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SOME CALCULATIONS ON THE TRIAX PINCH DEVICE
Shalom Fisher

Lawrence Radiation Laboratory
University of California
‘Berkeley, California

August 9, 1960
ABSTRACT

The hydromagnetic equations of motion for the Triax pinch are
linearized by a perturbation expansion about equilibrium. The perturbed
equations are then decomposed by the method of normal modes. A numer-
ical calculation is made of the oscillation frequency for two specific modes
(k=0, m=0;and k=0, m=1). The m =0, k = 0 mode is also analyzed by

using a hydromagnetic energy principle.



<

-7- UCRL-9344

SOME CALCULATIONS ON THE TRIAX PINCH DEVICE
- Shalom Fisher

Lawrence Radiation Laboratory
University of Galifornia
Berkeley, California

August 9, 1960

I. INTRODUCTION

The Triax pinch device is a method for containing a heated plasma in
a cylindrical sheet configuration. The pinch phenomenon forms the current-
carrying plasma into a tubular shape between two concentric cfﬂindrical
conductors, L This is known. as the tubular pinch (Fig. 1).

- A macroscopic approach to the pinch stability problem is made by -
using the method of small perturb;a.tions° The basic assumption of an
equilibrium plasma configuration during maximum compression enables
the magnétohydrodynamical equations of motion.to be linearized. It is
further assumed that Py / Po is a constant. The resultant second-order.
differential equations’are solved by numerical methods, yielding frequency
eigenvalues and coiresponding modes of oscillation for the perturbed trans-

verse velocity.

II. EQUATIONS OF MOTION

. . . . 2
The macroscopic equations of motion for the plasma are well known:

d - =
P g =~ iIXB-V p,
?Xg = 4'rrv=:]?
TxE -.47 2B .
E + ;f X B = 0 (setting fesistivity :'0)
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OUTER CONDUCTOR

ELECTRODE / INNVER ’CO{VDUCfOA’

TJ K —— LECTRODE
e
: //VSUMTOII‘?S% =
TRIAX PINCH DEVICE
MU‘|48|é

Fig. 1. Triax (schematic)b.
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1, dp _y . dp - e - .

) dt p dt (y = C?/CV 5/3 for ionized plasma),
a g . > _ . . .

5t P + Vv pv = 0 (continuity equation) ,

Lo\t /2
¥P = Vg {sound speed)

Assume that all variables q behave as q = 'qo + § except for v =9,
where perturbation q is small compared to equi'lfbrium value dq - Keeping
only first-order terms in the perturbed functions, we find the above equations

then become

A A _ Moz v L = A -
Po T v—JXB0+JOXB-V, E+E'XB0—0,
VXB = 4 j , v:-B =0,
. . (2)
- A 1 2 B 1 d y d
. VXEEeme e pp d& P T p, @ P
a A "". x

III. PLASMA EQUATIONS OF MOTION FOR CARTESIAN GEOMETRY

The first plasma model chosen for the calculation of frequency equa-
tions for the transverse velocity is a flat ribbon, infinite in the x and =z
directions. . Since the variables - B0 v dn s Po and p, are now dependent

L -~ =0
. = 9kz+1mx-hot. .
upon the y coordinate, set § =q (y)e . Noting that
(BO)Y = _(BO)Z:. = (JO)Y = (JO)X = 0, and using the single subscript 0 for the

nonvanishing, unperturbed components,: Eq.v (2) in component form is
Pg wv, = - imp - JOBY )
‘ -t . oy
Py wvy P +JOBX+_JZ BO’

P wv, = - ikp - JyBO ,



-10-

N
2
| S
i

B' -ikB_ -,
Tz y

N
4
Cds
I

ikB - imB ,
x z

47j = imB_ - B' ,
b4 y X

B _
_w_x, = E‘Z —ikE 9
c z y '
B v
-w —L. ='ikE - imE_ ,
C X '/
B _ !
-0 —2— = imE_-E
E =0,
X
VZ
_Ey =? BO ?
NV,
- E = . Y .B s
Z C 0
_YB =.E'.ikE ,
C X z
-2 B = jkE - imE ,
c y b4 b4
.2 B = imE
c z _ y

B' + ikB +imB = 0,
. A . X
wp,_,+ v pl = v% ep Fv.op)
yPo 5 y o '’

t
3 [ 1 =
w * imv_p,y ty Fb'f” vy Po + 1kvz.p0 0,

UCRL-9344
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where the prime symbol indicates differentiation with respect to y. Equa-
tion (3) reduces to a second-order differential equation in vy (see Appendix
A). In order to render this equation solvable with a desk calculator, k is

set equal to zero. With this simplification, the differential equation becomes

mZB2 dv 2B B! ol v
. 0 4, )y 00, Po¥
A o e = dv yA
y \ 41w 0 dy . 4mw w“_l_mv.vs )
W
dzv- B2 g v2 .
+ « Y 0 N 0's ,
2 ' 1+ m2ys <
dy Amo w o2 )

Let us now limit the treatment in this paper to values of m and w

m2vé 3% . . .. :
such that AZS < < 1. With this restriction, the above equation .
. w ! .
simplifies to

2.2

t

2 m B0 o dvY 1 BOBO v Po
O t g Yy T3 s 2w T

po Yy y PO po

dZv B(z) >

T + v (4)

S

dy 47’_90

Equation (4) can be put into dimensionless form through a change of

variable, and by changing the various coefficients of the VY derivatives.
2

o _ 2 _ L2 _ B ;
Let Y—IY: VY"VV’ BO —B f(Y)’ po—4T [l_f(Y)]:
‘ al ‘ al
- ~ 1 @l 2 _ 2B 2 _ B 2
Pg = Py 8(Y) = k (B7/8m (1-£(Y)), Ve T gm0 ¢ T A ¢ be the
appropriate substitutions, where §8 = B0 at walls, Py = Pepaximum ’

v,k and ¢ are dimensional scaling factors, £  is the outer radius of the

chamber. By normalizing to the mass of the gas present, a relationship

between k and pbp (before pinching) can be made; for a €Y £ b,

we have

2 2
s

%
Substitution of the calculated values for w into “leads to maximum

value of 0.5. - o
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b " b . 2 b
pbp dY = Py, 8 (Y) dY = g / [1-£(Y)] dy, or
a a ' a ' .

k= Pbp (b-a) B1/p°
b

f [1:56v)] ay

- In dimensionless form Eq. (4) becomes

2 2 f((Y)y| _dv |f(Y) , 2 g'y)| , d°v | f(Y) 2
Vrmogm | VTar jgm " g | Tz e tC

(5)

This équation is of the form LV = WZV ;, where L is a second-order
differential operator independent of w. Equation (5) is therefore an eigen-

value equation readily sdlvable by standard methods, and is the basic
equation of this paper. By using data from the 4-inch Triax at Berkeley,

stable frequencies are calculated for m = 0 and m =1 (see Table I}.

IV. SOLUTION OF EQUATIONS OF MOTION

The solution of Eq. (5) is effected by discretizing the domain of the
variable Y into n+l equally spacedpoints. The first and second de\ri-
vatives are approximated by first- and second-order differences. This
procedure reduces Eq. (5) to the form

[VYq) - v (Y )]

AMWA{Y.) = - R(Y.) v(Y.}) + p (Y.)
i i i i
2h
[V(Y.,,) -2 v(Y.) +v(Y. ;)]
= q(Y) - i+l . LA T B | ., . _ (6)
h
' ' 2 ' : .. dv
where X = w and R (Yi) and q (Yi ). are the coefficients of v, v
2 .
and d——lz , at the ith point (see Appendix C). The probiem is now to deter -
dY T : :

mine the eigenvalues and eigenvectors of a square matrix of order n - 1.
The method used in this paper for calculations is Sturm's theorem, which is

particularly well-suited for use with a desk calculator. 3
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Table 1

A. Dimensionless frequency eigenvalues - Cartesian geometry

Normalized density distribution Gaussian distribution

Mode >
~ Bf _ (m = 0)
P~ g7 L1 -f(M] 2 S12(av)?
Pg ~B e
‘m =0 m =1 13 subdivisions 5 subdivisiors
1 0.47 0.49 1.33 1.69
2 _ 1.04 1.05 1.84 2.71
3 1.58 1.58 3.13 4.39°
B. Dimensionless frequency eigenvalues - cylindrical geometry
Mode Normalized density distribution Gaussian distribution
- & - ew] fm =0 2
Po B8 ’ _ .2 =12(aR)
Pgo B%e
m =0 m =1 13 subdivisions
1 0.56 1.33
2 1.06 1.84
3.13

3 1.58
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Lo Ly l .l 1‘| lvlva

Fig. 2.

distance.

0701 0760 0813 \0.867 0920 0974

R

MU-21798

Plot of the behavior of the magnetic field with transverse

The ordinate can be considered as either f(R)

or f(Y), depending on whether cylindrical or cartesian

geometry is used.
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For the solution of Eq. (6) the Y domain is divided into thirteen
equal portions. This yields an 11-by-11 matrix for which the three lowest
eigenvalues are calculated. These values are given in Tabte I.

A central problem in calculating the eigenvalues of Eq. (6) is that of
determining the coefficients R(Yi), P (Yi), .and q (Yi) at the various Yi points,
From the data available for BZ0 = .BOZ f(Y) (slightly modified {rom symmetry

considerations, as see Fig. 2 ), a plot of . -f—(-i;)f d;ff_ f{Y) dBO vs., Y

is obtained (see Fig. 3). In order to estimate Po and v the temperature
is assumed constant throughout the plasma at the time of maximum com-
pression. Thus Py is set proportional to Po and vz is'a constant.

Two approaches were used to estimate Po - Integrating the expression
—v’po = -J?O X EO , one obtains Pg + “Bé /8m = constant. This equation
is then used to plot g(Y) = 1 - f (Y) versus Y by setting £(Y) = 1 at the
walls. This graph also gives the density profile, which is normalized to
the uncompressed dénsity (see Fig. 4). |

Alternative to this method is a Gaussian distribution in which g(Y) =

- 2
constant X e kays, where AY =Y - YO , and YO is the center %f the
.Y domain. The value of 12 for K best fits the values of pa = _8@%_ —déY—-—

f(Y) calculated from the given data (see Fig. 8}.
. For the corresponding eigenvectors of v see Fig 6.
To check the validity of the arbitrary division into the thirteen portions,
a sample calculation is made with the Y domain divided into five portions.
The effect of this is to raise the eigenfrequencies by approximately 25 %

for each mode of oscillation.

s

V. PLASMA EQUATIONS OF MOTION FOR CYLINDRICAL GEOMETRY

)

To obtain.a closer approximation to the Triax geometry, Eq. (2) is
solved for a cylindrical sheet infinite in the =z direction. The functions
jO = (jo )z R BO = (BO)6 are now dependent upgn the r coordinate alone.
For simplicity, set the perturbed quantities {:1\ = ;(r)ewt with no 6 or =z

dependence. The plasma equations in cylindrical coordinates then follow:
Pog@Vvg = Jo By

- . . - dp
PowVv, = ~JoBg-3,By- 35
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-21.7

0.701 | R ' | 1,00
MU-21799

Fig. 3. Plot of the behavior of —C—I—BO {or 4 BO) with

transverse distance, dr dy
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1.0 —
g(R)
0
0.70l 1,00
R
MU=-21800

Fig. 4. Plot of the pressure (density) profile with transverse
Jistance.
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1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

I.OIO
0.70l -
-0.2
-0.41
-0.6[
-0.8
-1.0-
-1.2F

-1.4-

-6 ' MU-21801

) with transverse distance.

"Fig. 5. Plot of —7— (or
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Cartesian geometry Cylindrical geometry
p~1-f(Y) m=0 p~1-f(R) m=0
100+ f=047 - f=056
5.0—/\ =
0 N /\
-S5O —
-100+ -
e .
2 100 f=1.04 - f=1,06
s so- -
s 0/\ . /‘\ .
= -50I- —
o
2 -100- —
L)
>
100 f=158 — - f=1.58
50 -
N e TNy
\/
-50- -
-100 - .
0.70I Y 1.00 0.70! R 1,00
MU-21802

Fig. 6. Plots of transverse velo_city.'relat'ive amplitudes.
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Po Y, T igBy 0

r
41”6 - T dr Bz ’
4wj = 0,
A | d :
4mz = rF o a ° B6 !
w - d
T c 'BB I Ez
® -
-2 B_ =0, (7)
w _ 1 d
c Bz T r dr r'EG ’
v
E = ¢ '.‘%-EQ_:
Ir e
EG = 0,
v B
E = - r 0 ,
z C
+ 1 d + %0 = 0
wp Po ¥ dr TV Ve dr - ?
A d 2 0
wp + Vr Tdr pO = Vs (wp +Vr dr )

Through algebraic manipulation similar to that in Sec. III, the equation
of motion for V’;"r is found to be (the prime denoting differentiation with

respectto r, and m = 0 ).
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' 2 2
2 _ Vs Po Vs B0
w v_ = - +
r r
Po ¥ r 41rp0r
[ 2 2 2 '
t
N dir Ve Py N v N BO N BOBO
dr . | P r 41Tp8f 'ZWQO»
a4 [ B , |
+ Z + v (8)
-7 dr 4 wp 8
. 0
. : . . 1 4
To derive Eq. (8) we have used the relations 4TTJO R B0 , and
dpg — By 1 4 r B,
dr S " JoP0 T T 4m r d&r

Note that Eq. (7) reduces to Eq. (4), for r = o« . Equation (8) can be put
" into dimensionless form, as was Eq, (4). The approximation

Bg /4nr << B0B6/41r is made so that the pressure distribution

2
Py = g-p“— (1-f(R)) is employed, as are the relationships r = LR,
v. =vV, B% =8%(R) =0 g(R) = 8 (1-£(R)), v = cZ___z_'sz
r ! 0  Po m 8w s 41pr
2 . 2 2 . . *
w = w” , where p_ , £, v, k, and c are defined as in Sec. III.
™ m

, 8
Prp (0-2) 52
Ib (1-f(R)) dR

a

Similiarly, for a € R< b, k = , Eq. (8) becomes

(with m = 0):

*
Except at the end points, where ‘R = 3.06 and R = 4.50, the above

approximation is valid.
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Cartesiog geometry Cylindrigol geometry
p~eBy2i2 m=0 p~eORTI2 m=0
100} : f=1,33 - f=1.33
'5.0/\ '/\
o} — ——
'5.0'—‘ -
-100F : o
Q
3
< |00} f=1.84 — f =1.84
2 5 ‘ ' '
e - —
o
N\ N,
2 \/ \/
5 -50F e
©
= -100F —
< v
100+ f=3.13 . : £=3.13
S0 = |
-50}- % = -
-10.0k —
0,701 Y 1,00 070l R 1,00

MU-21803

Fig. 7. Transverse velocity eigenvectors (continued).
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2 2 .
2 c d c 1 f (R)
YV SV IRgm @R 8RR -t o7 3w
2 2
dv c d c f(R) 1 1 d
R i — - —_—
far |lem w® e® Y x f gmgtgmar TR
ay fR) 2 |
+ . - ¥ c ' (9)
dR _g‘(R)

Equation (9) can be solved in the same manner as Eq. (5): almost the same
frequency eigenvalues are found. This is to be expected, since 3 < R < 5
implies that the terms in 1/R or I/RZ' are a good deal smaller than the
remaining terms. The corresponding profiles for v are no longer

symmetric, but decrease towards the outer circumference (see Figs. 6, 7,
and 8}.
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-50
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50

-50

Vy relative amplitude

-100

10,0
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-50
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Cortesian geometry
p~1-f(Y) m=|

f=0.49

f=1,05

f=1.58

Y 1.00

MU-21804

UCRL-9344

Transverse velocity eigenvectors (concluded).
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CONCLUSION

The perturbed tfansverse displacements of the plasma have the same
wave form and oscillation frequency as the pe‘rturbed transverse velocities.
These displacements furnish a good indication of the behavior of the plasma.
They indicate that the tubular pinch is stable with respect to the small per-

turbations m = 0, 1, and k = 0, if we use the density profile
2 ’

P A ZET?_ (1-f(Y)), where f(Y) is the functional behavior of BO’ and B =8B

0
maximum. The assumptions made in these calculations are uniform equi-
librium temperature, infinite conductivity at the plasma and walls, scalar
pressure, zero equilibrium fluid velocity, negligible effects of runaway
electrons, no Landau damping, aﬁd negligible heat conduction¢

The oscillation frequencies calculated by using the data from the
Berkeley 4-inch Triax device are 2.2 Mc/sec, for the m = 0 oscillation. A
short calculation using the energy principle, based upon a highly simplified
plasma model, gives substantially the same result (see Appendix D).

Test runs of the Berkeley 4~-inch Triax indicate a frequency of 1 Mc/sec.
The disparity between these results .may be due to inaccurate estimates of the

density of material in the pinch.
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APPENDICES
A De;:iygﬁigri of Differential Egu'ati.on in vy
*Equation (3) can be reduced to three differential equations in ”vy s v
and p.

0 = p'+av' +bv! =-cv"” + dv_ - eV’
Yy Yy y z zZ

o
H

- fv_ - gv' +h Al
p-tvy-gvy v, (A1)

! + nv
y z

o
1}

kp + ﬂvy + mv

Coefficients a, b, c,.d, e, f, g, h, k, I, m, n (m and k are not to be

confused with the x and z variations of q) are:

' 2
. jOB(; mZB(Z) B0B8 wBo
a = + - . opw + =
w 4drw 4w 0 4wcl

(Where ¢ represents the speed of light)
j B 2B B!

[70"0 070
b= T Tme
5
c = —BO
4w
e . .
1kJOB0 1kB0B0
d = — < . -
c 4rw
) ikBg
¢ % Zno
£ = 0
I TP
2
_ Bo
g = 4mw
2..2 2 2
m +k B0 B0 w pw

h = =% o~ T T T ox

=y




-27- UCRL-9344

w m2
k = 2 * w
\%
s
' 2.
, 2P0 T ioBo
T2 2
Ve W
m = pg
n = ikpo

Solving Eq. (A-2) for vy one obtains
1 o\
0=v -| f a4 B Jz ; hte v L
’ (BN AN
‘ k k1
h ! n )
+e ‘ n
aes _h)z(ﬂg)(hag)
k

- h'+d m htc 2=
+ v + g + 2 falls
Vy f gfb+n h(g k) + = (‘f+k)

K - k"
h+c m }' h+e n \ - m
T h<+k) +3—h)2'(h~1?) <g+T‘-)
k k
" m hte
+vY <g+—k—-)2___h +(g-c)
k
2 9B
Terms in 1/c” are ne ected and it is noted that 4173 = VXBO -? 5

0

(BO’ Upon substitution of the values for

and Vp, = p'0 = Jjg X By =

the symbolé a through n, and after simpliﬁcatibn, the genéral differential

equation in vY is obtained.

0
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mZBS
- 1
0 = vy (wp0‘+ Too— )
BZ B2 | )
2,2 0 0 Po®
. {(m t2k7) 4m+‘*"’0}4m L N
+ vy w /VS +m
2
- &% 4m® + %) Po“‘) - (m°+ k%) Bo”
A 2. 4w
Ve ow /
s
¢ . 2 \
v (BO + Po @ ) '
‘ ¥ \d¢ .
? B0, ) a st L, b
drw 07/ dy | JafrmP+ " ) Po¥ Bo
v — 5y %m +k ) Imo
. vy oW /V +m
(A3)
‘The final form for v _ is:
m?B2 m’BZ |
v ..____O__ + Paw = —O o P w
y\ 47w 0/ 4rmw _ 0 »
2 ,
vy By Po® )
T\ A wZ/VZ +m’
d : s _ : L
y :
: 2
dy ,kz-?-mz + wz Po® BO
= k%) o
L ve L w/v +m?2
2
B 1
2 2. .2 Pp
) _ >
4w 2 2\ pjw B
2 +m° K +m®+ > ; ¥ (% 4K%) 2 )
v v w 2 T
s s —7-_%tn

(Ad) -
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B. Relevent Numerical Data

Quantity Value
_ : 4 4
B, 2.6 X 10" gauss to -2.6 X 10" gauss
Py | 300 microns of Hg. (uncompressed)
Py ' 6 X 10ﬁ8grn/cm3 (uncompressed)
A (sound speed) 1.4 X 107 cm/sec.
n 1.8 X 1016 atoms/cm3~ {uncompressed)

~C. Method of Solving Equation (5)

Given the differential equation

2, 2 (Y) _aw |y ;o2 gy

which is of 1_:he form

NV (Y) =-R(Y) v (Y) + p (Y) V' (¥Y) +q (¥) v" (V) ,

replace
V(Y. ) -2%(Y.) + v{Y. )
VI(I(Y)I by itl 21 j==1
h
and
v{Y. ) - V(Y. ‘)
V' (Y) by i+l i-1

2h
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The equation of motion thus becomes:

VY ) - vi,)

NV(Y.) = - R(Y,) v(Y,) +p(Y;)

Zh
Y.L, -2 vY.) - V(Y. )
g (Yi) v i+l 21 i-1 (c1)
_ h .
In matrix form, Eq. (Cl) is: .
| -p(Y;) q(Y;)
AV(Y) = (00 e e
. | h
R(Y,) - 29(Y.) ( @  p(Y,)  ql¥;) v )
. S . e o0 0) v({Y,)
h” - 2h b v (Y, 41)

- -
The problem now consists of solving the matrix equation NV = AV , Write

1 1
¢y a2 b2 0
, 0 c2 a3 b3
A = =
h C 0 c:3 ay
0 c Cn—l an
with the coefficients
a, = -2q(Y,) - h°R(Y,) b o= DoY) +q(Y,) . =- B p(Yi)+q(Y,)
1 airy) - R 1 - oz PiLpimakny) ¢ T ooy P, )TAl,
. 2 h ' h
a, =-2q(¥,)-h"R(Y,) . b, =5 p(Y,)+q(¥,) ¢, =-5p(Y3)+ta(¥3)
a =-2q(Y )-h®R(Y.) * b, =L p (Y )+q(Y.)c =-2 p(Y )+q(Y )
n q n n ' n Zp n n n-l 2 n n

The determinantal equation |A =X | =0 was solved by Sturm's Theorem. 3
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D.  Energy Principle Application

The energy principle can be used to obtain an approximation to the

frequency of the plasma oscillations. We employ the expression:
- O0W
1 2
5 IP E° T

is the change in potential energy under an infinitesimal displacernent £ of

2

) (see Ref. 4, p. 207, formula 4.19) , where 0w

the plasma from its equilibrium position.

2 .
To calculate w several assumptions are made:

1. during the compression the plasma is compressed into a
region of thickness 20 , where 0 < < Ty s and ry is the
mean radius of the plasma; '

2. The den31ty and pressure are unlform in the plasma with’
vacuum outside the plasma;

3. The current is confined to the inner and outer sufaces ..
of the plasrna.,

- Walls and plasma have infinite concluctivity;

..h .

Half the return current flows on the inner conductor and half

(S

on the outer conductor,
- 6., The plasma is assumed to be incompressible during
perturbation, which implie,g that v - g = 0; end
7. For purposes of simplicity m and k are chosen to be
zero. Furthermore, the infinitesimal displacement E’

is set equal to _rg £ (EO constant), withno 6 or z

components.

The energy change o W is given by 0W = 5W + GW + 5W where:
1

/F
'O\W‘f: Z. ‘ ATT

- ?«(b’xé’)} dr,

2
1 .\l B~ _

A -2 (.

[B-"v’ 'B’j
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6‘:"W-v = _SIF_ [dTv (_V*XK)Z , where 6 = 3)((?}(]?) , R = perturbed
vector potential ‘d'rf = volumé element in the-plasmé, d'rv = volume
element in the vacuum, and ds = vacuum-to-plasma surface element.

Here we write 'E, P, :TT as unperturbed quantitiezs. Bracketed terms in
ds indicate the jump of. B:-vVHB and v {p +% ) across the surfaces of
the plasma. _ ' S -

For: tfe Triax: geometry, the expression n - [B -7 B] becomes
o - [ —'?1’]-?1.&— | . - In the plasma region B6 varies as 1/r-and can be considered
constant because of assumption {1). In the vacuum region B6 has the same
magnitude at both plasma-to-vacuum surfaces,‘ Hence the jump in B6 is
the same across the two surfaces, and we can apply assumption (1) to con-
clude that G‘v?lesvanishes. ‘ »

The displacement g can be considered as constant in the plasma region,
because of assumptions (1) and (7), while BG can be considered as constant
in the plasma, as noted above. Therefore the integrand in 6Ws can be
considered as constant, while the region of integration is of order 0 in size.

Consequently, Ofwf can be neglected.

To evaluate '5W.{, » use the condition that the fluxes internal and ex-
ternal to the plasma region must be conserved. . Writiyng Be = b, /r for

the field in the region r > r, , the external flux

r r
. - e _ e . . .
Ee is Qe = fr BG drdz = Lbe; log —r—Fj— where r, is the radius of the
S ro :

0
outer conductor. The cilange in flux equals zero, and is given by
' | Te be ‘ g6 :
o ¢, = L {bbe log T - T r”l =. 0. Now: we substitute:
R &b | .
v X A = 0B = & 0 into 5% I oxt Which is the energy change in
the region r > ry - The result is: v
, T ' r 2
GWV |ext = /de'rV (V)éHA)Z = ~817T /e dz 2wrdr (E-?)
Yo o
i g(*’_e)Z a1l [10 _] h
* ATl gl ® T

where E,O /r = EO / r, because of assumption (1).

i ]
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By means of identical arguments; setting the variation in internal flux

equal to zero, we obtain an expression for the ene-rg'y change 5'WV | int

in the region r’< Ty - This result is:
> :
» 2 -1
ow I = 0 (yxA) - L 50 -b—1 ’ lo —r— where
v lint 8w 4 2 r g T,
i r, 0 i

éo/r = go/ro ; BG for r < Ty is bi/r » and r; is the radius of the

inner conductor. Thus the total energy change O0W = 5WV lint + ﬁ‘Wv Iext_”
becomes:
€Z
L S0 .2 1 1
4 T2 P T r o (D2)
T, log "e log 0
r T,
0 i

Here we have written P for bi/ro' and be/rO .
Substituting Eq. (D2) into Eq. (Dl), the angular frequency of oscillation

squared becomes:

2 L 2 & 1 s o1 A 2 4 R
e B 3 —Tz T > | P T =
Ty | log — log 7

oy

0,

i

-

0 i

2 1 1
B — .
log e log " 0
T, T,
0 i

2 2
»ZTTpEe —.ri]

This angular frequency of oscillation is imaginary, indicating stable
oscillations. Substituting the appropriate Triax data for B, p, 1y, T,

. 1
and r,, we obtain wZ = _-147 X 10 4 (rad/sec)Z

The freq‘uen‘cy f= —:‘2—‘%—3— is then 1.93 ¥ 106 cycles/second.

If the dimensionless freque?ncy of 0.47 listed on Table I of this report
is multiplied by the value of 4-1?7_;)_ as applicable to the Triax, f is
™

found to be 2.2 X 10° cycles /second.
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Using the above simplified pinch model, the energy principle method’
and the perturbation approach thus give substantial"l.y the same plasma

oscillation frequency for the m = k'= 0 mode.
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