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Henry P. Stapp
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720
ABSTRACT |
Spin is incorporated into the hadronic tépological
expansion scheme. Spin analogs of Chan-Paton factors are
introduced in a Qay that avoids the troubles encountered in
earlier attempts. Those troubleé, at the meson level, were,
first, the occurrence of twice the wanted number of pseudo-
scalar and vector mesons; second, the occurrence of parity-
doublet partners of the pseudo-scalar and vector mesons; and
third, the occurrence of these parity-doublet partnérs as
particles of negative metfic, called ghosts. These troubles
are all avoided by introducing é new topological level, called
zero- entropy, that lies below the ordered level. At the zero-
entropy level quarks of opposite chirality are treated as
distinct particles. The theory has been extended to all hadrons,
and the basic particles are ekactly those of the constituent qﬁark
model, which for baryons start with the (56+) and (707). The
theory is formulated in the M-function framework, where the
"quarks" are represented by two-component spinors, and it entails
_SU(6)w symmetry of the hadronic vertices at a low level of the

topological expansion.

This work was supported in part by the Director, Office of
Energy Research, Office of High Energy and Nuclear Physics,
Division of High Energy Physics of the U.S. Department of
Energy under Contract No. W-7405-ENG-48.
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1. INTRODUCTION
A scattering amplitude can be represented as a sum of contributions
from all ways in which thé process can occur. Each contribution has

a phase factor, and the scattering amplitude between randomly chosen

states tends to be small due to an averaging-out of these phase factors.

The dominant transitions are between states in which the clements of
order characterizing the iﬁitial state are carried into the final
state in some ''direct'' way.

‘This tendency of the the dominant transitions to preserve order
is,particuiarly important in hadron physics, due to the inherent
complexity of the hadrons and fheir interactions. Indeed, this
order-preserving tendency has been made the basis of a successful
approximation proceéure for meson physics. Tﬁis procedure is based
not on the smallness of any coupling constant but rather on the
smallness of contributions that do not preserve order. Order is
defined so that it is preserved by contributions to the scattering
amplitude that correspond to sequences of scattering events
represented by graphs that canbedrawn in a plane with no lines
crossing. Contributions from non planar graphs generally have phase
factors that tend to average to zero in high-energy regimes.

This topological approach to hadron dynamics,which originated
in some works by Venezianol, and has been pursued by many workers,
has been recently reviewed by Chew and Rosenueig. They show how
the topological expansion procedure, combined withvthé requirements of
unitarity, amalyticity, duality, and Lorentz invariance, organizes and

predicts many of the dominant features of meson physics.



The two major deficiencies in the theory described by Chew and
Rosenzweig are the omission of spins and baryons, The aim of the
present work is to complete the theory by incorporating these two
elements. The group-theoretic properties of the constituent-quark model
of hadrons are also incorporated. Thus the leading baryons constructed
from three Kinds of flavors fall into the familar (56, 0") and (70, 17)
multiplets. '

The theory is formulated completely within the S-matrix framework,
and involves no microscopic description of the hadrons in terms of
quark wave functions. Thus it provides a covariant approach to
hadron physics that incorporates the group-theoretic properties of
the constitutent-quark model and has no confinement problem.

The theory is the product of a long intermittent collaboration
with Geoffrey Chew, and his ideas are woven into it in many ways.

The technical formulations are of my own making, but the general
strategy incorporates key suggestions by Chew.

The present paper is associated with a recent series of papers
by Chew and Poénaru.3 it describes technical results that have been
used in the development of their ideas. However, the aims of Chew
and Poénaru are broader than those of the present work, which
simply accepts the group-theoretic structure of éhe constituent-
quark model on the basis of its empirical success. Chew and Poénaru
seek to derive the group-theoretic structures from topological
considerations and consequently need a richer topological structure
than the one used here. Their topologicai structure contains, in

addition to the quark-particle graphs of the present theory, and

surface upon which these graphs are imbedded, also a second surface,
called the quantum surface, in which the group-theoretic relations
associated with flavor and other symmetries reside.

In the present work flavor is an unconstrained variable. The

flavor structure may in fact be determined by the nonlinear dynamical

.equations, but it is not determined within the present framework by

topological considerations alone.

The theory is based on the covariant treatment of spin provided
by the M function formalism. Sinée the earlier description of this
formalism4 was very brief the key points are described here in §2,
with particular emphasis on those results that are important in the
context of the present work.

The incorporation of spin into the meson sector is described in
§3. The principal innovation, compdred to earlier similar efforts
in this direction,s’6 is the relaxing of the requirement of parity
invariance at the lowest level of the topological expansion: this invar-
iance comes later from a sum over different zero-entropy amplitudes.

The results are summarized and compare to earlier works in §4.
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Baryon§ dre treated in paper II. In lowest order the topological
structure is : .
essentially the same as in the meson sector. This is achieved
by treating the baryon at the lowest-order (zero-entropy) level of
the topological expansion as a quark-diquark combination. A novel
feature in the baryon sector is the introduction of a two-dimensional
representation of the.vpenmutation group 83 in association with
each of the vector indices g that arise in connection with the
Regge recurrences of the'baryons. The physical amplitudes are
required to be‘invariant'pnder all permutatiens of the group Sz,
applied séparvately to each baryon. This imposes a full permutation
symmetry analogous to that of the constituent-quark model, and leads

to the familiar £ =0 and £ =1 multiplets.

2. SPIN

2.1. Lorentz Transformations in Spin Space

Let 9, represent the Pauli spin-matrix four-vector

o, = (09> 01305, 0x) = (1, %), . (2.1

where o

0 -is the two-by-two unit matrix and 015 Oy and o, are

the three Pauli matrices:

01 0 -i 10
o = (1 o) » 0y = (i 3) » 03 = (0 -1) . (2.2)

Let A and B be any two-by-two matrices with determinant one.

Then the Lorentz transformation matrix Luv(A,B) is defined by
- v -
Aou B = a, L U(A’B) z (o L)Ll (2.3)

(Repeated vector and spinor indices are always to be sumhed.)

Let EU represent the Pauli spin-matrix four vector

vooe, s, 5. S ' (2.4)
Then _
lrrgs = @
Z gp\) ’ ) . N

where & is the Lorentz metric’ tensor with diagonal elementé
a, -1, -1, -1). ' |

' Lét C=-1 o, = - CTT be the (charge) conjugation matrix,
and let M be any two-by-two matrix. Then the Pauli identity .

..

cl MTeM = detm. - (2.6)
entails that
¢l Tc= 5 ’ 2.7
u u _

and that
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To specify four different ways of applying transforms to spin
indices four different types of spinor indices are introduced. The
spin transformation A = A(A,B) acts on the different types of
spinor indices according to the rules:

A (%) (2.9)

L}
x>
[

©

Q—

"
—
b
&

Mgy = o, B = (B

A (6B (B‘l)ﬁé.¢3' L

v 7 a
o 'y %= (ahy |

al

A (6%

Thus the transformation to be appliea is determined by the location
of the index (upper or lower) and whether it is dotted or undotted.

The operator A acts like the identity on any sum of the form
0% or ¢éw6 . For example,

(¢4

A% ) = (6% ()

@ AT A vy

= ¢y . (2.10)

Let aps By, ey By) be any set of 2n four-vectors. Then

1 ~ .
7-Tr %0 ay'G a5°0 ... 8p.G (2.11)

is a Lorentz-invariant function of the four-vectors agsee To

" %on.

see this let the indices on o and.au’ be specified always in the

following way:
0u > ouué cu > ousa . (2.12a)
Then (2.3) and (2.8) become

AO; - @b, B, o= @D, . (212

Application of the operator A leaves invariant the trace

(2.11), due to (2.10). It gives, alternatively, by virtue of (2.12),
. ) ) .
'2' Tr (G'Lal) (0'\) hd Laz) cee (Ozn' Lazn) . (2.13)

Thus the trace is invariant under any Lorentz transformation of all

the vectors a;.

Two important special cases are

ZTr aje0 3,6 = a- a, (2.14a)

which follows from (2.5), and
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v

-1 ~ .
Z-Tr al-o az-G a,*0 a4~0

3

= (- 52)(53 Tay) *t(apt ada; coag) - (3 - ajeyay)

+ 1 [al, ay, as, a4] , : (2.14b)
where
_ auv.o. 8
[a, a,, as, a4] = ajaazay € s ~(2.15)

1.

Here ¢ 1is the fully antisymmetric matrix with €0123 -

2.2 Covariant Spin-Projection Operators

‘Let P=mv be the momentum-energy of a freely moving
particle, as measured in some generél Lorentz frame =. Let s
be a spin vector that satisfies s «p =10, Let Zy(v) be
the particle-rest-frame obtained by applying a "boost'" to Z.
This boost i§'Q;La}entz‘transfofmation that leaves unchange& any
space component that is perpendicular to V. The vectors v and

s as measured in EF(V) are

Ve v = (0, - (1, 0,0,0) (2.16a)

and

T _ Ty _  TO =Ty _ . r-r _r
st = (Su) = (s77, s ) = (0,‘51, Sos 53) - (2.16b)

The rest-frame projection operator is

10
=T _ 1 ST >
P (s) = g‘(l + 5. o)
1 .. r .
= % v sr)“all =z v+ s §. ‘ (2.17)

This opgratér pfojects onto the spin state in which the spin is
direcfed along sf = 0, gr) as'measured in Er(v), and hence
along s as heasufed in - Z.

The operator,vﬁr(s) refers to the rest frame Zr(v)u, To
eliminate thié frame depéhdence one may apply the boost A(A;B)‘
that converts P’ from its form in Z'(v) to its form in the

genefai coordinatevframe ?:
B AORSIORRO
B,f lif.’r(.r) (sy A’
- %-6 C T - Lgr)
= %GT (v + s_)A

=.v%-(v + s}+ &

P(s, V) - (2.18)

Real Lorentz transformations are generated by matrices A and

B that satisfy A = BT, where dagger denotes hermitian conjugation.
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For rotations A 1is unitary, but for boosts A is hermitian. The

boost A(A,B) that converts the rest frame form P’ into the general

coordinate system form P is

A(v)

Aty = 8wy = Blwy) = /v s (2.19b)
where
Vo= epd G- B - cosh § + #.8 sinh § (2.20)
and
Veo= exp6(G-n) = coshg+h .5 sinheg
= VUO
u
= Vv 3
_0 . > > o :
=v +8 .5 |V (2.21)
Note that
veg v = 1 (2.22a)
and
JVTS JVTs o= 1 . (2.22b)
- #

ey = ATy = v | (2.19a)

12
Another.useful form is
Jvs = 0 . (2.23)
The operator

f’(S,V) = Jv.0

]
—
+

. m,,i'
S5 g
N
Q

(2.28)

_ o 7 W=-3G+s+3)

is called a covariant spin operator.‘ The vectors v and s
occurring in P(s + v) have components W and ¥ that.refer to
the general frame of reference | zZ. ‘

Because the boost operators Al and B! are hermitian,
rather than unitary, fhe operator .?(s, v) is not a true projection
operator: P(s, v)2 #P(s,v) for V# 0.

The covariant spin operators are Lorentziinvariant spinor

functions in the sense that
= -1 -1 _ '
AP(L™"s, L7v) = P(s, v). (2.25)
Here A = A(A, B) and L = L(A,B). This result follows directly

from (2.12).

2.3 M Functions

Consider first a scattering process involving one spin-%
particle in the initial state and one spin-% particle in the final
state, and an arbitrary number of spinless particles. Let
P = (P T35 PtyisBPos tseo5 Pyo ty), where p, is the

mathematical momentum-energy of the final spin-% particle, Py,
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is the mathematical momentum-energy of the initial spin-% particle,
apd Pe» -+ » Pg are the-mathematical momentum-energy vectors of
the spinless particles. The ﬁathematical momentum-energy vectors are
equal to plus or minus the physical momentum-energy vectors for
| final and.initial particles respeﬁtiveiy.. Thus pa - mv, an&€j
0

. 0-
a >0 and vb.> 0.

bb = - mpVy, where v
The tj are the mathematical type labels. They aréirelated
* to the physical-type labels tlj’hys_ by the relation t; = t‘j’hys‘/s'ign p?,
where tj and""-tj label relative - antiparticles. Thésé‘typé ‘
variables are sometimes suppressed.
According to quantum theory the probability for ‘a“scattering

specified by (p, Sg» sb) is proportional to

T B(sy) sp) Bsy) st (2.26)

where S(p) 1is the S matrix. This can be written equivalently as

2 Tr Bls,, vy) M) Plsy, vi) M ()

(2.27)
where, as in §2.2,
P(s,, v,) = A, 0 P'(s,) O (2.28a)
f’(sb, v) = /v 8 P(sy) Vv 5, (2.28Db)
and )
M(p) = vv,r 0 S(p) RAACI (2.29a)
M (p) = A © st AT (2.29b)

The physical probability is assumed to be Lorentz invariant. This

with

physical invariance ensures

14

that if the spin indices of M(p) and

Nﬁ(p) are assigned spin-index type according to the rules

M(p) - Maé (p)

and

. +
M (p) » Maé ®),

(2.30a)

(2.30b)

then the spinor functions M(p) and Mifp) are Lorentz invariant:

* for all proper (det L =-1)

: L))

and

).

_1 - _1 -
L (p) = (L lpa; L pb: L 1pC’ L

These invariance properties

defined by

M(p)

()]

) o

and .

Hl

MJr () ™ (p)cp

then the quantities o (p)

the set of vectors p:

nLE) =
ey = P

real Lorentz transformations
M(p) . (2.31a)
M(p) , (2.31b)

, Lhp).(2.310) -

entail that if m!(p) and m+“(p) are

t

m(p) * © (2.32a)

(2.32b)

m+(p) o

and nﬁu (p) are vector functions of

() = (Im(p)
) = @ )V .

(2.333)
(2.235)
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Consequently, by virtue of (2.12),the spinor functions

M(p) = m(p)3, = m(p)3 (2.34a)

and '

i) = mY ()G, = n'(p) 6 ©(2.300)
are also Lorentz invariant spinor functions:

WL ) = Hep) (2.352)

and

Wty = e . (2.35b)

These simple transformation properties do not hold for the S-matrix
S(p)-

The foregoing discussion can be immediately extended to processes

in which there are n initial spin %— particles, n final spin %

particles, and n' spinless particles. In this case the M

function can be written in the form (with type labels suppressed)

M(p,1,015 Pp1sBys Pags 095 Prgs Bps +++3 Paps 0ns Pyps B3 PpyeesPps)

n
Uily ..l '

_ 12 n on o (2.36)

=m (p) x - o8y

Hy-- -l
where m 1 n(p) is a tensor function of the vectors

16

p = (pal,pbl’ R | pan’ pbn’ plv sty pnl):

n ey - (

1

=)

(2.37)

W3 Vq o0V
L %i) mi ey
1 .

The way in which the n initial spin-} particles are associated

with the n final spin-% particles is immaterial: (2.37) holds in

any case.
2.4 Parity
let S(p) be written as S(p) = S,(p) + S_(p), (2.38)
where
| S+ () =+S5,(®) . (2.39)
Here
p = (51’ i)z, M ] ﬁN) H
@) = @), - B, (2.40a)
and
o = R
@) = ;. D) .- (2.40b)

Let an intrinsic parity €5 be assigned to each particle j,

define the parity operator 3? by

P o) =

= Z‘
i

c. SG) - (2.41)
j=1 7 -

and
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The product of ei‘s for allowed processes must be + 1 or -1.

Invariance under parity is then expressed by the equation
Pse) = sm. (2.42)

If this equation is satisfied then Se defined in (2.38) must
N .

be zero unless € = [l €. .
=1 )

Consider a process in which n initial spin-% particles,
i=1, ... ,n, are scattered into n final spin-% particles. Let

Pai and Ppi denote the final and initial mathematical momentum-erergies

of the ith particle. let (pl, cee pn,) denote the momenta of n'
spinless particles that also participate in the reaction. Then
as already mentioned, the M matrix can be written

M(pal’ talspbly tbl; eee Pan, tan; pbna tbn; Pl, tl; ~--;Pn" tnl)

oL W n (1) .
| "o, t) 'Hld“i , (2.43)
1=
. where the matrix elements of 0(1) are 011 .8 The connection
51 %P1

of M(p) to S(p) can be represented by the equation

M(p) = (]iI v \tai-cyC ]) S(p) (Ig /vy O(I))

NG SB) Ny - - (2.48)

Define now

M) = (1 /v 000) 8, @) (I ypeotD ). (2.45)
B 1 - i

18

- Then

M, (p)

(U,/\?ai .'0(1)) S,,(fﬂ(f.l /;,bi, qii)>
1 - 1

(u/v-ai.éil} 5. (p)(r_l/sb_ . 0(”)
Ai 1 b1

= (Ovgs MM @ vy -6, (2.46)
1 - 1

"
4+

[l
I+

This equation can be inverted to give

) ' (1) 5 Y
M P) = (T vy o) MB) (T vy 070 (2.47)

The parity transformation applied to the M functions is defined

to be

T
L= 3~4

P o)) &) (M vy; oWy ME) (v, -ozuam)
1

Then (2.48) and (2.47) ensure that the condition

P i) = Mp) (2.49)

: N
is equivalent to the condition that Ivg be zero unless € = [1 ¢

j=1 7

which is equivalentto the parity invariance condition g (8()) = Sp).

For n distinguishable spin-% particles the no-scattering part

of the S matrix has the form

s - 0 [e®yen3s3 .. + .y 2 250
0(p] = ir=Il (00 ) (2m) (Pai Ppit w5 - (2.50)
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) . . . hys . :
The corresponding M function is P pgiy /sign pgi (2.53a)
M) = I 1) 2m3 3 ‘ s.. = sPYS sgion p° (2.53b)
p® = I vyro N7 Ry Ppdlg) - - (2:5D) | Sai T Sai /S8 Py -
In order that thi i be invari i t PS /sign pO. - (2.53¢)
n order that this no-scattering part be invariant under parity ai ai 80 P,y .
(for each particle i separately) we must take €i i = 1 for
all i. But then (2.48) gives . A similar argument gives
_ _phys ,_. o
P, 0) = o). _ (2.52) Py T Ppy  /sign py; (2.53d)
This relationship, which stems from the condition that the no- Spi T Sg?ys /sign Pgi ‘ - (2.53€)
scattering part be nonzero, is used later.
} h :
2.5 Crossing tyy = tgiys /sign pY; - | (2.53f)
Analysis of the pole singularityll shows that the analytic
continuation of M(p) along an appropriate path from an original The minus sign in (2.53e) arises from the fact that Sbi characterizes

region where pgi >0 to a region where pgi < gives the the physical spin of the initial particle bi, not minus the physical

function that describes a process in which the final particle of spin. The p.; and t,; were defined originally to be minus the
type t_. is replaced by an initial pértiéié of type -t.., i. e. physical momentum-energy vector and minus the physical particle-type
al ' o i’ ’
by the antiparticle of the original particlé of type t_.. If the of the incoming particle (bi), and hence the equations for these are
) : . al - - . .

final particle t_; carries q units of any conserved quantity the same as those for p,; and t,;.

out of the reaction then the antiparticle -t. must carry -q units The quantitites occurring in the transition probability formula
ai ‘

into the reaction. This holds both for the total momentum-energy

S 1 Mt -
p for the components of spin, and for any quantity that is Tr 7 (v, + -0 M(pg,t 5 Py ty)

ai’
conserved by virtue of invariance under a p-independent transformation

property. Consequently, the mathematical momentum-energy vector Pai» x %,(Vb*.sgy-g Nﬁ(pa, t; Pys tb) (2.54)
the mathematical spin vector Sai0 and the mathematical type label

tai are equal, after the continuation, to minus their physical values: are to be interpreted with the aid of (2.53). Thus, for example, if
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pg and pg are both positive then the S, and Sh in (2.54)
phys

are s, and _sghys s Trespectively, and the particle types t and

ty, and tz hysare phys' In this way we can use the same expression

(2.54) in all the different channels.

The parity transformation P was defined to be

N n n ’
Pup)) = (jgl e> (121 Vai® o) M(p) (Lill Vit 0) . (2.55)

In the original (direct) channel (pZi > 0, pobi<0) the parity

invariance equation QM(p)) = M(p) can be written as

' N n.p.. -0 L S
M(p) =< n )( n 2L )M(I‘S) ( il —1__>
j=1 “3\is1 Mo i=1  Mbi

n' n p..°*¢ n -p.°*0
= ( n s>( n _—-___]?‘1 ) M(®) ( n -ﬁ'—’l_ ) ,  (2.56)
j=1 Y \i=1  Mai i=1 Mpi _

:1,

where use has been made of the direct-channel result e 2ihi
derived from forward scattering. (See (2.51)),

Analytic ‘continuation to the crossed channel avoids all
éingularities of M(p) and M(D). Tttus equation (2.56) must hold
in ail channels, with the factor .51 € j from the spinless
particles defined as in the originai—direct channel. This

equation gives

/ | n o\/ & o
M(p) =(n e )l n Signp.)(ﬂ sign p2.
j=1 I/ \i=1 al\i;=1 bi

n - n
x (LE Vai® 9 M) <i§1 Vbi® ") _ (2.57)

22

It will be shown presently that the parity transformation is
defined in all channels by (2.55). Thus one can conclude that the

€ for the spinless particles is channel independent and that
e e =- signp® sign 0. . (2.58)
ai *bi : al bi i

This means, in particular, that the intrinsic parity of each spin-%
particle must reverse under continuation to a crossed channel and
that the intrinsic parity of a particle-antiparticle pair is »-(-1)2' .
The product of the intrinsic parities of the particles of a
parity conserving‘process is physically well defined: it is equal
to the sign € in S(p) = €S(p), and hence to (-l)mj. The
argument leading to the equivalence of g(S(pj = S(p)) to
%I(p)) = M(p), with g as defined in (2.55), was made explicitly
in the direct channel. However, it 'holds_equally well in all channels,
provided the same factor II:II & occuré in both $P(S(p)) and
g(M(p)). Any extra sign orJI_)}llase factor ei¢, that one might
introduce into the. connection between S(p) and M(p), in any

given physical region, would be the same throughout that physical

region and would drop out of (2.47), and hence not affect the

argumeni: that demonstrates the equivalence between g (8(p)) = S(p)
and .?(M(p)) = M(p), with g(M(p)) defined as in (2.48) or (2.55).
Thus this defihition is applicable in all channels, and the result _
(2.58) on the intrinsic parities of spin % particles holds.12

2.6 Antiparticle Conjugation

Consider a process in which pgi and pgi are both positive,

so that the two associated particles are both final particles.
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Suppose that t_.=-t

ai bi* SO that these two final particles are relative

antiparticles.

Consider now an original value of (pai’ pbi) and an analytic
continuation that stays in the physical region of the process, but
interchanges P and Ppi leaving all other p's unchanged. Suppose
we interchange also Sghys and Sghys . Then the original process and
the second one are physically the same except for the interchange

ti e tho which is just t;e -t

ai ai’

Suppose that the transition probabilities for these two processes
were the saﬁe. Then the process would be invariant under the
transformation tie "oty Antiparticle conjugation invariance
is invariance under the analogous change te t for all i.

If we keep only one particle-antiparticle pair, for notational

simplicity, the antiparticle conjugation invariance condition

described above is
Tr(v, + S5 3.8 M p) (v - PV M@, py)
a “a MP, 5 Py b b Pys Py

' ! h ~ ] 1 1 1 h oy 1' 1 U ‘
= Tr (v + spPYS)s M), pp) vy, - spPY 08 ML, pp)s(2.59)

where (2.53) and (2.54) are used, and

- 0
Py Py Py 0
— )0
P, = P, Py >0
yphys  _ _phys
Sa Sp
St.)phys - Sghys‘ ) (2.60)
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To see the'consequences of this condition define
€Mp,. tipy, ) =y, - o M, tsp, 1)y -0 (2.61)

where u, = pa/ma and u, = pb/mb. Define also

1
M(i) =5 { +€) M. (2.62)

Then M = M(+) + M(—l)’ and the property (%?)2 =1 gives

1 = - M . ’ .
€™ M) ) (2.63)
Hence if M M(+) or M(_) then M=t ng,

Insertion of this condition M =+ M into the LH side of
(2.59) gives

hys | ~ Y
Tr (v, + sg Y5 y.5 u, o M(py» P,) U o

~

hys | s v
x (v - SE YS 4.6 U+ mt (py. P,) u,c o
= Tr (v_ - sphys Joo M (p,, p,)
a a b’ Ya

h e
x vy +spYS 0 My, py)

phys, .

h
= Tr (v * s, )& M(py» pa)(va - sg s )3

g
(2.64)

.14
M (py p,)
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where in the second line the relations

Ue 0 upr o= 1 (2.652a)
and
s, 0 ur o = - uaoa sa-ofor Sy * Yy =0
(2.65b)
are used, and in the last line the equations
o=ct &7 (2.66a)
and
§=ct o7 (2.66b)

are used. Comparison of (2.64) to the RH side of (2.59), with the
substitutions (2.60) made, shows that the conditionM =z Q?M
implies antiparticle conjugation invariance.

Notice that

%pa- o= p;r o (2.67a)
and

€ry, o= p, O ' (2.67b)

Thus both p_* 0 and p* 0, and any superposition of them, are
invariant under Qg.

2.7 CPT Invariance

The physical trasformation corresponding to CPT is

phys phys , sphys > _ Gbhys

pPYs o ot , sy PhYS o out.
] J J J J J

(2.68a)
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The corresponding mathematical transformation is, by virtue of (2.53),

., > -D., S, + 6., t.->1t.. 2.68b
pJ . pJ Jd . d J J ( )

Thus CPT invariance is equivalent to invariance of transition proba-
bilities under the transformation Py > - P; (al11 j).
Any Lorentz invariant spinor function M(p)  is invariant, up toa

sign, under the transformation pj + 2 p; (all j). For the Lorentz

invariance condition

(L)) = M(p) (2.69)
applied for the case A‘ = 1, B = -1 gives, by virtue of (2.3)
and (2.9), ' ”
N
M-p) = (-1) H(p), | (2.70)

where' Nd is the number of dotted spinor indices (I mean here dotted

two-valued spinor indices: Dotted (undotted) spinor indices for

spin g— particles can be constructed trivially by combining
n + 2m dotted (undotted) two-valued spinor indices by means of the
usual Clebsch-Gordan coeffieients. Thus a dotted spin %- spinor
index contributes a term n to Nd)

The matrix B = - 1 can be continuously connected to B =1

by the matrix

B(¥) = (2.71)

which satisfies B(O) = 1 and B(1) = - 1.
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Since all Lorentz invariants are invariant under all real and complex

Lorentz transformations the transformation L(A,B) = L(1, B(y)), with

0<y < 1, must generate complex values of the pj, since no real

mass-shell vector pj(w) can interpolate pj > - pj.
The matrices M(p) and M?p) have been assigned the transformation

properties indicated by the indices bhé (p) and Ngé (p); For

real p the matrices M(p) and M*(p) are related by hermitian con-

jugation:

My @ = o @) (2.722)
Thus if M is transformed by a real Lorentz transformation to
AMB then M* is transformed to A*M*B* and M' is transformed
to BMAT = AM+B, as indicated by the indices on M;é

For complex Lorentz transformations the condition A = BJr does
not hold. However, (2.72a) is then inappropriate:. the appropriate
definition is '

*

4 _ E3 _ *
M2 ®) Méa (Pl = (MB& ®)) - (2.72b)

This quantity is an analytic function of p, whereas the function
on the RH side of (2.72a) is an analytic function of p*. The
function M* defined in (2.72b) will continue to satisfy the
Lorentz invariance condition

. . n .
( 0 A(”) MLt @,B) (p))( 0 B(”)
i=1 i=1

= M) (2.73)
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for complex Lorentz transformations.13 Thus in the formula for proba-

N
bilities the factor (-1) d from (2.70) will be cancelled by the same
N
factor (-1) d from
+ N t
M (-p) = (-1 dy ) . (2.74)

Hence probabilitieés will be invariant under CPT.

‘2.8 Statistics

The order of writing the variables is important. If the variables
in theset of arguments p = (Py> t15 Pys byl oee pn,'tn) is such
that all variables referring to initial particles stand to the right

of all variables referring to final particles then one may write

p = (pfin; p;,)- By convention
SMgins Piy) = <Pgyp | S Iy, > (2.75)
where éin is obtained from .pin by reversing the signs of all

energy vectors pj and all type variables tj’ and reversing the

order of the variables. Thus if

| p.. = (pm’ ts -+ 5 Pps tn) (2.76a)

then

k=)
"

e G I A I N P (2.76b)

The diagram representing <vp.. |S | p._ > . 1is generally
Pfin in g

drawn by ordering the lines from top to bottom in the Sequénce in
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which the corresponding argumenfs of Pein and Ein appear. The
lines corresponding to ﬁiﬁ are on the right-hand side; those
corresponding to Pgin afe on the left-hand side. The variables in
(2.50) are in the order (pla, pZa,."' Pop, plb), so that each
particle line goes straight through, without a change in order.
The'functioﬁs S(p) and M(p) are assumed to be anti symmetric
under the interchange of any two spin-% particle variables (pi, ti)
and (pj, tj). Analytic continuation péi > Py in (2.51) changes
the sign of (2.51). This sign chaﬁge is cancelled by the change of
the order of variables required to bring the variables back into the
form (pfin; pin). Thus (2.50) énd (2.51) hold in all channels, for

pP= (pfin; pin), with the corresponding variables of Prin and
ﬁin occurriﬁg in the same order.
With these ccnventions the relationéhip (2.45) between M(p)
and S(b) holds in all channels.
Combiﬂatoric factors 1/n! are discussed in Appendix A of
Ref. 14. '
3. MESONS

3.1 The Zero-Entropy Amplitudés

The basic building blocks of the topological expansion are the

zero-entropy amplitudes. In the meson sector. each zero-entropy amplitude

is represented by a simple quark diagram D of the kind shown in

Fig. 1, or by the equivalent quark graph G also shown there.

-,

1 5 1- e 5
: 4
e i . . ]
2= Quark Diagram D N o, Quark Graph .G(D)
“\\ /pf“ . LS 4
Y

Figure 1 A zero-entropy quark diagram D and the equivalént quark
graph G = G(D).

30

The quark diagram D is converted to the equivalent quark
graph G = G(D) by simply connecting to a vertex the ends ofthetwo
quark lines at each opening of D. Thus each vertex of a meson
quark graph G corresponds, at éome level of approximation, to
an initial or final particle of a scattering process. The zero-
entropy amplifude.corresponding to a process with n particles is
represented, therefore,bya directed circular graph with n vertices.
The n directed edges that connect these vertices all run in the same
direcfion, as illustrated iﬂ Fig. 1.

The quark graphs aré not abstract graphs, but are graphs placed
on an oriented surface. The orientation of the boundary of the
oriented circular disc bounded by the quark line is indicated by a
second arrow, as shown in Figs. 2 and 3. The two graphs of Fig. 2
are equivalent to each other, and the two graphs of Fig. 3 are
equivalent to each ofher. Buf those of Fig. 2 are not equivalent

to those of Fig. 3.
'/4\
/,—--..5 3'_. \.<

/ y 2[( 1

}-\ 4 1IN S5

e i

(a) | (b)

2

S

''''' e g
(a P - ®
Fig. 3. Two equivalent "para' graphs G
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the vertex that lies on the ledding end of that quark edge.

The circular graphs in which the directions of all the quark . .
reu £rap d If G is the para graph obtained from e by reversing the

lines agree with the direction of the boundary of the enclosed . . .
orientation of the disc then

oriented disc , as in Fig. 2, are called "ortho" graphs. The

circular graphs in which the directions of all the quark lines are
grap a Ay p) = P, P (3.3a)

opposite to the direction of the boundary of the oriented disc, as

in Fig. 3, are called "para" graphs. . ) .. . . .
n g e ¢ P grapns Thus the function A(G, p) 1is invariant under the parity operation,

For each ortho or para graph G there is a corresponding in the sense that ingSO - and éWbp =_G° then

amplitude. If G has n vertices then this amplitude has a set

) = 011,..., un) of n vector indices. The amplitude corresponding ’ '3?“( )Gng, o) A(u)(c’ D). (3.b)

to G has the form

The action of 37 on any A is given by (2.48). Thus
A(U) (G, p) = F(U) (G, PIE(G, P)_ > (3.1)

where £(G, p) is a function of the scalar products of the f;?(G, p) = £(G, p), (3.4a)

mathematical momentum-energy vectors pj appearing in the set

of arguments p = (py, t;; -..;P,» t). For any ortho graph and, by virtue of (2.52),
G = CP the function F(u)(C?,-p) is given explicitly by ‘ n ,
[e} n 2 -;i . F (Gp - n 2 2
F = - T . _ , D) (2m%)
(u)(G , D) X (2m; ™) . () i=1 i
x Tr(-p; * 0) & (-p, * 0) 6, -.-(-p_*0) G  (3.4)
x g o G oGeeo O . 3.2} 1 H 2 H n Wy
Tr oulpl o OLE p,*0 O“n P, (3.2) 1 2

. : . This spinor part of the para amplitude is minus the trace of a
This factor F(u)(GO, p) 1is minus the trace of a matrix formed :

. matrix formed from right to left by following the sense of the
from right to left by following the sense of the quark arrows in

. quark arrows in 6&® and replacing each vertex i of P by
6° and replacing each vertex i by § / /I and each edge by -

Hi 6 [/ Y2 and each edge by the para quark '"propagator' - Py ° o/mb.
the ortno quark ''propagator" paj' o /maj = uaj « g , where Hy ] J J
= - ubj. g, where pbj is the mathematical momentum-energy

paj is the mathematical momentum-energy vector associated with
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vector associated with the vertex that lies on the trailing end of the to obtain
quark edge. ' n .
o . A(GP ps) = - (;i_) (_1)110. of spin 1's
Notice that in both the ortho and para cases the orientation of ?
the disc points from each edge to the vertex whose momentum appears
o : . XTrslooul-a...Socu-a
. . n n
in the propagator corresponding to that edge.
Each vertex i 1is associated with a spin four-vector s.. For '
2 ‘ ! * £ (p)
a vector particle 5°P; < 0 and s; = - 1. For a pseudo scalar :
s - 2 - . 3 ] 3 "
particle S; T Ui and ?i = 1.‘ T?le vector @si) is the "wave function . ('i_ )n(-l)no‘ of spin 0's
of particle i in spin space. The ortho and para amplitudes them- :
selves are therefore . 5 .« g
x Tr $,°0 u10 e S 00U G
o > i R . : o . :
A(G, p,s) = - (/E") TI‘(Sl'0 Ul'c een Sn‘U Um'c) : : x fp(P) , (3.7)
where fP(p) = £(,p) and £2(p) = £(6°,p).
0 . .
x £(G", p) (3.52) Any trace Tr a* G a0 ase I a,* o0 is a sum of a scalar
and ‘ ’ _ part that is unchanged by a; -+ ﬁi and a psendoscalar part that
n v :
. . . . . p = 0] = s) .
A(Gp, p.s) = - () Tr(ul' o 51-6 e uro 'sn'B) changes sign. Since fF(p) = £ () = £ (p) the equatlonsv(S.Sa)
7z and (3.7) imply @ith A° = A(G®), AP = A(GP)) that
x £(6P, p) . : (3.5b)
A° + AP = 2xscalar part of A° (3.8a)
3.2 Parity if no. of spin zero's is even
(o] .
Let G° and G° be ortho and para graphs related by disc A+ AP = 2 pseudoscalar part of A°

reversal. Since A(Go) and A(Gp) are related by A(Gp) = 5?«((;‘)), the if no.of spin zero's is odd. (3.8b)

Oy . : . . .
sum A(Gp) + A(G) is invariant under parity. To see this This means that A° + AP conserves parity, provided the spin-zero

explicitly use ' particles are identified as pseudoscalar particles and the spin-one

. ) N particles are identified as vector particles.
ui-G si- g = i-si'G u. e+« o

{'+ for spin 0 (3.6)

- for spin 1
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3.3 Antiparticle Conjugation

The ortho and para propagators are (paj . o)/maj and
(-pbj . o)/mbj, respectively. According to (2.67) these forms
are invariant under the antiparticle conjugation operation %ﬁ This
result suggests that thé ortho and para amplitudes should be
separately invariant under antiparticle conjugation. This invariance
would, in fact, be strictly implied if the quarks coﬁld be considered
separate entities, each with its own initial and final momenta pbj

and paj' It was the analytic continuation p_. «» pbj of these

aj
momenta into each other that was the basis of the discussion of
antiparticle conjugation in‘ §2.6. In that context antiparticle
conjugation was equivalent (up to a sign) to reversing the directions
of all the quark arrows. This reversal was . accomplished by an
equivalent analytic continuation. In that continuation the vector

p in the propagator p+c/m confinues to be the momentum aésociated

with fixed - end of the quark line. Thus an ortho propagator

is transformed into an ortho propagator, and para goes into para.

We therefore define antiparticle conjugation to be the operation

of reversing the direction of each quark edge, with the ortho-para
type left unchanged. Thus antiparticle conjugation interchanges

the two graphs (a) and (b) of Fig. 4.

- Le= un > S
N % | 35
3 \.\ ,‘// : 3 \\»\"/ﬂ/,‘ 1 O\R. L *n
(a) (b) (<)

Fig. 4 Graphs (a) and (b) are related by antiparticle conjugation.

Graph (c) is graph (b) turned over.
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The scalar functions f(p) are assumed to be unchanged by anti-
particle conjugation. Thus the amplitudes associated with graphs

(a) and (b) are

. n

A: = - ;) (Tr 5178 upro ... 56 u o) £2(p) (3.9a)
and

0 _ i n g ~ ~ fo

Ag=- (=) (Trs 5 uo s16 o) £(p) - (3.9b)
Then use of (2.65) and (2.66) gives

Z (Spin);
A = (DY K S (3.10)

3.4 TIsospin
Quark flavors have not yet been discussed. Introduction of the
up and down quarks yields the w,p,n, and w mesons. To get
the amplitude corresponding to a graph with these mesons as the
external particles one includes for each vertex the isotopic spin

factor fi defined in Fig. 5:

d . + +
emits p  or W fi = -1
u
u . - -
emits p or @ £. =+1
d 1

u
emits neutral meson fi -1
u ' V2

Figure continued
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1

d _ :
emits neutral meson f; = /7.

d 1
V2

Figure 5. The isotopic spin factors. The full zero-entropy
amplitude for any process involving a set of n of these mesons

is the sum of the amplitudes corresponding to all theways in which the
particles of the reaction can be identified with the vertices of
ortho and para graphs with n vertices.

G-parity is conserved for the ortho and para amplitudes
separately. To see this note that for each ortho (para) graph
contributing to a process there is another one in which the u and
d quarks are interchénged and the cyclic order of the particles is
reveréed. The two associated ortho graphs are related as the two

_ graphé (a) and (c) of Fig.4 apart from flavor labels. Since (c) is
equivalent to (b) one obtains the factor (3.10) together with
the isospin factors fi shown in Fig.S. Thesé factors fi combiné to
give factors for the graphs (a) and (c) that differ by the factor

E(—l)(ISOSPIH)i- Thus the sum of the two contributions is
i

R’ = 2 Dy _ (3.11a)
a [od a
where
g = I (spin); + (Isospin); . (3.11b)

1

The factor (-1)g is G parity. Hence G parity is conserved

for the ortho and para parts separately.
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3.5 Products

:The discontinuity formulas involve products of amplitudes

represented by graphs of the kind ‘'shown in Fig. 6,

.} .
( :) <:;“ (;7 l' 5’/ 1o =
Oy ¢
A 4
(a) (b) ()

Figure 6. Diagrams representing products of amplitudes. The
wiggly lines represent the intermediéte mesons.

For each wiggly line there is a sum over the single pseudoscalar
meson and the three vector mesons. When this sum is performed the
spinor parts of these products are just the spinor parts of the

functions associated with the diagrams of Fig. 7.

P

4 ™~ 7 o e
1/, < a6 1;7/ /;(' 4
\ J i
2 Z( L 45 2 { Y
} . 4 A [
< ) S \. .
3\\\\;«~w/‘4 o S
(a) (b) (c)

Figure 7. Alternative representation of the spinor parts of the pro-
ducts represented in Fig. 6. A circle with no vertices represents

-Tr 1 =- 2.
In other words, the spinor parts satisfy the diagrammatic equations
of Fig. 8.

Fig. 8. Spinor Identities
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To obtain this result, and also a more general one, let the four

orthogonal vectors S5 associated with particle i be labelled by

ee (0,1, 2, 3), with S?e = v? for e = 0. To get the correct

normalization we return to the level of the S matrix. Then the

four amplitudes Se are defined by

__L_l_sr.GOLB

e e SB& s (3.12)

where the irrelevant indices on S have been suppressed. The

arguments of §2.3 then show that
M. (3.13)

Consider therefore a product of the form.

3 Se* G s G
sS' = I (Tr M) (Tr =

Z, Se% Z ~ M) . (3.14)

To evaluate it introduce into the second trace the identity
~ _ ~ e ~
s *d = v*d S0 VG , (3.15)

where v is the velocity *p/m of the relevant particle and
0 1 2 3 '

57 =8, 8 TS $7= - 55, 87 = - s5. (Each S, 1s a four vector).
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Thus
3
z S8 =
e=0 €
L3 e 5) (Tr s© § M v g (3.16
5 EO (Tr Se GI(Tr s"eg veGd M v-+3.(3.16)
e= .
Use of
3 ef :
T (s MY o= gV (3.17)
e=0 .
gives
3 1
eEO S?Se )
%—(Tr M5 @Y (Tr g M ved)
Use of
1 o8 _ &%, B )
: Ou_ gu\) O\)yé 8 3 8 Y (3.18) .
gives
3 3 e G Se g
S8 = T (TrM ) (Tr MY
e=0 ©° e=0 2 vz
=TrMv-g M v.§ . . (3.19)

This result says that summing over all four exchanged particles
is equivalent to cutting the two quark lines at the vertices and
reconnecting them in the way shown in Fig. 9, with a metric factor

v - & placed at each reconnection point.



41

v .o
3 _ __)._4_.____~__.
éZ% tﬁfﬁﬂ Y)g N Vg
=

Figure 9. Diagrammatic representation of (3.19).

Consider one of the two reconnection points in Fig. 9 and its
associated factor v+5 . This point connects two line segments that were
originally parts of the two loops connected by the meson line shown on

the left-hand side of Fig. 9, and also in Fig. 6. Each of these two line

segments is associéted with a propagator, in accordance with the formulas

of (3.5). One of these two propagators is of the form *v.c , and will
cancel the factor v.g associated with the reconnection point, up to a
possible sign. Now the meson line connects two verticcs. One is
associated with an initial particle, the other with a final particle.
Thus the signs of the corresponding vectors u; will be opposife.
Consequently, the signs of the two factors #v-c that cancel against the
two factors, v-o of Fig. 9 will be opposite, and the cancellation of the
two factors’VBS’will leave a residual minus sign. This minus‘sign
cancels one associated with closed quark loops. (This closed-loop sign
appears explicitly in front of the trace stbol in (3.5).) For the
transformation between the two sides of Fig. 9 ‘changes the number of
quark loops by oné.

The two factors of i associated with ;he quark wave functions (is;)
of -the two particles thaf are contracted out compensate in the case of the

spin-one particle for the fact that the physical spin-vector Se occurring
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in the derivation of (3.19) is related to the mathematical one occurring
in (3.5) by Sphys = Smath sign uO, and in the case of the spin-zero
particle by the fact that the physical vector Se =V occurring in the
derivation of (3.19) is related to the mathématical vector s; = uy

occurring in (3.5) by this same relationship . Thus the relationship
illustrated by Fig. 9 reduces to the simpler one illustrated by Fig. 8,
from which follows the equality of the spin factors associated with
the corresponding diagrams of Figs. 6 and 7. ‘

An explanation of the signs and factors of i in (3.5).is in order.
The minus sign in front of the trace comes from considering the quark wave
function to be antisymmetric under thé interchange of variables: an odd
number of permulations is required to take the quark variables from their
normal order (see Ref. 4) in which the propagators are U 0 = - ub-olfor
forward.scattering to the cyclic order associated with the clésed loop.
The imaginary unit is.inclﬁded in the wave function in order to allow the
wave function to be folded into tﬁe basic unitarity equation for M
functions, Eq. (7.1) of Ref. 4, without disrupting either the relative
signs ofrthe two terms on the left-hand side or the relationship

sphys _ Smath sign uO.
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3.6 Topological Classification

Each circular quark graph G corresponding to a zero-entropy
ortho or para amplitude can be transformed by the rule illustrated

in Fig. 10 into a particle graph g = g(G) with one internal vertex.

5. o 5
1 /‘}.5 1 N —S _/"‘

f /E/h v ) 29-m4~TTT; e

s T

Figure 10. Transformation of circular ortho and para quark graphs G
into the corresponding basic pafticle graphs g(G).

If G is a circular graph with n vertices then g(G) is a
tree graph with n edges, n external vertices, and one internal
vertex. This internal vertex of g(G) is classified as ortho or para
according to whether G is ortho or para. These two kinds of
internal vertices can be distinguished in the way illustrated in
Fig. 10. The arrow near each internal vertex shows the direction of

rotation of the quark line around that vertex. These graphs g are

called basic particle graphs.
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- A product of basic particle graphs 81585 is formed by identifying

certain pairs of the external vertices, as illustrated in Fig. 11.

d b P R e e L ?

] a_ ’/“17/-4\ »:/:‘/._j e ,:// - ¢

. /‘_’.‘,,-“ P e 3 - A 7 — /"‘_4___,0 6

. S - S,
A / N e 3 ._,.r""' \\ /, Y -
~\, N ‘_,m" P o
3 e i N
P i

PR 3 -~

Figure 11. A product g of 5 basic particle graphs 8-

Each product graph g has a well defined genus and boundary
structure. These can be calculated by the Edmond's rule. One first
draws all the orbits of g. An orbit of g is a path in g formed as
follows: one picks.any point p on any edge of g and a direction
d(p) at that point. Then one traces a path-in g by a moving point
p' that starts from p in the direction d(p). At each nontrivial
vertex the moving point p’' shifts to the "next" line, with the order
of the lines specified by the arrow that indicates the quark-line
direction. The orbit is completed when the moving point p' returns
to the original point p moving in the original direction d(p).

Some of the orbits may pass through vertices that lie at the
ends of single (external) edges. These vertices correspond to the
""external particles'' associated with the graph. An orbit that passes
through at least one external-particle vertex is calléd a boundary.
The boundary structure consists of the collection of boundaries, each
identified by the sequence of external-particle vertices through which
it passes. Each external-particle vertex appears on exactly one boun-
dary. Graphs with only one boundary are called one-boundary graphs.

The number of different orbits of g--sometimes called faces
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of g-- is denoted by f(g). The numbers of edges and vertices of
g are denoted by e(g) and v(g), respectively. Then the genus
of g-- sometimes called the handle number--is given by the Ruler

formula

h - 2@ v - £E) k@) (3.20)

where c(g) is the number of connected components of g. The graph of
Fig. 11 has one orbit, which is the boundary (8, 6, 5, 9, 7, 4, 3, 2,1,
and its genus is two.

The zero-genus one-boundary graphs are the planar graphs. They
. are the graphs that can be drawn on a plane with no lines crossing
and all external vertices identified with a single point at infinity.

An important characteristic of a graph g is its Betti
number B(g), which is the number of independent closed loops that

can be drawn in the graph. Itsvalue is given by
B(g) = e(g) - vig) + c(g). (3.21)

Let the number of boundaries of g be b(g). The orbits that
are not boundaries are called windows, and their number is
w(g) = f(g) - b(g). The most important topological .characteristic

of g is the topological index

v(g) Zh(g) + b(g) - dg)

(3.22)

B(g) - w(g)
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This is the number of independent closed loops in g minus the

number of windows. For connected graphs with at least one boundary the

topological index vy(g) is zero if and only if'the graph g has
zero-genus and exactly one boundary, i.e.,ifandcnlyif g is planar.

* This topological index Y(g) enjoys the following "entropy"
property: if 2,87 is some connected product of two connected graphs

g and g then
Y(g18)> Y(g)) + v(gy) -1.° (3.23)

To prove this let n be the number of vertices at which 8

.and g, are joined. Then (3.21) gives

B(g18,) = 8(g) + Blgy -1 +n. (3.24)

On the other hand,

wigigy,) = wlg)) + wigy) + w'(gg) - (3.25)

where w'(gl,gz) is the number of ‘windows of g8, that lie
partly in- g and partly in 8-

Each of these windows that lies partly in each subgraph must
pass at least twice through the n junction points. And each junction

point‘lies exactly twice on the set of orbits. Thus one has the
inequality .
w'(g,g) < m, (5.26)
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which combines with (3.24) and (3.22) to give (3.23).

The entropy property (3.23) shows that the topological index
Y(glgz) of a product graph 8,8, is greater than either component,
provided one of them has y{gi) > 1. This means that the topological
complexity, as measured by vy(g), increases in general. The
special case y(gi) =1 allows ﬁhe complexity to remain unchanged.

If one of the graphs has y(gi) = (0 then (3.23) would allow
for a decrease in complexity. However, if Y(gl) =0 and the
product 8,8, is such that at least one external vertex of g1
is an external vertex also of the product graph 8,8, then the RH
side of (3.26) can be replaced by n - 1, since then at least one
boundary of 8,8, must pass twice through the set of junction
points, and v(gyg;) = v(g) + v(g,)-

The graphs corresponding to physical-region singularities can
always be constructed by taking successive products 81 881>
838,81, ++- SO that the final exterml particles of each newly
added graph are also final external particles of the new produét
graph.13 If the product graphs are built in this way then the
topological index vy(g) can never decrease.

The product graphs g are classified by their overall .
boundary structure and genus, and by their decomposition into ortho
and para parts. This decomposition is made as follows: The trivial
two-edge vertices at which two graphs are joined are called junction
vertices. Each junction vertex that lies on a line joining an ortho

vertex to a para vertex is cut. This cuts the graph into a set of

graphs g; such that the internal vertices of each graph g; are all of

the same kind, either ortho or para. Each of these graphs 83 has a
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boundary structure and genus. The complete topological classification
of the graph g 1is given by specifying the boundary structure and
genus of each part g;» and the set of pairs of external vertices of
the graphs g; that are equated to form the junction vertices of g.

These -specifications determine the overall boundary structure
and genus of g itself. However, these overall characteristics
are nevertheless included, redundantly, in the complete topological
specification of g} '

Graphs g that have the same topological specifications are
said to 1ie in the same topological class. The zero-entropy graphs
are the graphs ¢ with a single (ortho or para) part g; = § and
topological index y(g) = 0. The simplest of these are the basic
graphs g of the kind illustrated in Fig. 10.

The discussion of topological classification given above was
made completely in térms of the particle graph g. It is sometimes
useful to combine the particle graph g(G) and the quark graph G into

a single quark-particle graph g(G), in the way illustrated in Fig. 12

G g(G)

Figure 12. A graph G and the quark-particle graph g(G) formed
from G. The particle lines of g(G) are drawn as dotted lines in

g(G6).
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The 6rbits of g(G) can be considered to be the independent
closed loops on the quark lines of g(G). Those closed quark-line
loops that pass thréugh vertices are boundaries. Those that do
not are windows. The number of vertices and edges that occurs in
the Euler formula (3.20) for the genus is the number of vertices and
edges of the particle graph g(G), which is a subgraph of g(G).

3.7 Topological Exparsion

Each physical-region singularity of the S matrix is associated
with a Landau graph g- A formula for the discontinuity around
the singularity associated with graph g, is obtained by replacing
- each vertex of g, by the corresponding scattering function15f16.
This scattering function is specified by the set of edges incident
upon the vertex to which it corresponds. These edges can be

identified with the external edges of the particle graphs g
constructed above.

The topological expansion is the assumption tﬁat each scattering
function.can be expressed as a sum of terms, one corresponding to
each of the different topological classes specified in the preceding
subsection. This expansion is required to be compatible with the
discontinuity formulas, in the sense that if the full expansion is
introduced into each of the scattering functions that occur in any
discontinuity equation, and the full equation is then decomposed
into terms of different topological class then the terms of each
class separately satisfy the equation: there is no cancellation
among the terms in the equation that have different topological

character. This assumption that the contributimstoany discontinuity
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equation corresponding U)gaphsofthe same topological character
should cancel among themselves has been discussed extensively before,
in connection with the derivation of the discontinuity formulasls’16’17.

3.8 The Zero-Entropy Functions

The validity of the topological expansidn is assumed. Then the
zero-entropy component of any discontinuity equation can be examined.
Each scattering function is the sum of a pure ortho part plus a
pure para pért plus higher-order terms formed from products of ortho
and para parts. These higher-order parts do not contribute to the
zero-entropy component of the discontinuity equation. Thus the zero-
entropy component separates into two parts, an ortho part and a
para part, each of which must separately be satisfied, since eaéh
belongs, according to our classification scheme, to a separate
toﬁological class.

By virtue of the entropy property the zero-entropy terms can
be formed only from zero-entropy factors. Thus the scattering
function associated with each vertex of the Landau graph is replaced,
in the ortho (para)zero-entropy component of the full discontinuity
equation, simply by the zero-entropy ortho (para) amplitude. Consequently
all the discontinuity equations for the zero-entropy ortho (para)
amplitudes are identical to the discontinuity equations for the full
scattering function with two exceptions: (1) the discontinuity
is zero unless the Landau graph is planar; and (2) the full scattering
amplitudes are replaced everywhere in the discontinuity equation by the
corresponding oftho ( para ) amplitudes.

By virtue of-the occurrence of only those singularities that
correspond to planar Landau graphs the analytic structure of the

ortho and para functions is much simpler than that of the full



51

Sscattering function. It is expected that these functions should have
moving Regge poles but no Regge cuts. They should, in a first
approximation, be similar to the Veneziano dual-resonance model

functions,lg’19

with the addition of a spin-flavor structure, finite
widths, and a planar singularity structure in momentum Space.

3.9 Regge Recurrerices

The property represented in (3.19) and Fig. 9 says the spinor factor
in the zero entropy functions A° or AP has the pole-factorization

property indicated in Fig. 13
] m m-1

mm

Figure 13. Pole factorization property.
Thus if fo(p) has a factorizable

pole corresponding to a certain value 2 2 1 of angular momentum
transferred between (1, ..., m) and (m + 1, ..., n) then the full
function A° has factorizable . poles corresponding to a set of four
intermediate states, having total angular momentum values J = £
and &+ 1, 4, 2 - 1.

If fo(p) has Regge behavior of the kind exhibited by the

. . 18
Veneziano dual-resonance function

, then for each factorizable pole
of fc(p) corresponding to orbital angular momentum £ > 1 there
will be a quartet of factorizable poles of Ad(p) corresponding to
total angular momentum g and (g + 1, g2, ¢ - 1).

The function fo(p) is assumed to have a Regge pole with the
lowest 2 = 0 pole identifiable with our external set of sixteen

mesons (m,p,w,n), which are assumed to be degenerate in the zero-

entropy level. The higher values of £ will then generate recurrences
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of the set (m,p,w,n).

If the functions fo(p) and fp(p) aré now generalized to
represent the cases where the external particles are recurrences of the
2= 0 mesons then one must include19 for each external particle 1
of angular momentum L; aset of Ki vector indices, u{i)..iué?)
that are such that p; * fo(p) = p; fp(p) = 0 when the inner

product is formed with any one of the indices ué%) . Consequently,

the earlier equation

Py = PN = £2H = 2P (3.27a)
becomes replaced by
n
o] igl li 0 ~.
£y = PE) = (DT W (3.27b)

When nonzero values of the Zi are allowed there is also an

. ' .

extra factor of (-1) in the charge conjugation equation (3.10).
This comes from a consideration of, for example, the two definitions

of p* and p  implicit in Figs. 14a and 14b.

g™
| _}9— -f_ (.
$° N\ v

/>\/CL _ ”

- («) . (E7>

+ - . .
Figure 14. The normal quark structures of p and p 1is shown in
(é), whereas (b) shows the definition induced by reversing the quark

lines. If the quark wave function has angular momentum % then the
£
difference is represented by a factor (-1} 1

In the discussion in 8.4 of isospin invariance there was no
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change in the definitions of ' and ,  of the kind shown in

Fig. 14. However, the function fo(p) was changed due to a reversal of
the order of the arguments. (See Fig. 4(c)) In the dual-resonance
amplitude7 this change induces a change (~1)22i, and we assume

" that this property holds also for our function fo(p):

IR. .
£20y--p) = (1) E00p,ep) RER?)

IR,
The fact that one gets the same factor (-1) 1

by either rever-
sing the direction of the quark arrow, as in Fig. 4, (a) + (b), (or
Fig.14, (a) » (b)) or by reversing the cyclic order of the vertices,
las in Fig. 4, (a) ~ (c), means that the amplitude correspbnding to
a graph does not depend on how this graph is placéd on the paper: -
the operation of turning over or reflecting a graph, as in Fig. 4,
(b) » (c), does not ‘alter the amplitude corresponding to it. Thus

the equivalence of the two graphs of Fig. 2, or of Fig. 3, is

maintained. also for Qi >0.
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4. SUMMARY AND CONCLUSIONS

Spin can be incorporated into the meson topological expansion by

. doing the following four things:

(1) Adopt the M-Function formalism and associate the leading

(resp. trailing) end of each quark line with a lower undotted

(resp. dotted) index.
(2) Introduce into the topological expansion a ''zero-entropy"
level that lies below the "ordered' level of Chew and Rosenzweigz.
(3) For each cyclically ordered set of n mesons (of fixed
flavor content) form the various possibie zero-entropy M functions.
Each of these is a product of a scalar function £ (pl, Pgs =+e s pn)
of the scalar products of the momentum-energy vectors p of then
mesons, times a spin factor. This spin factor is minus the
product of n Spin'factors, one for each of n quark lines. The spin
factor associated with any given quark line is eitﬁer the ortho-
quark factor uy o5 OF the para-quark factor -ubgaé,bwhere a is the
spinor index associated with the leading end of the quark line, g is
the spinor index associated with the trailing end of the quark line,
uy is the mathematical covariant velocity pa/ma of the physical
particle associated with the vertex lying on the 1eadihg end of the
quark iine, and uy is the mathematical covariant velocity pb/mb
of the physical particle associated with
the vertex lying on the trailing end of the quark line. (The minus
sign associated with the spin féctor comes from the odd number of '

permutations of the quark variables required to take them from

their normal order associated with the no-scattering part, for which
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each spin factor is v, " %8 =V %@ to the order in which the
two indices o5 and éj associated with physical particle j stand together
and in the order (éj, aj)). (4) [nstitut¢ invariance under the parity
operation by adding together the 2" zero-entropy functions that arise
from the association of each of the n quark lines with, alternatively,
either the ortho-function or the para-function.

The zero-entropy amplitudes discussed in the earlier sections are-
only those two special cases in which all of the n quark lines
represent ortho-functions or all represent para-functions. A
restriction to functions of these two special types would be umnatural:
it would correspond to imposing parity invariance only globally for
the entire process, rather than locally for the‘separate contribution
from each individual quark line. All 2" indepeﬁdent choices of the
ortho-para character of each of the n quark lines should be included.

A quartet of amplitudes corresponding to one pséudo scalar meson

and one three-component vector meson is obtained by folding the four

wave functions iF. - u, and iG. +s. (e=1, 2, 3) into the M
Bjaj J B.c. je
function. Here Sjl’ sz, and Sjs are three vectors that satisfy
2 _ =
(sje) = 1 and sje - Vj_ 0.

The theory obtained in this way from the two-componeﬁt fonnalism :
can be directly transcribed into four-component notation by the methods
of Ref. 4. This transcription is carried out in Appendix C, and the

~results are described here. The use of the four-component notation
facilitates comparisons to earlier works.

For each cyclic ordering of n mesons (of fixed flavors) there are
2" different zero-entropy amplitudes, one for each combination of

choices of the ortho-para character of the n quark lines that cyclically
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join the n vertices corresponding to the n mesons. The basic property
of the zero-entropy amplitudes is that the spin-factors can be
completely factored out of the associated discontinuity equations.
Thus the nonlinear integral equations for the scalar factors fn(p)
are the same for all 2" zero-entropy functions. These equations are
relatively simple, and should determine the coupling constants at the
zero-entropy level. They also ensure that the same scalarvfactor
fn(p) occurs in all 2" zero-entropy functions.A Hence the sum En of
the 2" zero-entropy functions is simply the sum of the spin factors,
times the common factor fn(p).

This.sum En of the 2" zero-entropy functions is expressed in

the 4-component formalism as

z = -

p = (T, Ty ()T, ) By p)s (411)
where the pseudo-scalar particle is associated with the factor

Fjs(uj) = ivs(l Y uj), (4.2a3)

and the three components of the vector particle are associated with

the four factors

o) = - (u. Py e
.ju(uj) Y, (uJ)uyp_uj 10UpuJ. (4.2b)

Here v and o range over theset (0, 1, 2, 3), there is a sum over the

repeated vector index o, and u?Fjp(uj) = 0.
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The individual iero-entropy functions are obtained by choosing

an ortho or para character for each quark line, and then inserting

after each factor r; (u.) of (4.1) a factor of % (1 + ys) or %{1 - ys)
Jus ]

according to whether the quark line that leads into vertex j has

ortho or para character. These two operators project the onto states

of opposite thirality.

Each quintet of factors Iﬁu(uj) in (4.2) defines a representation of

the non-chiral group (U(2) x U(i))u.. That is, in a rest frame of

particle j, where uj is pure timelike and Iﬁo(uj) = 0, one has
Alr OB =zr: () 2V (A, B)) (4.3)
b s K B VR AV L L * '

Here the indices p and v range over the set (0, 1, 2, 3, 5), and A;

and B; are .

g
1]

expi (1- Bu?) g-a . {4.42)

and

=
]

exp i(1+ Bu;))o N (4.4b

- P
where a and b are two real four-vectors, and the o, are the 4 x 4
matrices with two 2 x 2 ou‘s in the diagonal corners. The two other

operators

A;.' = exp i(1 + Bu?)c-a+ (4.5a)

and
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- . 0 -
Bj = exp i(1 - Buj) o-b (4.5b)
acting on the Fj“(uj)'s from the left and right, respectively, act

as unit operators. (See (C.72) and (C.48)). Hence (4.3) holds also

if A; and B; are replaced by

Aa, a') = exp(ic+a+ iBo-a’) (4.62)
and .

B(b, b') = exp(ic *b + iBs « b'}, (4.6b)
respectively.

The invariance of the rju(uj) under the transformations (4.5)
is a consequence of the use of the 2-component M-function formalism,
or, equivalently, of the Dirac equation for the corresponding four-
component quantities. It eliminates the possible scalar and axial
vector particles, and fixes the couplings of the pseudo-scalar and
vector particles to be precisely those shown in (4.2).

The transformation properties shown in (4.3) and (4.4) do
not in general entail corresponding invariance properties of the -
S-matrix. This is because the velocities uj of the various particies
are generally different, and hence the transformations shown in (4.3)
act, for different particles, in different frames of reference, which
are related by Lorentz transformations.

One suhgroup of the group generated by the transformations
(4.6) is of particular interest. This is the subgroup SU(Z)W formed

by imposing the following restrictions on the coefficients in (4.6):
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0
- 4.7a . =
a; = - by, (4.7a) (L * Buy) = X, (4.9d)
ai = - bl, (4.7b) then, for all i, i, and k in the set (1, 2, 3),
aé = - bér (4.7¢) [Wi, XO] =0 (4.10a)
and
a, = a, = b]‘ = b2 = aé = bé =0, (4.7d) [Wi’ Xj] = Zl_ijkxk' (4.10b)
and
ag = 36 - bO - bb . (4.7€) Thus Xy transforms as a W-spin singlet, and the set (Xl’ XZ’ XS)
transforms as a W-spin triplet. '
L. . _ -1 : If all pdarticles are at rest then the function £ defined i
These conditions entail that B = A ~, and that the transformations P ¢ Tunction < derined in
corresponding to (éais éaé, 6“3) are generated by the triad of (4.1) is invariant under SU(Z)W. The lorentz transformation that
< : 0 >
-generators . boosts Fju(uj)from its rest frame form Fju(uj) to its form rju(uj)
in the standard coordinate system is given by
W, = Ro,; W, =Bg; W, = . 4.8)
(Wy = foys Wy =805 Wy = og) ( | Ve A0
r.o) = )15, j
] 0 Aw J 0 A )
These three generators enjoy the same commutation realtions as the : ‘ (4.11)
generators (01, s 03) of Si(2).

In the rest frame of particle j the quintet of factors Pj”(uj) If v lies in the 0 - 3 plane then the bhoost transformations appearing
occurring in (4.2) reduces to a quartet. If these four factors in (4.11) commute with the generators of SU(Z)W, since both Yo and
are identified with four factors Xu in the following way ¥ = Bare invariant under SU(Z)W. Thus if the three-velocities ;j

of all n particles are directed along the third coordinate axis then
0 - 4 9 N - - . ) .
o (1 + Buj) = Xg» (4.9a) the Lorentz transformations in (4.11) do not disrupt the invariance
of (4.1) under SU(Z)W: the function Zn remains invariant.
. 0
1Y5(1 + &H) = X3, (4.9b) ‘ If quarks of three flavors are allowed and the 4 x 4 matrices
. ' . ,
, | %u'(uj) are expanded to the corresponding 12 x 12 matrices Tjujcﬁ(uj),
-y 1+ ﬁuj) = X, (4.9¢) then these new 12 x 12 matrices will define a representation of
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SU(6)W, and the new function Eé, formed as in (4.1) but with rj in
place of rj, will be invariant under SU(6)W.

A comparison with.several earlier works may he helpful.
Bardacki and Halpern5 also introduce spin factors analogous to
Chan-Paton factors, but arrive at a l6-particle multiplet in place
of our 4-particle multiplet. They find in addition to P and V, the
associated ;arity doublet partners S and A, which occur, moreover,
as ghost (négative metric). particles. They find also a second set

of eight particles (§', P', V', A') that couple differently to the

quarks . These sixteen particles correspond to the sixteen independent

matrices needed to span the space of 4 x 4 (Dirac) matrices.

The present work is based on the two-component formalism and
consequently gives in place of the 16 particles of Bardakci and
Halpern only four particles. Considered from the four-component
viewpoint the two Dirac equations (C.48) reduce the multiplicity
of particles by a factor of four: they reduce the 16 particles of
Bardakci-Halpern to the four independent ones coupled in accordance
with (4.2).

Bardakci and Halpern introduce the spinor solqtions U(pj) and
U(pj) of the Dirac equation, but their way of using these spinor
soJutions does not give them the crucial Dirac equations (C.48).

The present approach enforces the usual discontinuity equations,
including pole factorization, at the zero-entrépy level. But parity
invariance is not maintained at that level. Parity invariance, and

also SU(G)W invariance for spatially linear processes, is maintained

for the sum Eﬁ'of the 2" zero-entropy functions, but pole-factorization

does not hold for these sums.
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The terms needed to restore pole-factorization at the physical
level come from.higher—order terms in the topological expansion. To
obtain an approximate representation of a physical amplitude near a
singularify one can insert into dispersioﬁ relations the discontinuity
functions obtained from the planar amplitudes of Chew and Rosenzweig
These amplitudes are built out of the zero-entropy functions. The aim
of the construction of these zero-entropy amplitudes is not to
obtained immediately a géod approximation te the physical ampiitudes.
It is rather to defire and determine the basic building blocks of the
theory.

The results obtained here are formally similar to those obtained

by Delbourgo et al.9 from considerations of the group U (12). They

use a four-component spin formalism, but impose the Dirac (i.e., Bargmann-

Wigner) equations in a way that yields results similar to (C.48). The
principal difference is that they interprete their analogs of ocur
functions 25 aS interaction -terms of a local field theory, rather

than as low-order amplitudes of a topological expansion. Thus the
function fl(pl, Dps «--» pn) would,in their approach, presumably be

an undetermined constant whereas in the present approach ‘it would be
constrained ( and,it is hoped, determined ) by the nonlinear zero-
entropy equations, Itshould also enjoy, for example, Regge asymptotic
behavior.” The full amplitude would be constructed in their theory by

essentially a2 power series expansion, but in the present theory by

“including the remaining terms in the topological expansiocn. The

crucial question is whether the self-consistent structure of the

functions fn(pl,‘..., pn) determined by the zero-entropy equatidns,
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in conjunction with the topological expansion precedure, will

eliminate the divergences of field theory associated with both

renormalization and the divergence of the perturbation series expansion.

Before these questions can be addressed it is necessary to include
barvons into the theory: Chew has found that the topological expansion
scheme with mesons alone is not scluable, due to the minus sign
associated with the closed loop. Inclusion of baryons (and baryonium)

leads to a soluable system that gives a predicted ratio of the meson

and hadronic coupling constants that is good agreement with experiment.10

Preliminary results indicate that the overall magnitudes of the strong-
interaction coupling constants, as determined by the nonlinear
integral equations for the zero-entropy functions, agrees with

experiment at least in order of magnitude.
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APPENDIX A: ORIGIN OF DISCONTINUITY FORMULAS

Discontinuity formulas are derived in S matrix theory nominally
from macrocausality and unitarity.11 However, it was recognized long
ago that unitarity is not essential. What is directly used in the
derivations is not unitarity, but rather the property that the inverse
of the S matrix possess the anti-namal analytic structure. This anti-
normal analytic structure is the same as the normal analytic structure
derived for the S matrix from macrocausality, except that the plus
ie rule is replaced by the minus ie rule. It is the property that the
singularities in the real region of definition be confined to the
positive-a Landau surfaces, and that the function near these singu-
larities be defined by the minus ie limiting procedure. That the
inverse of Sshould possess this anti-normal analytic structure can
be derived from unitarity and the fact that S possesses the normal
analytic structure. But the property should hold regardless of
whether S is unitary or not.

To see the essential point in the simplest way consider first the
formal perturbative solution. Then the S matrix can be written in the

form]f2

<p'|Slp>=<p'lp>- 2rsE - E Jlim <p'|T (B+ie)lp >
’ P P cvo

(A.1)

where
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1 1 .1 .
T(E) _V+VﬁV+Vﬁvﬁi Vos.., (A.2)
0 0 0
.
If one defines R™ by
-2mi8(E_ - E_,)1im<p'|T(E. * ie) |[p>=<p'|R*|p >, (A.3)
p P e+0 p

then it is easy to verify, formally, that
R" - R =R'"R =RTR. (A.4)

Thus the definitions

+
I+

.8 =1=%*R RN .. (A.S)
allow one to write
. i .
Ss =88 =1. (A.6)

Hence the operator S  defined by {A.5) is the inverse of S = s,
Consequéntlx the operators‘R+~and R™ defined by the plus it and minus
ie limiting procedures on the same function T(E) define formally the
operators (S - I) and —(S'1 - I), respectively. ‘

These relationships are usually derived from unitarity. But the
above  derivation does not depend on the Hermitian character of V:

it goes through, formally at least, even if S is not unitary.
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In S-matrix theory the anti-normal analytic strﬁcture of S_1
is usually derived from unitarity and the normal analytic structufe
of S. However, it can be.defived,‘altefnatively, difectly from the
anti-macrocausality property of S'l. This latter property is the
same as the macrocausality property except that the sign éf time is
reversed, so that physical particles carry positive energy from

later times to earlier times, rather than vice versa.lll’13

l, if it exists,should satisfy

If Ssatisfies macrocausality then S~
anti-macrocausality. This will not be proved here, but the following
argument makes it very plausible.

Consider a normalized initial state ¢ that represents a system
of incoming particles each of which is represented by an incident wave
packet with fairly well defined momenta and trajectory region. The
action of S takes ¢ to Sb = y. And the action of S™! on y takes it
back to ¢= S-lw. The two reciprocal processeé § +ygpand ¢ > ¢ are
‘thus_closely related. If S is unitary then ¢ is normalized. If S
is not unitary then ¢ need not be normalized. But in any case the
action of S'! on ¥ is closely connected to the action of S on ¢: S
constructs ¢ from ¢, ahd S—1 reconstructs ¢ from . .

One can imaginey to be decomposed into components i, corresponding
to varioﬁs combinations of outgoing particles with fairly well defined
momenta and frajectory locations. Then the wave functions ¢ and wi
canlbe wave functions of the kind used in the macrocausality arguments
éf reference 13. If S satisfies macrocausality then in various dilated
situations of the kind discussed in that referencelthe dominant con-

tributions to the process ¢ -y will correspond to physical scattering
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processes. If S-1 should fail to satisfy anti-macrocausality then
for some process ¢ >y there wouldbecontributions. to ¢+ ¢ that do not
corresponding to temporally reversed physical processes, yet do not
fall off in the way demanded by macrocausality for the corresponding
direct process that contributes to ¢ = ¥. But then the dominant
contributions to ¢ > ¥ and ¢ > ¢would not be temporal inverses of
each other, and the close reciprocal connection of these two processes
would have to be maintained via an intricate interplay of contributions
that are not naturally related via temporal inversion.

Although su;h a situation is perhaps conceivable, it will almost
surely not be achievable in situations having the complexity of
relativistic particle physics. Thus I think it safe to assume,

1 if it exists,should be

in the general S-matrix context, that S~
anti-macrocausal regardless of whether the S matrix is unitary or not:

the anti-macrocausality property of S_1 is a more primitive and basic

property than unitarity. From this anti-macrocausality property one can

deduce immediately from the arguments of Ref.13 the anti-normal
analytic structure of S—1 needed in the derivation of the discontinuity
formulas.

Further insight into the connection between discontinuity
equations and the inverse of S can be obtained by considering the S
matrix from the point of view of the "in" and "out" parts of the wave
functions in radial coordinates. Separating out the center-of-mass
motion of an n particle system one is left with a function of various
relative coordinates (Xl’ cee Xn—l)' An alternative set of coordi—:
nates consists of R = (1, ... ,'rn_l) and & = (@, ..., 9 ),

where (ri, Qi) are the radial and angular coordinates associated with
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the relative motion of some pair of subsystems. If y(R,q) is a steady
state solution and K = (kl’ vee kh—l) is a set of n - 1 scalars
defining momentum magnitudes then one may define the asymptotic

amplitude

n-1 o0 ikiri
A(K,Q) = Z |1im [ dr. —

i=1le 40 % 1 an
ik -ie.) (ri-9.)
N (e(ri _ Oi) e 177171 1
-i(ki+ie)) (ri-p:)) | W(R®,0)
+ 0(p; - ri)e 1T (A.7)

. .2 o - _ -
where p; = €%, and R” = (r; - Py »ees T ‘ Pn-1) -

This definition is such that if y is a plane wave X exp i ;i . ﬁ?,
i=1

and the directions and magnitudes of the n - 1 three-vectors ig are

specified by the sets of coordinates QO = (eg, ¢2, vee eg-l’ ¢g-l) and
KO = (kg, vee kg_l), where kg >0 for all i, then the corresponding
A(K,Q) is

agk,2; K0 h=sk, Ksca, o) + sk, Ks2,8D), A.®)

where
n-1
’ .9
§(K, K') = 1 8(k - ki), (A.9)
i=1
n-1
s(a, a) = " 8(cos &; - cos 8538 (0; - 01), (A.10)
i=1
K= (- k]_’ s s T 1&1_1), (A.ll)
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and The condition, analogous to (A.14), that the two terms in (A.16)
_ . represent separately the asymptotic incoming and outgoing parts
Q= (n - 61; ¢1 R PR en*l’ ¢n_l..'")' (A.12) of y is ‘

If, on the other hand, ¥ represents the solution to the 0 0

e (RISK, o; K0, 60) = s(k, a3 £, &%). L Aan

scattering problem with‘the incident or incoming state given by
" n-1
the same plane wave exp Z i Eg . ?i that was used in (A.8),
i=]1
then the amplitude A(Q, K) can be written as

where the kg in k0 always satisfy kg > 0.
The wave functions y corresponding to the asymptotic amplitudes

defined in (A.13) and (A.16) represent solutions that have inéoming
k0 o0 - 0 g0 B :
A(K, #; K7, 7) = S(K, @; X7, 27) and outgoing parts equal, respectively, to the incoming and outgoing

parts of the plane wave whose asymptotic amplitdde'is given in (A.8).
0 :

+ 8 (K, RO)G(Q; ), _ v (A.13) We now invoke two general principles. The first is the super-
where . position principle, which asseris thét a linear superposition of solutions
8 (K)S(K,9; KQ’»QO) = S(K, & KO"Qo)i ‘ (A-14) ¥.is.a solution y' The sécond is  the causality principle that the incoming
Here n-1 bérts of a solution should determihe uﬁiquely the‘outgoing parts.
8(K) = i-1 e(ki)’.; (A.15) Using the superppsition principle oné can form a'éolution w'vby

~taking .a linear superposition over various values of (KO, QO) the solu-

and G(ki) is zero or one according to whether ki is negative or tion y that correspond to the amplitudes AK, 9 KO, QO) of (A.13).

The weight factor will be chosen to be‘S(KO, 'ﬁo; Kg, ﬁg), for some

~ fixed (Rg, ﬁg)- Thusthe asymptotic amplitude corresponding to '

non-negative. Equation (A.14) expresses the condition that the
incoming part of the asymptotic wave (i.e. the part having the

behavior (exp - iEkiri)) is the same as that of the incident plane will be

wave. FEquation (A.13) defines the S—matriiiin these variables.
The kg in KO

&%, &% for k%, %) in (A.13) gives

all satisfy kg > 0. Substitution of the argument

Ak,e; K0, 69 = se; K0, 80 + sk, k%s(e, o). (A.16)
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A (K.q) =

faxraa’ack os k0,008’ 2% &0; )

deofdQO(S(K . 95 KO,QO) + 5(K, ko)s(g, {10)

20 -0 -0 -0
x S(K, a3 Ky )

=~ a0 0 S0 0hari0 20, 50 20

= [dK"[da S(K,0; K',27)S(K", 2°; Kl, Ql)
¢ S(K,a; KJ, &) - (A.18)

The conditions (A.14) and (A.17) entail that the incoming part of
A'(K,q) is the same as the incoming part of the solution whose
asymptotic .amplitude is given in (A.16), with (KO,QO) set equal to
(Kg,gg). Thus, by virtue of the causality principle, the asymptotic
outgoing parts of these two solutions must also be the same:

-0

ak® e sex,a; K, s, 25 &0, a0
1199 17500y By

= 5K, K s(0. ) . | (A.19)

But then the introduction of the notation

20 <0 20 -0y _ &0 0 .0 0
S, 0 Kj.op) (A.20)

S(KY, o Ky, @)

Hl
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allows one towrite (A.19) in (A.20) in the form
SS = 1. (A.21)

Consequently the transformation of shifting to the barred coordinates
takes S to its inverse. The transformation that takes (K,Q) to
(K, ©) reverses both the signs of all momentum magnitudes and the
directions of all the vectors. Hence the associates sets of vectors
Ki are transformed into themselves. .Thus when the functions S and 5!
are expresséd in terms of these vector arguments one needs two

1

separate coverings of the physical region, one for S and one for S ~.

On the other hand, the points (X,2) and (X, ©) lie in two separate

'regions of (k,R) space. These regions are joined at the point where

all k. = 0.

i

The formal manipulations given above suggest that there might be
some sort of analytic connection between the functions S(K, €; K', ")
defined above in the two disjoint regions k;, k; > 0 and k;, k; <0.
One may examine this question in specific models, and in particular

in nonrelativistic models with real or complex (and local or nonlocal)

potentials. If the potentials are short ranged, so that the singularities

near the transition point where all ki = 0 arise exclusively from the
singularities in the propagators, then the singularity structure near
the transition point should be correctly represented by perturbation

theory.
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Near the two-particle threshold in a theory with one kind of
particle the propagator (E - HO)-1 becomes, when the overall center-
of-mass motion is factofed-out, just a one-particle propagator. This

propagator, as it occurs in the functions <Ip']Rt|p > defined in

(A.3), 1514
n &P +1kr .
- o = P_ . (A.22)
where
1/2,
k. = . .
o | (2m Ep) | (A.23)

Consequently the functions < p|R |p' > and < p|R |p">, when expressed
in temms of the variables (K,2; K',Q'), will be analytically
connected, regardless of whether the potential is real or not. This
analytic connection entails a corresponding connection between
S(K,2; K',2') and S"1(K,; K',0%) = S(K, &' k', a").
These questions can be discussed in greater depth within the
context of various special.models. However, the point of the above
. discussion is to note that very general cbnsiderations, which lie
deeper than particular models, strongly indicate that fhe familiar
" analytic connection between s and S! should be maintained indepen-

dently of unitary.
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APPENDIX B: FAILURE OF UNITARITY FOR ORTHO AND PARA AMPLITUDES.

Let the M function be decomposed into its "unit'' part plus the

remainder:

M@UPU=%@UPU+W@HFU (B.1)
Then the basic discontinuity equation has.the form4
@@qu—@@qu

+ -
= er(P'; v -(yMr(P; PMdp, . (B.2)

where V.3 stands for the product of factors vie @ - Continuation

around the leading threshold is supposed to take the comnected part of

,M;(P'; P") = M_(P'; P") into the connected part of M (P'; P"). .

The basic topological assumptign is that the separation of
M;(P'; P'") and M;(P'; P'") into parts having different topological
characters separates the discontinuity equation into parts having
different topological characters. This entails. that the ortho and
para parts satisfy an equation of the form (B.2), but with only planar
singularities.

The‘ortho and para parts.of M;(P'; P} and M;(P'; P'") have
polynomial factors that are specified by the rules given in the text.
These polynomial factors have no singularity at the the threshold.
Thus they are the same for the ortho (resp.‘para) parts of

M;(P'; P} and M;(P'; P'). Moreover, they are the same also for the
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ortho (resp. para) part of the right-hand side of (B.2). This

consequence of our rules leads to an important simplification of the
discontinuity equations: the polynomial spin factor is the samé for
each term, and hence can be factored out. Thus the discontinuity
formula at the ortho or para level becomes, essentially, a discontinuity
equation for the residual scalar function.

The polynomial spin factor in the ortho part of M;(P'; P is
built of factors u * o, one for each quark line. For example, a
quark line whose leading end lies at a vertex associated with a

variable Py contributes a factor u; + o , where u; = pi/mi, and oy

a.d,

1]
and &j are spinor indices associated with the leading and trailing ends

of the quark line, respectively.

The polynomial spin factor associated with M;(P'; P'") gets from

this same quark line an identical factor u; el However, the
1)
. + *
function Mr(P'; Py = Mr(P"; P') gets a factor -u.-o b for real uj.
This is not equal to u;*g, . ,TOT even proportional to it, since uy
173

and uj are generally non parallel.

On the other hand, the contribution ui-(E;&1 from any given
i
quark line to the ortho amplitude Mr(P'; P'") is the same as the

contribution Uit g s from this same quark line to the Hermitian
175 "
conjugate of the para contribution to MT(P'; P'). Thus the sum of

the ortho and para amplitudes satisfies

eM = - e M

0 rP). (B.3)
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Hence when the ortho and para parts are combined one recovers the
famiiiar Hermitian analyticity relation, generally derived from
(extended) unitarity.

Since Hermitian analyticity fails for ortho and para amplitudes

one cannot expect unitarity to hold for them.
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Appendix C: Four-Component Formalism

This appendix transcribes the results obtained above in the
two-component formalism into the more familiar'four-éomponent
formalism.

The connection between the two-component and four-component
formalisms is most easily expressed by using the Weyl representation

for the four-by-four Dirac matrices. In this representation-

T 0
H
o =
v 0 o
1
0 I
8 =
I 0
8 ° Gu
Y, = o = ~
M H Uu 0
-1 0
-Y =
> \o 1
93 0 o
o = i=1, 2,3 : (€.1)
0 o )

1

The two-by-two charge conjugation matrix is

-

N
0 -1
C=-'ioz=
1 0 (C.2)
and gives
c scl=5Tr (€.3)
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where g = (co, -3j. Thus
E = 0 C = 0 C. (C.4)
¢l 0 -C 0}
g -1 _ L Tr _ . _ o N
satisfies E<E ~ =E  =E =E, where Tr, dagger, and star

represent transpose, Hermitian conjugation, and complex conjugation,

respectively. The‘important properties of E are

EfgE = - BT (C.5)
E'aE= of (C.6)
u ¢
and
+ _ Tr
Eo.E= - oy . (C.7)

The free-field operator for Dirac particles of type t is
0 = [ L2 20067 - wo0%)
Yy W“P a(pP

) s -
A=1,2(Ua(P,>\)e lpxa(pix’t)+Va(psx)elpxb1.(p,’)" -t))

(C.8)
where
Vip,2) = EU*(p,A) - (€C.9)
and
Up,A) = BV (p,A) - (C.10)
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The charge conjugation operator C is defined so that

cfyc = B0 = ¢ - (.

11)

The interchange ¢(x) < wc(x) is equivalent to the interchange

a<+b.

Parity is represented by the operator P, which satisfies

P*wi(x) P=eBo.(X)= w‘i’(x), ‘ .

where € is the intrinsic parity associated with v -

The time reversal matrix @ is

cl o
Q= = BE, (c.
0 C
and it satisfies
aten = 617 (c.
Q+aiQ = - Ot?l‘r (C.
and
+ ~ Tr
Qo0 = - cH (C.

The Wigner complex conjugation operator K satisfies, for

all states v and ¢, and all complex mmbers o and 8,

12)

13)

14)

15)

16)

80

*
<KylKe > = <y|o > = <oy >, (c.

* *
K(ajy >+ 8lo>) = o |[K¢ >+

Ko >, (C.
and
kP =1 «
Defining the operator AK by
<)oy >= <ky|alky > (all ¥) (.

one obtains from application of (C.17), (C.18), and (C.19) to

<oy + Bd>IAK|a\v + g >, (C.

with a =1 and 8 = 1 and i, the result

< o|A¥|y > = < ky|A|Ke > (.

for all ¢ and ¢. The definition of K is completed by taking

[kx > = |x> (C.

and

IKp>¥|-p> (.

in first quantized theory, and by taking

Kipop (XIK = 9g, (x) ' - (C.

D

17)

18)

.19)

20a)

20b)

21)

22a)

22b)

23)
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and

K|0 > = |0 >

(C.24)

in second quantized theory. That is, the ket |x>, the field

operator ¥ (x), and the vacuum are considered real. Thus in

first quantized theory if

< x|¢> = f(x)
then
* ®
< X| Ky =<Kx|p> = £ (x),
whereas in second quantized theory if
<olyx) |¥>= £
then
<0ly(x)|xe >

<olwm)KY >

i

*
< KO|Ky(x)Ky >

*
<o0ly Xy >

%
().

The time reveral operator is then

(C.25)

(C.26)

(€.27)

- (C.28)

(C.29)
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where
Ty (0T = (<, (c.
with xt = (- t, x), and
UTy 00U = (2 y00), . (c.

For any-operator A one may define At by
< TylA|Ty > = <vpb|y > «

for all ¥. Then arguments similar to those leading to (C.21)

give

At = Tt A ukr. (.

The current and spin operators

3,06 0 = 30", 0, e, 0] (c.

and

o 06, 1) =zt x), 0p v (¢, 0] (.

then satisfy

n

t =3 -
Ju(t’ X) = Ju( t, x)

and

Ci(t, x) = 3;(- t, x) = - Oi(- t, x). - (c.

(JO(—t, x), - 3(- t{ x)) (c.

30)

31)

.32)

33)

34)

35)

36)

37)
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Thus the time reversal operation on the states generates the
change in expectation values demanded by the physical meaning
of the operation of time reversal.

Suppressing the dependence on all other particles one may

write the S operator for the scattering of a Dirac particle as
= toor ' 4 .48
= [y (x6x"; x)p(x)d x'd x. (C.38)
The operators a(p, A, t) and b(p, » t) are normalized by
<a(p, ) a2 (',27, t) > =<b(p,x, OB LN, t1) 3
= (203> @ - B8, 6 (C.39)
T P = PO Ot it

: whereu)z(p +m )1/2, and A and t are the spin and particle-type
labels. Then the S matrix for the scattering of a Dirac particle

of type t is

S(p',A', tip,h, t) =<a(p',z', t) S a+(p,A, t) >
p 0

op

=0T, AG60!, - p) U, (C.40)

where the type label on G is suppressed.
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The spinors in (C.40) are

Ulp, N = S
’ (V-G)l/z $
. A
1/2
¢, (v-0)
too A
U (p,x) =
<¢ (v.5) /2
1/2 c
(veo)
Vip,\) = g
(f ) (ve 0)1/2 c
and
N ¢ Clve c)
V' P.r) =
N (v'o)l/z( 1) (C.41)

- C - -—
where v = p/m, Py >0, ¢ = Cop, S T S and

1/2 1/2 ~ 1 5
(veo ) / ¢3)g = Z(veog; ) / Orar @, (v 0) /Z>B =z ¢)\a(V.6~u8)1/2
etc. '

The M function for the scattering of the Dirac particle is

.defined by

Mp',t; - p, - 1) = (v - )2 s, tip, 1) (veo)2
' (C.42)
The insertion of (C.40) and (C.41) gives

MG, ;- py - 1) = (V' 0)Gy (@', - P) (Vo)

+ (V"O)GUL(p',' p)+GLu(p'1 - P)V 0t GLL(P', - p)’

(C.43)
where the four-by-four matrix G is written as
S CuL
G (C.44)
Sy CL
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In terms of the mathematical momentum-energy vectors k' and

k, and the associated vectors u' = k'/m and u = k/m, Eq. (C.43)

can be written
MK', t; K, 1) = (u'- )Gy (k' X} (- us0)
+ (u'+0)Gy (k', K)
+ 6k, X (- uro)
ST S ST | | (C.45)

The four-by-four M function is defined by

My, ) My (k' K)

Mk, k) Mk, K

M(k', k)

1 u's 1 (-us))
G(k', k) N ' (C.46)
u'-o 1 (-u-o) 1 o

where the type variables t are now suppressed. The original two-

by-two M function is MLL(k', k). The other three two-by-two parts

are trivially related to MLL(k', k). In particular, one has

(o IM(k', k) (- wo) u'3d M(k', k)

M(k', k) = ( ) (C.47)

M(k', k) (- ud) . Mk, k)

where the two-by-twd and four-by-four M functions are represented

by the same symbol. These relationships, or (C.46), entail the
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Dirac equations
() M) = 6M) = (80 (- u-y) - (c.48)

The two-by-two M-function givén in (C.42) refers explicitly
fo the physical process involving an outgoing dirac particle of
type t and an incoming Dirac particle of type t. The function
G(x', x) in (C.38) describes also the three related processes in
which the incoming particle is changed to an outgoing antiparticle
or the outgoing particle is changed to an incomiﬁg antiparticle, or
both. If, for examplé, the outgoing particle is changed‘to an’

incoming antiparticle then (C.40) is replace by

s(:p’,x"_t; P, A, t) -

< tegr v Leyat
\Sopb (P sAT, t)a (P,Mt)'>0

- (TGP, -PIUD,N)

1/2

o 100V 6 (ot ) vyt

+ (v )2 Dg (o', Py v

1/2 /2

+ (V"gj GLU(_p" -p) (V'G)l

+ (v‘-“)l/ZGLLGp', -p)(v-c?)l/zlcbX . (c.40")
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N this equation is a special case of (C.45). Thus the two different
The charge conjugation operator in ¢L arises from the convention . .
. processes are described by the one function M(k', t; k, -t) defined
whereby 1A' is to be contracted onto the right-hand index of the spin . . . . .
_ in (C.45), evaluated in different regions in (k', k) space. The
operator if the particle is an initial particle but onto the left- . . . .
function G(k', k) in these different regions is obtained from the

hand index of the spin operator if the particle is a final particle. .
Fourier transformation of the single function G(x', x).

The convention for M functions is that the contraction rule is ) ) ] . o ) ) ] )
The third case is that in which the original incoming particle is

independent of whether the particle involved is initial or final, .
changed to an outgoing particle. Then (C.40) is replaced by

but that the sign of the mathematical rest-frame spin vector Sy
occurring in the spin operator $p0 is tied to the sign of the
S(p':)\'r t; Psh, _t:)'
associated energy component in the manner specified in (2.53).

Then (C.3) allows the ¢ on ¢C in (€.40%) to be absorbed into the

<a(p',»', t)b(p,A,—QSop >b
definition of the spin operators. The S matrix corresponding to the

M function is thus the quantity in the brackets in the last line of

#l

+ A 1
- U (p'an)GE', PIV(PA)
(C.40'). It is converted to the M function of the process, namely .

to M(-p', t; -p, -t), by multiplying it by the factors (v'-c)l/2

1/2 R 172
¢, 1 [ (V') (', PI(ves)7(-1)
and (v:o)l/z, just as in (C.42). This gives A GUU -

1/2
N A L Y L)
M('P', t3 “P» -t) =
- V' GUU(‘P', -p) Vo

1/2

+ v ey, P

- e - " - ) .
Vit Gy (P, P - w0, e e (c.40"")

* Gyp's -p) Vo . o

LU( P P The S matrix corresponding to this M function is the quantity in the

bracket in the last line.of (C.40''). It is converted to the M

+ G, (-p', -P . (C.43") . .
LLtP P function by multiplying it by (v'~o)1/2 and (v-o)l/z, just as in (C.42).

For initial particles v = - u. Thus This gives
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M(p', t; p, -t) =

= vl Gype's PI(=vo)

+ v'o Guﬁ(p', p) + GLU(p', p)(-veo) + GLL (C.43'")

Since both particles are final one has u = v and u' = v'. Thus
this is also a special case of the function defined in (C.45).
The fourth and final case is similar. The order in which the

arguments of the M function are placed is the same as the order of the

operators that create or annihilate the corresponding particles from

the vacuum. (See (C. 40), (C. 40'), and (C.40''), and the corresponding

equations (C.43), (C.43'), and (C.43"').) Then the fourth case gives
-M(p, -t; -p', t) = M(-p', t; p, -t)
= (") Gyyl-p", P (~v-0) + (=v's0) G (p", P)
+ GLU(—p', p)(~v+0) + G, (-p", P), (C.43')

_where ghe antisymmetry of M under the interchange of spin-%—variables
is used. Thé second part of (C.43'') is equivalent to (C. 45), and
hence the one function M(k', t; k, E) describes éll four processes.
The formulas given above refer to a single spin—% particle. But
they immediately generalize to the case of n spin-%-particles: one

treats each such particle in the manner shown above.

The parity transformation P defined in (C.12) induces in G(k', K

the change

G(k', k) - e(ngsi)c(i', oY 1es), : (C.49)

90

where e is the product of intrinsic parities at the fields, and
i runs over the particle-antipérticle pairs. A little algebra

shows that this transformation on G induces the same trans-

formation on the M function defined in (C.46):

M(k', k) > e( Txe)ME", K(leg) - ' (C.50)
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Consideration of the ﬁo-sca teri ils ths X ; . .
ttering part entalls that the product where Tr means transpose in spin space.

. o t . .
of the intrinsic parities of 11’i(x) andwi(x) 1s unity. Thus the The momentum-energy space version of (C.53) is obtained by

o . N R e
intrinsic parities of the spin 7-f1e1d5 drop out of e, as in (2.56). replacing x and x' by k and k', respectively. This transformation

Then (2.58) allows (2.55) to be written as on G(k', k) induces on the four-by-four M function defined in (C.46)
the transformation
PM(k', t; k, -t) = e(u'-o)M(K", t; K, -t)(-u-a), (C.51)
M(k', t; k', -t) =M (k', t' k, -t)
where ¢ is the product of the intrinsic parities of the scalar

particles. The parity transformation (C.49) on the function G = L outo -E GTr(k kv)E) 1 N
occurring in the expression (C.45) for the two-by-two M function induces piro Ue 1
the transformation M > PM, with PM defined by (C.51).
= - EMT(k, t; k', -0)E . (C.54)

The antiparticle conjugation operation w(x)+ewf(x) defined in

(C.11) replaces Sop by
It induces on the two-by-two M function defined in (C.45) the

Sgp K(wc(vaT G(x' x)wc(x)d4x'd4x transformation M(k', t; k, -t)«~CM(k', t' k, -t), where (M is
defined by (2.61).

+ . . . . . . . .
f(Ew+(X')) G(x', x) Ev'(x) d4x'd4x : The parity (or antiparticle conjugation) operation acting on M
' converts it to the M function that describes processes in a conceivable

jw+(x)(—E+G(x', x)E)Trw(x) arerdix. (C.52) : world in which the amplitude for any process P is equal to the

amplitude that the parity inverse (or antiparticle conjugate) of P has

Comparison to (C.38) shows that the antiparticle conjugation operation in the actual physical world. The analogous time reversal operation on

is equivalent to the operation the four-by-four M function is obtained by making the substitution

Sop St defined by (C.38) and (€.33):
G(x", xX) e Gc(x', X)

= (-FG(x, xE)T

= - EGT(x, x"E, (C.53)
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t .
S s CTr o~ ‘
op " “op _ COME, e M, k) = oM, K. (C.58)

ttkutst  ukr o ) .
op : The transformation {C.57) induces in the two-by-two M function
defined by (C.45) the transformation

4x UKT

.
T ot 6T, x) wix') d¥xd

’ M(k', t; k, -t) <> TM(k', t; k, -t)
= k(W) 6T, 0 tTe Huk atxratk

_ = M(-K, t; -k', -t) (C.59)
Mot e 6 xr, e Hx atxat

In a model where all particles are constructed from spin-%

particles the intrinsic parity factor € is unity. Then the product

Tkt xnel6 o, x'Haveok d*xra

i 4 of parity inversion, antiparticle conjugation, and time reversal on
fot et 67Tt xHe v dixrdtx (C.55)

the four-by-four M function gives, by virtue of (C.50), (C.54),

_ (C.58), and (C.13),
Thus the time-reversal operation on the states or fields is equivalent

to the operation on.G MK', t5 Kk, -t) > TCP M(K', t; K, -t)

t
G(x' @G ',
‘(x , X) (x', x) = MK, t; K, -1) (€.60)

- o', xBya, (C.56)

The same result holds for the two-by-twosubmatrix MLL

The two-by two M function has one dotted and one undotted index.

= M.
or equivalently

Thus, by virtue of (2.70), the change of the sign of all of its
Glk', k)« GE(k', K) , o _
vector arguments changes its sign. Thus the two-by-two M function

o is transformed into precisely itself by the product of theT,C, and P
= 26T -k, -Ka. : (C.57)

This transformation induces in the four-by-four M function defined

by (C.46) the analogous transformation
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transformations.

The formula (C.60) refers to a situation involving only one
spin—%—particle. For the case of n such particles the variables
k', k, and t are 4n-vectors, or n-vectors, and the minus'sign in
front of M should be (-1)“. Thus the product of the transformations
T,C, and P again leaves M invariant.

In carrying out the calculations whose results are summarized
above it is helpful to recall that the two-by-two function M can be
expressed as C-1 MTr(L If M is a product of Pauli matrices then M
is obtained from M by transposing the order of these matrices and
replacing each o i=1, 2, 3) by -0, -

The Lorentz transformation properties of the two-by-two M

function is indicated by assigning spinor index types according

to the rule
M(K', t; k, -t) = MLL(k', t; k, -t) -
Mgk, t5 Kk, -t) = M(k' 0, t; k.8, -t) (C.61a)

" The transformation properties of several other two-by-two functions

are indicated by the following assignments:

Mk, t; k', -t) - 80k, ¢ k', -1)
ME', t; K, -t) —»MO‘B(E', t; E, -t)

My (', t5 Kk, -t) > MB35 k, -1)

MUL(k'v t; —k,'t) +I\4{lijé(k" t; k, -t)

' [ > By . -
MLU(k , th -k, t) MLUa k', t; k, -t). . (C.61B)
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In these equations one may interprete the variables k' and k as 4n
vectors, the variables t as n-vecrvors, and the variables a and B as
lrwhmm:&g,aemrn.a&. Our convention is that the spinor a
goes with k' and the spinor B goes with k. The quantities on the
right-hand sides of (C.61) are invariant under the simultaneous action
of the spinor transformation (2.9) and (k', k) - (L‘l(A)k', L_l(A)k).
Comparison of (C.61) to (C.47) shows that one may interprete
(u'-aﬁ and (-U°aj actingonthe left and right, respectively, as
operators that simultaneously raise and dot (or undot) the indices a
and 8, respectively. Then the subscripts Uand L on the two-by-two
functioné M(k', t; k, -t) can be dropped and the four-by-four M

function written as

M(k', t; k, -t)

M&S(k', t; k, -t) M“é(k', t; k, -t)

B . - (K. t- -
M, (k' sk, -t Mas(k , t; k, -t) (C.62)

In formulas (3.5a) and (3.5b) for the ortho and para amplitudes
corresponding to quark closed loops the (quark) M functions are just
the products g(u}-c) and g(-ui-c) respectively. In Both cases the
individual two-by-two M functions are MLL and their spinor index types

are as in M, However, it is possible to use different choices of

8"
index type, provided one makes compensating changes in the spin

operators that occur in (3.5). One convenient choice is to use Maé

for the ortho propagators and‘MaB for the para propagators. Comparison

un

3 and the

of (C62) to (C.47) shows that the ortho propagator is then §

para progator is GQB.
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" The propagators can be considered the analogs of the functions

G of field theory. Thus we write

0o &% ' ‘
? = ( 8 > (C.63a)
0 0 .
and
0 0 '
P =< . ) . (C.63b)
$ 0
[+ ]
The associated spin factors are
. .0 0
0 _ 1 ..
F, 5 <(si"7 u;-0)% 0 > | (C.64a)
and ) 5 B
. 0 (1 u;*0 5.0
= ( ot “) (C-64b)
2 N0 0
Then one may write, in place of (3.5),
0 _ 0.0
AG, k, 8) = - (Tr I (F;61)) £(K). (C.65a)
1
and '
AP, k, s) = - (Tr 1 (FAP)) £(1). (C.65b)
i .
The sum of the two amplitudes is then
0, - \ '
A+ A= - (Tr I_[(FiG)) £(k) . (C.66)
i

where

G=@ + ® and 7' = F° + 5P,
1 1 1
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-Equation (C.40) shows that the four—by-foﬁr matrix G occurs in
the form U+GU. The matrix BG occurs in ﬁBGU, where T = UTB.

Correspondingly, (C.66) may be written in the alternative form

0

A" +aP = - (1rn (F18) (BO)£ (k) (C.67)
i i
where
éas 0 :
8¢ = L. (C.68)
0 6aé .
and o ’ .
. (-u,+0)(5,%0) * 0
F 8= i ( pose ; > (C.69)
0 (si°0)‘ui-c) M

p

Then the contributions A0 and A" come from the lower left-hand and
upper right-hand two-by-two sectors, respectively.

If the meson corresponding to vertex i is a spin-zero meson then

s, = u.,, and (C.67) becomes
i i
F'8 = i <(— u;*0) (uy-0) >
i ~ .
(uj°0) (uy+0)
= ivg - » ' (C.70a)

On the other hand, if the meson associated with vertex i is a spin-one

meson then u-s = 0 and

. (s;+0) W} -3) 0 '
Fig =1 - S (C.70b)
0 (s;*9) (u, *0)
- u p
= s cupu

where
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S =7 (Y, - vyv)- (C.71)

Thus the coupling of the spin-zero particle to the ortho and para

quarks are via the matrices iys(l + ys)/Z and iys(l —YS)/Z respectively.

The couplings of the spin-one particle to the ortho and para quarks
are via the matrices sucuv uv(l + ys)/Z and s“suvuv(l - ys)/z,
respectively.

This separation of the ortho and para contributions into the two
orthogonal parts of spin space means that at the zero-entropy level
the ortho and para quarks are, in effect, distinct entities: they
are represented by orthogonal states. The rules shown in Fig. 8
mean that there are also, in effect, two different kinds of mesons,
one composed of a quark and antiquark of ortho type the other
composed of a quark and antiquark of para type.

The close analogy at the zero-entropy level between the ortho-
para types and the flavor types suggests that one should allow, at
the zero-entropy level, also the mesons built: from an ortho quark and
a para antiquark, or from a para quark and an ortho antiquark. The
coupling of these two new types of mesons will be obtained by filling
the two empty spaces in the coupling matrix Fié of (C.69). Indeed,
if one goes back to the two-component formalism, and follows the
normal and naturalrpractice of imposing parity invariance on each
quark propagator individually, rather than on the process as whole,

then the function Fie becomes

[ s ((uya)sy (g ),
;= FB =i i \é; 8 1o éB“ (C.72)
5;+0 ((s5+0) (u;-0))";
- <
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For the case of a spin-zero meson, where Si = Y, the two new

terms reduce to

=i iy
0 Ys(Yu ul)'

(C.73a)

For the case of a spin-one meson, where u; s; = 0, the two new terms

reduce to

( 0 Si-c> "
F'g=1 = 1y *s.
1 S: .o 0 ol

1

(C.73b)

The explicitly appearing spin vector s” in (C.70b) and (C.73b)

can be eliminated, since the index v against which it is contracted

can play an equivalent role. Recall that the summation over the

% Sphys u Sphys v

three physical spin-one states is represented, as in (3.19), by

e=1 €
= (- g™+
3 math math v
= T (s H(is) (C.74)
e=1 €
Thus the vectors iszath Min (C.70b) and (C.73b) can be omitted and

the index v of 9 OT Y, contracted directly onto the metric tensor

uv HoVv

(-g *+vv).

The result can now be compared to the results of Bardakci and

Halpern,6 who use the standard four-component formalism.

complete coupling of the spin-zero meson is via the factor

The
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rj = iYs(l + Y-uj), (C.75a)

whereas the complete coupling of the.spin-one meson is via the

factor

F. =
Jj hu ue}
where uj = kj/m = vjsign ug, and vj is the four-velocity of the meson j.
The sum of all of the zero-entropy amplitudes corresponding to
a fixed cyclic order of the meson variables.is the common scalar

factor f(k) times the trace of the cyclically ordered product of

factors Fi:-

A(kl’

- kn) =-Tr(F1FZ, ..Jh)fn(kl, cins kn), (C.76)

These coupling are the coupling associated with positive metric pseudo-
scalar and vector mesons. These mesons are the mesons that are the
basic particles of the ordered Hilbert space, and thus of the physical
. Hilbert space.

The factorization property does not hold for the sum of zero-
entropy amplitudes discussed above. It holds rather for the
individual zero-entropy amplitudes. An individual zero-entfopy
amplitude is obtained by assigning to each quark line segment of the
closed loop of, say, Fig. i an ortho or para label, and inserting
an associated factor of (1 + YS)/Z or (1 - ys)/Z, respectively,

between the corresponding factors Ty and Tiel of the trace in (C.76).

-io ). , (C.75b)
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Notice that when a.meéon is coupled to a zero-entropy function only
one or the other of the two terms of (C.75a) or (C.75b) will
contribute, and this term will be the same at the vertices lying
on the two énds of the meson connection line, by'virtue of thel-
identity represented in Fig. 8, and the two similar identities
associated with the two othér ortho-para type mesons. Thus the only
coupling matrices that enter are those associated with positive
metric pseudo-scalar and vector mesons.

The present theory thus resolves simultaneously four serious
difficulties that have long plagued this kind of approach. These

problems ares’6

first the apparent necessity for a doubling of

the pseudo-scalar and vector particles; second, the apparent necessity
for a parity doublet partner of each of the above mentioned particles;
third the apparent demand that each of these parity doublet partners
have the wrong metric (i.e., be a ghost), and fourth the lack of

any rationale for the empirically observed SU(6)w symmetry of

vertices. This latter symmetry emerges automatically in the present
theory for the amplitudes formed as the‘sum of zero-entrepy amplitudes,

provided all momentum vectors ﬁj are parallel to the third coordinate

axis.
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