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SOME CALCULATIONS ON THE TRIAX PINCH DEVICE 

Shalom Fisher 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 9, 1960 

ABSTRACT 

The hydromagnetic equations of motion for the Triax pinch are 

linearized by a perturbation expansion about equilibrium. The perturbed 

equations are then decomposed by the method of normal modes. A numer

ical calculation is made of the oscillation frequency for two specific modes 

(k = 0, m = 0; and k = 0, m = 1). The m = 0, k = 0 mode is also analyzed by 

using a hydromagnetic energy principle. 
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SOME CALCULATIONS ON THE TRIAX PINCH DEVICE 

Shalom Fisher 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 9, 1960 

I. INTRODUCTION 

The Triax pinch device is a method for containing a heated plasma in 

a cylindrical sheet configuration. The pinch phenomenon forms. the current

carrying plasma into a tubular shape between two concentr,ic cylindrical 

conductors. 
1 

This is known as the tubular pinch {Fig. 1.}. 

A macroscopic' approach to the pinch stability problem is made by 

using the method of small!. perturbations. The basic assumption of an 

equilibrium plasma configuration during maximum compression enables 

the magnetohydrodynamical equations of motion.to be linearized. It is 

further assumed that Po I Po is a constant. The resultant second-order 

differential equatio~s-ar:e solved by numerical methods, yi e Ldillg frequency 

eigenvalues and corresponding modes of oscillation for the perturbed trans

verse velocity. 

II. EQUAIT'IONS OF MOTION 

The macroscopic equations of motion for the plasma are well known:
2 

-dv = -J. X B 
p dt 

_,. 
\l p ' 

...,. ..... - 4~ 8B VXE = ~ at c 

9> - v - (setting resistivity 0) E + X B = 0 -
c 

- ... \1 B = 0 , 
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Fig. 1. Triax (schematic). 
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1 
p 

a 
at p 

dp = y_ 
dt p 

..... ..... 
+ 'il' p v 

(9ft2 = v 
s 

dp ( '\} = """'d"t ! 
= 5/3 for ionized plasmaL 

= 0 (continuity equation) , 

{sound speed) 

Assume that all variables q behave as q = q 0 + <} except for v = ~ , 
where perturbation q is small compared to equilibrium value q 0 . Keeping 

only first-order terms in the perturbed functions, we find the above equations 

then become 

- ~ 'A 
'i1 X B = 4n j , 

- It 1 'ilXE--- 4TI C 

-+ 'i1 . 

1\ 
BB 
a t 

'"'!> 

~ 1\ ..,.., 
E + c X B 0 = 

..... ..... A 
'i1 B = 0 ' 

1 d A 

Cit p = 
Po 

0 

(2) 

.::L d ... 
dt p 

Po 

IlL PLASMA EQUATIONS OF MOTION FOR CARTESIAN GEOMETRY 

The first plasma model chosen for the c_alculation of frequency equa~ 

tions for the transverse _velocity is a flat ribbon, infinite in the x and z 

directions .. Since the variables B 0 , jQ , ~O ar:d p 0 are now dependent 
._ '"""' ikzhmxftut . 

upon the y coordinate, set ~ =q {y) e . Notmg that 

"' {B 0 }Y = {B 0 )z = U0 }Y = Uo>x = 0 , and using the single subscript 0 for the 

nonvanishing, unperturbed components, Eq. (2) in component form is 

Po wv = -imp - j B ·x 0 y 

Po wv = - p' + jo Bx +jz Bo y 

Po wv = ~ ikp ~ j B 
z y 0 



4'1Tj 
X 

4'1Tj 
y 

4rrj 
z 

B 
X - w--

c 

B 
-w _x_ 

c 

B 
z 

-w 
c 

E = 
X 

-E = y 

E = z 

w B --c X 

w B 
c y 

-~ B 
c z 

B + y 

wp + 

wp + 

= B' ikB 
z y 

= ikB imB ·x z 

= imB B' 
y X 

En ikE = y' z 

= ikE imE 
X ·Z 

::: imE - E y X 

0 
' 

v 
z 

Bo -c 

\ 

V. 
_y 

Bo ' c 

= E I ikE 
z y 

= ikE imE 
X 

= imE 
y 

ikB + imB 
z 

' 2 
v yPo = v s 

z 

= 
X 

(wp 

-10-

0 ' 

+vlo 
',I 

imvx Po +v~fb+ vy Po 
0 

+ 
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~} 
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(3) 

) ' 

ikv Po = 0 ' z 
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where the prime symbol indicates differentiation with respect to y. Equa~ 

tion (3) reduces to a second-order differential equation in v (see Appendix 
y 

A). In order to render this equation solvable with a desk calculator, k is 

set equal to zero. With this simplification, the differential equation becomes 

( 

2B2 
m 0 

V.y 41Tw 

2 
d v 

+ '- y 
dyz 

2 ] p' v 
+ 0 s 

2 2 
w(l+m :'s) 

2 w 

2 ] p v 
+ 0 s -2 

w(l+ m2Ys ) 
w~ 

Let us now 
m2v2 

limit the treatment in this paper to values of .m and w 

such that s 
w2 

* . < < 1. With this restriction, the above equation 

simplifies to 

( . 2 2) I 

2 ) w2 + m BO dvy ( 1 BOBO v p' 
+ 

s 0 
v = 

41Tpo y ·CIY i 0 
21r Po 

d
2

v ( 2 ). Bo 2 
+ 

y + (4) 
dy2 

v 
41Tpo 

s 

Equation (4) can be put into dimensionless form through a change of 

variable, and by changing the various coefficients of the v derivatives. 

2 - .. 2 - ~ 2 
y 

Let y=i.Y, vy=vV, B 0 - 13 f(Y), p 0 - 4rr (1-f(Y)], 

( ) r:>..2 I ( 1 ( ) ' 2 2. :f3 z 2 :p 2 2 p 0 = p m g Y = k t" 81r -f Y 1 , v s = c 4 1rp , w = 4 n-p w be the 
m m 

appropriate substitutions, where (3 = B 0 at walls, p - p -m - maximum' 
v, k and c are dimensional scaling factors,· J. · is the outer radius of the 

chamber. By normalizing to the mass of the gas present, a relations hip 

between k and pbp {before pinching} can be made: for a ~- Y ~ b , 

we have 

* Substitution of the calculated values for w into · le~ds to maximum 
value of 0.5. 
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b b b 
k@'2 1 pbp dY =[ p g (Y) dY = [ [l-f(Y}] dY, .or 

m 81T 

a 

2 
k = pbp (b-a) 8TI/~ 
b L [ l -f(Y)] dy 

:In dimensionless form Eq. 

[ 
2 + _.2 f(Y)] = dv 

w UJ g(Y) v dY 

(4) becomes 

[ 
f' (Y) + c2 
g (Y} 

g' (Y) ] 
g (Y)· [ 

f(Y) + 2 ] g{YT c . 

(5) 

This equation is of the form 
2• 

LV= w V, where L is a second-order 

differential operator independent of w. Equation (5) is therefore an eigen-

value equation readily '8 olvable by standard methods, and is the basic 

equation of this paper. By using data from the 4-inch Triax at Berke ley, 

stable frequencies are calculated for m = 0 and m = l (see Table I). 

IV. SOLUTION OF EQUATIONS OF MOTION 

The solution of Eg. (5) is effected by discretizing the domain of the 

variable Y into n+l equally spaced ;points. The first and second deri
\ 

vatives are approximated by first- and second-order differences. This 

procedure reduces Eq. (5) to the form 

· [v(Y. )-v{Y. )] 
=-R(Y.}v{Y.)+p(Y.) 1+1 1 -l 

1 1 1 2 h 
A.v(Y.) 

1 

= q(Y) 
[v(Y

1
.+1 )-2v(Y.)+v(Y. 1 ~J 

1 · 1- 1 

where A. = w
2 

and R (Y.) and q (Y.). are the coefficients of v, 
1 1 

(6) 

dv 
dY 

at the ~h point {see Appendix C). The problem is now to deter-

mine the eige.nvalues and eigenvectors of a square matrix of order n - 1. 

The method used in this paper for calculations is Sturm 1 s theorem, which is 

particularly well-suited for use with a desk calculato"r. 
3 

ill 
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Table I 

A. Dimensionless frequency eigenvalues - Cartesian geometry 

Mode Normalized density distribution 
2 

Po .... ~ [ 1 - f(Y)] 

m = 0 m= 1 

1 0.47 0.49 

. 
2 L04 LOS 

3 1.58 1.58 

Gaussian distribution 
(m = 0) 

.... R2 -12(t.Y)
2 

Po t' e 

13 subdivisions 5 subdivisiom 

1.33 1.69 

L84 2. 71 

3.13 4.39 

B. Dimensionless frequency eigenvalues - cylindrical geometry 

Mode 

1 

2 

3 

Normalized density distribution 

p O - l': [ 1 - f (R)} 

m = 0 

0.56 

1.06 

1.58 

m = 1 

Gaussian distribution 
(m == 0) 2 

Po .,. 13 ze -12(t.R) 

13 subdivisions 

1.33 

1.84 

3.13 
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MU-21798 

Fig. 2.. Plot of the behavior of the magnetic field with transverse 
distance. The ordinate can be considered as either f(R) 
or f(Y) , depending on whether cylindrical or cartesian 
geometry is used. 
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For the solution of Eq. (6) the Y domain is divided into thirteen 

equal porti-ons. This yields an 11 ~by-11 matrix for which the three lowest 

eigenvalues are calculated. These values are given in Tabl:e I. 

A central problem in calculating the eigenvalues of Eq" (6) is that of 

determining the coefficients R(Y.), p(Y.). and q (Y.) at the various Y. points. 
21 21 1 1 

From the data available for B 0 = ·13- 0 f(Y) (slightly modified from syrnrne\y 

considerations, as :see Fig. 2 ), a plot of yftY) ·· d~ f (Y) \~ vs. Y) 
is obtained (see Fig. 3). In order to estimate p

0 
and v; the temperature 

is assumed constant throughout the plasma at the time of maximum corn~ 

pression. Thus Po is set proportional to Po and v; is a constant. 

Two approaches were used to estimate. p
0 

. Integrating the expression 

'tp
0 

= j 0 X B0 , one obtains Po + B5 /8rr = constant. This equation 

is then used to plot g(Y) ::::: 1 ~ f (Y) versus Y by setting f{Y} = 1 at the 

walls. This graph also gives the density profile, which is normalized to 

the uncornpressed density (see Fig. 4). 

Alternative to this method is a Gaussian distribution in which g(Y) = 
-k-6. y2 .· . 

constant X e ' where .tlY = Y - Y0 , and Y 0 is the center of the 
R~2 d 

Y domain. The value of 12 for K best fits the values of Po = t7r- cry 
f{Y) calculated from the given data (see Fig. S). 

For the corresponding eigenvectors of v see Fig 6. 

To check the validity of the arbitrary division into the thirteen portions, 

a sample calculation is made with the Y domain divided into five portions. 

The effect of this is to raise the eigenfrequencies by approximately 25 o/o 

for each mode of oscillation. 

V. PLASMA EQUATIONS OF MOTION FOR CYLINDRICAL GEOMETRY 

To obtain a closer approximation to the Triax geometry, Eq. (2) is 

solved for a cylindrical sheet infinite in the z direction. The functions 

j 0 = U0 )z , B 0 = (B 0 ) f) are now dependent up.9..n the r coordinate alone. 

For simplicity, set the perturbed quantities ~ = q (r )e wt with no f) or z 

dependence. The plasma equations in cylindrical coordinates th€m follow: 

wv 
r 
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... 

0.701 R 1.00 

MU-21799 

d d 
Fig. 3. Plot of the behavior of - B 0 (or- B 0 ) with 

dr dy 
transverse distance. 
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1.0 

g(R) 

0~~-----------------------------------------------=~ 
0.701 1.00 

R 

MU-21800 

Fig. 4. Plot of the pressure (density) profile with transverse 
distance. 



0.2 

·Fig. 5. Plot of 
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R 

MU-21801 

dpo 
( or -- ) with transverse distance. 

dy 
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Co rtesion geometry Cylindrical geometry 

p ..... l-f(Yl m=O p,..l-f(R) m=O 

f = 0.4 7 f = 0.56 

Q) 

"0 
::I f= 1.04 -
Q. 

E 
0 

Q) 

> -0 
Qi ... 

>. 
> 

f = 1.58 f = 1.58 

0.701 R 1.00 

MU-21802 

Fig. 6. Plots of transverse velocity relative amplitudes. 



wv Po z 

4rrj e = 

= 4mj . r 

4rtj 

w 
c 

c;u 

c 

w 
c 

E 

E 

r 

z 

= z 

B 
r 

B 
z 

= 

wp +Po 

+ v 

t 

= j ·- B~ .. 
0 ... r 

d .,. 
dr 

0 
' 

l d 
r dr 

d = - dr 

= 0 ' 

l d = r . dr 

v 
BQ z 

) 

t: 

1 d 
r ~ 

d 
wp 

r dr Po 

B 

r 

z 

Be 

E 
z 

• 

r Ee 

.r v + r 

2 
= V-s 
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(7) 

' 

dpo 
0 ' v err- = r 

(wp +v 
dpo 

) err-r 

Through algebraic manipulation similar to that in Sec. III, the equation 

of motion for 'i. is found to be (the prime denoting differentiation with 
r 

respect to r , and m = 0 ). 
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[ 2 ' 2 
Bz ] 2 v s p 0 v 

s + 
0 

w v = v --2- 2 r r 
Po r r 4np

0
r 

[ vz p' 
2 B2 dv v 

+ - r s 0 +-s- + 0 
dr Po r 4npl 

d~ [ B2 

+ v 52] + r 0 

dr
2 

4 npo 

To derive Eq. (8) we have used the relations 

dpO . BO l d r B
0 <Ir = - JoB 0 = - 4n r dr 

+ 

I 

BOBO 

- 2n~ 0 

d 
dr 

] 
(8) 

and 

Note that Eq. (7) reduces to Eq. (4), for r - oo • Equation (8) can be put 

into dimensionless form, as was Eqo (4). The approximation 

B~ I 4n r < < B 0B 0 I 4n is made so that the pressure distribution 

- 13 2 
Po - 8n (l-f(R)) is employed, as are the relationships r = £ R , 

v = vV, 
r 

2 2 13 2 
2 2 B

2 
B = l3 f(R), Po= pm g(R) = k -·- (1-f(R)), v = c ' ~ 

0 8n s 4np'" 
w 

2 
(,j) = 

2 

4np 
m 

2 
w where p m 

Similiarly, for a ~· R ~ b, k 

(with m = 0): 

* 

£ , v, k, and c 

= pbp {b-a) .p
L b ( l - f ( R ) ) dR 

* are defined as in Sec. III. 

Eq. (8) becomes 

Except at the end points, where R = 3.06 and R = 4.50, the above 

approximation is valid. 
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Cartesian geometry 
p .... e-~Y 2 12 m=O 

Cylindrical geometry 
P"'e-~Rzl2 m=O 

f=l.33 f. 1.33 

Cl> 
"0 
:::1 

f = 1.84 f =1.84 
Q. 

E 
0 

Cl> 
> -0 

Cl> ... 

> 
f = 3.13 f = 3.13 

0.701 R .1.00 

MU-21803 

Fig. 7. Transverse velocity eigenvectors (continued). 



"' 

~23- UCRL-9344 

2 
[ Rgc(~) d 

2 l f (R) 

J 
g (R) c + w v = v dR -

R2 :R2 g(R) 

dv 
[ g !~I d 

2 
f(R) l l d 

(R)] + g (R) + c + f 
dR ~ ""R g(R) if+ g""{R) dR 

+ 
d.2v [ f(R) + 2 ] (9} 
dR

2 c 
g(R) 

Equation (9) can be solved in the same manner as Eq. (5): almost the same 

frequency eigenvalues are found. This is to be expected, since 3 < R < 5 

implies that the terms in l/R or l/R
2 

are a good deal smaller than the 

remaining terms. The corresponding profiles for v are no longer 

symmetric, but decrease towards the outer circumference (see Figs. 6, 7, 

and 8). 
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Cartesian geometry 
p .... l-f(Y) m=l 

f = 0.49 

Q) 

"0 
:J -
Q. f = 1.05 
E 
0 

Q) 

> -0 
Q) 
..... 

>. 
> 

f = 1.58 

y 1.00 

MU-21804 

Fig. 8, Transverse velocity eigenvectors (concluded). 
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CONCLUSION 

The perturbed transverse displacements of the plasma have the same 

wave form and oscillation frequency as the perturbed transverse velocities. 

These displacements furnish a good indication of the behavior of the plasma. 

They indicate that the tubular pinch is stable with respect to the small per-

turbations 
z. 

P
., _L 

,.., 41T 

maximum. 

m = 0, 1, and k = 0, if we use the density profile 

(1-f(Y)), where f(Y) is the functional behavior of B
0

, and 13 = B 0 

The assumptions made in these calculations are uniform equi-

librium temperature, infinite conductivity at the plasma and walls, scalar 

pressure, zero equilibrium fluid velocity, negligible effects ot runaway 

electrons, no Landau damping, and negligible heat conductiom · 

The oscillation frequencies calculated by using the data from the 

Berkeley 4-inch Triax device are 2.2 Me/sec, for them = 0 oscillation. A 
-

short calculation using the energy principle, based upon a highly simplified 

plasma model, gives substant:ially the same result (see Appendix D). 

Test runs of the Berkeley 4-inch Triax indicate a frequency of 1 Me/sec. 

The disparity between these results may be due to inaccurate estimates of the 

density of material in the pinch. 
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APPENDICES 

A. Derivation o£ Differentiai Equation in v y 

·Equation (3) can be reduced to three differential equations in 

and p. 

0 = p' + av 1 + bv' - CV: II + dv ev 1 

y y y z z 

0 = p - fv gv' + hv (Al) 
y y z 

0 = kp + i.v t mv' + nv y y z 

v ' y 

Coefficients a, b, c,. d, e, f, g, h, k, 1, m, n (m and k are not to be 

confused with the x and z variations of q) are: 

(Where 

a = ~ + m 0 
[

. B' 2B2 

w 4rrw 

B B" 0 0 
4rrw 

c represents the 

b "[io:o _ 
. 2 
Bo 

C = 4li'W 

d 
ikj

0
B

0 
= c 

"kB2 
1 0 

e = 4;rw 

BB' 
f 

0 
= 4nw 

B2 
0 

g = 41TW 

m2+k2 
h ·- ik 

speed of light) 

2B 0B 0] 
4nw 

ikB
0

B 0 
4rrw 

4nw + 

(A2) 

pw 

+ lk 



-27- UCRL-9344 

2 
k w + m 

= -2- w 
v 

s 

Po 2. B m Jo o -£ = + -2 2 
v!> w 

m = 

Solving Eq. (A-2) for vy one obtains 

f' + a+ h' +d (f+~) + h+e (f+ .ek~) ' 
( ~ -h} k (~ + ~ 

+ h+e 

(~ -h) z(n:)(h-~)'] 

+ vd f + g' +b + td h ( g + :) + t h (£+ d 
(h- ~). (g + ¥)] 

t v;' [ ( g t y) ( ~+e_ h) t ( g _ c) ] 

Terms in I 
z .... ....... _. aBo 

1 c are neg.lecte.
7
d, and it is noted that 4 :rrj

0 
= VX :So.=~··-. -

~(B ) ~· z a z 
= j 0 X B 0 = S ~; Upon substitution of the values for and Y'p 0 = Po 

the symbols a through n, and after simplification, the general differential 

equation in v is obtained. 
y 



m, 0 

( 

ZBZ ~ * 41Tw + Pow 

The final form for v 
y 

d 
dy 

( 

ZB2 
m 0 

vy 4rrw + Po"') 

-zs .. 

v'· (Boz 
Y 4rrw 

+ 

PoW J + 22 2 
w /v +m , s 

UCRL-9344 

0 
41Tw 

(A3) 

(A4) 1 

·-
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B. Relevent Numerical Data 

Quantity 

Bo 

Po 

Po 
v (sound speed) 

s 

n 

Value 

4 4 
2.6 X 10 gauss to -2.6 X 10 gauss 

300 microns of Hg. (uncompressed) 

~s I 3 6 X 10 gm em (uncompressed) 

1.4 X 
7 

10 em/sec. 

16 3 
10 atoms/em (uncompressed) 

C. Method of Solving Equation (5) 

Given the differential equation 

[ 
2 + 2 f(Y. )l (Y) = d. (Y) [ f' (Y) + c2 

w m g (':Y tl v dTYT gryr 

+ 
[
. f (Y) 

g(Y) 

g' (Y)J 
g (Y) 

(5) 

which is of the form 

)... v (Y) =-R(Y) V (Y) + p (Y) v' (Y) + q (Y) v" (Y) , 

replace 

Nl'({Y), by 

and 

vI (Y) by 

v ( Y i + 1 > - 2 v( Y i > + v < Y i+ 1 ) 

h2 

v(Yi+l)- v(Yi_ 1 ) 

2h 
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The equation of motion thus becomes: 

A.v(Y.) =-R(Y.)v(Y.) +p(Y
1
.) 

1 1 1 

v(Yi+l) - v(Yi-!- 1 ) 

2h 

( 

. (Y.+l - 2 v (Y.) -
+ q (Y i) v 1 1 

h 

v (Y i-1) ) 

Inmatrixform, Eq. (Cl) is: 

-p(Yi) 
A. v- (Yi ) = ( 0 . . . 2h + 

R( Y. ) - 2q {Y. ) 
1 1 

( 

h 

p (Y.) 
1 ... 0) 

2h 

UCR L-9344 

(C 1) 

(

v (Yi-_l)J, -· 
v (Yi) 

v (Y. +1} 
1 

- -The problem now consists of solving the matrix equation A. V = AV . Write 

bl 0 0 0 

cl a2 b2 0 

0 c2 a3 b3 
1 

A = -2-
h c 0 c3 a4 

0 

with the coefficients 

h-:: 
b 1 = T p (Y1) + q (Y 1) 

h 
b 2 = 2 p ( y 2 ) + q (Y 2 ) c 2 

The determinantal equation I A"" A. I= 0 was solved by Sturm's Theorem. 3 

.. 
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D. Energy Principle Application 

The energy principle can be used to obtain an approximation to the 

frequency of the plasma oscillations. We employ the expression: 

2 
w = 

ow 
1 f 2 2 P ~ r 

(see Ref. 4, p. 207, formula 4. 19) , where Ow 

is the change in potential energy under an infinitesimal displacement "( of 

the plasma from its equilibrium position. 

To calculate w
2 

several assumptions are made: 

1. during the compression the plasma is compressed into a 

region of thickness 20' where 0 < < ro' and ro is the 

mean radius of the plasma; 

2. The density and pressure are uniform in the plasma, with; 

vacuum outside the plasma; 

3. The current is confined to the inner and outer sufaces 

of the plasma; 

4. Walls and plasma have infinite conductivity; 

5. Half the return current flows on the inner conductor and half 

on the outer conductor; 

6. The plasma is assumed to be incompressible during 
..... 

perturbation, which implie.s. that "V 7!' s = 0; and 

7. For purposes of simplicity m and k are chosen to be 

zero. 7!' Furthermore, the infinitesimal displacement s 

~0 A 

r is set equal to 
r 

( ~0 constant), with no e pr z 

components. 

The energy change 0 W
4 

is given by OW= ow1 + OWs + OWr where: 

. _ 1 (I a 2 
..... - ] 

o·w£= -2 i ;-!.1.- - J . (Ox "t> dr£ 
. l ... Tr-

'··· 

1/ 71! -2-= 2 d s (s · n ) n · 

/ 
1 ! 

2 I 
.I 

B2 
p +--8TT 

-n· 

]= 
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J - -2 d'Tv (Y' X A) , where A = perturbed 

vector potentian _d'T f ~ volume element l.n the plasma, d'T = volume 
v 

element in the vacuum, and dls = vacuum-to-plasma surface elemenL ... -
d 

Here we write B, p, J, as unperturbed quantities. 
._ -- - B2 indicate the jump of B · V' B and V' ( p +81T ) 

Bracketed ter,ms in 

across the surfaces of 
s 

the plasma. 

For t;fe Triax geometry, the expression -; · [B ·-; B] becomes 
B 

'ir: [ -Tr re ] In the plasma region Be varies as 1lr-and can be considered 

constant because of assumption (1). In the vacuum region Be has tl}e same 

magnitude at both plasma-to-vacuum surfaces. Hence the jump in B~ is 

the same across the two surfaces, and we can apply assumption ( 1) to con

clude that OW vanishes. 
~ s 

The displacement f 'can be considered as constant in ~he plasma region, 

because of assumptions (l) and (7), while Be can be considered as constant 

in the plasma, as noted above. Therefore the integrand in OW can be s: 
considered as constant, while the region of integration is of order 0 in size. 

Consequently, o·wf can be neglected. 

To evaluate OW, , use the condition that the fluxes internal and ex-v . 
tern_al to the plasma region must be conserved. Writing B = b lr for e e 
the field in the region r > r 0 , the external flux 

r 

~ lS .!£ = "':!: • ~ l e 
e e Be drdz = Lbe: log 

r 
e 
( +) 

r<O 
where r is the radius of the 

e 
ro 

outer conductor: The change in flux equals zero, and is given by 

/l Ie = L. { ilb 0 log 
r b se e e OJ .. Now.; we s.uhstitute; - -- = 
ro ro r 

ob 
e into ow I which is the energy change in 

r v. ext - - -V' X~= oB = ee 
the region r > ro . The result is: 

r 
(Y' X A)

2 
r eb r ow I ext = ;:Tv = l je dz 2;rrdr -+ v 8;r _8;r ,, 

ro ro 

(b y s2 

[ log :~ J 
-1 

~ :0 
0 

= -2-
ro 

where s 0 I r = so I ro because of assumption (1 ). 

• ,, 

~-
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By means of identical arguments; setting the variation in internal flux 

equal to zero, we obtain an expression for the energy change oWv I int 

. '/ 
in the region r 

ro 
ow I int = £. v 

1 

inner conductor. 

becomes: 

L 
4 

< ro . This result is: 
2 

[log :~] (:\7XA)2 L ~cir 
-1 

= where 
8'!T 4 2 ro 

ro 

r 0 is b./r , and r. 1S the radius of the 
1 1 

Thus the total energy change aw = ow I· + ow I v 1nt v ext 

+ log~] 
r. 

1 

(D2) 

Here we have written [3 for bJr 0 and be/r 0 . 

Substituting Eq. (D2) into Eq. (D1), the angular frequency of oscillation 

squared becomes: 

+ 1 J /1 f 2 --.... rrt<"o.- 2 P ; dT = 
log 

1 

This angular frequency of oscillation is imaginary, indicating stable 

oscillations. Supstituting the appropriate Triax data for f3 , p , r 0 , re 

and ri , we obtain w
2 = - 1.47 X 10

14 
(rad/sec)

2 

The frequency f = 1w) is then 1.93 X 10
6 

cycles/second. 

If the dimensionless frequency of 0.47 listed on Table I of this report 
+32 

is multiplied by the value of 
4
-- as applicable to the Triax, f is 1Tp 

6 m 
found to be 2.2 X 10 cycles /second. 
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Using the above simplified pinch model, the energy principle method 

and the perturbation approach thus give substantiaU.y the same plasma 

oscillation frequency for the m = k = 0 mode. 



• 
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