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Balancing conservation and commerce
A shadow value viability approach for governing bycatch

Pierce Donovan† and Michael Springborn††

May 2022

Abstract

The losses from extinction events are not well-known, making an expected
net benefits approach to conservation problems difficult to implement. A vi-
able control strategy instead focuses on limiting the risk of extinction to some
acceptably low level at the least possible cost. Here we describe a shadow
value viability approach for solving conservation problems with irreversible
thresholds with dynamic programming. A social planner calculates the min-
imal (virtual) level of loss from extinction that would trigger sufficient ac-
tion to avoid extinction with the desired confidence. The cost-effective policy
then arises from acting as if the resulting shadow value is real. We demon-
strate the method in a numerical application to the conservation of the Pa-
cific leatherback turtle population, which co-mingles with the Pacific sword-
fish fishery. We show how the cost-effective outcome can be achieved among
decentralized fishers by using the planner’s shadow value to set market-based
instruments for managing turtle bycatch. This approach translates the species
viability objective into economic terms so conservation and commercial har-
vest can be rationally integrated.
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1 Estimating–and avoiding–a loss due to species extinction

Natural resource management under the threat of catastrophe presents particular chal-
lenges. While the costs of preventive action are usually fairly clear, the scale of the benefits
from avoiding most disasters is not well-known. Without good information on this essen-
tial input to maximizing net benefits, management insights relying on this approach will
be unavailable or poorly justified.

Consider the example of social losses from extinction of a species, including how they
are measured and inform decision making. Eliciting this value directly from people is
problematic in the same way that—in the context of the value of a statistical life (VSL)
literature—eliciting the value of a “whole human life” is problematic (Viscusi and Aldy,
2003).1 With the VSL, economists instead target the willingness-to-pay (WTP) for marginal
changes in the risk of death; a similar marginal measure is appropriate for species viability
(Montgomery et al., 1994).

In the context of conservation, when eliciting willingness to pay for protection, re-
searchers often make one of two simplifying assumptions for tractability: (1) each marginal
individual animal holds the same value, or (2) the population value is given by its status
classification (e.g., threatened or endangered) effectively making some marginal animals
worthless and others at the transition between classifications hugely valuable. Neither
of these strategies reflect the ecological reality, but are essentially required by WTP ap-
proaches because eliciting marginal WTP at different population levels over a wide range
would be both difficult and expensive. But this marginal valuation is almost certainly
not constant over a wide range of stock levels. Additional individuals provide significant
extinction risk reduction benefits in small populations, while for large populations, the
contribution is smaller. Yet WTP estimates as a continuous function of the population
are generally unavailable for the reasons above; almost nothing is known about the form
of the marginal preservation benefit function (Eiswerth and van Kooten, 2009; Ojea and
Loureiro, 2010).

In the absence of sufficient information on benefits, a logical approach to management
is to avoid extinction with some margin of safety at minimal cost. This approach is also
likely to appeal to wildlife managers, who are typically more comfortable with choosing
a viability target than monetizing the value of species (regardless of whether one is more
tractable than the other from a theoretical or empirical perspective). While the decision

1Even if we could measure the presumably huge amounts of money people would be willing to pay
to avoid a species extinction, this would not provide enough information to decision-makers concerning
how much conservation action is warranted as population levels change, or alternatively, what population
abundances we should aim for (Eiswerth and van Kooten, 2009).
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maker must still choose a level of confidence with which the desired outcome is achieved,
Lichtenberg and Zilberman (1988) argue that such a margin of safety approach is broadly
appealing for three reasons: practicality, broad familiarity stemming from similarity to
statistical significance methods, and close correspondence to the way in which regulations
are actually constructed.

Despite this appeal, until recently, techniques for cost-effective, ongoing avoidance of
a disastrous threshold—hereafter called the “viability problem”—have lagged far behind
standard net benefit maximization. The difficulty arises from the need for joint-chance
constraints that combine probabilistic outcomes (e.g., extinction avoidance) over multi-
ple periods. The “rolling window” nature of the time horizon—in which every year the
decision-maker is continually-concerned with species viability over the next 𝑇 years (as
opposed to relaxing as time advances towards the end of the first 𝑇 years)—undermines
typical dynamic programming techniques.

A shadow valuation-based dynamic programming method developed by Donovan
et al. (2019) presents the computational framework needed to solve the viability problem
and features an extended review of the relevant literature, including population viabil-
ity analysis, related resource economic modeling, and the broader literature in viability
theory. In this article, we provide new theoretical backbone for elements introduced nu-
merically by Donovan et al. and extensive discussion of the mechanics and benefits of
our method. We then show for the first time how our approach informs market-based
instruments that achieve a cost-effective solution in a system of decentralized resource
users, and investigate the sensitivity of this solution to two key, but exogenous economic
parameters.

Our solution to the valuation and viability problems—shadow value viability (SVV)—
allows a decision-maker to proceed in the absence of explicit information on the benefits
of taking preventative action. In the case of endangered species management, the focus is
on avoiding extinction with a given likelihood over some extended time horizon.

The SVV approach involves positing a hypothetical value, 𝛺, specifying a one-time
loss from extinction when the endangered species population goes extinct. In a stochastic
dynamic programming problem, we solve for the lowest value of 𝛺 that would drive suffi-
cient conservation effort to ensure survival with a given level of confidence. It is important
to note that this value of 𝛺 does not represent the true, real-world extinction loss but rather
the minimum sufficient extinction loss that would trigger enough action to avoid extinc-
tion over the specified time horizon with the specified confidence.2 In turn, 𝛺 informs

2If the former value was known, the SVV approach could be used to find an economically-efficient level
of viability, rather than a least-cost program given a specified viability goal (as we solve for here). However,
as previously discussed, such a value is unlikely to be available.
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an expected present loss denoted by 𝜔(𝑋), i.e., a shadow value of the species popula-
tion level equal to 𝛺 weighted by the discounted probability that extinction occurs if the
population size is 𝑋. We do not impose any assumptions as to the shape or scale of this
function, but instead let these properties emerge as a result of the population dynamics
and the cost structure of the problem. The marginal shadow value of extinction risk from
species population decline (or growth) at any given population size—a critical value for
decision-making—is then given by 𝜕𝜔(𝑋)/𝜕𝑋. These elements are illustrated in Figure 1.
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Figure 1: An illustration of the shadow value function representing the expected present loss due
to extinction. At extinction (𝑋 = 0), a hypothetical loss of magnitude 𝛺 is realized. With an
increase in the population 𝑋 away from extinction (to the right), this loss is discounted both in
time and by the likelihood of transitioning closer to extinction at a later period. For ever-higher
abundances, 𝜔(𝑋) decreases in magnitude.

The SVV structure is relatively simple but powerful. Once inserted into the social plan-
ner’s decision problem, the [frictive] joint chance constraint becomes simple to ensure us-
ing standard dynamic programming solution techniques (see Section 2.2). Then, turning
to decentralized management, the shadow value informs the setting of market-based in-
struments (see Section 3.4).

In our numerical example, we illustrate these ideas in the context of sustainable multi-
species fisheries management. Specifically, we provide a practical policy solution for the
integrated management of the Pacific swordfish fishery and the protection of the endan-
gered leatherback turtle. The current approach to protecting the leatherbacks employs
inflexible management tools like marine protected areas (MPAs) and specific gear require-
ments. MPAs often have static boundaries, force fishing effort into less bountiful waters
and need to be large in order to provide meaningful protection for ranging pelagic species.
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Gear standards can impose higher costs of compliance than necessary by forcing one facet
of bycatch mitigation that is typically fixed over space, time and users.

Leatherback turtles can be maintained with this management scheme, but at an unnec-
essarily high cost to the fishery. Alternatively, market-based instruments provide greater
flexibility in how fishers choose to avoid the leatherbacks and incentivize the adoption
of new information and technologies, thus lowering opportunity costs. This is particu-
larly relevant because the Magnuson-Stevens act requires that the costs of enforcing eco-
logical objectives not be overly-burdensome. However, theory to inform the setting of
market-based instruments for bycatch is lacking. The viable control framework provides
a method for doing so that reflects the shadow value of changes in leatherback population
from changes in the risk of extinction. Our market based policy instruments internalize
the appropriate dynamic cost of bycatch needed to induce fisherman to choose the cost-
effective trade-off with commercial fishery rents.

Building on the basic framework of Donovan et al. (2019), this article makes several
contributions. First, we show how the SVV approach can be used not just for centrally-
controlled resource problems (as in Donovan et al.) but also decentralized problems with
multiple resource users. Second, while Donovan et al. was mostly computational, here we
formalize and make explicit several central elements of the SVV problem. We derive ana-
lytically an expression for the shadow value function, 𝜔(𝑋𝑡), showing its dependence on
the probability of extinction, the minimum sufficient extinction loss (𝛺), and the discount
factor. We provide a deeper treatment of the SVV problem’s rolling window feature (in-
troduced above) through graphical illustration, explanation of how time-consistency for
the decision-maker is maintained, and how the resulting dynamic programming problem
still admits a fixed-point. Finally, we show the dependency of SVV results to the choices of
time and risk preferences, specifically the discount rate (𝑟) and confidence (𝛥). Notably, we
find that expected annual profits increase as the regulator seeks preservation with greater
confidence, exhibiting a negative annual opportunity cost to maintain a higher 𝛥 (since the
higher confidence can be maintained with less constraint on fishing effort in the long run).
However, as expected, when accounting for transitions from a given starting level of the
at-risk species population, the opportunity cost is positive (the expected present value of
long-run profit is lower) on average $3.6M per confidence point (0.01). We explain why
this opportunity cost for each unit of additional confidence, or “viability supply curve”, is
not monotonic across each individual unit. Overall, in exploring sensitivity to preference
parameters, the viability supply curve and implications for setting policy instruments, we
lay out the connections between the SVV approach and more familiar economic models.

Viability-style problems extend to a broad set of applications beyond conservation.
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Management objectives that aim to stay above (or below) a particular threshold over time
with some margin of safety are abundant in natural resource management and elsewhere.
Notable examples include maintaining viable populations for endangered species (illus-
trated here and in Donovan et al. (2019)), global warming below a maximum (Fitzpatrick
and Kelly, 2017; Donovan, 2021), water levels below flooding (Alais et al., 2017), water
pollution below eutrophication (Rougé et al., 2013), groundwater contamination (Licht-
enberg et al., 1989), and zoonotic disease prevalence away from outbreak levels (Shiferaw
et al., 2017). Each of these applications center on managing resources to avoid a thresh-
old with dire but inestimable consequences. The shadow value viability approach trans-
lates the implied value of avoiding these thresholds into the benefits of reducing risk on
the margin, enabling these urgent issues to be investigated within an intuitive economic
framework to identify optimal management and in certain cases—as elaborated in this
paper—set policy instruments.

Next we develop our theoretical framework and the insights that come from it. After
presenting the SVV approach, we use Section 3 to review the bycatch management prob-
lem and our application to the Pacific swordfish fishery. We present numerical findings
in Section 4 and discuss future opportunities for applying viable control in Section 5.

2 A theoretical model of viable control

The standard economic approach to natural resource management involves maximiz-
ing the difference between the present value of long-run benefits and costs, whether we
are thinking about live species, water, fossil fuels or other environmental assets. This is
effective when the payoff given a particular path of the natural resource is predictable.
But when certain disastrous and irreversible outcomes are difficult to value––such as the
extinction of a species––a reasonable alternative is the viable control approach: seek an ac-
ceptably small likelihood of the outcome with minimized management costs.3 This prob-
abilistic constraint requires simultaneous consideration of all periods over an extended
time frame (e.g. species survival horizon) which undermines most solution algorithms
for finding an optimal feedback policy. Such viable control problems simplified the con-
straint (e.g. via linearization, Ono et al. (2015)) until recent advances presented a new way
forward (Donovan et al., 2019). Here, we explore the results of a relatively simple viable
control model for a single vulnerable species and highlight the model’s useful features.

3The viable control problem as stated is a fairly narrow definition that is a part of a much larger field of
study. For a broader discussion of viability theory and the viable control literature, see Baumgärtner and
Quaas (2009) and Oubraham and Zaccour (2018). For three representative applications of viability theory
in fisheries management, look to De Lara and Martinet (2009), Doyen et al. (2012), and Martinet et al. (2016).
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2.1 Thinking realistically about species viability

We seek to manage a vulnerable species to meet a conservation goal over an extended
viability horizon, 𝑇. Since long-term viability of struggling species can rarely be guaranteed,
we represent this goal as a constraint on the likelihood of species survival over 𝑇 periods.
This viability constraint is written

𝑆(𝑇 | 𝑋𝑡, 𝐴(𝑋)) ≡ Pr
⎧{
⎨{⎩

𝑡+𝑇
⋂
𝜏=𝑡

(𝑋𝜏 > 0) ∣ 𝐴(𝑋)
⎫}
⎬}⎭

≥ 𝛥, (1)

which requires that our vulnerable species will make it through year 𝑇 with at least 𝛥 ∗
100% likelihood.4 The survival function depends on an initial state 𝑋𝑡 and a management
policy 𝐴(𝑋) specified over any given state, and implicitly relies on the dynamics of the
population of vulnerable species. In general, an increase in population or a conservation
action increases 𝑆(⋅). Requiring a longer time horizon or higher level of confidence will
decrease it.

The pair {𝑇, 𝛥} reflects a social preference or, more generally, a policy target as they
are often found in policy language in population management plans. Importantly, even
though we initially take these to be exogenous in our model, the setting of these parameters
already considers both the local system of interest as well as its interactions with the rest
of the economy. Thus economic considerations are already (implicitly or explicitly) baked-
in to the viability constraint of our cost-effective conservation problem. In Section 4.3, we
investigate and discuss the sensitivity of the viability program to changes in these viability
parameters.

Considering many periods complicates the assessment of viability because we are now
concerned with limiting the distribution of many (𝑇) joint outcomes. This constraint could
be imposed with a constant likelihood of survival in each period that jointly meets 𝛥 over
the target horizon (i.e. linearization), but this artificially reduces the number of feasible
paths that satisfy the joint-chance constraint. Joint-ness is central to the problem—an ex-
ceptionally good outcome in one period opens up slightly more wiggle room to absorb a
bad shock in the future, while a bad intermediate outcome requires increased effort later.

A subtle but crucial element of this type of conservation problem—and ongoing viabil-
ity problems in general—is that we are continually-concerned with the next 𝑇 periods into
the future on a rolling basis as depicted in Figure 2. At time 0, survivorship is sought for
the next 𝑇 periods given that after moving forward to time 1, survivorship will be sought

4Extinction (𝑋 = 0) is a natural threshold to use to describe non-survival, but we aren’t limited to
this case. If little is known about dynamics below some proposed minimum viable population, a “quasi-
extinction” threshold can be imposed, e.g. Donovan et al. (2019).
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for time 1 through 𝑇 + 1. If instead the viability horizon did not roll forward with time,
by 𝑇 − 1 the manager would only be concerned with survival for one last year, which
is inconsistent with the realities of most resource management objectives, including con-
servation (Donovan et al., 2019). Additionally, an infinite horizon viability constraint is
impractical, since there is always some non-zero likelihood of transitioning to degraded
populations each period (Bulte and van Kooten, 2001). Furthermore, the decision maker
(not just the modeler) must also take this rolling window into account so that the policy
is time-consistent.
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Figure 2: A viability program naturally features a rolling time horizon: at time 0 survivorship
is sought for the next 𝑇 periods (bottom-left shaded box) while knowing that at time 1 survivor-
ship will be sought for time 1 through 𝑇 + 1 (the next shaded box to the northeast), and so on.
(Conditional arguments of 𝑆 have been suppressed here for simplicity.)

Below we develop and solve a model in which the decision-maker ensures the viability
objective is met over the next 𝑇 years while “knowing” that (1) in the next period they will
again work to ensure the objective is met over the next 𝑇 years, and (2) this finite time
horizon continues to roll in this fashion over infinite time. This “knowing” is not modeled
explicitly but rather instituted by the combined use of a finite horizon viability constraint
that must hold for all relevant states at every timestep, and an infinite time optimization
problem with a stationary policy defined over these states. In this way, decisions are made
time-consistent, i.e., expectations about future actions at future states are accurate.

Even for the most charismatic megafauna, conservation management efforts will typ-
ically be limited by physical, biological, or political constraints. We define 𝐴(𝑋) as the
maximally-conservationist action that can be taken at state 𝑋. This allows us to further
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define the viability kernel (Doyen and De Lara, 2010),

{𝑋}𝑘 s.t. 𝑆 (𝑇 | 𝑋𝑡, 𝐴(𝑋)) ≥ 𝛥, ∀ 𝑋𝑡 ∈ {𝑋}𝑘. (2)

The viability kernel {𝑋}𝑘 is the set of all possible starting states 𝑋𝑡 for which satisfying the
viability constraint is feasible. The lowest population for which viability is feasible—i.e.
the minimum viable population conditional on the maximally-conservationist action—
will just bind the viability constraint, and any improved states from there will more than
satisfy it. Outside of the viability kernel, conservation action may be taken but there is no
available program that can satisfy the viability constraint with confidence at or above 𝛥.

We seek a solution specifying action that efficiently scales as the population state varies
from near to far from extinction. Next, we develop a decision model to identify the cost-
effective feedback policy to achieve viability. The resulting program will endogenously
push population levels into a zone safely above extinction; just how far will depend on
the strength of the stochastic component of the population dynamics, opportunity costs,
constraints on actions, and the preferences given by the viability horizon and confidence.

2.2 Long-term management for viable populations

The manager’s objective is to maximize the net present value of their actions, condi-
tional on meeting a viability constraint over the next 𝑇 years on a rolling basis:

max
𝐴𝑡

𝔼𝜀
⎡⎢
⎣

∞
∑
𝑡=0

𝛽𝑡 ⋅ 𝜋(𝐴𝑡, 𝑋𝑡)⎤⎥
⎦

, (3)

s.t. 𝑋𝑡+1 = 𝐺(𝐴𝑡, 𝑋𝑡, 𝜀𝑡) (stochastic dynamics)

𝑆 (𝑇 | 𝑋𝑡, 𝐴(𝑋)) ≥ 𝛥 (viability)

𝑋𝑡 ∈ {𝑋}𝑘 (kernel),

with per-period profits 𝜋(⋅), discount factor 𝛽, stochastic (𝜀) population dynamics 𝐺(⋅),
and the viability constraint (Equation 2). In a strictly-conservation problem, 𝜋(⋅) might
capture management costs in the field (e.g. Donovan et al. (2019)). In the resource ex-
traction context considered in this article, it captures profits net opportunity costs. The
population 𝑋𝑡 is bounded below by extinction and the management problem ends if ex-
tinction occurs. In our model we assume that increasing action 𝐴(𝑋) raises 𝜋(⋅) at the
expense of conservation, though the opposite approach can easily be taken. The optimal
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policy is denoted 𝐴∗(𝑋𝑡) = 𝐴∗.5

The decision problem in Equation 3 is presented in a standard way (e.g. as one might
see in Judd (1998)), albeit one that leaves implicit some of the complexities of the rolling
horizon. For example, 𝐴𝑡 is selected each period given both an updated state (𝑋𝑡) and
updated window for the viability constraint (in effect over the next 𝑇 periods). While
the manager may currently face a single state, they still need to know the implications of
moving to any other feasible state in future periods, where again they will seek to solve
the same problem. Thus we are concerned with an optimal policy function 𝐴∗(𝑋𝑡) that
maximizes the manager’s value for any current state within the viability kernel.

In a stochastic world, a feedback policy provides a contingency plan for responding
to every possible future state we may find ourselves in, rather than a predetermined path
over time. Thus we use dynamic programming to address the problem in Equation 3. A
cost-effective solution to the long-run management of viable populations involves solving
for the fixed-point 𝑉(𝑋𝑡) of the following infinite-horizon Bellman equation,

𝑉(𝑋𝑡) = max
𝐴𝑡

{𝜋(𝐴𝑡, 𝑋𝑡) + 𝛽 ⋅ 𝔼𝜀 [𝑉(𝑋𝑡+1) ∣ 𝐴𝑡, 𝑋𝑡]} , (4)

s.t. 𝑋𝑡+1 = 𝐺(𝐴𝑡, 𝑋𝑡, 𝜀𝑡) (stochastic dynamics)

𝑆 (𝑇 | 𝑋𝑡, 𝐴(𝑋)) ≥ 𝛥 (viability)

𝑋𝑡 ∈ {𝑋}𝑘 (kernel),

however, this problem is computationally-intractable. Despite substantial attention to
joint chance-constrained problems like Equation 4 (e.g. Haight (1995); Newbold and Si-
ikamäki (2009); Doyen and De Lara (2010); Ono et al. (2015); Alais et al. (2017)), to our
knowledge, there is no exact solution method, and a brute-force approach would only be
feasible for extremely trivial problems.

Donovan et al. (2019) find a solution to a slightly modified problem using a shadow
value approach that involves an “inner” and “outer” optimization step. The inner step
solves for the policy that maximizes present expected profits given any arbitrary shadow
value specified for the loss incurred upon extinction. The outer step seeks the smallest
shadow value that drives sufficient action to meet the viability goal. Formally, the outer
step is,

min {𝛺} s.t. 𝑆 (𝑇 | 𝑋𝑡, 𝐴𝛺) ≥ 𝛥 and 𝑋𝑡 ∈ {𝑋}𝑘, (5)

5Note that while population dynamics depend on action at a particular time, the viability function is
dependent on the entire policy function.
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where 𝐴𝛺(𝑋𝑡) = 𝐴𝛺 solves the inner step, a profit maximization problem:

𝑉𝛺(𝑋𝑡) = max
𝐴𝑡

{𝜋(𝐴𝑡, 𝑋𝑡) + 𝛽 ⋅ 𝔼𝜀 [𝑉𝛺(𝑋𝑡+1) ∣ 𝐴𝑡, 𝑋𝑡]} (6)

s.t. 𝑉𝛺(0) = −𝛺 (extinction loss, 𝛺 > 0)

𝑋𝑡+1 = 𝐺(𝐴𝑡, 𝑋𝑡, 𝜀𝑡) (stochastic dynamics).

The solution to Equations 5 and 6 includes a fixed value for 𝛺—the smallest [hypothetical]
extinction loss that would incentivize enough management action to satisfy the viability
constraint—the policy 𝐴𝛺, and the fixed-point 𝑉𝛺(𝑋𝑡).6

To inspect how the additional constraint 𝑉𝛺(0) = −𝛺 modifies the value function, we
can write out both values explicitly:

𝑉(𝑋𝑡) = 𝔼𝑇𝑓

⎡⎢⎢
⎣

𝑡+𝑇𝑓 −1

∑
𝜏=𝑡

𝛽𝜏−𝑡 ⋅ 𝜋(𝐴∗, 𝑋𝜏) ∣ 𝑋𝑡
⎤⎥⎥
⎦

(7)

and,

𝑉𝛺(𝑋𝑡) = 𝔼𝜀
⎡⎢
⎣

∞
∑
𝜏=𝑡

𝛽𝜏−𝑡 ⋅ (𝜋(𝐴𝛺, 𝑋𝜏) ⋅ 𝟙(𝑋𝜏 > 0) − ((1 − 𝛽) ⋅ 𝛺) ⋅ 𝟙(𝑋𝜏 = 0)) ∣ 𝑋𝑡
⎤⎥
⎦

= 𝔼𝑇𝑓

⎡⎢⎢
⎣

𝑡+𝑇𝑓 −1

∑
𝜏=𝑡

𝛽𝜏−𝑡 ⋅ 𝜋(𝐴𝛺, 𝑋𝜏) ∣ 𝑋𝑡
⎤⎥⎥
⎦

− 𝔼𝑇𝑓

⎡⎢⎢
⎣

∞
∑

𝜏=𝑡+𝑇𝑓

𝛽𝜏−𝑡 ⋅ ((1 − 𝛽) ⋅ 𝛺) ∣ 𝐴𝛺, 𝑋𝑡
⎤⎥⎥
⎦

. (8)

In the final line the expectation of interest is over the distribution of possible failure
(extinction) times (𝑇𝑓 ∈ [1, 2, ..., ∞]) upon which the one-time loss 𝛺 would be realized
or, equivalently, the perpetual stream of losses (1 − 𝛽) ⋅ 𝛺 would kick in. This second
definition of 𝑉𝛺(𝑋𝑡) uses the fact that extinction is irreversible.

Once the proper value of 𝛺 is selected to meet the viability constraint, both policies 𝐴𝛺

and 𝐴∗ achieve the viability target, by construction. Despite a lack of theory to formally
assess a proposed solution (like 𝐴𝛺) we argue the approximation is likely to be close. In
the true problem (Equation 4), the joint chance constraint’s only explicit imperative for the
state variable is to keep it from crossing the threshold. This explicit imperative certainly
generates an implicit incentive to keep the state variable from nearing the threshold, with
an intensity growing with nearness. The SVV approach parallels these two features. The
explicit condition imposed is a penalty incurred upon crossing the threshold. This explicit
feature generates an implicit incentive which intensifies with nearness to the threshold (as
illustrated in our application by the shadow value function 𝜔(𝑋𝑡) in Figure 4). Further-

6The latter two are affixed an 𝛺 to differentiate from the original problem. We explain why the viability
problem in Equation 6 still results in a fixed-point after detailing the solution algorithm in Appendix A.1.
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more, it turns out that it does so (again, implicitly rather than by explicit construction) in
an economically logical way: it scales with the time-discounted expected risk of crossing
the threshold (see Equation 8).

If one assumes that 𝐴𝛺 is a sufficiently-close approximation of 𝐴∗, we can link Equa-
tions 7 and 8,

𝑉𝛺(𝑋𝑡) ≈ 𝑉(𝑋𝑡) + 𝜔(𝑋𝑡), (9)

where the second summand in Equation 8 is labeled 𝜔(𝑋𝑡).7 It is helpful to re-write 𝜔(𝑋𝑡),

𝜔(𝑋𝑡) ≡ −𝔼𝑇𝑓

⎡⎢⎢
⎣

∞
∑

𝜏=𝑡+𝑇𝑓

𝛽𝜏−𝑡 ⋅ ((1 − 𝛽) ⋅ 𝛺) ∣ 𝐴𝛺, 𝑋𝑡
⎤⎥⎥
⎦

= −𝛺 ⋅ 𝔼𝑇𝑓
⎡⎢
⎣
𝛽𝑇𝑓 ⋅

∞
∑
𝑢=0

𝛽𝑢 ⋅ (1 − 𝛽) ∣ 𝐴𝛺, 𝑋𝑡
⎤⎥
⎦

(where 𝑢 = 𝜏 − 𝑡 − 𝑇𝑓 )

= −𝛺 ⋅ 𝔼𝑇𝑓
[𝛽𝑇𝑓 ∣ 𝐴𝛺, 𝑋𝑡]

= −𝛺 ⋅
∞
∑
𝜏=𝑡

𝛽𝜏−𝑡 ⋅ Pr (𝑇𝑓 = 𝜏 ∣ 𝐴𝛺, 𝑋𝑡) , (10)

where the last line of Equation 10 uses the probability mass function that corresponds to
the survival function in Equation 1.

𝜔(𝑋𝑡) is an incentive to avoid degrading population levels—one which is sensitive to
changes in the current population level.8 The one-time loss 𝛺 is incurred only at extinc-
tion. This propagates to all other state levels in expected present value form via 𝜔(𝑋𝑡),
which discounts 𝛺 by both the time to and likelihood of extinction (as illustrated in Fig-
ure 1). This captures how the opportunity cost of protection rises due to increased risk of
extinction as 𝑋𝑡 falls, especially as it nears the threshold for continued viability.

There are several properties of 𝜔(𝑋𝑡) worth noting. We know that −𝛺 ≤ 𝜔(𝑋𝑡) ≤ 0
since the summation in the last line of Equation 10 is bounded between 0 and 1. Second,
for any time-consistent policy, the derivative of Pr (𝑇𝑓 = 𝜏 ∣ 𝐴𝛺, 𝑋𝑡) with respect to 𝑋𝑡 is
decreasing and thus 𝜔(𝑋𝑡) is increasing. Further, as 𝜔(𝑋𝑡) approaches 0 from below it
will be concave, and as 𝑋 approaches 0, there is increasing potential for a convex region
depending on the dynamics of the system. For example, if net growth in the stock becomes
negative at low population levels (i.e., 𝔼[𝐺(⋅)] < 0, consistent with an Allee effect) this will
result in a minimum viable population (Stephens et al., 1999). The stronger the correlation

7This relation is exact when 𝐴𝛺 = 𝐴∗ since 𝑉 is the presented expected value of profit under 𝐴∗, while
𝑉𝛺 is defined as the presented expected value of profit under 𝐴𝛺, plus 𝜔.

8This insight was discovered numerically in Donovan et al. (2019) and first derived analytically here.
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between population abundance and the growth rate below this critical threshold, the more
likely a convex region in the 𝜔(𝑋𝑡) curve, since marginally-improved abundances will
create negligible improvements in viability.9

𝜕𝜔(𝑋𝑡)/𝜕𝑋𝑡 provides us with a shadow value reflecting the marginal social cost of
population change stemming from the change in the risk of extinction. The first term
of 𝑉𝛺(𝑋𝑡) is the present value of net returns, 𝑉(𝑋𝑡), which provides an additional op-
portunity cost incentive: as populations degrade, we will expect increased regulatory re-
strictions which hinder future profits. Both of these effects provide incentives that weigh
against unfettered pursuit of immediate profits (at the expense of conservation). We will
show in the next section how these pressures—that have motivated the optimal strategy
𝐴𝛺—can inform market-based instruments for a vulnerable bycatch stock that efficiently
achieves a viability goal in a decentralized fisher-regulator setting.

3 Managing bycatch in multi-species fisheries

Academic guidance for fisheries management has become increasingly holistic over
time, incorporating many of the unregulated dimensions of fisheries management into
rights-based schemes (Smith, 2012). Most relevant to our problem are the margins of
multi-species management and ecosystem health, which have values that are not by de-
fault part of the “texture” (Wilen, 2002) of rents acknowledged by market-based instru-
ments for solely commercial species. Policy prescriptions will almost certainly shift as the
number of species considered is expanded.

While economists and ecologists have begun to unpack the ways in which inter-species
interactions affect the health and profitability of a whole fishery, additional applied theory
for ecosystem-based management is needed (Smith, 2012). Interactions between commercially-
relevant species and “nuisance” species hinder the profitability of the former through
competition, predation, or bycatch constraints (Kasperski, 2016). Here we focus on the
final case, specifically the presence of “choke stocks” that are highly vulnerable and, if
sufficiently degraded, can lead managers to choke off access to co-mingling fished species
(Patrick and Benaka, 2013).

Bycatch is the unintended (but not unexpected) capture of non-targeted animals in fish-
ing gear. As fishers switched to drift netting and long-lines during the industrialization
of the world’s fisheries, this unnecessary waste became a highly visible problem (Lent and
Squires, 2017; Northridge, 2018). Infamous examples include the now-extinct baiji (Chi-

9In our application 𝜔(𝑋𝑡) is concave everywhere because we do not incorporate an Allee effect into the
biological dynamics; as a result the discounting pattern dominates.
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nese river dolphin) and the Gulf of California’s near-extinct vaquita porpoise, which have
both experienced heavy mortality as bycatch (Northridge, 2018).

Some fishery managers employ command-and-control-style solutions to prevent by-
catch. While common tactics like marine protected areas (MPAs) and mandatory gear
requirements can reduce bycatch, they do not provide incentives to continuously avoid
bycatch (Lent and Squires, 2017). Further, MPAs have to be incredibly large to cover rang-
ing pelagic species, imposing large costs on fishers (Hyrenbach et al., 2000).10 Gear that
reduces bycatch is rarely a least-cost solution either, because the fleet is heterogeneous in
ability to adapt (Wilen, 2002) and efficient avoidance likely involves adjustment on multi-
ple additional margins, e.g., fishing location or set timing.

Market-based incentive schemes, on the other hand, are a significant refinement to by-
catch management as they provide an opportunity for fishers to flexibly choose from a
number of possible dimensions of bycatch avoidance (Arnason, 2012). This flexibility en-
ables protection of a bycatch species while minimizing the opportunity costs of avoidance
efforts. This aligns with the requirements under the Magnuson-Stevens act.

We consider the case where bycatch is rare but very damaging. This creates the po-
tential for fishery closures and thus forgone fishery rents, so a price instrument may be
an appealing management alternative. But while closures squander rents, bycatch prices
impose explicit costs of bycatch on the fishing fleet.11 Each of these instruments will lead
to a different organization of the fishing fleet’s effort.

There has been extensive analysis of the relative merits of price versus quantity in-
struments in fisheries (e.g. Weitzman (2002) regarding commercial species and Pascoe
et al. (2010); Segerson (2011) for application to bycatch and discard management). We
do not aim to identify a preferred instrument here but rather demonstrate the usefulness
of shadow value viability in a decentralized setting by providing a population-dependent
recommendation for the level of two simple instruments.

Most work concerning bycatch and market-based instruments simply assumes that the
level of the instrument (bycatch quota or price) is given,12 perhaps by biologists or simply
arbitrarily (Boyce, 1996). But ideally such levels would be set to achieve a specified goal
and account for economic and biological factors, like properly weighing species viability
against potential commercial fishery rents. The shadow value viability approach of Sec-
tion 2 provides guidance for considering these two competing incentives together, and
provides meaningful guidance for realistic policy implementation in a stochastic world.

10Future climate variability will also change the effectiveness of these static boundaries. As ecosystems
change, the habitat preferences of protected species will tend to take them elsewhere Hazen et al. (2018).

11Additionally, prices introduce variability in the escapement of a vulnerable species, which may not be
socially acceptable for species with extremely low populations.

12A sensible approach when devising a descriptive model, e.g. Abbott and Wilen (2009).
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In this section, we first solve for the optimal social planner bycatch avoidance then detail
how to achieve this outcome in a decentralized setting using market-based instruments
linked to changes in the risk of extinction, instead of taking them as given.

3.1 Swordfish and Turtles

One of the most charismatic bycatch species is the critically endangered leatherback
turtle. The Western Pacific stock of these large (up to 500 kg) creatures regularly endures
one of the most incredible migrations of any species, traveling nearly 7,000 miles from
their Southeast Asia breeding grounds to the west coast of the United States to forage on
plentiful populations of jellyfish (NMFS and FWS, 2013). Along this journey, they are sub-
ject to numerous collisions with the swordfishing fleets of several nations. Although the
Western and Central North Pacific stock of swordfish—which co-mingles with the West-
ern leatherback population—is not considered overfished or subject to overfishing (ISC
Billfish Working Group, 2018), regulatory measures prompted by fisher interactions with
leatherback turtles and other vulnerable species pose large costs to this valuable fishery.

A highly-visible example occurred in 2001, when NOAA created the Pacific Leatherback
Conservation Area (PLCA), a massive 250,000 square mile region off the coast of Califor-
nia that is off-limits to fishing vessels during the most productive months of the August-
January fishing season of the bycatch-prone drift gillnet swordfish fishery (NOAA, 2001).
This led to an exodus of fishing vessels, effort, and harvest.13 Based on turtle population
and bycatch estimates, the closure likely improves leatherback numbers by at most 1% per
year (Jones et al., 2012; Carretta et al., 2019), while almost entirely eliminating the fishery.14

In fact, even at its peak, the small drift gillnet fishery had little impact on swordfish
stock health, but returned an ex-vessel value of $12.6 million (2020 USD) (PacFIN, 2019).
Figure 3 provides a map of the fishery that shows the stark shift in fishing location and
decrease in overall activity as a result of the PLCA. Notably, only a small region of the
PLCA is unfavorable with respect to turtle bycatch in a given day.

Scientists have called for more dynamic management strategies to ensure the protec-
tion of ranging pelagic species (Hyrenbach et al., 2000; Hazen et al., 2018). To continue our

13In the last 25 years, the number of vessels participating has decreased by 86% from 141 to 20 per season
(PacFIN, 2019). Effort in terms of sets per vessel is down 37% (40 to 25) and vessels fish 71% fewer days (45 to
10) (PacFIN, 2019). Harvests have decreased by 85% (800 to 100 metric tons) due to fishing in less productive
waters, as the swordfish are abundant but not evenly distributed (Carretta et al., 2019; PacFIN, 2019).

14Similarly, a future ban on drift nets will come into effect in 2023, effecting a closure of sea surface (Hazen
et al., 2018). The replacement deepset buoy gear will be used during the day, targeting swordfish around
1200 feet below the surface at a time of day where they are more or less swimming amongst themselves,
while turtles and other vulnerable species swim at much shallower depths (NMFS and FWS, 2013). A ban
imposes additional unnecessary fishing costs if drift net usage can be used while selectively target swordfish.
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illustration within the drift gillnet fishery, a new resource provides predictions of where
commercial and protected populations are most likely to be, using correlations between
remote sensing data (e.g. temperature, currents, light penetration, and food availability)
and tracking information for swordfish and leatherback turtles (Hazen et al., 2018). The
output produced is a heatmap designating areas that are worse (low swordfish or high
bycatch) or better (high swordfish, low bycatch) for fishing (Figure 3 contains an example
of this index). Hazen et al. (2018) estimate that if this dynamic closure was implemented
in the drift net fishery, about 50-90% of the PLCA could be exploited each day with the
same near-zero expected take of leatherback turtles observed currently.

35°N

40°N

45°N

130°W 125°W 120°W 115°W

Better to Fish  -----  Worse to Fish
Leatherback MPA

Critical Leatherback Habitat

U.S. Exclusive Economic Zone

EcoCast Location Ratings

Pre-2001 MPA

Post-2001 MPA

Drift Gillnet Sets

Figure 3: Map of the drift gillnet swordfish fishery. The 2001 PLCA is outlined in white. Coastal
areas designated critical for the migration and foraging of turtles are given by the two green sec-
tions NOAA (2012). Drift net sets targeting swordfish are given by the aquamarine (1990-2000)
and burnt orange (2001-2017) scatterplots (Carretta et al., 2019). An index representing swordfish
and turtle abundance predictions from the EcoCast project (Hazen et al., 2018) for a sample day
in October 2019 are depicted by the blue-to-white pixels, which designate better (high swordfish,
low bycatch) versus worse (low swordfish or high bycatch) fishing locations.
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Under the area closure regulation, there is little incentive to adopt newly available (and
valuable) informational products. But when facing a price or cap for bycatch, fishers have
a compelling reason to use such a product as a low-cost option for avoiding leatherbacks.
A market-based bycatch management policy is a plausible way of opening up the PLCA
while incentivizing avoidance of bycatch through adjustments on cheaper margins.15,16

The rest of this section proceeds with mapping the insights from the shadow value
viability model in Section 2 to bycatch price and quantity instruments that can improve
the management of the pacific swordfish and leatherback turtle stocks. The focus below
is on showing how each instrument can be determined endogenously.

3.2 Modeling the Pacific swordfish fishery

As pelagic species, swordfish and leatherback turtles range widely across several re-
gions from California to Hawaii, Japan, Korea, and Taiwan (Tagami et al., 2014). Since a
pragmatic solution for leatherback conservation will require a concerted effort across the
Pacific (Hazen et al. (2018); see Abrego et al. (2020) for the Eastern Pacific population) we
consider a bycatch mitigation policy that spans these regions, i.e., as established by an in-
ternational agreement. For the present analysis we set aside regional heterogeneity since
we aim to illustrate the key ideas in as simple a model as possible. We parameterize a fish-
ery that is consistent with the statistics of the Hawaiian fishery but scaled to capture the
global scope of these species. Hawaii has much more detailed data available than regions
outside the U.S., the fleet is much larger than California’s and its gear reflects what is most
commonly used in our regions of interest. Nearly all of the Hawaiian fishery is committed
to longlining rather than drift nets (ISC Billfish Working Group, 2018). For simplicity we
assume that longlines would be available to Californian fishers under a unified policy.

Because our baseline (unregulated) fishery model operates without significant incen-
tives to avoid bycatch, we calibrate to the Hawaiian swordfish fleet in the late-90’s, just
before the first major leatherback avoidance efforts began.17 This period (1994-1999) was
stable in terms of swordfish catch, fleet size and effort, and bycatch (Western Pacific Re-
gional Fishery Management Council, 2004; Bartram and Kaneko, 2004). Appendix A.2
provides parameter descriptions, values, sources, and estimation details.

Each season, 𝑁 (international) fishers must decide how much effort to put into fishing
15The lifting of the PLCA in concert with corrected fisher incentives would also allow more of the U.S.

swordfish demand to be met with sustainable domestic harvest, replacing imported harvest under much less
scrutiny. This may potentially reduce leatherback interactions in other frenzied fisheries internationally.

16Parallel arguments on incentives for technology adoption and change created by market based instru-
ments have been made in the more well-known context of pollution control (Stavins, 2003).

17The two American fisheries were the first to implement significant bycatch regulations in the year 2000
(NOAA, 2004; Swimmer et al., 2017).
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for swordfish and how much effort to put into avoiding leatherback turtle bycatch. For
simplicity, we do not explicitly model other margins of adjustment for bycatch abatement
other than limiting swordfish fishing effort. Fishers typically only set one line per night
(when swordfish come near the surface) and longlining for swordfish requires long soak
times (the length of time a set is active); thus we consider a representative fisher who
chooses the number of days they will exert this effort. Importantly, fishing is assumed to
be monitored to ensure accuracy of reported landings of swordfish and turtles. For a given
level of fishing effort 𝐴𝑡 (days/season), female18 leatherback bycatch by a representative
fishing vessel is modeled as

𝔼 [𝐵𝑡|𝐴𝑡] = 𝜃 ⋅ 𝜎 ⋅ 𝐴𝑡, (11)

where 𝜃 captures the expected bycatch per unit effort (BPUE) and 𝜎 is the female share
of the vulnerable adult population. There is no reliable estimate of the mortality rate of
turtle bycatch (immediate or delayed), but it is likely to be very high, as hooks cannot
often be retrieved (Bartram and Kaneko, 2004; Swimmer et al., 2017). We pessimistically
set this value to 1 and note that any improvements to behavior or gear that improve this
statistic could be captured through changing the 𝜃 parameter. It is not evident that there
is a strong population-dependent component driving bycatch rates (Bartram and Kaneko,
2004; Swimmer et al., 2017) especially within the policy-relevant range at or above the
population level at which the social planner pauses fishing as illustrated in Section 4.1.

The fishery has a limited number of vessel permits and the stock of swordfish is large
enough that the representative fisher returns positive rents. There is no limit on swordfish
harvest, as fishers have not had an overwhelming effect on the abundance of swordfish
(ISC Billfish Working Group, 2018), thus swordfish levels are not modeled for simplicity.
The fisher takes the ex-vessel landings price for swordfish as given. Expected seasonal
profits per vessel are

𝜋(𝐴𝑡) = 𝑝 ⋅ 𝜙 ⋅ 𝐴𝑡 − 𝑐
2 ⋅ 𝐴2

𝑡 , (12)

where 𝑝 is unit the price of swordfish, 𝜙 is the expected catch per unit effort (CPUE) of
swordfish (mT/day), and 𝑐 parameterizes the costs of fishing effort. Other input costs
aren’t relevant with respect to the swordfish/bycatch trade-off and do not need to be mod-
eled if fishers are committed to fishing at least part of the season (Abbott and Wilen, 2009).

18Leatherback turtle bycatch avoidance focuses on take of adult females since their numbers are the key
limiting factor in reproduction. The incidental take of a mature female during this feeding period can have
stark consequences for population growth because it takes 16 years for a leatherback to mature (and begin
laying eggs) and less than 1% of turtles make it to this age (Jones et al., 2012).
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3.3 Leatherback turtle dynamics

While the fishers concern themselves with one season at a time, the leatherback pop-
ulation dynamics tie these decisions together. We model adult female leatherback popu-
lation dynamics as determined by a combination of stochastic shocks,

𝑋𝑡+1 = 𝑋𝑡 − 𝑀𝑡 − 𝐵𝑡 + 𝑅𝑡, (13)

where 𝑀𝑡, 𝐵𝑡, and 𝑅𝑡 are negative binomial random variables capturing natural mortality,
bycatch-induced mortality, and recruitment from younger age-classes, respectively. Their
distributions depend on the population 𝑋𝑡. The bycatch shock is additionally affected by
fishing effort 𝐴𝑡, as seen at the beginning of this section.

The bioeconomics literature typically favors environmental stochasticity, which affects
the entire population as a group, e.g. in the form of a multiplicative shock on logistic
growth (Lande et al., 2003). However, the dynamics that make up Equation 13 (see Ap-
pendix A.3) embody demographic stochasticity and heterogeneity, which captures the vari-
ability in growth, death, and fecundity among individuals in the population (Lande et al.,
2003; Melbourne and Hastings, 2008). This is especially important for modeling endan-
gered species because low numbers are more sensitive to random birth or death events. In-
deed, adult leatherbacks may produce few viable offspring even over long periods of time
due to an unlucky chain of deleterious idiosyncratic shocks; each hatchling has less than a
1% chance of making it to maturity[!] (Jones et al., 2012). The risk of bycatch shortens the
effective lifespan of adult females dramatically and thus the number of viable offspring—
making it paramount that fishing pressure is reduced so prospective mothers live long
enough to lay multiple clutches of hundreds of eggs over their lifetime. We discuss and
derive leatherback dynamics in further detail in Appendix A.3.

3.4 Regulating fisher behavior for viability

We model a social planner focused on maximizing expected profits of the commer-
cial fishery while accepting at most some small likelihood of extinction. This amounts
to choosing the cost-effective amount of fishing effort 𝐴𝛺 of a representative fisher since,
in this model, changing commercial harvesting effort is also the sole lever for influencing
bycatch. In other words, the set of management actions is simply 𝐴 ≥ 0, with 𝐴(𝑋) = 0 be-
ing the maximally-conservationist action in Equation 2. The social planner considers the
trade-off between fishing profits and the valuation of a change in the risk of extinction.
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The equivalent program to Equations 5 and 6 is to solve the following system:

min {𝛺} s.t. 𝑆 (𝑇 | 𝑋𝑡, 𝐴𝛺) ≥ 𝛥 and 𝑋𝑡 ∈ {𝑋}𝑘, (14)

and 𝑉𝛺(𝑋𝑡) = max
𝐴𝑡

{𝑁 ⋅ 𝜋(𝐴𝑡) + 𝛽 ⋅ 𝔼{𝑀𝑡,𝐵𝑡,𝑅𝑡} [𝑉𝛺(𝑋𝑡+1) ∣ 𝐴𝑡, 𝑋𝑡]} , (15)

s.t. 𝑉𝛺(0) = −𝛺 (extinction loss, 𝛺 > 0)

𝑋𝑡+1 = 𝑋𝑡 − 𝑀𝑡 − 𝐵𝑡 + 𝑅𝑡 (stochastic dynamics).

The regulator, in attempting to manage 𝑁 decentralized fishers, aims to solve a slightly
different problem (below), choosing the strength of market instruments rather than the
optimal fishing effort directly, in order to match the outcome from solving Equations 14
and 15. In the beginning of each period (fishing season), the regulator sets a bycatch price
or a total allowable catch for bycatch given a current stock estimate and an anticipated
fisher response; we now show how each instrument impacts the representative fisher’s
expected profit and optimal choice of fishing effort.

3.4.1 Setting a bycatch price

When facing a price 𝑃𝑡 = 𝑃(𝑋𝑡) on bycatch, expected seasonal profits of the represen-
tative fisher as a function of fishing effort is given by

𝜋(𝐴𝑡|𝑃𝑡) = 𝜋(𝐴𝑡) − 𝑃(𝑋𝑡) ⋅ 𝔼 [𝐵𝑡|𝐴𝑡] , (16)

where 𝑃(𝑋𝑡) is the dynamic bycatch pricing function set by the regulator. The represen-
tative fisher ignores the impact of this year’s effort on next year’s price, given that their
impact is small relative to that of the overall fishery (their optimization problem is static).
The dynamic price—which captures the marginal user cost of bycatch—assures that the
static optimization result falls in-line with the social planner’s goal.

The resulting first-order condition for the representative fisher’s profit-maximization
problem tells us about the relationship between the bycatch price and optimal fishing ef-
fort given that price, 𝐴𝑃(𝑋𝑡). Fishers will fish until the marginal profit per expected turtle
caught is equal to the landings price. Substituting functional forms for profits and ex-
pected bycatch, the optimal policy anticipating fisher behavior is

𝑃(𝑋𝑡) = 𝑝 ⋅ 𝜙 − 𝑐 ⋅ 𝐴𝑃(𝑋𝑡)
𝜃 ⋅ 𝜎 . (17)

The regulator is interested in harmonizing choices under the price instrument and the
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cost-effective outcome: 𝐴𝑃(𝑋𝑡) = 𝐴𝛺(𝑋𝑡). Substituting the social planner’s cost-effective
fisher effort function 𝐴𝛺 provides a formula for this instrument that reflects the planner’s
shadow value for leatherback population levels.

3.4.2 Setting a total allowable catch

If the regulator instead implements a total allowable catch for the bycatch species 𝑄𝑡 =
𝑄(𝑋𝑡), fishers now consider how their actions affect the expected season length over which
they are allowed to fish. In this case, a total allowable catch for vulnerable species can be
extremely low, and it won’t be politically feasible to divide it into a set of individual quotas
(Holland and Jannot, 2012; Kauer et al., 2018). The optimal quota is given by

𝑄(𝑋𝑡) = 𝑁 ⋅ 𝔼[𝐵𝑡|𝐴𝑄(𝑋𝑡)] = 𝑁 ⋅ 𝜃 ⋅ 𝜎 ⋅ 𝐴𝑄(𝑋𝑡), (18)

and since we aim to dramatically drop the amount of bycatch in the fishery, the quota
constraint will typically bind: 𝐵𝑡 ≤ 𝑄(𝑋𝑡). As for the price instrument, the regulator
substitutes the cost-effective fisher effort function, 𝐴𝑄(𝑋𝑡) = 𝐴𝛺(𝑋𝑡).

In the real fishery, the shared nature of the total allowable turtle catch incentivizes a
race to fish. For simplicity, we do not include this feature in our model (nor the mitiga-
tive risk-pooling cooperatives fishers may choose to form). While derby conditions would
change the expected profits of fishers, they would not change this general approach of
mapping the social planner’s effort to a regulator’s quota function above.

While Equation 18 typically returns a non-integer value, a quota must be an integer.
Systematically rounding down the total allowable catch introduces an arbitrarily more
conservative regulator (than the one setting a price). In our application, the regulator
stochastically rounds expected harvest to an integer value so that the expected total al-
lowable catch is equal to the expected bycatch of the social planner; in the long run, the
effects of over- and under-shooting the ideal bycatch will be more comparable to the out-
comes under the price instrument.19

Next we turn to a numerical illustration of the solution to the social planner’s problem
and how it can be achieved using market based instruments in a decentralized fishery.

19Additionally, as the expected bycatch function may not map an integer quota back to an integer amount
of effort (days/fisher), we allow the fisher the same level of sophistication (stochastic rounding) when choos-
ing their level of effort, conditional on the quota imposed. These stochastic rounding steps ensure that the
expected amount of effort under the quota matches that under the (now-equivalent) price instrument.
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4 A shadow value viability solution for bycatch

4.1 The social planner’s cost-effective policy for avoiding extinction

We consider a social planner concerned with avoiding leatherback extinction (𝑋 = 0)
with 𝛥 = 95% confidence over a 𝑇 = 100 year rolling viability horizon. These values for 𝛥
and 𝑇 match the ecological objectives mentioned in Hazen et al. (2018) and Abrego et al.
(2020) (for the Eastern Pacific population). The SVV approach estimates the smallest loss
𝛺 upon extinction that induces sufficient bycatch avoidance effort to meet this goal, thus
minimizing cost to the swordfish fishery. The model yields a 𝛺 estimate of $49 billion,
which is equivalent to an annual perpetuity loss of $1.5 billion using a 3% discount rate.

The value of 𝛺 propagates to neighboring population states via the shadow value func-
tion 𝜔(𝑋𝑡), reflecting stochastic dynamics under the optimal policy and discounting by
the time to—and likelihood of—hitting the extinction threshold (see Section 2). Losing
an additional adult female turtle embodies non-negligible long-run risk even at moderate
population levels, e.g., with a marginal shadow value of $27 thousand at an abundance of
1,500. Table 1 provides illustrative values of key variables for low, mid and high popula-
tion abundances.
Table 1: Key variables under the social planner’s cost-effective policy at various population levels.

Variable Symbol X=500 1500 2500
fishing effort (vessel-days/vessel) 𝐴𝛺(𝑋) 0 11 18
expected fleet bycatch 𝔼[𝐵𝑡|𝐴𝛺(𝑋)] 0 70 114
seasonal fleet profits ($M) 𝜋(𝐴𝛺(𝑋)) 0 27 39
shadow value ($M) 𝜔(𝑋) 477 56 40
expected present fleet profits ($M) 𝑉(𝑋) 37 309 553
Present values of an additional turtle
marginal shadow value (of reduced extinction risk) ($K) 𝜕𝜔(𝑋)/𝜕𝑋 2700 27 11
marginal profit (of relaxed bycatch constraint) ($K) 𝜕𝑉(𝑋)/𝜕𝑋 134 286 208

While these marginal turtle values may seem high, this partly reflects our choice to
model the problem as simply as possible, particularly the available margins of adjustment
to reduce bycatch. The only margin of adjustment for avoiding bycatch is to avoid fishing
altogether; this comes with a high cost because swordfish are lucrative. Including addi-
tional margins of adjustment that are less costly than fishing effort—like changing the time
of harvest, place of harvest, or the depth of fishing gear—would reduce the marginal value
of an additional turtle since the opportunity cost of protection would be cheaper. Lower-
ing the catchability of leatherbacks from the estimated baseline decreases the magnitude
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of 𝜔(𝑋), increases 𝑉(𝑋), and permits more intense fishing at lower turtle levels without
pushing turtle populations closer towards extinction. By observing how 𝑉(𝑋) changes,
the SVV method can provide estimates of the value of these new technologies.

Figure 4 decomposes the value function into its two components, 𝑉𝛺(𝑋) = 𝜔(𝑋) +
𝑉(𝑋), the shadow value function and expected present profits, respectively. For larger
leatherback abundances, the risk of extinction is low and the value function hugs expected
present profits, 𝑉𝛺(𝑋) ≈ 𝑉(𝑋). At lower populations, extinction is more salient and the
shadow value dominates the value function, 𝑉𝛺(𝑋) ≈ 𝜔(𝑋). The domain of Figure 4 is
focused on the region where this transition occurs.
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Figure 4: Decomposition of the value function 𝑉𝛺(𝑋) (dashed line) into expected present prof-
its 𝑉(𝑋) (smooth solid line) and shadow value 𝜔(𝑋) (dotted line). Cost-effective fishing effort,
𝐴𝛺(𝑋), is plotted using the right axis (step function). The lower sub-figure shows the resulting
probability density function for turtle abundances (solid line) and the lower bound of the viability
kernel (vertical dashed line).

The shadow value clearly has an impact on the optimal fishing policy. Superimposed
on Figure 4 is the permissible level of fishing by the social planner, in vessel-days per
fisher. Approaching the lower extent of the viability kernel (538 turtles) from above leads
to a larger shadow value in concert with a steep decline in fishery exploitation. The social
planner opts for an outright fishing moratorium below 957 leatherbacks.

The bottom sub-figure displays the resultant probability distribution of leatherbacks in
year 100, conditional on the optimal policy. In attempting to prevent a partially-random
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dynamic process from hitting its lower bound, the social planner aims for populations
to be far from extinction in the intermediate future. This trade-off between safety and
fishing profits leaves the stock largely between 500 and 1,070 turtles, representing one
standard deviation centered on the mean.20,21 These populations are viable as defined by
the {𝑇, 𝛥} pair. While the risk of extinction within 100 years is less than 5% within the
viability kernel, the likelihood of “dipping below” the lower bound of the viability kernel
(at least temporarily) is still quite high; after 100 years, 19% of the probability density
is below this boundary (538 turtles); even though net growth is positive in expectation,
turtle dynamics are highly sensitive to poor recruitment years. In this region, the planner
imposes a moratorium on fishing, though this is true for higher levels as well.

Under this policy, caps would generally be below 10 turtles and moratoriums with a
cap of zero would not be uncommon.22 This could have a significant effect on the viability
of the fishery itself, although our model does not consider the additional costs that would
follow from repeated shutdowns as this would depend on details of the new fishery, i.e.,
fixed costs of shutdowns and available income from fishers’ next best option outside of
this fishery. Generally, as these closure costs increase, the cost-effective level of seasonal
fleet fishing effort will fall in favor of maintaining higher leatherback abundances, and
thus more flexible and longer fishing seasons.

4.2 From shadow values to market-based instruments

Prices and quotas both promote bycatch avoidance; prices directly encourage the avoid-
ance of turtles, and quotas do so indirectly by instead encouraging avoidance of fishery
closures. In Section 3.4, we designed each of the two instruments to be equivalent, incen-
tivizing the same amount of effort as the social planner and reproducing the same value
function in Figure 4. We do not pursue a comparison of instruments à la Weitzman (2002)
or Segerson (2011), but rather a discussion of the mapping process of SVV output to de-
centralized governance. Figure 5 provides an illustration of the two instruments.

The bycatch price of a turtle is very high, as it is tethered to the opportunity costs of
fishing, which is lucrative.23 Similar to the discussion in Section 4.1, if additional, cheaper

20Absent turtle bycatch in the swordfish fishery, the leatherback dynamics laid out in Appendix A.3 lead
to an expected female adult population of around 4,000.

21Our analysis lumps all sub-populations of adult female turtles together; if we were to require viability
for each of these sub-populations, this range would likely be much higher.

22Intermittent closures are consistent with the situation in the Hawaiian fishery (Swimmer et al., 2017).
Closures occur every year after a small number of turtle encounters, and the fishery was closed the entirety
of the first three years of the post-90s regulation in favor of protecting leatherback and loggerhead turtles.

23While the total bycatch costs are manageable at the fishery level, individuals could go bankrupt; a risk
pool would be necessary in order to convince smaller fishers to participate. Alternatively, policy design
could mitigate this risk by distributing taxes back to fishers in equal shares without removing the individ-
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Figure 5: Price and quota instruments implied by the social planner’s optimal fishing policy. The
step-behavior arises from the integer-nature of the choice variable in the social planner’s problem.

margins for bycatch avoidance are available, then the bycatch price would adjust down-
ward. However, considering the amount of effort put into protecting turtles (Swimmer
et al., 2017), high prices are not surprising, and recent work suggests that social value for
individual turtles implied by bycatch regulations in Hawaii’s longline fishery is an order
of magnitude higher (Sweeney, 2020).

The quota set by the regulator rises quickly with the leatherback stock. As the marginal
benefits of ever-higher leatherback abundances decreases (discussed next) the regulator
is increasingly more tolerant of additional bycatch events that have less of an impact on
the viability of the species.

Figure 6 presents a decomposition of the price instrument. We understand intuitively—
and formally from Section 2.2—that the level of our regulatory instruments should cap-
ture two values: the marginal shadow value of increased extinction risk, 𝜕𝜔(𝑋)/𝜕𝑋, as
well as the marginal value of less regulatory-constrained profits in the future, 𝜕𝑉(𝑋)/𝜕𝑋.
The price instrument precisely embodies the sum of these two marginal effects that weigh
against contemporary marginal profits. Unlike the social planner that is increasingly con-
cerned as stocks decline, the regulator doesn’t need to continue increasing bycatch prices
once they’re high enough to preclude any fishing activity. At high numbers, neither are
as concerned with viability and the price is only reflecting the opportunity cost of having
more restrictive regulation in the future.

ual’s incentive to avoid bycatch.
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Figure 6: Decomposition of the leatherback bycatch price (step function). As long as the price 𝑃(⋅)
does not prevent fishers from fishing entirely (as it does below 𝑋 = 957 leatherbacks), it captures
the sum of two effects: the marginal benefit of relaxing regulation in the future (dot-dashed line)
and the marginal shadow value [of reduced risk of extinction] (dotted line).

4.3 Sensitivity to parameters of the viable control objective

For the viability problem outlined in Section 2, the social planner must provide three
preference parameters: the pair {𝑇, 𝛥} reflects social preferences about risk often found
in resource management plans and the discount factor (𝛽) specifies intertemporal prefer-
ences. So far, we have taken these parameters to be exogenously given. However, there is
certainly a trade-off between a more stringent viability target (higher levels of 𝑇 and/or
𝛥) and the increased opportunity costs of the conservation effort necessary to get there.
And even though the viability framework puts the biological target center stage, present
values are a key feature, suggesting an important role for the choice of discount factor
or, equivalently, discount rate 𝑟 = 𝛽−1 − 1.24 For insight into these model inputs, we re-
solve the viability model while varying the discount rate 𝑟 and the central risk parameter,
namely the confidence level 𝛥, around the baseline levels used in the analysis above (3.1%
and 95%, respectively). We end the section with a discussion of the viability (confidence)
supply curve, which is notably non-monotonic but increasing on average.

24Since damages to the turtle population are controlled by the joint chance constraint, and the actual,
realized values that are discounted are private fishery profits, there is a case for using the market interest
rate for the discount rate in our particular application.
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Sensitivity to the choice of discount rate

In Figure 7 we show how key results change as we vary the discount rate. The top-
left panel shows that, as expected, 𝛺 increases with 𝑟 since an increasing discount rate
decreases the salience (in present value terms) of any given 𝛺 (see Equation 10). Thus,
as 𝑟 increases, 𝛺 must increase to maintain a shadow value (𝜔) sufficient to drive enough
conservation effort to maintain achievement of the viability objective, i.e. a society with
a higher discount rate would trigger conservation efforts only if it gives a larger value to
the species, all else equal. Furthermore, a higher discount rate reduces the present value
of loss from future closures; because of this shrinking present opportunity cost of fishing,
𝛺 increases in order to ensure sufficient shadow value-driven motivation to moderate the
impact of fishing.
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Figure 7: Sensitivity of viability model results to the choice of discount rate.
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The top-right panel of Figure 7 shows that (for any given turtle abundance) the optimal
fishing intensity increases with 𝑟. This effect also follows from impacts to the present
loss of future fishing closures: a higher discount rate makes future closures less salient
and thus increases contemporaneous fishing effort (for any given turtle abundance). This
causes the resulting stationary distribution of turtle abundance levels (bottom-right panel)
under the given policy to shift towards zero.

The bottom-left panel shows that expected seasonal profits fall as the discount rate
increases. When 𝑟 is high, more intensive harvest effort leads to lower expected turtle
abundance, which in turn leads to lower seasonal effort and more frequent closures. A
low 𝑟 is therefore good on average for both the leatherbacks and the fishers. When turtle
numbers are allowed to increase, seasons can remain open more frequently and for longer,
increasing the prospective profits of future periods.

Sensitivity to the choice of confidence level

In Figure 8, we replicate the sensitivity analysis in Figure 7 with respect to the confi-
dence level 𝛥. As expected, requiring a higher confidence level in our viability constraint
forces 𝛺 to increase (top-left panel) in order to incentivize lower fishing intensity (higher
conservation effort) at any given turtle abundance level (top-right panel). Because fish-
ing intensity typically decreases as 𝛥 increases (top-right panel), the resulting stationary
distribution for the turtle population shifts to the right (bottom-right panel). Thus, as ex-
pected, a more-stringent viability target (higher 𝛥) is better for leatherback abundance.

Notably, a higher 𝛥 is better on average for the fishers’ expected seasonal profits (bottom-
left panel, Figure 8). As the stringency of the conservation goal increases, so do rents for
fisherman, i.e., opportunity costs of stronger protection are negative. This occurs because—
given the specified population dynamics—a higher confidence level necessitates a higher
turtle population as a buffer, which in turn requires less constraint on fishing effort on
average in the long-run. However, these are long-run average opportunity costs, which
ignore differences in payoffs in the transition from any given starting state. We would
expect this to matter: the stationary distribution of turtle abundance increases with 𝛥 and
thus over any given initial time frame the expected opportunity costs will also be higher.

A more comprehensive opportunity cost measure is given by the difference in the ex-
pected present value of profits from any given starting state (𝑉(𝑋𝑡)) for some change in
𝛥. Indeed, this metric generates the anticipated result that the expected present value
of opportunity costs of achieving viability are, on average, increasing in the confidence
level. For example, at 𝑋𝑡 = 1,200, this metric falls by $32.6M as we increase 𝛥 from 0.85 to
0.95, generating an average marginal cost of $3.6M per confidence point (0.01). While this
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Figure 8: Sensitivity of viability model results to the choice of confidence level.

“viability supply curve” (marginal cost per confidence point) is increasing on average as 𝛥
increases from 0.7 to 0.95, we find that this curve is not monotonic. For a small minority
of step increases in confidence, the incremental unit of confidence is less costly to achieve
than the previous one. The reason is that two things change as 𝛥 increases. First, there is
shrinkage in the state space over which the now more stringent viability constraint can be
met, i.e., the viability kernel {𝑋}𝑘 becomes smaller (see Equation 2). Second, there is the
more obvious direct effect: conditional on 𝑋𝑡 ∈ {𝑋}𝑘, extinction is avoided with greater
confidence. Thus, while the marginal cost (in present value terms) of achieving an addi-
tional confidence point typically increases, a priori it does not do so in a predictable fashion
for any given step.

This sensitivity analysis with respect to the confidence level can be coupled to other
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techniques from the greater viability theory literature. In the first column of Figure 8, 𝛥
appears on the horizontal axis, however one could also think of reversing the horizontal
and vertical axes and considering the slope of the curve to gain a sense of marginal via-
bility (De Lara and Martinet, 2009; Martinet et al., 2016)—with respect to 𝛺 and expected
profits. Maximizing viability—rather than seeking to minimize the costs of meeting a
fixed, minimal level of 𝛥, as we do—is a compelling alternative in settings where there are
multiple ecological and economic objectives, like the sustainable management of natural
resources. In the absence of a simple social welfare function that maps viability and profits
into a single metric, marginal viability can provide a way forward—De Lara and Martinet
(2009) and Martinet et al. (2016) use this alternative metric in order to rank the sustainabil-
ity of outcomes in a system with many constraints that represent various objectives and
contribute to their definition of viability.

5 Discussion

While the real world involves overlapping commercial and conservation concerns, man-
agement models typically treat these problems independently. The framework in this pa-
per identifies a policy that simultaneously balances conservation benefits of a vulnerable
species with the opportunity costs incurred in commercial resource use. This integration
is enabled by application of a shadow value viability approach. Beyond revealing the
cost-effective conservation policy, the approach also informs the setting of market-based
instruments for attaining this desired result among decentralized resource users.

SVV is a departure from the typical approach that maximizes the gap between ex-
pected benefits and costs. Our method is most suitable when the explicit benefits of species
preservation are difficult to measure—in the case of bycatch, other routes like valuing
ecosystem services provided by vulnerable species require more information than is often
available (Crocker and Tschirhart, 1992; Brock et al., 2009). In our numerical application,
a shadow value is derived with respect to biological concerns around leatherback turtle
viability and the opportunity costs of conservation effort within a fishery. This shadow
value motivates costly conservation action to avoid increasing prospects of extinction.

A population-dependent valuation of the avoidance of extinction is not feasible with
revealed preference methods and impractical with stated preference techniques. Optimal
management of vulnerable species is hampered by a lack of information about what value
is lost at the margin as the population declines. While stated preference methods are
used to elicit values for a status change, e.g. from endangered to only threatened, this
single point value is unsatisfactory for dynamic management; ideal management should
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respond to value gained or lost at any population level. And, as illustrated in Section 4, the
shadow value of the vulnerable species population can shift dramatically and non-linearly
as the population falls.

The SVV approach offers a way forward for relaxing inefficient command and control
policies while still achieving conservation goals. The guidance suggested here opens up
the possibility for the de-implementation of excessively costly management methods like
large marine protected areas or restrictive gear standards. SVV grants this added flexibility
in providing a way to set the level of market-based instruments.

When is SVV best-suited to achieve stewardship of non-targeted, ecologically-important
species? There will always be species with little commercial value that are incidentally
caught due to their proximity to commercially-relevant stocks. Weakened species—those
threatened but within the viability kernel and less immediately at risk of extinction—stand
to benefit the most from shadow valuation methods, as their populations are large enough
that talk of the trade-offs between conservation and commercial objectives is still possible.

Our objective in this article was to build intuition for the SVV approach, using a simple
model, pared to essential components. In future research, the setting of real world policy
instrument levels (prices or quotas) should consider additional elements for more com-
prehensive representation of a system. This includes the set of relevant decision margins
for bycatch avoidance (e.g., technology adoption, location choice, fishing time of day, gear
setup, etc.). In our application, given a robust commercial stock, we set aside the need
for incorporating that state variable. However, an evolving level of the target stock will
be relevant in many fisheries. Finally, while we focus on the extinction-avoidance value
of the vulnerable stock to be conserved, if other ecosystem service values are salient and
available, those may also be incorporated.

The SVV approach requires specifying intertemporal preferences and risk preferences
(often found in management plans). With an increase in the discount rate (𝑟) or confidence
(𝛥), generally we see an increase in the minimum sufficient extinction loss (𝛺). Further
the increase in 𝑟 leads to an increase in fishing intensity, accompanied by a shift down in
the density of the vulnerable stock (turtle abundance) while the increase in 𝛥 leads to the
opposite. Notably, expected annual profits in a season increase as 𝛥 increases, exhibiting a
negative annual opportunity cost to maintain a more stringent confidence level. However,
when accounting for transitions from a given starting state, the opportunity cost is positive
(the expected present value of long-run profit is lower) as expected, on average $3.6M per
confidence point in the neighborhood of our baseline parameterization. However, this
viability supply curve is not monotonic/well-behaved across each individual point since
both the viability kernel and 𝛺 shift as 𝛥 is varied. This marginal cost curve will also shift
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downward as fishers move beyond the single type of conservation action modeled here
(reducing fishing effort) to take advantage of a broader set of conservation actions (e.g.,
adjusting fishing time, place, depth and gear).

Shifting focus from the notion of marginal value to total value of a species, if this latter
value was known, we could simply plug that in for 𝛺 and find the economically efficient
level of viability (instead of the other way around). However, eliciting the value of an
entire species from people is arguably problematic (as discussed in the introduction). In
the VSL context, the elicitation and interpretation of value is from small changes in the
risk of death. Analogously, in our setting, researchers could elicit the marginal value of
a change in the stock level at some given population level. However, we fully expect this
marginal value to be quite sensitive to the level of the stock, in particular as a population
declines. Indeed in our framework, we capture this feature with the function 𝜔(𝑋), which
is distinctly concave. (Note that the marginal value is given by 𝜕𝜔/𝜕𝑋.) Thus, eliciting the
marginal value in a WTP/WTA framework would be extremely costly given that it is far
from constant over the relevant range of stock levels and eliciting the value of a species in
its entirety is arguably fraught.

The SVV approach does offer a potentially simplified way forward for WTP/WTA
studies. Recall that in the SVV solution, 𝛺 represents the minimum sufficient extinction
loss that would trigger enough conservation action to meet the viability objective (with
the given confidence over the given time horizon). Thus, 𝛺 provides a benchmark, which
enables posing a simpler question to respondents: is preservation of the species worth at
least 𝛺? If so, then the viability objective as stated is worth pursuing. While this approach
has the benefit of relying on a binary question instead of an open-ended one (arguably eas-
ier to answer reliably), this does not necessarily resolve moral concerns associated with
considering the extinction of a species.

The conclusion to the above comparison relies not only on preferences for species
preservation but also on time preferences. As seen in Section 4.3, the larger the discount
rate, the larger the preservation value needed to justify sufficient conservation to meet the
viability objective.

The modeling of viability-style goals has a broad set applications beyond conservation
settings. Management objectives that aim to stay above (or below) a particular thresh-
old over time with some margin of safety are abundant in natural resource management
and elsewhere. Notable examples include maintaining viable populations for endangered
species (illustrated here), global temperatures below a maximum increase, and zoonotic
disease prevalence away from outbreak levels. Each of these cases center on avoiding a
threshold with dire but inestimable consequences. Shadow value viability translates the
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implied value of avoiding these thresholds to the benefits of reducing risk on the margin,
enabling all of these urgent issues to be investigated with an intuitive economic approach.
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Appendices for “Balancing conservation and commerce”

A.1 A joint-chance constrained dynamic programming algorithm

Here, we discuss how to solve the dynamic programming problem with a joint-chance
constraint, assuming some previous knowledge of dynamic programming. The code for
this project can be found at piercedonovan.github.io.

1. Setup

(a) Define all program parameters (biological, economic, political), functions (cost,
harvest responses given a particular policy instrument, state equations), and
state/control sets. Initialize the Markov transition matrix, which will depend
on several of these.

(b) Document the state space where it is possible to satisfy the viability constraint,
because we only look for an optimal policy where it is feasible. Identify this via-
bility kernel by finding the likelihood of extinction over the designated horizon,
conditional on starting state, given the strongest possible conservation action.

(c) Provide sufficiently wide range of values for 𝛺 > 0. Let the first guess of 𝛺 be
the midpoint between the upper and lower bounds.

2. Solve the dynamic program in Equation 6 conditional on a value for 𝛺.

(a) Initialize the value function as desired, e.g., 𝑉𝛺(𝑋𝑡) = 0, except impose 𝑉𝛺(𝑋𝑡 =
0) = −𝛺. Note that since 𝑋𝑡 = 0 is irreversible, this value will be maintained
throughout.

(b) Solve using value function iteration (VFI) (Judd, 1998) by repeating these steps
until convergence: (i) find 𝐴(𝑋𝑡), the optimal (candidate) policy action (𝐴) for
every state (𝑋𝑡); and (ii) update the value function (𝑉𝛺) using 𝐴(𝑋𝑡).

3. Check viability constraint and update 𝛺.

(a) Check if each state in the viability kernel satisfies the viability constraint given
the optimal policy 𝐴(𝑋𝑡) under 𝛺. If no (yes), increase the lower (decrease the
upper) bound on 𝛺 to the current guess. Set the new level of 𝛺 to the midpoint
between bounds. Repeat Step 2, except end the search if the most recent two
iterations over 𝛺 are sufficiently close (with the lower guess not being sufficient
for viability and the upper one satisfying the constraint). The exact choice of
search algorithm over 𝛺 is not consequential [in our case].
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To be assured of a fixed point for 𝑉𝛺 we require the state space 𝑋 to be compact, the
discount factor 𝛽 to be less than one, and the reward 𝜋 to be bounded above and below
(Judd, 1998). These conditions hold for the problem specified in Equation 6. There are
two features of this viability problem that are atypical in dynamic programming problems,
however neither involves or disturbs the contraction mapping required for the fixed point.
First, we impose the constraint that 𝑉𝛺(0) = −𝛺. However, to achieve this we simply
include this in the initial guess for the value function before solving with VFI. Since 𝑋𝑡 = 0
is irreversible, the value is maintained throughout the VFI solution process. Second, in
Step 3 in the algorithm above, we check if the viability constraint is satisfied and (if needed)
update 𝛺 before resolving. However, this only occurs once the fixed point 𝑉𝛺 has already
been identified for a given level of 𝛺.

A.2 Parameter values, descriptions, and sources

Economic parameters are derived from averages over 1994-1999 in the Hawaiian long-
line fishery. The cost parameter 𝑐 is estimated by using the profit-maximizing condition
of the representative fisher corresponding to Equation 12, using an average effort of 35
days/vessel. This ensures seasonal catch per vessel (30𝑚𝑇), fleet catch (3, 000𝑚𝑇) and ex-
vessel revenue ($19𝑀 (2020 dollars)) match the unregulated case in our model (Western
Pacific Regional Fishery Management Council, 2004). This puts bycatch at a maximum of
around 220 adult female leatherbacks, which is within the bounds of the best estimates
for the unregulated fishery (and similar in scale to other unregulated longline fisheries)
(Bartram and Kaneko, 2004). 𝑁 scales average Hawaiian vessel landings by weight to the
total fishing activity seen over the same seven-year period (we assume that the other fleets
have similar structure).

We calibrate turtle dynamics to the energetics experiments in Jones et al. (2012). Our
model tracks the evolution of adult female turtles since evidence suggests the number of
mature females is the limiting factor in the production of new recruits (Jones et al., 2012).
Only a portion of the population 1 − 𝜌 is vulnerable to bycatch as they range from the
warmer spawning waters. For every nesting female, 80 female hatchlings survive the first
two days (variation in recruitment, 𝜂𝑅, is calibrated to nesting sites in Abrego et al. (2020)),
and 25% of those make it through the year. An estimated 0.7 females make it to maturity
from each adult-nesting year. As the half-life of an adult is only 3–4 years, the expected
production of mature females is 1.4–2.1 per adult female today.
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Table A.1: Parameter definitions with values, descriptions, and sources.

Parameter Value Description and Source*

Viability
𝑇 100 rolling window horizon (chosen)
𝛥 0.95 viability confidence level (chosen)

Economic
𝛽 0.97 discrete discount factor (chosen)
𝑝 $6500 ex vessel price of swordfish per metric ton (2020 dollars) (WPRFMC, 2004)
𝜙 0.88 CPUE (mT/day) (WPRFMC, 2004; Bartram and Kaneko 2004)
𝜃 0.024 BPUE (turtles/day) (WPRFMC, 2004; Bartram and Kaneko 2004)
𝑁 500 number of vessel permits for swordfish (WPRFMC 2004; Tagami et al. 2014)
𝑐 160 estimated cost parameter ($/𝑑𝑎𝑦2) (WPRFMC, 2004)

Biological
𝜎 0.53 % of bycatch that are adult females (NMFS and FWS, 2013)
𝜌 0.3 % of turtles nesting (Jones et al., 2012; NMFS and FWS, 2013)
𝛾 80 mean [female] 2-day hatchling survivors (Jones et al., 2012)
𝜂𝑅 0.03 demographic heterogeneity in recruitment (Abrego et al., 2020)
𝜂𝑀 0.03 demographic heterogeneity in mortality (assumed same as recruitment)
𝑚1 0.75 1st-year natural mortality (Jones et al., 2012)
𝑚 0.20 > 1st-year natural mortality (Jones et al., 2012)
𝑎 15 years to maturity (after 1st) (Jones et al., 2012)
𝐾 75000 intraspecific competition parameter (NMFS and FWS, 2013)

*Some values have been transformed from other units used in the source material.

A.3 Vulnerable species dynamics

Valuable insight about the response to risk can of course come from deterministic mod-
els (e.g. Reed (1979), more in Nøstbakken and Conrad (2007)). Policy guidance, however,
may be fairly limited without a model that reflects a stochastic economic and ecological
reality (Lande et al., 1997; Bulte and van Kooten, 2001). Bulte and van Kooten (2001) as-
sert that the extinction of a species will likely be caused by stochastic perturbations, rather
than predictable or controllable systematic pressures like hunting or habitat degradation.
Deterministic modeling can lead to a “safe” solution where a vulnerable population is left
to sit just above some minimum viable threshold, but if this is done in a stochastic world,
the prescription is akin to an environmental “gambler’s ruin.”

A focus on species viability requires careful modeling of dynamics at low population
levels that differs from standard approaches suitable for large populations. Vulnerable
species may produce few viable offspring even over long periods of time due to an unlucky
chain of deleterious, idiosyncratic shocks. For small aggregations of a species, population
dynamics become much more sensitive to [random] birth or death events. This is called
demographic stochasticity, which captures variability in growth due to the sampling from
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a distribution of possible births and deaths (Lande et al., 2003; Melbourne and Hastings,
2008).1 This concept is particularly important for the modeling of a vulnerable species,
but is largely ignored in the bioeconomics literature (Lande et al., 2003). This appendix
details a simple way to take demographic stochasticity into account by expanding on the
examples found in the supplementary materials of Melbourne and Hastings (2008).

Table A.2: Timeline of stylized seasonal events.

start of year 𝑡 ⋯ ⋯• share 𝜌 of 𝑋𝑡 observed nesting in Southeast Asia,
hatchlings appear

start of season ⋯ ⋯• (1 − 𝜌) ⋅ 𝑋𝑡 northern exploitable population,
instrument {𝑃𝑡, 𝑄𝑡} set by the regulator

fisher response ⋯ ⋯• effort 𝐴𝑡 and expected bycatch harvest 𝔼[𝐵𝑡|𝐴𝑡]
chosen by fisher

during season ⋯ ⋯• stochastic harvest 𝐵𝑡 and natural mortality 𝑀𝑡
affect adult turtles

end of season ⋯ ⋯• new recruits 𝑅𝑡 added to population

We start by letting the number of [female] hatchlings born to adult 𝑖 at time 𝑡 be de-
scribed by a Poisson distribution with mean 2-day hatchling survival 𝛾𝑖:

𝐹𝐻𝑖,𝑡 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾𝑖).

Fecundity differs for each adult—demographic heterogeneity—as some individuals pro-
duce more or less offspring than others. Following Melbourne and Hastings (2008), we
assume 𝛾𝑖 is gamma-distributed with mean 𝛾 and heterogeneity (shape) parameter 𝜂𝑅.
From the law of total probability, 𝐹𝐻𝑖,𝑡 thus has a negative binomial (NB) distribution:

𝐹𝐻𝑖,𝑡 ∼ 𝑁𝐵(𝛾, 𝜂𝑅).

The likelihood of each hatchling surviving to maturity is given by

𝑠(𝑋𝑡) = (1 − 𝑚1) ⋅ (1 − 𝑚)𝑎 ⋅ (1 − 𝑋𝑡
𝐾 ) ,

where 𝑚1 is the expected 1st-year mortality rate and 𝑚 is the expected yearly mortality
beyond year one, which needs to be survived 𝑎 = 15 years until maturity. For low popu-

1A relevant but distinct concept is the Allee effect, which yields a positive correlation between the per
capita growth rate and population size below a critical threshold (Stephens et al., 1999).
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lations, 𝑠(⋅) is about 0.9%. 𝑋𝑡 is the current number of adult females and 𝐾 captures the
effect of intraspecific competition for common resources (Schoener, 1973; Connell, 1983).2

An age class model including yearlings, juveniles and adults of reproductive age would
be most realistic, however this requires three state variables to capture the turtle popula-
tion at any point in time. Since this paper is intended to concretely illustrate the essential
elements of SVV in as simple a setting as possible, we use a stylized model of representa-
tive adult female turtles. This assumes the relative shares of different age classes are fixed
over time; notably, we assume that the expected number of recruits 𝑅 to the adult popula-
tion at the end of a season is what we may expect of today’s hatchlings several years in the
future, i.e. 𝔼[𝑅𝑡+𝑎|𝑋𝑡] ≈ 𝔼[𝑅𝑡]. Given this relation, the number of hatchlings that survive
to maturity (recruitment) from adult 𝑖 at time 𝑡 is given by

𝑅𝑖,𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝐹𝐻𝑖,𝑡, 𝑠(𝑋𝑡)) ≡ 𝑁𝐵 (𝛾 ⋅ 𝑠(𝑋𝑡), 𝜂𝑅) ,

where the equivalence again takes advantage of the law of total probability.
Summing survived offspring from all nesting females (𝜌 ⋅ 𝑋𝑡) gives us

𝑅𝑡 =
𝜌⋅𝑋𝑡

∑
𝑖

𝑅𝑖,𝑡 ∼ 𝑁𝐵 (𝛾 ⋅ 𝜌 ⋅ 𝑋𝑡 ⋅ 𝑠(𝑋𝑡), 𝜂𝑅 ⋅ 𝜌 ⋅ 𝑋𝑡) ,

since the sum of independent NB random variables with the same shape parameter is also
NB-distributed (using the mean-shape parameterization). The mean and variance are

𝔼[𝑅𝑡] = 𝛾 ⋅ 𝜌 ⋅ 𝑋𝑡 ⋅ 𝑠(𝑋𝑡),

𝕍[𝑅𝑡] = 𝔼[𝑅𝑡] + 𝔼[𝑅𝑡]2

𝜂𝑅 ⋅ 𝜌 ⋅ 𝑋𝑡
.

The importance of demographic heterogeneity becomes evident at low abundances.
The variance-to-mean ratio approaches 1 + 𝛾/𝜂𝑅 as the population declines, and at very
large abundances it reaches the Poisson limit of one.

The above captures the full role of demographic stochasticity and heterogeneity in re-
cruitment. Similarly, the seasonal natural mortality and bycatch of turtles can be repre-

2Density-dependence is typically thought to be a stronger factor in juvenile mortality if individual fitness
increases with age or size, or if there are hierarchies in the population that create an uneven distribution of
resources (Schoener, 1973; Connell, 1983). This feature only needs to be modeled once; the fecundity (𝛾) of
adults can decrease with increasing population density as well, capturing the same effect.
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sented by two additional NB-distributed variables,

𝑀𝑡 ∼ 𝑁𝐵 (𝑚 ⋅ 𝑋𝑡, 𝜂𝑀 ⋅ 𝑋𝑡)
and, 𝐵𝑡 ∼ 𝑁𝐵 (𝑁 ⋅ 𝜃 ⋅ 𝜎 ⋅ 𝐴𝑡, 𝜂𝑀 ⋅ 𝑋𝑡) ,

where 𝑚 is the expected individual mortality rate, the expected bycatch harvest by the
representative fisher (Equation 11) is scaled up by the size of the fishery 𝑁, and 𝜂𝑀 is the
heterogeneity parameter related to variation in the mortality rate from turtle to turtle.

In sum, the dynamics of the leatherbacks is given by a series of stochastic shocks of
natural mortality, bycatch, and recruitment,

𝑋𝑡+1 = 𝑋𝑡 − 𝑀𝑡 − 𝐵𝑡 + 𝑅𝑡.

To get a sense of where the population will tend to concentrate in the absence of human
impacts, We consider the case where 𝔼[𝑋𝑡+1] = 𝑋𝑡 ≡ 𝑋∗, which simplifies to the condition
𝔼[𝑀𝑡] = 𝔼[𝑅𝑡]. The stable, non-zero equilibrium is

𝑋∗ = 𝐾 ⋅ (1 − 𝑚
𝛾 ⋅ 𝜌 ⋅ (1 − 𝑚1) ⋅ (1 − 𝑚)𝑎 ) ,

which gives around 4,000 adult females in the western pacific stock, which corresponds to
a total population around 100,000 (Jones et al., 2012). Above 𝑋∗, the expected change will
be a decrease in population, and below, an increase, if there is no bycatch harvested.

For very low populations, the expected recruitment per adult female is roughly 0.21,
and the expected mortality is 0.2. While there is no evident Allee effect that triggers below
a threshold and dooms the species (where we would impose a quasi-extinction threshold),
demographic stochasticity still presents an extreme risk. The expected change in the pop-
ulation is indeed positive, but variance can sentence an unexpected number of the last
few individuals to death from an unlucky series of coin flips. At 4,000 adult females, the
standard deviation of the change in population is 2.5% of the current abundance, while at
a population of 400, this increases to nearly 10%.
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