2(Z/(3)),M) in 3.4.4 using Magma [14]. Here G is defined as the
subgroup of GL2(Z/(3)) generated by the matrices in (3.4.3.6), but the specified matrices
constitute a generating set so in fact G = GL2(Z/(3)). The group G acts on the abelian group
M = (Z/(2))⊕6 by the three specified elements of Mat6×6(Z), where each x ∈ M is viewed
as a horizontal vector and each 6× 6 matrix A acts on M by right multiplication x 7→ x ·A.
The last line computes H1(G, (Z/(2))⊕6).

G := MatrixGroup< 2 , FiniteField(3) |

[ 1,0 , -1,1 ] , [ 0,-1 , 1,0] , [ 1,0 , 0,-1 ]

>;

mats := [

Matrix(Integers() , 6 , 6 , [

0, 0, 1, 0, 0, 0 ,

1, 0, 0, 0, 0, 0 ,

0, 1, 0, 0, 0, 0 ,
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0, 0, 0, 0, 1, 0 ,

0, 0, 0, 0, 0, 1 ,

0, 0, 0, 1, 0, 0 ]) ,

Matrix(Integers() , 6 , 6 , [

1, 0, 0, 0, 0, 0 ,

1, 0, 1, 0, 0, 0 ,

1, 1, 0, 0, 0, 0 ,

0, 0, 0, 1, 0, 0 ,

0, 0, 0, 1, 0, 1 ,

0, 0, 0, 1, 1, 0 ]) ,

Matrix(Integers() , 6 , 6 , [

0, 0, 0, 1, 0, 0 ,

0, 0, 0, 0, 1, 0 ,

0, 0, 0, 0, 0, 1 ,

1, 0, 0, 0, 0, 0 ,

0, 1, 0, 0, 0, 0 ,

0, 0, 1, 0, 0, 0 ])

];

CM := CohomologyModule(G,[2,2,2,2,2,2],mats);

CohomologyGroup(CM,1);
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A. Grothendieck and N. H. Kuiper, editors, Dix Exposés sur la Cohomologie des Schémas, volume 3 of
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