
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
An XML-based protocol for distributed event services

Permalink
https://escholarship.org/uc/item/0vt7953g

Authors
Gunter, Dan K.
Smith, Warren
Quesnel, Darcy

Publication Date
2001-06-25

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0vt7953g
https://escholarship.org
http://www.cdlib.org/


An XM L-Based Protocol for Distr ibuted Event 
Services 

Warren Smith 
NASA Ames Research Center 

Moffett Field, CA 94035 
 

Dan Gunter 
Lawrence Berkeley National Laboratory 

Berkeley, CA 94720 

Darcy Quesnel 
Argonne National Laboratory 

Argonne, IL 60439 
 

Abstract 
A recent trend in distributed computing is the 

construction of high-performance distributed systems 
called computational grids. One difficulty we have 
encountered is that there is no standard format for 
the representation of performance information and 
no standard protocol for transmitting this 
information. This limits the types of performance 
analysis that can be undertaken in complex 
distributed systems. To address this problem, we 
present an XML-based protocol for transmitting 
performance events in distributed systems and 
evaluate the performance of this protocol. 

 
Keywords: event service, XML, distributed  

computing, computational grids. 

1 Intr oduction 
There are many different projects from 

government, academia, and industry that provide 
services for delivering events in distributed 
environments. The problem with these event 
services is that they are not general enough to 
support all uses and they speak different 
protocols so that they cannot interoperate. We 
require such interoperability when we, for 
example, wish to analyze the performance of an 
application in a distributed environment. Such 
an analysis might require performance 
information from the application, computer 
systems, networks, and scientific instruments. In 
this work we propose and evaluate an XML-
based protocol for the transmission of events in 
distributed systems. 

One recent trend in government and 
academic research is the development and 
deployment of computational grids [14]. 
Computational grids are large-scale distributed 

systems that typically consist of high-
performance compute, storage, and networking 
resources. Examples of such computational grids 
are the DOE Science Grid [3], the NASA 
Information Power Grid [8, 18], and the NSF 
Partnerships for Advanced Computing 
Infrastructure [9, 10]. The major effort to deploy 
these grids is in the area of developing the 
software services to allow users to execute 
applications on these large and diverse sets of 
resources. These services include security, 
execution of remote applications, managing 
remote data, access to information about 
resources and services, and so on. There are 
several toolkits for providing these services such 
as Globus [4, 13], Legion [7, 15], and Condor 
[1, 19]. 

As part of these efforts to develop 
computational grids, the Global Grid Forum [5] 
is working to specify general protocols and APIs 
to be used by various grid services. These 
specifications will allow interoperability 
between the client and server software of the 
toolkits that are providing the grid services. The 
goal of the Performance Working  Group [6] of 
the Grid Forum is to codify best practices and 
promote interoperability for  the storage and 
distribution of performance data. The resulting 
specifications must support tasks such as 
profiling parallel applications, monitoring the 
status of computers and networks, and 
monitoring the performance of services provided 
by a computational grid. 

This paper provides an overview of a 
proposed protocol and data representation for 
the exchange of events in a distributed system. 
The protocol exchanges messages formatted in 



XML and it can be layered atop any low-level 
communication protocol such as TCP or UDP. 
Further, we discuss Java and C++ 
implementations of this protocol and their 
performance. 

The next section will provide some further 
background information. Section 3 describes 
how we represent events and related information 
using XML. Section 4 describes our protocol 
and Section 5 discusses the performance of two 
implementations of the protocol. 

2 Backgr ound 
The Grid Forum Performance Working 

Group has defined the basic architecture shown 
in Figure 1. This architecture consists of three 
components: a producer, a consumer, and a 
directory service. A producer is something that 
is producing performance data, each unit of 
which is called an event. This producer can be 
an application profiler, a host monitor, or 
anything else. A consumer is something that 
consumes or receives events. A consumer might 
be a tool to calculate how much time is spent in 
each function of an application or a graphical 
interface showing the status of a set of hosts. A 
directory service is a database that is used to 
store and retrieve information about producers 
and consumers. It is accessed using a protocol 
such as the Lightweight Directory Access 
Protocol (LDAP) [17]. A host monitor may 
advertise itself in the directory service so that a 
consumer can search the directory service and 
find the monitor for a certain host. The 
consumer can than contact that producer in order 
to receive events about that host. 

The Grid Forum Performance Working 
Group is defining the protocols and data 
representations required by this architecture. 
This includes: 

• A definition of events and information 
related to events, 

• The protocol for communicating 
between producers and consumers of 
events, and 

• A definition of the structure and 
organization of the data in the directory 
service. 

In this paper we describe a proposed 
producer-consumer communication protocol and 
the event information that is required by this 
protocol. Our protocol consists of a XML 
encoding of messages and the state machines 
that describe when these messages are sent. We 
do not specify the transport protocol on top of 
which our protocol will be layered. The 
transport protocol could be UDP, TCP, HTTP, 
SSL, or any number of other protocols. We 
choose to use XML to represent our data for 
several reasons. First, XML provides a textual 
representation of data that is readable and 
therefore easier to debug. We could have 
selected a binary representation of our data for 
improved performance, but a textual approach 
seems more appropriate at our current 
experimental stage. Second, XML is self-
describing and hierarchical, which makes it easy 
to represent structured event data. Third, XML 
was selected instead of any other textual 
representation because of the large and growing 
number of XML tools available and the growing 
number of people familiar with XML.  

Another approach we could have taken was 
to use SOAP [12] or XML-RPC [11] and thus 
avoid explicit representation of the XML for 
each message. While this approach is a valid 
one, it has several drawbacks. First, neither 
SOAP nor XML-RPC has low-level transport 
bindings: SOAP has HTTP and SNMP bindings, 
and XML-RPC has only an HTTP binding. 
These bindings are not suitable for all of the 
situations we wish to address. Second, for 
SOAP, there is a lack of fully-featured 
implementations in the languages we are 
interested in and/or licensing restrictions on the 
available implementations. We will continue to 
track these XML-based protocols and may adopt 
them in the future. 

Another approach would have been to use 
CORBA [20], for instance the CORBA Event 
Service. This approach, while also valid, would 

 
Pr oducer 

Consumer  

Director y 
Ser vice 

Events 

Advertise available  
events 

Search for producers 
of events 

Subscribe 

 
Figure 1. Grid Monitoring Architecture. 

 



impose a significant administrative and 
development overhead if the target community 
did not already use CORBA, as is the case with 
the academic and scientific communities. SNMP 
[21] was also considered, but was not used due 
to its inability to handle streaming data 
efficiently. 

3 Events and Event Parameters 
Before we describe our protocol, we first 

describe how we use XML to represent events 
and event parameters. In this section and the 
following sections we provide example XML 
representations of the data we are representing.  

As mentioned before, events are the basic 
unit of information in our architecture. An event 
is a named set of <name, value> pairs where the 
values are typed and there is always a pair that 
contains the time the event was generated. We 
represent this time using a time stamp that is a 
string formatted according to the proposed Grid 
Forum standard format [16] This format is an 
extension of the ISO 8601 time format [2]. Each 
element will also have two optional attributes: 
units and accuracy. The units attribute indicates 
the units associated with the element’s value 
(e.g.: ‘ degrees’ , or ‘bytes’ ) and the accuracy 
attribute indicates what range of likely “ real”  
values are represented by the element’s value 
(e.g. ‘+/-5.0’ ).  

Associated with each event is a set of 
parameters that describe the information that can 
be passed to a producer of events as part of a 
subscription or query. The event parameters 
consist of a set of <name, value> pairs. Each 
element can have a units attribute associated 
with it. An examples of an event and its 
parameters are shown in Section 3.1. 

3.1 CPU Load 
The CPU load event is a simple event for 

containing the load information returned by the 
Unix uptime command. We therefore use the 
event name “ UptimeCPULoadEvent”  for this 
event to differentiate it from other means of 
measuring CPU load. This event must contain 
the following elements: 

• TimeStamp. The time at which the CPU 
load event was generated. 

• Load1. The 1 minute CPU load reported 
by uptime. 

• Load5. The 5 minute CPU load reported 
by uptime. 

• Load15. The 15 minute CPU load 
reported by uptime. 

• HostName. The name of the host the 
load measurement is made on. 

Here is an example of such an event in our 
XML encoding: 

<Upt i meCPULoad 
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Event s” > 
  <Load1>1. 5</ Load1> 
  <Load5>1. 6</ Load5> 
  <Load15>1. 3</ Load15> 
  <Host Name>f oo. gov</ Host Name> 
  <Ti meSt amp>2000- 11-
09T21: 51: 45Z</ Ti meSt amp> 
</ Upt i meCPULoad> 

When asking for a CPU load event, the 
following input parameters can be specified: 

• Period. The amount of time between 
each uptime event generation. This 
parameter is only used when a 
subscription is performed. If this 
parameter is specified for a query, it is 
ignored. 

An example of  how to specify this parameter 
is: 

<Upt i meCPULoad 
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f
or mance/ Event Par amet er s” > 
    <Per i od uni t s=” mi n” >10</ Per i od> 
</ Upt i meCPULoad> 

4 Protocol 
This section describes the XML protocol we 

use for communication between producers and 
consumers. Due to space limitations, we do not 
provide the XML schema or state machines for 
our protocol. Our protocol supports three major 
classes of interactions between producers and 
consumers. 

In the first interaction, a consumer subscribes 
to specific events from the producer and the 
producer sends these events to the consumer. 
These events are sent out over a period of time 
until the producer or consumer ends the 
subscription. We call this interaction a 
consumer-initiated subscription. 

The second type of interaction is the 
producer-initiated subscription. First, the 



producer contacts a consumer to request a 
subscription. Then events are sent from the 
producer to the consumer until the subscription 
is terminated. This type of interaction is useful, 
for example, when a producer sends events to an 
archive. In this case, the archive is the consumer. 

The third type of interaction is a simple 
request/reply. In this case, a consumer requests 
information from a producer and the producer 
replies with the information. Our two previous 
interactions include request/reply interactions 
but our protocol includes two instances of this 
interaction that stand on their own. First, there is 
a query interaction. In this interaction the 
consumer queries a producer for a single event 
and the producer replies with the event. Second, 
there is an available events interaction where a 
consumer requests a list of the events available 
from a producer and the producer replies with 
the list. 

4.1 General M essage Format 
In general, each message consists of: 

1. The number of bytes in the message. For our 
TCP binding, this is a 32-bit integer in 
network byte order. 

2. The XML tags that indicate the message 
type.  

3. Request messages always have a requester-
unique request ID chosen by the requestor. 
This request ID is an attribute of the 
message tag 

4. Reply messages always have a request ID, 
which matches the request ID of the request 
that is being replied to.  

5. Reply messages always have a return code 
and may have a detailed return message. The 
Return element indicates if an operation was 
successful (Success) or a failure (Failure). 
These return codes will most likely be 
expanded later to contain more detailed error 
codes. The ReturnDetail element contains a 
text message that contains detailed user-
readable information about the status of a 
request. 

6. The message-specific data inside the XML 
tags that identify the message.  

We define three XML name spaces for use in 
our protocol. The name space 
http://www.gridforum.org/Performance/Events 

contains the events defined by the Grid Forum 
Performance Working Group, the name space 
http://www.gridforum.org/Performance/EventPa
rameters contains the parameters defined by the 
working group that can be specified when asking 
for an event or events, and the name space 
http://www.gridforum.org/Performance/Protoco
l contains the elements which make up the 
messages of our protocol. Further, we allow any 
group to define events and event parameters in 
their own name spaces for use with our protocol. 

4.2 Consumer-Initiated Subscription 
When a consumer wants to receive a stream 

of events from a producer, it subscribes to the 
producer for the events. After a subscription 
successfully takes place, events are sent from the 
producer to the consumer until either the 
consumer or producer unsubscribes. There are 
five messages in this process, described in the 
following sections. 

4.2.1. Subscr ibe Request 
The subscribe request message initiates a 

subscription and consists of: 
• A consumer-unique request ID 

(required). 
• A consumer-unique subscription ID  

(required). 
• Event parameters element (required). 
• Any input parameters needed to 

generate events (optional). 
Here is an example of a subscribe request 

message: 
<Subscr i beRequest  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol ”  r equest I D=” 1” > 
  <Subscr i pt i onI D>12</ Subscr i pt i onI D> 
  <Upt i meCPULoad 
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Event Par amet er s” > 
    <Per i od uni t s=” sec” >600</ Per i od> 
  </ Upt i meCPULoad> 
</ Subscr i beRequest > 
 
In the future, we will add an optional event 

filter to subscription request messages. The filter 
specifies which events in the stream of events 
should be sent on to the consumer. For example, 
a filter may indicate that only CPU load events 
with a 5-minute load average greater than or 
equal to 5.0 should be sent to the consumer. 



4.2.2. Subscr ibe Reply 
The subscribe reply message is sent in 

response to a subscribe request and consists of: 
• The requestID (required) of the request 

that this message is in reply to. 
• Return (required). Success means the 

request was successfully completed, 
Failure means the request failed. Other 
return codes to represent more detailed 
failures will most likely be added in the 
future. 

• ReturnDetail (optional). Text giving 
further information about the successful 
or unsuccessful subscribe. 

• An optional producer-unique 
SubscriptionID that identifies the 
subscription that was successfully made 
by the consumer (if one was). The 
subscription ID should be present if the 
subscription was successful and should 
not be present if the subscription was 
not successful. 

An example of a subscribe reply message is: 
<Subscr i beRepl y 
xml ns=ht t p: / / www. gr i df or um. or g/ Per f or m
ance/ Pr ot ocol ”  r equest I D=” 1” > 
  <Ret ur n>Success</ Ret ur n> 
  <Subscr i pt i onI D>99</ Subscr i pt i onI D> 
</ Subscr i beRepl y> 

4.2.3. Unsubscr ibe Request 
Unsubscribe requests can originate at either 

the producer or consumer. In either case, the 
message has the same format. The unsubscribe 
request message consists of: 

• A sender-unique requestID (required). 
• The SubscriptionID (required) generated 

by the message target (i.e. producer if 
the sender is the consumer, consumer if 
the sender is the producer) that identifies 
the subscription that is being terminated. 

An example of an unsubscribe request 
message is: 

<Unsubscr i beRequest  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol ”  r equest I D=” 9” > 
 <Subscr i pt i onI D>1234</ Subscr i pt i onI D> 
</ Unsubscr i beRequest > 

4.2.4. Unsubscr ibe Reply 
The unsubscribe reply message is sent in 

response to an unsubscribe request consists of: 

• The requestID (required) of the request 
that this message is in reply to. 

• Return (required).  
• ReturnDetail (optional). 

An examples of a unsubscribe reply message 
is: 

<Unsubscr i beRepl y 
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol ”  r equest I D=” 9” > 
  <Ret ur n>Success</ Ret ur n> 
</ Unsubscr i beRepl y> 

4.2.5. Event 
An event message is sent from the producer 

to the consumer after a subscription is initiated. 
An event message consists of: 

• The subscription ID (required) that was 
generated by the consumer. 

• The event (optional) in the format 
described in Section 3. The event should 
be present if an error is not reported. 

• Error (optional), indicating that an error 
occurred while generating the event. 

• ErrorDetail (optional) which provides 
further information about the error that 
occurred while generating the event. 
This element should only occur in 
conjunction with the Error element. 

Example event messages are shown below. 
<Event  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol ”  subscr i pt i onI D=” 1234” > 
  <Upt i meCPULoad 
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol ” > 
    <Load1>1. 5</ Load1> 
    <Load5>1. 6</ Load5> 
    <Load15>1. 3</ Load15> 
    <Ti meSt amp>2000- 11-
09T21: 51: 45Z</ Ti meSt amp> 
  </ Upt i meCPULoad> 
</ Event > 

4.3 Producer-Initiated Subscription 
There are cases where a producer of events 

may want to initiate a subscription. A common 
case is when a producer wants to archive the 
events it is generating. The request and reply 
messages used during a producer-initiated 
subscription are identical to those used for a 
consumer-initiated subscription. The only 
difference is that the producer requests the 
subscription instead of the consumer. 



4.4 Querying for an Event 
Often a consumer will want just one event 

from a producer. Instead of having a consumer 
subscribe, receive 1 event, and then unsubscribe, 
we allow a consumer to query a producer for an 
event. A query consists of a query request 
message that a consumer sends to the producer 
and a query reply message that the producer 
sends to the consumer in response to the query 
request message. The query reply includes the 
event that was requested. 

4.4.1. Query Request 
The query request message is very similar to 

the consumer subscribe request message and 
consists of: 

• A request ID (required). 
• Event parameters element (required). 
• Any input parameters needed to 

generate events (optional). 
Here is an example QueryRequest message: 

<Quer yRequest  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol ”  r equest I D=” 15” > 
  <Upt i meCPULoad  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Event s” / > 
</ Quer yRequest > 

4.4.2. Query Reply 
The query reply messages are similar to the 

event messages and consist of: 
• A request ID (required) to identify 

which QueryRequest this reply is for 
• Return (required). 
• ReturnDetail (optional). 
• The event data in the format described 

in Section 3. 
An example query reply message is: 
<Quer yRepl y 

xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or m
ance/ Pr ot ocol ”  r equest I D=” 15” > 
  <Ret ur n>Success</ Ret ur n> 
  <Upt i meCPULoadEvent  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or m
ance/ Event s” > 
    <Load1>1. 5</ Load1> 
    <Load5>1. 6</ Load5> 
    <Load15>1. 3</ Load15> 
    <Ti meSt amp>2000- 11-
09T21: 51: 45Z</ Ti meSt amp> 
  </ Upt i meCPULoadEvent > 
</ Quer yRepl y> 

4.5 Requesting Available Events 
Even though our architecture in Figure 1 

shows a directory service that will be used to 
contain information on the events that are 
available from a producer, it is also convenient 
to be able to obtain this information from 
producers directly.  

4.5.1. Event Names Request 
The available events request message is very 

simple and only contains a request ID. Here is 
an example EventNamesRequest: 

<Event NamesRequest  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol ”  r equest I D=” 15” / > 

4.5.2. Event Names Reply 
The event names reply messages consist of: 
• A request ID (required). 
• Return (required). 
• ReturnDetail (optional). 
• One or more Event elements that do not 

have values. Instead, they have two 
attributes: 

o The name attribute specifies the 
name of the available event. 

o The namespace attribute 
specifies the namespace. 

An example event names reply message is 
shown below.  

<Event NamesRepl y  
xml ns=” ht t p: / / www. gr i df or um. or g/ Per f or
mance/ Pr ot ocol  r equest I D=” 15” > 
  <Ret ur n>Success</ Ret ur n> 
  <Event  name=” Upt i meCPULoad”  
namespace=” ht t p: / / www. gr i df or um. or g/ Pe
r f or mance/ Event s” / > 
</ Avai l abl eEvent sRepl y> 

5 Per formance 
In this section we present performance results 
for two independent implementations of our 
protocol. One implementation uses Java and the 
Xerces XML parser. The other implementation 
uses C++ and the expat XML parser. We 
examined the performance of these 
implementations using a 933 MHz Pentium III 
system running RedHat Linux 7.1 with JDK 1.3. 
We found that the C++ implementation is 
significantly faster. It can decode 4,300 uptime 
cpu load event messages a second to C++ 
objects and encode 28,100 event messages a 



second from C++ objects. The Java 
implementation can decode 600 event messages 
a second and encode 21,900 event messages a 
second. 

6 Conclusions 
This document describes an XML-based 

protocol for the transmission of performance 
events in a distributed environment. The 
protocol we describe is a proposed standard in 
the Performance Working Group of the Grid 
Forum. The purpose of this protocol is to 
address the problem of providing performance 
information in a standard way so that different 
tools can provide and use such information. We 
require such interoperability in a computational 
grid when we wish to analyze the performance 
of an application that uses several different 
resources. 

We constructed two independent 
implementations of this protocol that 
interoperate. One implementation is written 
using Java, and the other using C++. We found 
that the C++ implementation can decode 
messages significantly faster than the Java 
implementation but the encoding time is similar. 

References 
[1] "Condor High Throughput Computing," 

http://www.cs.wisc.edu/condor/. 
[2] "Data elements and interchange formats - 

Information interchange - Representation 
of dates and times," International 
Organization for Standardization ISO 
8601, 1998. 

[3] "The DOE Science Grid," http://www-
itg.lbl.gov/Grid. 

[4] "The Globus Project," 
http://www.globus.org. 

[5] "Grid Forum," http://www.gridforum.org. 
[6] "Grid Forum Performance Working 

Group," http://www-
didc.lbl.gov/GridPerf/. 

[7] "The Legion Project," 
http://www.cs.virginia.edu/~legion/. 

[8] "The NASA Information Power Grid," 
http://www.ipg.nasa.gov. 

[9] "The National Computational Science 
Alliance," 
http://www.ncsa.uiuc.edu/access/index.all
iance.html. 

[10] "The National Partnership for Advanced 
Computing Infrastructure," 
http://www.npaci.edu/. 

[11] "XML-RPC Home Page," 
http://www.xmlrpc.com. 

[12] D. Box, D. Ehnebuske, G. Kakivaya, A. 
Layman, N. Mendelsohn, H. F. Nielsen, 
S. Thatte, and D. Winer, "Simple Object 
Access Protocol (SOAP) 1.1," The World 
Wide Web Consortium 2000. 

[13] I. Foster and C. Kesselman, "Globus: A 
Metacomputing Infrastructure Toolkit," 
International Journal of Supercomputing 
Applications, vol. 11, pp. 115-128, 1997. 

[14] I. Foster and C. Kesselman, "The Grid: 
Blueprint for a New Computing 
Infrastructure,".: Morgan Kauffmann, 
1999. 

[15] A. Grimshaw, W. Wulf, J. French, A. 
Weaver, and P. R. Jr., "Legion: The Next 
Logical Step Toward A Nationwide 
Virtual Computer," Department of 
Computer Science, University of Virginia 
CS-94-21, June, 1994 1994. 

[16] D. Gunter and B. Tierney, "A Standard 
Timestamp for Grid Computing." In 
Proceedings of the Global Grid Forum 1, 
2001. 

[17] T. Howes, M. Smith, and G. Good, 
Understanding and Deploying LDAP 
Directory Services: MacMillan Technical 
Publishing, 1999. 

[18] W. Johnson, D. Gannon, and B. Nitzberg, 
"Grids as Production Computing 
Environments: The Engineering Aspects 
of NASA's Information Power Grid." In 
Proceedings of the 8th IEEE International 
Symposium on High Performance 
Distributed Computing, 1999. 

[19] M. Litzkow and M. Livny, "Experience 
with the Condor Distributed Batch 
System." In Proceedings of the IEEE 
Workshop on Experimental Distributed 
Systems, 1990. 

[20] A. Pope, The CORBA Reference Guide. 
Reading, MA: Addison-Wesley, 1998. 

[21] W. Stallings, SNMP, SNMPv2, and 
CMIP: The Practical Guide to Network-
Management Standards. Reading, 
Massachusetts: Addison-Wesley, 1993. 




